Notes of the talk of A. Polishchuk
 "Introduction to Curved dG-algebras" (after Positselski)

The article of Politselski is available at http://arxiv.org/abs/0905.2621.
Curved dg-algebras appear in n.c. analogue of Koszul duality.
Definitions. Dg-algebra: \mathbb{Z}-graded associative algebra equipped with a differential operator $d: A \rightarrow A$ of degree 1 , that is, a derivation (in the graded sense) such that $d^{2}=0$.

Sometimes one considers $\mathbb{Z} / 2$-graded objects (e.g. with LG models).
Curved dg-algebra: \mathbb{Z} (or $\mathbb{Z} / 2$) graded associated algebra A over some base field or ring $k, d: A \rightarrow A$ degree one derivation, but the condition $d^{2}=0$ is replaced by:

- for some fixed element $h \in A_{2}$ with $d(h)=0$ one has $d^{2} x=h x-x h$ for all $x \in A$.
So a curved dg-algebra consists of data (A, d, h) such that... and a dg-algebra is a curved dg-algebra with $h=0$.

Example. Let E be a vector bundle over a smooth variety X / k, and $\nabla_{E}: E \rightarrow$ $\Omega_{X}^{1} \otimes E$ be a connection. Then $\mathscr{E} n d(E)$ has a natural connection ∇. Consider $\mathscr{A}=\Omega_{X}^{\bullet}(\mathscr{E} n d(E))$ (here we deal with a sheaf of algebras, but one can work with X affine to get a single algebra). Extend ∇ to a derivation of \mathscr{A} of degree 1. Then $\nabla^{2}=[R,-]$, where $R=\nabla_{E}^{2} \in \Omega^{2}(\mathscr{E} n d(E))$ is the curvature of ∇_{E}.
Example. Initial cdg-algebra $k[h]$, where $\operatorname{deg} h=2, d=0$.
Example. $d=0, h$ is a central element. Subexample: LG-model ($\mathbb{Z} / 2$-graded case). Start with a commutative algebra R and $W \in R$. Define A as $A^{0}=R, A^{1}=0$, $h=W$.

Morphisms. Morphisms $\left(A, d_{A}, h_{A}\right) \rightarrow\left(B, d_{B}, h_{B}\right)$ are defined as pairs (f, α), where $f: A \rightarrow B$ is a morphism of graded algebras (of degree 0), $\alpha \in B_{1}$, such that

$$
d_{B} f(a)=f d_{A}(a)+[\alpha, f(a)], \quad h_{B}=f\left(h_{A}\right)+d_{B}(\alpha)-\alpha^{2} .
$$

For example, the α part of a morphism in this category between dg-algebras $(h=0)$ is a solution of Maurer-Cartan equations.

Compatibility: Let $\left(A, d_{A}, h_{A}\right)$ be a cdg-algebra and let $f: A \rightarrow B$ be an isomorphism of graded algebras. Let $\alpha \in B_{1}$ and define d_{b} and h_{B} by the formula above. Then $\left(B, d_{B}, h_{B}\right)$ is a cdg-algebra: let us compute $d_{B}^{2} f(a)$ for a even, say. Then

$$
\begin{aligned}
d_{B}^{2} f(a) & =d_{B} f d_{A}(a)+d_{B}[\alpha, f(a)] \\
& =f d_{A}^{2}(a)+\left[\alpha, f d_{A}(a)\right]+\left[d_{B}(\alpha), f(a)\right]-\left[\alpha, d_{B} f(a)\right] \\
& =[f(h), f(a)]+\left[d_{B}(\alpha), f(a)\right]-[\alpha,[\alpha, f(a)]] \\
& =\left[f(h)+d_{B}(\alpha)-\alpha^{2}, f(a)\right] .
\end{aligned}
$$

Composition: $(f, \alpha) \circ(g, \beta)=(f \circ g, \alpha+f(\beta))$. Identity $=(\operatorname{Id}, 0)$.
Isomorphisms in this category: f is an isomorphism, $(f, \alpha)^{-1}=\left(f^{-1},-f^{-1}(\alpha)\right)$.
Note that a cdg-algebra can be isomorphic to a dg-algebra. Namely, if $h=$ $d \alpha-\alpha^{2}$ then we have an isomorphism (Id, $\left.\alpha\right):(A, d, 0) \rightarrow(A, d, h)$.

Example. E vector bundle, different choices of connections ∇_{E} lead to isomorphic cdg-algebras.

Example. Solutions of (associative) Maurer-Carten equations $d \alpha=\alpha^{2}$ of a dgalgebra $(A, d, 0)$ correspond to automorphisms as cdg-algebra with $f=\mathrm{Id}$.

Remark. In the case $h=0$ there is also a notion of quasi-isomorphism, but not clear how to extend.

Note. d induces a differential on $A /[A, A]$ with square 0 , so we have cohomology $H^{*}(A /[A, A], d)$. Images of h^{n} in $A /[A, A]$ are cocycles. Corresponding cohohomology classes are called Chern classes (they are invariants of the isomorphism class). In the example with vector bundle these are usual Chern classes.

Question. Is there is a better cohomology class involving Hochschild homology of A ?
One can still define dg-modules (or cdg-modules) over a cdg-algebra.
Definition. A dg-module over a cdg-algebra (A, d, h) is a graded A-module M, with a differential $d_{M}: M \rightarrow M$ (i.e., k-linear map satisfying Leibniz rule) of degree one, such that $d_{M}^{2}=h$.
Example. If M is a A-module such that $h M=0$ then M can be viewed as dgmodule (with $d_{M}=0$).

Example. $\mathscr{A}=\left(\Omega_{X}^{\bullet}(\mathscr{E} n d(E)), \nabla,[R,-]\right)$ defined by $\left(E, \nabla_{E}\right)$. Then $\left(\Omega_{X}^{\bullet}(E), \nabla_{E}\right)$ is a dg-module over \mathscr{A}. Note that \mathscr{A} is not a dg-module over itself.
Example (LG model ($\mathbb{Z} / 2$-graded)). $A^{0}=R, A^{1}=0, h=W, d=0$. dg-module over A : $P=P^{0} \oplus P^{1}$, where P^{0}, P^{1} are R-modules,

$$
P^{0} \xrightarrow{\stackrel{d}{\longleftrightarrow}} P^{1}, \quad d^{2}=W \text { (matrix factorization). }
$$

Subexample: write $W=a_{1} b_{1}+\cdots+a_{n} b_{n}$ with $a_{i}, b_{i} \in R$. Then we get a Koszul matrix factorization. Module: $\bigwedge_{R}^{\bullet}\left(R^{n}\right), e_{i}$ basis of R^{n}, e_{i}^{*} dual basis, $\delta=$ $\left(\sum_{i} a_{i} e_{i}\right) \wedge \bullet+\iota\left(\sum_{i} b_{i} e_{i}^{*}\right)$, where ι is the contraction.

For a pair of dg-modules M, N, we have a differential $d_{M, N}$ on $\operatorname{Hom}_{A}(M, N)$ defined by

$$
d_{M, N}(f)=d_{N} \circ f-(-1)^{|f|} f \circ d_{M}
$$

Thus, we have a dg-category of dg-modules. One can form a homotopy category.
Definition. $\mathrm{HMF}=$ homotopy category of matrix factorizations with P^{0}, P^{1} finitely generated projective over R.

Theorem (Buchweitz, Orlov). Assume R is smooth. Then

$$
\operatorname{HMF}(R, W)=D_{\operatorname{Sing}}(R / W) \simeq D^{b}(R / W \text { f.g.-mod }) / \text { Perf }
$$

(Perf $=$ bounded complexes of f.g. projective R-modules.)
The functor maps the object

$$
P^{0} \xrightarrow[\underset{d}{\stackrel{ }{\longrightarrow}}]{\stackrel{d}{\longrightarrow}} P^{1}
$$

to coker $\left(d: P^{0} \rightarrow P^{1}\right)$ as a module over R / W.

Koszul duality. This is a generalization of the so called $S \Lambda$-duality (S for the symmetric algebra $S=k\left[x_{1}, \ldots, x_{n}\right]$ and Λ for the exterior algebra $\Lambda=k\left[\xi_{1}, \ldots, \xi_{n}\right]$). The $S \Lambda$-duality is an equivalence $D^{b}\left(S\right.$-f.g.-mod) $\simeq D^{b}(\Lambda$-f.g.-mod).

Both algebras are defined by quadratic relations: $x_{i} x_{j}=x_{j} x_{i}$ in the symmetric case and $\xi_{i} \xi_{j}=-\xi_{j} \xi_{i}$ in the exterior case. The duality statement can be generalized to algebras defined by quadratic relations. Let V be a finite dimensional vector space. Set $A=T(V) /(I)$ with $I \subset V^{\otimes 2}$, and $A^{!}=T\left(V^{*}\right) /\left(I^{\perp}\right)$ with $I^{\perp} \subset V^{*} \otimes V^{*}$.
Definition. A is Koszul if $A=\bigoplus_{n \geqslant 0} A_{n}, A_{0}=k, A$ is generated by A_{1} over k, and $\operatorname{Ext}_{A}^{*}(k, k)$ is generated over k by $\operatorname{Ext}_{A}^{1}(k, k)$.

If A is Koszul, then A is defined by quadratic relations (with $V=A_{1}$), and $A^{!}=\operatorname{Ext}_{A}^{*}(k, k)$. Moreover, $A^{!}$is also Koszul.

Under additional assumptions (Beilinson, Ginzburg, Soergel), we have equivalence between suitable subcategories of $D^{b}\left(A\right.$-mod) and $D^{b}\left(A^{!}-\bmod \right)$.

We want to consider generalization with non-homogeneous relations. Let B be an associative algebra over k and let $F_{0}=k \subset F_{1} \subset \cdots$ be an increasing filtration such that $\operatorname{gr}_{F} B$ is a quadratic algebra. The non-homogeneous quadratic dual is a curved dg-algebra.

Indeed, set $A=\left(\operatorname{gr}_{F} B\right)^{!}$, and $F_{1}=V \oplus k$, that is, $V=F_{1} / F_{0}$. We have $I \subset V^{\otimes 2}$. Relations in $B: J \subset k \oplus V \oplus V^{\otimes 2}$, written as $x+d^{*}(x)+h^{*}(x)$, where $d^{*}: I \rightarrow V$ and $h^{*}=I \rightarrow k$. Dualize these maps as $d: V^{*} \rightarrow I^{*}=V^{*} \otimes V^{*} / I^{\perp}=A_{2}$ and $h \in I^{*}$, and get (A, d, h).

Conversely, one can start with a quadratic curved dg-algebra (A, d, h) (i.e. A is quadratic).

Let (A, d, h) be a Koszul cdg-algebra and let B be the dual non-homogenous quadratic algebra. Consider the case when A has finite homological dimension $(\Longleftrightarrow B$ has finite dimension over k).
Theorem. $D^{\text {co }}(A$-mod $) \simeq D^{\text {co }}(B-\bmod)$.
Here, co-derived category $D^{\mathrm{co}}(?)$ is the quotient of the homotopy category of dg-modules by the subcategory of co-acyclic objects, i.e., the minimal triangulated subcategory containing total objects of the short exact triples of dg-modules and closed under (infinite) coproducts.

Example. E, ∇_{E}. Let $D_{E}=\operatorname{Diff}(E, E)$, algebra of differential operators from E to E. This is a non-homogeneous quadratic algebra. It is Koszul-dual to $\Omega^{\bullet}(\mathscr{E} n d(E)), \widetilde{\nabla}$.

