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Introduction

The theory of toric varieties establishes a now classical connection be-
tween algebraic geometry and convex polytopes. In particular, as observed
by Danilov in the seventies, finding a closed formula for the Todd class of
complete toric varieties would have important consequences for enumeration
of lattice points in convex lattice polytopes. Since then, a number of such for-
mulas have been proposed; see [M], [P1], [P2]... The Todd class of complete
simplicial toric varieties is computed in [G-G-K], using the Riemann-Roch
formula of T. Kawasaki [K].

On the other hand, it has been realized that the sum of values of a function
f over all lattice points of a convex lattice polytope P can be obtained
from the integral of f over the deformed polytope (where all facets of P
are translated independently) by applying to the translation variables, a
differential operator of infinite order: the Todd operator. For this, we refer to
[K-P] and its subsequent generalizations [K-K], [C-S1], [B-V], [C-S2]... These
results are higher-dimensional analogues of the classical Euler-MacLaurin
summation formula (the case where P is an interval).

The Todd operator of a convex lattice polytope P is closely related to the
Todd class of the projective toric variety associated to the normal fan of P .
In the present paper, we explain this connection as follows. We obtain an
equivariant Riemann-Roch theorem for any complete, simplicial toric variety
X (theorem 4.1). It involves the equivariant Todd class of X, a lift of the
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Todd class to the completion of the equivariant cohomology ring. We obtain
a closed formula for this equivariant Todd class (theorem 4.2). Generalizing
work of Pommersheim [P1], we relate this class to higher Dedekind sums
(proposition 4.4). Finally, we show that the generalized Euler-MacLaurin
summation formula for convex lattice polytopes, is a consequence of our
equivariant Riemann-Roch theorem (theorem 4.5). We refer to [B-V] for a
direct, elementary proof of this summation formula in the case of simple
polytopes.

Observe that a closed formula for the Todd class of a complete toric
variety X must involve some choices, because the rational Chow group of
X has no distinguished basis. In contrast, the equivariant cohomology ring
of X has a very convenient description when X is simplicial, either as the
Stanley-Reisner ring of the corresponding fan Σ (see [B-D-P]), or as the ring
of continuous, piecewise polynomial functions on Σ (see 3.2 below). This
makes the equivariant Todd class easier to handle than the “usual” Todd
class.

Although our results may look fancy, our proofs use little theory. In
particular, instead of relying on the equivariant Riemann-Roch theorem for
orbifolds (see [V]), we construct explicitely all objects involved in it, e.g. the
Grothendieck group of linearized coherent sheaves, and the equivariant Chern
character with values in the completion of the equivariant cohomology ring.
Then the equivariant Riemann-Roch formula is checked in a straightforward
way.

Our results are stated over the field of complex numbers; they should
hold for any algebraically closed field, with equivariant cohomology replaced
by equivariant Chow group, see [E-G]. However, a full treatment based on
equivariant Chow theory would require further developments of this theory.

Notation

We begin with some notation and results concerning the theory of toric
varieties; we refer to [O] and [F2] for expositions of this theory. Denote by
T a d-dimensional torus, by M = Hom(T,C∗) its character group, and by
N = Hom(C∗, T ) the group of one-parameter subgroups of T . There is a
natural pairing M × N → Z : (m,n) 7→ 〈m,n〉 where 〈m,n〉 is the integer
such that m(n(t)) = t〈m,n〉 for all t ∈ C∗.

We denote by X a toric variety, i.e. a normal variety where T acts with a
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dense orbit isomorphic to T . Such a variety is described by its fan Σ in NQ.
Moreover, X = XΣ has only quotient singularities by finite groups (resp. X
is smooth) if and only if each cone in Σ is simplicial (resp. is generated by
part of a basis of N).

There is a bijection σ 7→ Xσ between cones in Σ and T -stable open affine
subsets of X. We denote by Ωσ the unique closed T -orbit inXσ; then σ → Ωσ

sets up a bijection from Σ to the set of T -orbits in X. Moreover, we have
dim(σ) = codim(Ωσ).

For a cone σ, we denote by Nσ the subgroup of N generated by σ ∩ N ,
and by σ⊥ ⊂ MQ the set of linear forms on NQ which vanish identically on
σ. We denote by Tσ the subgroup of T with character group M/M ∩ σ⊥;
then Tσ is connected, with group of one-parameter subgroups Nσ. Observe
that Ωσ = T/Tσ and that there is a T -equivariant retraction rσ : Xσ → Ωσ.
It follows that Xσ is isomorphic to T ×Tσ Sσ where Sσ is an affine, Tσ-toric
variety with a fixed point.

For 0 ≤ j ≤ d, we denote by Σ(j) the set of j-dimensional cones in Σ.
In particular, Σ(1) is the set of edges of Σ. For τ ∈ Σ(1) we denote by nτ

the generator of the semigroup τ ∩ N and by Dτ = Ωτ the T -stable prime
divisor associated to τ .

1. Linearized sheaves on toric varieties

1.1. Existence of resolutions

Let F be a coherent sheaf on a toric varietyX. Recall that a T -linearization
of F is an action of T on F which is compatible with its structure of an
OX-module. For example, if D is a T -stable (Weil) divisor on X, then the
coherent sheaf OX(D) has a canonical linearization.

Given a T -linearized sheaf F and m ∈ M , we denote by F ⊗ m the
sheaf F with its T -linearization twisted by the character m: the T -module
H0(Xσ,F ⊗m) is the tensor product of H0(Xσ,F) with the T -module Cm.

Any linearized locally free sheaf E on an affine toric variety is trivial, i.e.
E can be written as a direct sum of sheaves OX ⊗m (this follows e.g. from
[B-H] 10.1). As a global analogue of this result, we have the following

Theorem. Let X be a toric variety. Then any coherent, T -linearized sheaf
on X has a finite resolution by finite direct sums of T -linearized sheaves
OX(D)⊗m where D is a T -stable divisor in X, and m ∈M . Moreover, any
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coherent sheaf on X has a finite resolution by finite direct sums of sheaves
OX(D) where D is as before.

Proof. First we recall how to obtain X as a quotient of a smooth toric variety
by a torus; see [A] and [C] for other versions of the following construction.

Let ZΣ(1) = ⊕τ∈Σ(1) Zeτ be the free abelian group on the set Σ(1). Set

Ñ := N × ZΣ(1) and denote by T̃ = C∗ ⊗Z Ñ the associated torus. Then
T = C∗ ⊗Z N embeds into T̃ .

To any cone σ ∈ Σ, we associate the cone σ̃ in ÑQ generated by the eτ
such that τ is an edge of σ. Then the family (σ̃)σ∈Σ is a fan in ÑQ, contained
in {0}×QΣ(1). We denote by X̃ the associated toric variety. If T̃ is identified
with T × (C∗)Σ(1), then X̃ is identified with the product of T by an open
subset of CΣ(1). In particular, X̃ is smooth.

The map
f : Ñ → N

(n,
∑

xτeτ )→ n+
∑

xτnτ

is surjective with kernel

N ′ := {(−
∑

xτnτ ,
∑

xτeτ )} ' ZΣ(1).

Therefore, f induces an exact sequence

1→ T ′ → T̃ → T → 1

where T ′ ' (C∗)Σ(1), and we have a T ′-invariant morphism f : X̃ → X.
Observe that f−1(Xσ) = X̃σ̃ for all σ ∈ Σ. It follows that f is affine.

1.2. Proof of theorem 1.1 (continued)

Let m̃ be a character of T̃ . Denote by m its restriction to T , and by m̂
the unique character of T̃ = T × (C∗)Σ(1) such that m̂ is trivial on (C∗)Σ(1)

and that m̂|T = m. Set aτ = −〈m̃, eτ 〉 for each τ ∈ Σ(1).

Lemma. There is an isomorphism of T̃ -linearized coherent sheaves:

OX̃ ⊗ m̃ ' OX̃(
∑

τ∈Σ(1)

aτDτ̃ )⊗ m̂ .

Moreover, there is an isomorphism of T -linearized coherent sheaves:

fT ′

∗ (OX̃ ⊗ m̃) ' OX(
∑

τ∈Σ(1)

aτDτ )⊗m .
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In particular, fT ′

∗ OX̃ = OX , i.e. f : X̃ → X is the universal quotient by T ′.

Proof. Denote by (e∗τ ) the dual basis of (eτ ). Then we can consider e∗τ
as a character of T̃ and the divisor of this character in X̃ is −Dτ̃ . Writ-
ing m̃ = m̂ −

∑

τ∈Σ(1) aτe
∗
τ , we obtain our first isomorphism. For the sec-

ond isomorphism, observe that f−1(Dτ ) = Dτ̃ and hence we have a map
OX(

∑

τ∈Σ(1) aτDτ ) → fT ′

∗ OX̃(
∑

τ∈Σ(1) aτDτ̃ ). We check that this map is
an isomorphism over Xσ for a given σ ∈ Σ. Namely, the vector space
H0(Xσ,OX(

∑

τ∈Σ(1) aτDτ )) is generated by all m ∈ M such that 〈m,nτ 〉 +

aτ ≥ 0 for all τ ∈ σ(1), whereas the space of T ′-invariants inH0(X̃σ̃,OX̃(
∑

τ∈Σ(1) aτDτ̃ ))

is generated by all m̃ in Hom(T̃ ,C∗)T
′

= M such that 〈m̃, nτ̃ 〉+ aτ ≥ 0.

End of the proof of theorem 1.1. Let F be a coherent, T -linearized sheaf on
X. Then f ∗F is a coherent, T̃ -linearized sheaf on X̃. Set e := d+ |Σ(1)| and
embed X̃ into Ce as an open subset, invariant under the natural action of
T̃ = (C∗)e. Then f ∗F extends to a coherent, (C∗)e-linearized sheaf on Ce,
see [T] 2.4. The latter corresponds to a finite, Ze-graded module over the
polynomial ring C[x1, . . . , xe]. Using the theorem of Hilbert-Serre, it follows
that there exists an exact sequence of T̃ -linearized coherent sheaves:

0→ OX̃ ⊗ Ve → · · · → OX̃ ⊗ V0 → f ∗F → 0

where each Vi is a finite dimensional module over T̃ . Because f is affine, f∗ is
exact and satisfies to the projection formula. Moreover, taking invariants by
the torus T ′ is exact. Therefore, we have an exact sequence of T -linearized
coherent sheaves

0→ fT ′

∗ (OX̃ ⊗ Ve)→ · · · → fT ′

∗ (OX̃ ⊗ V0)→ F → 0

To finish the proof, decompose each Vi into a direct sum of one-dimensional
modules over T̃ . Such a module is associated to a character m̃ of T̃ , and we
conclude by the lemma above. In the case where F is an arbitrary coherent
sheaf, f ∗F is a T ′-linearized coherent sheaf on X̃ and our arguments adapt
easily.

Denote by G(X) (GT (X)) the Grothendieck group of (T -linearized) co-
herent sheaves on X, see [T]. Then theorem 1.1 imply readily the following

Corollary. For any toric variety X, the group GT (X) is generated by the
classes ofOX(D)⊗m, whereD is a T -stable divisor inX, andm is a character
of T . Moreover, the forgetful map GT (X)→ G(X) is surjective.
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1.3. Euler characteristics

Let Z[M ] be the group ring over Z of the abelian group M . We denote
by Z[[M ]] the set of all formal power series

∑

m∈M ame
m with integral co-

efficients. Then Z[[M ]] is a module over Z[M ], multiplication by em being
defined by em

∑

µ∈M aµe
µ =

∑

µ∈M aµ−me
µ. We call f ∈ Z[[M ]] summable

if there exist P ∈ Z[M ] and a finite sequence (mi)i∈I of non-zero points in
M , such that the following equality holds in Z[[M ]]:

f
∏

i∈I

(1− emi) = P .

Then the sum of f is defined as the following element of Q(M) (the fraction
field of Z[M ]):

S(f) = P
∏

i∈I

(1− emi)−1 .

Clearly, S(f) does not depend of the choices of P and of the sequence (mi)i∈I .
To any coherent, T -linearized sheaf F on a toric variety X, and to any

cone σ in the fan of X, we associate a formal power series χT
σ (F) as fol-

lows. The space H0(Xσ,F) is a rational T -module, and a finite module over
H0(Xσ,OX) as well. Both structures are compatible; moreover, the multi-
plicity of any character of T in H0(Xσ,OX) is zero or one. It follows that the
multiplicity of any m ∈ M in H0(Xσ,F) is finite. Denote this multiplicity
by mult(m,H0(Xσ,F)) and set:

χT
σ (F) =

∑

m∈M

mult(m,H0(Xσ,F))e
m .

Proposition. With the notation as above, the formal power series χT
σ (F) is

summable. Moreover, its sum is zero if and only if dim(σ) < d.

Proof. We may assume that X = Xσ is affine; we set A := H0(Xσ,OX).
Then F := H0(Xσ,F) is a finite A-module with a compatible T -action.

If dim(σ) < d then we may choose m0 ∈ M such that 〈m0, n〉 = 0 for all
n ∈ σ. We can consider m0 as an invertible element of A; it follows that the
multiplicity of m in F is invariant under translation by m0. Therefore, we
have (1− em0)χT

σ (F) = 0, i.e. χT
σ (F) is summable with sum zero.

If dim(σ) = d, choose an interior point n0 of σ, and consider n0 as a
linear form on MR. Then n0 takes positive values at all non-zero weights
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of A. Now the proof of existence of the Hilbert series of a finite, graded
module over a finitely generated, graded algebra can be easily adapted, to
yield summability of χT

σ (F). If its sum is zero, let m1, . . . ,mr be non-zero
elements of M such that χT

σ (F)
∏r

i=1 (1− e
mi) = 0. Changing mi into −mi

(which amounts to multiplication of 1 − emi by −e−mi), we may assume
that 〈n0,m1〉, . . . , 〈n0,mr〉 are non-negative. On the other hand, there exists
a weight m0 of F such that 〈n0,m0〉 ≤ 〈n0,m〉 for all weights m of F .
Therefore, the coefficient of em0 in χT

σ (F)
∏r

i=1 (1 − emi) cannot vanish, a
contradiction.

Corollary. The multiplicity of any m ∈ M in any cohomology group
H i(X,F) is finite. Moreover, the formal power series

χT (F) :=
∑

m∈M

d
∑

i=0

(−1)i mult(m,H i(X,F)) em

is summable, and we have

S(χT (F)) =
∑

σ∈Σ(d)

S(χT
σ (F)) .

Proof. The T -module H i(X,F) is the i-th cohomology space of the Cech
complex associated to the covering (Xσ)σ∈Σ of X; namely, each Xσ is affine
and T -stable, and the family (Xσ) is stable under intersections. This obser-
vation, combined with the proposition above, implies readily our statements.

Remark. Both maps F → χT (F) and F → χT
σ (F) are additive on exact

sequences. Therefore, these maps define χT , χT
σ : GT (X)→ Z[[M ]]. Clearly,

χT and χT
σ are morphisms of Z[M ]-modules.

1.4. An exact sequence

Consider a toric variety X and a closed orbit Ωσ in X, associated to
a (maximal) cone σ in Σ. Denote by iσ : Ωσ → X the inclusion, and by
jσ : X \ Ωσ → X the inclusion of the complement of Ωσ in X.

Proposition. (i) The map GT (Ωσ)→ Z[[M ]] : [F ]→ χT
σ (iσ∗F) is injective.

(ii) The sequence

0→ GT (Ωσ)→ GT (X)→ GT (X \ Ωσ)→ 0

7



is exact.

Proof. (i) Recall that the isotropy group Tσ of Ωσ is connected, with character
group M/M ∩ σ⊥. Hence GT (Ωσ) = GT (T/Tσ) identifies to Z[M/M ∩ σ⊥].
Moreover, denoting by uσ the image in GT (Ωσ) of the structure sheaf of Ωσ,
we have

χT
σ (iσ∗uσ) =

∑

m∈M∩σ⊥

em .

Therefore, χT
σ ◦ iσ∗ identifies to the map

Z[M/M ∩ σ⊥]→ Z[[M ]]

eµ+(M∩σ
⊥) 7→

∑

m∈M∩σ⊥

eµ+m

(where µ ∈M) and the latter is clearly injective.
(ii) By theorem 2.7 in [T] , it suffices to check that iσ∗ : G

T (Ωσ) → GT (X)
is injective. But this follows from (i).

1.5. Localization

Denote by i : XT → X the inclusion of the fixed point set (which coincides
with the fixed point scheme in our case of a toric variety). Then i induces a
morphism of Z[M ]-modules i∗ : G

T (XT )→ GT (X). Observe that the Z[M ]-
module GT (XT ) is isomorphic to

∏

σ∈Σ(d) Z[M ]. By a general localization
theorem in equivariantK-theory, the map i∗ is an isomorphism after inverting
all 1− em, where m is a non-zero point in M ; see [Q]. For toric varieties, we
obtain the following more precise statement.

Proposition. The map i∗ : G
T (XT ) → GT (X) is injective. Moreover, the

cokernel of i∗ is killed by any product of 1 − emσ , where σ runs over all
maximal cones of positive codimension, and where mσ is any non-zero point
in σ⊥.
Proof. Injectivity of i∗ follows from 1.4 (i). So we have an exact sequence

0→ GT (XT )→ GT (X)→ GT (X \XT )→ 0 .

If Ω is an orbit in X \ XT , then Ω = Ωσ for some cone σ of positive codi-
mension. In this case, the Z[M ]-module GT (Ω) = Z[M/M ∩ σ⊥] is killed
by 1 − emσ for any non-zero point mσ in σ⊥. Using 1.4 (ii), it follows that
GT (X \XT ) is killed by any product of such terms.
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2. Linearized sheaves on simplicial toric varieties

2.1. Preliminary computations

Let σ ∈ Σ be a simplicial cone, and let D be a T -stable divisor of X. We
will compute χT

σ (OX(D)). For this, denote by τ1, . . . , τr the edges of σ, and by
n1, . . . , nr the corresponding primitive vectors. Choose a decompositionM =
(M ∩σ⊥)⊕Mσ. Then n1, . . . , nr generate the dual of M

σ over the rationals.
Therefore, there exist uniquely defined primitive vectors m1, . . . ,mr in Mσ

such that 〈mi, nj〉 = 0 for all i 6= j and that 〈mi, ni〉 is a positive integer for
all i. We set qi := 〈mi, ni〉.

Define integers a1, . . . , ar by

D =
r

∑

i=1

aiDτi +
∑

τ /∈σ(1)

aτDτ .

We set

Qσ
D := {

r
∑

i=1

ximi | xi ∈ Q, 0 ≤ xi + q−1i ai < 1} .

In particular, we set

Qσ := {
r

∑

i=1

ximi | xi ∈ Q, 0 ≤ xi < 1} .

Proposition. Notation being as above, we have in Z[[M ]]:

χT
σ (OX)

r
∏

i=1

(1− emi) = (
∑

m∈M∩σ⊥

em)(
∑

m∈Qσ∩Mσ

em)

and also

χT
σ (OX(D))(

∑

m∈Qσ∩Mσ

em) = χT
σ (OX)(

∑

m∈Qσ
D
∩Mσ

em) .

Then Qσ
D ∩M

σ and Qσ ∩Mσ are finite sets with the same cardinality: the
index in Mσ of the subgroup generated by m1, . . . ,mr.

Proof. Clearly, we have

χT
σ (OX(D)) =

∑

〈m,ni〉+ai≥0

em = (
∑

m∈M∩σ⊥

em)(
∑

m∈Mσ ,〈m,ni〉+ai≥0

em) .
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Consider m ∈ Mσ. Then 〈m,ni〉 + ai ≥ 0 for all i, if and only if m can
be written as m′ +

∑r
i=1 ximi where m

′ ∈ Qσ
D ∩M

σ and where the xi’s are
non-negative integers; such a representation is unique. It follows that

χT
σ (OX(D)) = (

∑

m∈M∩σ⊥

em)(
∑

m∈Qσ
D

em)(
∑

xi≥0

ex1m1+···+xrmr) .

Our statements follow at once from this identity.

2.2. Localized Grothendieck groups

Denote by S the multiplicative subset of Z[M ] generated by all sums
∑

m∈E em where E is a finite subset of M .

Proposition. Let X be a simplicial toric variety. For any τ ∈ Σ(1), choose a
positive integer aτ such that the divisor aτDτ is Cartier. Then the S−1Z[M ]-
module S−1GT (X) is generated by the elements [OX(−

∑

τ∈σ(1) aτDτ )] where
σ ∈ Σ.

Proof: By induction over the number of orbits, the case of one orbit being
trivial. For the general case, choose a closed orbit Ωσ in X and consider the
exact sequence of 1.4:

0→ GT (Ωσ)→ GT (X)→ GT (X \ Ωσ)→ 0 .

The Z[M ]-module GT (Ωσ) is generated by the class uσ of the structure sheaf
of Ωσ. Therefore, it suffices to check that Suσ contains

∑

I⊂σ(1)

(−1)|I|[OX(−
∑

τ∈I

aτDτ )] .

For this, we use the notation of 2.1, and we set Li := OX(−aiDi) for 1 ≤ i ≤
r. Then, as Li is invertible, each ai is a multiple of qi. BecauseX is simplicial,
we have codimX(Di1 ∩ · · · ∩Dis) = s whenever 1 ≤ i1 < · · · < is ≤ r. Hence,
because X is Cohen-Macaulay, the Koszul complex

0→ L1⊗· · ·⊗Lr → · · · →
⊕

1≤i<j≤r

Li⊗Lj →
⊕

1≤i≤r

Li → OX → OX/
∑

1≤i≤r

Li → 0

is exact. Therefore, we have in GT (X):

[OX/
∑

1≤i≤r

Li] =
∑

I⊂{1,...,r}

(−1)|I|[⊗i∈ILi] .
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To conclude the proof, we observe that the sheaf OX/
∑

1≤i≤r Li is coher-
ent, T -linearized, and is supported in Ωσ. It follows that this sheaf has a
finite filtration by coherent, T -linearized sheaves, with various twists of the
structure sheaf of Ωσ as subquotients. So we can write in GT (X):

[OX/
∑

1≤i≤r

Li] = Puσ

for a unique P ∈ Z[M/M ∩ σ⊥]. It follows that

χT
σ (OX/

r
∑

i=1

Li) = PχT
σ (uσ) .

But χT
σ (uσ) =

∑

m∈M∩σ⊥ em and moreover, using 2.1, we obtain, setting
bi = aiq

−1
i :

χT
σ (OX/

∑

1≤i≤r

Li) = (
∑

m∈M∩σ⊥

em)(
∑

m∈Qσ∩Mσ

em)
∏

1≤i≤r

1− ebimi

1− emi
.

Therefore, we have

P = (
∑

m∈Qσ∩Mσ

em)
r

∏

i=1

(1 + emi + e2mi + · · ·+ e(bi−1)mi)

which shows that P is in S.

Denote by KT (X) (K(X)) the Grothendieck group of (T -linearized) lo-
cally free sheaves onX. ThenKT (X) is a Z[M ]-algebra and moreover GT (X)
is a module over KT (X), via the canonical map KT (X)→ GT (X). Similarly,
we have the canonical map K(X)→ G(X).

Corollary. If X is a simplicial toric variety, then the map KT (X)→ GT (X)
induces a surjective map S−1KT (X) → S−1GT (X). Moreover, the map
K(X)→ G(X) is surjective over the rationals.

Remark. We ignore whether the maps S−1KT (X)→ S−1GT (X) andK(X)Q →
G(X)Q are isomorphisms for simplicial X. But it is easy to see that for any
non-simplicial toric variety X, the map K(X)→ G(X) is not surjective over
the rationals. Namely, choose a non-simplicial cone σ in the fan of X. Then
we have a commutative square
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K(X) → G(X)
↓ ↓

K(Xσ) → G(Xσ)

where the vertical arrows are restrictions to Xσ. Moreover, the map
G(X) → G(Xσ) is surjective. Therefore, surjectivity over the rationals of
the map K(X) → G(X) would imply the corresponding statement for Xσ.
So we may assume that X is affine.

In this case, K(X) is isomorphic to Z via the rank. On the other hand,
denoting by U the union of orbits of codimension at most one in X, the
restriction map G(X) → G(U) is surjective, and moreover G(U) = K(U)
because U is smooth. Finally, the kernel of the rank map K(U) → Z sur-
jects onto the Picard group of U , and the latter is infinite (because σ is not
simplicial). So the rank of the abelian group K(U) is at least two, and hence
the rank of G(X) is at least two as well.

2.3. Local Chern character

Let X = Xσ be a toric variety, and let F be a coherent, T -linearized sheaf
on X. Choose a simplicial cone σ in Σ and denote by Fσ the restriction of
F to the locally closed subvariety Sσ (the fiber of the equivariant retraction
Xσ → Ωσ). Then Fσ is Tσ-linearized. Moreover, the map F 7→ Fσ defines
an isomorphism GT (Xσ)→ GTσ(Sσ), see [T].

Proposition. (i) There exists a unique element chT
σ (F) in S

−1Z[M/M ∩σ⊥]
such that

χTσ(Fσ) = chT
σ (F)χ

Tσ(OSσ) .

(ii) For any face τ of σ, the image of chT
σ (F) under the natural map Z[M/M∩

σ⊥]→ Z[M/M ∩ τ⊥] is chT
τ (F).

(iii) If moreover F is locally free, then chT
σ (F) is in Z[M/M ∩ σ⊥].

Proof. (i) For existence of chT
σ (F), we may assume (using 1.1) that F =

OX(D). Then

chT
σ (F) = (

∑

m∈Qσ∩Mσ

em)−1(
∑

m∈Qσ
D
∩Mσ

em)

with the notation of 2.1.
Unicity of chT

σ (F) follows from the fact that χTσ
σ is summable in Q(M/M∩

σ⊥), and that its sum is non-zero; see 1.3.
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(iii) If F is locally free, then Fσ ' OSσ ⊗ V for some Tσ-module V . In
this case, we have

χTσ(Fσ) = χTσ(OSσ)χ
Tσ(V )

where χTσ(V ) denotes the character of the Tσ-module V . It follows that
chT

σ (F) = χTσ(V ) is in Z[M/M ∩ σ⊥].
(ii) If F is locally free, then our statement follows from the discussion

above. In the general case, observe that chT
σ is additive on short exact se-

quences, and hence that we have a well-defined map

chT
σ : S−1GT (X)→ S−1Z[M/M ∩ σ⊥] .

Now we conclude by corollary 2.2.

2.4. Chern character

Denote by EΣ the set of all families (fσ)σ∈Σ such that fσ ∈ Z[M/M ∩σ⊥]
and that, for all τ ⊂ σ, the image of fσ in Z[M/M ∩ τ⊥] is fτ . Then EΣ
is a ring for pointwise addition and multiplication: the ring of continuous,
piecewise exponential functions on Σ. Moreover, Z[M ] maps to a subring of
EΣ by f → (f)σ∈Σ. This gives EΣ the structure of a Z[M ]-algebra.

By proposition 2.3, the map

F → (chT
σ (F))σ∈Σ

defines a map
chT : GT (X)→ S−1EΣ .

Clearly, chT is a morphism of Z[M ]-modules. We will see in 3.6 below that
chT is the equivariant Chern character.

Theorem. The map S−1chT : S−1GT (X)→ S−1EΣ is an isomorphism.

Proof. First we check that S−1chT is injective. We argue by induction over
the number of orbits in X, the case of one orbit being obvious. Choose a
closed orbit Ωσ and consider the diagram

0 → GT (Ωσ) → GT (X) → GT (X) \ Ωσ)→
↓ ↓ ↓

0 → S−1Eσ0 → S−1EΣ → S−1EΣ\{σ}

where Eσ0 denotes the kernel of the restriction map EΣ → EΣ\{σ} (i.e.
Eσ0 is the space of piecewise exponential functions which vanish outside the

13



relative interior of σ). This diagram commutes, and its rows are exact.
Therefore, it defines a map cσ : S−1GT (Ωσ) → S−1Eσ0 . Recall that the
Z[M ]-module GT (Ωσ) is isomorphic to Z[M/M ∩ σ⊥]. On the other hand,
Eσ0 is a torsion-free module over Z[M/M ∩ σ⊥], and cσ is Z[M ]-linear. So it
is enough to check that cσ is non-zero.

Notation being as in 2.1, we consider

vσ :=
∑

I⊂{1,...,r}

(−1)|I|[OX(−
∑

i∈I

qiDi)] .

Then, as in the proof of 2.2, we see that vσ is in iσ∗G
T (Ωσ). On the other

hand, restriction of qiDi to Xσ coincides with the divisor of mi. It follows
that vσ is mapped by cσ to

∏r
i=1(1−e

mi+σ⊥). Because mi /∈ σ
⊥, we conclude

that cσ is non-zero.
To check surjectivity of S−1chT , it is enough to show that the composition

S−1KT (X)→ S−1GT (X)→ S−1EΣ

is surjective, or even that KT (X) is mapped surjectively to EΣ. For this,
let f = (fσ)σ∈Σ be in EΣ. Then we may choose g ∈ Z[M ] such that each
fσ + g is a positive linear combination of em’s, m ∈ Z[M/M ∩ σ⊥]. In other
words, fσ+g is the character of some Tσ-module Vσ. By definition of EΣ, the
restriction to Tτ of Vσ is isomorphic to Vτ whenever τ ⊂ σ. Therefore, the
T -linearized sheaves on Xσ = T ×Tσ Sσ, induced by the Tσ-linearized sheaves
OSσ ⊗k Vσ on Sσ, can be glued together to a T -linearized, locally free sheaf
E , and we have chT (E) = f + g. Hence f = chT (E) − chT (OX ⊗k V ) where
V is a T -module with character g.

3. Equivariant cohomology of simplicial toric varieties

3.1. Equivariant cohomology

First we review some basic facts about equivariant cohomology; see [A-B]
for more details. Choose a contractible topological space ET where T acts
freely, and denote by BT = (ET )/T the quotient. For any T -space Z, the
quotient of Z × ET by the diagonal T -action exists; denote this quotient
by Z ×T ET . Then the equivariant cohomology ring of Z with rational
coefficients, is defined by

H∗
T (Z) := H∗(Z ×T ET,Q) .

14



In particular, the equivariant cohomology ring of the point is H∗
T (pt) =

H∗(BT ). If T = (C∗)d then we may take ET = (C∞ \ {0})d where T
acts by scalar multiplications; then BT = (P∞)d.

Any one-dimensional T -module Cm (with character m ∈ M) defines a
line bundle Cm ×T ET over BT . Denote by c(m) ∈ H2

T (pt) the first Chern
class of this line bundle. Then the map c : M → H2

T (pt) is additive, and it
extends to an isomorphism (which multiplies degree by 2)

c : S∗(MQ)→ H∗
T (pt)

where S∗(MQ) is the symmetric algebra of MQ over the rationals.
More generally, for any T -space Z, we have a fibration Z ×T ET → BT

which gives H∗
T (Z) the structure of an algebra over H∗(BT ) = S∗(MQ).

Furthermore, restriction to fibers defines a homomorphism of graded rings
H∗

T (Z)→ H∗(Z). This homomorphism vanishes on MQ and hence it factors
through

H∗
T (Z)/MQH

∗
T (Z)→ H∗(Z) .

We will use the following observation: If a closed subgroup G ⊂ T acts
on X with finite isotropy groups, then H∗

T (X) is naturally isomorphic to
H∗

T/G(X/G). Namely, choose a closed subgroup T ′ ⊂ T such that T = T ′G
and that T ′ ∩G is finite. Then we can take ET ′ = ET . Now the fibers of all
maps in the diagram

X×T ET → X/G×T ′ET ← X/G×T ′ (ET ×E(T/G))→ X/G×T/GE(T/G)

are quotients of contractible spaces by finite groups. Therefore, these maps
induce isomorphisms in cohomology.

We will study equivariant cohomology of simplicial toric varieties, gen-
eralizing results of [B1] concerning smooth toric varieties. Let Σ be a fan,
and let σ ∈ Σ be a simplicial cone. Recall that rσ : Xσ → Ωσ denotes the
T -equivariant retraction.

Proposition. Notation being as above, the map r∗σ : H∗
T (Xσ)→ H∗

T (Ωσ) '
S∗(MQ/σ

⊥) is an isomorphism of graded algebas over S∗(MQ). Moreover,
for any face τ of σ, the diagram

H∗
T (Xσ) → S∗(MQ/σ

⊥)
↓ ↓

H∗
T (Xτ ) → S∗(MQ/τ

⊥)
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commutes, where the left (resp. right) vertical arrow is defined by inclu-
sion of Xτ in Xσ (resp. by the map MQ/σ

⊥ →MQ/τ
⊥).

Proof. Observe that H∗
T (Xσ) ' H∗

Tσ
(Sσ) and that r∗σ : H∗

T (Xσ) → H∗
T (Ωσ)

identifies to restriction H∗
Tσ
(Sσ) → H∗

Tσ
(x) where x denotes the Tσ-fixed

point in Sσ. So we may assume that Ωσ consists in one point x. Then σ is
a d-dimensional cone with edges generated by n1, . . . , nd. Denote by Ñ the
subgroup of N generated by n1, . . . , nd. Then Ñ ⊂ N corresponds to a torus
T̃ mapping surjectively to T with a finite kernel G. Moreover, T̃ acts linearly
on Ad, and the quotient Ad/G is isomorphic to X, the preimage of x ∈ X
being the T̃ -fixed point 0 ∈ Ad. Now restriction to 0 induces isomorphisms

H∗
T̃
(Ad) ' H∗

T̃
(0) ' S∗(M̃Q) ' S∗(MQ) .

Moreover, H∗
T̃
(Ad) is isomorphic to H∗

T (X) by our observation, and this
isomorphism is compatible with restriction to the fixed point. This proves
our first statement. The commutativity of our diagram is easy, because all
maps are homomorphisms of S∗(MQ)-algebras.

3.2. Piecewise polynomial functions
Denote by RΣ the set of all families (fσ)σ∈Σ such that fσ ∈ S

∗(MQ/σ
⊥)

and that, for all τ ⊂ σ, the image of fσ in S∗(MQ/σ
⊥) is equal to fτ . Then RΣ

is an algebra over S∗(MQ): the algebra of continuous, piecewise polynomial
functions on Σ.

For f ∈ RΣ, decompose fσ into the sum of its homogeneous components
fσ,n. Then for fixed n, the family (fσ,n)σ∈Σ is in RΣ. This defines a grading
RΣ = ⊕∞n=0RΣ,n of the algebra RΣ.

Assume that the fan Σ is simplicial. For σ ∈ Σ, consider the restriction
map H∗

T (X)→ H∗
T (Xσ), u→ uσ. By 3.1, we can identify uσ with an element

of S∗(MQ/σ
⊥), and moreover the family (uσ)σ∈Σ is in RΣ.

Proposition. (i) For any simplicial toric variety X = XΣ, the map

H∗
T (X) → RΣ
u → (uσ)σ∈Σ

is an isomorphism of graded algebras over S∗(MQ).
(ii) If moreover X is complete, then the map

H∗
T (X)/MQH

∗
T (X)→ H∗(X)
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is an isomorphism.

Proof. (i) is proved in [B1] in the case where X is smooth. This proof can be
adapted to the simplicial case; alternatively, we may reduce to the smooth
case, following a method of [A].

Let Ñ , N ′, T ′ and f : X̃ → X as in the proof of 1.1. Because Σ is
simplicial, f is the geometric quotient by T ′ acting with finite isotropy groups.
Using our observation on 3.1, we see thatH∗

T (X) = H∗
T̃ /G

(X̃/G) is isomorphic

to H∗
T̃
(X̃). On the other hand, we have an isomorphism RΣ ' RΣ̃ compatible

with maps from equivariant cohomology. In this way, we reduce to the case
where T = (C∗)e and where X is a T -stable open subset of Ce. Then we
conclude by proposition 2.2 in [B1].

(ii) follows easily from the Leray spectral sequence of the fibration X ×T

ET → BT because the fiber X has no odd cohomology, see [F2].

Remark. Denote by A∗(X)Q the rational Chow group of the complete, sim-
plicial toric variety X. Then the cycle map clX : A∗(X)Q → H∗(X) is an
isomorphism, see [F2].

3.3. Equivariant cohomology classes

Let X = XΣ be a simplicial toric variety, and let σ ∈ Σ. Then the orbit
closure Ωσ defines an equivariant cohomology class

Fσ ∈ H
2 dim(σ)
T (X)

as follows. Observe that ET = (C∞ \ {0})d is an increasing union of the
smooth, T -stable algebraic varieties (Cn \{0})d. Moreover, each space X×T

(Cn \ {0})d is locally a quotient of a smooth algebraic variety by a finite
group of algebraic automorphisms. Therefore, this space satisfies to Poincaré
duality over Q, and we may define the cohomology class of Ωσ×

T (Cn\{0})d.
As n increases, these classes are compatible, and hence the cohomology class
of Ωσ ×T ET makes sense; we denote it by Fσ.

We will describe Fσ as an element of RΣ. To this aim, denote by ϕτ the
element of RΣ,1 such that ϕτ (nτ ) = 1 and that ϕτ (nτ ′) = 0 for all τ ′ ∈ Σ(1),
τ ′ 6= τ . Then ϕτ is called the Courant function associated to the edge τ , see
[B].

For σ ∈ Σ, we denote by Nσ (resp. Nσ(1)) the subgroup of N generated
by N ∩ σ (resp. by the nτ ’s where τ ∈ σ(1)). Then Nσ(1) is a subgroup of
finite index in Nσ. The index [Nσ : Nσ(1)] is called the multiplicity of σ. We
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denote it by mult(σ), and we set

ϕσ := mult(σ)
∏

τ∈σ(1)

ϕτ .

Then ϕσ is a continuous, piecewise polynomial function on Σ, of degree
dim(σ). Moreover, ϕσ vanishes identically on all cones which do not con-
tain σ.

In particular, if σ is d-dimensional, then ϕσ vanishes identically outside
its interior σ0. Therefore, denoting by Φσ the unique polynomial function on
MR which restricts to ϕσ on σ, we see that Φσ is a constant multiple of the
product of equations of facets of σ. More precisely, we have with notation as
in 2.1:

Φσ = |Qσ ∩M |−1
d

∏

i=1

mi .

Namely, Φσ = mult(σ)
∏d

i=1 q
−1
i mi and moreover

d
∏

i=1

qi = [
d

∑

i=1

Zq−1i mi :
d

∑

i=1

Zmi] = [Nσ(1) : N ][M :
d

∑

i=1

Zmi] = mult(σ)|Qσ∩M | .

Proposition. Notation being as above, the image of Fγ inRΣ is (−1)dim(γ)ϕγ.

Proof. Because the map H∗
T (X) →

∏

σ∈Σ H
∗
T (Xσ) is injective, and because

Fγ is compatible with restriction, we may assume that X = Xσ is affine.
First we consider the case where γ is an edge of Σ. If γ /∈ σ(1) then

Fγ = 0; on the other hand, ϕγ vanishes on σ. So we may assume that γ = τi
with notation as in 2.1. Then qiDi is the divisor of zeroes of the character
mi. It follows that OX(qiDi) = OX ⊗ (−mi) and hence that qiFγ = −mi.
On the other hand, restriction to σ of ϕγ is q−1i mi, and hence Fγ = −ϕγ.

In the general case, choose an edge τ of γ and denote by δ the unique
facet of γ such that τ /∈ δ. Clearly, Fγ is a rational multiple of the product
FτFδ. Using the map H∗

T (X)→ H∗(X) and [F2] 5.1, we obtain

Fγ = mult(γ)mult(δ)−1FτFδ .

We conclude by induction over dim(γ).

3.4. Localization
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Let X = XΣ be a complete, simplicial toric variety. As in 1.5, denote by
i : XT → X the inclusion of the fixed point set, and consider the induced
map i∗ : H

∗
T (X

T ) → H∗
T (X) (defined via Poincaré duality as above). Then

i∗ is a morphism of S∗(MQ)-modules, of degree 2d. Moreover, H∗
T (X

T ) is
isomorphic to

∏

σ∈Σ(d) S
∗(MQ).

By a general localization theorem in equivariant cohomology, the mor-
phism i∗ is an isomorphism after inverting all elements of S∗(MQ) which do
not vanish at the origin. We will obtain a sharper version of this result.

For each w ∈ Σ(d − 1), choose a non-zero mw ∈ M which vanishes
identically on w. Set

ΦΣ :=
∏

w∈Σ(d−1)

mw .

Then ΦΣ is the least common multiple of all Φσ (σ ∈ Σ(d)).

Proposition. The map i∗ : H
∗
T (X

T ) → H∗
T (X) is injective. Moreover, the

cokernel of i∗ is killed by ΦΣ.

Proof. Let f = (fσ)σ∈Σ(d) be in H∗
T (X

T ). Because i∗ is S∗(MQ)-linear, we
have

i∗(f) =
∑

σ∈Σ(d)

fσFσ = (−1)d
∑

σ∈Σ(d)

fσϕσ .

If i∗(f) = 0 then, evaluating at an interior point of σ, we obtain fσ = 0. So
i∗ is injective.

On the other hand, for any g ∈ RΣ, we have

ΦΣg =
∑

σ∈Σ(d)

ΦΣΦ
−1
σ ϕσgσ

(namely, this equation reduces to (Φσg)σ = Φσgσ on a given σ ∈ Σ(d)).
Because each ΦΣΦ

−1
σ ϕσ is in S∗(MQ), it follows that ΦΣg is in the image of

i∗.

3.5. Equivariant push-forward

Let X = XΣ be a complete, simplicial toric variety. Then the map
X → pt induces a fibration X ×T ET → BT with fiber X. Therefore, we
have a push-forward map

∫

X

: H∗
T (X)→ H∗

T (pt)
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which is homogeneous of degree −2d. By the projection formula,
∫

X
is a

morphism of H∗
T (pt)-modules.

Proposition. Via the isomorphisms H∗
T (X) ' RΣ and H∗

T (pt) ' S∗(MQ),
the push-forward map

∫

X
is given by

∫

X

f = (−1)d
∑

σ∈Σ(d)

fσΦ
−1
σ .

Proof. Let σ ∈ Σ(d). Then Fσ ∈ H
∗
T (X) is the cohomology class of a T -fixed

point. Using 3.4, it follows that
∫

X

ϕσ = (−1)d .

For any f ∈ RΣ, we have as in the proof of 3.4:

ΦΣf =
∑

σ∈Σ(d)

ΦΣΦ
−1
σ fσϕσ .

Because
∫

X
is S∗(MQ)-linear, we obtain

ΦΣ

∫

X

f =
∑

σ∈Σ(d)

ΦΣΦ
−1
σ fσ(−1)

d .

This implies our formula.
The following result is an easy consequence of this explicit formula (see

[B2] 2.4 for more details).

Corollary. The H∗(BT )-bilinear map

H∗
T (X)×H∗

T (X) → H∗(BT )
(f, g) →

∫

X
fg

is a perfect pairing.

3.6. Equivariant Chern character

Let X = XΣ be a simplicial toric variety. Any T -linearized, locally free
sheaf E on X defines a T -equivariant vector bundle E on X, and hence a
T -equivariant vector bundle p∗E on X ×ET where p denotes the projection
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X × ET → X. Because T acts freely on X × ET , we can push forward
p∗E to a vector bundle ET on X ×T ET . The Chern character of ET will be
denoted by ChT (E), an element of

∞
∏

n=0

Hn(X ×T ET ) := ĤT (X)

(the completion of the graded algebra H∗
T (X)). Observe that the image of

ChT (E) in ĤT (X)/MQĤ
T (X) = H∗(X) is the usual Chern character of E.

By 3.2, we can identify ĤT (X) with R̂Σ. Moreover, by [B1], the algebra
R̂Σ consists in all families (fσ)σ∈Σ with fσ ∈ Ŝ(MQ/σ

⊥) and fσ restricts to
fτ whenever τ is a face of σ. On the other hand, it is easily checked that EΣ
embeds into R̂Σ by mapping each em to

∑∞
n=0 m

n/n!. Therefore, we may

consider chT (E) (defined in 2.2) in R̂Σ.

Proposition. With the notation as above, we have ChT (E) = chT (E) for
any T -linearized locally free sheaf E on X.

Proof. We may assume that X is affine. Then there exists a T -module V
such that E ' OX ⊗ V . So E is the trivial bundle with fiber V , and ChT (E)
is the character of V . But the latter coincides with chT (E) by definition, see
2.2.

Using [B2] 4.2, we derive now the following

Corollary. The map chT : GT (X) → ĤT (X) is injective, and its image is
dense.

4. The equivariant Todd class of complete, simplicial toric varieties

4.1. Equivariant Riemann-Roch

Theorem. Let X = XΣ be a complete, simplicial toric variety. Then there
exists a unique class TdT (X) ∈ ĤT (X) (the equivariant Todd class of X)
such that

χT (F) =

∫

X

chT (F)TdT (X)

for any coherent, T -linearized sheaf F on X. Moreover, for any σ ∈ Σ(d),
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restriction to Xσ of TdT (X) is the following element of ĤT (Xσ) = Ŝ(MQ):

TdTσ (X) = |M ∩Qσ|−1(
∑

m∈Qσ∩M

em)
d

∏

i=1

−mi

1− emi

with notation as in 2.1.

Proof. By 1.4, we have

χT (F) =
∑

σ∈Σ(d)

S(χT
σ (F)) .

Moreover, we have by 2.1:

S(χT
σ (F)) = chT

σ (F)S(χ
T
σ (OX)) = chT

σ (F)(
∑

m∈M∩Qσ

em)
d

∏

i=1

(1− emi)−1 .

Define TdTσ (X) ∈ Ŝ(MQ) by the formula of the theorem. Then the TdTσ (X)

(σ ∈ Σ(d)) glue together into TdT (X) ∈ R̂Σ (this can be checked directly;
it will be a consequence of an alternative formula for TdT (X), proved in the
next subsection). By 3.3, we have

TdTσ (X) = (−1)d Φσ S(χ
T
σ (OX))

and hence, by 3.5:
∫

X

chT (X)TdT (X) =
∑

σ∈Σ(d)

chT
σ (F)S(χ

T
σ (OX)) =

∑

σ∈Σ(d)

S(χT
σ (F)) .

This proves existence of the class TdT (X). Unicity follows from corollaries
3.5 and 3.6.

Corollary. (i) For any equivariant morphism π : X ′ → X between complete,
simplicial toric varieties, we have TdT (X) = π∗Td

T (X ′).
(ii) The image of TdT (X) in H∗(X) = A∗(X)Q is the Todd class of X defined
in [F1].

Proof. (i) follows from unicity of TdT (X) and from vanishing of Rjπ∗OX′ for
all j ≥ 1.

(ii) follows from the fact that the ring A∗(X)Q is generated by Chern
characters of T -equivariant line bundles.
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4.2. A closed formula for the equivariant Todd class

Let Σ be a simplicial fan. Define a homomorphism from the torus (C∗)Σ(1)

to T , by mapping (tτ )τ∈Σ(1) to
∏

τ∈Σ(1) nτ (tτ ) (recall that nτ is a one-parameter

subgroup of T ). We denote by G the kernel of this homomorphism.
For any simplicial cone σ generated by elements nτ where τ ∈ Σ(1), we

denote by Gσ the intersection of G with the subgroup (C∗)σ(1) of (C∗)Σ(1).
More concretely,

Gσ = {(tτ )τ∈σ(1) | tτ ∈ C∗,
∏

τ∈σ(1)

nτ (tτ ) = 1}

identifies to the quotient Nσ/
∑

τ∈σ(1) Znτ . In particular, the order of Gσ is
the multiplicity of σ.

We denote by GΣ ⊂ G the union of all subgroups Gσ (σ ∈ Σ). Simi-
larly, we denote by GΣ(1) the union of all subgroups Gσ where σ ranges over
simplicial cones generated by subsets of Σ(1). For τ ∈ Σ(1), we denote by
aτ : GΣ(1) → C∗ the restriction to GΣ(1) of the τ -component (C∗)Σ(1) → C∗.
Then restriction of aτ to Gσ is a character, and this character is non-trivial
if and only if τ is an edge of σ.

Finally, recall that the equivariant cohomology class of the divisor Dτ is
denoted by Fτ .

Theorem. Let X = XΣ be a complete, simplicial toric variety. Then,
notation being as above, the equivariant Todd class of X is given by

TdT (X) =
∑

g∈GΣ

∏

τ∈Σ(1)

Fτ

1− aτ (g)e−Fτ
.

Moreover, we have

TdT (X) =
∑

g∈GΣ(1)

∏

τ∈Σ(1)

Fτ

1− aτ (g)e−Fτ
.

In particular, TdT (X) can be expressed in terms of Σ(1) only.

Proof. The first formula defines a class θ in ĤT (X) ' R̂Σ; in terms of
piecewise formal power series, we have

θ =
∑

g∈GΣ

∏

τ∈Σ(1)

−ϕτ

1− aτ (g)eϕτ
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where ϕτ is defined in 3.3. We check that θσ = TdTσ (X) for all σ ∈ Σ(d).
This will imply that the TdTσ (X) glue together into an element of R̂Σ.

Let g ∈ GΣ and let σ ∈ Σ(d). If g /∈ Gσ then there exists an edge τ of
Σ such that aτ (g) 6= 1, and such a τ is not an edge of σ. Then the formal
power series expansion of

−ϕτ

1− aτ (g)eϕτ

is divisible by ϕτ , and ϕτ vanishes identically on σ. It follows that

θσ =
∑

g∈Gσ

∏

τ∈Σ(1)

−ϕτ

1− aτ (g)eϕτ
.

Moreover, for g ∈ Gσ and τ /∈ σ(1), restriction to σ of

−ϕτ

1− aτ (g)eϕτ

is equal to 1, because χτ (g) = 1 and (ϕτ )σ = 0. It follows that

θσ =
∑

g∈Gσ

∏

τ∈σ(1)

−ϕτ

1− aτ (g)eϕτ
.

Notation being as in 2.1, we obtain

θσ =
∑

g∈Gσ

d
∏

i=1

−q−1i mi

1− ai(g)eq
−1
i mi

.

Denote by Mσ(1) ⊂MQ the dual lattice to Nσ(1). Then Mσ(1) is generated by
the q−1i mi (1 ≤ i ≤ d). The group Gσ acts on the group algebra C[Mσ(1)] by

g · eq
−1
i mi = ai(g)e

q−1i mi

and the algebra of invariants for this action is C[M ]. Consider the subalgebra

of C[Mσ(1)] generated by eq
−1
1 m1 , . . . , eq

−1
d

md . Then this subalgebra is stable
under Gσ, and its algebra of invariants identifies to the algebra of regular
functions on Xσ. By Molien’s formula, it follows that

χT
σ (OX) = |Gσ|

−1
∑

g∈Gσ

d
∏

i=1

1

1− ai(g)eq
−1
i mi

.
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Therefore, we obtain (using 2.1)

θσ = |Gσ|χ
T
σ (OX)

d
∏

i=1

(−q−1i mi) = |Gσ|(
∑

m∈M∩Qσ

em)
d

∏

i=1

−q−1i mi

1− emi

and hence

θσ = |Gσ| |M ∩Q
σ|(

d
∏

i=1

q−1i )TdTσ (X) = TdTσ (X) .

To obtain the second formula, we observe that, for g ∈ GΣ(1), the term

∏

τ∈Σ(1)

Fτ

1− aτ (g)e−Fτ

vanishes when g /∈ GΣ.

Corollary The equivariant Todd class of a complete, smooth toric variety
XΣ is given by

TdT (X) =
∏

τ∈Σ(1)

Fτ

1− e−Fτ
.

Proof. Recall that XΣ is smooth if and only if each cone σ is generated by
part of a basis of N . This is equivalent to: Nσ =

∑

τ∈σ(1) Znτ for all σ, or
to: GΣ consists in one point.

4.3. The combinatorics of the equivariant Todd class

Let X = XΣ be a complete, simplicial toric variety. Following an idea of
[P1], we define the mock equivariant Todd class of X by

TDT (X) :=
∏

τ∈Σ(1)

Fτ

1− e−Fτ

where Fτ denotes the equivariant cohomology class of Dτ . We will analyze
the difference TdT (X) − TDT (X). Let c be the largest integer such that
each cone in Σ(c − 1) is generated by part of a basis of N ; then c is the
codimension in X of its singular locus.
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Proposition. Notation being as above, the lowest degree term in TdT (X)−
TDT (X) occurs in degree at least c. Moreover, its term of degree c equals

∑

σ∈Σ(c)

t(σ)Fσ

where t(σ) is given by

t(σ) = 2−cmult(σ)−1
∑

g∈Gσ ,g 6=1

c
∏

j=1

(1 + icot(πxj)) .

Here each g in Gσ = Nσ/Nσ(1) is represented by
∑c

i=1 xjnj where n1, . . . , nc

are the primitive vectors on edges of σ.

Proof. By 4.2, we have

TdT (X)− TDT (X) =
∑

g∈GΣ,g 6=1

∏

τ∈Σ(1)

Fτ

1− aτ (g)e−Fτ
.

Write GΣ as the disjoint union of the sets G0σ (σ ∈ Σ) where G0σ denotes
the complement in Gσ of the union of its subsets Gσ′ (σ

′ a face of σ). For
g ∈ G0σ, observe that aτ (g) = 1 if and only if τ /∈ σ(1). It follows that
TdT (X)− TDT (X) can be written as

∑

σ∈Σ,σ 6=0

(
∑

g∈G0σ

∏

τ∈σ(1)

1

1− aτ (g)e−Fτ
)(

∏

τ∈σ(1)

Fτ )(
∏

τ /∈σ(1)

Fτ

1− e−Fτ
) .

Moreover, the set G0σ is empty unless dim(σ) ≥ c, and G0σ = Gσ if dim(σ) = c.
It follows that all terms of degree less than c in TdT (X)− TDT (X) vanish,
and that its term of degree c equals

∑

σ∈Σ(c)

(
∑

g∈Gσ ,g 6=1

∏

τ∈σ(1)

1

1− aτ (g)
)

∏

τ∈σ(1)

Fτ .

Now we have
∏

τ∈σ(1) Fτ = mult(σ)−1Fσ by 3.3, and moreover

∑

g∈Gσ ,g 6=1

∏

τ∈σ(1)

1

1− aτ (g)
=

∑

g∈Gσ ,g 6=1

c
∏

j=1

1

1− exp(2iπxj)

26



=
∑

g∈Gσ ,g 6=1

c
∏

j=1

exp(iπxj)

2sin(πxj)
.

This proves our formula.

4.4. A connection with higher Dedekind sums

Notation being as in 4.3, assume for simplicity that c = d, i.e. that any
(d − 1)-dimensional cone in Σ is generated by part of a basis of N . Then,
for a fixed σ ∈ Σ(d), we can find a basis (e1, . . . , ed) of N and integers
p1, . . . , pd−1, q such that:
(i) σ is generated by e1, . . . , ed−1 and p1e1 + · · ·+ pd−1ed−1 + qed,
(ii) 0 ≤ p1, . . . , pd−1 ≤ q and p1, . . . , pd−1 are prime to q.

Generalizing results of Pommersheim ([P1] Theorem 3 for d = 2, [P2]
Theorem 4 for d = 3), we will express the rational number t(σ) defined in
4.3, in terms of higher Dedekind sums. These sums are defined as follows by
Zagier, see [Z].

Let n be an even positive integer; let a1, . . . , an and q be integers such
that q > 0 and that a1, . . . , an are prime to q. Then set

s(q; a1, . . . , an) := (−1)n/2
q−1
∑

k=1

cot(
πka1
q

) · · · cot(
πkan
q

)

(Zagier’s notation is d(p; a1, . . . , an)).

Proposition. Notation being as above, we have

t(σ) =
1

2dq
(q − 1 +

∑

1≤i1<···<i2j≤d−1

s(q; pi1 , . . . , pi2j)

−
∑

1≤i1<···<i2j−1≤d−1

s(q; pi1 , . . . , pi2j−1 , 1))

and moreover

t(σ) = −
1

2dq
(1−q)d+(−1)d

∑

1≤k1,...,kd−1≤q−1

k1 · · · kd−1
qd−1

{
p1k1 + · · ·+ pd−1kd−1

q
}

where {x} denotes the fractional part of x.
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Proof. We can identify Gσ = N/Nσ(1) with the set

{n = (x1+p1xd)e1+· · ·+(xd−1+pd−1xd)ed−1+qxded | n ∈ N, 0 ≤ x1, . . . , xd < 1} .

Then n ∈ Gσ if and only if: xd = kq−1 for some integer k with 0 ≤ k ≤ q−1,
and moreover x1 + p1kq

−1, . . . , xd−1 + pd−1kq
−1 are integers. It follows that

mult(σ) = q and, using 4.3, that

t(σ) =
1

2dq

q−1
∑

k=1

(1 + icot(πkq−1))
d−1
∏

j=1

(1− icot(
πkpj
q

)) .

This proves our first formula. For the second formula, remember that

TdTσ (X) = |M ∩Qσ|−1(
∑

m∈M∩Qσ

em)
d

∏

j=1

−mj

1− emj

and that

TDT
σ (X) =

d
∏

j=1

−q−1j mj

1− eq
−1
j mj

with notation as in 2.1. Denoting by (e∗1, . . . , e
∗
d) the dual basis of (e1, . . . , ed),

we have here mj = qe∗j − pje
∗
d for 1 ≤ j ≤ d− 1, and md = e∗d. So q1 = . . . =

qd = q. Moreover, M ∩ Qσ consists in all points (
∑d−1

j=1 kiq
−1mi) + xdmd

where k1, . . . , kd−1 are integers between 0 and q−1, and where xd = {(p1k1+
· · ·+ pd−1kd−1)q

−1}.
By 3.3 and 4.3, the lowest degree term in TdTσ (X)− TDT

σ (X) is

(−1)dt(σ)q1−d

d
∏

j=1

mj .

Because the constant term in TDT
σ (X) is 1, it follows that (−1)dq1−dt(σ) is

the coefficient of
∏d

j=1 mj in the expansion of

q1−d(
∑

m∈M∩Qσ

em)
d

∏

j=1

q(eq
−1mj − 1)

emj − 1

into a power series in m1, . . . ,md. Moreover, this expansion involves no term
of degree 1, 2, . . . , d− 1.
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Let u1, . . . , ud, v1, . . . , vd be homogeneous elements in S∗(MQ) (of degree
equal to their index) such that

q1−d
∑

m∈M∩Qσ

em = 1 + u1 + · · ·+ ud

and that
d

∏

j=1

emj − 1

q(eq−1mj − 1)
= 1 + v1 + · · ·+ vd

up to terms of degree at least d+1. Then we must have uj = vj for 1 ≤ j ≤

d− 1, and hence (−1)dq1−dt(σ) is the coefficient of
∏d

j=1 mj in ud− vd. This
implies our second formula.

Remark. For d = 2, we obtain

t(σ) =
1

4q
(q − 1 +

q−1
∑

k=1

cot(
π

q
)cot(

kπ

q
)) = −

(q − 1)2

4q
+

q−1
∑

k=1

k

q
{
pk

q
} .

This amounts to the classical identity

q−1
∑

k=1

(
k

q
−

1

2
)({

pk

q
} −

1

2
) =

1

4q

q−1
∑

k=1

cot(
π

q
)cot(

kπ

q
)

(see e.g. [Z] p. 151).

4.5. Euler-MacLaurin formula for convex lattice polytopes

Let P ⊂MR be a convex lattice polytope (i.e. the convex hull of finitely
many points of M) of dimension d. For each facet F of P , there exists a
unique primitive vector (nF , λF ) ∈ N × Z such that the affine form x →
〈nF , x〉+λF is identically zero on F , and is positive on P \F . To each face G
of P , we associate the cone σG in NQ generated by the nF such that F is a
facet of P which contains G. This defines a complete fan ΣP . We identify the
set ΣP (1) with the set of all facets of P , and we denote it by F for simplicity.

For h = (hτ )τ∈F ∈ RF , we define a convex polytope P (h) in MR by the
inequalities

〈nτ , x〉+ λτ + hτ ≥ 0 .
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In particular, P (0) = P . On the other hand, we define a differential operator
of infinite order ToddF(∂/∂h) (the Todd operator associated to F) by

ToddF(∂/∂h) :=
∑

g∈GF

∏

τ∈F

∂/∂hτ

1− aτ (g)e−∂/∂hτ

with notation as in 4.2. Then ToddF(∂/∂h) acts for example on the space of
polynomial functions in h.

Theorem. For any polynomial function ϕ onMR, the function h→
∫

P (h)
ϕ(x) dx

is continuous and piecewise polynomial. Moreover, we have

∑

m∈P∩M

ϕ(m) = (ToddF(∂/∂h)

∫

P (h)

ϕ(x) dx)h=0 .

Proof. There exists a neighborhood U of the origin in RF , and a complete
fan Φ in RF such that, for h ∈ U , the fan ΣP (h) only depends on the smallest
cone of Φ which contains h. If moreover h is in the interior of some maximal
cone C in Φ, then ΣP (h) is a simplicial subdivision of Σ, with the same set of
edges. We fix such a maximal cone C, and we set Σ := ΣP (h)and X := XΣ.

For any h ∈ RF , define a T -stable divisor (with real coefficients) on X
by

D(h) :=
∑

τ∈Σ(1)

(λτ + hτ )Dτ .

If h ∈ C ∩ U and if moreover kh ∈ ZF for some non-zero integer k, then
the divisor (with integral coefficients) kD(h) is Cartier and generated by its
global sections, see [O] 2.1 and 2.7. Moreover, we have:

χT (OX(kD(h))) =
∑

m∈M∩kP (h)

em .

By theorem 4.1, we have
∫

X

ekc1(D(h))TdT (X) =
∑

m∈M∩kP (h)

em

where c1(D(h)) ∈ H2
T (X) denotes the equivariant cohomology class of D(h).

Viewing c1(D(h)) as a piecewise linear function, we have by 3.3:

c1(D(h)) = −
∑

τ∈F

(λτ + hτ )ϕτ .
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For σ ∈ Σ(d), denote by cσ(h) the element ofMR such that c1(D(h)) coincides
with cσ(h) on σ. Then we have, using 3.5:

∑

m∈M∩kP (h)

em =
∑

σ∈Σ(d)

e−kcσ(h)Φ−1σ TdTσ (X) .

Evaluating both sides at a point k−1y of NR where y does not belong to any
hyperplane generated by some (d − 1)-dimensional cone of Σ, and dividing
by kd, we obtain

k−d
∑

m∈P (h)∩k−1M

exp〈m, y〉 =
∑

σ∈Σ(d)

exp(−cσ(h)(y))Φσ(y)
−1TdTσ (X)(k−1y) .

This equation holds for all k such that kh is integral. Therefore, letting
k →∞ and remembering that the constant term of TdTσ (X) is 1, we obtain

∫

P (h)

exp〈x, y〉 dx =
∑

σ∈Σ(d)

exp(−cσ(h)(y))Φσ(y)
−1 .

This holds for all rational points h in C0 ∩ U and hence (by continuity) for
all points in C0 ∩ U . Therefore, we obtain using 3.5:

∫

P (h)

exp(x) dx =

∫

X

exp(−
∑

τ∈Σ(1)

(λτ + hτ )ϕτ )

for any h ∈ C0 ∩ U . ¿From this formula, we deduce that for any polynomial
function f on RF , we have

(f(∂/∂h)

∫

P (h)

exp(x) dx)h=0 =

∫

X

exp(−
∑

τ∈F

λτϕτ )f(−ϕτ ) .

Using the second formula in theorem 4.2, it follows that

(ToddF(∂/∂h)

∫

P (h)

exp(x) dx)h=0 =

∫

X

ec1(D)TdT (X) =
∑

m∈M∩P

em .

Expanding both sides into power series and observing that any polynomial
function is a linear combination of powers of linear forms, we obtain our
formula.
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