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Abstract We prove a property of the Poisson-Nijenhuis manifolds which
yields new proofs of the bihamiltonian properties of the hierarchy of modular
vector fields defined by Damianou and Fernandes.

Introduction

In [2], Damianou and Fernandes defined the modular vector field and the
modular class of a Poisson-Nijenhuis manifold, and they proved that the hi-
erarchy generated by the modular vector field coincides with the canonical
hierarchy of bihamiltonian vector fields already defined in [5]. A theorem of
Beltrán and Monterde [1] states that, in a PN-manifold, the derived bracket
(see e.g. [3]) of the interior products by N and P acting on forms is the in-
terior product by the hamiltonian vector field with hamiltonian −1

2TrN . In
this Letter, we give an elementary proof of a particular case of this theorem,
a simple consequence of which, stated in Corollary 1.1, enables us to give
new proofs of the hamiltonian properties of the hierarchy of modular vec-
tor fields of PN-manifolds. These can be extended to the case of arbitrary
PN-algebroids in a straightforward manner.

1 Poisson-Nijenhuis structures

There are many ways of expressing the compatibility of a pair (P,N), where
N is a Nijenhuis tensor and P is a Poisson bivector on a manifold M sat-
isfying the condition that NP be skew symmetric, in order to ensure that
NP, N2P, . . . , NkP, . . . be a sequence of pairwise-compatible Poisson brack-
ets. Let dN = [iN , d] be the differential on forms associated with the de-
formed bracket of vector fields, [ , ]N , and let [ , ]P be the graded bracket of
forms defined by P . When no confusion is possible, we denote by N both the
Nijenhuis tensor and its transpose, and by P both the Poisson bivector and
the map from 1-forms to vectors it defines, with the convention Pα = iαP .
Let HP

f = Pdf be the hamiltonian vector field with hamiltonian f ∈ C∞(M)
in the Poisson structure P . The derived bracket [[iN , d], iP ] = [dN , iP ] is de-
noted by [iN , iP ]d.



Proposition 1.1. The following conditions on N and P are equivalent:

• (i) NP = PN and (ii) C(P,N) = 0, where, for all α, β ∈ Γ(T ∗M),

C(P,N)(α, β) = [α, β]NP − ([Nα, β]P + [α, Nβ]P −N [α, β]P ) .

• dN is a derivation of bracket [ , ]P .

• dP = [P, ·] is a derivation of the deformed bracket [ , ]N .

• Let { , }NP be the Poisson bracket of functions with respect to NP .

(i) NP = PN and (ii) d{f, g}NP = LHP
f
dNg−LHP

g
dNf−dN (HP

f (g)),
for all f , g ∈ C∞(M).

This last condition follows from C(P,N)(df, dg) = 0, for all functions f ,
g ∈ C∞(M), using the relation [α, df ]P = −iHP

f
dα.

Definition 1.1. When any one of the above conditions is satisfied, N and
P are called compatible. The pair (P,N) is a Poisson-Nijenhuis structure
(or PN-structure) if N and P are compatible. A manifold with a Poisson-
Nijenhuis structure is called a Poisson-Nijenhuis manifold (or PN-manifold).

The compatibility of P and N can also be stated in terms of the mor-
phism properties of maps P , NkP , Nk and (tN)k, k ≥ 1, relating the various
Lie algebroid structures on TM and T ∗M .

Proposition 1.2. Let P be a Poisson bivector and N a Nijenhuis tensor
on M such that PN = NP . Then, for all α ∈ Γ(T ∗M),

1
2
Tr(C(P,N)α) =

1
2

< PdTrN,α > +[iN , iP ]dα , (1.1)

where [ , ]d denotes the derived bracket.

Proof. We shall use the expression of the components of C(P,N) in local
coordinates [4],

Ckj
m = P lj∂lN

k
m + P kl∂lN

j
m −N l

m∂lP
kj + N j

l ∂mP kl − P lj∂mNk
l ,

whence

Ckj
k = P lj∂lN

k
k + P kl∂lN

j
k −N l

k∂lP
kj + N j

l ∂kP
kl − P lj∂kN

k
l .

From the assumption NP = PN , i.e., P ljNk
l + P lkN j

l = 0, we obtain

Nk
l ∂mP lj + P lj∂mNk

l + N j
l ∂mP lk + P lk∂mN j

l = 0 ,

whence
Nk

l ∂kP
lj + P lj∂kN

k
l + N j

l ∂kP
lk + P lk∂kN

j
l = 0 .
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This identity implies that

1
2
Ckj

k =
1
2
P lj∂lN

k
k + P lk∂kN

j
l .

Thus, for any 1-form α,

1
2
Tr(C(P,N)α) =

1
2
P lj∂lN

k
k αj + P lk∂kN

j
l αj

= −1
2

< PdTrN,α > +iP diNα− iNP dα .

Since iNP = iPN = iP iN ,

(iP diN − iNP )α = [iP , [d, iN ]]α = [[iN , d], iP ]α = [iN , iP ]dα .

These equalities imply (1.1).

The following corollary, a consequence of the compatibility, will be used
in Section 2.

Corollary 1.1. Let (P,N) be a Poisson-Nijenhuis structure on a manifold.
For all f ∈ C∞(M),

iP (dNdf) = −1
2
HP

I1(f), (1.2)

where HP
I1

= PdTrN is the hamiltonian vector field with hamiltonian
I1 = TrN in the Poisson structure P .

Proof. When C(P,N) = 0, formula (1.1) for α = df yields (1.2).

Remark 1.1. When P and N are compatible, the derived bracket [iN , iP ]d
is a derivation of degree −1 of the algebra of forms equal to the interior
product by the vector field −1

2PdTrN . A proof of this property can be
found in [1].

2 The hierarchy of modular classes of a Poisson-
Nijenhuis manifold

2.1 The modular class of (TM, N, [ , ]N).

Let N be a Nijenhuis tensor on manifold M . Given λ ⊗ µ, where λ is a
nowhere vanishing multivector of top degree and µ a volume element on
M , the modular class of the Lie algebroid (TM,N, [ , ]N ) is the class in the
dN -cohomology of the 1-form ξ(N) such that, for all X ∈ Γ(TM),

< ξ(N), X > λ⊗ µ = [X, λ]N ⊗ µ + λ⊗ LNXµ .

3



If e1. . . . .en is a local basis of Γ(TM) such that λ = e1 ∧ . . . ∧ en, then

[X, λ]N =
n∑

j=1

(−1)j [X, ej ]Ne1 ∧ . . . ∧ êj ∧ . . . ∧ en .

Since [X, Y ]N = [NX,Y ] + (LXN)Y , we obtain

[X, λ]N = LNXλ +
n∑

j=1

(LXN)j
je1 ∧ . . . ∧ ej ∧ . . . ∧ en.

Choosing λ and µ such that < λ, µ > = 1 which implies that LNXλ ⊗ µ +
λ ⊗ LNXµ = 0, and using the relation

∑n
j=1(LXN)j

j =
∑n

j=1 LX(N j
j ), we

obtain
< ξ(N), X > λ⊗ µ = iX(dTrN) λ⊗ µ .

Thus we have recovered the result of [2]:

Proposition 2.1. The modular class in the dN -cohomology of the Lie alge-
broid (TM,N, [ , ]N ) is the class of the 1-form dTrN .

The dN -cocycle ξ(N) = dTrN is in fact independent of the choice of λ⊗µ.
The class it defines can also be considered to be the class of the morphism
of Lie algebroids N : (TM,N, [ , ]N ) → (TM, id, [ , ]).

Similarly, the modular classes associated to the Nijenhuis tensors Nk,
k ∈ N, k ≥ 2, are the dNk -classes of the 1-forms dTr(Nk).

2.2 The modular class of a Poisson-Nijenhuis manifold

We shall now consider the case of a manifold M with a PN-structure. Let
P0 = P and P1 = NP, . . . , Pk = NkP, . . .

For each Poisson structure Pk on M , k ≥ 0, the modular vector field
associated to a volume form µ on M is, by definition, the dPk

-cocycle Xk
µ

satisfying
< Xk

µ, df > µ = L
H

Pk
f

µ , (2.1)

for all f ∈ C∞(M), that is < Xk
µ, df > µ = diPkdfµ. It follows that, for all

1-forms α,
< Xk

µ, α > µ = diPkαµ− (iPk
dα)µ . (2.2)

We now consider the vector fields

X(k) = Xk
µ −NXk−1

µ , (2.3)

for k ≥ 1, and we list their basic properties:

• For each k, X(k) is independent of µ. It is called the k-th modular
vector field of (M,P,N).
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• X(k) is a dPk
-cocycle. Its class is called the k-th modular class of the

PN-manifold. In particular, the dNP -class of X(1) is called the modular
class of (M,P,N).

• The k-th modular class of (M,P,N) is one-half the relative modu-
lar class of the morphism of Lie algebroids tN : (T ∗M,Pk, [ , ]Pk

) →
(T ∗M,Pk−1, [ , ]Pk−1

).

2.3 Properties of the hierarchy of modular vector fields

Proposition 2.2. The modular vector fields of a PN-manifold (M,P,N)
satisfy

X(k) = −1
2
HP

Ik
, k ≥ 1, (2.4)

where Ik = TrNk

k , k ≥ 1, is the sequence of fundamental functions in invo-
lution.

Proof. For clarity, we first prove the case k = 1. It follows from formula
(2.2) and Corolllary 1.1 that, for all f ∈ C∞(M),

< NX0
µ, df > µ =< X0

µ, Ndf > µ

= diPNdfµ− (iP dNdf)µ = diNPdfµ +
1
2

< PdTrN, df > µ ,

while
< X1

µ, df > µ = diNPdfµ .

Therefore X(1) = X1
µ −NX0

µ = −1
2PdTrN = −1

2HP
I1

.
The case k ≥ 2 is similar. Applying Corollary 1.1 to the compatible pair

(Nk−1P,N), we obtain

< X(k), df >= iNk−1P dNdf = iNk−1P dNdf = −1
2

< Nk−1PdTrN, df > .

The result follows from Nk−1PdTrN = PNk−1dTrN = PdTrNk

k .

Remark 2.1. The sequence of modular vector fields X(k), k ≥ 1, coincides
with the well-known sequence [5] of bihamiltonian vector fields of a PN-
manifold. It follows that X(k) = NX(k−1).

Remark 2.2. The sequence of modular vector fields of a Poisson-Nijenhuis
manifold introduced by Damianou and Fernandes in [2] is Xk, k ≥ 1, defined
by the recursion X1 = XN = X1

µ − NX0
µ and Xk = NXk−1, for k ≥ 2.

They proved that Xk = −1
2PdTrNk

k , for k ≥ 1. Though the defintion
of the hierarchy X(k) that we have considered differs from theirs, the two
hierarchies still coincide.
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If we denote the modular vector field of the PN-structure (N,P ) by
XN,P , then X(k) = XN,Nk−1P , while Xk = Nk−1XN,P . The vector fields
XN,P satisfy

XN,NP + NXN,P = XN2,P ,

and, more generally,

XN,NkP + NXN,Nk−1P = XN2,Nk−1P .

This relation is immediate from the definition. Each term is a hamiltonian
vector field with respect to NkP ; each of the terms on the left-hand side
is equal to −1

2PNkdTrN , while the right-hand side is −1
2PNk−1dTrN2 =

−PNkdTrN .

Remark 2.3. It follows from the morphism properties of P , NP and tN
that the relative modular classes of P : (T ∗M,P, [ , ]P ) → (TM, Id, [ , ]),
NP : (T ∗M,NP, [ , ]NP ) → (TM, Id, [ , ]), and tN : (T ∗M,NP, [ , ]NP ) →
(T ∗M,P, [ , ]P ) are defined and satisfy

ModNP −NModP = Mod
tN . (2.5)

A representative of this dNP -cohomology class is −PdTrN = 2X(1).
More generally, a representative of the modular class of the morphism

tNk from (T ∗M,Pk, [ , ]Pk
) to (T ∗M,P, [ , ]P ) is −PdTrNk = 2kX(k).

Remark 2.4. The modular classes of the morphisms N : (TM,N, [ , ]N ) →
(TM, Id, [ , ]) and tN : (T ∗M,NP, [ , ]NP ) → (T ∗M,P, [ , ]P ) are related by

Mod
tN = −PModN . (2.6)

Relation (2.6) can be generalized in two ways.

Proposition 2.3. (i) The modular classes of the morphisms

Nk : (TM,Nk, [ , ]Nk) → (TM, Id, [ , ]) and

tNk : (T ∗M,Pk, [ , ]Pk
) → (T ∗M,P, [ , ]P )

are related by
Mod

tNk
= −PModNk

.

(ii) The modular classes of the morphisms

N [k] : (TM,Nk, [ , ]Nk) → (TM,Nk−1, [ , ]Nk−1) and

tN [k] : (T ∗M,Pk, [ , ]Pk
) → (T ∗M,Pk−1, [ , ]Pk−1

)

are related by
Mod

tN [k]
= −PModN [k]

,

and a representative of the modular class of the morphism tN [k] is 2X(k).

6



Proof. (i) follows from Proposition 2.1 and Remark 2.3. To prove (ii), we
compute a representative of the modular class of N [k],

dTrNk − tNdTrNk−1 = dTr
Nk

k
,

and a representative of the modular class of tN [k],

2(Xk
µ −NXk−1

µ ) = 2X(k) = −PdTr
Nk

k
.

Remark 2.5. Computations of a representative of Mod
tNk

either from the
equality 2(Xk

µ − NkX0
µ) = 2

∑k
`=1 Nk−`X(`) or from the equality Mod

tNk

=
∑k

`=1 Nk−`Mod
tN [`]

both recover the fact, stated in Remark 2.3, that
a representative of Mod

tNk
is equal to −

∑k
`=1 Nk−`PdTrN`

` = −PdTrNk

= 2kX(k).
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