Projective maps and symplectic invariants

Denis AUROUX

Linear systems on symplectic manifolds

 (X^{2n},ω) symplectic, compact

- $\frac{1}{2\pi}[\omega] \in H^2(X,\mathbb{Z})$ (not restrictive)
- J compatible with ω ; $g(.,.) = \omega(.,J)$
- L line bundle such that $c_1(L) = \frac{1}{2\pi}[\omega]$
- ∇^L , curvature $-i\omega$

L = "almost-complex ample line bundle".

 \Rightarrow approximately holomorphic sections of $L^{\otimes k}$, $k \gg 0$.

Sections with transversality properties ("generic linear systems") \Rightarrow topological structures on symplectic manifolds.

Theorem 1. (Donaldson) For $k \gg 0$, two suitably chosen A.H. sections of $L^{\otimes k}$ endow X with a structure of symplectic Lefschetz pencil, canonical up to isotopy.

Theorem 2. For $k \gg 0$, three suitable A.H. sections of $L^{\otimes k}$ define a singular fibration $X \to \mathbb{CP}^2$ with generic local models, canonical up to isotopy.

Generally: A.H. sections $s_{k,0}, \ldots, s_{k,m} \in \Gamma(L^{\otimes k})$ \Rightarrow approx. holomorphic maps $f_k: X \to \mathbb{CP}^m$

Need estimated transversality for the jets of these maps.

Estimated transversality of jets

 $E_k = \mathbb{C}^{m+1} \otimes L^{\otimes k}$ asympt. very ample vector bundles, holom. jet bundles $\mathcal{J}^r E_k = \bigoplus_{j=0}^r (T^* X^{(1,0)})_{\text{sym}}^{\otimes j} \otimes E_k$. $s_k \in \Gamma(E_k) \Rightarrow j^r s_k = (s_k, \partial s_k, (\partial \partial s_k)_{\text{sym}}, \ldots)$.

 S_k = finite asympt. holomorphic stratifications of $\mathcal{J}^r E_k$: (Whitney, transverse to the fibers, geometry estimates).

The strata $S_k^{(i)}$ enumerate the possible singular behaviors: e.g. for Lefschetz pencils, $\{s_k = 0\}$ and $\{s_k \neq 0, \partial f_k = 0\}$.

The jet $j^r s_k$ is η -transverse to \mathcal{S}_k if $\operatorname{dist}(j^r s_k(x), S_k^{(i)}) < \eta \Rightarrow \text{the graph of } j^r s_k \text{ is transverse at } x$ to $TS_k^{(i)}$, with minimum angle $> \eta$. (if $\operatorname{codim} S_k^{(i)} > n$ then $j^r s_k$ remains away from $S_k^{(i)}$).

Theorem 3. S_k A.H. stratifications of $\mathcal{J}^r E_k$; $\delta > 0$; σ_k A.H. sections of E_k

- \Rightarrow for large enough k, $\exists A.H.$ sections s_k of E_k s.t.
 - (1) $|s_k \sigma_k|_{C^{r+1}, g_k} < \delta;$
 - (2) $j^r s_k$ is $\eta_{(\delta)}$ -transverse to \mathcal{S}_k .

After slightly perturbing $\bar{\partial}\sigma_k$, one gets maps $X \to \mathbb{CP}^m$ locally modelled on generic holomorphic maps.

Moreover, 1-parameter version for $(J_t)_{t\in[0,1]}$, $(s_{k,t})_{k\gg 0,t\in[0,1]}$ \Rightarrow the construction is canonical for large k.

Symplectic Lefschetz pencils

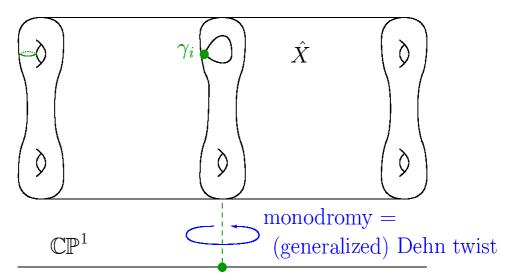
 (X^{2n}, ω) symplectic, $s_0, s_1 \in \Gamma(L^{\otimes k})$ suitably chosen \Rightarrow symplectic Lefschetz pencil (Donaldson):

$$\Sigma_{\alpha} = \{ x \in X, \ s_0 + \alpha s_1 = 0 \} \ (\alpha \in \mathbb{CP}^1)$$

symplectic hypersurfaces, smooth except for finitely many singular points, intersecting at the base locus $Z = \{s_0 = s_1 = 0\}$ (codim. 4).

Projective map $f = (s_0:s_1): X - Z \to \mathbb{CP}^1:$ local model $f(z) = z_1^2 + \cdots + z_n^2$ near critical points.

Blow up $Z\Rightarrow$ Lefschetz fibration $\hat{X}\to\mathbb{CP}^1$



Monodromy =
$$\theta : \pi_1(\mathbb{C} - \{ pts \}) \to \mathrm{Map}^{\omega}(\Sigma^{2n-2}, \mathbb{Z})$$

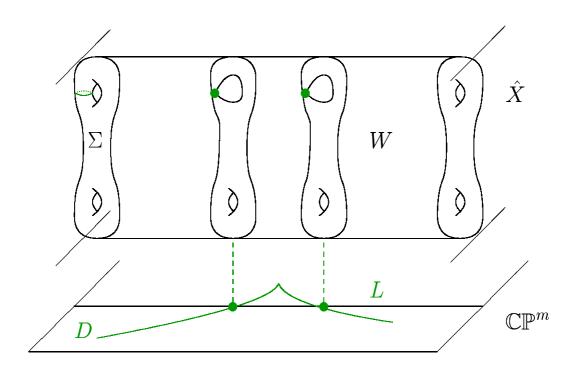
$$\mathrm{Map}^{\omega}(\Sigma, Z) := \pi_0(\{\phi \in \mathrm{Symp}(\Sigma, \omega), \phi_{|U(Z)} = \mathrm{Id}\})$$

X can be recovered up to symplectomorphism from the fiber and the monodromy map (Gompf).

The higher dimensional case

 (X^{2n}, ω) symplectic, $s_0, \ldots, s_m \in \Gamma(L^{\otimes k})$ well-chosen \Rightarrow projective map $f = (s_0 : \ldots : s_m) : X - Z \to \mathbb{CP}^m$.

- Fibers = codimension 2m symplectic submanifolds, intersecting at the base locus Z (codim. 2m + 2).
- Blow up along $Z \Rightarrow \text{singular fibration } \hat{X} \to \mathbb{CP}^m$.
- Critical set: $R^{2m-2} \subset X$ stratified symplectic submfld. (= all singular points of all fibers)
- $D = f(R) \subset \mathbb{CP}^m$ singular symplectic hypersurface.
- Monodromy $\theta : \pi_1(\mathbb{C}^m D) \to \mathrm{Map}^{\omega}(\Sigma, Z)$.
- For a generic line $L \subset \mathbb{CP}^m$, $W = f^{-1}(L)$, $f_{|W}: \hat{W} \to \mathbb{CP}^1$ is a SLP, monodromy θ .



The higher dimensional case

The fiber $(\Sigma, \omega_{|\Sigma})$, the topology of the singular hypersurface $D \subset \mathbb{CP}^m$, and the monodromy map $\theta : \pi_1(\mathbb{C}^m - D) \to \mathrm{Map}^{\omega}(\Sigma, Z)$ determine (X, ω) up to symplectomorphism.

- For m > 2, the topology of $D \subset \mathbb{CP}^m$ is not understood.
- For dim $\Sigma > 2$, Map^{ω} (Σ, Z) is not understood.

Idea: Dimensional induction

- $f_n: X^{2n} \to \mathbb{CP}^2$, discriminant curve $D_n \subset \mathbb{CP}^2$ +monodromy $\theta_n: \pi_1(\mathbb{C}^2 - D_n) \to \mathrm{Map}^{\omega}(\Sigma^{2n-4}, \ldots)$. D_n, Σ^{2n-4} and θ_n characterize X.
- Let $W^{2n-2} = f_n^{-1}(L)$ for a generic line: then W carries a SLP with fiber Σ and monodromy θ_n . Adding a section, refine this SLP into a map $f_{n-1}: W^{2n-2} \to \mathbb{CP}^2$, discriminant curve $D_{n-1} \subset \mathbb{CP}^2$ +monodromy $\theta_{n-1}: \pi_1(\mathbb{C}^2 - D_{n-1}) \to \mathrm{Map}^{\omega}(Z^{2n-6}, \ldots)$ D_n, D_{n-1}, Z^{2n-6} and θ_{n-1} characterize X.
- Iterate until get a map $f_2: Y^4 \to \mathbb{CP}^2$: Fiber = N points, monodromy $\theta_2: \pi_1(\mathbb{CP}^2 - D_2) \to S_N$. $D_n, D_{n-1}, \ldots, D_2$ and θ_2 characterize X.

So in principle it is enough to understand plane curves.

Branched covers of \mathbb{CP}^2

 (X^4, ω) symplectic, $s_0, s_1, s_2 \in \Gamma(L^{\otimes k})$ suitably chosen $\Rightarrow f = (s_0 : s_1 : s_2) : X \to \mathbb{CP}^2.$

Local singular models near branch curve $R \subset X$:

- branched covering: $(x, y) \mapsto (x^2, y)$.

$$R: x=0$$

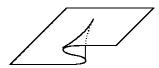
$$R: x = 0 \qquad f(R): X = 0$$

$$X^{2n} \to \mathbb{CP}^2$$
: $(z_1, \dots, z_n) \mapsto (z_1^2 + \dots + z_{n-1}^2, z_n)$

 $-\operatorname{cusp}: (x,y) \mapsto (x^3 - xy, y).$

$$R: \ y = 3x^2$$

$$R: y = 3x^2$$
 $f(R): 27X^2 = 4Y^3$



$$X^{2n} \to \mathbb{CP}^2$$
: $(z_1, \dots, z_n) \mapsto (z_1^3 - z_1 z_n + z_2^2 + \dots + z_{n-1}^2, z_n)$

R smooth symplectic curve in X.

D = f(R) symplectic, immersed except at the cusps.

Generic singularities:

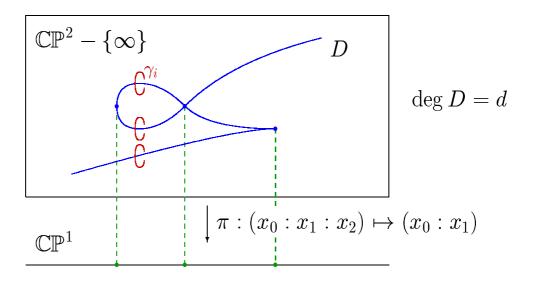
complex cusps; nodes (both orientations)

Theorem $2 \Rightarrow$ up to cancellation of nodes, the topology of Dis a symplectic invariant (if k large).

The topology of plane curves

(Moishezon-Teicher, Auroux-Katzarkov-Yotov)

Perturbation $\Rightarrow D = \text{singular branched cover of } \mathbb{CP}^1$.



Monodromy = $\rho : \pi_1(\mathbb{C} - \{ pts \}) \to B_d \text{ (braid group)}$

 \Rightarrow D is described by a "braid group factorization" (involving cusps, nodes, tangencies).

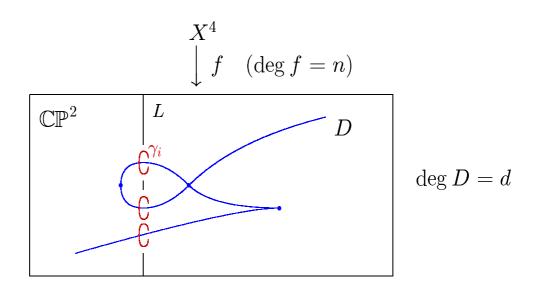
The braid factorization characterizes D completely, but cannot be used as invariant in practice.

Moishezon-Teicher: use $\pi_1(\mathbb{CP}^2 - D)$ as invariant.

 $\pi_1(\mathbb{CP}^2-D)$ is generated by "geometric generators" $(\gamma_i)_{1\leq i\leq d}$; relations given by the braid factorization.

Problem: in the symplectic case, node cancellations affect $\pi_1(\mathbb{CP}^2 - D)$.

Stabilized fundamental groups



 $L \simeq \mathbb{C} \subset \mathbb{CP}^2$ generic line, $i: L - \{p_1, \ldots, p_d\} \hookrightarrow \mathbb{CP}^2 - D$ $\Rightarrow i_*: F_d = \langle \gamma_1, \dots, \gamma_d \rangle \twoheadrightarrow \pi_1(\mathbb{CP}^2 - D)$ surjective.

Geometric generators: $\Gamma = \{\text{conjugates of } i_*\gamma_1, \dots, i_*\gamma_d\}.$

 $\theta: \pi_1(\mathbb{CP}^2 - D) \to S_n$ maps elements of Γ to transpositions.

 $\delta: \pi_1(\mathbb{CP}^2 - D) \to \mathbb{Z}_d$ linking number $(\delta(\gamma_i) = 1)$.

Relations: for each special point, two elements of Γ s.t.

- $\gamma = \gamma';$ $\theta(\gamma)$ and $\theta(\gamma')$ identical. $\gamma \gamma' = \gamma' \gamma;$ $\theta(\gamma)$ and $\theta(\gamma')$ disjoint. • tangency:
- node:
- cusp: $\gamma \gamma' \gamma = \gamma' \gamma \gamma'$; $\theta(\gamma)$ and $\theta(\gamma')$ adjacent.

 $K = \text{normal subgroup } \langle [\gamma, \gamma'], \gamma, \gamma' \in \Gamma, \theta(\gamma), \theta(\gamma') \text{ disjoint} \rangle.$

Add a pair of nodes \Leftrightarrow quotient by an element of K.

Theorem 4. For $k \gg 0$, $G_k(X,\omega) = \pi_1(\mathbb{CP}^2 - D_k)/K_k$ and $G_k^0(X,\omega) = \operatorname{Ker}(\theta_k,\delta_k)/K_k$ are symplectic invariants.

Horikawa surfaces

 $X_1 = \text{double cover of } \mathbb{P}^1 \times \mathbb{P}^1 \text{ branched along } (6, 12).$

 X_2 = double cover of \mathbb{F}_6 branched along $5\Delta_0 \cup \Delta_{\infty}$.

 X_1, X_2 minimal alg. surfaces of general type.

 X_1, X_2 homeomorphic, not \mathbb{C} deformation equivalent.

 X_1, X_2 diffeomorphic??? (same SW invariants)

 X_1, X_2 symplectomorphic??? (Donaldson)

 ω_1 Kähler form on $X_1, \frac{1}{2\pi}[\omega_1] = K_{X_1} = \pi^*(1,4).$

 ω_2 Kähler form on X_2 , $\frac{1}{2\pi}[\omega_2] = K_{X_2} = \pi^*(\Delta_0 + F)$.

Conjecture: (X_1, ω_1) and (X_2, ω_2) are not symplectomorphic.

In fact: $G_k(X_1, \omega_1) \not\simeq G_k(X_2, \omega_2)$.

One expects:

- $G_k^0(X_i, \omega_i)$ are solvable, $[G_k^0, G_k^0]$ is a quotient of $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.
- Ab $G_k^0(X_1, \omega_1) \simeq (\mathbb{Z}_{p_k})^{16k^2-1}$.
- Ab $G_k^0(X_2, \omega_2) \simeq (\mathbb{Z}_{q_k})^{16k^2-1}$.

(Argument: refinement of Moishezon-Teicher techniques + A.H. perturbation techniques for iterated branched covers).