# Brieskorn lattices for families of Laurent polynomials (after Givental and Iritani) 

Christian Sevenheck

March 18, 2010


#### Abstract

In these notes, we give an overview on the construction of the so called B-model quantum- $\mathcal{D}$ module of a smooth toric weak Fano manifold, as studied by Givental and described recently by Iritani (【ri09]).


## 1 The mirror of a toric weak Fano manifold

We first explain how to construct from toric data a mirror fibration. Let $N=\oplus_{k=1}^{n} \mathbb{Z} n_{k}$ be a free abelian group of rank $n$ and $\Sigma \subset N \otimes \mathbb{R}$ be a fan. This means that $\Sigma=\{\sigma\}$, where $\sigma$ is a strongly convex (i.e., $\sigma \cap(-\sigma)=\{0\}$ ) polyhedral cone (i.e., $\sigma=\sum \mathbb{R}_{\geq 0} b_{i}$ for some $b_{i}$ 's in $N$ ). Being a fan means that for any $\sigma \in \Sigma$, any face of $\sigma$ is again a cone in $\Sigma$, and that for any two cones $\sigma, \tau \in \Sigma$, the intersection $\sigma \cap \tau$ is a face of both $\tau$ and $\sigma$. The fan $\Sigma$ defines a toric variety $X_{\Sigma}$. Recall that $X_{\Sigma}$ is covered by affine charts $X_{\sigma}:=\operatorname{Spec} \mathbb{C}\left[M \cap \sigma^{\vee}\right]$, here $M:=\operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$ and $\sigma^{\vee}:=\{m \in M \otimes \mathbb{R} \mid m(n) \geq 0 \quad \forall n \in N \otimes \mathbb{R}\}$, and that $X_{\Sigma}$ is obtained from these affine pieces by gluing $X_{\sigma}$ and $X_{\tau}$ along $X_{\sigma \cap \tau}$.
We will suppose in the remainder of these notes that the fan $\Sigma$ is smooth and complete, which means by definition that any cone $\sigma \in \Sigma$ can be generated by elements $b_{i}$ which can be completed to a $\mathbb{Z}$-basis of $N$ and that the support $\operatorname{Supp}(\Sigma)=\bigcup_{\sigma \in \Sigma} \sigma$ is all of $N \otimes \mathbb{R}$. It is well-known that this translates into $X_{\Sigma}$ being smooth and complete. Notice that the smoothness condition can be weakened by requiring $\Sigma$ to be only simplicial, which means that the generators of each cone are linearly independent over $\mathbb{R}$. In this case $X_{\Sigma}$ can have quotient singularities, i.e., it is the underlying topological space of a an orbifold. We have an exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathbb{L} \longrightarrow \mathbb{Z}^{\Sigma(1)} \longrightarrow N \longrightarrow 0 \tag{1}
\end{equation*}
$$

where $\Sigma(1)$ are the one-dimensional cones of $\Sigma$, called rays, the last map sends a generator $e_{i}$ of $\mathbb{Z}^{\Sigma(1)}$ to a primitive integral generator $b_{i} \in N$ of a ray, and where the lattice $\mathbb{L}$ is the free submodule of $\mathbb{Z}^{\Sigma(1)}$ of relations between the elements $b_{i} \in N$. Dualizing yields the sequence

$$
0 \longrightarrow M \longrightarrow \mathbb{Z}^{\Sigma(1)} \longrightarrow \mathbb{L}^{\vee} \longrightarrow 0 .
$$

It is well known (see, e.g., [Ful93, p. 106]) that for a smooth toric manifold $X_{\Sigma}$, we have $H^{2}\left(X_{\Sigma}, \mathbb{Z}\right) \cong \mathbb{L}^{\vee}$. Inside $\mathbb{L}^{\vee} \otimes \mathbb{R}$ we have the cone $K\left(X_{\Sigma}\right)$ of Kähler classes, which can be defined by saying that $a \in K\left(X_{\Sigma}\right)$ iff $a(\beta) \geq 0$ for all effective 1-cycles in $H_{2}\left(X_{\Sigma}, \mathbb{R}\right)$ (The latter set of cycles also forms a cone, called the Mori cone). We write $K^{0}\left(X_{\Sigma}\right)$ for the interior of $K(X)$, i.e., for all elements $a \in \mathbb{L}^{\vee}$ with $a(\beta)>0$. Write $D_{i} \in \mathbb{L}^{\vee}$ for the components of the map $\mathbb{L} \hookrightarrow \mathbb{Z}^{\Sigma(1)}$, then the canonical divisor $K_{X_{\Sigma}}$ is $\sum_{i=1}^{m} D_{i} \in \mathbb{L}^{\vee}$. $X_{\Sigma}$ is called a Fano variety iff $-K_{X_{\Sigma}}$ is ample, i.e., lies in $K^{0}\left(X_{\Sigma}\right)$. If $-K_{X_{\Sigma}} \in K\left(X_{\Sigma}\right)$, then $X_{\Sigma}$ is called weak Fano. Notice that a Calabi-Yau manifold (i.e., $K_{X_{\Sigma}}=0$ ) is obviously weak Fano, however, it is easy to see that in this case the defining fan can never be complete.
The projection $\mathbb{Z}^{\Sigma(1)} \rightarrow N$ is given by a matrix $\left(b_{k i}\right)_{k=1, \ldots, n ; i=1, \ldots, m}$ with respect to the basis $\left(n_{k}\right)$ of $N$. Moreover, we will chose once and for all a basis $\left(p_{a}\right)_{a=1, \ldots, r}$ of $\mathbb{L}^{\vee}$ (with $r=m-n$ and $\left.m=|\Sigma(1)|\right)$ consisting of nef classes, i.e., lying inside of $K(X)$. Notice however that the Kähler cone (resp. the Mori cone) is not always simplicial, the simplest example being the toric del Pezzo surface obtained by blowing up three points in $\mathbb{P}^{2}$ (here rank $H^{2}\left(X_{\Sigma}, \mathbb{Z}\right)=4$, and the Mori cone is generated by 6 classes). Then the map $\mathbb{L} \hookrightarrow \mathbb{Z}^{\Sigma(1)}$ is given by a matrix $\left(m_{i a}\right)_{i=1, \ldots, m ; a=1, \ldots, r}$ with respect to the dual basis $\left(p_{a}^{\vee}\right)$.

Applying the functor $\operatorname{Hom}_{\mathbb{Z}}\left(-, \mathbb{C}^{*}\right)$ (where $\mathbb{Z}$ acts on $\mathbb{C}^{*}$ by exponentiating) to the exact sequence 1 yields

$$
\begin{equation*}
1 \longrightarrow \operatorname{Hom}_{\mathbb{Z}}\left(N, \mathbb{C}^{*}\right) \cong\left(\mathbb{C}^{*}\right)^{n} \xrightarrow{\alpha}\left(\mathbb{C}^{*}\right)^{\Sigma(1)} \xrightarrow{\beta} \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{L}, \mathbb{C}^{*}\right) \cong\left(\mathbb{C}^{*}\right)^{r} \longrightarrow 1 \tag{2}
\end{equation*}
$$

where $\alpha\left(y_{1}, \ldots, y_{k}\right)=\left(w_{i}:=\prod_{k=1}^{n} y_{k}^{b_{k i}}\right)_{i=1, \ldots, m}$ and $\beta\left(w_{1}, \ldots, w_{m}\right)=\left(q_{a}:=\prod_{i=1}^{m} w_{i}^{m_{i a}}\right)_{a=1, \ldots, r}$, here $\left(q_{a}\right)_{a=1, \ldots, r}$ are the coordinates on $\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{L}, \mathbb{C}^{*}\right)$ corresponding to the basis $\left(p_{a}\right)$ of $\mathbb{L}^{\vee},\left(w_{i}\right)_{i=1, \ldots, m}$ are the standard coordinates on $\left(\mathbb{C}^{*}\right)^{\Sigma(1)}$ and $\left(y_{k}\right)_{k=1, \ldots, m}$ are the coordinates on $\operatorname{Hom}_{\mathbb{Z}}\left(N, \mathbb{C}^{*}\right)$ corresponding to the basis $\left(n_{k}^{\vee}\right)$ of $M$.

Definition 1. Let $W=\sum_{i=1}^{m} w_{i}$. The Landau-Ginzburg model of $X_{\Sigma}$ is defined to be the restriction of $W$ to the fibres of the map $\beta$.

The following construction allows us to rewrite the restriction of $W$ to the fibres of $\beta$ as a family of Laurent polynomials. Chose a splitting $l: \mathbb{L}^{\vee} \rightarrow \mathbb{Z}^{\Sigma(1)}$ of the projection $l: \mathbb{Z}^{\Sigma(1)} \rightarrow \mathbb{L}^{\vee}$, given, with respect to the above bases, by a matrix $\left(l_{i a}\right)$. This yields a splitting (denoted abusively by the same letter) $l: \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{L}, \mathbb{C}^{*}\right) \rightarrow\left(\mathbb{C}^{*}\right)^{\Sigma(1)}$ which sends $\left(q_{1}, \ldots, q_{r}\right)$ to $\left(w_{i}:=\prod_{a=1}^{r} q_{a}^{l_{i a}}\right)$. Then putting $\Psi:$ $\operatorname{Hom}_{\mathbb{Z}}\left(N, \mathbb{C}^{*}\right) \times \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{L}, \mathbb{C}^{*}\right) \rightarrow\left(\mathbb{C}^{*}\right)^{\Sigma(1)}$ where $\Psi(\underline{y}, \underline{q}):=\left(w_{i}:=\prod_{a=1}^{r} q_{a}^{l_{i a}} \cdot \prod_{k=1}^{n} y_{k}^{b_{k i}}\right)_{i=1, \ldots, r}$ yields a coordinate change on $\left(\mathbb{C}^{*}\right)^{m}$ such that $\beta$ becomes the projection $p_{2}: \operatorname{Hom}_{\mathbb{Z}}\left(N, \mathbb{C}^{*}\right) \times H o m_{\mathbb{Z}}\left(\mathbb{L}, \mathbb{C}^{*}\right) \rightarrow$ $\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{L}, \mathbb{C}^{*}\right)$. Then we put

$$
\begin{aligned}
\widetilde{W}:=W \circ \Psi: \operatorname{Hom}_{\mathbb{Z}}\left(N, \mathbb{C}^{*}\right) \times \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{L}, \mathbb{C}^{*}\right) & \longrightarrow \mathbb{C} \\
\left(y_{1}, \ldots, y_{k}, q_{1}, \ldots, q_{a}\right) & \longmapsto \sum_{i=1}^{m} \prod_{a=1}^{r} q_{a}^{l_{i a}} \cdot \prod_{k=1}^{n} y_{k}^{b_{k i}}
\end{aligned}
$$

which is a family of Laurent polynomials on $\operatorname{Hom}_{\mathbb{Z}}\left(N, \mathbb{C}^{*}\right)$ parameterized by $\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{L}, \mathbb{C}^{*}\right)$.
Recall ([?]) that a single Laurent polynomial $\widetilde{W}_{q}:=\widetilde{W}(-, q) \in \mathcal{O}_{H o m\left(N, \mathrm{C}^{*}\right)}$ is called convenient iff 0 lies in the interior of its Newton polyhedron, and non-degenerate iff for any proper face $\tau$ of its Newton polyhedron, the Laurent polynomial $\left(\widetilde{W}_{q}\right)_{\tau}=\sum_{b_{i} \in \tau} \prod_{a=1}^{r} q_{a}^{l_{a i}} \cdot \prod_{k=1}^{n} y_{k}^{b_{k i}}$ does not have any critical point on $H o m_{\mathbb{Z}}\left(N, \mathbb{C}^{*}\right)$. If we consider the whole family $\widetilde{W}$, the following holds

Proposition 2. 1. $\widetilde{W}_{\underline{q}}$ is convenient for any $\underline{q} \in \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{L}, \mathbb{C}^{*}\right)$
2. There is an algebraic subvariety $Z \subset \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{L}, \mathbb{C}^{*}\right)$ such that $\widetilde{W}_{\underline{q}}$ is non-degenerate for all $\underline{q} \notin Z$. Write $\mathcal{M}^{0}:=\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{L}, \mathbb{C}^{*}\right) \backslash Z$.
3. If $X_{\Sigma}$ is Fano, then $Z=\emptyset$.
4. If $X_{\Sigma}$ is weak Fano, then there exists an $\epsilon>0$, such that for all $\underline{q} \in H_{\mathbb{Z}}\left(\mathbb{L}, \mathbb{C}^{*}\right) \subset \mathbb{C}^{r}$ with $|q|<\epsilon$, we have $\underline{q} \notin Z$. Here the inclusion $\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{L}, \mathbb{C}^{*}\right) \subset \mathbb{C}^{r}$ and the metric $|\cdot|$ refer to the chosen coordinates $\left(q_{a}\right)$ on $\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{L}, \mathbb{C}^{*}\right)$.

Proof. 1. Obvious, as $X_{\Sigma}$ is compact.
2. Also clear, as the condition of being degenerate is algebraic.
3. This can be shown by studying the faces of the Newton polygon of $\widetilde{W}_{\underline{q}}$.
4. This is done in [Iri09, appendix 6.1].

## 2 Brieskorn lattice for families of Laurent polynomials

We are going to construct from the family $\widetilde{W}$ an object that will play the role of the quantum- $\mathcal{D}$-module. In order to do that, we will first describe the family of jacobian algebras of $W$ resp. $\widetilde{W}$. Let

$$
\Theta_{\beta}:=\left\{\vartheta \in \Theta_{\left(\mathbb{C}^{*}\right)^{\Sigma(1)}} \mid d\left(\beta_{a}\right)(\vartheta)=0\right\}=\bigoplus_{k=1}^{n} \mathcal{O}_{\left(\mathbb{C}^{*}\right)^{\Sigma(1)}}\left(\sum_{i=1}^{m} b_{k i} w_{i} \partial_{w_{i}}\right)
$$

be the module of $\beta$-relative vector fields and call

$$
J(W)=\mathcal{O}_{\left(\mathbb{C}^{*}\right)^{\Sigma(1)}} / d W\left(\Theta_{\beta}\right)=\frac{\mathbb{C}\left[w_{1}^{ \pm}, \ldots, w_{m}^{ \pm}\right]}{\left(\sum_{i=1}^{m} b_{k i} w_{i}\right)_{k=1, \ldots, n}}
$$

the Jacobian (or Milnor) algebra of the family $W$. This ring is naturally a $\mathcal{O}_{H o m_{\mathbb{Z}}\left(\mathbb{L}, \mathbb{C}^{*}\right)}$-algebra via $\beta$, and can be written as such as

$$
J(W)=\frac{\mathbb{C}\left[w_{1}^{ \pm}, \ldots, w_{m}^{ \pm}, q_{1}^{ \pm}, \ldots, q_{r}^{ \pm}\right]}{\left(\sum_{i=1}^{m} b_{k i} w_{i}\right)_{k=1, \ldots, n}+\left(q_{a}-\prod_{i=1}^{m} w_{i}^{m_{i a}}\right)_{a=1, \ldots, r}}
$$

The latter ring (with a slightly different presentation which is easily seen to be equivalent to this one) is called Batyrev ring in Iri09] because it appears in Bat93], where it was already shown that it equals the small quantum cohomology ring of $X_{\Sigma}$. Notice that $J(W) \otimes \mathcal{O}_{\mathcal{M}^{0}}$ is a locally free $\mathcal{O}_{\mathcal{M}^{0}}$-module of rank $\mu:=n!\cdot \operatorname{vol}(\Delta)$, where $\Delta$ is the convex hull of the rays $b_{1}, \ldots, b_{m} \in \Sigma(1)$ (in other words, the Newton polygon of any of the Laurent polynomials $\widetilde{W}_{\underline{q}}$ ), and where the volume of the hypercube $[0,1]^{n} \subset N \otimes \mathbb{R}$ is normalized to 1 .
We can now start to define the family of Brieskorn lattices we are interested in. The result will be a locally free $\mathcal{O}_{\mathbb{C} \times \mathcal{M}^{0}-m o d u l e, ~ e q u i p p e d ~ w i t h ~ a ~ c o n n e c t i o n ~ w i t h ~ c e r t a i n ~ t y p e s ~ o f ~ p o l e s . ~ T h e ~ c o n s t r u c t i o n ~}^{\text {. }}$ starts by the description of the topological part of this structure, which consists in a local system of abelian groups of finite rank.

Definition-Lemma 3. Fix $z \in \mathbb{C}^{*}$ and $\underline{q} \in \mathcal{M}^{0}$, put $Y:=\operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{C})$ and consider the following relative homology group

$$
\left(\mathcal{R}_{\mathbb{Z}}^{\vee}\right)_{(z, \underline{q})}:=H_{n}\left(Y,\left\{\underline{y} \mid \Re\left(z^{-1} \cdot \widetilde{W}_{\underline{q}}\right) \ll 0\right\}, \mathbb{Z}\right)
$$

Then we have

1. $\left(\mathcal{R}_{\mathbb{Z}}^{\vee}\right)_{(z, \underline{q})}$ is a free abelian group of $\operatorname{rank} \mu=n!\cdot \operatorname{vol}(\Delta)$
2. Varying $z$ and $q$ forms a local system $\mathcal{R}_{\mathbb{Z}}^{\vee}$ on $\mathbb{C}^{*} \times \mathcal{M}^{0}$.
3. Suppose that $\underline{q} \in \mathcal{M}^{0}$ is such that $\widetilde{W}_{\underline{q}}$ has only non-degenerate (Morse) critical points on $Y$. Then $\left(\mathcal{R}_{\mathbb{Z}}^{\vee}\right)_{(z, \underline{q})}=\oplus_{i=1}^{\mu} \mathbb{Z} \Gamma_{i}$, where $\Gamma_{i}$ is a Lefschetz thimble emanating from a fibre of $\widetilde{W}_{\underline{q}}$ over a point $t \in \mathbb{C}$ such that $\Re(t / z) \ll 0$ to the $i$ 'th critical point (i.e., a family of vanishing cycles over a path from $t$ to the $i$ 'th critical value, supposing that the pathes to different critical values do not intersect).
4. There is a perfect pairing

$$
(-,-):\left(\mathcal{R}_{\mathbb{Z}}^{\vee}\right)_{(z, \underline{q})} \times\left(\mathcal{R}_{\mathbb{Z}}^{\vee}\right)_{(-z, \underline{q})} \longrightarrow \mathbb{Z}
$$

given by intersection Lefschetz thimbles going to opposite directions (so that the intersection take place in a compact subset of $Y$ and is hence well-defined).

We write $\mathcal{R}_{\mathbb{Z}}$ for the dual local system, and $\mathcal{R}:=\mathcal{R}_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathcal{O}_{\mathbb{C}^{*} \times \mathcal{M}^{0}}^{a n}$ for the corresponding holomorphic vector bundle on $\mathbb{C}^{*} \times \mathcal{M}^{0}$, which is equipped with an integrable connection operator.

Concerning the proof of these statements, Iritani basically refers to older work of Pham ([Pha85]), where a similar construction for polynomials is done.
The next step is to extend the flat bundle to $\mathbb{C} \times \mathcal{M}^{0}$. This uses oscillating integrals. Namely, write $T:=Y \times \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{L}, \mathbb{C}^{*}\right)=\operatorname{Hom}_{\mathbb{Z}}\left(N, \mathbb{C}^{*}\right) \times \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{L}, \mathbb{C}^{*}\right)$ for short, consider for any $f \in \mathcal{O}_{\mathbb{C}^{*} \times T}^{a n}$ the differential form

$$
\varphi:=f \cdot e^{-\widetilde{W} / z} \cdot \frac{d y_{1}}{y_{1}} \wedge \ldots \wedge \frac{d y_{n}}{y_{n}} \in \Omega_{T / H o m_{\mathbb{Z}}\left(\mathbb{L}, \mathrm{C}^{*}\right)}^{n, a n}
$$

and put for any flat section $[\Gamma] \in \mathcal{R}_{\mathbb{Z}}^{\vee}$

$$
\langle\varphi, \Gamma\rangle:=\frac{1}{(-2 \pi z)^{n / 2}} \int_{\Gamma} \varphi
$$

One can show that this integral is convergent by choosing the representative $\Gamma$ of the class $[\Gamma]$ sufficiently carefully, again here Iritani refers to Pham. Then we have the following result.

Theorem 4. Define $\phi: \mathcal{O}_{\mathbb{C}^{*} \times T}^{a n} \rightarrow \mathcal{R}^{\text {an }}$ by putting $\phi(f):=[\Gamma \mapsto\langle\varphi, \Gamma\rangle]$ and define $\mathcal{R}^{(0), \text { an }}:=\phi\left(\mathcal{O}_{\mathbb{C} \times T}\right)$. Then

1. $\phi$ is surjective.
2. The connection induced from $\mathcal{R}_{\mathbb{Z}}$ on sections $\phi(f)$ is written as

$$
\begin{aligned}
\nabla_{\partial_{z}} \phi(f) & :=\phi\left(\partial_{z} f+\frac{1}{z^{2}} \widetilde{W} f-\frac{n}{2 z} f\right) \\
\nabla_{\partial_{q_{a}}} \phi(f) & :=\phi\left(\partial_{a_{q}} f-\frac{\partial_{q_{a}} \widetilde{W}}{z} f\right)
\end{aligned}
$$

3. $\mathcal{R}^{(0), \text { an }}$ is $\mathcal{O}_{\mathbf{C} \times \mathcal{M}^{0}}^{a n}$-locally free of rank $\mu$.

The proof basically proceeds as follows.

- The space $\mathcal{M}^{00}:=\left\{\underline{q} \in \mathcal{M}^{0} \mid \widetilde{W}_{\underline{q}}\right.$ has only non-degenerate critical points $\}$ is non-empty and open (however, its complement is in general not away from the limit point $\underline{q}=0 \in \mathbb{C}^{r}$ as was the case for $\left.Z=\operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{L}, \mathbb{C}^{*}\right) \backslash \mathcal{M}^{0}\right)$.
- For $\underline{q} \in \mathcal{M}^{00}$, we have the following formula expressing the oscillating integrals used to define the extension $\mathcal{R}^{(0), a n}$. Write $c r_{i}(i \in\{1, \ldots, \mu\})$ for the non-degenerate critical points of $\widetilde{W}_{\underline{q}}$, and $\Gamma_{i}$ for a Lefschetz thimble starting at $c r_{i}$.

$$
\frac{1}{(-2 \pi z)^{n / 2}} \int_{\Gamma_{i}} f(z, \underline{y}, \underline{q}) e^{-\widetilde{W}_{\underline{q}} / z} \frac{d y_{1}}{y_{1}} \wedge \ldots \wedge \frac{d y_{n}}{y_{n}}=\frac{e^{-\widetilde{W}\left(\underline{q}, c r_{i}\right) / z}}{\sqrt{\left(\operatorname{det} \frac{\partial^{2} \widetilde{W}_{\underline{q}}}{\partial y_{k} \partial y_{l}}\right)}} \cdot\left(f\left(0, c r_{i}, \underline{q}\right)+O(z)\right)
$$

- As a consequence of the last formula, we have that $\operatorname{Im}(\phi)_{\mid \mathbb{C} \times\{q\}}=\mathcal{R}_{\mid \mathbb{C} \times\{q\}}$ (Let $f$ run through the basis elements of the jacobian algebra $J(W)_{\mid \underline{q}}$ chosen to take the value one at a critical point $c r_{i}$ and zero on the other critical points).
- $\operatorname{Im}(\phi)$ is stable under $\nabla_{\partial_{z}}$ and $\nabla_{\partial_{q_{a}}}$, hence, $\phi$ is surjective all over $\mathcal{M}^{0}$.
- $\mathcal{R}^{(0), a n}=\oplus_{i=1}^{\mu} \mathcal{O}_{\mathbb{C} \times \mathcal{M}^{0}}^{a n} \phi\left(g_{i}\right)$, where $\left(g_{1}, \ldots, g_{\mu}\right)$ is a $\mathcal{O}_{\mathcal{M}^{0}}$-basis of $J(W)$.

Let us summarize the result of the constructions sketched above in the following theorem.
Theorem 5. Let $\Sigma \subset N \otimes \mathbb{R}$ be a smooth complete fan defining a weak Fano manifold $X_{\Sigma}$. Then the Landau-Ginzburg model of $X_{\Sigma}$, i.e., the restriction of the linear function $W=\sum_{i=1}^{m} w_{i}$ to the fibres of the torus fibration $\beta:\left(\mathbb{C}^{*}\right)^{\Sigma(1)} \rightarrow \mathcal{M}^{0}$ gives rise to a locally free $\mathcal{O}_{\mathbb{C} \times \mathcal{M}^{0}}^{a n}$-module $\mathcal{R}^{(\overline{1}) \text {,an }}$, called (family of) Brieskorn lattice(s) of $(W, \beta)$, which is equipped with an integrable connection operator

$$
\nabla: \mathcal{R}^{(0), a n} \longrightarrow \mathcal{R}^{(0), a n} \otimes z^{-1} \Omega_{\mathbb{C} \times \mathcal{M}^{0}}^{1, a n}\left(\log \left(\{0\} \times \mathcal{M}^{0}\right)\right),
$$

a flat integer lattice $\mathcal{R}_{\mathbb{Z}} \subset \mathcal{R}_{\mid \mathbb{C}^{*} \times \mathcal{M}^{0}}^{(0) \text { an }}$ and a non-degenerate pairing

$$
(-,-): \mathcal{R}^{(0), a n} \otimes(-)^{*} \mathcal{R}^{(0), a n} \longrightarrow \mathcal{O}_{\mathbb{C} \times \mathcal{M}^{0}}^{a n}
$$

which is flat on $\mathbb{C}^{*} \times \mathcal{M}^{0}$ and takes integer values on $\mathcal{R}_{\mathbb{Z}}$.

## References

[Bat93] Victor V. Batyrev, Quantum cohomology rings of toric manifolds, Astérisque (1993), no. 218, 9-34, Journées de Géométrie Algébrique d'Orsay (Orsay, 1992).
[Fu193] William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993, The William H. Roever Lectures in Geometry.
[Iri09] Hiroshi Iritani, An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, Adv. Math. 222 (2009), no. 3, 1016-1079.
[Pha85] Frédéric Pham, La descente des cols par les onglets de Lefschetz, avec vues sur Gauss-Manin, Astérisque (1985), no. 130, 11-47, Differential systems and singularities (Luminy, 1983).

Lehrstuhl für Mathematik VI
Institut für Mathematik
Universität Mannheim, A 5, 6
68131 Mannheim
Germany

Christian.Sevenheck@math.uni-mannheim.de

