A REMARK ON THE MEROMORPHIC EXTENSION OF HORIZONTAL SECTIONS

by

Claude Sabbah

Abstract. We give a criterion for horizontal sections of a meromorphic connection on \((\mathbb{C}^2, 0)\) with poles along the coordinate axes to extend as meromorphic sections. An application is given to morphisms between wild twistor \(\mathcal{D}\)-modules on the disc.

Let \(M\) be the germ of a meromorphic bundle with a flat connection on the germ \(X = (\mathbb{C}^2, 0)\) equipped with coordinates \(x_1, x_2\), with poles contained in the (germ of) divisor \(D = \{x_1x_2 = 0\}\). In other words, \(M\) is a free \(\mathbb{C}\{x_1, x_2\}[[x_1x_2]^{-1}]\)-module of finite rank equipped with a flat connection \(\nabla : M \to \Omega^1_X \otimes M\). If \(\nabla\) has regular singularities along \(D\), it is well-known that any \(\nabla\)-horizontal section of \(M\) on \(X^* := X \setminus D\) is meromorphic along \(D\), because it has moderate growth (cf. [Del70]). In particular, given two such meromorphic bundles \(M'\) and \(M''\), any morphism of bundles with connection \((M', \nabla)|_{X^*} \to (M'', \nabla)|_{X^*}\) can be extended as a morphism \((M', \nabla) \to (M'', \nabla)\).

Without the assumption of regular singularity, the previous statement is evidently not true in general: it suffices to consider the free module \(M = \mathbb{C}\{x_1, x_2\}[[x_1x_2]^{-1}]\) of rank one and the connection \(\nabla\) such that \(\nabla e^{1/x_1x_2} \cdot 1\) is a horizontal section on \(X^*\), but is not meromorphic.

We wish to give a sufficient condition so that the following extension property is satisfied:

\[\text{(P)} \quad \text{Any } \nabla\text{-horizontal section of } M \text{ on } X^*, \text{ which is meromorphic along } D_2 := \{x_2 = 0\}, \text{ is meromorphic along } D.\]

By Hartogs’ theorem, if \((M, \nabla)\) has regular singularity generically along \(D_1 := \{x_1 = 0\}\), Property (P) holds. We will introduce a less restrictive condition.

2010 Mathematics Subject Classification. 32S40, 14C30, 34Mxx.

Key words and phrases. Meromorphic connection, horizontal section, wild twistor \(\mathcal{D}\)-module.

This research was supported by the grant ANR-13-IS01-0001-01 of the Agence nationale de la recherche.
We will say that M has a \textit{good formal decomposition} at the origin if, setting $\widehat{M} = \mathbb{C} [x_1, x_2] \otimes_{\mathbb{C} [x_1, x_2]} M$, there is an isomorphism
\begin{equation}
\widehat{M} \simeq \bigoplus_{\varphi \in \Phi} (\mathcal{E}^\varphi \otimes \hat{\mathcal{R}}^\varphi),
\end{equation}
where (cf. \cite{Sab00} §I.2.1.4, p. 10)
\begin{enumerate}
\item the φ's vary in a finite subset Φ of $\mathbb{C} \{x_1, x_2\}[1/x_1x_2]/\mathbb{C} \{x_1, x_2\}$, are pairwise
distinct and, for any $\varphi, \psi \in \Phi$, the divisor of φ and of $\varphi - \psi$ is ≤ 0;
\item \mathcal{E}^φ is the meromorphic bundle with flat connection of rank one having a basis
in which the matrix of ∇ is $d\varphi$; $\hat{\mathcal{R}}^\varphi$ has regular singularities along D.
\end{enumerate}

\textbf{Proposition.} If M has a good formal decomposition at the origin and all the $\varphi \in \Phi \setminus \{0\}$ have a pole along $D_2 = \{x_2 = 0\}$, then M satisfies Property (P).

The condition on the polar locus of the φ's will prevent us from the example $\varphi = e^{1/x_1}$, for which Property (P) is clearly not satisfied.

\textbf{Proof.} Let us denote by $e : \tilde{X} \to X$ the real blow-up of X along both components
of D. Then \tilde{X} is a real analytic space isomorphic to the product $([0, \varepsilon) \times S^1)^2$, equipped with polar coordinates $(\rho_1, \theta_1; \rho_2, \theta_2)$. Let $\mathcal{R}^\varepsilon_{\tilde{X}}$ be the sheaf of functions
which are C^∞ on \tilde{X} and holomorphic on X^*. After \cite{Sab00} Th. II.2.1.1, the formal
decomposition can be locally lifted to \tilde{X} with coefficients in $\mathcal{R}^\varepsilon_{\tilde{X}}$, and gives rise to an
analogous decomposition of $M^\varepsilon := \mathcal{R}^\varepsilon_{\tilde{X}} \otimes e^{-1} \mathcal{S}_X e^{-1} M$.

Let us now work in the neighbourhood of some point $\theta^0 = (\theta^0_1, \theta^0_2)$ of the torus $(S^1)^2 = e^{-1}(0)$.

\textbf{Lemma.} Under the assumption of the proposition, let m be a horizontal section of M
on the intersection with X^* of a neighbourhood of θ^0 in \tilde{X} (in other words, an open
bi-sector of bi-direction θ^0). If, in some (or any) $\mathcal{R}^\varepsilon_{\tilde{X}^{\theta^0}}$-basis of $M^\varepsilon_{\theta^0}$, the entries
of the section m have moderate growth along $D_2 = \{x_2 = 0\}$, then they also have moderate
growth along $D_1 = \{x_1 = 0\}$.

\textbf{Proof.} As the choice of the local \mathcal{R}-basis is irrelevant, we can assume that the basis is
adapted to the \mathcal{R}-decomposition into elementary connections, hence we can assume
that $M^\varepsilon_{\theta^0} = (\mathcal{E}^\varphi \otimes \hat{\mathcal{R}}^\varphi)_{\theta^0}$. In a suitable basis of \mathcal{R}_φ, the entries of $m^\varepsilon := 1 \otimes m$
take the form $e^{-\varphi} x_1^{a_1} x_2^{a_2} (\log x_1)^{k_1} (\log x_2)^{k_2}$ and, by assumption, if $\varphi \neq 0$, then φ
has a pole along D_2. Then, such an entry has moderate growth along D_2 in the
neighbourhood of θ^0 if and only if one of the following conditions is satisfied:
\begin{itemize}
\item $\varphi = 0$,
\item $\text{Re } \varphi > 0$ in some neighbourhood of θ^0.
\end{itemize}
If $\varphi = 0$ or if φ has no pole along D_1, then the corresponding entry has moderate
growth along D_1. If φ has a pole along D_1, it also has a pole along D_2 and the
corresponding entry has rapid decay along \(\{ x_1 x_2 = 0 \} \) (all this understood in some neighbourhood of \(\theta^0 \)).

We can now end the proof of the proposition. If \(m \) is a horizontal section of \(M \) on \(X^* \), the entries of which in some \(\mathcal{O}_X[1/x_1 x_2] \)-basis of \(M \) are meromorphic along \(D_2 \), then the entries of \(m^\omega \) have moderate growth along \(D_2 \) in the neighbourhood of any \(\theta^0 \in (S^1)^2 \) (in any \(\mathcal{O}_{X^*} \)-basis of \(M^\omega \)). After the lemma, its entries (in some local \(\mathcal{O}_X \)-basis of \(M \)) have moderate growth along \(D_1 \) in a small sector of bi-direction \(\theta^0 \) for any \(\theta^0 \in (S^1)^2 \). In other words, \(m \) is a (meromorphic) section of \(M \) in the neighbourhood of \(0 \). It is then meromorphic, according to Hartogs, on its domain of definition.

Let us now consider the situation where the decomposition \(\text{(DEC)} \) exists but is maybe not good, i.e., does not satisfy (1). We associate a Newton polygon \(N(\varphi) \subset \mathbb{R}^2 \) to any exponent \(\varphi \in \mathbb{C}\{x_1, x_2\}[1/x_1 x_2]/\mathbb{C}\{x_1, x_2\} \): this is the convex hull of the union of subsets \((k_1, k_2) + N^2\), where \((k_1, k_2) \) is the exponent of some monomial in \(\varphi \).

Corollary 1. If \(M \) has a formal decomposition \(\text{(DEC)} \) at the origin (but maybe not good) and if, for any \(\varphi \in \Phi \setminus \{0\} \), the polygon \(N(\varphi) \) has no vertex \((k_1, k_2) \) with \(k_1 < 0 \) and \(k_2 \geq 0 \), then \(M \) satisfies Property \((P) \).

Proof. We perform a sequence \(\pi \) of toric blowing-up above the origin of \(\mathbb{C}^2 \) in order to reduce to the case where, in any crossing point of the pull-back divisor of \(D \), the pulled-back connection has a good formal decomposition (this is easy, see for example [Sab95, lemme III.1.2.4, p. 83]). The source space of \(\pi \) is covered by a finite number of charts. Typically, each chart has coordinates \(y_1, y_2 \) and the map \(\pi \) is given by formulas like

\[
\begin{align*}
x_1 \circ \pi &= y_1^a y_2^b \\
x_2 \circ \pi &= y_1^c y_2^d,
\end{align*}
\]

with \(ad - bc = 1 \). By assumption, for any \(\varphi, \psi \in \Phi \) the functions \(\varphi \circ \pi \) and \(\varphi \circ \pi - \psi \circ \pi \) are holomorphic or have a non positive divisor.

In the source space of \(\pi \), the dual graph of the pulled-back divisor of \(D \) is a tree of the form \(\cdot - \cdot \) where the extremal vertices correspond to the strict transforms by \(\pi \) of \(D_1 \) and \(D_2 \). A chart of this space corresponds to a subgraph \(\cdot - \cdot - \cdot \) and, in this chart, one can distinguish a divisor “on the side of \(D_1 \)” and a divisor “on the side of \(D_2 \)”. In the coordinates given above, where we assume \(ad - bc = 1 \), the divisor \(\{ y_1 = 0 \} \) is on the side of \(D_1 \) and \(\{ y_2 = 0 \} \) on the side of \(D_2 \).

The proof is done by induction on the length of the tree, starting from the vertex corresponding to the strict transform of \(D_2 \). It is a straightforward application of the proposition, once we have proved the following property:
At any crossing point of the divisor $\pi^{-1}(D)$, and for any $\varphi \in \Phi$, if $\varphi \circ \pi$ has a pole along the divisor on the side of D_1, then φ also has a pole along the divisor on the side of D_2.

By assumption, if $\varphi \neq 0$, it is a minimal finite sum of terms of the form $x_1^{k_1} x_2^{k_2} u(x_1, x_2)$, where u is a holomorphic unit. Moreover, by assumption, if $k_1 < 0$, then $k_2 < 0$. In any chart as above, $ak_1 + ck_2$ and $bk_1 + dk_2$ have the same sign, because of the assumption of good formal decomposition. It is then a matter of checking that, if $bk_1 + dk_2 = 0$, we cannot have $ak_1 + ck_2 < 0$. Let us recall that a, b, c, d are non negative integers such that $ad - bc = 1$. This implies $d > 0$. We then have $k_2 = -bk_1/d$, hence $ak_1 + ck_2 = (ad - bc)k_1/d = k_1/d$; but in such a situation we cannot have $k_1 < 0$, otherwise we would also have $k_2 < 0$ and $bk_1 + dk_2 < 0$, a contradiction.

Corollary 2. If M satisfies the property of Corollary [1] after a cyclic ramification around D_1 and/or D_2, then M satisfies Property (P).

Proof. Easy. □

Corollary 3. If M', M'' both satisfy the assumptions of Corollary [2], any morphism of meromorphic bundles $(M', \nabla)_{|X \smallsetminus D_1} \to (M'', \nabla)_{|X \smallsetminus D_1}$ compatible with the connections can be extended as a morphism $(M', \nabla) \to (M'', \nabla)$.

Proof. Such a morphism is a horizontal section of $M' \otimes M''$ on $X \smallsetminus D_1$, hence a horizontal section of $M' \otimes M''$ on X^* with moderate growth along D_2. One can immediately check that the hypotheses of Corollary [2] are satisfied by $M' \otimes M''$ if they are satisfied by M' and M''. This is enough to conclude. □

Example. Here is an example related to wild twistor \mathcal{D}-modules (cf. [Sab09]). Let M be a meromorphic bundle with flat connection on X. Let us assume that, after a ramification along D_1 (that we forget in the following), there exists a finite family Φ consisting of pairwise distinct $\varphi \in \mathcal{K}^{-1}[x_1]^{-1}$ such that, denoting by $M_{X[D_1]}$ the formalized bundle of M along D_1, we have a decomposition

$$M_{X[D_1]} \simeq \oplus_{\varphi \in \Phi} (\mathcal{O}^{x_2} \otimes N_{\varphi}),$$

where N_{φ} is a free $\mathcal{O}_{X[D_1]}[1/x_1 x_2]$-module having a basis in which the matrix of $x_1 \partial_{x_1}$ has no pole. Then, formalizing once more with respect to x_2, any N_{φ} can be decomposed as the direct sum of terms $\mathcal{O}^{x_2} \otimes \hat{R}_{\varphi, \psi}$, with pairwise distinct $\psi \in \mathcal{K}^{-1}[x_2^{-1}]$ and $\hat{R}_{\varphi, \psi}$ with regular singularity (cf. [Sab09] prop.III.2.1.1(2), p.89). The Newton polygon of any nonzero exponent $\psi(x_2) + \varphi(x_1)/x_2$ has no vertex (k_1, k_2) with $k_1 < 0$ and $k_2 \geq 0$. We are thus in the situation of Corollary [1]. We deduce that M satisfies Property (P).

We now use notation and definitions of [Sab09] §4.5, where X is $(\mathbb{C}, 0)$ with coordinate t and $\mathcal{X} = X \times \mathbb{C}$ with coordinates (t, z). We set $\mathcal{X}^* = \mathcal{X} \smallsetminus \{t = 0\}$.
Corollary 4. Let $\tilde{\mathcal{M}}', \tilde{\mathcal{M}}''$ be two free $\mathcal{O}_X[t^{-1}]$-modules of finite rank, equipped with a compatible action of \mathcal{R}_X. Let us also assume that they are integrable \mathcal{R}_X-modules, that is, are equipped with a flat meromorphic connection with a pole of Poincaré rank one along $\{z = 0\}$, extending the z-connection coming from the \mathcal{R}_X-structure. Let us assume that $\tilde{\mathcal{M}}', \tilde{\mathcal{M}}''$ are strictly specializable with ramification and exponential twist along $\{t = 0\}$.

Then, any morphism $\tilde{\mathcal{M}}'_{|\mathcal{Y}^*} \to \tilde{\mathcal{M}}''_{|\mathcal{Y}^*}$, which is compatible with the connections can be extended to a morphism $\tilde{\mathcal{M}}' \to \tilde{\mathcal{M}}''$.

Proof. In the previous notation, we set $x_1 = t$, $x_2 = z$. According to [Sab09] Prop. 4.5.4, we can apply the argument above.

References

C. Sabbah, UMR 7640 du CNRS, Centre de Mathématiques Laurent Schwartz, École polytechnique, F–91128 Palaiseau cedex, France E-mail: Claude.Sabbah@polytechnique.edu
Url: http://www.math.polytechnique.fr/~sabbah