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Abstract. We prove that, on a Riemann surface, the functor RHS

constructed in a previous work [7] as a right quasi-inverse of the so-
lution functor from the bounded derived category of regular relative
holonomic modules to that of relative constructible complexes satisfies
the left quasi-inverse property in a generic sense.
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1. Introduction

Let p : X×S → S be the projection of a product of complex manifolds X
and S onto the second factor. The notion of holonomic DX×S/S-modules
(or relative holonomic D-modules for short) was introduced by the second
author in [9] and the notion of relative regular holonomic D-modules was in-
troduced by the authors in [8, Def. 2.1]. They are the objects of, respectively,
the abelian categories Modhol(DX×S/S) and Modrhol(DX×S/S). Recall that
relative holonomic modules are coherent modules whose characteristic vari-
ety, in the product (T ∗X) × S, is contained in Λ × S for some Lagrangian
conic closed analytic subset Λ of T ∗X. Regular relative holonomic modules
are holonomic modules whose restriction as p−1X OS-modules to the the fibers
of pX have regular holonomic DX -modules as cohomologies.

In [7, Def. 2.14, 2.19] we introduced the notion of relative R- and C-cons-
tructibility for a complex of sheaves of p−1OS-modules and proved that the
essential image of the functor Sol on the bounded derived category of rel-
ative holonomic D-modules is contained in that of relative C-constructible
complexes.
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2 T. MONTEIRO FERNANDES AND C. SABBAH

Under the assumption of dS = 1 (d denotes the dimension of a manifold),
we constructed in [8, 3.4] the relative tempered cohomology functors THS

and RHS by adapting Kashiwara’s functors TH and RH ([2]) and proved in
[8, Th. 3] that RHS is a right quasi inverse for the functor pSol := Sol[dX ]

restricted to the derived category of complexes with relative regular holo-
nomic cohomology. However, the property of being a left quasi inverse
remains open. Indeed, the proof of such a property would require some
functorial properties for this category such as stability under proper direct
image and inverse image. Although stability under proper direct image holds
true, the failure of stability by inverse image remains a main obstruction, in
contrast with the absolute case as proved by M.Kashiwara in [1]. In Propo-
sition 2.2 we prove that this obstacle can be overcome if dX = 1. More
precisely, for each relative holonomic module M there exists a discrete set
S0 = S0(M) such that, out of S0, for each divisor Y in X, the induced system
of M along Y × S has holonomic cohomologies.

We shall say that a property is satisfied generically on S if it is satisfied
on X×S∗, where S∗ is the complementary of a discrete subset S0 in S. The
main purpose of this note is to clarify the natural question arising after [8]:
is RHS an equivalence of categories when dX = 1? In other words, does RHS

also provide in that case a left adjoint to pSol?
The answer is that, for each M ∈ Db

rhol(DX×S/S), M is isomorphic to
RHS(pSolM) generically on S by an isomorphism Θ(M), where Θ(•) satisfies
a functorial property in a generic sense:

(P0) Given a morphism τ : M → N in Db
rhol(DX×S/S), generically on S

we have RHS(τ)Θ(M) = Θ(N)τ .
Let us make precise our claim: for any complex manifold X, we have a

natural morphism in Db
hol(DX×S/S)

(1) Ψ(M) : M −→ RHomp−1OS
(pSolM,OX×S)

which, for a single module M, is obtained as a composition

M −→ HomDX×S/S
(OX×S ,M)⊗p−1OS

OX×S −→ DRM⊗p−1OS
OX×S

'D(SolM)⊗p−1OS
OX×S −→ RHomp−1OS

(pSolM,OX×S)[dX ]

and, for a complex M, we replace M by an injective resolution.
On the other hand, according to [8, (3.15)], we have a natural morphism

in Db
rhol(DX×S/S)

(2) Φ(M) : RHS(pSolM) −→ RHomp−1OS
(pSolM,OX×S)[dX ].

When pSolM has coherent cohomologies over p−1OS , the right-hand term is
isomorphic to DRM⊗p−1OS

OX×S . However, in general, for X of arbitrary
dimension, we do not have at hand tools enabling us to define a functorial
morphism Θ in Db

rhol(DX×S/S)

Θ(M) : M −→ RHS(pSolM)
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such that

(3) Ψ(M) = Φ(M) ◦Θ(M).

Our main result is Theorem 2.6 in which we prove that, if dX = 1, for each
M ∈ Db

rhol(DX×S/S), such a morphism Θ(M) exists on X×S∗, for a suitable
discrete S0 ⊂ S depending on M only (with S∗ := S r S0), and Θ(M) is an
isomorphism. More precisely, we prove that there exists a discrete S0 such
that the natural morphism given by the left composition with Φ(M)

(4) HomDX×S/S
(M,RHS(pSol(M)))

−→ HomDX×S/S
(M, RHomp−1OS

(pSol(M),OX×S)[dX ])

' Homp−1OS
(pSolM, pSolM)

is an isomorphism onX×S∗. We then choose for Θ(M) the unique morphism
defined on X × S∗ whose image is Ψ(M)|X×S∗ . In other words, via the
last isomorphism, the unique morphism corresponding to the identity in
Homp−1OS

(pSolM, pSolM)|X×S∗ . Hence Θ(M) is an isomorphism.
The proof that (4) is an isomorphism is a consequence of Proposi-

tion 2.5 below which states that, for any M ∈ Db
rhol(DX×S/S) and any

F ∈ Db
R-c(p

−1OS), there exists a discrete S0 ⊂ S depending on M only such
that the natural morphism

(5) RHomDX×S/S
(M,RHS(F )[−dX ])

−→ RHomDX×S/S
(M, RHomp−1OS

(F,OX×S))

is an isomorphism on X × S∗, which in turn is a consequence of Proposi-
tion 2.2 together a comparison result (Lemma 2.1). Another consequence of
Proposition 2.5 is the full faithfulness of Sol in a generic sense (Lemma 2.7).

Throughout this work we assume that dX = dS = 1.

2. Main results and proofs

We shall systematically make use of the notation and results in [7] and [8].

Lemma 2.1. Let us assume that X = C = S and let (x, s) be the variables
on X × S. Let M = DX×S/S/DX×S/Sx. Then (5) is an isomorphism for
any F ∈ Db

R-c(p
−1
X OS).

Proof. Let Y = {0} ⊂ X. According to [7, Prop. 3.4], it is sufficient to
consider F = CU×S ⊗ p−1OS , for some relatively compact open subanalytic
set U ⊂ X. Thus our goal is to prove

(6) RHomDX×S/S
(M,ΓCU×S

(DbX×S)/THom(CU×S ,DbX×S)) '
QIS

0

It is sufficient to check (6) for the stalk at any (x0, s0) ∈ X × S. If x0 6= 0,
the result is trivial since SuppM = {0}×S. So we are led to assume (0, s0) ∈
∂U ×S, since the quotient ΓCU×S

(DbX×S)/THom(CU×S ,DbX×S)(0,s) van-
ishes if 0 ∈ U and the result is again trivial.
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Therefore we may assume that U is contained in X r {0}. We are then
allowed to perform a change of generator u 7→ x−1u since tempered distri-
butions on U × S are stable by multiplication by x−1 and the result fol-
lows. q.e.d.

Proposition 2.2. For any M ∈ Modhol(DX×S/S) there exists a discrete
subset S0 in S such that, for any reduced divisor Y of X,

(P1) DiY ∗ Di
∗
Y (M|X×S∗) has holonomic cohomologies as an object of

Db(DX×S/S)|Y×S∗.
(P2) RΓ[(XrY )×S](M)|X×S∗ is concentrated in degree zero.
(P3) M(∗(Y × S))|X×S∗ ' H0RΓ[(XrY )×S](M)|X×S∗ is holonomic.
(P4) RΓ[Y×S](M)|X×S∗ has holonomic cohomologies.
(P5) If M is regular holonomic, RΓ[Y×S](M)|X×S∗ and M(∗(Y ×S))|X×S∗

have regular holonomic cohomologies.

Proof. Let us prove (P1). The question is local on X × S, so we can as-
sume that M is finitely generated and, by induction on the number of local
generators, we may assume that M is an holonomic DX×S/S-module with
a single generator. Taking coordinates x on X and s on S, we are reduced
to assuming that Y = {x = 0} and that Char(M) ⊂ (T ∗XX ∪ T ∗{0}X) × S.
Therefore, there exists a relation

(7) (x∂x)Mu =
∑

j6M−1
aj(x, s)∂

j
xu

for some non-negative integer M and some holomorphic functions aj on
X × S. We can write aj = x`ja′j , with a

′
j(0, s) 6≡ 0 and `j ∈ N, and we set

M0 = max{0, (j − `j)j=0,...,M−1}.
Hence, after multiplying by xM0 , (7) reads Pu = 0 for an operator

P = P0 + xQ ∈ DX×S/S such that Q is of order zero with respect to the
V -filtration and

(8) P0(s, x, ∂x) =
∑
k6M

a′′k(s)xk∂kx

for some holomorphic functions a′′k on S not all vanishing identically, and
it is enough to treat the case of the DX×S/S-module DX×S/S/DX×S/S · P .
Let N0 be the biggest k such that a′′k does not vanish identically on S (note
that N0 can be 0). Let S0 be the (discrete) zero set of a′′N0

. Then we are in
conditions to apply the relative version of [5, Th. 3.3] to conclude that M,
being elliptic along Y × S on X × S∗, satisfies (P1).

According to the relative versions of Proposition 4.3 in [1] and of Proposi-
tion 7.2.1 of [6], (P1) is equivalent to (P4). On the other hand, M(∗(Y ×S))

is concentrated in degree zero since it is the localized module of M along a
divisor. Since M(∗(Y × S)) is the mapping cone of the natural morphism

RΓ[Y×S](M) −→M

we conclude (P2) and (P3).
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Let us now prove (P5). Let S0 be given by (P1). By (P3) and (P4), we
have a distinguished triangle in Db

hol(DX×S/S)|X×S∗

RΓ[Y×S](M)|X×S∗ −→M|X×S∗ −→ RΓ[(XrY )×S](M)|X×S∗ −→
+1

.

Assume that M is regular and let s ∈ S∗ be arbitrary. Let us consider the
distinguished triangle

(∗) Li∗sRΓ[Y×S](M) −→ Li∗sM −→ Li∗sRΓ[(XrY )×S](M) −→
+1

The assumption on M means that Li∗sM has DX -regular holonomic coho-
mologies. Since Li∗s commutes with RHom, we have, for each k ∈ N, identi-
fying X to X × {s}, a functorial isomorphism in Db(DX)

Li∗sRHomOX×S
(OX×S/x

kOX×S ,M) ' RHomOX
(OX/x

kOX , Li
∗
sM)

and, since ⊗ commmutes with lim−→, we conclude a functorial isomorphism in
Db(DX)

Li∗sRΓ[Y×S](M) ' RΓ[Y ](Li
∗
sM),

where the right hand term has regular holonomic cohomologies according to
[4, Th. 5.4.1]. Therefore RΓ[Y×S](M)|X×S∗ has regular holonomic cohomolo-
gies and the result follows according to the distinguished triangle (∗). q.e.d.

Remark 2.3. Our method in the preceding proof does not extend to the
case dX > 1 because we do not have in general the analog of (7) and (8).

The following example shows that we cannot avoid the existence of a
nonempty S0 in Proposition 2.2.

Example 2.4. Let X = S = C and let M be defined by the operator
P (x, s, ∂x) = x2∂x + g(s), where g is a non constant holomorphic func-
tions. Then S0 = {λ ∈ C | g(λ) = 0}. Let us check that H−1Di

∗
Y (M) = 0

and that H0
Di
∗
Y (M) is not coherent in any neighbourhood of each (0, s0)

such that g(s0) = 0. A local section of DX×S/S/xDX×S/S has the form∑
j6m aj(s)δ

j(x) for some functions aj(s) holomorphic in a neighbourhood
of s0, δj(x) denoting the class of ∂jx in the quotient DX×S/S/xDX×S/S .
That is, in the neighbourhood of any point (0, s0), DX×S/S/xDX×S/S is
OS-isomorphic to the sheaf OS [δ(x)], filtered by the degree in δ. We denote
by (DX×S/S/xDX×S/S)m the OS-sub-module of polynomials of degree 6 m.
The (right) action of P on DX×S/S is described by∑

j6m

aj(s)δ
j(x) 7−→

∑
j6m

((j + 1)jaj+1(s) + aj(s)g(s))δj(x)

In particular P defines a filtered morphism, i.e.

(DX×S/S/xDX×S/S)mP ⊂ (DX×S/S/xDX×S/S)m.

Let us compute kerP = H−1Di
∗
Y (M). Consider a section u of the above form

satisfying uP = 0. Since by assumption g is non constant and am+1 = 0,
we must have that am = 0 and so henceforward, concluding the vanishing of
kerP .
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Suppose now that
∑

j6m bj(s)δ
j(x) =

∑
j6l aj(s)δ

j(x)P, with bm(s) 6= 0.

Since bm+1 = 0 we have

(k + 1)kak+1 + akg = 0, ∀ k > m+ 1

On the other hand we have ak+` = 0 for all ` � 0, hence, recursively, we
conclude that ak = 0 for any k > m+1. Thus bm = amg. Moreover b0 = a0g

and, after an arbitrary choice of a1, a2 = (b1 − a1g)/2 and so henceforward
up to the order m. In particular the condition uP ∈ (DX×S/S/xDX×S/S)m
implies that u ∈ (DX×S/S/xDX×S/S)m. We conclude that

CokerP = lim−→
m

Coker(P |DX×S/S/DX×S/S ,m)

' lim−→
m

OS/OSg ⊕ OS/OSg ⊕ · · · ⊕ OS/OSg.

If g(s0) 6= 0, then g is a unit in a neighbourhood of s0, hence the sequence
(OS/OSg ⊕ OS/OSg ⊕ · · · ⊕ OS/OSg)m is locally zero, which entails that
H0

Di
∗
Y (M) is zero hence coherent in a neighbourhood of s0. If g(s0) = 0, the

above mentioned sequence is not locally stationary hence H0
Di
∗
Y (M) is not

coherent in any neighbourhood of s0.

Proposition 2.5. Given M ∈ Db
rhol(DX×S/S), there exists a discrete sub-

set S0 of S such that (5) holds on X × S∗ for any F ∈ Db
C-c(p

−1OS).

Proof. Our aim is to apply [8, Lem. 4.2] to M(∗(Y × S∗)) for a suitable S∗

when M(∗(Y ×S∗)) is of D-type, in particular when it is strict.We embed M

in an exact sequence of regular holonomic modules:

0 −→Mt −→M −→Mtf −→ 0

where Mt is the submodule of OS-torsion germs and Mtf is a strict, i.e., an
OS-flat, module.

Step 1. We assume first that M ' Mt. In that case, we claim that we can
take for S0 the empty set.

Since dS = 1, the projection of SuppM on S is discrete. Given (x0, s0) ∈
SuppM, we may assume that M admits a single generator in a neighbour-
hood of (x0, s0).

Let (x, s) denote a system of local coordinates, x is X and s in S, such
that s0 = 0 ∈ C. We can choose N ∈ N such that sNM = 0 and an easy
argument of induction on N allows us to assume N = 1.

We may then write M as a quotient

M = DX×S/S/(DX×S/SJ + DX×S/Ss),

where J is a coherent ideal of DX (X identified to X×{0}), and the assump-
tion of regularity entails that L := DX/J is a regular holonomic DX -module.

Moreover, in this local system of coordinates, DX embeds in DX×S/S as
the subsheaf of operators not depending on s, so that DX×S/S is flat over DX
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and we have M′ := DX×S/S/DX×S/SJ is strict, M′ ' DX×S/S ⊗DX
L, and

M ' p−1(OS/sOS)⊗p−1OS
M′.

According to the “associative laws” relating RHom and ⊗L ([3, App. 3,
(A.10)]) we get a chain of isomorphisms of functors

RHomDX×S/S
(M, •)

' RHomDX×S/S
(DX×S/S ⊗DX

L, RHomp−1OS
(p−1(OS/sOS), •)

' RHomDX
(L,D′(p−1(OS/sOS))

L
⊗p−1OS

•)

' RHomDX
(L, p−1(OS/sOS)[−1]

L
⊗p−1OS

•)

' RHomDX
(L, Li∗s(•)[−1])

According to [7, Prop. 2.1],

Li∗s(RHom(F,OX×S)) ' RHom(Li∗sF,OX)

and according to [8, Prop. 3.26],

Li∗s(RHS(F ))[−1] ' THom(Li∗sF,OX),

hence the statement follows by [4, Th. 6.1.1] with S0 = ∅.

Step 2. Let us now by consider the case where M is supported by Y × S,
where Y is a reduced divisor of X. We claim again that the statement holds
true with S0 = ∅. By [8, Th. 1.5], we have M ' Γ[Y×S](M) ' Di∗MY ,
where i denotes the inclusion Y ⊂ X and MY is a direct sum of terms of
the form {p} × Gp, for some p ∈ Y and some Gp ∈ Modcoh(OS). Hence we
may assume that Y = {0} ⊂ C. Taking a local coordinate x on C vanishing
on Y , we are reduced to proving that (5) applied to

(DX×S/S/DX×S/Sx)⊗p−1OS
(C{0}×S ⊗ p−1G)

is an isomorphism whenG is a coherent OS-module. By the “associative laws”
above mentioned this amounts to checking the same property for the regular
holonomic module DX×S/S/DX×S/Sx which in turn follows by Lemma 2.1.

Step 3. Let us now assume that M is strict. If M is a locally free OX×S-
module, the assertion follows from [8, Lem. 3.17]. Otherwise the natural
stratification associated to M is {X r Y, Y } for some reduced divisor Y
in X. Let S0 be determined by Proposition 2.2 and let us embed M in
an exact sequence where, according to Proposition 2.2, M(∗(Y × S)) and
H1

[Y×S](M) are regular holonomic modules on X × S∗:

(∗) 0 −→ Γ[Y×S](M)|X×S∗ −→M|X×S∗

−→M(∗(Y × S))|X×S∗ −→ H1
[Y×S](M)|X×S∗ −→ 0.

Since the functor of localization is exact, strictness is preserved by localiza-
tion, henceM(∗(Y×S)) is of D-type along Y ×S∗ in the sense of [8, Def. 2.10].
Therefore [8, Lem. 4.2] gives the statement for M(∗(Y × S))|X×S∗ .
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We apply our previous results to the following exact sequences of regular
holonomic DX×S/S-modules obtained by splitting (∗):

0 −→ Γ[Y×S](M)|X×S∗ −→M|X×S∗(9)

−→M/Γ[Y×S]M|X×S∗ −→ 0

0 −→M/Γ[Y×S]M|X×S∗ −→M(∗(Y × S))|X×S∗(10)

−→ H1RΓ[Y×S]M|X×S∗ −→ 0.

By Step 2 applied to (10) we conclude that the statement holds true for
M/Γ[Y×S]M. From (9) and Step 2 we conclude that the statement holds
for M. q.e.d.

Theorem 2.6. For each M ∈ Db
rhol(DX×S/S) there exists a discrete set

S0 ⊂ S and an isomorphism in Db
rhol(DX×S/S)|X×S∗

Θ(M) : M|X×S∗ −→ RHS(pSol(M))|X×S∗

satisfying (3) and (P0).

Proof. The existence of Θ is an immediate consequence of Proposition 2.5 as
explained in the Introduction. To prove the generic functoriality (P0) of Θ

we need the following:

Lemma 2.7. The functor Sol is fully faithful in a generic sense, that is,
given M, N in Db

rhol(DX×S/S), the natural morphism

RHomDX×S/S
(M,N) −→ RHomp−1OS

(pSolN, pSolM)

is an isomorphism generically on S.

Proof. By the “associative laws” we have an isomorphism functorial in M ∈
Db
rhol(DX×S/S) and F ∈ Db

C-c(p
−1OS)

(∗) RHomDX×S/S
(M, RHomp−1OS

(F,OX×S)) ' RHomp−1OS
(F,Sol(M)).

For any M,N ∈ Db
rhol(DX×S/S), replacing F in the isomorphism (∗) by

pSol(N), N by RHS(pSolN), recalling that RHS is a right quasi inverse of pSol

and according to Proposition 2.5, we conclude that the natural morphism

RHomDX×S/S
(M,N) −→ RHomp−1OS

(Sol(N),Sol(M))

is an isomorphism generically on S. q.e.d.

It remains to prove (P0). This is performed as in the end of the proof
of [8, Th. 5], according to the definition of Θ, the generic full faithfulness of
pSol and the fact that RHS is a right quasi inverse of pSol. q.e.d.

Remark 2.8. If M is regular holonomic and admits locally a single gener-
ator u such that J := {P ∈ DX×S/S | Pu = 0} is monogenic, it is easy to
verify that the associated discrete set S0 ⊂ S mentioned in Proposition 2.2
can be taken to be the empty set:
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The assumption on Char(M) entails that we can choose as a generator
of J an operator P of the form

P (x, s, ∂x) = xj∂mx +
∑
k<m

ak(x, s)∂kx

The assumption of regularity means that, for each fixed s, P (x, s, ∂x) has
a regular singularity in x = 0 as a section of DX . Hence each coefficient
ak(x, s) has a zero of order at least j − m + k at x = 0. It follows that
the coefficient a′′N0

in the proof of Proposition 2.2 is equal to 1 (it is the
coefficient of the term xj∂mx ).

However we cannot generalize this result to arbitrary regular holonomic
modules because, contrary to the absolute case, we do not have the tools to
perform a devissage.
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