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Linear systems on symplectic manifolds

(X" w) symplectic, compact

s—|w] € H*(X,Z) (not restrictive)

J compatible with w ; ¢(.,.) = w(., J.)
L line bundle such that ¢;(L) = 5=[w]

™

o V. curvature —iw

L = “almost-complex ample line bundle”.
= approximately holomorphic sections of L®* &k > 0.

Sections with transversality properties (“generic linear sys-
tems”) = topological structures on symplectic manifolds.

Theorem 1. (Donaldson) For k > 0, two suitably cho-
sen A.H. sections of L®* endow X with a structure of
symplectic Lefschetz pencil, canonical up to isotopy.

Theorem 2. For k > 0, three suitable A.H. sections of
L®% define a singular fibration X — CP?* with generic
local models, canonical up to isotopy.

Generally: A.H. sections sg, ..., Skm € ['(L®F)
= approx. holomorphic maps f; : X — CP™

Need estimated transversality for the jets of these maps.

1



Estimated transversality of jets

B, = C™! @ L® asympt. very ample vector bundles,

r

holom. jet bundles J"FE) = € (T*X(l’o))®j R F.

sym

7=0
Si € F(Ek) = 7"s; = (Sk, (%k, (088k)sym, .. )

S;. = finite asympt. holomorphic stratifications of J"E}, :
(Whitney, transverse to the fibers, geometry estimates).

The strata S ,(:) enumerate the possible singular behaviors:
e.g. for Lefschetz pencils, {sy = 0} and {s; # 0, df; = 0}.

The jet j"sy, is n-transverse to Sy if

dist(j"sx(z), S,E,Z)) < 1 = the graph of j"sy is transverse at x
to TS,E:Z), with minimum angle > n.

(i))

(if codim S ,gi) > n then j"s; remains away from S,

Theorem 3. S, A.H. stratifications of J"Ey; 6 > 0;
or A.H. sections of E},
= for large enough k, 3 A.H. sections s;, of . s.t.
(1) |sk — okler g, <9
(2) j"s is ne)-transverse to Sy.

After slightly perturbing oy, one gets maps X — CP™ lo-

cally modelled on generic holomorphic maps.

Moreover, 1-parameter version for (J;);e(0.1, (Sk,t)ks0.1€[0.1]
= the construction is canonical for large k.
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Symplectic Lefschetz pencils

(X?", w) symplectic, sg,s; € I'(L®*) suitably chosen
= symplectic Lefschetz pencil (Donaldson)

Yo ={z € X, 59p+as; =0} (a€CP

symplectic hypersurtaces, smooth except for finitely many sin-

gular points, intersecting at the base locus Z = {sy = s; = 0}
(codim. 4).

Projective map f = (sg:s1) : X — Z — CP*'
local model f(z) = 27 + -+ + 22 near critical points.

Blow up Z = Lefschetz fibration X — CP!

0 0

' monodromy =
CIP)I Ci_) (

generalized) Dehn twist

Monodromy = 6 : 71 (C — {pts}) — Map“(X*" 2 Z)

Mapw<27 Z) = 7TO({QS S Symp<27 UJ), ¢|U(Z) — Id})

X can be recovered up to symplectomorphism from the fiber
and the monodromy map (Gompf).
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The higher dimensional case

(X?", w) symplectic, g, ..., s, € I'(L®*) well-chosen
= projective map f = (sg:...:8y): X — Z — CP™.

e Fibers = codimension 2m symplectic submanifolds,
intersecting at the base locus Z (codim. 2m + 2).

e Blow up along Z = singular fibration X — CP™.

e Critical set: R*™=2 C X stratified symplectic submfld.
(= all singular points of all fibers)

e D = f(R) C CP™ singular symplectic hypersurface.
e Monodromy 6 : 7(C"™ — D) — Map®“ (3, 7).

e For a generic line L C CP™, W = YL,
fiw : W — CP' is a SLP, monodromy .




The higher dimensional case

The fiber (X, wyy;), the topology of the singular hypersurface
D c CP™, and the monodromy map 6 : 7 (C" — D) —
Map® (32, Z) determine (X, w) up to symplectomorphism.

e For m > 2, the topology of D C CP™ is not understood.
e For dim¥ > 2, Map®“ (X, Z) is not understood.

Idea: Dimensional induction

o f,: X" — CP?, discriminant curve D,, C CP?
+monodromy 6, : m(C* — D,) — Map®”(X?"4, .. .).

D,,, ¥*»* and 6,, characterize X.
o Let W22 = f-1(L) for a generic line:

n

then W carries a SLP with fiber > and monodromy 6,,.

Adding a section, refine this SLP into a map
fo_1: W22 5 CP?, discriminant curve D,,_; C CP?
+monodromy 6,,_1 : m(C* — D,_;) — Map“(Z%"~°, .. )

D, D,_1, Z*"7% and 0,,_; characterize X.

e Iterate until get a map f : Y* — CP*
Fiber = N points, monodromy 65 : 771(@]?2 — Dy) — Sy.

D,, D,_1, ..., Dy and 65 characterize X.

S0 in principle it is enough to understand plane curves.



Branched covers of CP?

(X*, w) symplectic, s, 81,52 € ['(L®*) suitably chosen
= f=(s0:8:89): X — CP?

Local singular models near branch curve R C X :

— branched covering : (z,y) — (2%, ). pd
R:z=0  f(R): X =0 e
X2 — CP? (21,...,20) = (224 -+ 22, 2n)
—cusp : (z,y) = (2° — 2y, 7).
R: y=3z> f(R): 27X? =4Y"
X7 5 CP% (21,...,20) = (23— zizn+ 23+ +22_1, 2)

R smooth symplectic curve in X.
D = f(R) symplectic, immersed except at the cusps.

Generic singularities :

complex cusps; nodes (both orientations)
>~ X X
Theorem 2 = up to cancellation of nodes, the topology of D
is a symplectic invariant (if k large).
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The topology of plane curves

(Moishezon-Teicher, Auroux-Katzarkov-Yotov)

Perturbation = D = singular branched cover of CP*.

CP* — {o0}
Vi
deg D =d

C]P)l i l?TI(CBOIZZIHZZCQ)I—)(ZU()IZBl)

Monodromy = p : 7(C — {pts}) — B, (braid group)

= D is described by a “braid group factorization”
(involving cusps, nodes, tangencies).
The braid factorization characterizes D completely, but can-
not be used as invariant in practice.

Moishezon-Teicher: use 71(CP? — D) as invariant.

m1(CP?— D) is generated by “geometric generators” (v;)1<i<d :
relations given by the braid factorization.

Problem: in the symplectic case, node cancellations affect
m1(CP? — D).



Stabilized fundamental groups
X4
| 5 @esr=m

2 L
o ;
i

deg D =d

L ~ C C CP? generic line, i : L — {p1,...,ps} — CP* — D
= i Fy=(71,...,7) = m(CP? — D) surjective.

Geometric generators: I' = {conjugates of 4,71, ..., 0«4}
0 : m(CP? — D) — S, maps elements of I to transpositions.
6 : m(CP? — D) — Zg linking number (§(v;) = 1).

Relations: for each special point, two elements of I' s.t.

e tangency: v =1'; 0(y) and 6(7') identical.
e node: vy = ~': 0(v) and 6(~') disjoint.
® cusp: 'y =99  6(v) and 6(+") adjacent.

K =normal subgroup (|v,~'], 7,7 € T, 8(v), 8(7) disjoint).
Add a pair of nodes < quotient by an element of K.

Theorem 4. For k > 0, Gx(X,w) = 7 (CP* — Dy)/K;
and GY(X,w) = Ker (6, o)/ Ky, are symplectic invariants.
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Horikawa surfaces

X1 =double cover of P! x P! branched along (6,12).
X9 =double cover of Fg branched along 5A¢ U A.

X1, Xy minimal alg. surfaces of general type.

X1, X9 homeomorphic, not C deformation equivalent.
X1, Xy diffeomorphic 777 (same SW invariants)

X1, Xo symplectomorphic 777 (Donaldson)

w1 Kahler form on X7, %[wl] = Kx, = 7*(1,4).
wy Kahler form on Xy, o-[wo] = Kx, = 7*(Ag + F).

Conjecture: (X;,w;) and (X5, ws) are not symplectomor-
phic.

In fact: G(X1,w1) % Gr(Xo, ws).

One expects:

o GY(X;,w;) are solvable, [GY, GY] is a quotient of Zy & Zs.
o AbGY(X1,wy) = (Z,, )6+ ~1,

o AbGO(Xy,wy) =~ (7, )64 ~1

(Argument: refinement of Moishezon-Teicher techniques +
A H. perturbation techniques for iterated branched covers).



