INTEGRAL STRUCTURE ON QUANTUM COHOMOLOGY (AFTER IRITANI)

by

Etienne Mann

In these two talks, we will explain a part of the paper of Iritani, titled "An integral structure in quantum cohomology and mirror symmetry for toric orbifolds" Arxiv 0903.1463 v 3 To simplify the exposition, we restrict to the manifold case.

PART I

FIRST TALK

1. Gromov-Witten invariants with gravitational descendants

Let X be a smooth proper manifold over \mathbb{C}. Let $d \in H_{2}(X, \mathbb{Z})$. We define the moduli space of stable maps to X, denoted by $\overline{\mathcal{M}}_{0, n}(X, d)$. To simplify the exposition, we only consider the geometric point of it.

$$
\overline{\mathcal{M}}_{0, n}(X, d):=\left\{\begin{array}{c}
\left(C, f,\left(x_{1}, \ldots, x_{n}\right)\right) \text { where } C \text { is a nodal curve of genus } 0, \\
x_{i} \text { are distincts marked points on the smooth part of } C \\
\text { and } f \rightarrow X \text { such that } f_{*}[C]=d \text { and the automorphism } \\
\text { group of }(C, f, \bar{x}) \text { is finite }
\end{array}\right\} / \sim
$$

The moduli space $\overline{\mathcal{M}}_{0, n}(X, d)$ is a smooth proper orbifold of finite type over \mathbb{C}. We define the i-th evaluation map

$$
\begin{aligned}
\mathrm{ev}_{i}: \overline{\mathcal{M}}_{0, n}(X, d) & \rightarrow X \\
(C, f, \underline{x}) & \mapsto f\left(x_{i}\right)
\end{aligned}
$$

On $\overline{\mathcal{M}}_{0, n}(X, d)$, we have $\mathcal{L}_{1}, \ldots, \mathcal{L}_{n}$ line bundles which are the cotangent bundle of the curve at the marked point x_{i} i.e.

$$
\left.\mathcal{L}_{i}\right|_{(C, f, \underline{x})}:=T_{x_{i}}^{*} C
$$

Definition 1.1. - Put $\psi_{i}:=c_{1}\left(\mathcal{L}_{i}\right)$. Let $\gamma_{1}, \ldots, \gamma_{n}$ be in $H^{*}(X, \mathbb{C})$. We define the Gromov-Witten invariants with gravitational descendants by the formula

$$
\left\langle\psi_{1}^{k_{1}} \gamma_{1}, \ldots, \psi_{n}^{k_{n}} \gamma_{n}\right\rangle_{0, n, d}:=\int_{\overline{\mathcal{M}}_{0, n}(X, d)} \psi_{1}^{k_{1}} \gamma_{1} \cup \ldots \cup \psi_{n}^{k_{n}} \gamma_{n}
$$

The Gromov-invariant satisfies some properties, we will just give "the divisor axiom". This axiom expresses the special role that plays the classes in $H^{2}(X, \mathbb{C})$.

Proposition 1.2. - For $\gamma \in H^{2}(X, \mathbb{C})$, we have

$$
\begin{aligned}
\left\langle\psi_{1}^{k_{1}} \gamma_{1}, \ldots, \psi_{n}^{k_{n}} \gamma_{n}, \gamma\right\rangle_{0, n+1, d} & =\left(\int_{d} \gamma\right)\left\langle\psi_{1}^{k_{1}} \gamma_{1}, \ldots, \psi_{n}^{k_{n}} \gamma_{n}, \gamma\right\rangle_{0, n, d} \\
& +\sum_{i}\left\langle\psi_{1}^{k_{1}} \gamma_{1}, \ldots, \psi_{i}^{k_{i}-1} \gamma_{i} \cup \gamma, \ldots, \psi_{n}^{k_{n}} \gamma_{n}, \gamma\right\rangle_{0, n, d}
\end{aligned}
$$

[^0]Fix $\left(\phi_{0}=1, \phi_{1}, \ldots, \phi_{N}\right)$ a homogeneous basis of $H^{*}(X, \mathbb{C})$. Denote by $\left(t_{0}, \ldots, t_{N}\right)$ the associated coordinates on $H^{*}(X)$. Put $\tau:=\sum_{i} t_{i} \phi_{i}$. Denote by $\left(\phi^{1}, \ldots, \phi^{N}\right)$ the dual basis with respect to the Poincaré duality.

Definition 1.3. - Let $\alpha, \beta \in H^{*}(X)$.

$$
\alpha \bullet_{\tau} \beta:=\sum_{d \in H_{2}(X, \mathbb{Z})} \sum_{\ell \geq 0} \sum_{k=1}^{N} \frac{e^{\int_{d} \tau_{2}}}{\ell!} \phi^{k}\left\langle\alpha, \beta, \tau^{\prime}, \ldots, \tau^{\prime}, \phi_{k}\right\rangle_{0, \ell+3, d}
$$

where $\tau=\tau^{\prime}+\tau_{2}$ with $\tau_{2} \in H^{2}(X)$ and $\tau^{\prime} \in \oplus_{k \neq 1} H^{2 k}(X)$.
The neutral element for this product is $\mathbf{1}$.
Assumption 1.4. - We assume that the quantum product is convergent over an open set $U \subset H^{*}(X)$ such that U contains the following directions :

1. $\tau^{\prime} \rightarrow 0$
2. $\Re e\left(\int_{d} \tau_{2}\right) \rightarrow-\infty$ for any $d \neq 0 \in H_{2}(X, \mathbb{Z})$.

The limit point is called the large radius limit. At this large radius limit, the quantum product become the usual cup product.

2. An integrable connection

Definition 2.1. -- We define a trivial holomorphic bundle F over $U \times \mathbb{C}$ with fibers $H^{*}(X)$ ie. $F:=H^{*}(X) \times$ $(U \times \mathbb{C}) \rightarrow U \times \mathbb{C}$. We denote z the coordinate on \mathbb{C}.

- We define the following meromorphic connection :

$$
\nabla_{\partial_{t_{i}}}:=\partial_{t_{i}}+\frac{1}{z} \phi_{k} \bullet_{\tau}
$$

$$
\nabla_{z \partial_{z}}:=z \partial_{z}-\frac{1}{z} E \bullet_{\tau}+\mu
$$

where

$$
E:=c_{1}(T X)+\sum_{k=1}^{N}\left(1-\frac{\operatorname{deg} \phi_{k}}{2}\right) t_{k} \phi_{k} \quad \mu\left(\phi_{k}\right):=\frac{1}{2}\left(\operatorname{deg} \phi_{k}-n\right) \phi_{k}
$$

- Denote by $\langle\cdot, \cdot\rangle$ the Poincaré duality on $H^{*}(X)$. Denote by $\iota: U \times \mathbb{C} \rightarrow U \times \mathbb{C}$ sending $(\tau, z) \mapsto(\tau,-z)$. On (F, ∇), we define a pairing

$$
S: \iota^{*} \mathcal{O}(F) \times \mathcal{O}(F) \rightarrow \mathcal{O}_{U \times \mathbb{C}}
$$

by $S\left(\phi_{i}, \phi_{j}\right):=\left\langle\phi_{i}, \phi_{j}\right\rangle$ and $S(a(\tau,-z) \cdot, \cdot)=S(\cdot, a(\tau, z) \cdot)$.
To have a variation of a nc-Hodge structure, we need to define a \mathbb{Z}-structure and to check that

- the \mathbb{Z}-structure is compatible with the Stokes data
- the opposedness axiom.

In what follows, we will define a \mathbb{Z}-structure which is natural from the point of view of mirror symmetry. I do not know is this \mathbb{Z} structure is compatible with the stokes data. The opposedness axiom is true the large radius limit (cf the paper of Iritani $t t^{*} \ldots$)

Remark 2.2. - 1. The global section ϕ_{k} of F are not flat. Indeed, we have

$$
\nabla_{\partial_{t_{k}}} \mathbf{1}:=\frac{1}{z} \phi_{k} \text { and } \nabla_{z \partial_{z}} \mathbf{1}:=-\frac{1}{z} E-\frac{n}{2} \mathbf{1}
$$

2. The Euler field \mathfrak{E} is defined by

$$
\mathfrak{E}:=\sum_{k} r_{k} \partial_{t_{k}}+\sum_{k}\left(1-\frac{\operatorname{deg} \phi_{k}}{2}\right) t_{k} \partial_{t_{k}}
$$

where $c_{1}(T X)=\sum_{k} r_{k} \phi_{k}$. Put Gr $:=\nabla_{z \partial_{z}}+\nabla_{\mathfrak{E}}+n / 2$. We have

$$
\mathrm{Gr}=z \partial_{z}+d_{\mathfrak{E}}+\mu+n / 2 \text { and } \operatorname{Gr}(\mathbf{1})=0
$$

The data $\left(F, \nabla_{\partial_{t_{k}}}, \mathrm{Gr}\right)$ is called a graded semi-infinite VHS defined by Serguei Barannikov.
The properties of the Gromov-Witten invariants implies that
Proposition 2.3. - The connection ∇ is flat and the pairing $S(\cdot, \cdot)$ is ∇-flat.

For $\alpha \in H^{*}(X)$, we define

$$
L(\tau, z) \alpha:=e^{\tau_{2} / z} \alpha-\sum_{(d, \ell) \neq(0,0)} \sum_{k=0}^{N} \frac{\phi^{k}}{\ell!}\left\langle\phi_{k}, \tau^{\prime}, \ldots, \tau^{\prime}, \frac{e^{-\tau_{2} / z} \alpha}{z+\psi}\right\rangle_{0, \ell+2, d} e^{\int_{d} \tau_{2}}=\alpha+O\left(z^{-1}\right)
$$

where $(z+\psi)^{-1}:=\sum_{j \geq 0}(-1)^{j} z^{-j-1} \psi^{j}=z^{-1}(\ldots)$.
Proposition 2.4. - Put $\rho:=c_{1}(T X)$.

1. For $\alpha \in H^{*}(X)$, we have :

$$
\nabla_{k} L(\tau, z) \alpha=0 \quad \nabla_{z \partial_{z}} L(\tau, z) \alpha=L(\tau, z)\left(\mu-\frac{\rho}{z}\right) \alpha
$$

2. The multi-valued section $L(\tau, z) z^{-\mu} z^{\rho} \alpha$ is ∇-flat.
3. Denote $\langle\cdot, \cdot\rangle$ the Poincaré duality. For any $\alpha, \beta \in H^{*}(X)$, we have $\langle L(\tau, z) \alpha, L(\tau, z) \beta\rangle=\langle\alpha, \beta\rangle$.
4. We have $L(\tau, z)^{-1}=L(\tau,-z)$.
5. The section $L(\tau, z)$ is characterized by its asymptotic at the large radius limit
ie. $L: U \times \mathbb{C} \rightarrow \mathrm{GL}_{n}\left(H^{*}(X)\right)$ is the unique application such that for any $\alpha \in H^{*}(X)$, we have $\nabla_{X} L(\tau, z) \alpha=0$ for any vector field X and $L(\tau, z) \alpha \sim e^{-\tau_{2} / z} \alpha$ at the large radius limit.

3. Integral structure

Let $\alpha \in H^{*}(X, \mathbb{Z})$ such that $\alpha \cup: H^{*}(X, \mathbb{Z}) \hookrightarrow H^{*}(X, \mathbb{Z})$. This induces a \mathbb{Z}-structure on the bundle F as follows. We have the following morphism of global (multivalued)-section

We consider a very special \mathbb{Z}-structure induced by the cohomology class

$$
\Gamma(T X):=\prod_{i} \Gamma\left(1+\delta_{i}\right)=\exp \left(-\gamma \rho+\sum_{k \geq 2}(k-1)!\zeta(k) \operatorname{Ch}_{k}(T X)\right)
$$

where $\rho=c_{1}(T X), \delta_{i}$ are the Chern root of $T X$ and γ is the Euler constant.
Definition 3.1. - We define the \mathbb{Z}-structure on the bundle (F, ∇) by the diagram (1) and the following morphism $\Gamma(T X) \cup(2 \mathbf{i} \pi)^{\operatorname{deg} / 2}: H^{*}(X, \mathbb{Z}) \rightarrow H^{*}(X, \mathbb{C})$. We call it the Γ-structure.

In the following, we will give two reasons why this Γ-structure is good. The first one is a nice behaviour with respect to K-theory. The second one uses mirror symmetry but we need to restrict to toric Fano smooth variety.
3.1. Γ-structure and K-theory. - Recall that the Chern character $\mathrm{Ch}: K(X) \rightarrow H^{*}(X, \mathbb{Z})$ become an isomorphism tensoring by \mathbb{C}.

Theorem 3.2 (Iritani). - For $V_{1}, V_{2} \in K(X)$. We have

$$
S\left(Z_{K}\left(V_{1}\right), Z_{K}\left(V_{2}\right)\right)=\left(V_{1}, V_{2}\right)_{K(X)}\left(:=\chi\left(V_{2}^{\vee} \otimes V_{1}\right)\right) .
$$

Where Z_{K} is defined by the following commutative diagram
3.2. Γ-function and mirror symmetry. - In this section we assume that X is a smooth toric Fano variety. Recall that $\mathbf{1} \in H^{*}(X)$ was the unit. Put $\mathbf{J}(\tau, z):=L(\tau, z)^{-1} \mathbf{1}(=L(\tau,-z) \mathbf{1})$. Consider the following diagram

Remark 3.3. - The J-function is a very important function in the work of Givental. For example, we can recover the quantum product via the \mathbf{J}-function as follows: We have $\nabla_{\partial_{t_{k}}} \mathbf{1}=\phi_{i} / z$. The previous diagram implies that $\partial_{t_{k}} \mathbf{J}=L(\tau,-z) \phi_{i} / z$. So we deduce that $z^{2} \partial_{t_{i}} \partial_{t_{j}} \mathbf{J}=L(\tau,-z) \phi_{i} \bullet_{\tau} \phi_{j}$. To compute the quantum product, one should expand $z^{2} \partial_{t_{i}} \partial_{t_{j}} \mathbf{J}$ with respect to the power of z.

Let us restrict the \mathbf{J}-function to $H^{2}(X, \mathbb{C})$ (where the divisor axiom holds) ie. $\tau=\tau_{2}+\tau^{\prime}$ where $\tau^{\prime}=0$. Put $\mathbb{J}\left(\tau_{2}, z\right):=\mathbf{J}\left(\tau_{2}+0, z\right)$. We also restrict the bundle to $U_{2}:=\left.U\right|_{\tau^{\prime}=0}$. Let $\phi_{1}, \ldots, \phi_{r}$ the basis of $H^{2}(X, \mathbb{Z})$ which are in the closure of the Kähler cone of X.

Definition 3.4. - We denote $\Sigma(1)$ the 1-dimensional cone of the fan Σ of X. For any ray ρ, we denote D_{ρ} the associate toric divisor. We define the I-function which is a cohomological valued function by

$$
I\left(\tau_{2}, z\right):=e^{\tau_{2} / z} \sum_{d \in H^{2}(X, \mathbb{Z})} e^{\int_{d} \tau_{2}} \prod_{\rho \in \Sigma(1)} \frac{\prod_{\nu=D_{\rho}(d)}^{+\infty}\left(D_{\rho}+\left(D_{\rho}(d)-\nu\right) z\right)}{\prod_{\nu=0}^{+\infty}\left(D_{\rho}+\left(D_{\rho}(d)-\nu\right) z\right)}
$$

Theorem 3.5 (Givental). - If X is a smooth toric Fano variety then $I\left(\tau_{2}, z\right)=\mathbb{J}\left(\tau_{2}, z\right)$.
Proposition 3.6. - We have $\Gamma(T X)=\prod_{\rho}\left(1+D_{\rho}\right)$ and

$$
\begin{aligned}
z^{-c_{1}(T X)} z^{\mu} I\left(\tau_{2}, z\right) & =\Gamma(T X) z^{-n / 2} e^{\tau_{2}} z^{-c_{1}(T X)} \sum_{d \in H^{2}(X, \mathbb{Z})} \frac{e^{\int_{d} \tau_{2}} z^{-\int_{d} c_{1}(T X)}}{\prod_{\rho \in \Sigma(1)} \Gamma\left(D_{\rho}+D_{\rho}(d)+1\right)} \\
\hat{H}\left(\tau_{2}, z\right) & :=z^{-n / 2} e^{\tau_{2} / 2 \mathbf{i} \pi} z^{-c_{1}(T X) / 2 \mathbf{i} \pi} \sum_{d \in H^{2}(X, \mathbb{Z})} \frac{e^{\int_{d} \tau_{2}} z^{-\int_{d} c_{1}(T X)}}{\prod_{\rho \in \Sigma(1)} \Gamma\left(D_{\rho} / 2 \mathbf{i} \pi+D_{\rho}(d)+1\right)}
\end{aligned}
$$

where \hat{H} is defined by the following diagram

We can now state the main result of Iritani that is that the integral structure given by the $\Gamma(T X)(2 \mathbf{i} \pi)^{\operatorname{deg} / 2}$ is related to the integral structure of its mirror. More precisely, we have the following result.
Theorem 3.7 (Iritani). - Put $H\left(\tau_{2}, z\right):=\frac{(2 \pi z)^{n / 2}}{(-2 \pi)^{n}} \hat{H}\left(\tau_{2}, z\right)$. We have

$$
\int_{X} H\left(\tau_{2},-z\right) \cup \operatorname{Td}(T X)=\frac{1}{(2 \mathbf{i} \pi)^{n}} \int_{\Gamma_{\mathbb{R}}} e^{-W_{q} / z} \omega_{q}
$$

where $W_{q}: Y_{q} \rightarrow \mathbb{C}$ is the mirror of X with $Y_{q} \simeq\left(\mathbb{C}^{*}\right)^{\# \Sigma(1)-\operatorname{dim} H_{2}(X, \mathbb{C})}$ and $\Gamma_{\mathbb{R}}=\left\{\underline{y} \in Y_{q} \mid y_{\rho}>0\right\}$.
To see this Theroem in K-theory, we put $H_{K}\left(\tau_{2}, z\right):=\frac{(2 \pi z)^{n}}{(-2 \pi)^{n}} Z_{K}^{-1}(\mathbf{1})$.
Corollary 3.8. -

$$
S\left(\mathbf{1}, Z_{K}\left(\mathcal{O}_{X}\right)\right)=\frac{1}{(-2 \pi z)^{n / 2}} \int_{\Gamma_{\mathbb{R}}} e^{-W_{q} / z} \omega_{q}
$$

PART II
 SECOND TALK

4. GKZ-system

Definition 4.1. - Let $\left\{v_{1}, \ldots, v_{m}\right\} \in \mathbb{Z}^{n}(:=N)$ be a set where $m \geq n$ and $\left\{v_{1}, \ldots, v_{m}\right\}$ generates $N \otimes \mathbb{R}$. Let $a \in \mathbb{C}^{n}$. A GKZ-system associated to these data is definied by the following operators:

- for $j \in\{1, \ldots, n\}$, put

$$
Z_{j, a}:=\sum_{i=1}^{m} v_{i j} \lambda_{i} \partial_{\lambda_{i}}+a_{j}
$$

- Let $\Lambda:=\left\{\ell \in \mathbb{Z}^{m} \mid \sum_{i=1}^{m} \ell_{i} v_{i}=0\right\}$. For any $\ell \in \Lambda$, put

$$
\square_{\ell}:=\prod_{\ell_{i}>0}\left(\partial_{\lambda_{i}}\right)^{\ell_{i}}-\prod_{\ell_{i}<0}\left(\partial_{\lambda_{i}}\right)^{-\ell_{i}}
$$

4.1. GKZ-system associated to a smooth toric variety. - Let X be a smooth toric variety. Denote by $\Sigma(1)$ the set a rays of the fan Σ. Put $m:=\# \Sigma(1)$. Denote by D_{1}, \ldots, D_{m} the toric divisors associated to the rays. We have the following exact sequence

$$
\begin{equation*}
0 \longrightarrow H_{2}(X, \mathbb{Z}) \xrightarrow{\underline{D}} \mathbb{Z}^{m} \xrightarrow{\beta} N \longrightarrow 0 \tag{3}
\end{equation*}
$$

where $\underline{D}: d \mapsto \sum_{i=1}^{m} D_{i}(d) e_{i}$ and $\beta: e_{i} \mapsto v_{i}$ which are the generators of the rays. Applying the functor $\operatorname{Hom}(-, \mathbb{Z})$ to this exact sequence, we get

$$
\begin{equation*}
0 \longrightarrow M \xrightarrow{\beta^{*}}\left(\mathbb{Z}^{m}\right)^{*} \xrightarrow{\underline{D}^{*}} H^{2}(X, \mathbb{Z}) \longrightarrow 0 \tag{4}
\end{equation*}
$$

where $\beta^{*}: m \mapsto \sum_{i=1}^{m} m\left(v_{i}\right) e_{i}^{*}$ and $\underline{D}^{*}: e_{i}^{*} \mapsto D_{i}$.
So the deduce the following equalities

$$
\begin{align*}
\forall d \in H_{2}(X, \mathbb{Z}), \sum_{i=1} D_{i}(d) v_{i} & =0 \text { in } N \\
\forall m \in M, \sum_{i=1} m\left(v_{i}\right) D_{i} & =0 \text { in } H^{2}(X, \mathbb{Z}) \\
\sum_{i=1}^{m} v_{i} D_{i} & =0: \text { as a map } H_{2}(X, \mathbb{Z}) \rightarrow N \tag{5}
\end{align*}
$$

To define the GKZ-system associated to X, we put
$-v_{1}, \ldots, v_{m}$ are the generators of the rays,
$-a:=0$.
Lemma 4.2. - We have $\Lambda=H_{2}(X, \mathbb{Z})$.
Using notation of Definition 4.1, we have for any $d \in H_{2}(X, \mathbb{Z})$,

$$
\square_{d}:=\prod_{i: D_{i}(d)>0}\left(\partial_{\lambda_{i}}\right)^{D_{i}(d)}-\prod_{i: D_{i}(d)<0}\left(\partial_{\lambda_{i}}\right)^{-D_{i}(d)}
$$

Let $\beta_{1}, \ldots, \beta_{r}$ be a basis of the Mori cone i.e. cone of effective classes in $H_{2}(X, \mathbb{Z})$. Let T_{1}, \ldots, T_{r} be the Poincaré dual basis in $H^{2}(X, \mathbb{Z})$. For $a \in\{1, \ldots, r\}$, put

$$
\begin{align*}
q_{a} & :=\prod_{i=1}^{m} \lambda_{i}^{D_{i}\left(\beta_{a}\right)} \\
q^{d} & :=\prod_{a=1}^{r} q_{a}^{T_{j}(d)}=\prod_{i=1}^{m} \lambda_{i}^{D_{i}(d)} \text { for } d \in H_{2}(X, \mathbb{Z}) \tag{6}
\end{align*}
$$

Notice that with this notation, puting $q_{a}:=e^{t_{a}}$, we have $e^{\tau_{2}}=\prod_{a=1}^{r} q_{a}^{T_{a}}$.
Lemma 4.3. - For $i \in\{1, \ldots, n\}$, we have $Z_{i, 0}\left(q^{d}\right)=0$. Moreover, if for all $i \in\{1, \ldots, n\}$, we have $Z_{i, 0}\left(\prod_{j=1}^{m} \lambda_{j}^{\ell_{j}}\right)=$ 0 then $\left(\ell_{1}, \ldots, \ell_{m}\right) \in \Lambda=H_{2}(X, \mathbb{Z})$.

So to solve the GKZ-system, we look for functions that depends on the q_{a} 's variables such that $\square_{d} \Phi=0$.
In the literature, solutions of GKZ-system are

$$
\Phi\left(\lambda_{1}, \ldots, \lambda_{m}, \alpha_{1}, \ldots, \alpha_{m}\right):=\sum_{d \in H_{2}(X, \mathbb{Z})} \prod_{i=1}^{m} \frac{\lambda_{i}^{D_{i}(d)+\alpha_{i}}}{\Gamma\left(D_{i}(d)+1+\alpha_{i}\right)}
$$

where $\sum_{i=1}^{m} \alpha_{i} v_{i}=a(=0)$ and α_{i} are parameters.

As we have seen before in (5), we have $\sum_{i=1}^{m} D_{i} v_{i}=0$, so we deduce a cohomological valued function

$$
\begin{aligned}
\Phi\left(\lambda_{1}, \ldots, \lambda_{m}, D_{1}, \ldots, D_{m}\right) & :=\sum_{d \in H_{2}(X, \mathbb{Z})} \prod_{i=1}^{m} \frac{\lambda_{i}^{D_{i}(d)+D_{i}}}{\Gamma\left(D_{i}(d)+1+D_{i}\right)} \\
& =\sum_{d} q^{d} \frac{\prod_{a=1}^{r} q_{a}^{T_{a}}}{\prod_{i=1}^{m} \Gamma\left(D_{i}(d)+1+D_{i}\right)} \\
& =e^{\tau_{2}} \sum_{d} q^{d} \frac{1}{\prod_{i=1}^{m} \Gamma\left(D_{i}(d)+1+D_{i}\right)} \text { with the notation of (6) }
\end{aligned}
$$

Compare with Proposition 3.6, the last expression is almost the expression $\hat{H}\left(2 \mathbf{i} \pi \tau_{2}, z=1\right)$.
If we want to use the logarithmic derivative in \square_{d} i.e. $\delta_{i}:=\lambda_{i} \partial_{\lambda_{i}}$ we put for any $d \in H_{2}(X, \mathbb{Z})$

$$
\square_{d}^{\prime}:=\prod_{i: D_{i}(d)>0} \lambda_{i}^{D_{i}(d)} \square_{d}
$$

We deduce

$$
\square_{d}^{\prime}=\prod_{i: D_{i}(d)>0} \delta_{i}\left(\delta_{i}-1\right) \cdots\left(\delta_{i}-\left(D_{i}(d)-1\right)\right)-q^{d} \prod_{i: D_{i}(d)<0} \delta_{i}\left(\delta_{i}-1\right) \cdots\left(\delta_{i}-\left(-D_{i}(d)-1\right)\right)
$$

Notice that we can express the differential operator \square_{d} with the q_{a} 's coordinates, namely we have

$$
\delta_{i}=\lambda_{i} \partial_{\lambda_{i}}=\sum_{a=1}^{r} D_{i}\left(\beta_{a}\right) q_{a} \partial_{q_{a}}
$$

4.2. z-GKZ system and A-side. - Here, we will suppose that X is Fano. There is a generalization of GKZ system where, we introduce an additional variable denoted by z. To do so, we should replace in the formulas of Definition 4.1, $\partial_{\lambda_{i}}$ by $z \partial_{\lambda_{i}}$.

With the same discussion as before, for $d \in H_{2}(X, \mathbb{Z})$, we just look at the operators

$$
\left(\square_{d, z}^{\prime}:=\right) \mathcal{P}_{d}:=\prod_{i: D_{i}(d)>0} z \delta_{i}\left(z \delta_{i}-z\right) \cdots\left(z \delta_{i}-\left(D_{i}(d)-1\right) z\right)-q^{d} \prod_{i: D_{i}(d)<0} z \delta_{i}\left(z \delta_{i}-z\right) \cdots\left(z \delta_{i}-\left(-D_{i}(d)-1\right) z\right)
$$

Recall that we have

$$
\delta_{i}=\sum_{a=1}^{r} D_{i}\left(\beta_{a}\right) q_{a} \partial_{q_{a}}=\sum_{a=1}^{r} \rho_{a} q_{a} \partial_{q_{a}}
$$

where $c_{1}(T X)=D_{1}+\cdots+D_{m}=\sum_{a=1}^{r} \rho_{a} T_{a}$.
We define the differential module

$$
M_{G K Z}:=\mathbb{C}\left[z, q^{ \pm}\right]\left\langle z q_{a} \partial_{q_{a}}\right\rangle /\left\langle\mathcal{P}_{d}, d \in H_{2}(X, \mathbb{Z})\right\rangle
$$

We define the associated sheaf

$$
\mathcal{M}_{G K Z}:=M_{G K Z} \otimes_{\mathbb{C}\left[z, q^{ \pm}\right]} \mathcal{O}_{V_{\varepsilon} \times \mathbb{C}}
$$

where $V_{\varepsilon}:=\left\{0<\left|q_{a}\right|<\varepsilon\right\}$ is an open in $H^{2}(X, \mathbb{C}) / \operatorname{Pic}(X) \simeq\left(\mathbb{C}^{*}\right)^{r}$.
Proposition 4.4. - The sheaf $\mathcal{M}_{G K Z}$ is a finitely generated $\mathcal{O}_{V_{\varepsilon} \times \mathbb{C}}$-module. The fiber at any point $(q, z) \in V_{\varepsilon} \times \mathbb{C}$ is less than $\operatorname{dim}_{\mathbb{C}} H^{*}(X, \mathbb{C})$.

In Section 3, we used the variables τ_{2}, but here we use the variables $q_{a}=e^{t_{a}}$. To make this precise, one should quotient the bundle $(\mathcal{O}(F), \nabla)$ with an action of the Picard group of X. The quotient bundle is denoted by $(\mathcal{O}(\widetilde{F}), \nabla)$. With the q_{a} 's variable the large limit point is $q_{a}=0$.

$$
H^{*}(X, \mathbb{Z}) \xrightarrow{\Gamma(T X)(2 \mathbf{i} \pi)^{\operatorname{deg} / 2}}\left(\mathcal{O}(\widetilde{F}), d_{U \times \mathbb{C}}\right) \xrightarrow{z^{-\mu} z^{c_{1}(T X)}}\left(\mathcal{O}(\widetilde{F}), d_{U}+\nabla_{z \partial_{z}}\right) \xrightarrow{L(q, z)}(\mathcal{O}(\widetilde{F}), \nabla)
$$

Lemma 4.5. - For any $d \in H_{2}(X, \mathbb{Z})$, we have

$$
\mathcal{P}_{d}(\hat{H}(q, z))=\mathcal{P}_{d}(I(q, z))=0 \text { and } \mathcal{P}_{d}\left(\int_{\Gamma} e^{W_{q} / z} \omega_{q}\right)=0
$$

Proposition 4.6. - The following morphism is an isomorphism

$$
\begin{aligned}
M_{G K Z} \otimes_{\mathbb{C}\left[z, q^{ \pm}\right]} \mathcal{O}_{V_{\varepsilon} \times \mathbb{C}} & \longrightarrow(\mathcal{O}(\widetilde{F}), \nabla) \\
P(z, q, z \partial) & \longmapsto P(z, q, z \nabla) \mathbf{1}
\end{aligned}
$$

Sketch of proof. - The morphism is well-defined because of Lemma 4.5 and

$$
P(z, q, z \nabla) \mathbf{1}=L(q, z) P\left(z, q, z q_{a} \partial_{q_{a}}\right) I(q, z)
$$

For $i \in\{1, \ldots, m\}$, we have

$$
\begin{aligned}
I(q, z) & =e^{\sum_{a=1}^{r} T_{a} \log q_{a} / z}\left(1+O\left(q, z^{-1}\right)\right) \\
z \delta_{i} I(q, z) & =e^{\sum_{a=1}^{r} T_{a} \log q_{a} / z}\left(D_{i}+O\left(q, z^{-1}\right)\right)
\end{aligned}
$$

As $L(q, z) \alpha=e^{\sum_{a=1}^{r}-T_{a} \log q_{a} / z} \alpha+O(q)$ and the cohomology of X is generated by the classes D_{i}, there exist operators $P_{j}(z, q, z \nabla)$ such that

$$
P_{j}(z, q, z \nabla) \mathbf{1}=\phi_{j}+O(q)
$$

where ϕ_{j} is a basis of $H^{*}(X, \mathbb{C})$. This implies the morphism of the proposition is onto. By rank consideration, we conclude.
4.3. z-GKZ and B-side. - The B-side is construct as follows. Applying the functor $\operatorname{Hom}_{\mathbb{Z}}\left(-, \mathbb{C}^{*}\right)$ to the exact sequence (3), we get

$$
0 \longrightarrow \operatorname{Hom}\left(N, \mathbb{C}^{*}\right) \longrightarrow Y:=\left(\mathbb{C}^{*}\right)^{m} \xrightarrow{\mathrm{pr}} \mathcal{M}:=\operatorname{Hom}\left(H_{2}(X, \mathbb{Z}), \mathbb{C}^{*}\right) \longrightarrow 0
$$

The Landau-Ginzburg model associated to the toric variety X is

where $W=w_{1}+\cdots+w_{m}$. For $q \in \mathcal{M}$, we denote $Y_{q}:=\operatorname{pr}^{-1}(q)$ and $W_{q}:=\left.W\right|_{Y_{q}}$. Notice that Y_{q} is isomorphic to $\left(\mathbb{C}^{*}\right)^{n}$ where $n=\operatorname{rk} N$. Let \mathcal{M}^{0} be a Zariski open set of \mathcal{M} where W_{q} is convenient and non-degenerated. For (q, z) in $\mathcal{M}^{0} \times \mathbb{C}^{*}$, define

$$
\left.\mathcal{R}_{\mathbb{Z},(q, z)}^{\vee}:=H_{n}\left(Y_{q}, y \in Y_{q}: \Re e\left(W_{q}(y) / z\right) \ll 0\right\}, \mathbb{Z}\right)
$$

Lemma 4.7. - The relative homology group $\mathcal{R}_{\mathbb{Z},(q, z)}^{\vee}$ are a local system of rank $\operatorname{dim} H^{*}(X, \mathbb{C})$.
We can also define a intersection pairing

$$
\mathcal{R}_{\mathbb{Z},(q,-z)}^{\vee} \times \mathcal{R}_{(q, z)}^{\vee} \rightarrow \mathbb{Z}
$$

Denote by $R_{\mathbb{Z}}$ the dual local system. Denote by $\mathcal{R}:=\mathcal{R}_{\mathbb{Z}} \otimes \mathcal{O}_{\mathcal{M}^{0} \times \mathbb{C}^{*}}$. The associated locally free sheaf endowed with a flat connection and a pairing. Identifying Y_{q} with $\left(\mathbb{C}^{*}\right)^{n}$, we denote

$$
\omega_{q}=\frac{d y_{1} \wedge \cdots \wedge d y_{n}}{y_{1} \cdots y_{n}}
$$

A relative n-differential form

$$
\varphi(q, z, y):=f(q, z, y) e^{W_{q}(y) / z} \omega_{q} \text { where } f(q, z, y) \in \mathcal{O}_{\mathcal{M}^{0} \times \mathbb{C}^{*} \times Y_{q}}
$$

defines a section of \mathcal{R} via integration over Lefschetz thimbles $\Gamma \in \mathcal{R}_{\mathbb{Z},(q, z)}^{\vee}$:

$$
[\varphi](q, z):=\frac{1}{(-2 \pi z)^{n / 2}} \int_{\Gamma} f(q, z, y) e^{W_{q}(y) / z} \omega_{q} \in \mathcal{O}_{\mathcal{O}^{0} \times \mathbb{C}^{*}}
$$

Now we extend the bundle \mathcal{R} over $\mathcal{M}^{0} \times \mathbb{C}$ by relative n-form that are regular at $z=0$. We denote this extension by $\mathcal{R}^{(0)}$.

Proposition 4.8. - The following morphism is an isomorphism

$$
\begin{aligned}
M_{G K Z} \otimes_{\mathbb{C}\left[z, q^{ \pm}\right]} \mathcal{O}_{V_{\varepsilon} \times \mathbb{C}} & \longrightarrow\left(\left.\mathcal{R}^{(0)}\right|_{V_{\varepsilon} \times \mathbb{C}}, \nabla\right) \\
P(z, q, z \partial) & \longmapsto P(z, q, z \nabla)\left[e^{W_{q}(y) / z} \omega_{q}\right]
\end{aligned}
$$

5. Integral structures and Mirror symmetry

In this section, we state the main result of Iritani that is the integra structure defined on both side are isomorphic.
Theorem 5.1. - We have an isomorphism of between the locally free sheaves $(\mathcal{O}(\widetilde{F}), \nabla, S(\cdot, \cdot))$ and $\left(\mathcal{R}^{(0)}, \nabla,(\cdot, \cdot)_{R}\right)$ such that the section 1 maps to $\left[e^{W_{q}(y) / z} \omega_{q}\right]$ i.e.

Moreover, the integral structures coincide via the morphism Mir.
Sketch of proof. - Denote by $\mathcal{O}(\widetilde{F})^{\nabla}$ the flat section of $\mathcal{O}(\widetilde{F})$. Consider the morphism

$$
\begin{aligned}
\left.\psi: \mathcal{R}_{\mathbb{Z},(q, z)}^{\vee}:=H_{n}\left(Y_{q}, y \in Y_{q}: \Re e\left(W_{q}(y) / z\right) \ll 0\right\}, \mathbb{Z}\right) & \longrightarrow \mathcal{O}(\widetilde{F})^{\nabla} \\
& \Gamma \longmapsto s_{\Gamma}(q, z)
\end{aligned}
$$

such that for any section $[\varphi]$ of $\mathcal{R}^{(0)}$

$$
\left.S(\operatorname{Mir}([\varphi])), s_{\Gamma}(q, z)\right)=\frac{1}{(-2 \pi z)^{n / 2}} \int_{\Gamma} f(q, z, y) e^{W_{q}(y) / z} \omega_{q}
$$

where $\varphi=f(q, z, y) e^{W_{q}(y) / z} \omega_{q}$.
We have to show that $\psi\left(\mathcal{R}_{\mathbb{Z},(q, z)}^{\vee}\right)$ is equal to $Z_{K}(K(X))$ which is the \mathbb{Z}-structure defined on the A-side.
Firstly, let us show that $s_{\Gamma_{\mathbb{R}}}=Z_{K}\left(\mathcal{O}_{X}\right)$ (see diagram (2) for the definition of $\left.Z_{K}\right)$. As $\operatorname{Mir}\left(e^{W_{q}(y) / z} \omega_{q}\right)=\mathbf{1}$, the Corollary 3.8 implies that

$$
\left(\operatorname{Mir}\left(e^{W_{q}(y) / z} \omega_{q}\right), Z_{K}\left(\mathcal{O}_{X}\right)\right)=\frac{1}{(-2 \pi z)^{n / 2}} \int_{\Gamma_{\mathbb{R}}} e^{-W_{q} / z} \omega_{q}
$$

Let $P_{i}\left(q, z, z \partial_{q_{a}}\right)$ be an differential operator such that $P_{i}(q, z, z \nabla) \mathbf{1}=\phi_{i}+O(q)$. Applying this operator to the identity above, we get

$$
\left(\phi_{i}+O(q), Z_{K}\left(\mathcal{O}_{X}\right)\right)=\frac{1}{(-2 \pi z)^{n / 2}} \int_{\Gamma_{\mathbb{R}}} P_{i} \cdot\left(e^{-W_{q} / z} \omega_{q}\right)
$$

We deduce that $s_{\Gamma_{\mathbb{R}}}=Z_{K}\left(\mathcal{O}_{X}\right)$.
Secondly, show that $Z_{K}(K(X)) \subset \psi\left(\mathcal{R}_{\mathbb{Z},(q, z)}^{\vee}\right)$. For any $L \in \operatorname{Pic}(X)$, we have $Z_{K}(L)=L \cdot Z_{K}\left(\mathcal{O}_{X}\right)$. Moreover, the image $\psi\left(\mathcal{R}_{\mathbb{Z},(q, z)}^{\vee}\right)$ is stable by the action of line bundles. So $Z_{K}(L)$ belongs to $\psi\left(\mathcal{R}_{\mathbb{Z},(q, z)}^{\vee}\right)$. As $K(X)$ is generated by line bundles, we deduce that $Z_{K}(K(X)) \subset \psi\left(\mathcal{R}_{\mathbb{Z},(q, z)}^{\vee}\right)$.

Finally, as the pairings coincide and they are unimodular, we conclude that $Z_{K}(K(X))=\psi\left(\mathcal{R}_{\mathbb{Z},(q, z)}^{\vee}\right)$.

[^1]
[^0]: Talk at ENS the 16th december 2009 and 6th January 2010.

[^1]: Etienne Mann, Département de Mathématiques, Université de Montpellier 2, Place Eugène Bataillon, F-34 095 Montpellier CEDEX 5 E-mail : etienne.mann@math.univ-montp2.fr

