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INTRODUCTION: THE HARD LEFSCHETZ THEOREM

Simple holonomic D-modules. — Let Zo be an irreducible complex smooth quasi-
projective variety and (V,∇) be an algebraic vector bundle with an integrable con-
nection (i.e., without curvature), with no proper sub-bundle stable by the connection
(i.e., simple). This is the type of object we are interested in in this presentation. Let us
choose a projective compactification j : Zo ↪→ Z and an embedding of Z in a smooth
projective variety X. It is known that such a (V,∇) extends uniquely into a DX-module
(i.e., an OX-module with integrable ∇-connection) simple holonomic module with sup-
port in Z and that one thus obtains all DX-simple holonomic modules with support
in Z that are smooth on Zo.

For such a DX-module M , the analytic de Rham complex

DR M := (Ω•+dimX
Xan ⊗M , (−1)dimX∇)

is cohomologically C-constructible, according to a theorem of Kashiwara. More pre-
cisely, it is a perverse sheaf.

This text is a translation into English of the Bourbaki talk [Sab13].
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What are the perverse sheaves obtained in this way? We do not know the an-
swer to this question. Nevertheless, we know that the Riemann-Hilbert correspondence
M 7→ DR M is an equivalence between the category of (analytic) DX-regular holonomic
modules and that of perverse sheaves. This, together with the GAGA theorem for reg-
ular holonomic modules [KK81], implies that every simple perverse sheaf is obtained
in this way. According to [BBD82] and [GM83], such a perverse sheaf is nothing other
(up to a shift by dimZ) than the Goresky-MacPherson intersection complex ICZ(L )

(intermediate extension j!∗L ) associated to an irreducible locally constant sheaf L
on Zo (i.e., an irreducible linear representation of π1(Zo, ?)).

It is also easy to obtain complexes DR M which are not simple perverse sheaves, or
even semi-simple perverse sheaves (i.e., direct sums of simple objects), if one accepts
that a simple M has irregular singularities. One way to obtain such examples is to use
the Fourier transformation.

Example. — Let T1, . . . , Tr (r > 2) be elements of GLn(C) (n > 2) whose product is
equal to the identity and which have no common eigenvector. Suppose also that 1 is
not an eigenvalue of Ti (multiply each Ti by λi ∈ C∗ general enough, making

∏
λi = 1).

They define an irreducible representation of the fundamental group of P1 minus r points,
all at finite distance, thus an irreducible locally constant sheaf of rank n on this space.
Its intersection complex on A1 (coordinate z) corresponds to a holonomic module M on
the Weyl algebra C[z]〈∂z〉, whose singularities are all regular.

The Fourier transform FM isM itself on which we see ∂z operating as the multiplica-
tion by a variable ζ and −z as the derivation ∂zeta. If M is simple, FM is also simple,
but we can show (see for example [Mal91]) that the latter has an irregular singularity
in ζ =∞, a regular singularity in ζ = 0, and no other singularity. It can also be shown
that the assumptions made on the Ti imply that, on the open subset ζ 6= 0, the locally
constant sheaf of its horizontal sections is of rank nr, and its monodromy has only
eigenvalue 1, with r Jordan blocks of size 2 and (n− 2)r blocks of size 1. This locally
constant sheaf is therefore not semisimple.

Let FM be the unique DP1-simple holonomic module whose restriction to A1 (coordi-
nate ζ) is FM . If DR FM were semi-simple perverse, it would be a direct sum of point-
supported sheaves and intersection complexes of irreducible locally constant sheaves
(shifted by 1), among which the above locally constant sheaf, hence a contradiction.

However, we will see that the perverse sheaves DR M , for simple M , all satisfy
the hard Lefschetz theorem. In the following, we will work in the complex analytic
framework only, contrary to the beginning of this introduction.

The hard Lefschetz theorem. — In various talks in 1996 (see [Kas98]), Kashiwara con-
jectured a very general version of the hard Lefschetz theorem in complex algebraic
geometry, which was recently proved by T.Mochizuki [Moc11a]:

Theorem 0.1. — Let X be a smooth complex projective algebraic variety and let L
be the cup-product operator by the Chern class of an ample line bundle on X. Then,
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for any simple holonomic DX-module M on X and any k > 1, the k-th iterate Lk :

H−k(X,DR M )→Hk(X,DR M ) is an isomorphism.

Remark 0.2. — With the shift defining DR, Hk can be nonzero only for k ∈
[− dimX, dimX]. Moreover, for simple M different from the trivial connection
(OX , d), we also have vanishing for k = − dimX, dimX. Indeed, let us consider first
the complex Γ(X,DR M ): its H− dimX is the space of sections of M on X annihilated
by ∇; so there is a submodule H− dimX ⊗ (OX , d) contained in M , and the assumption
“M simple and 6= (OX , d)” implies H− dimX = 0. The hypercohomology spectral
sequence shows that H− dimX ⊂ H− dimX , hence the vanishing of H− dimX . A duality
argument also enables us to deduce HdimX = 0. Thus, the statement 0.1 is of little
interest when X is a curve.

To obtain such a theorem, we first show the existence of a richer structure, which
gives rise to a notion of purity [Del71]. The Hodge theory plays this role in complex
algebraic geometry (see the excellent overview [dM09]):

(a) If (V,∇) is a holomorphic bundle with integrable connection on X, the
complex DR(V,∇) = (Ω•+dimX

X ⊗ V, (−1)dimX∇) has cohomology only in de-
gree − dimX, it is the local system V ∇ of horizontal sections of ∇ (Cauchy-
Kowalewski theorem and holomorphic Poincaré lemma); (a′) if moreover (V,∇)

underlies a variation of Q-polarizable Hodge structure, the hard Lefschetz theorem
Lk : HdimX−k(X, V ∇)

∼−→ HdimX+k(X, V ∇) was shown by Deligne (see [Zuc79,
Th. 2. 9]), the hard Lefschetz theorem as proved by Hodge (see [Hod52]) being
the case (V,∇) = (OX , d).

(b) The extension of this result to the case where (V,∇) is a holomorphic bun-
dle with integrable connection on the complementary Xo of a hypersurface D of
X and satisfies (a′) has been the subject of much work ([Sch73, Zuc79, CK82,
CKS86, CKS87, Kas85, KK87]), resulting in the hard Lefschetz theorem for the
intersection cohomology on X of the local system V ∇, when D = X r Xo is a
divisor with normal crossings.

(c) M. Saito [Sai88] removed the assumption X smooth and D with normal cross-
ings by introducing the category of polarizable Hodge modules. The theorem 0.1
applies to the complexes DR M = ICZ(L )[dimZ] provided that L underlies a
variation of Q-polarizable Hodge structure (see also [BBD82, dM05, dM09] for
other approaches in the case of local systems of geometrical origin).

In (b) and (c), we work with the Deligne extension of (V,∇), which has a regular
singularity at infinity (i.e., along D), and this moderate “behavior” is necessary a priori
to apply the methods of Hodge theory, according to the Griffiths-Schmid regularity
theorem [Sch73, Th. 4. 13]). On the other hand, the notion of polarized variation
of twistor structure, introduced by Simpson [Sim97] allows irregular singularities at
infinity, and enables to approach, by a “wild” Hodge theory, Theorem 0.1 for simple
holonomic D-modules with possibly irregular singularities.
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This notion of polarized variation of twistor structure already occurs in the absence
of singularity (in the form of a harmonic metric, see the dictionary of Section 1). For a
polarized variation of Hodge structure, this is the structure that remains when one keeps
only the flat connection and the Hermitian metric defining the polarization. Under the
sole assumption of semi-simplicity of (V,∇) or, equivalently, of the locally constant
sheaf V ∇, the smooth case (a) of theorem 0.1 comes from the existence, due to [Cor88],
of a so-called harmonic metric for (V,∇) (the case where (V,∇) is unitary or, more
generally, a polarized variation of Hodge structure, being a very special case). One
can indeed develop in this framework the harmonic theory of the Laplacian and obtain
the Kähler identities, which lead to Theorem 0.1 (see [Sim92]). Note that the semi-
simplicity assumption of V ∇ is important, and it is easy to give an example where
0.1 is in default without this assumption: on a curve of genus g > 2, any nontrivial
extension L of the constant sheaf C by a nonconstant local system of rank 1 satisfies
dimH0(X,L ) 6= dimH2(X,L ).

Notwithstanding Remark 0.2, Simpson [Sim90] has shown, in the case where X is a
curve, the existence of a harmonic metric h for (V,∇) on Xo ⊂ X, with a moderate
behavior at the points of D (see also [Biq91, JZ97] in dimension > 1). The asymptotic
analysis he makes of this metric in the neighborhood ofD extends to this framework that
made by Schmid [Sch73] in the case of polarized variations of Hodge structures, which
allows in particular to compute the intersection cohomologyH1(X, j∗V

∇) (j : Xo ↪→ X)
as a space of L2-cohomology with respect to h and a Poincaré type metric on Xo, and
which extends Zucker’s results [Zuc79] ([Biq97], see also [Sab05, § 6.2], [Moc07, § 20.2],
[JYZ07]). This leads to a statement analogous to the degeneracy in E1 of the Hodge
⇒ de Rham spectral sequence of Rham, namely the computation of dimH1(X, j∗V

∇)

in terms of the Dolbeault cohomology of the associated parabolic Higgs bundle.
The moderate case of Theorem 0.1 is the one where the DX-module M has regular

singularities, i.e., DR M = ICZ(L )[dimZ] with Z irreducible and L simple on Zo.
T. Mochizuki solved this case in [Moc07] by extending the methods mentioned above.
The strategy of the proof, which is also valid for the wild case, i.e., when M has
irregular singularities, will be explained in Section 2. The moderate case was also
solved by Drinfeld [Dri01] by a method of reduction to characteristic p reminiscent of
[BBD82]. Drinfeld relied however on a conjecture made by de Jong [dJ01], proved since
[BK06, Gai07].

Recently, Krämer and Weissauer [KW11] have used the moderate case of 0.1 to show
a vanishing theorem, for any perverse sheaf F on a complex abelian variety X, of the
spaces Hj(X,F ⊗L ) for any j 6= 0 and almost any local system L of rank 1.

The rest of the text will insist on the new tools introduced by T.Mochizuki [Moc11a]
(after those of [Moc07]) to go from the “moderate” case to the “wild” case.

Acknowledgements. — They go to T.Mochizuki, as well as to M. Saito, Ch. Schnell,
Ch. Sevenheck, and C. Simpson for the multiple suggestions that helped me improve
the first draft of this text.
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1. DICTIONARY

I will make explicit the dictionary

harmonic flat bundle/harmonic Higgs bundle

/pure polarized twistor structure of weight 0

(see [Sim92, Sim97]), as it is essential for the singular case. The equations (1.1) below
and the idea of the construction on twistor space of a bundle with λ-connection go back
to Hitchin [Hit87]. Drinfeld also pointed me to the work of Zakharov, Mikhailov and
Shabat [ZM78, ZS79] where we find this type of equation under the name of “chiral field
equations”.

Let (V,∇) be a holomorphic bundle with an integrable holomorphic connection, and
let (H,D = ∇+ ∂) be the associated flat C∞ bundle. To any Hermitian metric h on H
we associate (cf. [Sim92]) a unique metric connection ∂E + ∂E characterized by the fact
that, if we consider the two C∞X -linear morphisms θ := ∇ − ∂E : H → A 1,0

X ⊗ H and
θ† := ∂ − ∂E : H → A 0,1

X ⊗H, then θ† is the h-adjoint of θ (if D is already compatible
to h we have θ = 0, θ† = 0). We say that (V,∇, h) is an flat harmonic bundle (1) if its
pseudo-curvature G(∇, h) is zero:

(1.1) G(∇, h) := −4(∂E + θ)2 = 0, i.e., ∂
2

E = 0, ∂E(θ) = 0, θ ∧ θ = 0.

(These three conditions are redundant, the last two implying the first; on a compact
Kähler variety, one can even be satisfied with the second, see [Moc07, Rem. 21.33 &
Prop. 21.39]. For a harmonic flat bundle, E := ker ∂E : H → A 0,1

X ⊗H is a holomorphic
bundle, and θ : E,→ Ω1

X ⊗ E is a holomorphic morphism, which satisfies θ ∧ θ = 0.
Thus, (E, θ) is a holomorphic Higgs bundle.

Starting now from a holomorphic Higgs bundle (E, θ) (i.e., θ∧θ = 0) and a Hermitian
metric h on E, we say that (E, θ, h) is a harmonic Higgs bundle if, denoting ∂E + ∂E
the Chern connection associated to the metric h on the holomorphic bundle E, and θ†

the h-adjoint of θ, then the connection ∂E+∂E+θ+θ† on H := C∞X ⊗OX E is integrable.
We thus have a one-to-one correspondence

harmonic flat bundle←→ harmonic Higgs bundle

When (V,∇, h) or (E, θ, h) are harmonic, there is in fact a one-parameter family of
flat holomorphic bundles which degenerates on the associated Higgs bundle: for any
λ ∈ C, we set V λ = ker(∂E + λθ† : H → A 0,1

X ⊗ H), equipped with the operator
∇λ := λ∂E + θ, which is called an λ-connection. If λ 6= 0, the operator (1/λ)∇λ is
an integrable holomorphic connection on V λ while, if λ = 0, we find the Higgs bundle
(E, θ).

1. We follow here the terminology of [Sim92]; Mochizuki uses the term “pluri-harmonic” for the
equation (1.1), to distinguish it from the a priori weaker equation on a Kähler manifold, also considered
in [Cor88, Sim92], namely ΛG(∇, h) = 0.
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Example 1.2 (the rank-1 case on a punctured disk). — Let us consider the case of a
(trivial) rank-1 bundle on the punctured unit disk ∆∗ of coordinate z, with a Hermitian
metric h. We will denote U the set of equivalence classes of pairs u = (a, α) ∈ R × C
modulo Z× {0}. Then:

The set of isomorphism classes of harmonic Higgs bundles (or flat bundles) of rank 1

on ∆∗ is in bijective correspondence with the set of pairs (ψ, u), with ψ ∈ O(∆∗) with
no constant term and (u mod Z) ∈ U.

Proof. — We will do it in the Higgs case, the flat case being similar. Let (E, θ, h)

be a harmonic Higgs bundle of rank 1 on ∆∗. We will associate to it a unique pair
(ψ, u mod Z). Let ε be a holomorphic basis of E. We have

θε = ϕ(z) ε, dz, ϕ(z) holomorphic on ∆∗.

Let ϕ(z) = ∂zψ(z) + α/z with ψ ∈ O(∆∗) without constant term and α ∈ C. Let
us also set ‖ε‖h = exp(η(z)), where η is real and C∞ on ∆∗. We can check that
the harmonicity condition of (E, θ, h) is equivalent to the fact that the function η is
harmonic on ∆∗. It is therefore written Re γ(z) − a log |z| with γ holomorphic on ∆∗

and a ∈ R. Replacing ε by e = exp(−γ(z)) · ε, we can assume that η(z) = −a log |z|
with a ∈ R, and we then have ‖e‖h = |z|−a. We thus obtained a pair (ψ, u).

Then we compute that v := |z|−2α exp(ψ − ψ) · e is a holomorphic basis of the
associated flat bundle V , of norm ‖v‖h = |z|−a−2 Reα. Moreover,

θe = (z∂zψ + α)
dz

z
⊗ e, ∇v = (2z∂zψ + e(1, u))

dz

z
⊗ v, e(1, u) := −a+ 2i Imα.

Let ε′ be another holomorphic basis of E, and e′ constructed as above with ‖e′‖h = |z|−a′

for some a′ ∈ R. Hence a pair (ψ′, u′). Then e′ = ν(z)e with ν(z) is holomorphic and
has moderate growth, so is meromorphic, hence a′ − a ∈ Z. The Higgs field has the
same expression in the bases e and e′, which implies ψ = ψ′ and α = α′.

Let us now set, for any fixed λ ∈ C,

(1.2 ∗) p(λ, u) = a+2 Re(αλ), e(λ, u) = α−aλ−αλ2, and vλ = eλψ−λψ|z|−2αλ ·e.

Then vλ is a holomorphic basis of V λ, of norm ‖vλ‖h = |z|−p(λ,u) and

(1.2 ∗∗) ∇λvλ = ((1 + |λ|)2z∂zψ + e(λ, u))
dz

z
⊗ vλ.

Let us return to the general situation. These two equivalent notions (harmonic flat
bundle and harmonic Higgs bundle) are also equivalent to the notion of variation of
pure polarized twistor structure of weight 0. To define it, let us introduce the projective
line P1 with two affine charts Cλ,Cµ of coordinates λ and µ respectively, with µ = 1/λ

on the intersection of the two charts. The following presentation is not exactly the
one given by Simpson [Sim97], but is equivalent to it and will be more convenient in
singular situations. It consists in describing bundles on X × P1 which are holomorphic
with respect to P1 and C∞ with respect to X. This presentation allows us to work only
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with holomorphic bundles on X × Cλ and, further (Section 6), with RX×Cλ-holonomic
modules.

Let σ : P1 → P1 be the anti-holomorphic involution which continuously extends the
application Cµ → Cλ, µ → λ = −1/µ. If f(x, λ) is holomorphic in x and λ, then the
function (σ∗f)(x, µ) = f(x,−1/µ) is anti-holomorphic in x and holomorphic in µ. If H
is a holomorphic bundle on X, then σ∗H is a holomorphic bundle on X, where X is the
complex conjugate manifold of X. If H ′,H ′′ are two holomorphic bundles on X×Cλ,
a pre-gluing (between the dual H ′∨ and σ∗H ′′) is an OX×S ⊗OS

OX×S-linear pairing

C : H ′
|X×S ⊗OS

σ∗H ′′
|X×S −→ C∞,an

X×S ,

where S = {|λ| = 1}, OS is the sheaf along S of OCλ and C∞,an
X×S is the sheaf of sheaves

along X ×S of C∞ functions which are holomorphic with respect to λ. If H ′ and H ′′

have λ-connections, we require that C is compatible in a natural sense. These triples
naturally form a category. The adjoint (H ′,H ′′, C)∗ is the triple (H ′′,H ′, C∗), with
C∗(u′′, σ∗u′) := C(u′, σ∗u′′), and the λ-connections remain compatible to C∗.

A variation of twistor structure is such a datum (H ′,H ′′, C) with λ-integrable con-
nections such that, for any x ∈ X, the pairing induced by C is nondegenerate and thus
defines a holomorphic bundle on P1 by gluing H ′∨

|{x}×Cλ and σ∗H ′′
|{x}×Cµ . It is a vari-

ation of twistor structure of weight w if, for any x, the resulting bundle is isomorphic
to a power of OP1(w). If the weight w is zero, the global sections of this bundle at
fixed x form a vector space Hx of dimension equal to the rank of H ′ and H ′′, and
the adjoint has as global sections the adjoint space H∨x. We then define a polarization
as an isomorphism S of (H ′,H ′′, C) onto its adjoint (H ′,H ′′, C)∗, compatible with
λ-connections, such that, for any x, the induced isomorphism Hx

∼−→H∨x, seen as a
sesquilinear pairing on Hx, is a positive definite Hermitian form. The bundle H on X
whose fibers are the Hx is then a C∞ bundle with a Hermitian metric h.

Lemma 1.3 ([Sim97]). — Let (H ′,H ′′, C,S ) be a variation of polarized twistor struc-
ture of weight 0. The restriction H ′′ to λ = 1 (resp. λ = 0) equipped with the connection
(resp. the Higgs field) induced by the λ-connection is a flat holomorphic (resp. the Higgs
field) bundle with underlying C∞ bundle isomorphic to H, and the metric h makes it a
harmonic flat (resp. Higgs) bundle.

Conversely, the construction V λ from a harmonic flat (resp. Higgs) bundle allows to
define a variation of pure polarized twistor structure of weight 0 by setting H ′ = H ′′ =

ker(∂λ + ∂E + λθ† : C inftyX×Cλ ⊗C∞X
H → C 0,1

X×Cλ ⊗C∞X
H), S = Id, C is naturally

induced by h and the λ-connection by λ∂E + θ.

Example 1.2, continued. — Let us now consider vλ as depending on λ. Then the formula
(1.2 ∗∗) shows that ∇λ is holomorphically expressed in λ only if ψ = 0. If ψ 6= 0, we
can consider the holomorphic basis ṽλ = e−|λ|

2ψ · vλ to correct the problem. We then
see that, on the one hand, there is no uniqueness of choice (we could just as well take
ec−|λ|

2ψ · vλ, with c ∈ C), and on the other hand all the choices lead to a basis whose
norm is no longer of moderate growth at the origin, if λ 6= 0 and ψ is not holomorphic
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at the origin. But, in this case, by making the metric depend on λ in a suitable way,
we find the property of moderate growth with respect to this modified metric (we will
find this again at the point (e) of Section 5.5).

2. STRATEGY OF THE PROOF

The strategy used to prove Theorem 0.1 follows that of M. Saito [Sai88].

(1) The first step is to enrich the structure of DX-holonomic modulus (where X
is any complex analytic variety) in order to have a notion of weight.

• The category of DX-holonomic modules with good filtration and rational
structure (i.e., an isomorphism of the de Rham complex and the complex-
ified perverse sheaf of a Q-perverse sheaf) was considered by Saito [Sai88].
Forgetting filtration and rational structure defines a forgetting functor to the
category of holonomic D-modules.
• In the present case, we generalize the objects (H ′,H ′′, C) of Section 1:
Denoting RX×C the sheaf of λ-differential operators generated by the functions
OX×C and the λ-vector fields λ∂zi , we consider the triples (M ′,M ′′, C), where
M ′,M ′′ are RX×S-holonomic modules (in a natural sense) and C is a pairing
between M ′

|X×S and σ∗M ′′
|X×S with values in the sheaf of the distributions on

X×S which depend continuously on S. The restriction M ′′/(λ−1)M ′′ defines
an forgetful functor with values in the category of D-holonomic modules.

(2) Without further constraints, the above categories are not abelian.
• Saito’s idea is essentially to impose additional local conditions: for any
holomorphic function seed f on X the functor ψmod

f of moderate close cycles
along f = 0, defined a priori on the category of holonomic D-modules using
the V -filtration of Kashiwara-Malgrange, must exist for the filtered objects
considered. It therefore imposes on the one hand the existence of such a
functor and on the other hand that the result gives an object of the same
type (except for the grading by the so-called “monodromic” filtration) with
a strictly smaller support dimension. When the dimension of the support is
zero, we impose to obtain a polarized Hodge structure. The simplest case of
this procedure is the restriction to a point of a variation of Hodge structure.
We thus obtain the category of polarizable Hodge modules [Sai88].
• This idea can be transferred quite directly to the triplets (M ′,M ′′, C), the
definition of ψmod

f on the coupling C being obtained by taking the residue in dif-
ferent values of s of the Mellin transform of the distribution |f |2sC. This gives
us the category of holonomic D-modules with moderate polarizable twistor
structure [Sab05, Moc07].
• For the wild case (irregular singularities), the use of moderate near cycles
is not sufficient. The irregular nearby cycles, as defined by Deligne [Del07b]
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are on the other hand sufficient ([Sab09], [Moc11a]). We obtain the category
of holonomic D-modules with wild polarizable twistor structure [Moc11a] (see
Section 6).

(3) We then show Theorem 0.1 for polarizable Hodge modules or with polarizable
twistor structure. The hypercohomology spaces are either filtered complex spaces
with rational structure and polarization, or triplets (H ′,H ′′, C) formed by OCλ-
modules and a pairing. We further show that Lefschetz morphisms are strictly
compatible with filtrations or remain isomorphisms by restriction to λ = 1. This
is obtained by showing that hypercohomology spaces are pure Hodge structures or
pure twistor structures. We conclude that all D-modules obtained by forgetting
the filtration from polarizable Hodge modules or by restriction to λ = 1 of D-
modules with polarizable twistor structure satisfy the hard Lefschetz theorem.

(4) The results of (3) are obtained by the method of Lefschetz pencils. This brings
us back to showing them in the case of curves.

• For polarizable Hodge modules [Sai88], we rely on the theorems computing
the L2-cohomology obtained by Zucker [Zuc79], since the restriction of such a
D-filtered module to a dense Zariski open of the curve is none other than a
variation of polarizable Q-Hodge structure.
• For D-modules with polarizable twistor structure, we start by noticing that
the restriction to a dense Zariski open provides, by the dictionary of Section
1, a flat holomorphic bundle with harmonic metric. Moreover, this metric is
moderate, in the sense of [Sim90], or wild, in the sense explained in Section
3. The results of [Sim90] and then of [Moc11a] in the case of curves for such
metrics allow to adapt Zucker’s method, as indicated in the introduction (a
slightly different approach in the moderate case is used in [Biq97] and [Sab05];
see also [Sab99] for a Poincaré lemma L2 in the wild case).

(5) We now come to the second part of the program, which is more analytical.
We have to identify exactly the D-holonomic modules produced at the point (3).
Insofar as we have set up, during the proof of Theorem 0.1 for categories of
polarisable Hodge modules or modules with polarisable twistor structure, tools
such as the direct image by a projective morphism and the decomposition theorem
analogous to that of [BBD82], we can reduce this identification to the case where
the support Z is smooth and where the Zariski open smooth locus Zo of the
holonomic D-module has as its complement a divisor with normal crossings.

• For polarizable Hodge modules, M. Saito [Sai90, Th. 3.21] identifies them,
via the Riemann-Hilbert correspondence, to those corresponding to intersec-
tion complexes of polarizable variations of Hodge structure. A delicate point is
the reconstruction, from such a variation, of a polarizable Hodge module, and
the essential ingredient is the existence theorem of a limit mixed Hodge struc-
ture, due to Cattani, Kaplan and Schmid on the one hand, and Kashiwara and
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Kawaï on the other hand, as well as the description of the latter, generalizing
in any dimension Schmid’s theorem in dimension 1 (see the introduction).
• For D-modules with moderate polarizable twistor structure, Mochizuki iden-
tifies the holonomic D-modules produced at the point (3) with those corre-
sponding, by Riemann-Hilbert, to the intersection complexes of flat bundles
equipped with a moderate harmonic metric (see Section 3 below). The recon-
struction (see Section 5) is also based, in fine, on the asymptotic theory of
variations of polarizable Hodge structure.
• In the wild case, we first come back to consider a better controlled situation
(wild and good case, see Section 3). Mochizuki has shown, as a consequence
of his proof of the wild Hitchin-Kobayashi correspondence (Section 4), the
existence of a suitable compactification (Z,D) of Zo for which this property
is satisfied. One can now disconnect this argument from the whole proof, and
use here the results of Kedlaya [Ked10, Ked11] (see Section 3.2), which I will
do to simplify the exposition.

(6) The Hitchin-Kobayashi correspondence, explained in this framework in sec-
tion 4, finally allows Mochizuki to put in bijective correspondence the moderate
or wild and good harmonic flat bundles on (Z,D) with the smooth flat semisimple
meromorphic bundles on Zo, thus generalizing Corlette’s theorem [Cor88] from the
projective case (see also [JZ97] for the quasi-projective case). These are themselves
in bijective correspondence with the smooth semisimple holonomic DZ-modules
on Zo. The proof in Sections 4 and 5 will insist on the “reconstruction” aspect
(essential surjectivity in Theorem 6.2 below). It should be noted, however, that
in the wild case, the direct aspect (the D-modules obtained at the point (3) are
semisimple) and the full faithfulness are non-trivial points because, in particular,
we do not have the canonical Deligne meromorphic extension (cf. § 3.2). This
question is treated in § 19.3 of [Moc11a].

In conclusion, the holonomic D-modules produced at point (3) are exactly
the holonomic semisimple D-modules on X, which completes the proof of Theo-
rem 0.1.

Remark 2.1. — We have lost here some symmetry between Higgs bundles and flat
bundles. Indeed, the good wild harmonic Higgs bundles on (Z,D) are in bijective
correspondence with the poly-stable Higgs bundles with zero parabolic characteristic
numbers (see Section 4.1). But we do not know how to identify the Higgs objects
obtained at the point (3) by restriction to λ = 0, as OT ∗X-coherent modules.

3. WILD HIGGS BUNDLES AND FLAT MEROMORPHIC BUNDLES
WITH IRREGULAR SINGULARITIES

3.0. Convention

In all this text, we will call “global setting” the data of a smooth projective variety X
and a divisor D with normal crossings in X. Let us denote j : Xo := X rD ↪→ X the
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inclusion. The components of the divisor, assumed to be smooth, are indexed by a
finite set I. We also give ourselves an ample line bundle L on X.

By “local setting”, we mean rather that X is a product ∆n of disks with coordinates
(z1, . . . , zn), and D has the equation z1 · · · z` = 0, so that the finite set I is here equal
to {1, . . . , `}.

3.1. Wild Higgs bundles

Let us consider the local setting. Let (E, θ) be a holomorphic Higgs bundle onXo. We
write the Higgs field as θ =

∑`
i=1 Fidzi/zi+

∑n
j=`+1Gjdzj, where Fi, Gj are holomorphic

endomorphisms of E. The coefficients fi,k, gj,k of the characteristic polynomials of Fi
and Gj are holomorphic functions on Xo.

The Higgs bundle (E, θ) is moderate (in the considered chart) if fi,k, gj,k extend into
holomorphic functions on X (we will denote these extensions in the same way) and
fi,k|Di is constant for all i, k. In particular, the eigenvalues (and their multiplicity) of
Fi|Di are constant and equal to those of Fi(0). Because of the Higgs condition, the
endomorphisms Fi, Gj commute. We deduce that (E, θ) decomposes locally along the
set Sp(θ) of eigenvalues (α1, . . . , α`) of (F1(0), . . . , F`(0)) into a direct sum of moderate
Higgs subbundles (see [Moc07, § 8.2.1]):

(3.1 ∗) (E, θ) '
⊕

α∈Sp(θ)

(Eα, θα).

In the “wild” case, the functions fi,k, gj,k are allowed to have poles along D, but in a
controlled way. Still working in local coordinates, we will denote by O(∗D) the space
of meromorphic functions on X with poles of arbitrary order along D, and we will be
interested in the polar parts O(∗D)/O.

The Higgs bundle (E, θ) has a wild unramified decomposition if there exists a finite
family Irr(θ) ⊂ O(∗D)/O of polar parts and a decomposition

(3.1 ∗∗) (E, θ) =
⊕

a∈Irr(θ)

(Ea, θa)

such that, for each a ∈ Irr(θ), the Higgs bundle (Ea, θa−da⊗Id) is moderate (this condi-
tion depends only on the polar part a, and not on a bearing to O(∗D), hence the short-
cut of notation). The Higgs bundle (E, θ) has a wild decomposition with ramification
if it admits a decomposition (3.1 ∗∗) after inverse image by a finite morphism ramified
around D, described in suitable local coordinates by ρ : (x1, . . . , xn) 7→ (z1, . . . , zn) =

(xν11 , . . . , x
ν`
` , x`+1, . . . , xn). Finally, (E, θ) is said to be wild if, for any point of D, there

exists a projective modification π of a neighborhood of this point such that π−1(D) is
still with normal crossings and π∗(E, θ) admits a wild decomposition with ramification
in the neighborhood of any point of π−1(D).

Example 1.2, continued. — Since ψ is without constant term, we can write ψ = d(a+η)

with η holomorphic and a holomorphic in z−1 without constant term. The Higgs bundle
(E, θ) is moderated if and only if a = 0. It is wild if and only if ψ is meromorphic in
z = 0 (i.e., a ∈ z−1C[z]).
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Remarks 3.2
(i) It will be a constant in the treatment of the moderate/wild case to reduce the
wild case to the moderate case by adding such da and direct sums, possibly with
ramification. The case of flat bundles will be complicated by the introduction of
Stokes structures, which do not appear for Higgs bundles.

(ii) The above conditions do not depend on the choice of coordinates adapted toD,
and if dimX = 1 they reduce to the holomorphy (resp. the meromorphy) on X of
the coefficients of the characteristic polynomial of F1. In dimension > 2, the prop-
erty of “wild decomposition with ramification” implies that, after ramification, the
characteristic polynomial χFi(T ) of Fi decomposes into

∏
a Pi,a(T − zi∂zia), where

Pi,a(T ) has holomorphic coefficients for all i, a, and χGj(T ) =
∏

a Pj,a(T − ∂zia),
where Pj,a have holomorphic coefficients. This last property is stronger than the
meromorphy of the coefficients of χFi , χGj .

(iii) The conditions “moderate” or “wild” say nothing about the possible extension
of the bundle E as a bundle on X nor, if necessary, about the extension of Fi, Gj

as meromorphic or holomorphic endomorphisms of this extended bundle.

(iv) These conditions are preserved by inverse image by a morphism

f : (X ′, D′) −→ (X,D)

of manifolds with a normal crossing divisor with D′ = f−1(D). Conversely, given
(E, θ) on Xo, does there exist an proper modification X ′ → X which is an iso-
morphism over Xo, such that X ′ r Xo is a normal crossing divisor, and (E, θ)

admits a wild decomposition with ramification on X ′? Since such a modification
is an isomorphism out of a 1-codimensional set in D, it is necessary that θ is wild
in the neighborhood of any point of a dense Zariski open subset of D. Conversely,
Mochizuki shows [Moc11a, Chap. 15] that this is indeed the case if the following
properties are satisfied:

• D has normal crossings in X,
• θ admits a wild decomposition with ramification generically along D,
• in the neighborhood of any point of D, and in suitable local co-
ordinates, one has, after eventual finite ramification, a decomposition
χFi(T ) =

∏
a∈Ai Pi,a(T − zi∂zia) as above.

3.2. Flat bundles with irregular singularities

Let us stop for a moment to imagine the analogue of the two properties “moder-
ate/wild” for a flat holomorphic bundle (V,∇) on Xo when D has normal crossings.
Considering as above the characteristic polynomials of the coefficients of the connec-
tion matrix does not make sense anymore, but there exists a unique meromorphic
extension (2) of (V,∇) in a basis of which the horizontal sections of the connection

2. i.e., an OX(∗D)-locally free module of finite rank V equipped with an integrable connection ∇.
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have coefficients with moderate growth (Deligne extension). Moreover, there exists a
canonical holomorphic extension on which the connection has logarithmic poles, and
the residues along the components of D are constant. This is the “moderate” situa-
tion (with regular singularities), which is therefore better behaved than the analog for
Higgs bundles. The analog of the “wild” property requires on the other hand a refer-
ence meromorphic extension of the bundle V to be defined, unlike the Higgs case. Any
meromorphic extension (V ,∇) distinct from the Deligne extension will be said to have
irregular singularities. In the situation of the introduction, if Z is smooth, the algebraic
condition of (V,∇) provides a well determined meromorphic extension of the associated
holomorphic bundle (V,∇)an.

The decomposition property (after ramification) parametrized by polar parts a anal-
ogous to (3.1 ∗∗) is not satisfied in general, even if dimX = 1. In this case, it is only
satisfied if we allow formal gauge changes for the connection.

For dimX = 2, it was conjectured (and proved in a few special cases) in [Sab00,
Conj. 2.5.1], that such a property is satisfied after blowing-ups of X. This property
was proved by T.Mochizuki [Moc09a] when the connection is defined algebraically, by
a method of reduction to characteristic p and a use of the p-curvature as an ersatz of a
Higgs field, for which one can apply a statement of the type of that of Remark 3.2(iv).
Some time later, Kedlaya proposed a completely different proof of the same statement,
without any condition of algebraicity of the connection. It is based on techniques
inspired by p-adic differential equations.

In [Moc11a, Th. 16.2.1], T. Mochizuki extended this result in any dimension (still for
an algebraically defined connection), relying on the result in dimension 2 and using a
harmonic metric to go back and forth between the flat bundle and the Higgs bundle
by the wild Hitchin-Kobayashi correspondence explained below. Therefore, the proof
contains a big part of analysis. On the other hand, Kedlaya [Ked11] has also been able
to extend his own methods to any dimension, without any algebraic assumption.

Theorem 3.3 ([Moc09a, Moc11a], [Ked10, Ked11]). — Let X ′ be a smooth algebraic
variety (resp. a germ of a complex analytic variety) and let (V ,∇) be a meromorphic
bundle on X ′ with integrable connection, holomorphic on a Zariski open subset X ′o

of X ′. Then there exists a projective modification π : X → X ′ with X smooth, which
is an isomorphism over X ′o, such that X rX ′o is a divisor with normal crossings D,
and that at any point x ∈ D, the formalized bundle (ÔX,x⊗Ox V , ∇̂) can be decomposed,
after possible ramification around the local components of D, into the form

(3.3 ∗) (ÔX,x ⊗Ox V , ∇̂) =
⊕

a∈Irrx(∇)

(V̂a, ∇̂a),

where ∇̂reg
a := ∇̂a − da⊗ IdV̂a

has regular singularities ([Del70]).

This theorem, as proved by these authors in its more precise version with the prop-
erty (Good) below, was the missing link to analyze irregular singularities of holonomic
systems of partial differential equations.
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Example 1.2, continued. — For (V λ, (1/λ)∇λ), the regular/irregular singularity di-
chotomy is the same as the moderate/wild dichotomy of the Higgs case.

3.3. The condition “good wild”

The decomposition property (3.1 ∗∗) (after local ramification around the components
of the divisor D) for a Higgs bundle or, taking formal coefficients, for a meromorphic
bundle with a flat connection, is still insufficient when n = dimX > 2 for the analysis
of the asymptotic properties of a harmonic metric or of the Stokes phenomenon. For
example, in the case of two variables x1, x2, we try to avoid the existence of horizontal
sections of the connection which have a behavior like exp(x1/x2) because of the “indeter-
minacy” of the limit of x1/x2 when x1, x2 → 0. On the other hand, we accept exp(1/x2)

or exp(1/x1x2).
In local coordinates adapted to the divisor as well as in Section 3.1, we associate to

any polar part a ∈ O(∗D)/O, written in the form
∑
m∈Z`×Nn−` amz

m, the polyhedron
of Rn obtained as the convex hull of the octants Rn

+ (to neglect O) and m + Rn
+ for

which am 6= 0.
A finite family S of polar parts, like Irr(θ), is said to be good if the following property

is satisfied:
(Good) the Newton polyhedra of polar parts a − b, for a, b ∈ S ∪ {0}, are octants of

vertices in −N` × {0n−`} and are pairwise nested.

[For several questions, it is enough to consider the weaker condition that the polyhedra
of a− b, for a, b ∈ S, are octants of vertices in −N`×{0n−`}, in which case it concerns
only the bundles of rank > 2. Note also that either of these properties is always satisfied
in dimension 1].

We say that a Higgs bundle on Xo is wild and good along D if the decomposi-
tion (3.1 ∗∗) takes place in the neighborhood of any point of D after local ramification,
with a good local set Irr(θ).

Similarly, a flat meromorphic bundle (V ,∇) on X with poles along D is said to
admit an good formal structure along D if, for any point x ∈ D, the bundle with
connection tensored by CC[[z1, . . . , zn]][1/z1 . . . z`] admits, after ramification, a decom-
position (3.3 ∗) parametrized by a good finite set Irrx(∇) ⊂ O(∗D)/O. This property
has been used when D is smooth, in the study of isomonodromic deformations of differ-
ential equations of one variable with irregular singularities. The first works in the case
of normal crossings, after the first cases considered in [LvdE82], are those of Majima
[Maj84], continued by [Sab00] in the case of two variables. The situation is now clear
thanks to the very detailed analysis made by T.Mochizuki in [Moc11c, Moc11a].

As for the regular singularities with the canonical extension of Deligne [Del70], it
is important to be able to work with an OX-coherent module V such that V =

OX(∗D) ⊗OX V, called a lattice of V . The global existence of such a lattice is not
obvious. Even in the local situation, when (V ,∇) admits a good formal structure, it is
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not clear that there exists a lattice whose formalization is adapted to the decomposi-
tion (3.3 ∗). The existence of such a lattice is however essential to show the asymptotic
properties of the horizontal sections of the connection in the neighborhood of the divisor:
it is first in a local basis of such a lattice that we can express them.

Definition 3.4 (Good lattice [Moc11a, § 2.3]). — A good lattice is a OX-torsion-free
coherent submodule V of the meromorphic bundle V , which generates it by tensorization
by OX(∗D) and such that the formalized module V̂ := ÔX,x⊗OX,x V at each point x ∈ D
is the invariant part by the action of the Galois group of a local ramification of a good
unramified lattice, i.e., which decomposes in a way compatible with the decomposition
(3.3 ∗) of ÔX,x ⊗OX,x V , such that on the component (V̂a, ∇̂reg

a ) is logarithmic poles in
the sense of [Del70].

Malgrange [Mal96] has shown the existence of a “canonical lattice” that is good on
a dense Zariski open of D. The construction is local and, as for the Deligne canonical
lattice in the case of regular singularities, it is by controlling the residues along the
components of D that Malgrange can globalize various local constructions. This lattice
is called the canonical Deligne-Malgrange lattice by Mochizuki. From the point of view
of asymptotic analysis in the neighborhood of singularities of D, this lattice is still not
enough, but Mochizuki shows:

Theorem 3.5 ([Moc11c, Cor. 2.24]). — If (V ,∇) admits a good formal structure along
D, then the canonical Deligne-Malgrange lattice is good at any point of D.

Remarks 3.6

(i) The notion of a good lattice extends in an obvious way to the case of a λ-
connection if λ 6= 0. In the Higgs case (λ = 0), it is even useless to consider the
formalization.

(ii) In the results mentioned in Remark 3.2(iv) as well as in Theorem 3.3, it is the
“wild and good” property which is obtained after blowing-ups, that is to say the
sets Irrx(θ) and Irrx(∇) are good for any x ∈ D.

(iii) In the following, we will admit Theorem 3.3, since it now has an independent
proof by Kedlaya. In [Moc11a], Mochizuki could not afford this shortcut, as he
did not have this theorem at his disposal at that time, and he proved it by the
arguments given above, which we will not explain.

3.4. Good wild harmonic bundles

The property “moderate” or “wild” for a flat (or Higgs) bundle with a harmonic metric
concerns the associated Higgs field. In the case of a curve, the “moderate” property
was introduced by Simpson [Sim90]. It was extended by Biquard [Biq97] to the case
where D is a smooth divisor, then by Mochizuki [Moc02, Moc07] to the case where D is
a divisor with normal crossings. The “wild” condition, already mentioned by Simpson
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[Sim90], was considered on curves in [Sab99, BB04, Sab09] and finally, in all generality,
in [Moc11a].

Definition 3.7. — A harmonic flat bundle (V,∇, h) (resp. a harmonic Higgs bundle
(E, θ, h)) on Xo is wild (resp. good wild) if the associated Higgs bundle (E, θ) is wild,
see Section 3.1 (resp. good wild, see Section 3.3).

Remarks 3.8

(i) For a harmonic Higgs bundle, the holomorphy of fi,k (see Section 3.1) im-
plies the constancy of fi,k|Di (see [Moc07, Lem. 8.2]). In the case of a harmonic
Higgs bundle satisfying (3.1 ∗∗), it is not clear a priori that the components
(Ea, θa − da ⊗ Id), equipped with the induced metric, are harmonic. We must
therefore treat them as any Higgs bundles, and impose the constancy of fi,k|Di .

(ii) Mochizuki [Moc07, Chap. 8] gives, for a harmonic Higgs bundle, a moderation
criterion by restriction to curves transverse to the smooth part of D, reminiscent
of that given by Deligne [Del70] for flat connections with regular singularities.

4. WILD HITCHIN-KOBAYASHI CORRESPONDENCE

In the following, we will sketch a proof that any simple holonomic DX-module comes
from a D-holonomic module with polarizable twistor structure (point (3) of Section 2).
We start with the end, namely the point (6).

In the global situation (see convention 3.0), let (V,∇) be a flat algebraic bundle onXo.
It corresponds bijectively to a OX(∗D)-coherent module V with flat connection ∇. Let
us assume (V,∇) is simple. Mochizuki shows the existence of a harmonic metric for
(V,∇) with good properties. Let us describe the steps by referring below for the precise
definitions.

(a) Malgrange’s construction of a canonical lattice [Mal96] allows to equip (V ,∇)

with a parabolic filtration •V DM.

(b) Given an ample line bundle L onX, we associate to any parabolic flat OX(∗D)-
coherent module a slope µL, hence a notion of µL-stability. Then (V ,∇) is simple
if and only if (V , •V DM,∇) is µL-stable.

(c) We also have a notion of parabolic characteristic numbers. According to The-
orem 3.3 (using Kedlaya’s version), even if we change X and D, we can even
suppose that (V ,∇) admits a good formal structure along D. In this case, the
characteristic numbers of (V , •V DM) are zero.

(d) The Hitchin-Kobayashi correspondence then consists, in this framework, in the
construction of a harmonic metric h for (V,∇) adapted to the filtration (•V DM),
hence a harmonic Higgs bundle (E, θ, h) and a variation of pure polarized twistor
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structure of weight 0 on Xo. This construction also relies on the fact that the
harmonic Higgs bundle (E, θ, h) thus obtained is wild and good.

The remaining questions are whether (E, θ) extends (and how) to X, and whether
the polarized twistor structure variation extends (and how) to X. We will discuss them
at the end of this paper.

4.1. Parabolic filtrations and adapted metrics

We place ourselves in the local or global situation (convention 3.0). Mochizuki con-
sidered a property similar to the following one in [Moc07, § 4.2].

Parabolic filtration. — Let ∞E be a torsion-free coherent OX(∗D)-module. A parabolic
filtration of ∞E consists in giving an increasing filtration, indexed by RI provided with
its natural partial order, of ∞E by torsion-free coherent subOX-modules aE, which
satisfies the following properties:

(1) (translation) for any a ∈ RI, we have ∞E = OX(∗D) ⊗OX aE and, for any
n ∈ ZI, a−nE = OX(−

∑
i∈I niDi)⊗OX aE;

(2) (finiteness) there exists for any i ∈ I a finite subset Ai ⊂ R modulo Z such
that the filtration is determined by its restriction to A =

∏
i∈IAi, i.e., for any

a′ ∈ RI, we have a′E =
⋃
a′∈A
a′6a′

aE.

If aE are OX-locally free, we will also say that (∞E, •E) is a parabolic meromorphic
bundle on (X,D). If ∞E is locally free of rank 1, then giving a parabolic filtration is
equivalent to giving b ∈ RI modulo ZI. We then have locally aE ' OX(

∑
i[ai + bi]Di).

The following proposition simplifies various notions introduced in [Moc06, Chap. 3],
[Moc07, Chap. 4] and [IS07, § 2].

Proposition 4.1 ([Bor09, Th. 2.4.20], [HS10, Th. 4.2]). — Any parabolic meromorphic
bundle (∞E, •E) on (X,D) is locally abelian, i.e., locally isomorphic to a direct sum of
parabolic bundles of rank 1.

Definition 4.2. — Let (∞E, •E) be a parabolic meromorphic bundle over (X,D).
A local basis e of ∞E as OX(∗D)-module is said to be adapted to the parabolic filtration
if it defines a decomposition of (∞E, •E) into rank-1 parabolic bundles. Each element ek
has then a multi-order a(k). We associate to e a normalized basis e′ defined by e′k =∏`

i=1 |zi|ai(k) · ek.

Parabolic characteristic numbers. — Let (∞E, •E) be a parabolic meromorphic bun-
dle. Let us consider one of the bundles aE (for a ∈ A, this is sufficient). On each
component Di of D we then have the ODi-locally free module aE/a−iE, if a−i is the
predecessor of a in the i direction only. Let us denote aE||Di this bundle and rk aE||Di
its rank. We observe that, for b, the usual restriction bE|Di = bE/b−1iE has rank

rk bE|Di =
∑

ai∈(bi−1,bi]
aj=bj ∀ j 6=i

rk aE||Di
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Definition 4.3 ([Moc06, § 3.1.2]). — In the global situation, let L be an ample bundle
on X. The parabolic degree par- degL(∞E, •E) is defined by the formula, independent
of the choice of b ∈ RI,

par- degL(∞E, •E) = degL bE −
∑
i∈I

( ∑
ai∈(bi−1,bi]

ai rk aE||Di

)
degLDi.

The slope µL(∞E, •E) is the quotient par- degL(∞E, •E)/ rk ∞E.

We can also define a class par-c1(∞E, •E) by replacing in the above formula the
number degLDi by the class [Di] in H2(X,R) and degL bE by c1(bE), and we can also
define a number par- degL ch2(∞E, •E) (see loc. cit.).

Hermitian metric adapted to a parabolic filtration. — In the local situation, let
(∞E, •E) be a parabolic meromorphic bundle over (X,D). Let furthermore h be a
Hermitian metric on E = ∞E|Xo . For each a ∈ RI, let us define the subsheaf of
OX-modules aẼ ⊂ j∗E by

∀U ⊂ X, aẼ(U) =
{
e ∈ E(U rD) | ∀ ε > 0, |e|h = O

(∏
i∈I |zi|−ai−ε

)
loc. onU

}
,

and ∞Ẽ =
⋃
a aẼ, which is a OX(∗D)-module, filtered by the torsion-free OX-sub-

modules aẼ. In general, these sheaves have no coherence properties.

Definition 4.4 ([Moc06, § 3.5]). — The metric h is said to be adapted to the parabolic
meromorphic bundle (∞E, •E) if aẼ = aE for all a ∈ RI.

4.2. The Deligne-Malgrange filtration

Let us return to our problem, in the global situation. Let (V ,∇) be an OX(∗D)-
coherent module with integrable connection. When (V ,∇) has regular singularities
along D, Deligne [Del70] has constructed a canonical vector bundle on which the con-
nection has logarithmic poles and the eigenvalues αi of the residue endomorphism on
each component Di of D have a real part in [0, 1[. For each a ∈ RI, we can define the
bundle with logarithmic connection aV by imposing that −Reαi ∈ ]ai − 1, ai] for any
i ∈ I. We thus obtain the canonical Deligne filtration and a flat parabolic meromor-
phic bundle (V , •V ,∇), all this compatible with the formation of the determinant. In
the rank-1 case, the connection on the associated C∞ bundle has distributional coef-
ficients, and the Chern-Weil formula (in the sense of currents) for c1(•V ) shows that
par-c1(V , •V ) = 0, and this remains true in any rank by passing to the determinant,
as does the equality par- degL(V , •V ) = 0.

We also notice that any coherent OX(∗D)-submodule of V stable by the connection
is still OX(∗D)-locally free, and the connection there is still with regular singulari-
ties. Moreover, the Deligne filtration of V induces on this submodule its own Deligne
filtration.
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We will say that the flat parabolic meromorphic bundle (V , •V ,∇) is µL-stable if
every flat meromorphic subbundle, equipped with the induced parabolic filtration, has
strictly smaller slope.

We then check that (V , •V ,∇) is µL-stable if and only if (V ,∇) is simple (indeed,
the Deligne filtration induces on any nontrivial flat meromorphic subbundle the Deligne
filtration of the latter, which is thus of zero slope, in contradiction with stability).

When (V ,∇) has irregular singularities, Malgrange [Mal96] constructed a canonical
lattice (cf. Section 3.3) by imposing analogous conditions on the residues of the con-
nections ∇̂reg

a , which exist a priori on a Zariski dense open subset of each Di. We
deduce a canonical filtration (•V DM,∇), called the Deligne-Malgrange filtration. Note
that each (aV DM,∇) is not necessarily logarithmic, and is not necessarily locally free.
Nevertheless, every aV DM is OX-coherent and reflexive (see [Moc11a, Lem. 2.7.8]).

If moreover (V ,∇) admits a good formal structure along D then, as indicated in
Section 3.3, the canonical Deligne-Malgrange lattice is locally the invariant part in a
ramification of a lattice which decomposes formally in the neighborhood of each point
of D as (V ,∇). It follows that it is a vector bundle, and (V , •V DM) is a parabolic flat
meromorphic bundle. In the case of rank 1, worrying about smoothness and ramifica-
tion is superfluous and, using the quasi-isomorphism Ω•(logD) ' Ω•(∗D) (see [Del70,
Prop. II.3 .13]), one shows that the connection ∇+ ∂ on C∞X ⊗V is written as the sum
of a C∞ logarithmic flat connection and an exact form dϕ with ϕ ∈ Γ(X,C∞X (∗D)).
It follows that, as in the logarithmic case, we have, in any rank, par-c1(V , •V ) = 0 and
par- degL(V , •V ) = 0.

One shows in the same way that any OX(∗D)-coherent submodule of V stable by
the connection is still OX(∗D)-locally free, and admits a good formal structure along D
(with local exponential factors contained in those of (V ,∇)). Finally, the Deligne-
Malgrange filtration of V induces that of its submodules.

We deduce, as above, the equivalence µL-stability of (V , •V DM,∇) ⇐⇒ simplicity
of (V ,∇) (see [Moc11a, § 2.7.2.2]) We also have:

Proposition 4.5 ([Moc11a, Cor. 14.3.4]). — One has par- degL ch2(•V DM) = 0.

4.3. Construction of an adapted harmonic metric

We assume that (V ,∇) is simple and admits a good formal structure alongD. We try
to construct a harmonic metric adapted to the parabolic structure of Deligne-Malgrange.

The rank-1 case. — It is instructive to start by considering the case of rank 1 bundles.
We first notice that, in rank 1, the pseudocurvature G(∇, h) (cf. (1.1)) is equal to twice
the curvature of h (see [Moc09b, Lem. 2.31]). So we have to construct a metric with
zero curvature adapted to a parabolic filtration, itself determined by the data of a ∈ RI.
We construct a singular metric h0 on aV by first imposing that, in any local situation,
a local basis e of aV has norm ‖e‖|h0 = |z|−a · ‖e‖hloc , where hloc is a local C∞ metric
on aV , then using a partition of the unity to glue. The curvature R(h0) is the sum of a
closed C∞ form R′(h0) of type (1, 1) on X and a closed current of type (1, 1) supported
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on D, and its class is c1(aV ). The parabolic correction is made so that the class of
R′(h0) is equal to c1(•V , •V ), which we have seen above is zero. Hodge theory then
implies that R′(h0) = ∂∂g for some function g of class C∞, and the metric h = e−gh0

is still adapted to aV and has zero curvature.

The case of curves. — In the global situation, let X be a smooth algebraic curve and
(V ,∇) a meromorphic bundle with connection on (X,D). The Deligne-Malgrange
filtration is classically defined in this case (see [Mal96]) and the goodness condition is
trivially satisfied. Let us assume (V ,∇) is simple. It follows essentially from Simpson’s
work (see [Sab99]) that there exists a harmonic metric h for (V|Xo ,∇) adapted to the
Deligne-Malgrange filtration.

In [BB04] Biquard and Boalch extend this result to a more general parabolic situation,
and specify it in a Hitchin-Kobayashi correspondence between flat bundles and Higgs
bundles.

In [Moc11a, § 13.4], Mochizuki gives another proof of this result, in the spirit of that
of [Sim90], and he specifies a uniqueness property of the harmonic metric.

A Metha-Ramanathan type theorem. — This reduction result to general curves when
dimX > 2 is important in several places in the following proof. Simpson’s argument
[Sim92] has already been generalized by Mochizuki in [Moc06] to the case of regular
singularities, and the proof is extended to the case of irregular singularities:

Proposition 4.6 ([Moc11a, Cor. 13.2.3]). — In the global situation, let (V ,∇) be a
flat meromorphic bundle with poles along D and L be an ample line bundle on X. Then
(V ,∇) is simple if and only if its restriction to any general enough curve which is a
complete intersection of sections of L⊗mν , for a sequence mν → +∞, is simple.

Constructing an adapted harmonic metric. — Let (V ,∇) be a flat meromorphic bundle
on (X,D). Suppose that (V ,∇) admits a good formal structure along D, and thus gives
rise to a flat parabolic meromorphic bundle (V , •V DM,∇). Let us also assume that
(V ,∇) is simple, so that (V , •V DM,∇) is µL-stable, with zero characteristic numbers.
Moreover, as indicated above, the first parabolic Chern class is zero. We can define a
flat parabolic meromorphic bundle of rank 1, namely the determinant det(•V DM,∇),
which also has zero par-c1 and which, according to what we have seen above, admits a
harmonic metric hdet.

Theorem 4.7 ([Moc07, Th. 25.28], [Moc09b, Th. 5.16], [Moc11a, Th. 16.1.1])
Under these conditions, there exists a unique harmonic metric adapted to

(V , •V DM,∇) normalized by det(h) = hdet. Moreover this metric makes the asso-
ciated harmonic Higgs bundle (E, θ, h) a good wild Higgs bundle.

Let us first consider the last property, which will be useful to show uniqueness, and
ultimately existence in dimension > 3. This is a more general result.
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Proposition 4.8 (Adaptation implies good wildness, [Moc11a, Prop. 13.5.2])
Let (V ,∇) be a flat meromorphic bundle on (X,D) admitting a good formal structure

along D. Let us also assume (V ,∇)|Xo equipped with a harmonic metric h adapted to
•V DM. Then the associated harmonic Higgs bundle (E, θ, h) is good wild.

Uniqueness in 4.7. — Let us take two such metrics h1 and h2. In restriction to a general
curve C as in 4.6, (V ,∇) is simple and wild (automatically good in dimension 1).
Anticipating the next section (Theorems 5.2 and 5.3), the estimate of Theorem 5.2(ii)
for (•V DM, h) is restricted to the curve C, which allows us to see that the restrictions of
h1, h2 to Co are adapted to (•V DM)|C . The uniqueness seen above in the case of curves
shows that h1|Co = h2|Co . Since we can pass such a general curve through every point
of Xo, we deduce uniqueness.

Existence in 4.7. — The technique was developed by Mochizuki in the moderate case
in [Moc07, Moc09b] and is adapted to the good wild case using the results already
obtained and those in 5.2 and 5.3 below. Let us summarize it very quickly.

On the one hand Mochizuki extends results of Donaldson and Simpson (see [Sim88]),
and on the other hand he starts with the case of surfaces. In this case, he constructs
a family, parametrized by ε > 0, of perturbations of the parabolic structure to remove
the possible nilpotent part of the parabolic gradings of the residues of ∇̂reg

a along the
components of D. Using a generalization of the results of Donaldson and Simpson, and
starting from a suitable metric on the different flat parabolic graded bundles on the
components of Di, he obtains for each ε a harmonic metric (3) adapted to the perturbed
parabolic filtration. He then shows the convergence of these metrics for ε → 0, in a
suitable sense, to a harmonic metric (4) adapted to the parabolic filtration (•V DM).

The case of dimension > 3 can be treated thanks to the uniqueness argument: the
metric defined on each rather general surface, thanks to 4.6, is indeed the restriction of
a metric existing on Xo, and it satisfies the required properties.

5. EXTENSION OF WILD HARMONIC BUNDLES

5.1. The problems of extension

We place ourselves in the local situation. Let (E, θ, h) be a good wild harmonic Higgs
bundle on Xo. In particular, we try to solve the following problems:

(a) extend the bundle E into a meromorphic bundle E (i.e., a OX(∗D)-locally free
module of finite rank) on X,

(b) show that θ extends meromorphically to the extension E (i.e., the coefficients
of θ in a local basis of E are meromorphic),

3. in the first sense of the footnote 5.
4. in the sense “pluri-harmonic” of the footnote 5.
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(c) for each λ, also extend the flat bundles (V λ,∇) into flat meromorphic bundles
(V λ,∇).

(d) perform this last extension holomorphically with respect to λ.

We explain in this section how Mochizuki proceeds in the wild and good case
[Moc11a], after having solved these questions in the moderate case [Moc07].

Insofar as the local extension problem is solved canonically using the metric (see
below), it leads to results applicable in the global situation.

5.2. Acceptable Hermitian holomorphic bundles

Let us consider the local situation. Let (E, h) be a Hermitian holomorphic bundle
on Xo. The condition of acceptability goes back to the paper of Cornalba and Griffiths
[CG75], and was used in this framework by Simpson [Sim88, Sim90]:

Definition 5.1. — The Hermitian bundle (E, h) is acceptable if the norm of the
curvature of h, computed with respect to h itself (on the bundle of endomorphisms) and
to the Poincaré metric on U rD, is bounded.

Mochizuki refines the results on acceptable bundles in the following way, with the
notation used in Definition 4.4:

Theorem 5.2 ([Moc07] and [Moc11a, 21.3.1–3])

(i) If (E, h) is acceptable, then every aẼ is OX-locally free and (aẼ) makes ∞Ẽ

a parabolic meromorphic bundle (∞Ẽ, •Ẽ).

(ii) Moreover, if e is a local basis of ∞Ẽ adapted to the decomposition given by
Proposition 4.1 and e′ the associated normalized basis (see Definition 4.2), the
eigenvalues eta(z) of the matrix h(e′, e′) of the metric in this basis satisfy the
inequalities

C
(∑̀
i=1

L(zi)
)−N

6 η(z) 6 C ′
(∑̀
i=1

L(zi)
)N

for C,C ′, N positive suitable, posing L(z) = |log |z|| (|z| < 1).

(iii) Finally, the bundle (End(∞Ẽ), h) is also acceptable, and 0End(∞Ẽ) is the
sheaf of endomorphisms of ∞Ẽ which preserve the filtration aẼ and whose re-
striction to each component Di preserves the natural filtration of aẼ|Di.

5.3. Acceptability of good wild harmonic bundles

Let us stay in a local setting as above. Let (E, θ, h) be a harmonic Higgs bundle onXo.
The curvature of the Chern connection is calculated, because of the harmonicity, by
the formula R(h, ∂E) = −[θ, θ†]. More generally, for any λ ∈ C, R(h, ∂E + λθ†) =

−(1 + |λ|2)[θ, θ†]. When (E, θ, h) is good wild, Mochizuki shows the acceptability of
(E, h), which therefore entails the acceptability of all (V λ, h). More precisely, he gives
a geometric interpretation of this property, which we now describe, generalizing the one
given by Simpson [Sim90] in dimension 1 and in the moderate situation.
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The decomposition (3.1 ∗∗) can be refined: (E, θ) '
⊕

(a,α)(E(a,α), θ(a,α)), using
(3.1 ∗). This decomposition depends only on the Higgs field, and we will analyze it
with respect to the metric h. We will say that E(a,α) is g(a,α),(b,β)-asymptotically h-
orthogonal to E(b,β) if the norm of the projection of E(b,β) onto E(a,α) parallelly to
E⊥h(a,α) and that of E(a,α) on E(b,β) parallelly to E⊥h(b,β) are locally bounded by a function
g(a,α),(b,β)(z).

In the following, we will take g(a,α),(b,β)(z) = exp(−ε|zord(a−b)|)
∏

j|αi 6=βi |zi|
ε (ε > 0)

The condition (Good) implies indeed that for all a− 6= b, a − b = z−mc(z) with c

holomorphic and c(0) 6= 0, for a certain multi-index m ∈ Z` rN`, which we denote by
ord(a− b). We thus see that if a 6= b, the function gε,(a,α),(b,β) is exponentially decaying
near the origin, while if a = b, we have only a moderate decay.

Theorem 5.3 ([Moc07, Chap. 8] and [Moc11a, Chap. 7]). — Let (E, θ, h) be a good wild
harmonic Higgs bundle. Then (E, h) is acceptable, as is any (V λ, h), and (EndV λ, h).
More precisely, for all (a,α), (b,β),

(i) E(a,α) is gε,(a,α),(b,β)-asymptotically h-orthogonal to E(b,β) for epsilon > 0 small
enough;

(ii) the norm of the component [θ, θ†](a,α),(b,β) relative to h and to the Poincaré
metric is O(gε,(a,α),(b,β)).

Remark 5.4. — This type of estimation goes back to Simpson’s work [Sim90, § 2] and
is for this reason named “Simpson’s main estimate” by Mochizuki. It is remarkable
that the presence of non-zero polar parts clearly improves the estimates of asymptotic
orthogonality compared to the moderate case, since they are exponentially small. Such
a phenomenon had already been observed in dimension 1 by Biquard and Boalch [BB04,
Lem. 4.6]. Nevertheless, let us not be too quick to rejoice...

5.4. Extension with λ fixed

Let us always assume (E, θ, h) harmonic and good wild in the local situation of
the § 3.1. The general results on acceptable Hermitian bundles (Theorem 5.2) and the
acceptability theorem for good wild harmonic bundles (Theorem 5.3) allow us to answer
the questions (a) and (b) at the beginning of this section. More precisely, for each λ,
we obtain a parabolic meromorphic bundle on X, denoted (PE λ,P•E λ).

Theorem 5.5 ([Moc07, Cor. 8.89], [Moc11a, Th. 7.4.5]). — For any λ, the λ-connec-
tion ∇λ is meromorphic on PaE λ for any a ∈ R` (and logarithmic in the moderate
case), and makes it a good lattice, which is unramified if θ is.

The proof of the moderate case can be adapted and extended to the wild case, thanks
in particular to the asymptotic orthogonality seen above. Suppose further that (E, θ, h)

is wild without ramification and good. The decomposition (3.1 ∗∗) involves a finite set
Irr(θ) of polar parts. Mochizuki furthermore obtains:
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(5.5 ∗) For any λ 6= 0, the set Irr(∇λ) parametrizing the decomposition (3.3 ∗) for
(PE λ,∇λ) is equal to (1 + |λ|2) Irr(θ).

This behavior completes the behavior of the eigenvalues of the residue of (∇̂λ)reg
(1+|λ|2)a,

which is governed by the function e (“eigenvalue”) introduced in (1.2 ∗), as shown by
Simpson in dimension 1 and Mochizuki in any dimension, in the moderate case. The
function p (“parabolic”) governs the behavior with respect to λ of the parabolic struc-
ture, which we have not detailed here. The bad news, anticipated in Example 1.2, is
that, contrary to e, the behavior of Irr(∇λ) is not holomorphic in λ.

5.5. Extension when λ varies

In the moderate case, the passage from fixed λ to variable λ does not cause any
important complication. One just has to be careful about the local uniformity with
respect to λ of the asymptotic estimates. In particular, in the estimate of Theorem
5.2(ii), one replaces the

(∑
L(zi)

)±N by
∏
|zi|∓ε. So I will not insist on this point,

which is treated in detail in [Moc07].
On the other hand, in the wild case, the behavior of Example 1.2 seen at the end

of Section 1 is not at all trivial, and requires the setting up of a faithful description,
in the good wild multivariable case, of the meromorphic bundles equipped with an λ-
integrable connection in terms of the associated formal object and a Stokes structure.
This is done in Chapters 2 to 4, and 20 (Appendix) of [Moc11a], and represents a major
contribution to the theory of holonomic D-modules, independently of the other points
considered here. The question which is important for us is then treated in Chapters 9
to 11. Since the whole thing takes more than 200 pages, we will not go into details.

Let us consider the simplified situation, with λ = 1 fixed, of a meromorphic bundle
(V ,∇) with connection on a disk ∆ of coordinate z, with a unique pole at z = 0. The
Levelt-Turrittin theorem gives, after a suitable ramification z′ 7→ z = z′q, a decomposi-
tion of the formalized bundle (V ,∇) at 0. Let us assume for simplicity of explanation
that q = 1 (unramified case). Then we have a decomposition (3.3 ∗).

Proposition 5.6. — Let t be a positive real number. There exists, in a canonical and
functorial way, a meromorphic bundle with connection (Vt,∇t) which has the formal
decomposition

(V̂t, ∇̂t) '
⊕
a

(V̂a, ∇̂reg
a + t · da⊗ IdV̂a

).

In particular, for t = 1 we find (V ,∇), and if t = |τ | with τ ∈ C∗, then the family
(Vt,∇t) is isomonodromic with respect to τ .

The proof of the proposition relies on the irregular Riemann-Hilbert correspondence,
as explained for example in [Del07a] (see also [BV89], [Mal91, Chap. IV]). The formal
structure of the supposed (Vt,∇t) being fixed by the decomposition, it suffices, in
order to show its existence, to enrich it by a Stokes structure (passing from a I-graded
local system to a I-filtered local system, in the language of loc. cit.). Once the formal
decomposition is fixed, the Stokes structure depends on the combinatorial structure on
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the unit circle of the sets defined by the inequalities arg(ta−tb) ∈ [−π/2, π/2] for a 6= b

intervening in the decomposition of (V̂ , ∇̂). These intervals being independent of t > 0,
the Stokes structure given by (V ,∇) for t = 1 extends uniquely for all t > 0.

In order to adapt this proof to the local situation considered above, it is appropriate
(a) to extend, for a meromorphically connected bundle on X with poles along D,
which is wild and good, the asymptotic theory of Sibuya-Majima; for this we need
the existence of a good lattice (see § 3.3) to argue by induction on the dimension;
(b) to extend to this case the irregular Riemann-Hilbert correspondence;
Mochizuki thus rediscovered the notion of local I-filtered system of [Del07a],
adapted it to any dimension by proving also the efficiency of this approach, from
the metric point of view in particular;
(c) to apply, for λ fixed, the analog of Proposition 5.6 to PE λ with the multiplier
1/(1 + |λ|2) to obtain a prolongation noted QE λ;
(d) to extend also the irregular Riemann-Hilbert correspondence to families of
connections parametrized by λ, like those induced by a λ-connection if λ 6= 0;
(e) to correct the non-holomorphic dependence of the exponential factors by an
argument analogous to that of Proposition 5.6 by suitably choosing the multiplier
(corresponding to t) so that, by fixing λ we find QE λ; characterizing the extension
QE thus obtained by a condition of moderate growth requires to modify the metric
h and make it depend on λ; [such a correction already appears in [Sza07] for
a Nahm transform calculation of a Higgs bundle, and in [Sab04] for a Fourier
transform calculation];
(f) to glue the previous construction, made for λ 6= 0, to PE 0 (in the Higgs case,
there is no Stokes structure and the decomposition (3.1 ∗∗) is already holomor-
phic).

We deduce:

Theorem 5.7 ([Moc11a, Th. 11.12]). — If (E, θ, h) is a good wild harmonic Higgs
bundle, there exists a unique OX×Cλ(∗(D × Cλ))-locally free QE -module with λ-mero-
morphic connection whose restriction to each λ is equal to (QE λ,∇λ).

Remark 5.8. — The fact that the Stokes phenomenon does not appear for some ques-
tions related to the wild case (it does not appear in [BB04] for example) comes from
the fact that this phenomenon does not exist for Higgs bundles and that, for the case
of flat meromorphic bundles, several points can be treated with an approximation to a
sufficiently large order of the formal structure.

6. D-MODULES WITH A WILD TWISTOR STRUCTURE

We saw in Step (1) of Section 2 that the extension of a variation of polarized twistor
structure on Xo is an object of a category of quadruplets (M ′,M ′′, C,S ), where S is
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the polarization. The QE construction of Theorem 5.7 is the main step to construct M ′,
and we will set M ′′ = M ′ and S = Id to have a simple model when the weight w is
zero. To go from QE to M ′, the analog of the intermediate extension j!∗ is missing. It
is also important to extend C obtained from the harmonic metric as in the dictionary
of Section 1.

An essential point to ensure, for this construction, and for the constructions that
will follow, is that the RX×Cλ-modules are strict, i.e., without OCλ-torsion. However,
this property will be implicitly considered in the following. For example, for the direct
image by a proper morphism, the preservation of this condition is analogous to the
degeneracy in E1 of the Hodge ⇒ de Rham spectral sequence.

6.1. Nearby cycles

In this paragraph we are interested in local properties for a RX×Cλ-holonomic module.
The construction of the functor of moderated nearby cycles ψmod

f with respect to a
holomorphic function f : X → C for a holonomic DX-module M relies on the existence
theorem of a Bernstein-Sato polynomial, and is expressed as the grading with respect to
the Kashiwara-Malgrange filtration ofM . Then ψmod

f M is a holonomic DX-module with
a semisimple endomorphism and a nilpotent endomorphism N which commute. For a
holonomic RX-module M , such a Bernstein-Sato polynomial does not necessarily exist,
but one can define the subcategory of RX-modules which are moderately specializable
along any germ of holomorphic function on X by imposing the existence of a Bernstein-
Sato type functional equation. For M specializable, ψmod

f M is defined, supported in
{f = 0} × Cλ and equipped with two endomorphisms as above.

For holonomic DX-modules with irregular singularities, this functor ψmod
f may

be of little use. For example, in the situation of Example 1.2, for any holomor-
phic function f(z) such that f(0) = 0, the functor ψmod

f applied to the D∆-module
D∆/D∆ · (z2∂z + 1) gives 0 as a result. In [Del07b], Deligne defined from ψmod

f a
functor which we note ψmod

f , and which allows to avoid this trivial behavior: we have
ψDel
f (M ,∇) =

⊕
a ψ

mod
f (M ,∇ + da), where a runs in the set of polar parts of the

variable z1/q and q is any integer > 1. We can then define the subcategory of RX×Cλ-
Deligne-specializable modules along any germ of holomorphic function on X, and
for M which is Deligne-specializable, ψDel

f M is supported in {f = 0}×Cλ and has two
endomorphisms as above. In this framework, the “monodromic filtration” M•ψ

Del
f M

associated to the nilpotent endomorphism N is well-defined ([Del80, Prop. 1.6.1]), and
we will consider below the functors grM

` ψ
Del
f . These functors extend in a natural way

to pairings C.
Finally, the property of decomposability according to the support, introduced by

Saito, will also be important. The strict holonomic M -RX×Cλ-modules that we consider
have as support an analytic (or algebraic) closed subset Z × Cλ of X × Cλ. In the
neighborhood of any point x of Z, there are submodules Mi supported in a germ of
an irreducible closed analytic subset Zi of Z in x. The condition of S-decomposability
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consists in requiring a local decomposability M =
⊕

i Mi at any point of Z. If we have
a pairing C, we also impose the diagonality of C with respect to this decomposition.

6.2. The category of holonomic D-modules with a polarizable wild twistor
structure

This category is defined (see [Sab09]) following Saito’s procedure for polarizable
Hodge modules, by induction on the dimension of the support.

Definition 6.1. — The category MT
(wild)
6d (X,w) of holonomic D-modules with pure

wild twistor structure of weight w ∈ Z is the full subcategory of the category of triples
T = (M ′,M ′′, C) whose objects satisfy the following properties:

(HSD) T is holonomic, S-decomposable and has a support of dimension 6 d in X.

(MT
(wild)
>0 ) For any open U ⊂ X and any holomorphic function f : U → C, T is

Deligne-specializable along {f = 0} and, for any integer ` > 0, the triple grM
` ΨDel

f T is
an object of MT

(wild)
6d−1(X,w + `).

(MT0) for any xo, the S-component (M ′
xo},M

′′
xo}, Cxo}) is a Dirac mass in xo carrying

a pure twistor structure of weight w.

We can also define polarizable objects by analogous constraints on the polarization S .
We indicated in Section 2(4) that Theorem 0.1 applies to these polarizable objects.

We refer to [Moc11a, Chap. 18] for the proof, which is inspired by Saito’s proof for
polarizable Hodge modules.

6.3. End of the proof of the hard Lefschetz theorem

Let Zo be an irreducible smooth quasi-projective variety. We have seen (Section 1)
that a variation of pure polarizable twistor structure of weight 0 on Zo corresponds
to a harmonic Higgs bundle. We will say that this variation is wild if there exists a
projective compactification Z ′ of Zo such that Z ′ r Zo is a normal crossing divisor
whose components are all smooth and the harmonic Higgs bundle is good wild along
this divisor. Let VTP(wild)(Zo, 0) be the corresponding category.

Let on the other hand Z be any projective compactification of Zo contained in a
smooth projective variety X and MTP(wild)(Z,Zo, 0) be the category of holonomic DX-
modules with pure wild twistor structure of weight 0 and polarizable, smooth on Zo

and with no supported component in a strict closed subset of Z.

Theorem 6.2 ([Moc07, Th. 19.2], [Moc11a, Cor. 19.1.4]). — The restriction to Zo

defines a functor MTP(wild)(Z,Zo, 0) → VTP(wild)(Zo, 0). This functor is a category
equivalence.

Remark 6.3 (How to change weight). — The above objects have a Tate twist (k) for
any k ∈ 1

2
Z, analogous to complex Hodge structures. This twist goes from weight 0 to

weight −2k.
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This theorem answers the point (6) of Section 2. One of the difficult points is the es-
sential surjectivity of the functor. The construction of the RX×S-module QE , outcome
of Section 5, is the essential ingredient. The construction of the extension of the pair-
ing C, as well as the proof of the MTP(wild)-properties of the object T thus obtained,
in the case where Z is smooth, Z r Zo is a divisor with normal crossings and the vari-
ation is good wild along Z r Zo, are explained in [Moc11a, Chap. 12] (and in [Moc07,
Chap. 18] for the moderate case). Finally, the general case is treated in Chapter 19 of
loc. cit., using, as Saito did in [Sai88], a relative version of Theorem 0.1 to go from a
good compactification of Zo to a less good one.

7. WILD HODGE THEORY

Variations of complex Hodge structure and integrable variations of twistor structure
The preceding theory provides few new numerical invariants for simple holonomic

D-modules, in contrast to classical Hodge theory which provides the Hodge num-
bers hp,q. It is known ([Sim97]) that the polarizable variations of twistor structure
of weight w which arise from a polarizable variation of Hodge structure of weight w
are those which are equipped with a natural C∗-action (on the Cλ-factor), an action
which recovers the Hodge grading. We can also characterize them as those admitting
an infinitesimal action of C∗, when the base Xo is quasi-projective, if we impose the
moderate condition at infinity (Theorem 7.2 below).

Definition 7.1. — A variation of twistor structure (H ′,H ′′, C) (see Section 1) is
integrable if the λ-connections on H ′ and H ′′ come from a flat (absolute) connection
with a pole of Poincaré rank equal to 1 along λ = 0, and if C is compatible (in a natural
sense) to these connections.

In other words, there exists ∇ : H ′ → 1
λ
Ω1
X×Cλ(log{λ= 0}) ⊗H ′ (ditto for H ′′),

such that ∇2 = 0, that the component on 1
λ
Ω1
X×Cλ/Cλ is the λ-connection, and finally

λ
∂

∂λ
C(m′, σ∗m′′) = C(λ∇∂λm

′, σ∗m′′)− C(m′, σ∗λ∇∂λm
′′).

Theorem 7.2 (see [HS10, Th. 6.2]). — Integrable variations of polarized twistor struc-
ture of weight w on a Zariski open Xo of X (projective smooth) which are moder-
ate at infinity correspond bijectively to variations of polarized complex Hodge structure
equipped with a self-adjoint semisimple automorphism for h.

More generally, one can then consider the integrable and wild variations of polar-
ized pure twistor structure on a quasi-projective variety as irregular analogues of the
variations of polarized complex Hodge structure.

Hertling observed that a new invariant appears in this framework, already considered
by the physicists Cecotti and Vafa [CV91, CFIV92], called “new super-symmetric index”.
A pure polarized twistor structure of weight 0 corresponds to a complex vector space
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with a positive definite Hermitian form. It is integrable if it has two endomorphisms U
and Q, with Q self-adjoint with respect to the Hermitian form. The vector space
is decomposed according to the eigenvalues p ∈ R of Q, and the components have
dimension hp,−p. For a pure polarized complex Hodge structure of weight 0, this is
nothing other than the Hodge decomposition and the Hodge numbers, with p ∈ Z in
this case, and we also have U = 0.

In a variation parametrized by x ∈ X, the exponent p can vary with x in a real
analytic way, while it is constant (integer) for variations of Hodge structure. Also,
grouping the eigenspaces of Q according to the p having the same integral part, in
order to have a Hodge decomposition in the usual sense, can cause dimension jumps
according to the values of x.

The behavior of this index at infinity of such a variation (moderate or wild) is analyzed
in [Sab10] in dimension 1 and in [Moc11b] in any dimension.

Real and rational structures. — Hertling [Her03] also considered such variations with
a real structure (structure he calls TERP). The previous theorem is in fact shown with
real structure.

More recently, Katzarkov, Kontsevich and Pantev [KKP08] have proposed the notion
of rational structure (see also [Sab11]), and in this framework the name of “variation of
noncommutative Hodge structure”.

Wild mixed Hodge theory. — In a similar way to the theory of mixed Hodge mod-
ules of M. Saito [Sai90], T. Mochizuki [Moc15] has developed the theory of holonomic
D-modules with wild, possibly integrable, mixed twistor structure. In particular, he
explains a duality functor, which was not defined in the previous framework, and which
allows to define the notion of real structure. Only the rational structure is still missing,
but the arguments of [Moc14] should be able to be applied to this framework too.

Application to quantum cohomology. — The results of Iritani on mirror symmetry for
toric Fano varieties [Iri09a, Iri09b] (see also [RS15]), together with the results on the
Fourier transformation of [Sab08], allow to show that the quantum D-module of a toric
Fano variety underlies a variation of noncommutative Hodge structure.
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