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Abstract: In this work we develop a theory for function spaces associated to certain
classes of globally defined I-Lagrangian manifolds. We hope that this theory will
be useful in studying phase space tunneling and related problems in semi-classical
analysis where complex trajectories are expected to play a role. The methods
involve iteration of Fourier integral operators with exponentially very small errors
and lead to integrals in high dimension.

Résumé: Dans ce travail nous développons une théorie pour des espaces de fonc-
tions, associés à des variétés I-lagrangiennes, définies globalement. Nous espérons
que cette théorie sera utile dans des problèmes d’effet tunnel dans l’espace des
phases et dans d’autres problèmes semblables en analyse semi-classique où on
s’attend à ce que les trajectoires complexes jouent un rôle. La méthode utilise
une itération d’opérateurs intégraux de Fourier avec des erreurs exponentiellement
très petites et mène à des intégrales en grande dimension.

0. Introduction.

The aim of these lectures is to present some new tools that the author hopes
will be useful in problems of phase space tunneling. In our opinion there are two
important problems present:

An analytic problem: Find the right spaces and corresponding operators to work
with.

A geometric problem: Understand the complex symplectic geometry sufficiently far
out in the complexified phase space.

We shall here describe some progress on the first of these two problems. This
should already be enough for some applications, such as a problem in linear elastic-
ity, good general progress on other tunneling problems would require a better un-
derstanding also of the geometrical problem. Meanwhile numerical computations
might be helpful both for the applications and for the geometric understanding.
(With F. Nier we have started to do such computations.) This text will unfortu-
nately not contain any applications. Instead we start by reviewing very briefly an
incomplete list of tunneling problems, some of which have been well understood and
some more genuinely of phase space nature, still to a large extent open. We will
not review the functional analytic aspects, and only mention briefly the essential
features.
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France and URA 169 CNRS
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1) Tunneling for the Schrödinger operator. There are many such problems, now
fairly well understood, ([HeS1,3], [Si1,2], [D]). One such problem concerns the semi-
classical Schrödinger operator P = −h2∆ + V (x), when for some real energy level,
the classically allowed region {x ∈ Rn;V (x) ≤ E} decomposes into two connected
components Uj , “potential wells” j = 1, 2, which can be exchanged by some isom-
etry. Then (under suitable further assumptions) the eigenvalues of P near E form
pairs where the members of such a pair are separated by a quantity ∼ h(..)e−S(E)/h,
where the tunneling parameter S(E) > 0 can be given a geometric interpretation
in terms of complex trajectories between the classically allowed regions. In stead of
just two potential wells U1, U2, we may have several or even infinitely many such
wells. The latter case appears for periodic potentials. In such a case the spectrum
is continuous and near the given energy level (again under suitable assumptions) it
is a union of intervals of exponentially small length (with the same type of asymp-
totics as the eigenvalue splitting above). See [O], [Si2], [C]. These results can be
obtained by fairly elementary methods, where exponential decay estimates (in ad-
dition to WKB-expansions) in the classically forbidden region {x;V (x) > E} form
an important ingredient.

2) Shape resonances. We consider the same operator as in 1), but now we assume
that the classically allowed region has two components, one neighborhood of infinity
and one bounded component (a potential well in an island). Among the suitable
additional assumptions, we then also impose some kind of analyticity near infinity.
Near the level E, we then get only continuous spectrum, but it is possible to define
scattering poles or resonances, which are exponentially close to the real axis, and
even to certain real eigenvalues associated to the well. If z is such a resonance, −=z
is physically interpreted as the inverse life time of the corresponding unstable state.
It turns out ([HeS4]) that this quantitiy has the same type of asymptotics as above,
where now S(E) is related to complex trajectories between the two components (the
well and the sea). Some of the analysis is the same as in 1), but in order to get the
full asymptotic result we had to develop some suitable analytic microlocal analysis
near the sea. With more elementary methods, people only got upper bounds on
−=z. (See the references in [HeS].) This is a border line case between ordinary
tunneling and more genuine phase space tunneling.

3) Magnetic Schrödinger operators. We now add a magnetic field to the operator
in 1) and consider, Q =

∑
(hDxj +Aj(x))

2 +V (x). The general weighted estimates
mentioned in 1) still work and give the same upper bounds on the splitting of
eigenvalues in the double-well case or on the band-length in the periodic case, but
in most cases it turns out that these estimates are no longer sharp. In fact, the
magnetic field has a tendency of decreasing the tunnel effect. Optimal results are
still possible in the analytic case when the field is small or in the C∞ case when
the field is very small in an h-dependent way. We are in presence of a genuine
phenomenon of phase space tunneling. See [HeS5,6] [K].

4) Linear elasticity. Let
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where λ, µ are the Lamé constants, that we may assume to be > 0. We consider
this operator in the exterior of a strictly convex obstacle in R3, with Neumann
boundary conditions of linear elasticity on the boundary. When analyzing the cor-
responding Helmholtz problem, the cotangent space naturally splits into an elliptic
region, and hyperbolic and partially hyperbolic regions. Moreover inside the elliptic
region, there is a hypersurface of degeneracy, responsible for the so called Rayleigh
waves. ([T]). Stefanov and Vodev [StV] have recently shown that there is an infi-
nite sequence of resonances λj (so that λ2

j are certain generalized eigenvalues of R)

with |=λj | ≤ CN |<λj |−N for every N . In the case when the boundary is analytic,
it is probably easy to show that |=λj | ≤ C1e

−|<λj |/C0 for some positive constants
C0, C1. It would then be a very interesting phase space tunneling problem to find
or estimate the infimum of the possible values C0. We are quite optimistic that
the theory below, after suitable extension to manifolds, will give such geometric
estimates.

5) Systems. They appear in some problems in mathematical physics, for instance
in connection with the adiabatic limit (for instance the Zener effect), the Born-
Oppenheimer approximation or various reductions for the periodic Schrödinger
equation. See Joye [J] Martinez [M1,2], Nakamura [N], Baklouti, [B]. As an ex-
ample the following one-dimensional operator appears in [B]:

S =

(
(hD)2 − (1 + x) weak interaction term

weak interaction term (hD)2 + x2

)

The real characteristics decompose into the real parabola ξ2−(1+x) = 0, and (0, 0),
the corresponding complex characteristics, ξ2−(1+x) = 0 and ξ2+x2 = 0 intersect
away from the real domain. The harmonic oscillator in the lower right corner of the
matrix wishes to give rise to real eigenvalues, but due to the interaction terms and
the fact that the operator in the upper left corner has continuous spectrum, these
eigenvalues become shape resonances. Following work of Martinez and Nakamura,
Baklouti managed in this particular case to get the asymptotics of the exponentially
small imaginary parts of these resonances. In general, we have here a phase space
tunneling problem.

6) −∆ + V on S2. When V is smooth, it is well-known since the works of Wein-
stein [W] and Colin de Verdière [Co] that the eigenvalues form clusters around the
eigenvalues of −∆, and that the further study of these eigenvalues can be reduced
to a spectral problem for (essentially) a semi-classical pseudodifferential operator
(from now on pseudor for short) in dimension 1. In cases when V is analytic, Grigis
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[G1], noticed that one may run into tunneling problems concerning exponentially
small splittings of pairs of eigenvalues, and he also solved such problems in some
regions. This is again a phase space tunneling problem.

7) Harper’s operator coshD + cosx and its generalizations. The detailed analysis
of the Cantor structure of Harper’s operator is largely based on the study of the
tunneling between different real components of the energy surface cos ξ+cosx = E.
Thanks to the special structure of this operator and its small perturbations, this
could be carried out, as well as in the case of the hexagonal analogue of Harper.
See [HeS6], [K], [BuFe]. Corresponding (phase space) tunneling problems for more
general trigonometrical Hamiltonians, require a better general theory and are still
open. See [Fa].

We also review very briefly some of the existing methods, closely related to
each other.

WKB in the complex domain. This is an interesting method and has so far been
applied mainly to the case of differential operators with analytic coefficients in one
dimension. See Grigis [G2] and further references given there to the work of Voros
and Ecalle. Notice that Buslaev and Fedotov [BuFe] have managed to apply such
methods to finite difference operators in dimension 1.

Direct weighted estimates. In the case of Schrödinger operators such estimates are
particularly simple and nice and have been developed by Lithner [L], Agmon [A] and
many others. Let us review the philosophy from the point of view of h-pseudors. For
(−h2∆+V (x)−E)u = 0, we work in the classically forbidden region: V (x)−E > 0
(x real), so that ξ2+V (x)−E 6= 0 for x in that region, when ξ is real. The operator
eφ(x)/h ◦ (−h2∆ + V (x) − E) ◦ e−φ(x)/h, when φ is real and smooth, can then be
viewed as an h-pseudor with principal symbol

(ξ + iφ′(x))2 + V (x) − E = ξ2 + V (x) − E − φ′(x)2 + 2iφ′(x) · ξ,

which is elliptic (and hence has good L2 apriori estimates) in this region, as long
as |φ′(x)| <

√
V (x) − E. This gives an L2-estimate on eφ/hu, and by varying φ,

exponential decay results, where the decay is expressed in terms of the distance
associated to the metric (V (x) − E)+dx

2. These estimates turn out to be quite
sharp for the ordinary Schrödinger operator but not so in general, after adding a
magnetic field.

We have here some associated geometry. We let −h2∆ + V − E act on u =
e−φ/hũ, with ũ = eφ/hu ∈ L2. To e−φ/hũ, we associate the deformation of real phase
space: {(x, ξ + iφ′(x)); (x, ξ) is real}, which is easily seen to be an I-Lagrangian
manifold, i.e. a Lagrangian manifold with respect to the real symplectic form =σ,
where σ =

∑
dξj ∧ dxj is the complex symplectic form.

Weighted estimates on the FBI-transform side. They were introduced in a different
context in [S1] and earlier works by the same author, and have been adapted to
spectral problems in [HeS1,4,6] and by Martinez [M2]. In the next section we
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explain one particularly simple case of global FBI-transforms, namely the ones
of Bargman type. In this case as well as in other cases the idea is to observe
that the FBI-transform maps functions on the real domain into weighted spaces of
holomorphic functions, on which the transformed operator acts as a h-pseudor or
some similar object, like a Toeplitz operator. Modifying the weight gives new spaces,
associated to (new) I-Lagrangian manifolds, and an eigenfunction will belong to a
scale of these new spaces, as long as we make non-characteristic deformations, i.e.
deformations such that the transformed Schrödinger operator or other Hamiltonian,
has a principal symbol which is non-vanishing on these I-Lagrangian manifolds, or
at least on the parts, where the manifolds differ from the initial manifold (which is
the image of real phase space under the canonical tranformation associated to the
FBI-transformation). There is a global difficulty with this approach, namely the
possible appearance of caustics: the deformed manifolds may project badly on the
base space naturally associated to the chosen FBI-transformation. This difficulty
is much more serious than in standard situations with caustics for real Lagrangian
manifolds when making real WKB-constructions or h-Fourier integral operators
(from now on h-Fouriors for short). The reason being the presence of large or very
small exponential quantities.

In this work we shall show how to overcome this difficulty for a hopefully
sufficiently large class of I-Lagrangian manifolds. The idea is to quantize the de-
formations during short time by h-Fouriors which work with exponentially small
errors: O(e−R/h), where R can be chosen arbitrarily large, provided the defor-
mation time is sufficiently small, depending on R. In order to quantize a global
deformation, we then have to compose a large number of such Fouriors, and in
order to understand what we get, we need some small but essential amount of ideas
from the treatment of integrals in high dimension. Fortunately the author had the
necessary preparations from other recent work of his [S2,3] and with Helffer [HeS2]
(see further references there).

The content of this work is the following:

In section 1 we prepare the general framework by discussing a class of global FBI-
transforms, namely those of Bargman type, and we show how to pull over h-pseudors
and L2 functions to the FBI-side. This is probably not fundamental but it is
convenient and in the remainder of the paper we develop the theory on the FBI-
side. (For the case of manifolds, one would have to work differently.)

In section 2 we introduce a family of classical Hamiltonians that define a “group”
of complex canonical transformations κt,s, and we discuss associated phases and
weights.

In section 3 we introduce h-Fouriors that quantize κt,s for small |t− s|. This works
with errors O(e−R/h), where R > 0 can be chosen arbitrarily large, provided that
|t− s| is sufficiently small.

In section 4 we introduce h-Fouriors Ãt associated to κt,0, without assuming that |t|
is small, simply by composing the “short time” Fouriors of section 3. Let ΛΦ0

be the
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image of real phase space under the complex canonical transformation associated
to the global FBI-transform. We make the important assumption that Λt =def

κt,0(ΛΦ0
) is closed and contained in some fixed tube shaped neighborhood of ΛΦ0

.

Then we are able to estimate pointwise the function Ãtu, for u in the image space
HΦ0

= Hol(Cn) ∩ L2(Cn; e−2Φ0/hL(dx)) (L(dx) = Lebesgue measure) of the FBI-

transform, in geometric terms. Since Ãt is a composition of a large number of
elementary Fouriors, this involves integrals in large dimension, and some techniques
for handling such integrals are used in addition to techniques of the Mountain pass
lemma.
In section 5 we construct explicitly the inverse of Ãt, define the space H(Λt) as the

space of all Ãtu for u ∈ HΦ0
, and show some basic invariance properties of this

definition. The techniques of the previous section are still important here.
In section 6 we replace HΦ0

by HΨ0
, where Ψ0 should be of class C1,1 and stay

close to Φ0 near infinity. This gives an extension of the theory to the case when
the analytic I-Lagrangian manifolds Λt are replaced by the Lipschitz manifolds
Lt = κt,0(ΛΨ0

). Here ΛΨ0
= {(x, 2

i
∂Ψ0

∂x (x)); x ∈ Cn}. We also prove a version
of Egorov’s theorem, which permits us to handle the action of h-pseudors on the
spaces H(Lt).
In section 7 we estimate in geometric terms (by proceeding again very much as in
section 4) scalar products of two elements in different H(Lt) spaces.
In section 8 we discuss when to a given family of I-Lagrangian manifolds Lt, it
is possible to associate a family of spaces H(Lt). A result of possibly indepen-
dent interest here is that for the family of manifolds under consideration, we have
equivalence between a property of approximations with entire functions and a cor-
responding property for pluriharmonic functions. Such an equivalence seems far
from obvious in general.

In addition to direct applications to the tunnel effect, our theory may prove
useful to other problems such as the study of traces of evolution groups modulo
very small errors (O(e−R/h) with R arbitrarily large), perhaps in connection with
functional calculus. Our approach is related to the approach to Feynman integrals
by composing a large number of approximations to the short time evolution. cf.
Fujiwara [Fu], and also Ito [I1,2], Albeverio-Brzeźniak [AlBr].

It is a pleasure to acknowledge the excellent hospitality and working conditions
provided by the Tanuguchi foundation during this meeting, and I would like to thank
the organizers, and in particular Professor T. Kawai, for the efficient organization
and for having given me the chance to participate and learn about new and exciting
mathematical results.

1. Review of global FBI transformations of Bargman type

and associated objects.

The purpose of this section is to review a convenient frame, where the more
advanced theory can be developed, starting in section 2. The material of this section
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is mainly from a chapter in some unpublished lecture notes [S4], where all the proofs
where not detailed. Some of this material was used by Hörmander [H3], where some
detailed proofs were given. In a way, some parts of the material is classical, and
moreover it can be viewed as a “linearized” version of some parts of [S1].

Let φ(x, y) be a quadratic form on Cn
x × Cn

y such that

detφ′′xy 6= 0,=φ′′yy > 0, (1.1)

and put
Φ(x) = sup

y∈Rn

−=φ(x, y). (1.2)

Then for u ∈ S′(Rn), 0 < h ≤ 1, the function

Tu(x; h) = Ch−3n/4

∫
eiφ(x,y)/hu(y)dy (1.3)

is holomorphic in x and satisfies, |Tu(x; h)| ≤ Oh(1)〈x〉N0eΦ(x)/h for some N0 > 0.

Here 〈x〉 = (1+ |x|2) 1
2 . If u ∈ S(Rn), then |Tu(x; h)| ≤ ON,h〈x〉−NeΦ(x)/h for every

N ∈ N. T can be viewed as a Fourior with associated (complex linear) canonical
transformation,

κT : C2n 3 (y,−φ′y(x, y)) 7→ (x, φ′x(x, y)) ∈ C2n, (1.4)

and it is easy to check that

{(x, 2
i

∂Φ

∂x
(x)); x ∈ Cn} =

def
ΛΦ = κT (R2n). (1.5)

If F (x) is real and suficiently smooth on some open set in Cn, we define ΛF as in
(1.5) with x restricted to the domain of F . Then,

−=(ξ · dx)|ΛF = −=(
2

i

∂F

∂x
(x) · dx) = <(2

∂F

∂x
(x)dx) = dF (x),

so ΛF is an I-Lagrangian manifold, i.e. a Lagrangian manifold with respect to
=σ = =∑

dξj ∧ dxj = d(=ξ · dx). R2n is an I-Lagrangian manifold which is
also R-symplectic, i.e. symplectic with respect to <σ. ¿From (1.5) it then follows
that ΛΦ is R-symplectic, or equivalently that Φ′′

xx is non-degenerate. From (1.2)
it follows that Φ is plurisubharmonic (pl.s.h.) so Φ′′

xx is positive semi-definite and
consequently positive definite. In other words Φ is strictly pl.s.h. (st.pl.s.h.). Also
notice that manifolds which are both I-Lagrangian and R-symplectic, are totally
real of maximal dimension.

Cn 3 y 7→ − 1
2i

(φ(x, y) − φ(x, y)) is the holomorphic extension of Rn 3 y 7→
−=φ(x, y), so we have

Φ(x) = Ψ(x, x), (1.6)
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where,

Ψ(x, y) = v.c.z(−
1

2i
(φ(x, z) − φ†(y, z)). (1.7)

Here v.c.z means “critical value with respect to z”, and we write in general f †(w) =
f(w), when f is holomorphic. By definition, Ψ is holomorphic. Also notice that
Ψ′′
xy = Φ′′

xx is non-degenerate. If u(x) = uh(x) is holomorphic with |u(x)| ≤
ON,h〈x〉−NeΦ(x)/h, for every N , then it is an easy exercise (performed for instance
in [S1],) to show that,

u(x) =
1

(2πh)n

∫∫

Γ(x)

e
i
h
(x−y)·θu(y)dydθ, (1.8)

when Γ(x) is a suitable integration contour, such as θ = 2
i
∂Φ
∂x (x+y2 ), or θ = 2

i
∂Φ
∂x (x)+

iC(x− y), with C > 0 sufficiently large. (That the integral takes the same value
for these different contours follows from Stokes’ formula.) On the other hand by
the Kuranishi trick,

2(Ψ(x, w) − Ψ(y, w)) = i(x− y) · θ, (1.9)

θ =
2

i

∂Ψ

∂x
(
x+ y

2
, w) =

2

i

∂Φ

∂x
(
x+ y

2
) +

2

i
Φ′′
xx(w − x+ y

2
),

so we get,

u(x) =
C

hn

∫∫

Γ̃(x)

e
2
h

(Ψ(x,w)−Ψ(y,w))u(y)dydw, (1.10)

where C = ( 2
i )
n det(Φ′′

xx)
1

(2π)n and where Γ̃(x) is the natural image of Γ(x). When

Γ(x) is of the form θ = 2
i
∂Φ
∂x

(x+y
2

), then Γ̃(x) becomes w = x+y
2

, and it is easy to
check directly that:

−Φ(x) + 2<(Ψ(x,
x+ y

2
) − Ψ(y,

x+ y

2
)) + Φ(y) = 0. (1.11)

Another suitable contour is Γ̃ : w = y, then with a new non-vanishing constant,
C = ( 2

π )n det Φ′′
xx, we get,

u(x) =
C

hn

∫∫
e

2
h

Ψ(x,y)u(y)e−
2
h
Φ(y)L(dy) =

def
Πu(x), (1.12)

where L(dy) denotes the Lebesgue measure on Cn = R2n. Here, we notice that
Φ(x)−2<Ψ(x, y)+Φ(y) is a st.pl.s.h. quadratic form, which vanishes to the second
order on x = y, and hence of the order of magnitude ∼ |x − y|2. It follows that
Π extends to a bounded operator: L2

Φ → L2
Φ, where L2

Φ = L2(Cn; e−2Φ/hL(dx)).
Since C is real, Π is self-adjoint. Also by density, we still have u = Πu, for u ∈
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HΦ =def Hol(Cn) ∩ L2
Φ, where Hol(Cn) is the space of entire functions on Cn.

Finally we notice that Πu ∈ Hol(Cn), for u ∈ L2
Φ. In conclusion, Π is the orthogonal

projection: L2
Φ → HΦ.

Proposition 1.1. If C > 0 is suitably chosen in (1.3), then T is unitary:
L2(Rn) → HΦ.

Proof. By “exact stationary phase”, we see that TT ∗ = λΠ, for some λ > 0, and
choosing C in (1.3) suitably, we get TT ∗ = Π. In particular TT ∗ = I on HΦ, and
it follows that T ∗ : HΦ → L2(Rn) is isometric and hence that T : L2 → HΦ is
bounded.

Let u ∈ L2(Rn) and assume that Tu = 0. Then

((
∂

∂x
)αe−

i
h
φ(x,0)Tu(x; h))|x=0 = 0

for all α and it follows (using the first part of (1.1)) that
∫
e
i
h
φ(0,y)u(y)yβdy = 0,

for all β. Since the Fourier transform of e
i
h
φ(0,y)u(y) is entire, we deduce from the

vanishing of all its derivatives at 0, that it is zero and hence that u = 0. Hence
T : L2 → HΦ is injective. For u ∈ L2, we have T (T ∗T − I)u = TT ∗(Tu) − Tu =
ΠTu− Tu = 0 and since T is injective, T ∗T − I = 0. ♦

Here is a more direct proof of the identity T ∗T = I, that we give without
explaining the choices of integration contours, that can be obtained from general
principles. For real x, we have with C1, C2 6= 0.

T ∗Tu(x) = |C|2h−3n/2

∫∫
e

1
h
(−iφ(z,x)−2Φ(z)+iφ(z,y))u(y)dyL(dz)

= C1h
−3n/2

∫∫∫
e

1
h
(−iφ†(w,x)−2Ψ(z,w)+iφ(z,y))u(y)dydzdw.

According to (1.7):

−2Ψ(z, w) = −iv.c.t(φ(z, t) − φ†(w, t)),

so

T ∗Tu(x) = C2h
−2n

∫∫∫∫
e

1
h

(−iφ†(w,x)+iφ†(w,t)−iφ(z,t)+iφ(z,y))u(y)dydzdwdt

= Ch−n
∫∫

e−
i
h
(φ†(w,x)−φ†(w,t))(h−n

∫∫
e−

i
h
(φ(z,t)−φ(z,y))u(y)dydz)dwdt.

By the Kuranishi trick, T ∗T is then the composition of two non-vanishing multiples
of the identity operator and hence of the form λI for some λ > 0. It is however
quite obvious that λ has to be equal to 1.
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We next discuss the action of h-pseudors on HΦ. Let S0(ΛΦ) be the space of
C∞ functions on ΛΦ, which are bounded with all their derivatives. If a ∈ S0(ΛΦ)
and u ∈ Hol(Cn) with u = Oh,N (1)〈x〉−NeΦ(x)/h, for every N , then we put,

Oph(a)u(x) = Oph, 12 (a)u(x) = aw(x, hD)u(x) (1.13)

=
1

(2πh)n

∫∫

Γ(x)

e
i
h
(x−y)·θa(

x+ y

2
, θ)u(y)dydθ,

where Γ(x) is the contour θ = 2
i
∂Φ
∂x (x+y2 ). Notice that on this contour, −Φ(x) +

<(i(x− y) · θ) + Φ(y) = 0, so the integral converges. (We use here that since Φ is a
quadratic form, Φ(x)−Φ(y) = 〈(∇Φ)(x+y2 ), x−y〉.) Using this parametrization, we

get Oph(a)u(x) = h−n
∫
k(x, y; h)u(y)L(dy), where ∂xk = −∂yk, so by integration

by parts, we see that Ophu is holomorphic, since u is.
Proposition 1.2. Oph(a) extends to a uniformly (w.r.t. h) bounded operator
HΦ → HΦ.

Proof. Let Γt(x) be the contour θ = 2
i
∂Φ
∂x

(x+y
2

)+it(x− y), parametrized by y ∈ Cn

and let G[0,1](x) be the (n + 1)-dimensional contour, given by the same formula,
but parametrized by (t, y) ∈ [0, 1] × Cn. Let a ∈ C∞(Cn) also denote an almost
analytic extension (so that ∂a vanishes to infinite order on ΛΦ) with support in a
tube around ΛΦ, (by definition a set of the form ΛΦ +W , where W is a bounded
open neighborhood of 0) and such that each derivative of a is bunded. Then Stokes’
formula gives,

Oph(a)u(x) =
1

(2πh)n

∫∫

Γ1(x)

e
i
h
(x−y)·θa(

x+ y

2
, θ)u(y)dydθ+ (1.14)

1

(2πh)n

∫

G[0,1](x)

e
i
h
(x−y)·θu(y)∂(a(

x+ y

2
, θ)) ∧ dydθ.

Here the first term of the RHS is easily (by comparing with an L1 convolution) seen
to be bounded: L2

Φ → L2
Φ. On G[0,1](x), we have

dθj = −itdyj +
∑

k

O(1)dyk +
∑

k

O(1)dyk + i(xj − yj)dt,

and when computing ∂(y,θ)(a(
x+y

2 , θ))∧ dy ∧ dθ, all terms have to contain precisely
one factor dt. Hence, this form can be expressed as |x−y|O(1)L(dy)dt and the last
term of (1.14) can be written,

ON (1)

∫ 1

0

dt

∫
h−ne

1
h

(−t|x−y|2+Φ(x)−Φ(y))(t|x− y|)N |x− y|u(y)L(dy).
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The y integral defines an operator L2
Φ → L2

Φ of norm

O(1)h−n
∫
e−

t
h
|y|2tN |y|N+1L(dy) = ON (1)t

N−1
2 −nh

N+1
2 +n.

Hence the last term in (1.14) is O(h∞) : L2
Φ → L2

Φ and the proof is complete. ♦
Next consider other quantizations. For t ∈ [0, 1], put:

Oph,t(a)u(x) =
1

(2πh)n

∫∫
ei(x−y)·θa(tx+ (1 − t)y, θ)u(y)dydθ, (1.15)

where we integrate over Γt(x): θ = 2
i
∂Φ
∂x

(tx + (1 − t)y). Along Γt, we get, (as it
suffices to check for t = 1

2 , 1,)

−Φ(x) + <(i(x− y) · θ) + Φ(y) = (2t− 1)Φ(x− y). (1.16)

Hence:
Proposition 1.3. If Φ is strictly convex, a ∈ S0(ΛΦ), then Oph,t(a) is a well

defined and uniformly bounded (w.r.t. h) operator HΦ → HΦ, for 0 ≤ t ≤ 1
2 . When

0 ≤ t < 1
2
, it is enough to assume that a ∈ L∞(ΛΦ), to have the same conclusion.

Assume for a while that Φ is strictly convex, and that 0 ≤ t ≤ 1
2
. Let [0, 1

2
] 3

t 7→ at ∈ S0(ΛΦ) be a C∞ map. Then by formal integration by parts, justified by
letting first u ∈ ON (1)〈x〉−NeΦ(x)/h, ∀N and using Stokes’ formula, we see that
Oph,t(at) : HΦ → HΦ is independent of t if

∂at
∂t

=
h

i

∂

∂θ
· ∂
∂x
at. (1.17)

This is well known in the more classical real framework, and (1.17) is then an
equation of Schrödinger type. In that case, if as ∈ S0(R2n) for some s, we get the
corresponding at ∈ S0, by

at = exp((t− s)
h

i
(
∂

∂θ
· ∂
∂x

))as. (1.18)

In our case, hi
∂
∂θ · ∂

∂x has to be viewed as an operator on ΛΦ and if we parametrize
this space by θ ∈ Cn, we get

h

i

∂

∂θ
· ∂
∂x

= 2h
∑

j

∑

k

(
∂2Φ

∂xj∂xk

∂

∂θj

∂

∂θk
− ∂2Φ

∂xj∂xk

∂

∂θj

∂

∂θk
) (1.19)

and an easy calculation shows that the real part of the symbol is negative definite.
It follows that (1.17) is of heat equation type and that we can define at from as
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(in S0(ΛΦ)) by means of (1.18), when t ≥ s. When t > s we even see that at
becomes an entire function, so in view of (1.16) it is conceivable that if a 1

2
∈ S0

and at is defined by (1.18) (as some kind of generalized function when t < 1
2 ), then

one could still give a meaning to Oph,t(at), since lack of regularity of the symbol is
compensated by improvement in (1.16) and vice versa.

The same phenomenon appears in full generality (without assuming convexity
for Φ), if we use the phase in (1.10). In the Weyl quantization we get operators of
the form,

Bu(x; h) =
C

hn

∫∫

w= x+y
2

e
2
h
(Ψ(x,w)−Ψ(y,w))b(

x+ y

2
, w)u(y)dydw, (1.20)

where b ∈ S0(D), D = {(x, w) ∈ C2n;w = x}. Again this is a well defined operator
HΦ → HΦ, and actually (with C 6= 0 conveniently chosen) we have B = Oph, 12 (a),
where b and a are related by

{
b(x, w) = a(x, 2

i
∂Φ
∂x (x) + 2

iΦ
′′
xx(w − x)),

a(x, θ) = b(x, x+ i
2 (Φxx)

−1(θ − 2
i
∂Φ
∂x (x))).

(1.21)

More generally, we can consider,

Õph,t(b)u(x; h) =
C

hn

∫∫

w=tx+(1−t)y

e
2
h
(Ψ(x,w)−Ψ(y,w))b(tx+ (1 − t)y, w)u(y)dydw,

(1.22)
for b ∈ S0(D). For t = 0, we get the Toeplitz operator,

Õph,0(b)u(x; h) =
C

hn

∫∫
e

2
h
Ψ(x,y)b(y, y)u(y)e−2Φ(y)/hdydy = Π(b(y, y)u(y))(x; h),

(1.23)
which is well defined, HΦ → HΦ, and even L2

Φ → HΦ. Since the phase in (1.22)

is affine linear in w, it follows that Õph,t is well defined and uniformly bounded,

HΦ → HΦ, when 0 ≤ t ≤ 1
2 . Also, Õph,t(bt) is independent of t if

(
∂

∂t
− h

2
(Φ′′

xx)
−1(

∂

∂w
) · ∂
∂x

)bt = 0,

and since w = x on D:

(
∂

∂t
− h

2
(Φ′′

xx)
−1(

∂

∂x
) · ∂
∂x

)bt = 0,

so

bt = exp(
h

2
(t− s)(Φ′′

xx)
−1(

∂

∂x
) · ∂
∂x

)bs. (1.23)
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As before (when Φ was assumed to be strictly convex, which is no more assumed
here), this is a heat flow relation, allowing to define bt ∈ S0 from bs ∈ S0 when
t ≥ s. If we allow complex values of t, we get a Schrödinger type relation, when
<t = <s.

Finally, we relate the Weyl quantizations above with the more classical ones
acting on L2(Rn).
Proposition 1.4. Let b ∈ S0(ΛΦ), a ∈ S0(R2n) be related by b ◦ κT = a. Then,

Oph, 12 (b) ◦ T = T ◦ Oph, 12 (a). (1.24)

Proof. This is a standard result, when T is replaced by a so called metaplec-
tic transformation, with an associated real linear canonical transformation, and
we adapt a corresponding standard proof. When `(x, ξ) is a real linear form on
R2n, then Oph, 12 (`(x, ξ)) = l(x, hD) is essentially self-adjoint from S(Rn) and

e−i`(x,hD) = Oph, 12 (e−i`(x,ξ)). The same fact holds on the FBI-transform side, with

` real on ΛΦ and S(Rn) replaced by

T (S(Rn)) = {u ∈ HΦ; u = ON (1)〈x〉−NeΦ(x)/h, ∀N ∈ N}.

Moreover, in both cases e−i`(x,hD) = e−
i

2h `
′
x·x ◦ τ`′

ξ
◦ e− i

2h `
′
x·x (where τs denotes

translation by s: τsu(x) = u(x − s)). It may be instructive to show directly that
this expression gives a unitary operator on HΦ in the case when ` is real on ΛΦ.

When m, ` are real linear forms on ΛΦ and R2n respectively, related by: m ◦
κT = `, then it is eay to check that m(x, hD)Tu = T`(x, hD)u, u ∈ S(Rn).
Consequently,

e−im(x,hD) ◦ T = T ◦ e−i`(x,hD). (1.25)

If b ∈ S(ΛΦ), a ∈ S(R2n), and b ◦ κT = a, then by Fourier inversion (which can be
given a nice invariant form, by using the symplectic form), we can represent b as a
superposition of linear waves e−im(x,ξ). Then if ` = m ◦ κT , a is a corresponding
superposition of linear waves, e−i`(x,ξ). From (1.25), we then get (1.24) in this case.
Finally, the general case can be obtained by a density argument. ♦

2. Geometry, phases and weights.

Let Φ0 be a strictly subharmonic quadratic form on Cn and let

Λ0 = ΛΦ0
= {(x, 2

i

∂Φ0

∂x
(x)); x ∈ Cn}

so that Λ0 is an I-Lagrangian manifold and in this case also a linear space. Λ0

is also R-symplectic because of the strict plurisubharmonicity. By a tube (around
Λ0) we mean an open neighborhood of Λ0 which is invariant under translations that
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conserve Λ0 and which is contained in some set of the form Λ0 + B(0, C), where
B(0, C) = BC2n(0, C) denotes the open ball in C2n of center 0 and of radius C > 0.

Let I be a compact interval containing 0 and let pt(x, ξ) be a function on
I ×C2n which is Borel measurable such that

pt(x, ξ) is entire in (x, ξ) for every fixed t ∈ I and |pt(0, 0)| is bounded on I.
(2.1)

For every tube U around Λ0, there exists CU > 0 such that (2.2)

|∇(x,ξ)pt(x, ξ)| ≤ CU , for t ∈ I, (x, ξ) ∈ U.

In view of the Cauchy inequalities, the following assumption implies (2.2) (with
different constants CU ).

For every tube around Λ0, there exists CU > 0, (2.2′)

such that |pt(x, ξ)| ≤ CU , for (t, x, ξ) ∈ I × U.

Let Hpt =
∑ ∂pt

∂ξj
∂
∂xj

− ∂pt
∂xj

∂
∂ξj

be the Hamilton field of pt(x, ξ), viewed as a

real vector field on C2n. If J is some sub-interval of I, and J 3 t 7→ ρ(t) ∈ C2n is

a continuous curve, we say that ρ(t) is a solution of dρ(t)
dt −Hpt(ρ(t)) = 0, if ρ(t)

solves the integrated version of the same equation:

ρ(t) − ρ(s) =

∫ t

s

Hpτ (ρ(τ))dτ, t, s ∈ J. (2.3)

Such a solution is clearly locally Lipschitz in t and by a standard iteration procedure
(using that Hpτ (ρ) is sufficiently regular in ρ), we have the standard local existence
and uniqueness result for solutions with a prescribed value ρ(t0) = ρ0. It is also
easy to see that we have smooth and even holomorhic dependence on ρ0. To be
more precise, we have a maximal open set Ω ⊂ I × I ×C2n such that

{(t, t, ρ); t ∈ I, ρ ∈ C2n} ⊂ Ω, (2.4)

{t; (t, s, ρ) ∈ Ω} is an interval for every (s, ρ) ∈ I × C2n, (2.5)

we have a function Ω 3 (t, s, ρ) 7→ κt,s(ρ) ∈ C2n, locally Lipschitz in (2.6)

s, t, holomorphic in ρ, with κs,s(ρ) = ρ and with
∂

∂t
κt,s(ρ) = Hpt(κt,s(ρ)),

in the integrated sense (2.3).
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It is also easy to see that κt,s are locally defined canonical transformations for fixed
t, s: κ∗t,sσ = σ, where σ =

∑
dξj ∧ dxj is the complex symplectic form. We have

the group property:

(t, s, ρ) ∈ Ω, (r, t, κt,s(ρ)) ∈ Ω ⇒ (r, s, ρ) ∈ Ω and κr,s(ρ) = κr,t(κt,s(ρ)), (2.7)

which we write as “κr,s = κr,t ◦ κt,s”.

Using the property (2.1), (2.2), we see that if U , Ũ are tubes with U ⊂ Ũ , then

there exists ε = ε(U, Ũ) > 0, such that

t, s ∈ I, |t− s| < ε, ρ ∈ U ⇒ (t, s, ρ) ∈ Ω, κt,s(ρ) ∈ Ũ . (2.8)

Moreover, for |t− s| < ε, we have:

|∂αy ∂βη (κt,s(y, η) − (y, η))| ≤ Cα,β,U |t− s|, (y, η) ∈ U. (2.9)

In the following, we may keep in mind that pt can be approximated by functions
pεt which are smooth in t and satisfy (2.1), (2.2) uniformly. This can be done so
that

∫
supK |pεt(x, ξ)− pt(x, ξ)|dt→ 0, ε→ 0, for every compact set K ⊂ C2n. For

the corresponding canonical transformations, we have κεt,s(ρ) → κt,s(ρ), uniformly
for (t, s, ρ) in any compact subset of Ω.

We then get a similar property for the generating functions, that we define as
solutions to the Hamilton-Jacobi problem:

∂

∂t
φt,s(x, η) + pt(x,

∂

∂x
φt,s(x, η)) = 0, φs,s(x, η) = x · η, (2.10)

where the first equation should be interpreted as

φt,s(x, η) − φs,s(x, η) +

∫ t

s

pτ (x,
∂

∂x
φτ,s(x, η))dτ = 0. (2.11)

A standard way of getting φ (locally) is to use that φt,s is a generating func-
tion of κt,s (which determines φt,s up to a constant depending on t, s): κt,s :
( ∂∂ηφt,s(x, η), η) 7→ (x, ∂∂xφt,s(x, η)). We then obtain the following facts:

For every tube U around Λ0, there exists ε = ε(U) > 0, such that (2.12)

(2.10) has a solution φt,s(x, η) = φUt,s(x, η) for (x, η) ∈ U, |t− s| < ε(U),

which is holomorphic in x, η.

|∂αx ∂βη∇x,η(φ
U
t,s − x · η)| ≤ Cα,β,U |t− s|. (2.13)
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If V is a second tube with V ⊂ U, then φVt,s(x, η) = φUt,s(x, η), (2.14)

(x, η) ∈ V for |t− s| small enough, and κt,s|V is described by

V 3 (
∂

∂η
φUt,s(x, η), η) 7→ (x,

∂

∂x
φUt,s(x, η)).

We will need some auxiliary weights which could be avoided if we replace (2.2)
by the stronger assumption (2.2′). Put

Φ̃t(x) = Φ0(x) +

∫ t

0

=pτ (x,
2

i

∂Φ0

∂x
(x))dτ, (2.15)

so that according to (2.1), (2.2): |Φ̃t(x)−Φ0(x)| ≤ C(1+ |x|). Unfortunately, there

is no reason for Φ̃t to be plurisubharmonic, except for small t, so we regularize by
putting:

Φt,ε = gε ∗ Φ̃t − Cε, (2.16)

where ∗ indicates standard convolution on Cn = R2n and where gε is a flat Gaus-
sian:

gε(x) = Cnε
2ne−ε

2|x|2 ,

∫
gε(x)L(dx) = 1, (2.17)

L(dx) = Lebesgue measure. We choose the constant Cε ∈ R, so that

gε ∗ Φ0 = Φ0 + Cε. (2.18)

To see that this is possible, we first notice that ∇2(Φ0 ∗ gε) = (∇2Φ0) ∗ gε = ∇2Φ0,
since ∇2Φ0 is constant. Hence gε ∗ Φ0 − Φ0 is affine linear. It is also an even
function, since gε and Φ0 are even and hence gε ∗ Φ0 − Φ0 = Cε is constant.

It follows that

Φt,ε = Φ0 +

∫ t

0

gε ∗ qτdτ, (2.19)

with qτ (x) = =pτ (x, 2
i
∂Φ0

∂x (x)). Since ∇qτ is uniformly bounded, we have

∇kgε ∗ qτ = ∇k−1gε ∗ ∇qτ = Ok(ε
k−1), k ≥ 1. (2.20)

Moreover,

gε ∗ qτ (x) − qτ (x) =

∫
gε(x− y)(qτ (y) − qτ (x))L(dy) (2.21)

=

∫
gε(x− y)O(|x− y|)L(dy) = O(

1

ε
).

We then have from (2.15), (2.19), (2.20), (2.21):

∇k(Φt,ε − Φ0) = Ok(|t|εk−1), k ≥ 1, (2.22)
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and

Φt,ε − Φ̃t = O(
|t|
ε

), (2.23)

or more generally,

(Φt,ε − Φ̃t) − (Φs,ε − Φ̃s) = O(
|t− s|
ε

). (2.24)

For a given δ > 0, we can choose ε = ε(δ) (sufficiently small) so that with Φt = Φt,ε:

‖∇2(Φt − Φ0)‖ ≤ δ, ‖∇3Φt‖ ≤ δ. (2.25)

¿From (2.15), (2.19), (2.20), (2.21), we also get

∇k(Φt − Φ̃t) = Ok,δ(|t|), (2.26)

and more generally

∇k[(Φt − Φ̃t) − (Φs − Φ̃s)] = Ok,δ(|t− s|). (2.27)

3. Short time deformation.

Let χ ∈ C∞
0 (BCn(0, 1)) be equal to 1 on BCn(0,

3
4
) and consider for u ∈ HΦs

and more generally for u ∈ L2
Φs

:

Jt,su(x; h) = (3.1)

1

(2πh)n

∫∫

Γs(x)

e
i
h
(φt,s(x,η)−y·η)χ(

1

R
(x− y))χ(

1

R
(η − 2

i

∂Φs
∂x

(
x+ y

2
)))u(y)dydη.

We shall let R tend to +∞, so it is understood that |t−s| ≤ ε(R) for some function
ε(R) > 0 with ε(R) ↘ 0, R→ ∞. We let Γs(x) be a good contour:

η =
2

i

∂Φs
∂x

(
x+ y

2
) + i(x− y), |x− y| ≤ R (3.2)

(and in (3.1) we could replace Γs(x) by Γτ (x) for some τ between s and t). We
shall see that

Jt,s = O(e
O(1)|t−s|

h ) : L2
Φs → L2

Φt , (3.3)

where also in the following, all constants and estimates are uniform with respect to
R ≥ 1 unless otherwise is explicitely indicated. For that we look at

−Φt(x) −=(φt,s(x, η)− y · η) + Φs(y), (3.4)
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for (y, η) ∈ Γs(x). We rewrite this expression as

−(Φt(x) − Φs(x)) − =(φt,s(x, η) − x · η) + (−Φs(x) −=(x · η − y · η)) + Φs(y).
(3.5)

Using that ∇2Φs −∇2Φ0 is as small as we like and that ∇2Φ0 is constant, we get,

−Φs(x) − =((x− y) · η) + Φs(y) ≤ −1

2
|x− y|2. (3.6)

Moreover, we have

Φt(x) − Φs(x) = Φ̃t(x) − Φ̃s(x) + O(|t− s|) (3.7)

=

∫ t

s

=pτ (x,
2

i

∂Φ0

∂x
(x))dτ + O(|t− s|).

Now look at

=(φt,s(x, η) − x · η) = =(φt,s(x,
2

i

∂Φs
∂x

(x)) − φs,s(x,
2

i

∂Φs
∂x

(x))) (3.8)

+O|x−y|(1)|t− s||x− y|,

where O|x−y|(1) is uniform for |x− y| bounded by any constant (and |x− y| ≤ R,
|t − s| ≤ ε(R), ε(R) > 0 sufficiently small). Now return to the eikonal equation

(2.10), that we consider for a fixed x, with η = 2
i
∂Φs
∂x

(x). We know that
∂φt,s
∂x

(x, η)−
2
i
∂Φs
∂x (x) = O(|t− s|), and using this in (2.10), we get

φt,s(x,
2

i

∂Φs
∂x

(x)) − φss(x,
2

i

∂Φs
∂x

(x)) =

−
∫ t

s

pσ(x,
2

i

∂Φs
∂x

(x))dσ + O(|t− s|2) = −
∫ t

s

pσ(x,
2

i

∂Φ0

∂x
(x))dσ + O(|t− s|).

Consequently:

=(φt,s(x, η) − y · η) = −
∫ t

s

=pσ(x,
2

i

∂Φ0

∂x
)dτ + O|x−y|(1)|t− s||x− y|. (3.9)

We can now use (3.5), (3.6), (3.7), (3.8), (3.9) and get:

−Φt(x) −=(φt,s(x, η) − y · η) + Φs(y) ≤ (3.10)

−1

2
|x− y|2 + O(|t− s|) + O|x−y|(1)|t− s||x− y|.

For |x − y| ≤ 1 the right hand side simplifies to −1
2 |x − y|2 + O(|t − s|). For

1 ≤ |x − y| ≤ R, we choose |t − s| sufficiently small depending on R and see that
the RHS is ≤ −1

3 |x− y|2. Summing up, we get for (y, η) ∈ Γs(x):

−Φt(x) − =(φt,s(x, η) − y · η) + Φs(y) ≤ −1

3
|x− y|2 + O(1)|t− s|, (3.11)
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when |t − s| ≤ ε(R) > 0, where ε(R) → 0, R → ∞. It is now a routine matter to
obtain (3.3) (see for instance [S1]). It is also a routine matter to see that with some
C0 > 0 independent of R (and with |t− s| ≤ ε(R)), we have

‖∂Jt,s‖L(HΦs ,L
2
Φt

) ≤ C0e
−R/C0h, (3.12)

‖∂Jt,s‖L(L2
Φs
,L2

Φt
) ≤ C0h

− 1
2 eC0|t−s|/h. (3.13)

notice that some of the L2 spaces here are spaces of (0, 1)-forms. Let Et : L2
Φt

→ L2
Φt

be an operator of norm O(h
1
2 ), such that ∂Etv = v when ∂v = 0, and put

J̃t,s = (I −Et∂)Jt,s. (3.14)

we can choose Et = heΦt/h∂
∗

Φt∆
(1)−1
Φt

e−Φt/h in the notation of the appendix, and

Πt = I − Et∂ is then the orthogonal projection: L2
Φt

→ HΦt . We get, (with a new
constant C0)

‖J̃t,s‖L(L2
Φs
,L2

Φt
) ≤ C0e

C0|t−s|/h, (3.15)

‖J̃t,s − Jt,s‖L(HΦs ,L
2
Φt

) ≤ C0e
−R/C0h, (3.16)

J̃t,s : HΦs → HΦs . (3.17)

4. Integrals in high dimension.

Let t ∈ I and assume in order to fix the ideas that t > 0. Let 0 = t0 <
t1 < .. < tN = t with tj+1 − tj ≤ ε(R) sufficiently small depending on R, so
that N = N(R). We shall sometimes use the simplified notation Jk+1,k instead of
Jtk+1,tk and similarly for the weights Φ and the phases φ. Put

At = JN,N−1 ◦ JN−1,N−2 ◦ .. ◦ J1,0, (4.1)

Ãt = J̃N,N−1 ◦ J̃N−1,N−2 ◦ .. ◦ J̃1,0. (4.2)

Then we have Ãt : HΦ0
→ HΦt and

‖At‖L(L2
Φ0
,L2

Φt
), ‖Ãt‖L(L2

Φ0
,L2

Φt
) ≤ C

N(R)
0 eC0|t|/h. (4.3)

Since,

At − Ãt =
N−1∑

j=0

JN,N−1 ◦ .. ◦ Jj+2,j+1 ◦ (Jj+1,j − J̃j+1,j) ◦ J̃j,j−1 ◦ .. ◦ J̃1,0,
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we get with a new constant C0 > 0, when R is sufficiently large:

‖At − Ãt‖L(HΦ0
,L2

Φt
) ≤ C

N(R)
0 e−R/C0h. (4.4)

We now consider the problem of finding pointwise bounds for |Atu(x)|, when
u ∈ HΦ0

. The arguments we develop for that will have a universal character and
will also apply in many other situations below. If we think of Atu(x) as an iterated
integral, (see (4.30) below,) we see that we need an upper bound on the “exponent”:

F (x; x0, .., xN−1, θ0, .., θN−1) = −ΦN (x)− (4.5)

=((φN,N−1(x, θN−1) − xN−1 · θN−1) + ..+ (φ1,0(x1, θ0) − x0 · θ0)) + Φ0(x0),

defined in the domain ΩR(x) ⊂ C2Nn:

|xj+1 − xj | ≤ R, |θj −
2

i

∂Φj
∂x

(
xj+1 + xj

2
)| ≤ R, j = 0, .., N − 1, (4.6)

with the convention xN = x. Since we use the good contour (3.2) for each Jj,j−1,
Atu(x) is given by an iterated integral, where we integrate over the “good” contour
Γ+(x):

θj =
2

i

∂Φj
∂x

(
xj+1 + xj

2
) + i(xj+1 − xj), |xj+1 − xj | ≤ R, j = 0, .., N − 1. (4.7)

Since the good cannot exist without the bad, we also introduce the “bad” contour
Γ−(x)

θj =
2

i

∂Φj
∂x

(
xj+1 + xj

2
) − i(xj+1 − xj), |xj+1 − xj | ≤ R, j = 0, .., N − 1. (4.8)

Both contours are smooth manifolds of real dimension 2Nn, and they intersect
transversally at the point:

(x0
0, x

0
1, .., x

0
N−1, θ

0
0, .., θ

0
N−1)

given by

x0
j = x, θ0

j =
2

i

∂Φ0

∂x
(x),

and this is the only point of intersection.
On Γ+(x) we get from (3.11):

F ≤ C0 −
1

C0
(|x0 − x1|2 + ..+ |xN−1 − x|2), (4.9)
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and from the proof of (3.11) we have similarly on Γ−(x):

F ≥ −C0 +
1

C0
(|x0 − x1|2 + ..+ |xN−1 − x|2). (4.10)

We wish to deform Γ+(x) in the spirit of the mountain pass lemma, in order
to improve the upper bound (4.9). We start with the standard observation that

∇x0,..,xN−1,θ0,..,θN−1
F = 0

is equivalent to

(x0, θ0) = (x0,
2

i

∂Φ0

∂x
(x0)), (xj+1, θj+1) = κj+1,j(xj , θj), j = 0, .., N − 1, (4.11)

with the convention that θN =
∂φN,N−1

∂x
(x, θN−1).

We now make an important geometric hypothesis, using the notation of section
2:

I × {0} × ΛΦ0
⊂ Ω and Λt =def κt,0(ΛΦ0

), t ∈ I (4.12)

is contained in some fixed tube U, independent of t.

Using also (2.1), (2.2), we see that there exists an ε > 0 such that κt,s|Λs,ε is
uniformly Lipschitz for t, s ∈ I, and satisfies dist(κt,s(ρ), ρ) = O(|t− s|), uniformly
for ρ ∈ Λs,ε. Here, we let Λs,ε denote the set of points in C2n of distance less than
ε from Λs. Applying this to the critical points (4.11), we see that

|(xj, θj) − (x,
2

i

∂Φ0

∂x
(x))| ≤ C, 0 ≤ j ≤ N, (4.13)

with the preceding conventions about xN and θN . In other words, the critical
points (4.11) are confined to an `∞-ball of radius C around the intersection point
for Γ+(x) and Γ−(x). A fortiori the critical points are also contained in a set of the
form ΩC(x).

Let ε0 > 0 be small, to be fixed later, and consider points in ΩR(x) with

‖∇x0,..,xN−1,θ0,..,θN−1
F‖`1 ≤ ε0. (4.14)

With some constant C > 0 independent of ε0 (and R), we then get:

‖(x0, θ0) − (x0,
2

i

∂Φ0

∂x
(x0))‖ + ‖(x1, θ1) − κ1,0(x0, θ0)‖ + .. (4.15)

+‖(xN , θN ) − κN,N−1(xN−1, θN−1)‖ ≤ Cε0.
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Write ρ−1 = (x0,
2
i
∂Φ0

∂x (x0)), κ0,−1 = id and ρj = (xj, θj), for 0 ≤ j ≤ N . Then for
1 ≤ j ≤ N ,

ρj − κj,0(ρ−1) =

j∑

k=0

(κj,k(ρk) − κj,k ◦ κk,k−1(ρk−1)).

Now we make the induction assumption, that for some sufficiently large C indepen-
dent of ε0 and for ε0 sufficiently small:

‖ρk − κk,0(ρ−1)‖ ≤ 1

C
, k < j.

Then we can use the uniform Lipschitz continuity of the maps κj,k near Λk and get

‖ρj − κj,0(ρ1)‖ ≤ C

j∑

k=0

‖ρk − κk,k−1(ρk−1)‖ ≤ C2ε0. (4.16)

Here the last inequality follows from (4.15). The induction hypothesis is then
fulfilled for k = j and we can go all the way to j = N . In particular, in view of
(4.12), we obtain (with a new constant):

‖(xk, θk) − (x,
2

i

∂Φ0

∂x
(x))‖ ≤ C, 0 ≤ k ≤ N. (4.17)

Summing up, we have shown that there is a constant C1 > 0, such that,

‖∇x0,..,xN−1,θ0,..,θN−1
F‖`1 ≤ 1

C1
⇒ (x0, .., xN−1, θ0, .., θN−1) ∈ ΩC1

(x), (4.18)

and even |xj − x|, |θj −
2

i

∂Φ0

∂x
(x)| ≤ C1.

We can find C2 > 0 depending on C0 in (4.9) and on C1 such that on Γ+(x):

F ≤ C0 −
1

C2
max((|x− xN−1| − C1)+, .., (|x1 − x0| − C1)+, (4.19)

(|θN−1 −
2

i

∂ΦN−1

∂x
(
x+ xN−1

2
)| − C1)+, .., (|θ0 −

2

i

∂Φ0

∂x
(
x1 + x0

2
)| − C1)+),

and in particular, F ≤ C0 − R
2C2

in the intersection of Γ+(x) with the region where
the cutoff function

χ(
x− xN−1

R
)..χ(

x1 − x0

R
)χ(

θN−1 − 2
i
∂ΦN−1

∂x (
x+xN−1

2 )

R
)..χ(

θ0 − 2
i
∂Φ0

∂x (x1+x0

2 )

R
),
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appearing in the integral formula for Atu(x), is 6= 1. (Here we also assume that R
is large enough, depending on the other constants.)

According to (4.18), we can find a smooth vectorfield ν on ΩR(x), depending
smoothly on x, such that

‖ν‖`∞ ≤ 1, 〈ν, dF 〉 ≥ 1

2C1
on ΩR(x) \ ΩC1

(x), (4.20)

〈ν, dF 〉 ≥ 0 with equality precisely at the critical points of F.

Let χ̃ ∈ C∞
0 (BCn(0,

3
4 )) be equal to 1 on BCn(0, 1

2 ), and put

ν̃ = χ̃(
x− xN−1

R
)..χ̃(

x1 − x0

R
)× (4.21)

χ̃(
θN−1 − 2

i
∂ΦN−1

∂x
(x+xN−1

2
)

R
)..χ̃(

θ0 − 2
i
∂Φ0

∂x
(x1+x0

2
)

R
)ν.

Then (for R large enough), F ≥ C0 − R
C3

, whereever ν̃ 6= ν.
For s ≥ 0, we introduce the deformed contour:

Γ+,s(x) = exp(−sν̃)(Γ+(x)). (4.22)

Since ν̃ vanishes where the cut-off in the integral defining Atu(x) is 6= 1, we can
replace Γ+(x) in that integral by Γ+,s(x) without changing Atu(x), provided that
u is holomorphic.

The right hand side G of (4.19) is a Lipschitz function whose a.e. defined
gradient satisfies ‖G‖`1 ≤ O( 1

C2
), and which is constant in ΩC1

(x). It is then easy
to see, by a regularisation argument, that F − G is decreasing along the integral
curves of −ν̃. Consequently,

(4.19) holds on Γ+,s(x). (4.23)

As explained after (4.22), Γ+,s coincides with Γ+ outside ΩR
2
(x), and it seems

topologically evident, that

Γ+,s(x) ∩ Γ−(x) 6= ∅. (4.24)

Notice that there is a diffeomorphism which simultaneously maps Γ+(x) and Γ−(x)
into affine subspaces. We then get (4.24) from the following (well-known) lemma,
to which we give an analytic proof:
Lemma 4.1. Let Γ+, Γ− be N -dimensional real subspaces of CN which intersect
precisely at 0. Let Ω ⊂⊂ Cn be an open neighborhood of 0. Let s 7→ Γ+,s be a
continuous deformation of Γ+ with Γ+,s = Γ+ outside Ω. Then Γ+,s ∩ Γ− 6= ∅.
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Proof. We may assume (after a real-linear change of coordinates), that Γ+ =
{=z = 0}, Γ− = {<z = 0}. Then we have,

∫

Γ+

e−λz
2/2dz = C1λ

−N/2, λ ≥ 1, (4.25)

for some C1 6= 0. Assume that Γ+,s0 ∩ Γ− = ∅ for some s0. For s ≥ 0, we put
Γ+,s0,s = exp(s∇<(z2/2))(Γ+,t0). Then from the behaviour of the integral curves of
∇<(z2/2) we see that there exists C2 > 0 such that if s ≥ C2, then

∫

Γ+,s0,s

e−λz
2/2dz = O(e−λ/C2). (4.26)

It is also clear that
∫
Γ+,s0

.. =
∫
Γ+
.. =

∫
+,s0,s

, so (4.25) and (4.26) give a contra-

diction if λ is sufficiently large. ♦
Since F is decreasing along the integral curves of −ν̃, the function,

s 7→ sup
Γ+,s

F ∈ [−C0, C0] (4.27)

is decreasing. If (∇F )−1(0) is the critical set of F , then (and we now abandon
temporarily the uniformity with respect to R)

dist((∇F )−1(0),Γ+,s) → 0, t→ ∞, (4.28)

and it follows that
sup

Γ+,s(x)

F → F (x, ρ(x)), (4.29)

where ρ(x) ∈ ΩC1
(x) is a critical point of F (x, ·). Moreover F (x, ρ(x)) is upper

semicontinuous and the convergence in (4.29) is semi-uniform, in the sense that if
G(x) is a continous function with G(x) > F (x, ρ(x)), then for every compact K,
there exists sK,G such that supΓ+,s(x)

F (x, ·) ≤ G(x), for s ≥ sK,G. For u ∈ HΦ0
,

we have

e−ΦN (x)/hAtu(x) = (4.30)

1

(2πh)Nn

∫∫
..

∫

Γ+(x)

e
1
h
(−ΦN (x)+i((φN,N−1(x,θN−1)−xN−1·θN−1)+..+(φ1,0(x1,θ0)−x0·θ0))+Φ0(x))×

χ(
x− xN−1

R
)..χ(

x1 − x0

R
)χ(

θN−1 − 2
i
∂ΦN−1

∂x (x+xN−1

2 )

R
)..χ(

θ0 − 2
i
∂Φ0

∂x (x1+x0

2 )

R
)×

e−
1
h
Φ0(x0)u(x0)dx0dθ0..dxN−1dθN−1,
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where the real part of the exponent is 1
hF . Since Γ+(x) = Γ+,s(x) in the region

where the cut-off function is not equal to 1, we can replace Γ+(x) by Γ+,s(x) in
(4.30), and conclude that for every ε > 0, there exists Cε > 0 (depending also on
N , x) such that

|e−ΦN (x)/hAtu(x)| ≤ Cεe
(F (x,ρ(x))+ε)/h. (4.31)

Also for every continuous function G(x) > F (x, ρ(x)), and every compact set K,
we have

|e−ΦN (x)/hAtu(x)| ≤ CG,Ke
G(x)/h, x ∈ K. (4.32)

We end this section by giving a geometric interpretation of the function
F (x, ρ(x)). Recall that Λ0 = ΛΦ0

is an I-Lagrangian manifold so that d(−=(ξ ·
dx))|Λ0

= −=σ|Λ0
= 0 and notice that −=(ξ · dx)|Λ0

= dΦ0(x). If we consider
ψt,s(x, y, θ) = φt,s(x, θ) − y · θ as a non-degenerate phase function in the sense of
Hörmander [H1], generating κt,s, we see that

(ξ · dx− η · dy)|graph(κt,s) = (
∂ψt,s
∂x

· dx+
∂ψt,s
∂y

· dy)|Cψt,s = dψt,s|Ct,s ,

where Cψt,s is the critical manifold of ψt,s, defined by
∂ψt,s
∂θ = 0. Viewing ψt,s as a

function on graph(κt,s), we can write

(ξ · dx− η · dy)|graph(κt,s) = dψt,s. (4.33)

On the other hand, using the eikonal equation (2.10), we get along an integral curve
t 7→ κt,s(y, η):

d

dt
(ψt,s) = (

∂

∂t
+Hpt(x, ξ))(φt,s) = (4.34)

−pt +
∂pt
dξ

· ∂
∂x
φt = −pt +

∂pt
∂ξ

· ξ = −pt + 〈Hpt , ξ · dx〉.

It follows that on the I-Lagrangian manifold Λt, −=(ξ ·dx) has the natural primitive:

ft(κt,0(y, η)) = Φ0(y) +

∫ t

0

=(pτ − 〈Hpτ , ξ · dx〉)(κτ,0(y, η))dτ, (4.35)

and if we let (y, η) ∈ Λ0 be the initial point, corresponding to the critical point
ρ(x), we get

F (x, ρ(x)) = −Φt(x) + ft(κt,0(y, η)). (4.36)

5. Stationary phase, inversion, H(Λt) in the regular case.

In this section, we do not aim at results which are uniform in R, so we allow R
dependence in our estimates. We start by rewriting the stationary phase method
by combining material scattered in [S1], [He-S1], [He-S2], [S2], [S3].
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Let φ(x) be holomorphic in a neighborhood of 0 ∈ Cn, with φ′′(0) non-
degenerate and with φ′(0) = 0, φ(0) = 0. By the holomorphic Morse lemma,
we can then find new holomorphic coordinates y centered at 0, such that φ =
y2/2 =def φ0(y). The formal integral

∫
Γ
e−2φ(x)/hdx, where the contour Γ of course

will have to be considered later, then transforms to
∫
Γ̃
e−2φ0(y)/hJ(y)dy, where J(y)

is a (non-vanishing) Jacobian. We now use the point of view of [HeS2,S2,S3] and
look for a(y; h) and µ(h), formal symbols of order 1 and 0 respectively, such that,

J(y)e−φ0(y)/h = d∗φ0
dφ0

(ae−φ0/h) + µe−φ0/h, (5.1)

where dφ0
= e−φ0/h◦hd◦eφ0/h, d∗φ0

= eφ0/h◦(hd)∗◦e−φ0/h. Then d∗φ0
dφ0

= −h2∆y+

y2 − nh has the lowest eigenvalue 0 as an operator on L2(Rn), and we transform
(5.1) by applying an h-Fourior U(h) as in [He-S1] which induces the tranformations:

−h2∆y+y
2−nh↔ 2x·hDx, J(y)e−φ0/h ↔ J̃(x; h), ae−φ0/h ↔ ã(x; h), e−φ0/h ↔ 1,

where J̃ is an analytic symbol of order 0, and where ã is an analytic symbol iff a is
an analytic symbol. (5.1) now takes the form

J̃(x; h) = 2x · h∂xã(x; h) + µ(h), (5.2)

and in terms of formal asymptotic expansions:

J̃ ∼
∞∑

0

Jk(x)h
k, ã(x; h) ∼ h−1

∞∑

0

ãk(x)h
k, µ(h) ∼

∞∑

0

µkh
k,

we get
J̃k(x) = 2x · ∂xãk(x) + µk, (5.3)

which is easily solved with µk = J̃k(0) (see [HeS1]) and it is easy to see that µ and ã
are formal analytic symbols, and hence also a. Naturally, when taking realisations
of a, µ, we get an exponentially small error in (5.1). Ignoring that error for the
moment, we get ∫

Γ̃

e−2φ0(y)/hJ(y)dy = µ

∫

Γ̃

e−2φ0(y)/hdy, (5.4)

and if for instance Γ̃ is a neighborhood of 0 in Rn, then the RHS of (5.4) is equal
to µ(h)(πh)n/2 up to an exponentially small error.

Let Γ : BRn(0, 1) → Cn ∩ neigh(0) be a smooth map with Γ(∂BRn(0, 1))
contained in the region where <φ(x) > φ(0) = 0. We immediately shift to the
Morse coordinates y and notice that if we replace Γ by π< ◦ Γ, where π<(y) = <y,
then

∫
Γ
e−2φ0/hJdy changes only by O(1)e−1/C0h, where C0 > 0 only depends on

the lower bound of <φ on the boundary of Γ and where the O(1) only depends on
some bounds on Γ as a C∞-map. This means that we may assume that Γ is a real
contour. Committing another error of the same type, we are left with

∫

Γ

e−y
2/hJ(y)χ(y)dy, (5.5)
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where Γ : BRn(0, 1) → Rn ∩ neigh(0), Γ(∂BRn(0, 1)) 63 0, χ ∈ C∞
0 (Rn), suppχ ∩

Γ(∂BRn(0, 1)) = ∅, χ = 1 near 0. We now use (5.1) which shows that up to an
exponentially small error of the same type as above, the integral (5.5) is equal to:

µ(h)

∫

Γ

e−y
2/hχ(y)dy. (5.6)

Recall that since d∗d = −∆:

4
∂

∂h

1

(πh)n/2
e−y

2/h = −d∗d 1

(πh)n/2
e−y

2/h,
1

(πh)n/2
e−y

2/h → δ, h→ 0, (5.7)

and hence with Iχ,Γ(h) = (πh)−n
∫
Γ
e−y

2/hχ(y)dy:

∂

∂h
Iχ,Γ(h) = OΓ,χ(1)e−1/Cχh. (5.8)

Integrating this relation from h ∈]0, 1] to 1, we get,

Iχ,Γ(h) = OΓ,χ(1), (5.9)

and if we integrate from 0 to h ∈]0, 1[, we get

Iχ,Γ(h) = Iχ,Γ(0) + OΓ,χ(1)e−1/Cχh. (5.10)

In order to calculate the limit Iχ,Γ(0), we make a slight perturbation of Γ near
Γ−1(0), and achieve, without changing Iχ,Γ(0), that Γ−1(0) is a finite set on which
det(Γ′) i non-vanishing. Then from the last part of (5.7), it follows that

Iχ,Γ(0) = mΓ =
∑

x∈Γ−1(0)

sign(det Γ′(x)) (5.11)

is an integer which also satisfies

mΓ = OΓ(1), (5.12)

i.e. is bounded by some semi-norm of Γ in C∞. Summing up, we get under the
assumptions described prior to (5.5):

∫

Γ

e−y
2/hJ(y)dy = µ(h)(πh)−n/2mΓ + OΓ(1)e−1/CΓh, (5.13)

where OΓ(1), mΓ ∈ Z are bounded by some semi-norms of Γ in C∞ and where
µ(h) ∼ µ0 + µ1h+ .. is an analytic symbol depending only on J satisfying µ0 6= 0.
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We now return to the discussion of section 4 and assume for some fixed t =
t0 ∈ I, that κt0,0 = id. Under this assumption, ΦN − Φ is bounded, so we shall
take ΦN = Φ0, when studying At. It is also clear that the function ρ 7→ F (x, ρ) has
a unique critical point ρ = ρ(x) which is non-degenerate and of signature 0. The
latter fact was established in [S1]. Since Λt0 = Λ0, we have ft0 = Φ0 +const., where
ft0 is introduced in (4.35). Hence by (4.36): F (x, ρ(x)) = const.. Adding suitable
t-dependent constants to pt, we may assume that,

F (x, ρ(x)) = 0. (5.14)

Let G+(x), G−(x) be the stable outgoing and incoming manifolds for the gradi-
ent flow through ρ(x). Let U(x) be a small ball of radius independent of x, centered
at ρ(x). With Γ+,s(x) defined as in the preceding section, we have,

F|Γ+,s(x)\U ≤ − 1

C

and by simply projecting Γ+,s, we may also assume that Γ+,s(x)∩U ⊂ G−(x) and
then by the discussion of section 4:

|At0u(x; h)| ≤ CeΦ0(x)/h‖e−Φ0/hu‖L∞ ≤ C̃h−n/2eΦ0(x)/h‖u‖L2
Φ0

. (5.15)

Without loss of generality, we may assume that Φ0(x) is strictly convex. Put,

uη(x) = e
1
h
(Φ0(y)+i(x−y)·η), where η =

2

i

∂Φ0

∂y
(y). (5.16)

Notice that the real part of the parenthesis in the exponent is ≤ Φ0(x)− 1
C |x− y|2.

We can then apply stationary phase as explained in the beginning of this section
and obtain,

At0(uη)(x; h) = m(x)a(x, η; h)e
1
h
(Φ0(y)+i(x−y)·η) + O(1)e

1
h
(Φ0(y)+i(x−y)·η−

1
C

),
(5.17)

uniformly for |x− y| ≤ 1
C , x ∈ Cn. Here a(x, η; h) ∼ a0(x, η) + ha1(x, η) + .. is an

elliptic classical analytic symbol, defined in the tube |η − 2
i
∂Φ0

∂x
(x)| ≤ 1

O(1)
, with

each ak(x, η) bounded in that tube, and m(x) is an integer, which is easily seen to
be independent of x.

We also know that At0(uη) has its support in |x− y| ≤ C, and it is easy to see
that

|At0(uη)(x; h)| ≤ O(1)e
1
h
(Φ0(x)−

1
C1

)
, for

1

C
≤ |x− y| ≤ C, (5.18)

where C1 > 0. In fact, to see this, we use Φ0(y) − =(x− y) · η ≤ Φy(x), where Φy
is close to Φ0 in C2 and Φy(x) ≤ max(Φ0(x) − 1

C
|x− y|2,Φ0(x) − 1

C
).
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If u ∈ HΦ0
, we write

u(x) =
1

(2πh)n

∫∫

η= 2
i

∂Φ0
∂x

(y)

e
i
h
(x−y)·ηu(y)dydη (5.19)

and obtain in this way a representation of u as a superposition of “waves” of the
form uη(x). Applying then At0 under the sign of integration in (5.19) and using
(5.17) and (5.18), we get,

‖(At0 −mã(x, hDx; h))u‖L2
Φ0

≤ Ce−1/Ch‖u‖HΦ0
, (5.20)

where we have put

ã(x, hDx; h)u(x) =
1

(2πh)n

∫∫

η= 2
i

∂Φ0
∂y

(y)

e
i
h
(x−y)·ηχ(x− y)a(x, η; h)u(y)dydη,

(5.21)
with χ ∈ C∞

0 being a standard cut-off. It is now a routine matter ([S1]) to find
an elliptic analytic symbol ã(x, ξ; h) defined in a tube around Λ0 and with each
coefficient of the asymptotic expansion bounded there, such that the operator in
(5.21) coincides modulo O(e−1/Ch) in L(HΦ0

, L2
Φ0

) with the Weyl quantization,

ãw(x, hDx; h)u(x) =
1

(2πh)n

∫∫

η= 2
i

∂Φ0
∂x

( x+y2 )

e
i
h

(x−y)·ηã(
x+ y

2
, η; h)u(y)dydη.

(5.22)
ã(x, ξ; h) has the same principal part as a(x, ξ; h) so ã is elliptic. We also notice
that ãw = O(1) : HΦ0

→ HΦ0
. For simplicity, we now change notation and write

a(x, hDx; h) for ãw(x, hDx; h) and a(x, ξ; h) for ã(x, ξ; h), so (5.20) becomes,

‖At0 −ma(x, hDx; h)‖L(HΦ0
,L2

Φ0
) ≤ Ce−1/Ch. (5.23)

Here, we may of course replace At0 by Ãt0 . It will follow from the discussion below
that m 6= 0.

We now drop the assumption that κt0,0 = id, and discuss the problem of

inverting Ãt0 . We then reduce ourselves to the preceding discussion by modifying

the generating family of Hamiltonians. The new parameter interval is Ĩ = [0, 2t0]
and the new generating family of Hamiltonians is defined by letting pt be the same
before for 0 ≤ t ≤ t0, and then putting pt = −p2t0−t, for t0 < t ≤ 2t0. The earlier
discussion then applies to A2t0 since κ2t0,0 = id and the corresponding f2t0 at the
end of section 4 is equal to Φ0. We now claim that that the corresponding integer m
in (5.23) (for A2t0) is 1. In fact, to see this, it suffices to decrease t0 continuously to

0 and Ĩ to {0}, so that the corresponding phases φk+1,k are continuously deformed
into x · η. During this deformation, we have (5.23) for A2t0 with a continuously
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varying elliptic a = at0 and with a constant m. When t0 = 0, we have the standard
phase (x2N − x2N−1) · θ2N−1 + ..+ (x1 − x0) · θ0, and it is clear that we get m = 1
and the claim is proved.

If we let Bt0 = Jt2N ,t2N−1
◦..◦JtN+1,tN correspond to the natural decomposition

of [t0, 2t0], symmetric to the one of [0, t0], then

‖Bt0 ◦At0 − a(x, hDx; h)‖L(HΦ0
,L2

Φ0
) ≤ Ce−1/Ch, (5.24)

and similarly for B̃t0 ◦ Ãt0 , where a(x, hDx; h) is an elliptic analytic h-pseudor of

order 0. For h > 0 small enough, B̃t0 ◦ Ãt0 is invertible with a uniformly bounded

inverse in L(HΦ0
, HΦ0

). Put C̃t0 = (B̃t0 ◦ Ãt0)−1B̃t0 : HΦt0
→ HΦ0

, so that

C̃t0 ◦ Ãt0 = I. (5.25)

(It is then clear that m must be 6= 0 in (5.20) under the assumptions there.)
Proposition 5.1. We also have,

Ãt0 ◦ C̃t0 = I. (5.26)

Proof. Let Ψt(x) = Φ0(x) − i
∫ t
0
pτ (x,

2
i
∂Φ0

∂x (x))dτ , so that Ψt = Φt + Ft, where
∇Ft = O(1), <Ft = O(1). Then

∂

∂t
(e−Ψt(x)/hJt,se

Ψs/h) = Oh(1) : L2 → L2,

and similarly for the derivative with respect to s, since

∂φt,s
∂t

(x, η) = −pt(x,
∂

∂x
φt,s(x, η)),

∂φt,s
∂s

(x, η) = ps(y, η),

where (x, ∂
∂x
φt,s(x, η)) = κt,s(y, η). Since we work on the HΦ·

spaces, we can

consider that J̃t,s = ΠtJt,sΠs, where Πt is the orthogonal projection onto HΦt .

Then with Π̃t = e−Φt/hΠte
Φt/h:

e−Ψt/hJ̃t,se
Ψs/h = (e−Ψt/hΠte

Ψt/h)(e−Ψt/hJt,se
Ψs/h)(e−Ψs/hΠse

Ψs/h)

= (e−Ft/hΠ̃te
Ft/h)(e−Ψt/hJt,se

Ψs/h)(e−Fs/hΠ̃se
Fs/h).

Here,

∂

∂t
(e−Ft/hΠ̃te

Ft/h) = e−Ft/h(− 1

h
[Ft, Π̃t] +

∂

∂t
(Π̃t))e

Ft/h = Oh(1) : L2 → L2,
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according to the results in the appendix. It follows that

∂

∂t
(e−Ψt/hJ̃t,se

Ψs/h) = Oh(1) : L2 → L2,

and similarly for the s-derivative.
If we let At0 vary conveniently with t0, we then see that

∂

∂t0
(e−Ψt0/hÃt0e

Φ0/h),
∂

∂t0
(e−Φ0/hB̃t0e

Ψt0/h) = Oh(1) : L2 → L2,

so ∂
∂t0

(B̃t0Ãt0) = Oh(1) : HΦ0
→ HΦ0

and similarly for the derivative of (B̃t0Ãt0)
−1.

Consider C̃t0 = (B̃t0Ãt0)
−1B̃t0 = C̃t0Πt0 as an operator, L2

Φt0
→ HΦ0

. Then

∂

∂t0
(e−Φ0/hC̃t0e

Ψt0/h) = Oh(1) : L2 → L2.

Consider the projection Pt0 = Πt0 − Ãt0C̃t0 : L2
Φt0

→ L2
Φt0

with image in HΦt0
.

Then,
∂

∂t0
(e−Ψt0/hPt0e

Ψt0/h) = Oh(1) : L2 → L2,

so the projection e−Ψt0/hPt0e
Ψt0/h is norm continuous as a function of t0. Since it

vanishes for t0 = 0, it then vanishes for all t0, so we have (5.26) (in HΦt0
). ♦

Theorem 5.2. Let p′t, 0 ≤ t ≤ t′0 be a second family of Hamiltonians with the
same general properties as pt, 0 ≤ t ≤ t0, and assume that Λt0 = Λt′0 and that the

corresponding functions in (4.35-36) agree on this common variety. Define Ã′
t′0

as

above, with a sufficiently fine partition of [0, t′0] and a sufficiently large R. Then

for h > 0 small enough, the spaces {Ã′
t′0
u′; u′ ∈ HΦ0

} and {Ãt0u; u ∈ HΦ0
} coincide

and have equivalent norms, uniformly in h, i.e.

‖u‖Φ0
/‖u′‖Φ0

= O(1), ‖u′‖Φ0
/‖u‖Φ0

= O(1),

uniformly in u, h when Ãt0u = Ã′
t′0
u′.

What is implicit in this statement is that for a given family pt, we choose a
sufficiently large R and a sufficiently fine partition of [0, t0]. The proof below also
shows that any further increase of R and of the fineness of the partition, will give
the same space when h is sufficiently small.

Proof of Theorem 5.2. We have already seen that Ãt0 : HΦ0
→ HΦt0

has the

two-sided inverse C̃t0 : HΦt0
→ HΦ0

. Let Ã′
t′0

: HΦ0
→ HΦt′

0

have the two-sided
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inverse C̃′
t′0

: HΦt′
0

→ HΦ0
. Then Ãt0u = Ã′

t′0
u′ defines a bijection u↔ u′, by means

of u = C̃t0Ã
′
t′0
u′ or u′ = C̃′

t′0
Ãt0u. The discussion leading to (5.23), now shows that

C̃t0Ã
′
t′0

and C̃′
t′0
Ãt0 are both uniformly bounded in HΦ0

. ♦

6. Extension to Lipschitz manifolds and Egorov’s theorem.

In this section, we shall first extend the previous results to the case when Φ0

is replaced by a more general weight Ψ0 satisfying

Ψ0 ∈ C1,1, ∂αΨ0 ∈ L∞ for |α| = 2, Ψ′′
0 ≥ 1

O(1)
, (6.1)

∇Ψ0 −∇Φ0 = O(1). (6.2)

Put L0 = ΛΨ0
. We drop the assumption (4.12) and assume instead:

I × {0} × L0 ⊂ Ω and Lt =def κt,0(L0), t ∈ I, (6.3)

is contained in some fixed tube U independent of t.

Analogously to (2.15), (2.19), we put

Ψ̃t(x) = Ψ0(x) +

∫ t

0

q̃τ (x)dτ, Ψt,ε = Ψ0 +

∫ t

0

gε ∗ q̃τdτ,

where q̃τ = =pτ (x, 2
i
∂Ψ0

∂x (x)). Then we have the analogue of (2.22), (2.23). Putting
Ψt = Ψt,ε, for ε = ε(δ) small enough, we also have ‖∇2(Ψt − Ψ0)‖ ≤ δ, as well as
(2.26,27). Then fix ε small. In section 3, we replace Φt by Ψt. In (3.2) we also have
to replace the term i(x− y) by iC(x− y) for some sufficiently large C. Then (3.6)
remains valid with Ψs instead of Φs, and the remainder of section 3 remains valid.
In section 4 we also replace “Φ” by “Ψ”. In (4.7), (4.8), we insert a sufficiently
large factor C in the last terms. Then the discussion of section 4 remains valid.

In section 5, the modifications start after (5.14), where we drop the attempt
to get (5.15) and simply go directly to (5.16) with Φ0 replaced by Ψ0. There is
no great advantage to introduce the Weyl quantization (5.22), so instead we define
a(x, hDx; h) = Π0ã(x, hDx; h) where ã is given in (5.21) and Π0 is the orthogonal
projection L2

Ψ0
→ HΨ0

. After that, there are no further modifications, except for
replacing Φ by Ψ.

Theorem 6.1. Theorem 5.2 extends to the case when Φ0 is replaced by Ψ0 satis-
fying (6.1), (6.2), when (4.12) is replaced by (6.3), Λt by Lt, Λ′

t′ by L′
t′ (with the

obvious definition).

Definition 6.2. under the assumptions of the preceding theorem, we put H(Lt0) =

{Ãt0u; u ∈ HΨ0
}, equipped with the norm ‖Ãt0u‖HLt0 = ‖u‖Ψ0

.
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In this definition we leave open the choice of a factor eConst./h in the norm, and
this factor can be further specified either by specifying a family of hamiltonians pt
or by specifying a primitive to −=(ξ · dx)|Lt0 in (4.36).

We next discuss the action of h-pseudors. Let P (x, ξ) be an entire function
(independent of h for simplicity) which is bounded in every tube around ΛΦ0

. Make
the general assumptions of Theorem 6.1. By contour deformation, Pw(x, hDx) can
be defined unambigously and is uniformly bounded with respect to h: HΨt → HΨt .

If Ãt and C̃t are the operators appearing above (with Φ replaced by Ψ, then the
proof of (5.24), (5.25) plus stationary phase shows that

Q =def Ã
−1
t PwÃt = O(1) : HΨ0

→ HΨ0,

and we have with Π0 denoting the orthogonal projection: L2
Ψ0

→ HΨ0
.

Theorem 6.3. There is a “uniform” analytic symbol q(y, η; h) ∼ q0(y, η) +
hq1(y, η) + .., defined in a neighborhood of ΛΨ0

of the form ΛΨ0
+ BC2n(0,ε) for

some ε > 0, such that

Q− Π0q(y, hDy; h) = O(e−1/Ch) : HΨ0
→ HΨ0

.

Moreover q0 = P ◦ κt,0. Here q(y, hDy; h) is defined as in (5.21), and C > 0 may
depend on R.

7. Scalar products.

We shall study the scalar product,

(u|v)Φ0
=

∫
u(x)v(x)e−2Φ0(x)/hL(dx) (7.1)

= Cn

∫∫

x=y

u(x)v†(y)e−2Ψ0(x,y)/hdxdy,

for u, v in suitable H(Λt)-spaces. Here we use the notation v†(y) = v(y), and Φ0 is
the same quadratic form as before and Ψ0(x, y) is the unique holomorphic quadratic
form with

Ψ0(x, x) = Φ0(x), x ∈ Cn. (7.2)

As a warm up exercise, we shall start with the case when u ∈ HΦ1
, v ∈ HΦ2

and
Φ1, Φ2 are C1,1-functions with

∂∂Φj ≥
1

Const.
, ∂αΦj = O(1), |a| = 2, (7.3)

∇(Φj − Φ0) = O(1), Φ1(x) + Φ2(x) − 2Φ0(x) ∼ −|x|, |x| → ∞.
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Then the integrals in (7.1) are well-defined and we wish to deform the contour in the
last integral in a such a way that F (x, y) = Φ1(x) + Φ2(y) − 2<Ψ0(x, y) decreases.
Clearly, we are then interested in critical points of F . These points are given by

∂Φ1

∂x
(x) =

∂Ψ0(x, y)

∂x
,
∂Φ2

∂y
(y) = (

∂Ψ0(x, y)

∂y
), (7.4)

or equivalently by

(y,
2

i

∂Φ2

∂y
(y))

J↔(x,
2

i

∂Φ1

∂x
(x)), (7.5)

where J : C2n → C2n is the anti-linear involution given by

J : (y,
2

i
(
∂Ψ0(x, y)

∂y
)) 7→ (x,

2

i

∂Ψ0(x, y)

∂x
). (7.6)

J is the unique anti-linear map with J|ΛΦ0
= id, as can be seen by differentiating

(7.2), so we can view J as the natural operation of complex conjugation with respect
to ΛΦ0

.
If Γ : (y, η) → (y, η) is the usual complex conjugation, then

J = κΨ0
◦ Γ, (7.7)

where

κΨ0
: (y,−2

i

∂Ψ0

∂y
(x, y)) 7→ (x,

2

i

∂Ψ0

∂x
(x, y)) (7.8)

is the canonical transformation associted to the h-Fourior:

Fu(x; h) = h−n
∫
e2Ψ0(x,y)/hu(y)dy. (7.9)

Since J2 = Γ2 = id, we also have

κΨ0
ΓκΨ0

Γ = id. (7.10)

Since Φ0 is real-valued, (7.2) shows that Ψ†
0(x, x) = Ψ0(x, x), and since two

entire functions which coincide on x = y have to coincide everywhere:

Ψ†
0(x, y) = Ψ0(y, x). (7.11)

We now recall that

Φ0(x) + Φ0(y) − 2<Ψ0(x, y) ∼ |x− y|2 (7.12)
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(since the LHS is a strictly plurisubharmonic quadratic form, which vanishes to the
second order on the anti-diagonal). Let Γ+ be the anti-diagonal; x = y and let
Γ− = iΓ+. Then

Φ1(x) + Φ2(y) − 2<Ψ0(x, y)

{
≤ C0 − 1

C0
|x| on Γ+,

≥ −C0 + 1
C0

|x|2 on Γ−
, (7.13)

so Γ+ is good and Γ− is bad. Here the second estimate follows if we notice that on
Γ−:

Φ1(x) + Φ2(y) − 2<Ψ0(x, y) =

O(1) + O(|x|) + Φ0(x) + Φ0(y) − 2<Ψ0(x, y) ≥

O(1) + O(|x|) +
1

C
|x|2,

using that x− y = 2x on Γ−.
If |∇x,y(Φ1(x) + Φ2(y) − 2<Ψ0(x, y))| ≤ ε0, for some small ε0, it follows that

|(x, 2
i

∂Φ1(x)

∂x
) − J(y,

2

i

∂Φ2(y)

∂y
)| = O(ε0), (7.14)

and in particular that x−y = O(1), since ΛΦj are contained in a tube around ΛΦ0
.

This together with (7.13) means that we can make contour deformations as before,
by means of a vector field of the form χ(x−y

R
)∇F , where χ ∈ C∞

0 (B(0, 1)) is equal
to 1 on B(0, 1

2) and a mountain pass argument shows that for every ε > 0,

|(u|v)HΦ0
| ≤ Cεe

1
h
(F (x0,y0)+ε)‖u‖HΦ1

‖v‖HΦ2
, (7.15)

where (x0, y0) is a critical point of the function F (x, y). Moreover, we see that
|(x0, y0)| = O(1), though there may of course exist a sequence of critical points
(xj , yj) with xj − yj = O(1), |xj| → ∞,.

We next study the more general case, where u, v are replaced by functions of
the form Ãtu, B̃sv as in Theorem 6.1. More precisely, At = JN,N−1 ◦ .. ◦ J1,0 as
before, Bs = KM,M−1 ◦ .. ◦K1,0,

Kj+1,jv = Ksj+1,sjv(x) = h−n
∫∫

e
i
h
(ψsj+1,sj

(x,w)−y·w)χR(y, w)v(y)dydw,

where ψsj+1,sj is the generating function associated to κ̃sj+1,sj associated to the flow
analogous to (2.6), with pt replaced by qs, satisfying the same assumptions as pt
(and we use the same integration contours and cut-offs). We let u ∈ HΨ, v ∈ H

Ψ̃
and

make the assumptions of Theorem 6.1. Let Ψt, Ψ̃s be the corresponding weights,
so that Ãt = O(eO(1)/h) : HΨ → HΨt , B̃s = O(eO(1)/h) : H

Ψ̃
→ H

Ψ̃s
.
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We assume for some fixed t, s, that

Ψt(x) + Ψ̃s(x) − 2Φ0(x) ∼ −|x|, |x| → ∞. (7.16)

Up to an error O(1)e−R/Ch‖u‖HΨ
‖v‖H

Ψ̃

, we may replace (Ãtu|B̃sv) by (Atu|Bsv).
We have

(Atu|Bsv)HΦ0
= h−(M+N)n

∫
..

∫

Γ+

e
1
h
F (cut − offs)× (7.17)

u(x0)v
†(y0)dx0..dxNdy0..dyMdθ0..dθN−1dw0..dwM−1,

where,

F (x0, .., xN , y0, .., yM , θ0, .., θN−1, w0, .., wM−1) = (7.18)

−2Ψ0(xN , yM ) + i(φN,N−1(xN , θN−1) − xN−1 · θN−1) + ..+ i(φ1,0(x1, θ0) − x0 · θ0)
−i(ψ†

M,M−1(yM , wM−1) − yM−1 · wM−1)..− i(ψ†
1,0(y1, w0) − y0 ·w0),

and where Γ+ will be specified below.
As before, we see that

(x0, .., xN , y0, .., yM , θ0, .., θN−1, w0, .., wM−1)

is a critical point for <F + Ψ(x0) + Ψ̃(y0) iff

θ0 =
2

i

∂Ψ

∂x
(x0), (x1, θ1) = κ1,0(x0, θ0), .., (xN−1, θN−1) = κN−1,N−2(xN−2, θN−2),

(xN ,
∂φN,N−1

∂x
(xN , θN−1)) = κN,N−1(xN−1, θN−1) = (xN ,

2

i

∂Ψ0

∂x
(xN , yM)),

(y0, w0) = (y0,
2

i

∂Ψ̃

∂x
(y0)), (y1, w1) = κ̃1,0(y0, w0), ..,

κ̃(yM−1, wM−1) = κ̃M−1,M−2(yM−2, wM−2),

(yN ,
∂ψM,M−1

∂y
(yM , wM−1) = κ̃M,M−1(yM−1, wM−1),

(yM ,
∂ψM,M−1

∂y
(yM , wM−1)) = (yM ,

2

i

∂Ψ0

∂y
(xN , yM))(= J(xN ,

2

i

∂Ψ0

∂x
(xN , yM))),

which coresponds to a point in the intersection

(J ◦ κ̃M,M−1 ◦ .. ◦ κ̃1,0(ΛΨ̃
)) ∩ (κN,N−1 ◦ .. ◦ κ1,0(ΛΨ)) = J ◦ κ̃s,0(ΛΨ̃

) ∩ κt,0(ΛΨ).

36



The discussion leading to (4.16) shows that if ε0 > 0 is small enough and

‖∇F (x0, .., xN , y0, .., yM , θ0, .., θN−1, w0, .., wM−1) + Ψ(x0) + Ψ̃(y0)‖`1 ≤ ε0,
(7.19)

then

(x0, θ0) − (x0,
2

i

∂Ψ

∂x
(x0)), .., (xj, θj) − κj,0(x0,

2

i

∂Ψ

∂x
), ..

(y0, w0) − (y0,
2

i

∂Ψ̃

∂y
(y0)), .., (yk, wk) − κ̃k,0(y0,

2

i

∂Ψ̃

∂y
(y0)), ..,

(xN , θN) − J(yM , wM ) = O(ε0),

with the convention

θN =
∂φN,N−1

∂x
(xN , θN−1), wM =

∂ψM,M−1

∂y
(yM , wM−1),

and in particular,

‖xN − xj‖, ‖xN − yk‖, ‖θj −
2

i

∂Φ0

∂x
(xN )‖, ‖wk −

2

i

∂Φ0

∂x
(xN )‖ = O(1). (7.20)

In (7.17), we start by using the good contour Γ+, in opposition to the bad contour
Γ−, both given by,

θN−1 =
2

i

∂ΦN−1

∂x
(
xN + xN−1

2
) ± iC(xN − xN−1), .. (7.21)

θ0 =
2

i

∂Φ0

∂x
(
x1 + x0

2
) ± iC(x1 − x0),

wM−1 =
2

i

∂Φ̃M−1

∂y
(
yM + yM−1

2
) ± iC(yM − yM−1), ..

w0 =
2

i

∂Φ0

∂y
(
y1 + y0

2
) ± iC(y1 − y0),

xN = ±yM ,

with C > 1 sufficiently large. Then we get the estimates (with a new “C”),

<F + Ψ(x0) + Ψ̃(y0)





≤ C − 1
C (|xN | + |yM | + |xN − xN−1|2 + ..+ |x1 − x0|2

+|yM − yM−1|2 + ..+ |y1 − y0|2), on Γ+,
≥ −C + 1

C (|xN |2 + |yM |2 + |xN − xN−1|2 + ..+ |x1 − x0|2
+|yM − yM−1|2 + ..+ |y1 − y0|2), on Γ−.

(7.22)
We can then apply the Mountain pass technique as before, to get for every ε > 0:

|(Atu|Bsv)HΦ0
| ≤ Cεe

1
h

(ε+G), (7.23)
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where G = O(1) is a critical value of <F + Ψ(x0) + Ψ̃(y0), and where the critical
point satisfies xN = O(1) in addition to (7.20).

Geometric interpretation. Consider first a general I-Lagrangian manifold of the
form ξ = 2

i
∂Φ
∂x (x), where Φ is a real C2 function. Considering Φ as a function on

ΛΦ, we have (as already noted): dΦ = −=(ξ · dx)|ΛΦ
, so Φ is a natural primitive to

−=(ξ ·dx)|ΛΦ
. If φ(x, η) is a holomorphic function, generating the complex canonical

transformation κ, then for (x, ξ) = κ(y, η), we have, ξ · dx = dx(φ(x, η) − y · η),
−η · y = dy(φ(x, η) − y · η), 0 = dη(φ(x, η) − y · η), so

ξ · dx− η · dy = d(φ(x, η) − y · η),

−=(ξ · dx) = −=(η · dy) + d(−=(φ(x, η) − y · η)).

Let Λ2, Λ1 be I-Lagrangian manifolds with Λ2 = κ(Λ1) and let Φ1 ∈ C1(Λ1) satisfy
dΦ1 = −=(η · dy)|Λ1

. Then we get Φ2 ∈ C1(Λ2) with dΦ2 = −=(ξ · dx) by

Φ2(x, ξ) = Φ1(y, η) −=(φ(x, η) − y · η), (x, ξ) = κ(y, η). (7.24)

Under the general assumptions of Theorem 6.1, with Ψ of class C2, we get a family
of primitives Gt ∈ C1(Lt) mutually related by

Gt(x, ξ) = Gs(y, η)− =(φt,s(x, η) − y · η), (x, ξ) = κt,s(y, η), (7.25)

and also by (cf. (4.35)):

Gt(xt, ξt) = Gs(xs, ξs) +

∫ t

s

=(pτ − 〈Hpτ , ξ · dx〉)(xτ , ξτ )dτ, (7.26)

where (xτ , ξτ) = κτ,s(xs, ξs). Examining the earlier discussions, we see that the
critical value can be described in terms of these primitives. For instance, in the
situation of Theorem 6.2, we have for every ε > 0:

|Ãt,0u(x)| ≤ Cεe
1
h
(sup(x,ξ)∈Λt∩π

−1(x) Gt(x,ξ)+ε)‖u‖HΨ
, (7.27)

where π : (x, ξ) 7→ x is the natural projection.

Similarly, under the assumptions of (7.23), when Ψ, Ψ̃ are C2:

|(Ãtu|B̃sv)HΦ0
| ≤ (7.28)

Cε exp
1

h
(ε+ sup

(x,ξ)∈κt,0(ΛΨ)

(y,η)∈κ̃s,0(Λ
Ψ̃)

(x,ξ)=J(y,η)

−2<Ψ0(x, y) +Gt(x, ξ) + G̃s(y, η)) × ‖u‖HΨ
‖v‖H

Ψ̃

,

38



where Ψ̃s are defined on κ̃s,0(ΛΨ̃
) in the same way as Ψt.

The right hand side of (7.29) simplifies if we consider HΦ0
as the image under

an FBI-transform as in (1.3) with an associated canonical transformation κT , given
by (1.4) and with

Φ0(x) = v.c.
t∈Rn

−=φ(x, t), (7.29)

so that as in section 1:

Ψ0(x, y) =
i

2
v.c.
t

(φ(x, t)− φ(y, t)). (7.30)

Let M = κ−1
T (κt,0(ΛΨ)), M̃ = κ−1

T (κ̃s,0(ΛΨ̃
)), so that −=(η · dy)|M , −=(η · dy)

|M̃

have the primitives H and H̃ respectively, where

Gt(x, ξ) = −=φ(x, y) +H(y, η), (x, ξ) = κT (y, η), (y, η) ∈M,

G̃t(x, ξ) = −=φ(x, y) + H̃(y, η), (x, ξ) = κT (y, η), (y, η) ∈ M̃.

Also notice that J ◦ κT = κT ◦ Γ. With (x, ξ), (y, η) as in (7.28), we then have
(x, ξ) = κT (t, τ), (y, η) = κT (t, τ), where t is also the critical point in (7.29). Then,

− 2<Ψ0(x, y) +Gt(x, ξ) + G̃s(y, η) =

Gt(x, ξ) + G̃s(y, η) + =φ(x, t) + =φ(y, t)

= H(t, τ) + H̃(t, τ),

so (7.28) becomes

|(Ãt,0u|B̃s,0v)| ≤ Cε(exp
1

h
(ε+ sup

(t,τ)∈M∩M̃

H(t, τ) + H̃(t, τ))) × ‖u‖HΨ
‖v‖HΨ̃

.

(7.32)

8. Discussion of general families of I-Lagrangian manifolds.

In this section we discuss, without giving any complete answers, the following
question: To which families of I-Lagrangian manifolds Λt, t ∈ I, can we associate
families of spaces H(Λt)? Our discussion will deal with various approximation
properties.

We start by imposing some general conditions, to be valid throughout the whole
discussion. Let us first consider a purely local situation: Let I be a compact interval
and let I 3 t → Λt be a smooth (C∞) family of smooth I-Lagrangian manifolds,
which are topologically trivial. Since =(ξ · dx)|Λt is closed for every t, we can find
h ∈ C∞(L) where L = {(t, x, ξ) ∈ I ×C2n; (x, ξ) ∈ Λt}, such that

dh = =(ξ · dx)|L − rt(x, ξ)dt,

39



for some rt(x, ξ) ∈ C∞(L). Consider

Λ = {(t, τ ; x, ξ) ∈ I ×R × C2n; (x, ξ) ∈ Λt, τ + rt(x, ξ) = 0}.

Then, (τdt+=(ξ · dx))|Λ = dh (with h(t, x, ξ) considered as a function on Λ), so Λ
is a Lagrangian submanifold for the symplectic form dτ ∧dt+=(dξ∧dx). Moreover,
τ+rt(x, ξ) vanishes on Λ, so the corresponding Hamilton field ∂

∂t+H
=σ
rt is tangential

to Λ. Let κt,s be the family of locally defined I-canonical transformations, defined
by κt,s(ρ) = ρ(t), where

∂

∂t
ρ(t) = H=σ

rt (ρ(t)), ρ(s) = ρ. (8.1)

Then locally:
Λt = κt,s(Λs). (8.2)

Let I be a compact interval containing 0 and let r = rt(x, ξ) be Borel measurable
on I × C2n with the following properties:

rt ∈ C∞(C2n), for every t, (8.3)

|∇α
(x,ξ)rt| ≤ CU,α in every tube U, for every α, (8.4)

∇α
(x,ξ)rt(x, ξ) → 0 when (x, ξ) → ∞ in U, uniformly (8.5)

with respect to t, for every tube U and for every α.

We can then define a family of I-canonical transformations κt,s by (8.1), to which
most of the general discussion of section 2 applies. In particular, let Ω ⊂ I×I×C2n

be the maximal domain of definition defined as in section 2. Assume

I × {0} × Λ0 ⊂ Ω, where Λ0 = ΛΦ0
, and Λt =

def
κt,0(Λ0) (8.6)

is contained in a fixed tube, independent of t.

Notice that Λt are I-Lagrangian manifolds, no longer automatically R-symplectic.
In view of (8.5), we know that Λt are asymptotic to Λ0 near infinity, so Λt are
R-symplectic near infinity. We assume so is the case everywhere:

Λt are R-symplectic. (8.7)

Without changing the family Λt, we may cut down rt to 0 outside some fixed tube.
Then we get,

∇α
x,ξrt(x, ξ) → 0, (x, ξ) → ∞, (8.8)
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uniformly in t, and the I-canonical transformations κt,s then become globally de-
fined on C2n (so Ω = I × I ×C2n). Moreover, we get,

κt,s(x, ξ)− (x, ξ), dκt,s − id, and ∇ακt,s(x, ξ) for |α| ≥ 2, (8.9)

tend to 0, when (x, ξ) tends to infinity.

We can then identify (C2n,Λt) with (C2n,Λ0) by means of κt,0, and it makes sense
to speak about functions on Λt whose derivatives up to some fixed order either are
bounded or tend to 0 at infinity. The restrictions rt|Λt belong to the latter class.
Notice that if we modify the rt away from Λt, then the family Λt remains unchanged.
In particular, we may replace rt by a new function rt with rt|Λt unchanged, such

that ∂rt vanishes to infinite order on Λt (so that rt is almost analytic). In fact,
(8.7) implies that Λt is totally real, and it is then well-known that we have almost
analytic extensions.
Theorem 8.1. The following three conditions (all uniform with respect to t ∈ I,)
are equivalent:

(i) We can find pt,ε(x, ξ), depending on the parameter ε ∈]0, 1], entire, bounded
and tending to zero at infinity in every tube uniformly with respect to t, such that
uniformly in t:
a) supΛt |∇(rt − 1

i pt,ε)|Λt | = o(ε), ε→ 0,
b) |∇pt,ε|, |∇2pt,ε| ≤ a constant independent of ε on {(x, ξ) ∈ C2n; dist((x, ξ); Λt) ≤
ε}.
(ii) Same as (i) except that a) is replaced by
a’) supΛt

|∇(rt −=pt,ε)|Λt | = o(ε), ε→ 0.

(iii) There exists Ft ∈ C∞(C2n) such that uniformly in t: Ft ∼ dist(·,Λt)2, ∂2Ft
∂x∂x

≥
1
C , ∇αFt = O(1), for |α| ≥ 2.

Before the proof we make some observations: It is clear that (i) implies (ii),
but the opposite implication does not seem to be obvious and may depend on the
special properties of the manifolds under consideration. It is quite classical and
established in Hörmander-Wermer [HW], that properties like (iii) imply properties
like (i), but we shall nevertheless supply a proof. The main part of the proof will
be that of the implication (ii)⇒(iii), and here we approximate the flow of time
dependent Hamilton fields by entire canonical transformations. Similar questions
for time independent vectorfields have recently been studied. See Forstneric [F].

Proof. As just remarked, it suffices to show the implications (ii)⇒(iii) and (iii)⇒
(i). Most of the proof will be devoted to
(ii)⇒(iii): We can rewrite a’) as H=σ

=pt,ε
− H=σ

rt
= o(ε) on Λt in TΛt(C

2n)/T (Λt).

This means that if f = f(t, x, ξ) is some locally defined function, vanishing on Λ,
Lipschitz in t and C∞ in (x, ξ), then ( ∂

∂t
+H=σ

=pt,ε
)(f) = o(ε) on Λ. ¿From this and
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the property b), we deduce that if [0, s0[3 s 7→ exp s( ∂∂t +H=σ
=p·,ε

)(ρ) is an integral
curve which remains in an ε-neighborhood of Λ, then

d(exp s(
∂

∂t
+H=σ

=pt,ε)(ρ),Λ) ≤ eO(1)|s|(o(ε) + d(ρ,Λ)).

In other words, if κt,s,ε is the family of C-canonical tranformations associated to
H=σ

=pt,ε
= Hσ

pt,ε , then there is a constant C > 0, such that

dist(ρ,Λs) ≤
ε

C
=⇒ dist(κt,s,ε(ρ),Λt) ≤ ε, and (8.10)

dist(κt,s,ε(ρ),Λt) ≤ eC|t−s|(o(ε) + dist(ρ,Λs)).

Since we work on uniformly bounded time intervals, we get from this that in the
obvious sense:

dist(ρ,Λs) = o(ε) =⇒ dist(κt,s,ε(ρ),Λt) = o(ε).

As an even more special case, we notice that

ρ ∈ κt,s,ε(Λs) =⇒ dist(ρ,Λt) = o(ε).

We also need to control the evolution of the tangent space of κt,s,ε(Λs), and
for that purpose we introduce t-dependent local coordinates (x, y) such that Λt
is of the form y = 0. Then H=σ

=pt,ε
becomes a t (and ε) dependent vectorfield

ν(t, x, y) · ∂
∂x

+ µ(t, x, y) · ∂
∂y

, and we have

µ(t, x, 0) = o(ε), ε→ 0. (8.11)

The assumption b) says that ν,µ and their first order derivatives are O(1) when |y| ≤
ε. (It is here tacitly assumed that we choose the local coordinates in a uniform way,
so that the differentials, inverse differentials as well as their higher order derivatives
satisfy uniform bounds.) By Cauchy’s inequalities, we also know that ∇2ν,∇2µ =
O( 1

ε ) for |y| ≤ ε. (We may assume that a new smaller ε-neighborhood of Λt contains

|y| ≤ ε.) Consider an integral curve of ν · ∂
∂x + µ · ∂

∂y with y = o(ε). The linearized
flow along the integral curve is given by the equations,

{
d
dt
δx = ∂ν

∂x
δx + ∂ν

∂y
δy

d
dt
δy = ∂µ

∂x
δx + ∂µ

∂y
δy,

(8.12)

and the evolution of a tangent plane δy = A(t)δx is then given by,

dA

dt
+A

∂ν

∂x
− ∂µ

∂y
A+ A

∂ν

∂y
A =

∂µ

∂x
. (8.13)
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Since µ = o(ε) in a region where y = o(ε) and ∂2µ
∂x2 = O( 1

ε ), it follows from

a standard convexity inequality that ∂µ
∂x = o(1) in this region and the integral

curve under consideration is contained in a such a region. Hence if for some s
we have A(s) = o(1), so will also be the case for all other s. In particular it
follows that Λt,s,ε =def κt,s,ε(Λs) is contained in a o(ε)-neighborhood of Λt, and
dist(Tρ(Λt,s,ε), Tπt(ρ)(Λt)) = o(1), for r ∈ Λt,s,ε, where πt(ρ) ∈ Λt is the point
which is the closest to ρ.

We also need estimates on the curvatures of Λt,s,ε. If we let Lt = κt,s,ε(Ls),
with Lt of the form y = φt(x), then

(
∂

∂t
+ ν(t, x, φ) · ∂

∂x
)φ = µ(t, x, φ)

and differentiation gives us back (8.13) with A = φ′x:

(
∂

∂t
+ ν(t, x, φ) · ∂

∂x
)φ′x + ν′x(t, x, φ)|φ′x + ν′y(t, x, φ)|φ′x|φ′x (8.13′)

= µ′
x(t, x, φ) + µ′

y(t, x, φ)|φ′x
Here the vertical bars separate tensors between which certain contractions are per-
formed (and not necessary to specify). One more differentiation gives an o.d.e. for
φ′′xx along the Hpt integral curves:

(
∂

∂t
+ ν · ∂

∂x
)φ′′xx + ν′x|φ′′xx + ν′y |φ′x|φ′′xx + ν′x|φ′′xx + ν′′xx|φ′x+ (8.14)

ν′′xy|φ′x|φ′x + ν′y|φ′′xx|φ′x + ν′y|φ′x|φ′′xx + ν′′yx|φ′x|φ′x + ν′′yy|φ′x|φ′x|φ′x
= µ′′

xx + µ′′
xy|φ′x + µ′′

yx|φ′x + µ′′
yy|φ′x|φ′x + µ′

y|φ′′xx.

This is a linear o.d.e. for φ′′xx. We recall that ν′, µ′ = O(1), ν′′, µ′′ = O( 1
ε ), and

along an integral curve with φ = o(ε), we also have µ = o(ε) and by convexity
estimates together with the fact that µ′′′ = O( 1

ε2
) (by the Cauchy inequalities), we

see that µ′′
xx = o( 1

ε ). Along every integral curve, we then get a linear o.d.e. for φ′′xx
of the form

d

dt
φ′′xx + O(1)(φ′′xx) = o(

1

ε
). (8.15)

Hence, if φ′′xx = o( 1
ε
) at some point on such a curve, we also have it at every other

point. In particular, it follows that Λt,s,ε is of the form y = φ(x) with φ(x) = o(ε),
φ′x(x) = o(1), φ′′xx = o( 1

ε ) (still in the special time dependent local coordinates).
When differentiating (8.14) further, we get all the time the same linear differ-

ential operator acting on φ(k), for k = 3, 4, ... It is then clear that φ(x) representing
Λt,s,ε above, satisfies, φ(k)(x) = O(ε−N(k)), k ≥ 3. In particular, since Λ0 is lin-
ear, we can choose global linear coordinates (x, y), with Λ0 given by y = 0. Then
Λ0,t,ε = κ0,t,ε(Λt) has a global representation, y = φ(x) with

φ(x) = o(ε), φ′x(x) = o(1), φ′′xx(x) = o(
1

ε
), φ(k) = O(ε−N(k)), k ≥ 3, (8.16)
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φ(k)(x) → 0, x→ ∞, for every k ≥ 0. (8.17)

The next step will be to approximate κt,s,ε in an ε-neighborhood of Λs, by
canonical transformations, which are entire, invertible and with entire inverses.

As a preparation, we compare the flow of a sum of vectorfields with composi-
tions of short time flows of each of the terms. For that purpose, it will be convenient
to work in some convex open set Ω in Rn and it will be tacitly assumed that all
integral curves under consideration remain in that set. Let v(t, x), t ∈ I, x ∈ Ω, be
a vectorfield with supt∈I ‖v(t, ·)‖L∞ < ∞, supt∈I ‖∇xv(t, ·)‖L∞ < ∞. Let Φvt,s(x)

be the flow, defined by ∂
∂tΦ

v
t,s(x) = v(t,Φvt,s(x)), Φvs,s(x) = x. Then,

|Φvt,s(x) − x| ≤
∫ t

s

‖v(τ, ·)‖∞dτ,

∂

∂t
Φvt,s(x) = v(t,Φvt,s(x)) = v(t, x) +R,

where,

|R| ≤ ‖∇xv(t, ·)‖∞
∫ t

s

‖v(τ, ·)‖∞dτ,

so by integrating,

|Φvt,s(x) − (x+

∫ t

s

v(τ, x)dτ)| ≤
∫ t

s

‖∇xv(τ, ·)‖∞
∫ τ

s

‖v(σ, ·)‖∞dσdτ (8.18)

≤ ( sup
s≤τ≤t

‖∇xv(τ, ·)‖∞)( sup
s≤τ≤t

‖v(τ, ·)‖∞)(t− s)2/2.

Now consider v(t, x) = v1(t, x) + .. + vN (t, x), t ∈ I, with supt∈I ‖vj(t, ·)‖∞ < ∞,
supt∈I ‖∇xvj(t, ·)‖∞ <∞. Assume s < t for simplicity and s, t ∈ I. Define ṽ(σ, x)
for s ≤ σ ≤ s+N(t− s), by:

ṽ(σ, x) = vj(σ − (j − 1)(t− s), x), for s+ (j − 1)(t− s) ≤ σ < s+ j(t− s).

Then Φṽs+N(t−s),s = ΦvNt,s ◦..◦Φv1t,s, and we want to compare this with Φvt,s. Applying

(8.18) in both cases, we get,

|Φvt,s(x) − (x+

N∑

1

∫ t

s

vj(τ, x)dτ)| ≤

( sup
s≤τ≤t

∑

j

‖∇xvj(τ, ·)‖∞)( sup
s≤τ≤t

∑

j

‖vj(τ, ·)‖∞)(t− s)2/2,

|ΦvNt,s ◦ .. ◦ Φv1t,s(x) − (x+
N∑

1

∫ t

s

vj(τ, x)dτ)| ≤

(max
j

sup
s≤τ≤t

‖∇xvj(τ, ·)‖∞)(max
j

sup
s≤τ≤t

‖vj(τ, ·)‖∞)(N(t− s))2/2
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The right hand side of the first estimate is dominated by that of the second estimate
and we get,

|Φv1+..+vNt,s (x) − Φv1t,s ◦ .. ◦ ΦvNt,s (x)| ≤ (8.19)

(max
j

sup
s≤τ≤t

‖∇xvj(τ, ·)‖∞)(max
j

sup
s≤τ≤t

‖vj(τ, ·)‖∞)N2(t− s)2.

It is easy to see that,

|Φvt,s(x) − Φvt,s(y)| ≤ exp(|t− s| sup
s≤τ≤t

‖∇xv(τ, ·)‖∞)|x− y|. (8.20)

Now we make a partition s = t0 < t1 < .. < tM = t with tj+1−tj = t−s
M . We want to

compare Φv1+..+vNt,s with ΨtM ,tM−1
◦ ..◦Ψt1,t0 , where Ψtj+1,tj = ΦvNtj+1,tj ◦ ..◦Φv1tj+1,tj ,

and where we also put Ψtk,tj = Ψtk,tk−1
◦ .. ◦ Ψtj+1,tj , for k > j. Then,

Φv1+..+vNt,s (x) − Ψt,s(x) = (ΦtM ,t1Φt1,t0(x) − ΦtM ,t1Ψt1,t0(x))+

(ΦtM ,t2Φt2,t1Ψt1,t0(x) − ΦtM ,t2Ψt2,t1Ψt1,t0(x) + ..

+ (ΦtM ,tM−1
ΨtM−1,t0(x) − ΨtM ,tM−1

ΨtM−1,t0(x)),

and combining (8.19), (8.20), we get,

|Φv1+..+vNt,s (x) − Ψt,s(x)| ≤ e|t−s| sups≤τ≤t ‖∇xv(τ,·)‖∞× (8.21)

(max
j

sup
s≤τ≤t

‖∇xvj(τ, ·)‖∞)(max
j

sup
s≤τ≤t

‖vj(τ, ·)‖∞)
N2(t− s)2

M
.

We have then done a part of the proof of
Proposition 8.2. Let p(t, x, ξ) be entire on C2n with the property that for every
tube U , the function supt∈I |p(t, x, ξ)| is bounded on U and tends to 0, when (x, ξ) →
∞ in U . Let κt,s be the corresponding family of C-canonical transformations. Then
there is a family of entire invertible canonical transformations Φδt,s : C2n → C2n,
t, s ∈ I, δ ∈]0, 1], with the following properties:

Φδs,s = id, (8.22)

For every tube U , and 0 < δ ≤ 1, there is a tube Ũδ, such that (8.23)

Φδt,s(U) ⊂ Ũδ, t, s ∈ I, and supt,s |Φδt,s(x, ξ)− (x, ξ)| → 0, when (x, ξ) ∈ U ,

|(x, ξ)| → ∞, 0 < δ ≤ 1. The same holds for (Φδt,s)
−1.

For every tube U , there is a function εU (δ) ↘ 0, δ → 0, such that (8.24)

if κτ,s(ρ) is well defined and contained in U for s ≤ τ ≤ t,

(or for t ≤ τ ≤ s), then |Φδτ,s(ρ) − κτ,s(ρ)| ≤ εU (δ).
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Proof. After a C-linear canonical transformation, we may assume that Λ0 = R2n.
Let φ1(x, ξ) = Cne

− 1
2 (x2+ξ2) with Cn > 0, such that

∫∫
φ1(x, ξ)dxdξ = 1, and put

φε(x, ξ) = ε−2nφ1(
1
ε (x, ξ)). Then p = limε→0 φε ∗ p uniformly on every tube U for

t ∈ I, writing p = pt. (The convergence away from R2n becomes clear after a
suitable shift of integration contour in the convolution.) The convolutions φε ∗ p
can in turn be approximated by finite Riemann sums, and we get a sequence of
functions pj(t, x, ξ), j = 1, 2, .. with the properties,

pj → p, j → ∞, uniformly on I × U , for every tube U . (8.25)

pj =

N(j)∑

ν=1

cj,ν(t)φε(j)((x, ξ)− (xν,j, ξν,j)) =

N(j)∑

ν=1

pj,ν , (8.26)

where |cj,ν(t)| ≤ C, ε(j) → 0, (xν,j , ξν,j) ∈ R2n = Λ0.
If p0 = 1

2 (x2 + ξ2), then Hp0 = ξ · ∂∂ − x · ∂
∂ξ is globally integrable, exp(tHp0)

is the linear map corresponding to the matrix

(
cos t sin t
− sin t cos t

)
. Consequently, the

time dependent Hamilton field ∂f
∂s (t, p0)Hp0 is globally integrable if f(t, s) is entire

in the second variable and bounded on I ×K for every compact set K ⊂ C2n. In
fact, the corresponding flow is given by Φt,s(ρ) = exp(

∫ t
s
∂f
∂s (τ, p0(ρ))dτHp0). In the

special case when f(t, s) = c(t)e−
s

ε2 , we see that the Hamilton field is bounded on
every tube and tends to zero at infinity, and the corresponding flow will have the
property (8.23). This is equally valid when p0(x, ξ) is replaced by p0((x, ξ)−(x0, ξ0))
for (x0, ξ0) ∈ R2n.

To have the proposition it now suffices to notice 1o that the Hp-flow is arbi-
trarily well approximated in any tube by the Hpj -flows, and 2o that the Hpj -flow
is arbitrarily well approximated by short time iterations of the Hpj,ν -flows, by ap-
plication of (8.21). ♦

We now apply the proposition to p = pt,ε. Then for every ε > 0, we can
approximate κt,s,ε arbitrarily well by Φδt,s,ε in an ε-neighborhood of Λs, where Φδt,s,ε
satisfy (8.22), (8.23) and are entire. In particular, if we choose δ small enough as
a function of ε, we may achieve that Φδ0,t,ε(Λt) is of the form =x = φ(<x) with φ
satisfying (8.16), (8.17).
Proposition 8.3. Let L = Lε ⊂ C2n be of the form =x = φ(<x), where φ = φε
satisfies

φ(<x) = o(ε), φ′(<x) = o(1), φ′′(<x) = o(
1

ε
), φ(k)(<x) = Oε(1).

Then for ε > 0 sufficiently small, there exists F (x) ∈ C∞(C2n;R+), such that
without any uniformity in ε:

F (x) ∼ dist(x, L)2, (8.27)
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F ′′
xx(x) ≥

1

C
, (8.28)

|∇αΦ(x)| ≤ Cα, |α| ≥ 2. (8.29)

Proof. Near L, we shall try F of the form:

F (x) =
1

2
(=x− φ(<x))2. (8.30)

Then,

F ′′
xx =

1

4
I + O(|φ′| + |φ′|2 + |=x− φ||φ′′|) =

1

4
I + o(1) + |=x− φ|o(1

ε
), (8.31)

and if we restrict the attention to a region |=x| = O(ε), we get,

F ′′
xx =

1

4
I + o(1). (8.32)

In such an ε-tube, we also get

∇αF = Oα,ε(1), |α| ≥ 2. (8.33)

To get a global choice of F , let χ(=x) be a standard cut-off, let 0 ≤ f ∈ C∞(R)
with f(t) = 0, for t ≤ 0, f(t) = t2, for t ≥ 1, and with f ′′(t) > 0, for t > 0. Then if
C and C(ε) are large enough, the function

χ(
=x
ε

)F (x) + C(ε)f(|=x| − ε

C
)

has the required properties. ♦
We can now complete the proof of (ii)⇒(iii) in Theorem 8.1. Choosing first ε

and then δ small enough, we can apply Proposition 8.3 to L = Φδ0,t.ε(Λt). Let F̃t
be the corresponding plurisubharmonic function of Proposition 8.3, and try

Ft = F̃t ◦ (Φδ0,t,ε)
−1. (8.34)

Then it is clear that Ft has all the properties of (iii) in every tube around Λ0. To
get the final Ft, we create a new global function by modifying Ft outside some fixed
tube (containing Λt) as at the end of the proof of Proposition 8.3.

Proof that (iii)⇒(i). Recall that (C2n,Λt) can be identified with (C2n,Λ0) by
means of κt,0, satisfying (8.9). Let u ∈ C∞

0 (Λt) have support in a ballof ra-
dius 1 (defined by means of the above identification). Let ũ ∈ C∞

0 (C2n) be
an almost analytic extension of u with support in a complex ball of radius 2.
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Then ∇α(e−Ft/h∂ũ) = O(h∞) in L2, for every α, and it follows from the dis-
cussion leading to (A.18) in the appendix, that we can solve ∂v = −∂ũ, with
∇α(e−Ft/hv) = Oα(h∞) in L2. It follows easily that ∇αv = O(h∞) in sup-norm

when restricting the attention to the h
1
2 -neighborhood of Λt, defined by Ft ≤ h. The

function ũ+ v is then entire and ∇α(ũ− (ũ+ v)) = O(h∞) in the h
1
2 -neighborhood

of Λt, just mentioned. We need to improve this argument, to get decay for the
correction v in the “real” directions of Λt. If for instance the center of the ball
containing the support of u corresponds to 0 ∈ Λ0, then we let k(x) = k(|x|), where
0 ≤ k ∈ C∞, k = 0, for t ≤ 2, k(t) = t, for t ≥ 3, and put f = ε0k ◦ κ−1

t,0 , where
ε0 > 0 is small. Then it is easy to check that Ft − f is uniformly strictly plurisub-
harmonic, and we can solve ∂v = −∂ũ, with ∇α(e(−Ft+f)/hv) = Oα(h∞) in L2.
Then as before, ũ+ v is entire, and we now get ∇α(ũ− (ũ+ v)) = O(h∞e−f/2h) in
sup-norm in Ft ≤ h. We have thus gained additional exponential decay away from
the support of v along Λt, and we can then also approximate C∞-functions u on
Λt, which tend to zero at infinity with all their derivatives. Indeed, it suffices to
decompose u by means of a partition of unity. In this way we can find an entire
function ũ+ v, such that ∇α(ũ− (ũ+ v)) is equal to O(h∞) on Ft ≤ h, and tends
to 0 at infinity. ¿From the construction, it is also clear that ũ + v is bounded on
every tube and tends to zero at infinity in every tube. Applying this to u = rt with
h =

√
ε, we get (i) in the Theorem. The proof is complete. ♦

Theorem 8.4. When one of the three equivalent conditions of Theorem 8.1 is
satisfied, then we can define the spaces H(Λt) as in Theorem 6.1 .

Proof. This follows from the proof of Theorem 8.1: We can use the family of
transformations κt,s,ε for ε small enough, and notice that Λt = κt,0,ε(Lt,ε), where
Lt,ε is I-Lagrangian and close to Λ0. ♦

Appendix: the associated ∂-problem.

Here we shall simply review some estimates in weighted L2-spaces in the spirit
of Hörmander [H2]. Let Φ be a realvalued function on Cn of class C1,1, such that
∂αΦ ∈ L∞, for |α| = 2, and with Φ′′

x,x ≥ 1
C for some constant C > 0. Consider the

problem ∂u = v in the spaces L2
Φ, when ∂v = 0. Equivalently, we shall consider

∂Φ(e−Φ/hu) = he−Φ/hv, where ∂Φ(e−Φ/hv) = 0.

Here, we have put ∂Φ = h∂ + (∂Φ)∧ = e−Φ/h ◦ h∂ ◦ eΦ/h, and ω∧ indicates left
exterior multiplication with the 1-form ω, the corresponding real adjoint operation
will be denoted by ωc. Here we also use the real scalar product 〈·, ·〉, extended
to the complexified space, with the property that 〈dxj, dxk〉 = 〈dxj , dxk〉 = 0,

〈dxj , dxk〉 = δj,k. We have ∂Φ =
∑
Zjdx

∧
j , ∂

∗

Φ =
∑
Z∗
j dx

c
j , where Zj = h∂xj +

∂xjΦ, Z∗
j = −h∂xj + ∂xjΦ. The corresponding Hodge Laplacian is

∆Φ = ∂Φ∂
∗

Φ + ∂
∗

Φ∂Φ = (A.1)
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∑

j

∑

k

ZjZ
∗
kdx

∧
j dx

c
k + Z∗

kZjdx
c
kdx

∧
j =

∑

j

∑

k

(ZjZ
∗
k − Z∗

kZj)dx
∧
j dx

c
k + Z∗

kZj(dx
∧
j dx

c
k + dx

c
kdx

∧
j )

= (
∑

j

Z∗
jZj) ⊗ I +

∑

j

∑

k

[Zj, Z
∗
k ]dx

∧
j dx

c
k,

where we used that dx∧j dx
c
k + dx

c
kdx

∧
j = 〈dxk, dxj〉 = δj,k. Working in the basis

dx1, .., dxn for the (0,1)-forms, we see that ∆
(1)
Φ , which by definition is the restriction

of ∆Φ to the (0,1)-forms, can be identified with the matrix operator

∆
(1)
Φ = (

∑
Z∗
jZj) ⊗ I + 2h(Φ′′

xjxk
).

¿From the strict plurisubharmonicity of Φ we then get for all u ∈ S:

∑
‖Zju‖2 + h‖u‖2 ≤ O(1)(∆

(1)
Φ u|u). (A.2)

Using that ∆
(1)
Φ =

∑
ZjZ

∗
j + O(h), we then also get,

∑
‖Zju‖2 +

∑
‖Z∗

j u‖2 + h‖u‖2 ≤ O(1)(∆
(1)
Φ u|u). (A.3)

Consider the Banach space H1 = {u ∈ L2; h
1
2u, Zju, Z

∗
j u ∈ L2}, equipped with the

norm
‖u‖2

H1 =
∑

‖Zju‖2 +
∑

‖Z∗
j u‖2 + h‖u‖2.

Notice that the map

H1 3 u 7→ (h
1
2u, (Zju)

n
j=1, (Z

∗
j u)

n
j=1) ∈ (L2)2n+1

is injective and has a left inverse of norm ≤ 1. Let H−1 = (H1)∗ be the dual space.
Then by duality, the map

(L2)2n+1 3 (u0, (uj)
n
j=1, (vj)

n
j=1) 7→ h

1
2 +

∑
Zjuj +

∑
Z∗
j vj ∈ H−1

is bounded and surjective and a has a bounded right inverse of norm ≤ 1. the
inclusion map H1 ↪→ L2 is of norm O(h−

1
2 ), so the same holds for the inclusion

map H0 ↪→ H−1. (A.3) implies that

‖u‖2
H1 ≤ O(1)‖∆(1)

Φ u‖H−1‖u‖H1 ,

so
‖u‖H1 ≤ O(1)‖∆(1)

Φ u‖H−1 . (A.4)
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It follows that ∆
(1)
Φ : H1 → H−1 is bijective with a uniformly bounded inverse.

(A.4) implies:

‖u‖H1 ≤ O(h−
1
2 )‖∆(1)

Φ u‖H0 , H0 = L2, (A.5)

or more explicitly,

h‖u‖H0 + h
1
2

∑
‖Zju‖ + h

1
2

∑
‖Z∗

j u‖ ≤ O(1)‖∆(1)
Φ u‖L2 . (A.6)

Summing up we have,

‖(∆(1)
Φ )−1‖L(H−1,H1) = O(1), ‖(∆(1)

Φ )−1‖L(H0,H0) = O(
1

h
), (A.7)

‖Zj(∆(1)
Φ )−1‖L(H0,H0), ‖Z∗

j (∆
(1)
Φ )−1‖L(H0,H0) = O(

1√
h

).

These estimates are also valid for the Hodge Laplacian ∆
(2)
Φ , acting on (0,2)-forms

when n ≥ 2.
If v ∈ L2 is a (0,1) form with ∂Φv = 0, then u = ∂

∗

Φ(∆
(1)
Φ )−1v solves ∂Φu = v.

In fact, assume first that Φ is C∞ with ∇αΦ bounded for |α| ≥ 2. Then we have

∂Φu = v − ∂
∗

Φ∂Φ(∆
(1)
Φ )−1v,

so it suffices to show (in case n ≥ 2) that ∂Φw = 0, where w = (∆
(1)
Φ )−1v.

From ∆
(1)
Φ w = v and the intertwining property, ∆

(2)
Φ ∂Φ = ∂Φ∆

(1)
Φ in the sense

of distributions, we get ∆
(2)
Φ ∂Φw = ∂Φv = 0. By cut-off and regularizations in

∆
(1)
Φ w = v, one shows that ∂Φw ∈ H1, and hence that ∂Φw = 0. Notice that

‖u‖H0 ≤ O(1)‖v‖H−1 ≤ O(h−
1
2 )‖v‖H0 .

When Φ is only C1,1 with second derivatives in L∞, let Φε ∈ C∞ be standard
regularization with the above properties, so that ∇Φε − ∇Φ → 0 in L∞. Then
the spaces H1, H0, H−1 remain unchanged if we replace Φ by Φε, and Zj,ε, Z

∗
j,ε

(the operators above with Φ replaced by Φε) converge to Zj , Z
∗
j in the norm of

L(H1, H0), and hence also in the norm of L(H0, H−1). Consequently, ∆Φε → ∆Φ

in L(H1, H−1) and the same thing holds for the inverses in L(H−1, H1). Since the

arguments above (in the smotth case) show that ∂Φε(∆
(1)
Φε

)−1 = (∆
(2)
Φε

)−1∂Φε on H0

forms, this identity remains valid with Φ instead of Φε and u = ∂
∗

Φ(∆
(1)
Φ )−1 is still

a solution of ∂Φu = v, when v ∈ H0, ∂Φv = 0.
Now let Φ = Φt depend smoothly on a real parameter t in such a way that

∂αx ∂tΦ = O(1) for 1 ≤ |α| ≤ 2. Then with ∆Φ = ∆
(1)
Φ :

∂t(∆Φ) =
∑

OLip∩L∞(1)Zj + Z∗
jOLip∩L∞(1) + hOL∞(1)u,
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where OH(1) indicates a function which is bounded in the space H. We can rewrite
this as

∂t(∆Φ) =
∑

ZjOLip∩L∞(1) +
∑

Z∗
jOLip∩L∞(1) + hOL∞(1),

so ∂t(∆Φ) = O(1) : H0 → H−1, and consequently O(h−
1
2 ) : H1 → H−1. It follows

that
∂t(∆

−1
Φ ) = −∆−1

Φ ∂t(∆Φ)∆−1
Φ = O(h−

1
2 ) : H−1 → H1, (A.8)

and hence

∂t(∂
∗

Φ∆−1
Φ ) = ∂t(∂

∗

Φ)∆−1
Φ + ∂

∗

Φ∂t(∆
−1
Φ ) =

{
O(h−

1
2 ) : H−1 → H0

O(h−1) : H0 → H0.
(A.9)

Now return to the problem ∂u = v with ∂v = 0, that we want to solve in L2
Φ.

We get the solution

u = heΦ/h∂
∗

Φ(∆
(1)
Φ )−1e−Φ/hv, (A.10)

satisfying,
‖u‖L2

Φ
≤ O(h

1
2 )‖v‖L2

Φ
. (A.11)

In the t-dependent case, we also want to study the derivatives of the orthogonal
projection

Πt : L2
Φt

→ HΦt (A.12)

or rather (by conjugation Π̃t = e−Φt/hΠte
Φt/h), the derivative of the orthogonal

projection:
Π̃t : L2 → L2 ∩ Ker∂Φt . (A.13)

We claim that
Π̃ = I − ∂

∗

Φ(∆
(1)
Φ )−1∂Φ. (A.14)

In fact, Π̃ is bounded on H0, and

∂Φ(Π̃u) = ∂Φu− ∂Φ∂
∗

Φ(∆
(1)
Φ )−1∂Φu = ∂Φu− ∂Φu = 0

according to an earlier argument, and finally, Π̃u = u if ∂Φu = 0 so (A.14) follows.
We have

∂tΠ̃ = −∂t(∂
∗

Φ)∆−1
Φ ∂Φ − ∂

∗

Φ∂t(∆
−1
Φ )∂Φ − ∂

∗

Φ∆−1
Φ ∂t(∂Φ).

Here the middle term to the right is O(h−
1
2 ) in L(H0, H0) by (A.8). Using that

∆−1
Φ = O(h−

1
2 ) :

{
H−1 → H0

H0 → H1
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by (A.6), we get the same conclusion for the two other terms in the RHS. It follows
that,

∂tΠ̃t = O(h−
1
2 ) in L(H0, H0), (A.15)

or equivalently that

∂t(e
−Φt/hΠte

Φt/h) = O(h−
1
2 ) in L(H0, H0). (A.16)

By the same type of arguments, we check that if f is a Lipschitz function on
Cn (so that ∇f ∈ L∞), then the commutator [f, Π̃t] is O(h

1
2 ) : H0 → H0.

For some arguments in section 8, we need estimates on higher derivatives, and
we recall the standard procedure to get those. We keep the earlier assumptions
about Φ and assume in addition that Φ ∈ C∞(Cn) and that ∇αΦ = O(1) for
|α| ≥ 2.
Proposition A.1. For every k ∈ N, we have the following a priori estimate for

solutions u ∈ C∞
0 (Cn) to ∆

(1)
Φ u = v:

h
1
2

∑

|α|≤k

h
|α|
2 ‖∇αu‖H1 ≤ O(1)

∑

|α|≤k

h
|α|
2 ‖∇2v‖. (A.17)

Here norms without subscript are the standard ones in L2.

Proof. For k = 0, this was already established in (A.7). Fix some k ≥ 1 and
assume that (A.17) holds for all strictly smaller values of k. Let |α| = k. Then:

∆
(1)
Φ ∇αu = ∇αv +

∑

j,|β|≤k−1

O(1)Zj∇βu+
∑

j,|β|≤k−1

O(1)Z∗
j∇βu+

∑

|b|≤k−1

O(1)h∇βu+
∑

|b|≤k−2

O(1)∇βu,

and since we know that (A.17) holds when α = 0:

h
1
2 ‖∇αu‖H1 ≤ O(1)‖∇αv‖ +

∑

|β|≤k−1

O(1)‖∇βu‖H1 +
∑

|β|≤k−2

O(h−
1
2 )‖∇βu‖H1 .

It follows that

h
1
2+

|α|
2 ‖∇αu‖H1 ≤ O(1)h

|α|
2 ‖∇αv‖ +

∑

|β|≤k−1

O(1)h
1
2+

|β|
2 ‖∇β‖H1

and estimating estimating the last term by means of the induction assumption, we
get (A.17) for |α| = k. ♦

Using weighted estimates, we can show that if v ∈ S(Cn) ⊂ H−1(Cn) and if

u ∈ H1(Cn) is the solution to ∆
(1)
Φ u = v, then u ∈ S(Cn) and we have (A.17). If
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∂Φv = 0, then a solution to ∂Φũ = v is given by ũ = ∂
∗

Φu = ∂
∗

Φ(∆
(1)
Φ )−1v. Now

∇αZ∗
j u = Z∗

j∇αu +
∑

|γ|<|α| hO(1)∇γu. Writing (A.17) with slightly simplified
notation as

h
1
2

∑

|α|≤k

h
|α|
2 (h

1
2 ‖∇αu‖ + ‖Z∇αu‖ + ‖Z∗∇αu‖) ≤ O(1)

∑

|α|≤k

h
|α|
2 ‖∇αv‖,

we get

h
1
2

∑

|α|≤k

h
|α|
2 (h

1
2 ‖∇αu‖ + ‖∇αZu‖ + ‖∇αZ∗u‖) ≤

O(1)(
∑

|α|≤k

h
|α|
2 ‖∇αv‖ +

∑

|α|≤k

h
|α|+1

2 h
∑

|γ|<|α|

‖∇γu‖),

and for |γ| < |α|:

h
|α|+1

2 +1‖∇γu‖ ≤ h1+
|γ|
2 ‖∇γu‖ ≤ O(1)

∑

|α|≤k

h
|α|
2 ‖∇αv‖,

where the last estimate follows from (A.17). Hence

h
1
2

∑

|α|≤k

h
|α|
2 ‖∇αZ∗u‖ ≤ O(1)

∑

|α|≤k

h
|α|
2 ‖∇αv‖,

and for ũ = ∂
∗

Φu = ∂
∗

Φ(∆
(1)
Φ )−1v, we get

h
1
2

∑

|α|≤k

h
|α|
2 ‖∇αũ‖ ≤ O(1)

∑

|α|≤k

h
|α|
2 ‖∇αv‖. (A.18)
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[G2] A.Grigis, Estimations asymptotiques des intervalles d’instabilité pour
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