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This talk was after the one of Samuel Boissière (on quantum D-module) and the one of Thierry Mignon (on GKZ-
system).

PART I

INTEGRAL STRUCTURE AND MIRROR SYMMETRY

Recall that we have : For α ∈ H∗(X), we define

L(τ, z)α := eτ2/zα−
∑

(d,ℓ) 6=(0,0)

N∑

k=0

φk

ℓ!

〈
φk, τ

′, . . . , τ ′,
e−τ2/zα

z + ψ

〉

0,ℓ+2,d

e
R

d
τ2 = α+O(z−1)

where (z + ψ)−1 :=
∑

j≥0(−1)jz−j−1ψj = z−1(...).

On the trivial bundle F := H∗(X,C)×M ×C →M ×C where M is an open in H∗(X) containing the large radius
limit.

(O(F ), dU×C)
z−µzρ

//

(
O(F ),

∇X :=dX

∇z∂z := z∂z + µ− z−1ρ

)
L(τ,z)

//

(
O(F ),

∇X :=dX+z−1X•

∇z∂z := z∂z −z−1E • +µ

)

Recall that ρ := c1(TX) and µ(φi) = φi(deg(φi) − n)/2.

1. Integral structure

In this section, we define an integral structure on F which will be natural for K-theory and for mirror symmetry.

Let α ∈ H∗(X,Z) such that α∪ : H∗(X,Z)
∼→ H∗(X,Z). This induces a Z-structure on the bundle F as follows.

We have the following morphism of global (multivalued)-section

(O(F ), dU×C)
z−µzρ

//

(
O(F ),

∇X :=dX

∇z∂z := z∂z + µ− z−1ρ

)
L(τ,z)

//

(
O(F ),

∇X :=dX+z−1X•

∇z∂z := z∂z −z−1E • +µ

)

H∗(X,Z)
?�

OO

H∗(X,Z)
α∪oo

(1)

We consider a very special Z-structure induced by the cohomology class

Γ(TX) :=
∏

i

Γ(1 + δi) = exp(−γρ+
∑

k≥2

(k − 1)!ζ(k)Chk(TX))

where ρ = c1(TX), δi are the Chern root of TX and γ is the Euler constant.
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Definition 1.1. — We define the Z-structure on the bundle (F,∇) by the diagram (1) and the following morphism
Γ(TX) ∪ (2iπ)deg /2 : H∗(X,Z) → H∗(X,C). We call it the Γ-structure.

In the following, we will give two reasons why this Γ-structure is good. The first one is a nice behaviour with respect
to K-theory. The second one uses mirror symmetry but we need to restrict to smooth toric Fano variety.

2. Γ-structure and K-theory

Recall that the Chern character Ch : K(X) → H∗(X,Q) become an isomorphism tensoring by C.

Theorem 2.1 (Iritani). — For V1, V2 ∈ K(X). We have

S(ZK(V1), ZK(V2)) = (V1, V2)K(X)(:= χ(V ∨
2 ⊗ V1)).

Where ZK is defined by the following commutative diagram

K(X)

Ch

��

ZK

--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

H∗(X,Q)
Γ(TX)(2iπ)deg /2

// (O(F ), dX + z∂z)
L(τ,z)z−µzρ

// (O(F ),∇)

(2)

The reader which is familiar with K-theory would think that Γ(TX) is a square root of the Todd class. Indeed, the
relation is Γ(TX)Γ(TX∨) = e−ρ/2Td(TX).

3. Γ-function and mirror symmetry

In this section we assume that X is a smooth toric Fano variety. Recall that 1 ∈ H∗(X) was the unit. Put
J(τ, z) := L(τ, z)−11(= L(τ,−z)∗1). Consider the following diagram

H∗(X,Z)
Γ(TX)(2iπ)deg /2

//

++VVVVVVVVVVVVVVVVVVVVVVV
(O(F ), dX + z∂z)

z−µzρ
//

��

(O(F ), dX + ∇z∂z )
L(τ,z)

//

uukkkkkkkkkkkkkkk

(O(F ),∇)

rreeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

U × C̃∗

J
44

1

44
(3)

Remark 3.1. — The J-function is a very important function in the work of Givental. For example, we can recover
the quantum product via the J-function as follows : We have ∇∂tk

1 = φk/z. The previous diagram implies that

∂tk
J = L(τ, z)−1φk/z. So we deduce that z2∂ti∂tj J = L(τ, z)−1φi •τ φj . To compute the quantum product, one should

expand z2∂ti∂tjJ with respect to the power of z.

Let us restrict the J-function to H2(X,C) (where the divisor axiom holds) ie. τ = τ2 + τ ′ where τ ′ = 0. Put
J(τ2, z) := J(τ2 + 0, z). We also restrict the bundle to U2 := U |τ ′=0. Let φ1, . . . , φr the basis of H2(X,Z) which are
in the closure of the Kähler cone of X .

Definition 3.2. — We denote Σ(1) the 1-dimensional cone of the fan Σ of X . For any ray ρ, we denote Dρ the
associate toric divisor. We define the I-function which is a cohomological valued function by

I(τ2, z) := eτ2/z
∑

d∈H2(X,Z)

e
R

d
τ2

∏

ρ∈Σ(1)

∏+∞
ν=Dρ(d)(Dρ + (Dρ(d) − ν)z)
∏+∞

ν=0(Dρ + (Dρ(d) − ν)z)

Theorem 3.3 (Givental). — If X is a smooth toric Fano variety then I(τ2, z) = J(τ2, z).

Proposition 3.4. — We have Γ(TX) =
∏

ρ(1 +Dρ) and

z−c1(TX)zµI(τ2, z) = Γ(TX)z−n/2eτ2z−c1(TX)
∑

d∈H2(X,Z)

e
R

d
τ2z−

R

d
c1(TX)

∏
ρ∈Σ(1) Γ(Dρ +Dρ(d) + 1)

Ĥ(τ2, z) := z−n/2eτ2/2iπz−c1(TX)/2iπ
∑

d∈H2(X,Z)

e
R

d
τ2z−

R

d
c1(TX)

∏
ρ∈Σ(1) Γ(Dρ/2iπ +Dρ(d) + 1)
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where Ĥ is defined by the following diagram

H∗(X,Z)
Γ(TX)(2iπ)deg /2

//

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY (O(F ), dU×C)
z−µzc1(T X)

//

''NNNNNNNNNNN
(O(F ), dU + ∇z∂z )

L(τ,z)
//

vvnnnnnnnnnnnn

(O(F ),∇)

ssffffffffffffffffffffffffffff

U2 × C̃∗
Ĥ

kk

z−c1(T X)zµI
ii

J=I
55

1

44

We can now state the main result of Iritani that is that the integral structure given by the Γ(TX)(2iπ)deg/2 is
related to the integral structure of its mirror. More precisely, we have the following result.

Theorem 3.5 (Iritani). — Put H(τ2, z) := (2πz)n/2

(−2π)n Ĥ(τ2, z). We have
∫

X

H(τ2,−z) ∪ Td(TX) =
1

(2iπ)n

∫

ΓR

e−Wq/zωq.

where Wq : Yq → C is the mirror of X with Yq ≃ (C∗)#Σ(1)−dim H2(X,C) and ΓR = {y ∈ Yq | yρ > 0}.

To see this Theroem in K-theory, we put HK(τ2, z) := (2πz)n

(−2π)nZ
−1
K (1).

Corollary 3.6. —

S(1, ZK(OX)) =
1

(−2πz)n/2

∫

ΓR

e−Wq/zωq

4. z-GKZ system and A-side

Here, we will suppose that X is Fano. There is a generalization of GKZ system where, we introduce an additional
variable denoted by z. To do so, we should replace in the formulas of Definition, ∂λi by z∂λi in the definition of the
classical GKZ system (see Thierry’s talk).

With the same discussion as in the classical GKZ, for d ∈ H2(X,Z), we just look at the operators

(�′
d,z :=)Pd :=

∏

i:Di(d)>0

zδi(zδi − z) · · · (zδi − (Di(d) − 1)z) − qd
∏

i:Di(d)<0

zδi(zδi − z) · · · (zδi − (−Di(d) − 1)z)

Recall that we have

δi =

r∑

a=1

Di(βa)qa∂qa

We define the differential module

MGKZ := C[z, q±]〈zqa∂qa〉/〈Pd, d ∈ H2(X,Z)〉.
We define the associated sheaf

MGKZ := MGKZ ⊗C[z,q±] OVε×C

where Vε := {0 < |qa| < ε} is an open in H2(X,C)/Pic(X) ≃ (C∗)r.

Proposition 4.1. — The sheaf MGKZ is a finitely generated OVε×C-module. The fiber at any point (q, z) ∈ Vε × C

is less than dimC H
∗(X,C).

In Section 1, we used the variables τ2, but here we use the variables qa = eta . To make this precise, one should

quotient the bundle (O(F ),∇) with an action of the Picard group of X . The quotient bundle is denoted by (O(F̃ ),∇).
With the qa’s variable the large limit point is qa = 0.

H∗(X,Z)
Γ(TX)(2iπ)deg /2

//

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

(
O(F̃ ), dU×C

)
z−µzc1(T X)

//

&&MMMMMMMMMM

(
O(F̃ ), dU + ∇z∂z

)
L(q,z)

//

wwooooooooooo

(
O(F̃ ),∇

)

ssfffffffffffffffffffffffffffff

Vε × C
Ĥ

jj

z−c1(T X)zµI
gg J=I 66

1

44

Lemma 4.2. — For any d ∈ H2(X,Z), we have

Pd(Ĥ(q, z)) = Pd(I(q, z)) = 0 and Pd(

∫

Γ

eWq/zωq) = 0

Proposition 4.3. — The following morphism is an isomorphism

MGKZ ⊗C[z,q±] OVε×C −→ (O(F̃ ),∇)

P (z, q, z∂) 7−→ P (z, q, z∇)1
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Sketch of proof. — The morphism is well-defined because of Lemma 4.2 and

P (z, q, z∇)1 = L(q, z)P (z, q, zqa∂qa)I(q, z).

For i ∈ {1, . . . ,m}, we have

I(q, z) = e
Pr

a=1 Ta log qa/z(1 +O(q, z−1))

zδiI(q, z) = e
Pr

a=1 Ta log qa/z(Di +O(q, z−1))

As L(q, z)α = e
Pr

a=1 −Ta log qa/zα+O(q) and the cohomology of X is generated by the classes Di, there exist operators
Pj(z, q, z∇) such that

Pj(z, q, z∇)1 = φj +O(q)

where φj is a basis of H∗(X,C). This implies the morphism of the proposition is onto. By rank consideration, we
conclude.

4.1. z-GKZ and B-side. — Let X be a smooth toric variety. Denote by Σ(1) the set a rays of the fan Σ. Put
m := #Σ(1). Denote by D1, . . . , Dm the toric divisors associated to the rays. We have the following exact sequence

0 // H2(X,Z)
D

// Zm
β

// N // 0(4)

where D : d 7→
∑m

i=1Di(d)ei and β : ei 7→ vi which are the generators of the rays.
The B-side is construct as follows. Applying the functor HomZ(−,C∗) to the exact sequence (4), we get

0 // Hom(N,C∗) // Y := (C∗)m pr
// M := Hom(H2(X,Z),C∗) // 0

The Landau-Ginzburg model associated to the toric variety X is

Y
W //

pr

��

C

M
where W = w1 + · · · + wm. For q ∈ M, we denote Yq := pr−1(q) and Wq := W |Yq . Notice that Yq is isomorphic to

(C∗)n where n = rkN . Let M0 be a Zariski open set of M where Wq is convenient and non-degenerated. For (q, z)
in M0 × C∗, define

R∨
Z,(q,z) := Hn(Yq, y ∈ Yq : ℜe(Wq(y)/z) ≪ 0},Z)

Lemma 4.4. — The relative homology group R∨
Z,(q,z) are a local system of rank dimH∗(X,C).

We can also define a intersection pairing

R∨
Z,(q,−z) ×R∨

Z,(q,z) → Z.

Denote by RZ the dual local system. Denote by R := RZ ⊗OM0×C∗ . The associated locally free sheaf endowed with
a flat connection and a pairing. Identifying Yq with (C∗)n, we denote

ωq =
dy1 ∧ · · · ∧ dyn

y1 · · · yn
.

A relative n-differential form

ϕ(q, z, y) := f(q, z, y)eWq(y)/zωq where f(q, z, y) ∈ OM0×C∗×Yq

defines a section of R via integration over Lefschetz thimbles Γ ∈ R∨
Z,(q,z):

[ϕ](q, z) :=
1

(−2πz)n/2

∫

Γ

f(q, z, y)eWq(y)/zωq ∈ OM0×C∗ .

Now we extend the bundle R over M0 × C by relative n-form that are regular at z = 0. We denote this extension by
R(0).

Proposition 4.5. — The following morphism is an isomorphism

MGKZ ⊗C[z,q±] OVε×C −→ (R(0) |Vε×C,∇)

P (z, q, z∂) 7−→ P (z, q, z∇)[eWq(y)/zωq]
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5. Integral structures and Mirror symmetry

In this section, we state the main result of Iritani that is the integral structure defined on both side are isomorphic.

Theorem 5.1. — We have an isomorphism of between the locally free sheaves (O(F̃ ),∇, S(·, ·)) and (R(0),∇, (·, ·)R)
such that the section 1 maps to [eWq(y)/zωq] i.e.

(R(0),∇, (·, ·)R)

''OOOOOOOOOOO

Mir // (O(F̃ ),∇, S(·, ·))

wwooooooooooo

Vε × C
1

;;

[eWq(y)/zωq ]

cc

Moreover, the integral structures coincide via the morphism Mir.

Sketch of proof. — Denote by O(F̃ )∇ the flat section of O(F̃ ). Consider the morphism

ψ : R∨
Z,(q,z) := Hn(Yq, y ∈ Yq : ℜe(Wq(y)/z) ≪ 0},Z) −→ O(F̃ )∇

Γ 7−→ sΓ(q, z)

such that for any section [ϕ] of R(0)

S(Mir([ϕ])), sΓ(q, z)) =
1

(−2πz)n/2

∫

Γ

f(q, z, y)eWq(y)/zωq

where ϕ = f(q, z, y)eWq(y)/zωq.
We have to show that ψ(R∨

Z,(q,z)) is equal to ZK(K(X)) which is the Z-structure defined on the A-side.

Firstly, let us show that sΓR
= ZK(OX) (see diagram (2) for the definition of ZK). As Mir(eWq(y)/zωq) = 1, the

Corollary 3.6 implies that

S(Mir(eWq(y)/zωq), ZK(OX)) =
1

(−2πz)n/2

∫

ΓR

e−Wq/zωq.

Let Pi(q, z, z∂qa) be an differential operator such that Pi(q, z, z∇)1 = φi +O(q). Applying this operator to the identity
above, we get

S(φi +O(q), ZK(OX)) =
1

(−2πz)n/2

∫

ΓR

Pi · (e−Wq/zωq).

We deduce that sΓR
= ZK(OX).

Secondly, show that ZK(K(X)) ⊂ ψ(R∨
Z,(q,z)). For any L ∈ Pic(X), we have ZK(L) = L · ZK(OX). Moreover, the

image ψ(R∨
Z,(q,z)) is stable by the action of line bundles. So ZK(L) belongs to ψ(R∨

Z,(q,z)). As K(X) is generated by

line bundles, we deduce that ZK(K(X)) ⊂ ψ(R∨
Z,(q,z)).

Finally, as the pairings coincide and they are unimodular, we conclude that ZK(K(X)) = ψ(R∨
Z,(q,z)).

PART II

WHAT ARE THE CHANGES FOR TORIC ORBIFOLDS

The two main theorems 2.1 and 5.1 will also be true for weak Fano toric orbifold. They are many changes when one
wants to prove this results for toric orbifolds. We will focus on the “Picard action”. Hence, our quantum D-module
will be the quotient of (F,∇, S) by this action.

5.1. Orbifold quantum model D-module. — First, we recall some basic facts about orbifold cohomology. The
inertia stack, denoted by IX := X ×X×X X , is the fiber product over the two diagonal morphisms X → X ×X . The
inertia stack is a smooth Deligne-Mumford stack but different components will in general have different dimensions.
The identity section gives an irreducible component which is canonically isomorphic to X . This component is called
the untwisted sector. All the other components are called twisted sectors. We thus have

IX = X ⊔
⊔

v∈T

Xv

where T parametrizes the set of components of the twisted sectors of IX .
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The orbifold cohomology of X is defined, as vector space, by H∗
orb(X ,C) := H∗(IX ,C). We have

H∗
orb(X ,C) = H∗(X ,C) ⊕

⊕

v∈T

H∗(Xv,C).

We will put M := H∗
orb(X ,C) in what follows.

To define a grading on M , we associate to any v ∈ T a rational number called the age of Xv. A geometric point
(x, g) in IX is a point x of X and g ∈ Aut(x). Fix a point (x, g) ∈ Xv. As g acts on the tangent space TxX , we
have an eigenvalue decomposition of TxX . For any f ∈ [0, 1[, we denote (TxX )f the sub-vector space where g acts by

multiplication by exp(2
√
−1πf). We define

age(v) :=
∑

f∈[0,1[

f. dimC(TxX )f .

This rational number only depends on v. Let αv be a homogeneous cohomology class of Xv. We define the orbifold
degree of αv by

degorb(αv) := deg(αv) + 2 age(v).

Let φ0, . . . , φN be a graded homogeneous basis of H∗
orb(X ,Q) such that φ0 ∈ H0(X ,Q) and φ1, . . . , φs ∈ H2(X ,Q).

Notice that the cohomology classes φ1, . . . , φs are in the cohomology of X i.e in the cohomology of the untwisted
sector. We denote also by φ0, . . . , φN the image of these classes in H∗

orb(X ,C). We will denote by t := (t0, . . . , tN ) the
coordinates of M associated to this basis.

6. The trivial bundle and the flat meromorphic connection

Let F be the trivial vector bundle over C ×M whose fibers are H∗
orb(X ,C). For i ∈ {0, . . . , N}, we see φi as a

global section of the bundle F .
Define the vector field, called the Euler vector field,

E :=

N∑

i=0

(
1 − degorb(φi)

2

)
ti∂i +

s∑

i=1

ri∂i.

where the ri are rational numbers determined by the equality c1(TX ) =
∑s

i=1 riφi and ∂i the vector field ∂
∂ti

.

The big quantum product(1) endows the vector bundle F with a product. We define a OM -linear homomorphism
which will turn out to be an Higgs field (ie. Φ ∧ Φ = 0.

Φ : TM → End (F ) by Φ(∂i) = φi •t .

In coordinates, we have

Φ =
N∑

i=0

Φ(i)(t)dti

where Φ(i)(t) is the endomorphism φi•t.
As in the manifold case, define, on the trivial bundle F , the connection

∇ := dM×C +
1

z
π∗Φ +

(
−1

z
Φ(E) + µ

)
dz

z

where π : C ×M →M is the projection and R∞ is the semi-simple endomorphism whose matrix in the basis (φi) is

µ(φi) = φi(degorb(φi) − n)/2.

As for manifolds, we have that

Proposition 6.1. — The meromorphic connection ∇ is flat.

Now, we define the pairing on F . The vector space H∗
orb(X ,C) is endowed with a nondegenerate pairing which is

called the orbifold Poincaré pairing. We denote it by 〈·, ·〉. It satisfies the following homogeneity property:

(5) if 〈φi, φj〉 6= 0 then degorb(φi) + degorb(φj) = 2n.

We define a pairing S on the global sections φ0, . . . , φN of F by

S(φi, φj) := 〈φi, φj〉.
and we extend it by linearity using the rules

(6) a(z, t)S(·, ·) = S(a(z, t)·, ·) = S(·, a(−z, t)·)

(1)Usually, working on quantum cohomology, one has either to add the Novikov ring (see section 8.1.3 of Cox-Katz) or to assume that the
quantum product converges on some open of M (see Assumption 2.1 in Iritani).
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for any a(z, t) ∈ OC×M .

Proposition 6.2. — The pairing S(·, ·) is nondegenerate, symmetric and ∇-flat.

We deduce that the tuple (M,F,∇, S, n) is a quantum D-module on C ×M .

7. Action of the Picard group on the quantum D-module for a toric orbifold

Here we simplify the exposition by assuming X is a toric orbifold.
If X is a toric orbifold, then we have X = [Z/G] where G := Hom(Pic(X ),C∗) and Z is a quasi-affine variety in

some Cm. The inertia stack is parametrized by a finite subset T of G. A line bundle L on X is given by a character
χL of G.

We define the action of Pic(X ) on the trivial bundle F → C ×M as follows:

1. on the fibers of the bundle we define, for any L ∈ Pic(X ) and for αv ∈ H∗(Xv,C),

L · αv := χL(v)αv

2. on M ⊂ H∗
orb(X ,C) we define

L ·


α⊕

⊕

v∈T/{1}

αv


 := (α− 2π

√
−1d.c1(L)) ⊕

⊕

v∈T/{1}

χL(v)αv

Proposition 7.1. — (1) The big quantum product is equivariant with respect to this action: for any classes α, β ∈
H∗

orb(X ,C), for any point t ∈M and for any L ∈ Pic(X ), we have

(L · α) •L·t (L · β) = L · (α •t β).

(2) The pairing SA,sm(·, ·) is invariant with respect to this action.

Hence, we can take the quotient and this will be the quantum D-module.
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