Irregular Connections
& Hitchin systems
and
Kac Moody Root systems

P. Boalch
ENS, Paris
Basic Aim

Initial steps in classification of

- meromorphic Hitchin systems
- moduli spaces of meromorphic connections on curves
- Painlevé type differential equations
- certain hyperkähler manifolds

i.e. "wild nonabelian Hodge structures"
Mckay correspondence & quiver varieties

\[\Gamma \subset SU(2) \text{ finite group} \]

Define the Mckay graph of \(\Gamma \) as follows:

\[I = \{ \text{nodes} \} = \{ \text{irreducible representations of } \Gamma \} = \{ U_0 = \mathbb{C}, U_1, \ldots, U_r \} \text{ say} \]

Now compute the decomposition

\[\mathbb{C}^2 \otimes U_i = \bigoplus_{j \in I} a_{ij} V_j \]

defining representation of \(\Gamma \)

integer multiplicities

Define edges \(\mathcal{E} \) s.t. there are \(a_{ij} \) edges between \(i \) \& \(j \)

Mckay observed the graphs which arise are the simply laced affine Dynkin diagrams

\[A_n, D_n, E_6, E_7, E_8 \]
E_8.

$\mathbb{Z}/3$

A_2

$\mathbb{Z}/4$

A_3

$\mathbb{Z}/5$

A_4

$q_8 = \{ \pm 1, \pm i, \pm j, \pm k \}$

D_4

Binary dihedral

D_6

Binary icosahedral

E_8
Now consider \mathbb{C}^2/Γ (Kleinian singularity/rational double point).

and its minimal resolution $N = \widehat{\mathbb{C}^2/\Gamma}$

Theorem (Kronheimer)

- N admits a family of complete hyperkähler metrics
- They may be constructed in terms of the M"{o}ckay graph of Γ
- All such metrics asymptotic to \mathbb{C}^2/Γ arise this way

Some cases found earlier by physicists ("gravitational instantons")

-\hat{A}_1, \mathbb{T}^*P^1, Eguchi-Hanson
-\hat{A}_n, Gibbons-Hawking
Basic idea of construction

Graph Q, nodes I

Let $\mathbf{a} = (d_i)$ be vector of dimensions

Put vector space C^d_i at node i for all nodes i

Consider:
- Vector space \mathcal{W} of linear maps in both directions along each edge

If C^d_i is given standard Hermitian form & Q oriented, then \mathcal{W} becomes a (flat) hyper-kähler vector space

- Group $U(d) = \prod_i U(d_i)$ — product of unitary groups

Now use standard process to get new hyperkähler manifolds:

Perform the hyper-kähler quotient

of \mathcal{W} by $U(d)$ at a generic central value of the hyperkähler moment map
In fact this process works for any graph and dimension vector d

family of hyperkähler manifolds N
(if d indivisible & generic value used)

If nonempty
\[
\dim_{\mathbb{C}} N = z - (d, d)
\]

\[
(d, d) = \sum_{ij} d_i d_j \quad C_{ij}
\]

\[
C = z - A
\]

\[
A = (a_{ij}) \quad \text{adjacency matrix of graph}
\]

"Nakajima quiver varieties"

—big impact in geometric representation theory
Minor modification:

Label each node as ‘open’ or ‘closed’ and only quotient by subgroup of \(\mathfrak{u}(d) \) at closed nodes.

E.g.,

\[n \rightarrow d_1 \rightarrow d_2 \rightarrow \cdots \rightarrow d_k \rightarrow \varnothing \]

\[\sim \rightarrow N \cong \overline{O} \subset \mathcal{O} \text{ or (partial) resolution} \]

[Kraft - Procesi, Nakajima, Crawley-Boevey ...]

Note: \(N \) unchanged if \(\varnothing \) replaced by

\[\sum_{i=1}^{n} n_i = n \] “Splaying”
Hitchin moduli spaces and generalisations

Riemann surface + other data → hyperkähler manifold

Simplest case:

\[\Sigma \text{ compact Riemann surface} \]

\[G = \mathbb{C}^* \]

Take \[M = H^1(\Sigma, G) \]

Three descriptions:

De Rham
\[\{ \text{line bundles with holomorphic connections on } \Sigma \}/\sim \]

Betti
\[\text{Hom}(\pi_1(\Sigma), \mathbb{C}^*) \cong (\mathbb{C}^*)^{2g} \]

Dolbeault
\[T^* \text{Jac}(\Sigma) \cong H^1(\Sigma, \mathbb{C})/H^1(\Sigma, \mathbb{Z}) \]
by Hodge theory

Three algebraic structures, two inequivalent complex structures
- flat hyperkähler manifold
Hitchin spaces (usual picture with punctures)

Choose

- complex reductive group $G = K\mathfrak{g}$
- smooth projective curve Σ
- distinct points $a_1, \ldots, a_m \in \Sigma$
- conjugacy classes $e_1, \ldots, e_m \in G$

($+$ parabolic str.)

\[\downarrow \]

Hyperkähler manifold \mathcal{M}

- \mathcal{M}_{Dol}
- \mathcal{M}_{Betti}
- \mathcal{M}_{DR}

Hitchin, Donaldson, Corlette, Simpson, Nakajima, \ldots
For $\mathcal{G} = \text{GL}_n(C)$, ignoring stability conditions

M_{Betti} is a space of representations of $\pi_1(\Sigma \setminus \{a_i\})$ in \mathcal{G}

[loop around a_i \mapsto conjugacy class C_i]

M_{DR} is a space of rank n vector bundles with meromorphic connections having simple poles at $\{a_i\}$

\sim linear systems of differential equations on Σ

\sim with regular singularities

M_{Pol} is a space of meromorphic Higgs pairs (V, Φ) where $\Phi \in H^0(\mathcal{O}(\text{End} V)(\Sigma \setminus \{a_i\}))$

- fibred by Lagrangian abelian varieties (Hitchin`s integrable system)
M dol

A complex analytic geometer

two spaces!

M dol ~ RH isom. M Betti

M dol /

M dol ~ M DR
complex algebraic geometer

three spaces, two of which are very close (deformation)
Blow up 9 points on the smooth locus of a cuspidal cubic in \mathbb{P}^2 & remove strict transform of cubic

1. Get $\mathcal{M}_{0,9}$ if 9 points sum to zero (elliptically fibred - Hitchin fibration)

2. Else get $\mathcal{M}_{0,8}$ - (deformation) (cf. PB arxiv 0706)

3. Betti got by blowing up \mathbb{P}^2 in 8 points & removing a nodal \mathbb{P}^1 (Etingof-Oblomkov-Rains)}
Qn: Can this story be extended to spaces of meromorphic connections with higher order poles, i.e. irregular singularities?

Some motivation:

- Appearance in classification of certain 2d quantum field theories (Cecotti-Vafa, Dubrovin)
- Lots of important irregular singular differential equations studied classically
- More examples of integrable systems, unifying lots of classical examples
- Natural arena for Painlevé equations/isomonodromic deformations
Wild Hitchin spaces

Basically fixing conjugacy class of monodromy around puncture \Leftrightarrow connection with simple pole & residue in fixed adjoint orbit

$$\frac{A}{z} \, dz$$

$$A \in \Theta \subset g = \text{Lie}(G)$$

$$\exp (z \pi i \Theta) = C \subset G$$

\Leftrightarrow fixing $G[[z]]$ isomorphism class of connection

Generalisation — allow higher order poles in fixed formal isomorphism class

$$\left(\frac{A_k}{z^k} + \frac{A_{k-1}}{z^{k-1}} + \ldots + \frac{A_2}{z^2} + \frac{A_1}{z} \right) dz + \ldots$$

Here: assume $A_1, \ldots, A_k \in h$ (Cartan subalg. \mathfrak{g})

- generic condition (follows e.g if $A_k \in h_{\text{reg}}$)
Meromorphic Higgs bundles \((\mathcal{M}_\alpha)\) much studied.

Fix \(G/Z\) orbit of principal part of Higgs field \(\phi\) at each pole, similarly.

Theorem (Bottacin, Markman) \(\sim 1993\) & Beauville, Adams-Hornad-Hurtubise, Reiman-Semenov

Tian-Shansky, Adler-van Moerbeke if \(\text{genus} = 0\)

\(\mathcal{M}_\alpha\) is an algebraically completely integrable system

\((\sim \text{fibred by Lagrangian abelian varieties})\)
Theorem (Biquard–PB)
2004

- Wild nonabelian Hodge correspondence
 \[\mathcal{M}_{\text{hol}} \cong \mathcal{M}_{\text{DR}} \]
 \[\text{[map \leftarrow earlier by Sabbah]} \]

- Hyperkähler metrics (complete if spaces are smooth)
 \[\text{[generic residues } \{A_i\} \Rightarrow \text{smoothness]} \]
— can be described as space of certain representations of the "wild fundamental group" of Martinet–Ramis (Tannakian viewpoint)

— or more directly via Stokes multipliers

[cf. PB Adv. Math '01, Duke '07]
What set of hyperkähler manifolds \(\mathcal{M} \) arise in this way?

Are they well parameterised by the input data? (Torelli type question)

i.e. is the map \(G, \text{curve, points, formal types}, \ldots \) from input data to hyperkähler manifolds injective?

Yes \(g > 1 \), no poles, \(SL_n \) (Biswas-Gomez '01)

No In general:
Can do Fourier-Laplace/Nahm transform of meromorphic connections on \(IP' \)
(Hyperkähler isometry by S. Szabo '05)

Let's fix \(\Sigma = IP' \) & try to construct invariants
§3 \hspace{1cm} \textbf{Isomonodromic deformations}

\[\text{Nonabelian Gauss-Manin connections} \]

\textbf{Usual cohomology:}

\[\text{Variety } X \quad \Rightarrow \quad \text{vector space } H^*(X, \mathbb{C}) \]

\[\begin{array}{c}
\text{family of varieties} \\
X \quad \Downarrow \\
\text{vector bundle } V \\
\text{with flat connection} \\
H^*(X, \mathbb{C}) \quad \hookrightarrow \quad V \\
\Downarrow \quad \Downarrow \\
B \\
B
\end{array} \]

\textbf{Explicitly get} \quad \textbf{"Picard-Fuchs equations"}

\begin{itemize}
\item linear differential equations coming from geometry
\end{itemize}

\[\star \text{ Same story works replacing C by G} \quad \star \]

\[\text{[at least for } H', \text{ & also in "wild" version]} \]
Simplest nontrivial case

\[G = SL_2(\mathbb{C}), \quad X_t = \mathbb{P}^1 \setminus \{0, t, 1, \infty\} \]

[regular singularities, fixed monodromy classes]

\[X_t \rightarrow \mathbb{X} \]
\[\{t\} \subset \mathbb{P}^1 \setminus \{0, 1, \infty\} \]

\[\mathcal{M}_t \rightarrow \mathcal{N} \]

nonlinear fibre bundle with flat connection

\[\dim \mathcal{M}_t = 2 \] here, so in explicit coordinates

flat connection is a 2nd order nonlinear differential equation (Painlevé VI equation)

"Nonlinear differential equations coming from geometry"

—nowadays arise throughout mathematics and physics (Einstein manifolds, Frobenius manifolds, geometry of the string equation, ...)
The Painlevé Equations

PI: \[y'' = 6y^2 + t \]

PII: \[y'' = 2y^3 + ty + \alpha \]

PIII: \[y'' = \frac{(y')^2}{y} - \frac{y'}{t} + \frac{\alpha y^2 + \beta}{t} + \gamma y^3 + \frac{\delta}{y} \]

PIV: \[y'' = \frac{(y')^2}{2y} + \frac{3y^3}{2} + 4ty^2 + 2(t^2 - \alpha) y + \frac{\beta}{y} \]

PV: \[y'' = \left(\frac{1}{2y} + \frac{1}{y - 1} \right) (y')^2 - \frac{y'}{t} + \frac{(y - 1)^2}{t^2} \left(\frac{\alpha y + \beta}{y} \right) + \frac{\gamma y}{t} + \frac{\delta y(y + 1)}{y - 1} \]

PVI: \[y'' = \left(\frac{1}{y} + \frac{1}{y - 1} + \frac{1}{y - t} \right) \left(\frac{(y')^2}{2} - \left(\frac{1}{t} + \frac{1}{t - 1} + \frac{1}{y - t} \right) y' \right) + \frac{y(y - 1)(y - t)}{t^2(t - 1)^2} \left(\alpha + \frac{\beta t}{y^2} + \frac{\gamma(t - 1)}{(y - 1)^2} + \frac{\delta t(t - 1)}{(y - t)^2} \right) \]

where \(\alpha, \beta, \gamma, \delta \in \mathbb{C} \) are parameters.
What set of systems of nonlinear (overdetermined partial) differential equations arise in this way?

E.g. (Harnad '94)

Painlevé VI also arises as isomonodromy equation for case \(G = GL_3 \) on \(\mathbb{P}^1 \)

with
- one order two pole &
- one order one pole

\[0 = z(0) + (\infty) \]

- isomorphic moduli spaces
- view as different "representations" or "realizations" of same nonlinear differential equation

Let's fix \(\Sigma = \mathbb{P}^1 \) and try to construct invariants...
§4 Graphs and Hitchin spaces

Rough summary

Graph Q \quad \Rightarrow \quad Quiver variety $N(Q)$

Riemann surface \quad \Rightarrow \quad wild Hitchin space M

and some of these Hitchin spaces (with $\dim_c M = 2$) are "spaces of initial conditions" of Painlevé equations.
Basic examples

Approximations M^*

1. \mathcal{O}/H
 $\Theta < G^*$

2. $H \backslash T^* G \backslash H$

3. Special ALE spaces
 e.g. A_{1-3}, D_4, E_6-8
 $\sim \mathbb{C}^2 / \Gamma$

M

1. \mathcal{L}/H
 $\mathcal{L} < G^*$
 dual Poisson Lie gp

2. $H \backslash D \backslash H$
 $D \subset (G \times G^*)^2$
 Lu-Weinstein
 Sympl. double groupoid

3. Okamoto Painlevé spaces
 "2d Hitchin systems"
Now if $\Sigma = \mathbb{P}^1$, $\mathcal{M} = \mathcal{M}_{0R} = \{(v, D)\}/\sim$

is well approximated by moduli space \mathcal{M}^*

where vector bundle v is holomorphically trivial

Typically $\mathcal{M}^* \subset \mathcal{M}$ open subset

Easy observation 0

In the case of Painlevé VI ($SL_2, 4$ simple poles)

$$\mathcal{M}^* \cong N(\hat{D}_4)$$

Similarly (if $G=SL_n, SL_n$) for any number of simple poles

$$\mathcal{M}^* \cong N(Q)$$

for some star-shaped graph Q

$\#$ legs $= \#$ simple poles

- used by Crawley-Boevey in work on Deligne-Simpson problem

Other cases where \mathcal{M}^* is a quiver variety?
In the 1980's K. Okamoto constructed and studied "spaces of initial conditions" of the Painlevé equations and he computed their symmetry groups.

E.g. Painlevé equation

\[
\begin{align*}
&\text{VI} & \text{Waff (D}_4) & + \\
&\text{V} & \text{Waff (A}_3) & \Box \\
&\text{IV} & \text{Waff (A}_2) & \triangle
\end{align*}
\]

(Easy) observations (283) (PB 0706.2634)

For Painlevé VI \((GL_2, D = (0) + (1) + 2(\infty))\) \(M^* \cong NU(\hat{A}_3)\)

For Painlevé IV \((GL_2, D = (0) + 3(\infty))\) \(M^* \cong NU(\hat{A}_2)\)

- Start to suspect spaces \(M\) (not just \(N\)) intrinsically attached to certain special graphs
 - will call them "Hitchin graphs"

- Need to see how to "read" connection data from such graphs
<table>
<thead>
<tr>
<th>(\dim_{\mathcal{M}} = 2)</th>
<th>(\dim_{\mathcal{M}} > 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>only Simple poles</td>
<td>irregular Singularities</td>
</tr>
<tr>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>?</td>
<td></td>
</tr>
</tbody>
</table>
Theorem (PB 0806 1050)

1. Any complete k-partite graph is a Hitchin graph.

2. So is any graph obtained by gluing a 'leg' on to each node of a complete k-partite graph.

3. Each such graph may be 'read' (in terms of meromorphic connections) in $k+1$ ways.
Figure 1. Graphs from partitions of $N \leq 6$
(omitting the stars $\Gamma(n, 1)$ and the totally disconnected graphs $\Gamma(n)$)
General Pattern

Quiver Q, nodes I

$N \supset I$ nodes of central (k-partite) 'nucleus'

$N = P_1 \sqcup P_2 \sqcup \ldots \sqcup P_k$

Let $P \subset N$ be a part, or empty

- then can 'read' Q as moduli space of
 meromorphic connections with a pole of order 3
 and $(\#P)$-simple poles, on vector bundles
 of rank $\left(\sum_{i \in \mathbb{N}} d_i \right) = \operatorname{sum} \text{ of dimensions of nodes in other parts}$

Degenerate cases:
If bipartite (k=2)/star-shaped can sometimes
 reduce order 3 pole to 2nd or 1st order
E.g. \(k=2 \) (bipartite case)

\[
\begin{align*}
\text{Reading 1} & \quad \text{rank} = \sum_i n_i, \quad k \text{ simple poles} \\
\text{Reading 2} & \quad \text{rank} = \sum_i m_i, \quad l \text{ simple poles} \\
\text{Reading 3} & \quad \text{rank} = \sum m_i + \sum n_j, \quad 1 \text{ triple pole}
\end{align*}
\]

(Compare: Harnad, Jimbo–Miwa–Miwa–Sato)

(with: \(\sum n_i \))
E.g.

\[
\begin{array}{c}
\text{Rank 2, 2 simple poles + 1 double pole} \\
\text{or Rank 4, 1 triple pole}
\end{array}
\]
A, B, C ∈ gl₂ generic

\[(A^t + \frac{B}{z-1} + C)dz\]

\[\mathcal{M}^* \rightleftharpoons N\]

Affine A₃

\[q\mathcal{V}\]

Qn: How to "read" the connection from the square?
- tensor so A, B rank 1 & suppose C regular semisimple

\[\mathcal{M}^* \cong \left(\Theta_1 \times \Theta_2 \right) \backslash H \quad \left\{ \begin{array}{l}
\Theta_1, C \in gl_2 \quad \text{rk } 1 \text{ orbits } \cong T^1 C^2 \backslash C^*
\Theta \text{ stabilizer } \cong C^* \times C^*
\end{array} \right.\]

splay \Rightarrow \quad \text{glue via } H
Stars: $\Pi(n,1)$ (with legs)

e.g.

\[
\begin{align*}
\hat{D}_4 & = \text{loops} \\
\text{Rank} & \quad \text{poles} \\
6 & \quad 3 \\
4 & \quad 2+1 \\
3 & \quad 2+1 \\
2 & \quad 1+1+1+1 \\
\end{align*}
\]

Additive/* version of isom. $2 \equiv 4$ for $\Pi(n,1)$ is complexification of "Gelfand MacPherson duality" ~ dilogarithm
Trigraphite \Rightarrow 4 \text{ readings}

<table>
<thead>
<tr>
<th>Rank</th>
<th>Poles</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3+1</td>
</tr>
<tr>
<td>4</td>
<td>3+1+1</td>
</tr>
<tr>
<td>3</td>
<td>3+1+1+1</td>
</tr>
</tbody>
</table>
E.g. \(\text{Tetrahedron} \)

\[\dim \Omega = 12, \text{ four partite graph} \]

\[\Rightarrow 5 \text{ readings} \]

<table>
<thead>
<tr>
<th>rank of vector bundles</th>
<th>pole orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>3+1</td>
</tr>
<tr>
<td>8</td>
<td>3+1</td>
</tr>
<tr>
<td>7</td>
<td>3+1</td>
</tr>
<tr>
<td>6</td>
<td>3+1</td>
</tr>
</tbody>
</table>
Ulterior motive for attaching a graph to M
\[\rightarrow \text{get a Kac-Moody root system} \]

1. Get precise criteria for existence of stable connections in M^* (phrased in terms of roots)
 - extending work of Crawley-Boevey on (additive) Deligne-Simpson problem (simple pole case)

2. Get “reflection functors” — action of KM Weyl group on auxiliary data

Claim These induce more isomorphisms between M's

[Typical orbits infinite]
Given graph Γ, nodes I, $n = \#I$

- Cartan matrix $C = Z - A$ (nxn)

 $A_{ij} = \# \text{edges node } i \leftrightarrow \text{node } j$

- Root lattice $Z^I = \bigoplus_{i \in I} Z \varepsilon_i$ has bil. form (\cdot, \cdot)

 $(\varepsilon_i, \varepsilon_j) = C_{ij}$

- Weyl group W of Z^I generated by $\{ s_i \}_{i \in \Gamma}$

 $s_i(x) = x - (x, \varepsilon_i) \varepsilon_i$

 (and dual reflections $r_i \in Z^I$ s.t $r_i(1) \cdot s_i(x) = 1 \cdot x$)

- Root system $\Phi \subset Z^I$ (real & imaginary roots)
View dimension vector $d \in \mathbb{Z}^1$

Example of W action

Here $W \supseteq W^+ \cong \text{PSL}_2(E)$ \hspace{1cm} $E = \mathbb{Z}[\omega]$ (Eisenstein integers)

(Gf. Feingold-Kleinschmidt-Nicolai 08)

1. Let $W = S_1 S_4 S_1 S_2 S_4 S_1 S_3 S_1$
 Compute $W^n(1,2,2,1)$ \hspace{1cm} Read as connections on
 bundles of rank $n^2 + (n+1)^2 + (n-2)^2$

2. $S_1 S_2 S_3 (1 2 2 1) = (0 1 1 1) \Rightarrow \begin{array}{c}
\end{array}$

So $W^* \cong A_2$ ALE space (dim$_C = 2$)
Extensions

1. Higher order pole \(\checkmark \) (need multiple edges)

2. \(\geq 2 \) irregular singularities
 - \(\mathcal{M}^* \) not a quiver variety
 - \(\Rightarrow \) more general picture (bows)

(e.g. \(\text{Rk } 2, \ 2+2 \quad \mathcal{M}^* \cong \mathcal{O}_2 \) ALF space)
Other directions

1. Stokes algebras ~ quiver description of corresponding monodromy and Stokes data
 Multiplicative preprojective algebras of Crawley-Boevey & Shaw
 Generalised DATA of Etingof-Oblomkov-Rains

2. Isomonodromy
 - Generalise viewpoint of Jimbo-Miwa-Mori-Sato & Harnad on the JMM equations (Schlesinger equations)
 Double of complete graph with 2 nodes
 Double of complete graph with k nodes (for any k)
Fission picture

Partitions \leftrightarrow Height 3 rooted trees

$3 + 2 + 1$

\leftrightarrow Complete k-partite graphs

\sim Pole of order 3

For pole of order r, do $(r-2)$-fission, ..., 0-fission determined by height r rooted tree

Eg. $(r=4)$

$M^* \cong T^*CP^{n-1}$

Calabi's examples