On the modular classes of Poisson-Nijenhuis manifolds

Yvette Kosmann-Schwarzbach and Franco Magri

Abstract We prove a property of the Poisson-Nijenhuis manifolds which yields new proofs of the bihamiltonian properties of the hierarchy of modular vector fields defined by Damianou and Fernandes.

Introduction

In [2], Damianou and Fernandes defined the modular vector field and the modular class of a Poisson-Nijenhuis manifold, and they proved that the hierarchy generated by the modular vector field coincides with the canonical hierarchy of bihamiltonian vector fields already defined in [5]. A theorem of Beltrán and Monterde [1] states that, in a PN-manifold, the derived bracket (see e.g. [3]) of the interior products by N and P acting on forms is the interior product by the hamiltonian vector field with hamiltonian $-\frac{1}{2} \operatorname{Tr} N$. In this Letter, we give an elementary proof of a particular case of this theorem, a simple consequence of which, stated in Corollary 1.1, enables us to give new proofs of the hamiltonian properties of the hierarchy of modular vector fields of PN-manifolds. These can be extended to the case of arbitrary PN -algebroids in a straightforward manner.

1 Poisson-Nijenhuis structures

There are many ways of expressing the compatibility of a pair (P, N), where N is a Nijenhuis tensor and P is a Poisson bivector on a manifold M satisfying the condition that $N P$ be skew symmetric, in order to ensure that $N P, N^{2} P, \ldots, N^{k} P, \ldots$ be a sequence of pairwise-compatible Poisson brackets. Let $d_{N}=\left[i_{N}, d\right]$ be the differential on forms associated with the deformed bracket of vector fields, $[,]_{N}$, and let $[,]_{P}$ be the graded bracket of forms defined by P. When no confusion is possible, we denote by N both the Nijenhuis tensor and its transpose, and by P both the Poisson bivector and the map from 1-forms to vectors it defines, with the convention $P \alpha=i_{\alpha} P$. Let $H_{f}^{P}=P d f$ be the hamiltonian vector field with hamiltonian $f \in C^{\infty}(M)$ in the Poisson structure P. The derived bracket $\left[\left[i_{N}, d\right], i_{P}\right]=\left[d_{N}, i_{P}\right]$ is denoted by $\left[i_{N}, i_{P}\right]_{d}$.

Proposition 1.1. The following conditions on N and P are equivalent:

- (i) $N P=P N$ and (ii) $C(P, N)=0$, where, for all $\alpha, \beta \in \Gamma\left(T^{*} M\right)$,

$$
C(P, N)(\alpha, \beta)=[\alpha, \beta]_{N P}-\left([N \alpha, \beta]_{P}+[\alpha, N \beta]_{P}-N[\alpha, \beta]_{P}\right)
$$

- d_{N} is a derivation of bracket $[,]_{P}$.
- $d_{P}=[P, \cdot]$ is a derivation of the deformed bracket $[,]_{N}$.
- Let $\{,\}_{N P}$ be the Poisson bracket of functions with respect to NP.
(i) $N P=P N$ and (ii) $d\{f, g\}_{N P}=L_{H_{f}^{P}} d_{N} g-L_{H_{g}^{P}} d_{N} f-d_{N}\left(H_{f}^{P}(g)\right)$, for all $f, g \in C^{\infty}(M)$.

This last condition follows from $C(P, N)(d f, d g)=0$, for all functions f, $g \in C^{\infty}(M)$, using the relation $[\alpha, d f]_{P}=-i_{H_{f}^{P}} d \alpha$.
Definition 1.1. When any one of the above conditions is satisfied, N and P are called compatible. The pair (P, N) is a Poisson-Nijenhuis structure (or PN-structure) if N and P are compatible. A manifold with a PoissonNijenhuis structure is called a Poisson-Nijenhuis manifold (or PN-manifold).

The compatibility of P and N can also be stated in terms of the morphism properties of maps $P, N^{k} P, N^{k}$ and $\left({ }^{t} N\right)^{k}, k \geq 1$, relating the various Lie algebroid structures on $T M$ and $T^{*} M$.

Proposition 1.2. Let P be a Poisson bivector and N a Nijenhuis tensor on M such that $P N=N P$. Then, for all $\alpha \in \Gamma\left(T^{*} M\right)$,

$$
\begin{equation*}
\frac{1}{2} \operatorname{Tr}(C(P, N) \alpha)=\frac{1}{2}<P d \operatorname{Tr} N, \alpha>+\left[i_{N}, i_{P}\right]_{d} \alpha \tag{1.1}
\end{equation*}
$$

where $[,]_{d}$ denotes the derived bracket.
Proof. We shall use the expression of the components of $C(P, N)$ in local coordinates [4],

$$
C_{m}^{k j}=P^{l j} \partial_{l} N_{m}^{k}+P^{k l} \partial_{l} N_{m}^{j}-N_{m}^{l} \partial_{l} P^{k j}+N_{l}^{j} \partial_{m} P^{k l}-P^{l j} \partial_{m} N_{l}^{k}
$$

whence

$$
C_{k}^{k j}=P^{l j} \partial_{l} N_{k}^{k}+P^{k l} \partial_{l} N_{k}^{j}-N_{k}^{l} \partial_{l} P^{k j}+N_{l}^{j} \partial_{k} P^{k l}-P^{l j} \partial_{k} N_{l}^{k}
$$

From the assumption $N P=P N$, i.e., $P^{l j} N_{l}^{k}+P^{l k} N_{l}^{j}=0$, we obtain

$$
N_{l}^{k} \partial_{m} P^{l j}+P^{l j} \partial_{m} N_{l}^{k}+N_{l}^{j} \partial_{m} P^{l k}+P^{l k} \partial_{m} N_{l}^{j}=0
$$

whence

$$
N_{l}^{k} \partial_{k} P^{l j}+P^{l j} \partial_{k} N_{l}^{k}+N_{l}^{j} \partial_{k} P^{l k}+P^{l k} \partial_{k} N_{l}^{j}=0
$$

This identity implies that

$$
\frac{1}{2} C_{k}^{k j}=\frac{1}{2} P^{l j} \partial_{l} N_{k}^{k}+P^{l k} \partial_{k} N_{l}^{j} .
$$

Thus, for any 1-form α,

$$
\begin{aligned}
& \frac{1}{2} \operatorname{Tr}(C(P, N) \alpha)=\frac{1}{2} P^{l j} \partial_{l} N_{k}^{k} \alpha_{j}+P^{l k} \partial_{k} N_{l}^{j} \alpha_{j} \\
& \quad=-\frac{1}{2}<P d \operatorname{Tr} N, \alpha>+i_{P} d i_{N} \alpha-i_{N P} d \alpha
\end{aligned}
$$

Since $i_{N P}=i_{P N}=i_{P} i_{N}$,

$$
\left(i_{P} d i_{N}-i_{N P}\right) \alpha=\left[i_{P},\left[d, i_{N}\right]\right] \alpha=\left[\left[i_{N}, d\right], i_{P}\right] \alpha=\left[i_{N}, i_{P}\right]_{d} \alpha .
$$

These equalities imply (1.1).
The following corollary, a consequence of the compatibility, will be used in Section 2.

Corollary 1.1. Let (P, N) be a Poisson-Nijenhuis structure on a manifold. For all $f \in C^{\infty}(M)$,

$$
\begin{equation*}
i_{P}\left(d_{N} d f\right)=-\frac{1}{2} H_{I_{1}}^{P}(f), \tag{1.2}
\end{equation*}
$$

where $H_{I_{1}}^{P}=P d \operatorname{Tr} N$ is the hamiltonian vector field with hamiltonian $I_{1}=\operatorname{Tr} N$ in the Poisson structure P.

Proof. When $C(P, N)=0$, formula (1.1) for $\alpha=d f$ yields (1.2).
Remark 1.1. When P and N are compatible, the derived bracket $\left[i_{N}, i_{P}\right]_{d}$ is a derivation of degree -1 of the algebra of forms equal to the interior product by the vector field $-\frac{1}{2} P d \operatorname{Tr} N$. A proof of this property can be found in [1].

2 The hierarchy of modular classes of a PoissonNijenhuis manifold

2.1 The modular class of $\left(T M, N,[,]_{N}\right)$.

Let N be a Nijenhuis tensor on manifold M. Given $\lambda \otimes \mu$, where λ is a nowhere vanishing multivector of top degree and μ a volume element on M, the modular class of the Lie algebroid $\left(T M, N,[,]_{N}\right)$ is the class in the d_{N}-cohomology of the 1-form $\xi^{(N)}$ such that, for all $X \in \Gamma(T M)$,

$$
<\xi^{(N)}, X>\lambda \otimes \mu=[X, \lambda]_{N} \otimes \mu+\lambda \otimes L_{N X} \mu .
$$

If $e_{1} \ldots \ldots e_{n}$ is a local basis of $\Gamma(T M)$ such that $\lambda=e_{1} \wedge \ldots \wedge e_{n}$, then

$$
[X, \lambda]_{N}=\sum_{j=1}^{n}(-1)^{j}\left[X, e_{j}\right]_{N} e_{1} \wedge \ldots \wedge \widehat{e_{j}} \wedge \ldots \wedge e_{n}
$$

Since $[X, Y]_{N}=[N X, Y]+\left(L_{X} N\right) Y$, we obtain

$$
[X, \lambda]_{N}=L_{N X} \lambda+\sum_{j=1}^{n}\left(L_{X} N\right)_{j}^{j} e_{1} \wedge \ldots \wedge e_{j} \wedge \ldots \wedge e_{n}
$$

Choosing λ and μ such that $\left\langle\lambda, \mu>=1\right.$ which implies that $L_{N X} \lambda \otimes \mu+$ $\lambda \otimes L_{N X} \mu=0$, and using the relation $\sum_{j=1}^{n}\left(L_{X} N\right)_{j}^{j}=\sum_{j=1}^{n} L_{X}\left(N_{j}^{j}\right)$, we obtain

$$
<\xi^{(N)}, X>\lambda \otimes \mu=i_{X}(d \operatorname{Tr} N) \lambda \otimes \mu .
$$

Thus we have recovered the result of [2]:
Proposition 2.1. The modular class in the d_{N}-cohomology of the Lie algebroid $\left(T M, N,[,]_{N}\right)$ is the class of the 1 -form $d \operatorname{Tr} N$.

The d_{N}-cocycle $\xi^{(N)}=d \operatorname{Tr} N$ is in fact independent of the choice of $\lambda \otimes \mu$. The class it defines can also be considered to be the class of the morphism of Lie algebroids $N:\left(T M, N,[,]_{N}\right) \rightarrow(T M$, id, $[]$,$) .$

Similarly, the modular classes associated to the Nijenhuis tensors N^{k}, $k \in \mathbb{N}, k \geq 2$, are the $d_{N^{k}}$-classes of the 1 -forms $d \operatorname{Tr}\left(N^{k}\right)$.

2.2 The modular class of a Poisson-Nijenhuis manifold

We shall now consider the case of a manifold M with a PN-structure. Let $P_{0}=P$ and $P_{1}=N P, \ldots, P_{k}=N^{k} P, \ldots$

For each Poisson structure P_{k} on $M, k \geq 0$, the modular vector field associated to a volume form μ on M is, by definition, the $d_{P_{k}}$-cocycle X_{μ}^{k} satisfying

$$
\begin{equation*}
<X_{\mu}^{k}, d f>\mu=L_{H_{f}^{P_{k}}} \mu, \tag{2.1}
\end{equation*}
$$

for all $f \in C^{\infty}(M)$, that is $\left\langle X_{\mu}^{k}, d f>\mu=d i_{P_{k} d f} \mu\right.$. It follows that, for all 1 -forms α,

$$
\begin{equation*}
<X_{\mu}^{k}, \alpha>\mu=d i_{P_{k} \alpha} \mu-\left(i_{P_{k}} d \alpha\right) \mu . \tag{2.2}
\end{equation*}
$$

We now consider the vector fields

$$
\begin{equation*}
X^{(k)}=X_{\mu}^{k}-N X_{\mu}^{k-1} \tag{2.3}
\end{equation*}
$$

for $k \geq 1$, and we list their basic properties:

- For each $k, X^{(k)}$ is independent of μ. It is called the k-th modular vector field of (M, P, N).
- $X^{(k)}$ is a $d_{P_{k}}$-cocycle. Its class is called the k-th modular class of the
 class of (M, P, N).
- The k-th modular class of (M, P, N) is one-half the relative modular class of the morphism of Lie algebroids ${ }^{t} N:\left(T^{*} M, P_{k},[,]_{P_{k}}\right) \rightarrow$ $\left(T^{*} M, P_{k-1},[,]_{P_{k-1}}\right)$.

2.3 Properties of the hierarchy of modular vector fields

Proposition 2.2. The modular vector fields of a $P N$-manifold (M, P, N) satisfy

$$
\begin{equation*}
X^{(k)}=-\frac{1}{2} H_{I_{k}}^{P}, k \geq 1, \tag{2.4}
\end{equation*}
$$

where $I_{k}=\operatorname{Tr} \frac{N^{k}}{k}, k \geq 1$, is the sequence of fundamental functions in involution.

Proof. For clarity, we first prove the case $k=1$. It follows from formula (2.2) and Corolllary 1.1 that, for all $f \in C^{\infty}(M)$,

$$
\begin{gathered}
<N X_{\mu}^{0}, d f>\mu=<X_{\mu}^{0}, N d f>\mu \\
=d i_{P N d f} \mu-\left(i_{P} d N d f\right) \mu=d i_{N P d f} \mu+\frac{1}{2}<P d \operatorname{Tr} N, d f>\mu,
\end{gathered}
$$

while

$$
<X_{\mu}^{1}, d f>\mu=d i_{N P d f} \mu
$$

Therefore $X^{(1)}=X_{\mu}^{1}-N X_{\mu}^{0}=-\frac{1}{2} P d \operatorname{Tr} N=-\frac{1}{2} H_{I_{1}}^{P}$.
The case $k \geq 2$ is similar. Applying Corollary 1.1 to the compatible pair $\left(N^{k-1} P, N\right)$, we obtain

$$
<X^{(k)}, d f>=i_{N^{k-1} P} d N d f=i_{N^{k-1} P} d_{N} d f=-\frac{1}{2}<N^{k-1} P d \operatorname{Tr} N, d f>.
$$

The result follows from $N^{k-1} P d \operatorname{Tr} N=P N^{k-1} d \operatorname{Tr} N=P d \operatorname{Tr} \frac{N^{k}}{k}$.
Remark 2.1. The sequence of modular vector fields $X^{(k)}, k \geq 1$, coincides with the well-known sequence [5] of bihamiltonian vector fields of a PNmanifold. It follows that $X^{(k)}=N X^{(k-1)}$.

Remark 2.2. The sequence of modular vector fields of a Poisson-Nijenhuis manifold introduced by Damianou and Fernandes in [2] is $X_{k}, k \geq 1$, defined by the recursion $X_{1}=X_{N}=X_{\mu}^{1}-N X_{\mu}^{0}$ and $X_{k}=N X_{k-1}$, for $k \geq 2$. They proved that $X_{k}=-\frac{1}{2} P d \operatorname{Tr} \frac{N^{k}}{k}$, for $k \geq 1$. Though the defintion of the hierarchy $X^{(k)}$ that we have considered differs from theirs, the two hierarchies still coincide.

If we denote the modular vector field of the PN-structure (N, P) by $X_{N, P}$, then $X^{(k)}=X_{N, N^{k-1} P}$, while $X_{k}=N^{k-1} X_{N, P}$. The vector fields $X_{N, P}$ satisfy

$$
X_{N, N P}+N X_{N, P}=X_{N^{2}, P},
$$

and, more generally,

$$
X_{N, N^{k} P}+N X_{N, N^{k-1} P}=X_{N^{2}, N^{k-1} P}
$$

This relation is immediate from the definition. Each term is a hamiltonian vector field with respect to $N^{k} P$; each of the terms on the left-hand side is equal to $-\frac{1}{2} P N^{k} d \operatorname{Tr} N$, while the right-hand side is $-\frac{1}{2} P N^{k-1} d \operatorname{Tr} N^{2}=$ $-P N^{k} d \operatorname{Tr} N$.

Remark 2.3. It follows from the morphism properties of $P, N P$ and ${ }^{t} N$ that the relative modular classes of $P:\left(T^{*} M, P,[,]_{P}\right) \rightarrow(T M, I d,[]$,$) ,$ $N P:\left(T^{*} M, N P,[,]_{N P}\right) \rightarrow(T M, I d,[]$,$) , and { }^{t} N:\left(T^{*} M, N P,[,]_{N P}\right) \rightarrow$ $\left(T^{*} M, P,[,]_{P}\right)$ are defined and satisfy

$$
\begin{equation*}
\operatorname{Mod}^{N P}-N M o d^{P}=\operatorname{Mod}^{t^{N}} \tag{2.5}
\end{equation*}
$$

A representative of this $d_{N P}$-cohomology class is $-P d \operatorname{Tr} N=2 X^{(1)}$.
More generally, a representative of the modular class of the morphism ${ }^{t} N^{k}$ from $\left(T^{*} M, P_{k},[,]_{P_{k}}\right)$ to $\left(T^{*} M, P,[,]_{P}\right)$ is $-P d \operatorname{Tr} N^{k}=2 k X^{(k)}$.
Remark 2.4. The modular classes of the morphisms $N:\left(T M, N,[,]_{N}\right) \rightarrow$ $(T M, I d,[]$,$) and { }^{t} N:\left(T^{*} M, N P,[,]_{N P}\right) \rightarrow\left(T^{*} M, P,[,]_{P}\right)$ are related by

$$
\begin{equation*}
\operatorname{Mod}^{t_{N}}=-P_{\text {Mod }}{ }^{N} \tag{2.6}
\end{equation*}
$$

Relation (2.6) can be generalized in two ways.
Proposition 2.3. (i) The modular classes of the morphisms

$$
\begin{aligned}
& N^{k}:\left(T M, N^{k},[,]_{N^{k}}\right) \rightarrow(T M, I d,[,]) \quad \text { and } \\
& \quad{ }^{t} N^{k}:\left(T^{*} M, P_{k},[,]_{P_{k}}\right) \rightarrow\left(T^{*} M, P,[,]_{P}\right)
\end{aligned}
$$

are related by

$$
\operatorname{Mod}^{t} N^{k}=-P M o d^{N^{k}} .
$$

(ii) The modular classes of the morphisms

$$
\begin{gathered}
N^{[k]}:\left(T M, N^{k},[,]_{N^{k}}\right) \rightarrow\left(T M, N^{k-1},[,]_{N^{k-1}}\right) \quad \text { and } \\
{ }^{t} N^{[k]}:\left(T^{*} M, P_{k},[,]_{P_{k}}\right) \rightarrow\left(T^{*} M, P_{k-1},[,]_{P_{k-1}}\right)
\end{gathered}
$$

are related by

$$
\operatorname{Mod}^{t} N^{[k]}=-P M o d^{N^{[k]}},
$$

and a representative of the modular class of the morphism ${ }^{t} N^{[k]}$ is $2 X^{(k)}$.

Proof. (i) follows from Proposition 2.1 and Remark 2.3. To prove (ii), we compute a representative of the modular class of $N^{[k]}$,

$$
d \operatorname{Tr} N^{k}-{ }^{t} N d \operatorname{Tr} N^{k-1}=d \operatorname{Tr} \frac{N^{k}}{k}
$$

and a representative of the modular class of ${ }^{t} N^{[k]}$,

$$
2\left(X_{\mu}^{k}-N X_{\mu}^{k-1}\right)=2 X^{(k)}=-P d \operatorname{Tr} \frac{N^{k}}{k} .
$$

Remark 2.5. Computations of a representative of $M o d^{t} N^{k}$ either from the equality $2\left(X_{\mu}^{k}-N^{k} X_{\mu}^{0}\right)=2 \sum_{\ell=1}^{k} N^{k-\ell} X^{(\ell)}$ or from the equality $\operatorname{Mod}^{t} N^{k}$ $=\sum_{\ell=1}^{k} N^{k-\ell} \operatorname{Mod}^{t} N^{[\ell]}$ both recover the fact, stated in Remark 2.3, that a representative of $M o d^{t} N^{k}$ is equal to $-\sum_{\ell=1}^{k} N^{k-\ell} P d \operatorname{Tr} \frac{N^{\ell}}{\ell}=-P d \operatorname{Tr} N^{k}$ $=2 k X^{(k)}$.

Acknowledgments We thank Rui Fernandes and Camille Laurent-Gengoux for useful exchanges on the topic of this letter.

References

[1] J. V. Beltrán, J. Monterde, Poisson-Nijenhuis structures and the Vinogradov bracket, Ann. Global Anal. Geom. 12 (1994), 65-78.
[2] P. A. Damianou, R. L. Fernandes, Integrable hierarchies and the modular class, math.DG/0607784, version 2.
[3] Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier 46 (1996), 1243-1274.
[4] Y. Kosmann-Schwarzbach, F. Magri, Poisson-Nijenhuis structures, Ann. Inst. Poincaré A 53 (1990), 35-81.
[5] F. Magri and C. Morosi, A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Quaderno S 19, Università degli Studi di Milano, 1984.

Centre de Mathématiques Laurent Schwartz Ecole Polytechnique, F-91128 Palaiseau, France yks@math.polytechnique.fr

Department of Mathematics
University of Milano Bicocca
Via Corsi 58, I-20126 Milano, Italy magri@matapp.unimib.it

