SOME PROPERTIES AND APPLICATIONS OF
BRIESKORN LATTICES

by

Claude Sabbah

Abstract. After reviewing the main properties of the Brieskorn lattice in the frame-
work of tame regular functions on smooth affine complex varieties, we prove a con-
jecture of Katzarkov-Kontsevich-Pantev in the toric case.
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1. Introduction

The Brieskorn lattice, introduced by Brieskorn in [Bri70] in order to provide an
algebraic computation of the Milnor monodromy of a germ of complex hypersurface
with an isolated singularity, has also proved central in the Hodge theory for vanishing
cycles of such a singularity, as emphasized by Pham [Pha83]. Hodge theory
for vanishing cycles, as developed by Steenbrink [SS85]| and Varchenko
[Var82|, makes it an analogue of the Hodge filtration in this context, and fundamental
results have been obtained by M. Saito [Sai89] in order to characterize it among other
lattices in the Gauss-Manin system of an isolated singularity of complex hypersurface.
As such, it leads to the definition of a period mapping, as introduced and studied with
much detail by K. Saito for some singularities [Sai83]. It is also a basic constituent
of the period mapping restricted to the p-constant stratum [Sai91], where a natural

Torelli problem occurs (see [Sai91], [Her99]).
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2 C. SABBAH

For a holomorphic germ f : (C**1,0) — (C,0) with an isolated singularity, denot-
ing by t the coordinate on the target space C, the space

(1.1) L o/df AdQRh

is naturally endowed with a C{t}-module structure (where ¢ acts as the multiplication
by f), and the Brieskorn lattice is the C{t}-module (see [Bri70l p.125])

(1.2) HY, = (Qgﬁm Jdf A dﬂg;jlyo) / C{t}-torsion.

Brieskorn shows that is free of finite rank equal to the Milnor number p(f,0), and
Sebastiani [Seb70| shows the torsion freeness of 7 which can thus also serve as
an expression for /H}L,o- It is also endowed with a meromorphic connection V having
a pole of order at most two at t = 0, and the C({¢})-vector space with connection
generated by "H f.0 is isomorphic to the Gauss-Manin connection, which has a regular
singularity there. "H7 is thus a C{t}-lattice of this C({t})-vector space. While the
action of Vp,, simply written as 0;, introduces a pole, there is a well-defined action of
its inverse ;' that makes ’ 'H} ; amodule over the ring of C{{0,” 1} of 1-Gevrey series
(i-e., formal power series »_, -, a,0; " such that the series ), a,u"/n! converges).
It happens to be also free of rank p over this ring ([Mal74), Mal75]). The relation
between the rings C{t} and C{{0; '} is called microlocalization. In the global case
below, we will use instead the Laplace transformation. The mathematical richness of
this object leads to various generalizations.

For non-isolated hypersurface singularities, the objects with definition as in
(but in various degrees) have been introduced by Hamm in his Habilitationsschrift
(see [Ham'75, §11.5]), who proved that they are C{¢}-free of finite rank, but do not
coincide with in general. A natural C{9; '}}-structure still exists on (L.I]), and
Barlet and Saito [BS07] have shown that the C{t}-torsion and the C{{9; ' }}-torsion
coincide, so that "H J’f,o remains C{{0; ' }}-free of finite rank.

The Brieskorn lattice has also a global variant. On the one hand, the Brieskorn
lattice for tame regular functions on smooth affine complex varieties (see Section [2)) is
a direct analogue of the case of an isolated singularity, but the double pole of the action
of t with respect to the variable 0; ! cannot in general be reduced to a simple one by a
meromorphic (even formal) gauge transformation i.e., the Gauss-Manin system with
respect to the variable 0, ! has in general an irregular singularity. The properties of
the Brieskorn module for regular functions on affine manifolds which are not tame
have been considered by Dimca and M. Saito [DS01].

On the other hand, given a projective morphism f : X — Al on a smooth quasi-
projective variety X, the Brieskorn modules, defined as the hypercohomology C[d; ']
modules of the twisted de Rham complex (Q%[0; '],d — 9; *df), have been shown
to be C[9; !]-free (Barannikov-Kontsevich, see [Sab99b]), and a similar result holds
when one replaces Q% with Q% (log D) for some divisor with normal crossings. More
generally, one can adapt the definition of the Brieskorn modules for the twisted
de Rham complex attached to a mixed Hodge module, and the C[d; ']-freeness still
holds, so that they can be called Brieskorn lattices (see loc. cit.). This enables one
to use the push-forward operation by the map f and reduce the study to that of
Brieskorn lattices attached to mixed Hodge modules on the affine line, as for example
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the mixed Hodge modules that the Gauss-Manin systems of f underlie. In such a way,
the Brieskorn lattice has a purely Hodge-theoretic definition, which does not refer to
the underlying geometry, and can thus be attached, for example, to any polarizable
variation of Hodge structure on a punctured affine line (see [Sab08| §1.d]).

The Brieskorn lattice of tame functions is of particular interest and has been con-
sidered in [Sab06] for example. The Brieskorn lattice for families of such functions,
considered in [DS03|, has been investigated with much care for families of Laurent
polynomials in relation with mirror symmetry by Reichelt and Reichelt-Sevenheck
[RS15), Reil4, Reil5), RS17].

Lastly, in the global setting as above, the pole of order two of the action of ¢ with
respect to the variable 0, ! produces in general a truly irregular singularity, and the
Brieskorn lattice is an essential tool to produce the irreqular Hodge filtration attached
to such a singularity (see [SY15, [Sab17]).

The contents of this article is as follows. In Section [2| we review known results
on the Brieskorn lattice for a tame function. We show in Section [l how these results
enables one to obtain a simple proof of a conjecture of Katzarkov-Kontsevich-Pantev
in the toric case.

Acknowledgements. 1 thank the referee for his/her careful reading of the manuscript
and interesting suggestions and Claus Hertling for pointing out Lemma [2.4]

2. The Brieskorn lattice of a tame function

In this section, we review the main properties of the Brieskorn lattice attached to
a tame function on an affine manifold, following [Sab99al, [Sab06, [DS03].

Let U be a smooth complex affine variety of dimension n and let f € &(U) be
a regular function on U. There are various notions of tameness for such a function,
which are not known to be equivalent, but for what follows they have the same
consequences. One of the definitions, given by Katz in [Kat90, Th.14.13.3], is that
the cone of fiCy — Rf.Cy should have constant cohomology on A'. We will use the
notion of a weakly tame function, as defined in [NS99], that is, either cohomologically
tame or M-tame.

We assume that f is weakly tame. Let 6 be a new variable. The Brieskorn lattice
attached to f is the C[f]-module

Gy = Q”(U)[Q]/(Hd —dfHQ"HU)e).
An expression like (1.1]) also exists if U is the affine space A"*1, but the above one is
valid for any smooth affine variety U. The variable 6 is for 9; *. We already notice
that
(2.1) Go/0Gy ~ Q™ (U)/df A1)
has dimension equal to the sum p = p(f) of the Milnor numbers of f at all its critical
points in U. The following properties are known in this setting.

(1) The algebraic Gauss-Manin systems % f, O}, are isomorphic to powers of the
C[t](0¢)-module (C[t],d:), except for k = 0, so their localized Laplace transforms
vanish except that for k = 0. If we regard the Laplace transform of J#°f, Oy as a
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C[7]{0,)-module, we know that it has finite type as such, and its localized Laplace
transform G, that is, the C[r, 7~ !]-module obtained by localization, is free of rank y.
We have
G=Q"(U)[r,7 /(- 7df)Q" 1 (U)[r, 7).
(2) Setting § = 771, we write
G=Q"(U)[6,07"]/(6d —df)Q " H(U)[0,671],

and there is therefore a natural morphism Gy — G. This morphism is injective, so
that Gy is a free C[¢]-module of rank p such that C[f, 07| ®cpg Go = G, i.e., Gg is a
C[f]-lattice of G, on which the restriction of the Gauss-Manin connection has a pole
of order at most two. Moreover, the action of 029 on the class [w] of w € Q*(U)
in G is given by
0% 0p[w] = [fwl,

and the action of §2dj on a polynomial )7, [wi0%] is obtained by the usual formulas.

(3) Let V,G be the (increasing) V-filtration of G with respect to the function 7
(recall that G has a regular singularity at 7 = 0, while that at infinity is usually
irregular). It is a filtration by free C[r]-modules of rank p indexed by Q. The jumping
indices of the induced filtration V,(Gy/0Gy), together with their multiplicities (the
dimension of gr‘B/(Go/ 0Gy)) form the spectrum of f at co. The jumping indices are
contained in the interval [0, n]NQ and the spectrum is symmetric with respect to n/2.

(4) On the other hand, for a € [0,1) N Q, the vector space gr G is endowed with
the nilpotent endomorphism N induced by the action of — (70, + «) and with the
increasing filtration G, gr}, G naturally induced by the filtration G, = 07 PG, i.e.,

Gp ng G = (G, NVaG)/(Gp N VeoG),
where the intersections are taken in G. As a consequence, we have isomorphisms
(p€Z,ael0,1))
grg gV @ 0%) nger(GO/GGO).
(5) The C-vector space Hx1:=EP
« the filtration

FPHz = @ Guoip grx G resp. FPH; = Gp—p grg G,
a€(0,1)NQ

. and the weight filtration W, = M(N)[n — 1] (resp. M(N)[n]), i.e., the mon-
odromy filtration of N centered at n — 1 (resp. n),

@€(0,1)NQ ng G, resp. H; tzgr(‘)/ G, endowed with

is part of a mixed Hodge structure. In particular, N strictly shifts by one the filtration
G, grY G and acts on the graded space gr& gr” G as the degree-one morphism induced
by —70,;. We therefore have a commutative diagram, for any « € [0,1) and p € Z,
(see [Var81] and [SS85 §7] in the singularity case):
or _
gry gre G ———— gra,, (M (U)/df AQ"H(T))
(2.2) ™| 15
G oV P v 1
grp+1 gra G ﬁ gra+p+1(Qn(U)/df A an (U))7

by using the relation —79, = 00y.
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To see this, write the commutative diagram

9p
grd gry G ——— gri o6 G

00y — al 00y — (« +p)J \

G 1% 1% G 1% G
g1 8 G —o 8o, 817 G ——— gy, 815 G

and use that in the vertical morphisms, the constant part o or a + p induces the
morphism 0.
(6) Recall that a mixed Hodge structure (Hg, F* He, W, Hg) is said to be of Hodge-

Tate type if

(a) the filtration W, has only even jumping indices

(b) and Wo,Hc is opposite to F'*Hc.
The description of the mixed Hodge structure given in implies the following cri-
terion. We will set ¥ = n — 1 when considering H; and v = n when considering Hj.
We will then denote by H either H; or H;.

Corollary 2.3. The mized Hodge structure that the triple (H, F*H,W,H) underlies is
of Hodge-Tate type if and only if, for any integer k such that 0 < k < [v/2], the
(v — 2k)th power of N induces an isomorphism

N =2% et H = o0 | H.

Proof. We define the filtration W/H indexed by 2Z by the formula W), H = G,_;H,
so that G, H = Wé(y_k)H. If weset £ =v —2kfor 0 < k<v/2, wehave 0 < ¢ < v
and the isomorphism in the corollary is written

N H 5 ot H.
We can conclude that W/H = W, H if we know that N**! = 0, that is, ger H=0.

This is a consequence of the positivity of the spectrum [Sab06, Cor. 13.2], which says
that, if o € [0, 1), we have gr{ gr’¥ G =0 for k ¢ [0,v] NN, O

The following lemma was pointed out to me by Claus Hertling.

Lemma 2.4. A mized Hodge structure (Hg, F*Hc, W,Hg) is Hodge-Tate if and only
if we have, for all p € %Z,

dim grh, Hec = dim grg‘; Hy.

Proof. Indeed, one direction is clear. Conversely, if the equality of dimensions holds,
then holds since F'*H has only integral jumps; moreover, up to a Tate twist, one
can assume that WooH = 0, so gr&. H = 0 for k < 0. It is enough to prove that
gri.grd) H = 0 for all p # ¢. We prove this by induction on ¢. If £ = 0, the result
follows from the property that FPH = 0 for p < 0 and Hodge symmetry. Assume
the result up to £. For j < ¢ we thus have dim glﬂJ grgg H = dim grg‘]/- H = dim grjl'J H
(the latter equality by the assumption), and therefore gri gr% H=0fori#j. In
particular, taking i = ¢ + 1, we have grh, grg(/eﬂ) H = 0 for all p < ¢. By Hodge
symmetry, we obtain grf. grgl(/KH) H =0 for all p # £ + 1, as wanted. O
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(7) We now consider the case where U = (C*)", endowed with coordinates z =
(1,...,2,). Let f € Clz,27!] be a Laurent polynomial in n variables, with Newton
polyhedron A(f). We assume that f is nondegenerate with respect to its Newton
polyhedron and convenient (see [KouT76]). In particular, 0 belongs to the interior of
its Newton polyhedron. It is known that such a function is M-tame.

For any face o of dimension n—1 of the boundary OA(f), we denote by L, the linear
form with coefficients in Q such that L, = 1 on o. For g € Clz,z7!], we set deg, (g) =
maX,, L,(m), where the max is taken on the exponents of monomials 2™ appearing
in g, and deg ¢ (g) = max, deg,(g). We denote the volume form dz; /21 A---Adx, [z,
by w, giving rise to an identification C[z,z~!] — Q*(U) and Clz,21]/(0f) —
Go/0Gy (see [2.1)).

The Newton increasing filtration N,Q"(U) indexed by Q is defined by

NeQ*(U) = {gw € Q*(U) | degx(9) < B}

We have NgQ"(U) = 0 for § < 0 and NoQ"(U) = C-w. We can extend this filtration
to Q™(U)[0] by setting

N Q™(U)[0] := Ng Q™ (U) + ONg_1Q"(U) + - + 0" Ng_, Q" (U) + - - -

and then naturally induce this filtration on Gy, to obtain a filtration N,G and then
on Go/0Gy. We have

(2.5) N,Go = V;G N GO and N,(G0/9G0> = ‘/;(Go/GGo)

Corollary now reads, according to (2.2)) and by using the above identification
through multiplication by w:

Corollary 2.6. The mized Hodge structure that the triple (H, F*H,W,H) underlies is
of Hodge-Tate type if and only if, for any integer k such that 0 < k < [v/2] (v =n—-1,
resp. n), we have isomorphisms
N (o) T g Cle,z~/(0f)) ¥
8otk (Clz,271/(9f)) ———— grhyn-1-k(Clz.21]/(3f)) Va e (0,1),

~

n—2k
vesp. g (Clesa /@) L g (Clea ) 0F)).

~

3. On a conjecture of Katzarkov-Kontsevich-Pantev

In this section we use the algebraic Brieskorn lattice of a convenient nondegenerate
Laurent polynomial to solve the toric case of the part “ fP?7 = hP*9” of Conjecture 3.6 in
IKKP17] (the other equality “h?*? = i?:?” is obviously not true by simply considering
the case of the standard Laurent polynomial mirror to the projective space P™, see
also another counter-example in [LP18|). We refer to [LP18, Harl7, [Shal7| for
further discussion and positive results on this conjecture.

3.a. The Brieskorn lattice and the conjecture of Katzarkov-Kontsevich-
Pantev

Given a smooth quasi-projective variety U and a morphism f : U — Al, every
twisted de Rham cohomology HE.(U,d + df), i.e., the kth hypercohomology of
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the twisted de Rham complex (Qf;,d + df), is endowed with a decreasing filtration
F3 HER(U,d + df) indexed by Q (see [Yuld]). For a € [0,1), the filtration indexed
by Z defined by Iy, , = Fy,® can also be computed in terms of the Kontsevich com-
plex 3 (a) together with its stupid filtration (see [ESY17, Cor.1.4.5]). The irregular
Hodge numbers h29(f) are defined as

(3.1) hE(f) = dim grl @ HEEY(U,d + df).

u

It is well-known that dim HER(U,d + df) = dim H*(U, f=1(t)) for |t| > 0. This
space is endowed with a monodromy operator (around ¢ = oo), and we will consider
the case where this monodromy operator is unipotent. In such a case, the filtration
F{(quJﬁq(U, d+df) is known to jump at integers only, and in only a = 0 occurs.
We then simply denote this number by A?%(f), so that, in such a case,

hPA(f) == dimgrh,  HELY(U,d + df).

Let W, be the monodromy filtration on H*(U, f~1(¢)) centered at k. The conjecture
of [KKP17| that we consider is the possible equality (see [LP18), Har17, [Shal7])

(3.2) hPA(f) :dimgrgg HPTUU, f~(t)).

If moreover U is affine and f is weakly tame, so that H5LY(U,d + df) = 0 unless
p+q=n, [SY15, Cor.8.19] gives, using the notation of Section [2f(V)

dimgr,” ,(Go(f)/0Go(f)) = dimgri gry’ G if p+q=n,

P,q —
mE) {0 ifp+qg#n,

and this is the number denoted by 77 in [KKP17]. In such a case, we have H = H;
in the notation of Section [2|(5]).

The following criterion has been obtained, with a different approach of the irregular
Hodge filtration, by Y. Shamoto.

Proposition 3.3 ([Shal7]])). Assume U affine and f weakly tame with unipotent mon-
odromy operator at infinty. Then (3.2) holds true if and only if the mized Hodge
structure of Section on H = H; is of Hodge-Tate type.

Proof. According to Lemma [2.4] proving the result amounts to identifying the space
gré/ G endowed with its nilpotent operator N with the space H™(U, f~1(t)) endowed
with the nilpotent part of the (unipotent) monodromy (up to a nonzero constant).
Choosing an extension F' : X — P! of f as a projective morphism on a smooth
variety X such that X \ U is a divisor, and setting F = Rj.Cy (5 : U — X), we
identify the dimension of H*(U, f~1(t)) with that of the kth-hypercohomology on X
of the Beilinson extension ZrpF. Then the desired identification is given by [Sab97,
Cor.1.13]. O

(DThe definition of §, in [SY15] should read dim gr,‘y/ (Go(f)/uGo(f)).-
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3.b. The toric case of the conjecture of Katzarkov-Kontsevich-Pantev, first
part

As usual in toric geometry, we denote by M the lattice Z™ in C™ and by N its dual
lattice. We fix a reflexive simplicial polyhedron A C R ® M with vertices in M and
having 0 in its interior (it is then the unique integral point in its interior), see [Bat94l,
§4.1]. We denote by A" the dual polyhedron with vertices in N, which is also simplicial
reflexive and has 0 in its only interior point, and by ¥ C N the fan dual to A, which
is also the cone on A" with apex 0. We assume that X is the fan of nonsingular toric
variety X of dimension n, that is, each set of vertices of the same (n — 1)-dimensional
face of A" is a Z-basis of N. We know that

« X is Fano (|[Bat94), Th.4.1.9]),

. the Chow ring A*(X) ~ H?*(X,Z) is generated by the divisor classes D, cor-
responding to vertices v € V(A") of A", i.e., primitive elements on the rays of ¥
(see [Ful93, p.101]),

« we have ¢1(TX) = e1(K¥%) = ZveV(A*) D, in H?*(X,Z) (see [Ful93| p.109]),
which satisfies Hard Lefschetz on H?*(X,Q), by ampleness of K.

Let us fix coordinates = (z1,...,x,) such that Q[N] = Q[z,z~!]. We use the
notation of Section @ Due to the reflexivity of A", L, has coefficients in Z (it cor-
responds to a vertex of A). For g € C[z,z~!], the o-degree deg, (g) = max,, L,(m)
and the A'-degree deg x(9) = max, deg, (g) are thus nonnegative integers.

Proposition 3.4. The case “fP1 = hP1” of [KKP17, Conj. 3.6] holds true if f is the
Laurent polynomial

fl@)y= > 2" eQz,a7"].

eV (A"

The idea of the proof is to notice that the property for the second morphism in
Corollary to be an isomorphism is exactly the property that ¢; (T X) satisfies the
Hard Lefschetz property, and thus to identify its source and target as the cohomology
of X in suitable degree.

Lemma 3.5. For A as above, any Laurent polynomial
fa@)= Y a,a’ € Cla,a7Y], a=(avey) € (C)VA).
veV (A"
is convenient and non-degenerate in the sense of Kouchnirenko.

Proof. The Newton polyhedron of f, is equal to A", and 0 belongs to its interior. In
order to prove the non-degeneracy, we note that the vertices of any (n—1)-dimensional

face o of A" form a Z-basis. It follows that, in suitable toric coordinates y1, ..., yn,
the restriction fq|, can be written as y; + -+ + yn, and the non-degeneracy is then
obvious. ]

Proof of Proposition Note that degy (f) = 1, as well as deg y (2;0f/0x;) = 1.
The Jacobian ring Q[z, 27 !]/(df) is endowed with the Newton filtration N, induced
by the A'-degree deg -, and corresponds to N, (Go/0Gy) by multiplication by w. In
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the present setting, [BCS05, Th.1.1] identifies the graded ring A*(X)g with the
graded ring

g1l (Qlz, 27 ]/(0))-
By applying Hard Lefschetz to ¢;(TX), we deduce that, for every k € N such that
0 < k < [n/2], multiplication by the (n — 2k)th power of the N-class [f] of f induces
an isomorphism

A2 g (Qlr, 271/(06)) = grny (Ql, 2711/(0)).

By Corollary 2.6 for H = H;, we deduce the assertion of the proposition from Propo-
sition O

3.c. The toric case of the conjecture of Katzarkov-Kontsevich-Pantev, sec-
ond part

We now prove the main result of this note.

Theorem 3.6. The case “fP1 = hP1” of [KKP17l, Conj. 3.6] holds true for any Laurent
polynomial

fa@) = Y aw’ €Clra™], a=(aer) € (€))7,
veV (A"

Remark 3.7. The case where n = 3 was already proved differently by Y.Shamoto
[Shal7, §4.2].

Proof. Let us set H(fa) = Hi(fa) = gty G(fa), where G(f,) is the localized Laplace
transform of the Gauss-Manin system for f, as in Section [2(2). By Lemma
we can apply the results of Section [2| to f, for any a € ((C*)V(A*). We will prove
that, for fixed p, both terms dim grg_p H(fq) and dim gr) H(fq) in Lemm are
independent of a. Since they are equal if @ = (1,...,1), after Proposition they
are equal for any a € (C*)V(2") | as wanted.

(1) For the first term, we will use [NS99]. We have denoted there dim grf H(fa)
by vp(fa) and, since gry G = 0 for a ¢ Z, it is also equal to the number denoted
there by ¥, 1(fs). By the theorem in [NS99| and Lemma Yp—1(fa) depends
semi-continuously on a. On the other hand, according to [Kou76]|, dim H(f,) is inde-
pendent of @ and is computed only in terms of A". Since dim H(f,) = > Zp-1(fa)s
each term in this sum is also constant with respect to a.

(2) We will prove the local constancy of dim gri) H(fa) near any a, € (C*)VAT),
As noticed in [DS03| §4], we can apply the results of Section 2 of loc. cit. to f,, . We
fix a Stein open set B° adapted to f,, as in [DS03] §2a], and fix a neighbourhood X
of a,, so that it is also adapted to any f, for a in this neighbourhood. By construction,
all the critical points of f,, are contained in the interior of B¢ if X is chosen small
enough, and since u(fg) is constant, the same property holds for @ € X. By using
successively Theorem 2.9, Remark 2.11 and Proposition 1.20(1) in [DS03], we deduce
that, when a varies in X, the localized partial Laplace transformed Gauss-Manin
systems G(fq) form an Ox[r, 7~ !]-free module with integrable connection and regular
singularity along 7 = 0, which is compatible with base change with respect to X.
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As a consequence, the monodromy of each G(f,) around 7 = 0 is constant, and the
assertion follows. O

Remark 3.8 (suggested by the referee). If we relax the condition in Section that
the toric Fano variety X is nonsingular, then we have to consider the orbifold Chow
ring of X as in [BCS05|, or the Chen-Ruan orbifold cohomology of X. For the
cohomology of the untwisted sector (i.e., the usual cohomology), the Hard Lefschetz
theorem is still valid (see [Ste77]) and Proposition still holds, i.e., holds
for f. Moreover, Part of the proof of Theorem also extends to this setting.
However, the semicontinuity result of [NS99] used in Part of the proof is not
enough to imply the constancy (with respect to a) of v,(fq).

On the other hand, one can also consider the various h2:9(f) for a € (0,1)NQ and,
correspondingly, the twisted sectors of the orbifold X. In such a case, Hard Lefschetz
for f may already give trouble (see [Fer06]).
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