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Introduction

The theory of toric varieties establishes a now classical connection be-
tween algebraic geometry and convex polytopes. In particular, as observed
by Danilov in the seventies, finding a closed formula for the Todd class of
complete toric varieties would have important consequences for enumeration
of lattice points in convex lattice polytopes. Since then, a number of such for-
mulas have been proposed; see [M], [P1], [P2]... The Todd class of complete
simplicial toric varieties is computed in [G-G-K], using the Riemann-Roch
formula of T. Kawasaki [K].

On the other hand, it has been realized that the sum of values of a function
f over all lattice points of a convex lattice polytope P can be obtained
from the integral of f over the deformed polytope (where all facets of P
are translated independently) by applying to the translation variables, a
differential operator of infinite order: the Todd operator. For this, we refer to
[K-P] and its subsequent generalizations [K-K], [C-S1], [B-V], [C-S2]... These
results are higher-dimensional analogues of the classical Euler-MacLaurin
summation formula (the case where P is an interval).

The Todd operator of a convex lattice polytope P is closely related to the
Todd class of the projective toric variety associated to the normal fan of P.
In the present paper, we explain this connection as follows. We obtain an
equivariant Riemann-Roch theorem for any complete, simplicial toric variety
X (theorem 4.1). It involves the equivariant Todd class of X, a lift of the
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Todd class to the completion of the equivariant cohomology ring. We obtain
a closed formula for this equivariant Todd class (theorem 4.2). Generalizing
work of Pommersheim [P1], we relate this class to higher Dedekind sums
(proposition 4.4). Finally, we show that the generalized Euler-MacLaurin
summation formula for convex lattice polytopes, is a consequence of our
equivariant Riemann-Roch theorem (theorem 4.5). We refer to [B-V] for a
direct, elementary proof of this summation formula in the case of simple
polytopes.

Observe that a closed formula for the Todd class of a complete toric
variety X must involve some choices, because the rational Chow group of
X has no distinguished basis. In contrast, the equivariant cohomology ring
of X has a very convenient description when X is simplicial, either as the
Stanley-Reisner ring of the corresponding fan ¥ (see [B-D-P]), or as the ring
of continuous, piecewise polynomial functions on ¥ (see 3.2 below). This
makes the equivariant Todd class easier to handle than the “usual” Todd
class.

Although our results may look fancy, our proofs use little theory. In
particular, instead of relying on the equivariant Riemann-Roch theorem for
orbifolds (see [V]), we construct explicitely all objects involved in it, e.g. the
Grothendieck group of linearized coherent sheaves, and the equivariant Chern
character with values in the completion of the equivariant cohomology ring.
Then the equivariant Riemann-Roch formula is checked in a straightforward
way.

Our results are stated over the field of complex numbers; they should
hold for any algebraically closed field, with equivariant cohomology replaced
by equivariant Chow group, see [E-G]. However, a full treatment based on
equivariant Chow theory would require further developments of this theory.

Notation

We begin with some notation and results concerning the theory of toric
varieties; we refer to [O] and [F2] for expositions of this theory. Denote by
T a d-dimensional torus, by M = Hom(T, C") its character group, and by
N = Hom(C*,T) the group of one-parameter subgroups of 7. There is a
natural pairing M x N — Z : (m,n) — (m,n) where (m,n) is the integer
such that m(n(t)) = t™™ for all t € C*.

We denote by X a toric variety, i.e. a normal variety where 7" acts with a



dense orbit isomorphic to 7'. Such a variety is described by its fan ¥ in Ngq.
Moreover, X = Xy has only quotient singularities by finite groups (resp. X
is smooth) if and only if each cone in 3 is simplicial (resp. is generated by
part of a basis of N).

There is a bijection o — X, between cones in Y and T-stable open affine
subsets of X. We denote by €2, the unique closed T-orbit in X,; then o — 2,
sets up a bijection from ¥ to the set of T-orbits in X. Moreover, we have
dim(o) = codim(2,).

For a cone o, we denote by N, the subgroup of N generated by o N IV,
and by ot C Mgq the set of linear forms on Nq which vanish identically on
o. We denote by T, the subgroup of T with character group M/M N ot;
then T, is connected, with group of one-parameter subgroups N,. Observe
that Q, = T'/T, and that there is a T-equivariant retraction r, : X, — Q.
It follows that X, is isomorphic to T' x’= S, where S, is an affine, T,-toric
variety with a fixed point.

For 0 < j < d, we denote by 3(j) the set of j-dimensional cones in X.
In particular, ¥(1) is the set of edges of ¥. For 7 € (1) we denote by n.,
the generator of the semigroup 7 N N and by D, = Q, the T-stable prime
divisor associated to 7.

1. Linearized sheaves on toric varieties

1.1. Existence of resolutions

Let F be a coherent sheaf on a toric variety X. Recall that a T-linearization
of F is an action of T" on F which is compatible with its structure of an
Ox-module. For example, if D is a T-stable (Weil) divisor on X, then the
coherent sheaf Ox (D) has a canonical linearization.

Given a T-linearized sheaf F and m € M, we denote by F ® m the
sheat F with its T-linearization twisted by the character m: the T-module
H°(X,,F ®m) is the tensor product of H*(X,,F) with the T-module Cm.

Any linearized locally free sheaf £ on an affine toric variety is trivial, i.e.
€ can be written as a direct sum of sheaves Ox ® m (this follows e.g. from
[B-H] 10.1). As a global analogue of this result, we have the following

Theorem. Let X be a toric variety. Then any coherent, T-linearized sheaf
on X has a finite resolution by finite direct sums of T-linearized sheaves
Ox (D) ®m where D is a T-stable divisor in X, and m € M. Moreover, any



coherent sheaf on X has a finite resolution by finite direct sums of sheaves
Ox (D) where D is as before.

Proof. First we recall how to obtain X as a quotient of a smooth toric variety
by a torus; see [A] and [C] for other versions of the following construction.

Let Z=MW = ®rexa) Ze; be the free abelian group on the set ¥(1). Set
N := N x Z"M and denote by T = C* ®z N the associated torus. Then
T = C* ®z N embeds into T.

To any cone o € X, we associate the cone ¢ in NQ generated by the e,
such that 7 is an edge of o. Then the family (¢),ex is a fan in Ng, contained
in {0} x QM. We denote by X the associated toric variety. If T'is identified
with 7' x (C*)®®, then X is identified with the product of T by an open
subset of C=M). In particular, X is smooth.

The map

f:N—N

(n, Z xrrer) —n+ Z o

is surjective with kernel

N :={(- Z TNy, Z zre.)} ~ 770,

Therefore, f induces an exact sequence
1 =T =T —->T—1
where T" ~ (C*)*W, and we have a T’-invariant morphism f : X — X.
Observe that f~1(X,) = X; for all ¢ € . Tt follows that f is affine.
1.2. Proof of theorem 1.1 (continued)

Let m be a character of T. Denote by m its restriction to T, and by 7
the unique character of T' = T x (C*)*() such that 7 is trivial on (C*)*®)
and that m|r = m. Set a, = —(m, e,) for each 7 € 3(1).

Lemma. There is an isomorphism of T-linearized coherent sheaves:
Oy @m~0g( Z a:Dz)@m .
T€X(1)
Moreover, there is an isomorphism of T-linearized coherent sheaves:

IOz @m) ~ Ox( Z a;D;)@m .

T€X(1)



In particular, fI'O4 = Ox, ie. f: X — X is the universal quotient by T".

Proof. Denote by (e;) the dual basis of (e;). Then we can consider e}
as a character of T and the divisor of this character in X is —D;. Writ-
ing m = m — 2762(1) a-€e;, we obtain our first isomorphism. For the sec-
ond isomorphism, observe that f~'(D,) = D: and hence we have a map
Ox (X esqy arDr) — fg,OX(ZTez(n a;Dz). We check that this map is
an isomorphism over X, for a given ¢ € ¥. Namely, the vector space
H°(X,, Ox (3 en() arDr)) is generated by all m € M such that (m,n;) +

a, > 0forall 7 € o(1), whereas the space of T'-invariants in H%(X;, Ox(Xresqy a-D7))
is generated by all 77 in Hom(T', C*)T" = M such that (11, n;) + a, > 0.

End of the proof of theorem 1.1. Let F be a coherent, T-linearized sheaf on
X. Then f*F is a coherent, T-linearized sheaf on X. Set e := d+|2(1)| and
embed X into C¢ as an open subset, invariant under the natural action of
T = (C*)°. Then f*F extends to a coherent, (C*)*linearized sheaf on C¢,
see [T] 2.4. The latter corresponds to a finite, Z°-graded module over the
polynomial ring C[zy, ..., x.]. Using the theorem of Hilbert-Serre, it follows
that there exists an exact sequence of T-linearized coherent sheaves:

0-0;0Ve—- =050V — ffF—0

where each V; is a finite dimensional module over 7. Because f is affine, f, is
exact and satisfies to the projection formula. Moreover, taking invariants by
the torus 7" is exact. Therefore, we have an exact sequence of T-linearized
coherent sheaves

0= fl'(O0g@V.) = — fl'(O0g @ Vp) = F =0

To finish the proof, decompose each V; into a direct sum of one-dimensional
modules over T. Such a module is associated to a character m of T, and we
conclude by the lemma above. In the case where F is an arbitrary coherent
sheaf, f*F is a T'-linearized coherent sheaf on X and our arguments adapt
easily.

Denote by G(X) (GT(X)) the Grothendieck group of (T-linearized) co-
herent sheaves on X, see [T]. Then theorem 1.1 imply readily the following

Corollary. For any toric variety X, the group GT(X) is generated by the
classes of Ox (D)®m, where D is a T-stable divisor in X, and m is a character
of T. Moreover, the forgetful map GT(X) — G(X) is surjective.

5



1.3. FEuler characteristics

Let Z[M] be the group ring over Z of the abelian group M. We denote
by Z[[M]] the set of all formal power series >, anme™ with integral co-
efficients. Then Z[[M]] is a module over Z[M], multiplication by e™ being
defined by €™ >_ .\ auet =3y au-me”. We call f € Z[[M]] summable
if there exist P € Z[M] and a finite sequence (m;);e; of non-zero points in
M, such that the following equality holds in Z[[M]]:

fI[a-em=p.

il

Then the sum of f is defined as the following element of Q(M) (the fraction
field of Z[M]):
S(fy=P[Ja—em).
iel

Clearly, S(f) does not depend of the choices of P and of the sequence (m;);e;.

To any coherent, T-linearized sheaf F on a toric variety X, and to any
cone o in the fan of X, we associate a formal power series xZ(F) as fol-
lows. The space H°(X,, F) is a rational T-module, and a finite module over
H°(X,,Ox) as well. Both structures are compatible; moreover, the multi-
plicity of any character of T'in H°(X,, Ox) is zero or one. It follows that the
multiplicity of any m € M in H°(X,,F) is finite. Denote this multiplicity
by mult(m, H°(X,, F)) and set:

X (F) = Z mult(m, H*(X,, F))e™ .

meM

Proposition. With the notation as above, the formal power series x L (F) is
summable. Moreover, its sum Is zero if and only if dim(o) < d.

Proof. We may assume that X = X, is affine; we set A := H°(X,, Ox).
Then F := H°(X, F) is a finite A-module with a compatible T-action.

If dim(o) < d then we may choose mg € M such that (mg,n) = 0 for all
n € 0. We can consider my as an invertible element of A; it follows that the
multiplicity of m in F is invariant under translation by mg. Therefore, we
have (1 — e™)xI(F) =0, i.e. xI(F) is summable with sum zero.

If dim(o) = d, choose an interior point ng of o, and consider ny as a
linear form on Mg. Then ny takes positive values at all non-zero weights



of A. Now the proof of existence of the Hilbert series of a finite, graded
module over a finitely generated, graded algebra can be easily adapted, to
yield summability of xZ(F). If its sum is zero, let my,...,m, be non-zero
elements of M such that x2(F) []/_, (1 — e™) = 0. Changing m; into —m;
(which amounts to multiplication of 1 — €™ by —e ™), we may assume
that (ng,m1), ..., (ng, m,) are non-negative. On the other hand, there exists
a weight mg of F' such that (ng,mo) < (ng,m) for all weights m of F.
Therefore, the coefficient of e™ in xZ(F) [[;_, (1 — ™) cannot vanish, a
contradiction.

Corollary. The multiplicity of any m € M in any cohomology group
H'(X,F) is finite. Moreover, the formal power series

X (F) = Z Z (—1)  mult(m, H(X, F)) e™

meM =0

is summable, and we have

SK'(F) =) SKir).

oex(d)

Proof. The T-module H'(X,F) is the i-th cohomology space of the Cech
complex associated to the covering (X, )sex of X; namely, each X, is affine
and T-stable, and the family (X,) is stable under intersections. This obser-
vation, combined with the proposition above, implies readily our statements.

Remark. Both maps F — x7(F) and F — xL(F) are additive on exact
sequences. Therefore, these maps define x7, xI : GT(X) — Z[[M]]. Clearly,
xT and xI" are morphisms of Z[M]-modules.

1.4. An exact sequence

Consider a toric variety X and a closed orbit €2, in X, associated to
a (maximal) cone ¢ in 3. Denote by i, : Q, — X the inclusion, and by
Jo : X \ 2, — X the inclusion of the complement of €2, in X.
Proposition. (i) The map GT(Q,) — Z[[M]] : [F] — xL(i,«F) is injective.
(ii) The sequence

0— GT(Q) - GH(X) = GH(X\Q,) =0



1s exact.

Proof. (i) Recall that the isotropy group T, of €, is connected, with character
group M/M Not. Hence GT(Q,) = GT(T/T,) identifies to Z[M/M N o).
Moreover, denoting by u, the image in GT(Q,) of the structure sheaf of Q,,

we have
XZ(io*ua) = Z em .

meMno-t

Therefore, xI oi,, identifies to the map
ZIM/M Not] — Z[[M]]

1
et tMno=) § ehtm
meMnot

(where € M) and the latter is clearly injective.
(ii) By theorem 2.7 in [T] , it suffices to check that i,. : GT(Q,) — GT(X)
is injective. But this follows from (i).

1.5. Localization

Denote by i : X7 — X the inclusion of the fixed point set (which coincides
with the fixed point scheme in our case of a toric variety). Then ¢ induces a
morphism of Z[M]-modules i, : GT(XT) — GT(X). Observe that the Z[M]-
module GT(X™) is isomorphic to [, ey Z[M]. By a general localization
theorem in equivariant K-theory, the map 7, is an isomorphism after inverting
all 1 — €™, where m is a non-zero point in M; see [Q]. For toric varieties, we
obtain the following more precise statement.

Proposition. The map i, : GT'(XT) — GT(X) is injective. Moreover, the
cokernel of 1, is killed by any product of 1 — €™, where o runs over all
maximal cones of positive codimension, and where m,, is any non-zero point
inot.

Proof. Injectivity of i, follows from 1.4 (i). So we have an exact sequence

0—GN(X") - GT"(X)—-G"(X\X")—0.

If Q is an orbit in X \ X7, then Q = Q, for some cone ¢ of positive codi-
mension. In this case, the Z[M]-module GT(Q) = Z[M/M N o] is killed
by 1 — ™ for any non-zero point m, in o*. Using 1.4 (ii), it follows that
GT(X \ X7T) is killed by any product of such terms.
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2. Linearized sheaves on simplicial toric varieties

2.1. Preliminary computations

Let 0 € X be a simplicial cone, and let D be a T-stable divisor of X. We
will compute XX (Ox(D)). For this, denote by 71, . . ., 7. the edges of ¢, and by
ny, ..., n, the corresponding primitive vectors. Choose a decomposition M =
(MNot)®M°. Then ny,...,n, generate the dual of M over the rationals.
Therefore, there exist uniquely defined primitive vectors my,...,m, in M?
such that (m;,n;) =0 for all i # j and that (m;,n;) is a positive integer for
all i. We set ¢; :== (m;,n;).

Define integers ay, ..., a, by
D=) aD,+ Y aD.
=1 m¢o(1)
We set

5= {> wmi |1 €Q, 0 < a7 ta < 1}

=1

In particular, we set
T
Q"::{inmi|xi€Q, 0<uz<1}.
i=1

Proposition. Notation being as above, we have in Z[[M]]:

and also
Xe(Ox(DN( D eM=x20x)( > ).
meQeNMe mEQHNM®

Then QF, N M7 and Q7 N M? are finite sets with the same cardinality: the
index in M7 of the subgroup generated by my,...,m,.

Proof. Clearly, we have

o(Ox(D)= Y m=( ) ") > e") .

(m,n;)+a; >0 meMno+ meM? (m,n;)+a; >0



Consider m € M?. Then (m,n;) + a; > 0 for all ¢, if and only if m can
be written as m’ + Y., x;m; where m’ € QF, N M7 and where the z;’s are
non-negative integers; such a representation is unique. It follows that

Xe(Ox(D) = (Y MY em(D ] enmttomy,
meMno-+ meQy, ;>0

Our statements follow at once from this identity.

2.2. Localized Grothendieck groups

Denote by S the multiplicative subset of Z[M] generated by all sums
Y mep € where E is a finite subset of M.

Proposition. Let X be a simplicial toric variety. For any T € ¥(1), choose a
positive integer a, such that the divisor a, D, is Cartier. Then the S~ Z[M]-
module ST'G*(X) is generated by the elements [Ox(— a,D,)] where
oeEX.

T€0(1)

Proof: By induction over the number of orbits, the case of one orbit being
trivial. For the general case, choose a closed orbit €2, in X and consider the
exact sequence of 1.4:

0—GT(Q) - GT(X) - GH(X\Q,) —0.

The Z[M]-module G* (€, ) is generated by the class u, of the structure sheaf
of ,. Therefore, it suffices to check that Su, contains

Z DIOx (- ZCLT

ICo(1) Tel

For this, we use the notation of 2.1, and we set L; := Ox(—a;D;) for 1 <i <
r. Then, as L; is invertible, each a; is a multiple of ¢;. Because X is simplicial,
we have codimy(D;, N---ND;,) = s whenever 1 <i; < --- <ig <r. Hence,
because X is Cohen-Macaulay, the Koszul complex

0= Lig -®L — = P LoL— @ Li—0x—0x/ Y Li—0

1<i<j<r 1<i<r 1<i<r

is exact. Therefore, we have in G (X):



To conclude the proof, we observe that the sheaf Ox/) ..., L; is coher-
ent, T-linearized, and is supported in €,. It follows that this sheaf has a
finite filtration by coherent, T-linearized sheaves, with various twists of the
structure sheaf of €2, as subquotients. So we can write in G (X):

[0Ox/ Y L= Pu,

1<i<r

for a unique P € Z|M/M N o). Tt follows that

Xe <<9X/Z L) = Pxl(u,) .

But xZ(us) = Y ,cmmor €™ and moreover, using 2.1, we obtain, setting
bi = az‘qz'_13
T 1 — ebimi
NICHD RTINS SEPCTES SR ) e
1<i<r meMno+ meQeNMe 1<i<r

Therefore, we have

T

meQeNM i=1

which shows that P is in S.

Denote by K7(X) (K (X)) the Grothendieck group of (T-linearized) lo-
cally free sheaves on X. Then K7 (X) is a Z[M]-algebra and moreover GT (X))
is a module over K7 (X), via the canonical map K7(X) — GT(X). Similarly,
we have the canonical map K(X) — G(X).

Corollary. If X is a simplicial toric variety, then the map KT (X) — G*(X)
induces a surjective map ST'KT(X) — S7'GT(X). Moreover, the map
K(X) — G(X) is surjective over the rationals.

Remark. We ignore whether the maps S™'K7(X) — S7'GT(X) and K(X)q —
G(X)q are isomorphisms for simplicial X. But it is easy to see that for any
non-simplicial toric variety X, the map K(X) — G(X) is not surjective over
the rationals. Namely, choose a non-simplicial cone ¢ in the fan of X. Then
we have a commutative square
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! !
K(X,) — G(X,)

where the vertical arrows are restrictions to X,. Moreover, the map
G(X) — G(X,) is surjective. Therefore, surjectivity over the rationals of
the map K(X) — G(X) would imply the corresponding statement for X,.
So we may assume that X is affine.

In this case, K (X) is isomorphic to Z via the rank. On the other hand,
denoting by U the union of orbits of codimension at most one in X, the
restriction map G(X) — G(U) is surjective, and moreover G(U) = K(U)
because U is smooth. Finally, the kernel of the rank map K(U) — Z sur-
jects onto the Picard group of U, and the latter is infinite (because o is not
simplicial). So the rank of the abelian group K (U) is at least two, and hence
the rank of G(X) is at least two as well.

2.3. Local Chern character

Let X = X, be a toric variety, and let F be a coherent, T-linearized sheaf
on X. Choose a simplicial cone ¢ in ¥ and denote by F, the restriction of
F to the locally closed subvariety S, (the fiber of the equivariant retraction
X, — Q). Then F, is T,-linearized. Moreover, the map F — F, defines
an isomorphism GT(X,) — G2 (S,), see [T].

Proposition. (i) There exists a unique element chl (F) in SYZ[M /M Not]
such that

X' (Fo) = chy (F)x'*(Os,) -
(i) For any face T of o, the image of ch’ (F) under the natural map Z[M /M N
ot] — ZIM/M N7t is chI(F).
(iii) If moreover F is locally free, then chl(F) is in Z[M/M No*].

Proof. (i) For existence of ch!(F), we may assume (using 1.1) that F =
Ox (D). Then

chl(F)=( > em'( >, e
meQNMe meQRTNM®

with the notation of 2.1.
Unicity of chl (F) follows from the fact that y27 is summable in Q(M/MN
o1), and that its sum is non-zero; see 1.3.
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(iii) If F is locally free, then F, ~ Og, ® V for some T,-module V. In

this case, we have
X' (Fa) = X" (0s,)x ™" (V)

where x?7(V) denotes the character of the T,-module V. It follows that
ch(F) = xT=(V) is in Z[M/M N o).

(ii) If F is locally free, then our statement follows from the discussion
above. In the general case, observe that chl is additive on short exact se-
quences, and hence that we have a well-defined map

chl : ST'\GT(X) — ST'Z[M/M Not) .
Now we conclude by corollary 2.2.

2.4. Chern character

Denote by Ex, the set of all families (f,)sex such that f, € Z[M/M No?]
and that, for all 7 C o, the image of f, in Z[M/M N 71+]is f,. Then Fx
is a ring for pointwise addition and multiplication: the ring of continuous,
piecewise exponential functions on ¥. Moreover, Z[M] maps to a subring of
Es by f — (f)ses. This gives Ey the structure of a Z[M]-algebra.

By proposition 2.3, the map

F — (chg (F))ges
defines a map
ch” : GT(X) - S'Ey .
Clearly, ch” is a morphism of Z[M]-modules. We will see in 3.6 below that
ch™ is the equivariant Chern character.
Theorem. The map S~'ch” : ST'\GT(X) — S™'Ey is an isomorphism.

Proof. First we check that S~'ch? is injective. We argue by induction over
the number of orbits in X, the case of one orbit being obvious. Choose a
closed orbit €2, and consider the diagram

0 — GT'(Q) — GT'X) — GT(X)\Q,) —

! ! |
0 — S_IEO-O — S_IEE — S_IEE\{U}

where E,o0 denotes the kernel of the restriction map Fsy, — Exy\(o (i-e.
Eo is the space of piecewise exponential functions which vanish outside the
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relative interior of o). This diagram commutes, and its rows are exact.
Therefore, it defines a map ¢, : ST'GT(Q,) — S™'E,0. Recall that the
Z[M]-module GT(€,) is isomorphic to Z[M/M N ot]. On the other hand,
E,o is a torsion-free module over Z[M /M Not], and ¢, is Z[M]-linear. So it
is enough to check that ¢, is non-zero.

Notation being as in 2.1, we consider

Vo 1= Z |I| OX Z QZ

Ic{1,...,r} i€l

Then, as in the proof of 2.2, we see that v, is in i,,GT(€Q,). On the other
hand, restriction of ¢;D; to X, coincides with the divisor of m;. It follows
that v, is mapped by ¢, to [J/_,(1—e™*"). Because m; ¢ o, we conclude
that ¢, is non-zero.

To check surjectivity of S~'ch”, it is enough to show that the composition

STTKT(X) — ST'GT(X) — S™'Ey

is surjective, or even that K7 (X) is mapped surjectively to Ex. For this,
let f = (fs)oex be in Ex,. Then we may choose g € Z[M] such that each
f» + g is a positive linear combination of e™’s, m € Z[M /M N o+]. In other
words, f,+ g is the character of some T,-module V. By definition of Fy;, the
restriction to T} of V, is isomorphic to V, whenever 7 C o. Therefore, the
T-linearized sheaves on X, = T xTv S, induced by the T,-linearized sheaves
Og, @ V, on Sy, can be glued together to a T-linearized, locally free sheaf
&, and we have ch”(€) = f + g. Hence f = chT(€) — ch’ (Ox @ V) where

V' is a T-module with character g.

3. Equivariant cohomology of simplicial toric varieties

3.1. Equivariant cohomology

First we review some basic facts about equivariant cohomology; see [A-B]
for more details. Choose a contractible topological space E'T" where T acts
freely, and denote by BT = (ET)/T the quotient. For any T-space Z, the
quotient of Z x ET by the diagonal T-action exists; denote this quotient
by Z xT ET. Then the equivariant cohomology ring of Z with rational
coefficients, is defined by

Hy(Z):= H*(Z x" ET,Q) .
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In particular, the equivariant cohomology ring of the point is Hi(pt) =
H*(BT). If T = (C*)4 then we may take ET = (C> \ {0})¢ where T
acts by scalar multiplications; then BT = (P*°)<.

Any one-dimensional T-module Cm (with character m € M) defines a
line bundle Cm x* ET over BT. Denote by c(m) € H2(pt) the first Chern
class of this line bundle. Then the map ¢ : M — Hz(pt) is additive, and it
extends to an isomorphism (which multiplies degree by 2)

c: S*(Mq) — Hj(pt)

where S*(Mgq) is the symmetric algebra of Mq over the rationals.

More generally, for any T-space Z, we have a fibration Z x* ET — BT
which gives H}.(Z) the structure of an algebra over H*(BT) = S*(Mgq).
Furthermore, restriction to fibers defines a homomorphism of graded rings
H3(Z) — H*(Z). This homomorphism vanishes on Mq and hence it factors
through

H;(2)|MoH;(Z) — H*(Z) .

We will use the following observation: If a closed subgroup G C T acts
on X with finite isotropy groups, then H7(X) is naturally isomorphic to
H7,(X/G). Namely, choose a closed subgroup 1" C T such that T = 1T'G
and that 7" NG is finite. Then we can take ET" = ET. Now the fibers of all
maps in the diagram

XxTET - X/GxT ET — X/)GxT (ETxE(T/G)) — X/GxT/¢ E(T/@)

are quotients of contractible spaces by finite groups. Therefore, these maps
induce isomorphisms in cohomology.

We will study equivariant cohomology of simplicial toric varieties, gen-
eralizing results of [B1] concerning smooth toric varieties. Let X be a fan,
and let ¢ € ¥ be a simplicial cone. Recall that r, : X, — €, denotes the
T-equivariant retraction.

Proposition. Notation being as above, the map r} : H3(X,) — H5(Q,) ~
S*(Mgq/ot) is an isomorphism of graded algebas over S*(Mgq). Moreover,
for any face T of o, the diagram

Hi(X,) — S*(Mq/o™)

| l
Hy(X:) — S*(Mg/m)

15



commutes, where the left (resp. right) vertical arrow is defined by inclu-
sion of X, in X, (resp. by the map Mq/o+ — Mq/T").

Proof. Observe that H3(X,) ~ Hf (S,) and that 7} : H3(X,) — H3(Q0)
identifies to restriction Hy (S,) — Hf () where x denotes the T,-fixed
point in S,. So we may assume that {2, consists in one point x. Then o is
a d-dimensional cone with edges generated by ni,...,ng Denote by N the
subgroup of N generated by ny,...,nq. Then N C N corresponds to a torus
T mapping surjectively to T with a finite kernel G. Moreover, T acts linearly
on A? and the quotient A?/G is isomorphic to X, the preimage of z € X
being the T-fixed point 0 € A%. Now restriction to 0 induces isomorphisms

H:(AY) ~ H2(0) ~ S*(Mq) ~ S*(Mq) -

Moreover, H%(A?) is isomorphic to H7(X) by our observation, and this
isomorphism is compatible with restriction to the fixed point. This proves
our first statement. The commutativity of our diagram is easy, because all
maps are homomorphisms of S*(Mq)-algebras.

3.2. Piecewise polynomial functions

Denote by Ry the set of all families (f,),ex such that f, € S*(Mq/o")
and that, for all 7 C o, the image of f, in S*(Mgq/o™*) is equal to f,. Then Ry
is an algebra over S*(Mgq): the algebra of continuous, piecewise polynomial
functions on 3.

For f € Ry, decompose f, into the sum of its homogeneous components
fon- Then for fixed n, the family (f,,)s,ex is in Ryx. This defines a grading
Rs, = ©;2 Rx,, of the algebra Ry.

Assume that the fan 3 is simplicial. For o € 3, consider the restriction
map H3(X) — Hi(X,),u — uy,. By 3.1, we can identify u, with an element
of S*(Mgq/ot), and moreover the family (uy)qex is in Ry.

Proposition. (i) For any simplicial toric variety X = Xy, the map

u - (UU)UGZ

is an isomorphism of graded algebras over S*(Mgq).
(ii) If moreover X is complete, then the map

Hp(X)/MqH7(X) — H"(X)

16



is an isomorphism.

Proof. (i) is proved in [B1] in the case where X is smooth. This proof can be
adapted to the simplicial case; alternatively, we may reduce to the smooth
case, following a method of [A].

Let N, N/, T" and f : X — X as in the proof of 1.1. Because ¥ is
simplicial, f is the geometric quotient by 7" acting with finite isotropy groups.

Using our observation on 3.1, we see that H7.(X) = H, / G(X' /G) is isomorphic

to H%(X). On the other hand, we have an isomorphism Ry, ~ Rg, compatible
with maps from equivariant cohomology. In this way, we reduce to the case
where T' = (C*)¢ and where X is a T-stable open subset of C¢. Then we
conclude by proposition 2.2 in [B1].

(ii) follows easily from the Leray spectral sequence of the fibration X X
ET — BT because the fiber X has no odd cohomology, see [F2].

Remark. Denote by A*(X)q the rational Chow group of the complete, sim-
plicial toric variety X. Then the cycle map clx : A*(X)q — H*(X) is an
isomorphism, see [F2].

3.3. Equivariant cohomology classes

Let X = Xy be a simplicial toric variety, and let o € X. Then the orbit
closure (2, defines an equivariant cohomology class

Fo’ c H%dim(a) (X)

as follows. Observe that ET = (C*> \ {0})? is an increasing union of the
smooth, T-stable algebraic varieties (C™\ {0})?. Moreover, each space X xT
(C™\ {0})? is locally a quotient of a smooth algebraic variety by a finite
group of algebraic automorphisms. Therefore, this space satisfies to Poincaré
duality over Q, and we may define the cohomology class of Q, x” (C™\ {0})<.
As n increases, these classes are compatible, and hence the cohomology class
of Q, xp ET makes sense; we denote it by F,.

We will describe F, as an element of Ry. To this aim, denote by ¢, the
element of Ry such that ¢,(n,) =1 and that ¢.(n.) =0 for all 7/ € £(1),
7' # 7. Then ¢, is called the Courant function associated to the edge 7, see
[B].

For o € ¥, we denote by N, (resp. N,(1)) the subgroup of N generated
by N No (resp. by the n,’s where 7 € o(1)). Then Ny is a subgroup of
finite index in N,. The index [N, : Ny(1y] is called the multiplicity of o. We
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denote it by mult(o), and we set

Yo 1= mult(o) H ©Or

T€0(1)

Then ¢, is a continuous, piecewise polynomial function on X, of degree
dim(¢). Moreover, ¢, vanishes identically on all cones which do not con-
tain o.

In particular, if ¢ is d-dimensional, then ¢, vanishes identically outside
its interior ¢°. Therefore, denoting by ®, the unique polynomial function on
Mg which restricts to ¢, on o, we see that ®, is a constant multiple of the
product of equations of facets of 0. More precisely, we have with notation as
in 2.1:

d
O, =[Q N M| ]] mi -
i=1
Namely, ®, = mult(o) [, ¢ 'm; and moreover

d

d d d
I a=0D_2Z¢" 'mi: ) Zmi] = [Nyqy: NJ[M : > Zm;] = mult(0)|Q°NM]| .
1=1 1=1 i=1

i=1

Proposition. Notation being as above, the image of F, in Ry is (—1)3mM ¢, .

Proof. Because the map H7(X) — [, 5, H7(X,) is injective, and because
F, is compatible with restriction, we may assume that X = X, is affine.

First we consider the case where v is an edge of ¥. If v ¢ o(1) then
F, = 0; on the other hand, ¢, vanishes on o. So we may assume that v = 7;
with notation as in 2.1. Then ¢;D; is the divisor of zeroes of the character
m;. It follows that Ox(¢;:D;) = Ox ® (—m;) and hence that ¢,F, = —m,.
On the other hand, restriction to o of ¢, is q; 'm;, and hence FE,=—p,.

In the general case, choose an edge 7 of v and denote by ¢ the unique
facet of v such that 7 ¢ §. Clearly, F), is a rational multiple of the product
F.Fs. Using the map H}(X) — H*(X) and [F2] 5.1, we obtain

E, = mult(y)mult(8) " F, Fs .
We conclude by induction over dim(y).

3.4. Localization
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Let X = Xy, be a complete, simplicial toric variety. As in 1.5, denote by
i : X7 — X the inclusion of the fixed point set, and consider the induced
map i, : H3(X7T) — H%(X) (defined via Poincaré duality as above). Then
i, is a morphism of S*(Mgq)-modules, of degree 2d. Moreover, H;(X7) is
isomorphic to [, x4 S*(Maq).

By a general localization theorem in equivariant cohomology, the mor-
phism i, is an isomorphism after inverting all elements of S*(Mgq) which do
not vanish at the origin. We will obtain a sharper version of this result.

For each w € ¥(d — 1), choose a non-zero m,, € M which vanishes
identically on w. Set

CI)Z = H My, -

weX(d—1)
Then @y is the least common multiple of all &, (o € 3(d)).

Proposition. The map i, : Hj(X") — H3(X) is injective. Moreover, the
cokernel of 1, is killed by ®x.

Proof. Let f = (fs)oes@ be in Hj(XT). Because i, is S*(Mq)-linear, we

have
Z fO’F == Z fa%pa~

oex(d) oeX(d)

If i.(f) = 0 then, evaluating at an interior point of o, we obtain f, = 0. So
1, 18 injective.
On the other hand, for any g € Ry, we have
bug= Y Pud'0ogs

ceX(d)

(namely, this equation reduces to (®,9), = ®,g9, on a given o € 3(d)).
Because each ®y®_ ¢, is in S*(Mq), it follows that ®xg is in the image of
Ly

3.5. Equivariant push-forward

Let X = Xy be a complete, simplicial toric variety. Then the map
X — pt induces a fibration X x? ET — BT with fiber X. Therefore, we
have a push-forward map

/X HH(X) — Hj(pt)
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which is homogeneous of degree —2d. By the projection formula, |[ 18 a
morphism of Hj(pt)-modules.

Proposition. Via the isomorphisms H}(X) ~ Ry, and Hj.(pt) >~ S*(Mq),
the push-forward map [ « s given by

IR

0.
oex(d)

Proof. Let 0 € 3(d). Then F, € H}(X) is the cohomology class of a T-fixed
point. Using 3.4, it follows that

/X po = (—1)".

For any f € Ry, we have as in the proof of 3.4:

bsf= Y Ou®,' frp, .

cex(d)

Because [, is S*(Mq)-linear, we obtain

@E/Xf: > apd, f(—1) .

oeX(d)

This implies our formula.
The following result is an easy consequence of this explicit formula (see
[B2] 2.4 for more details).

Corollary. The H*(BT)-bilinear map

H:(X) x HiA(X) — H*(BT)
(f,9) — i fg

is a perfect pairing.

3.6. Equivariant Chern character

Let X = Xy be a simplicial toric variety. Any T-linearized, locally free
sheaf £ on X defines a T-equivariant vector bundle £ on X, and hence a
T-equivariant vector bundle p*E on X x ET where p denotes the projection
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X x ET — X. Because T acts freely on X x ET, we can push forward
p*E to a vector bundle By on X x” ET. The Chern character of Ep will be
denoted by ChT(€), an element of

ﬁ H"(X xT ET) := Hp(X)

n=0

(the completion of the graded algebra H7(X)). Observe that the image of
ChT(&) in Hp(X)/MqHT(X) = H*(X) is the usual Chern character of E.
By 3.2, we can identify Hy(X) with Ry. Moreover, by [B1], the algebra
Ry, consists in all families (f,)yex with f, € S(Mgq/ob) and f, restricts to
fr whenever 7 is a face of 0. On the other hand, it is easily checked that Fx
embeds into Ry, by mapping each €™ to Y~ m"/nl. Therefore, we may

consider chT () (defined in 2.2) in Ry,

Proposition. With the notation as above, we have Ch*(£) = ch?(€) for
any T-linearized locally free sheaf £ on X.

Proof. We may assume that X is affine. Then there exists a T-module V'

such that £ ~ Ox ® V. So FE is the trivial bundle with fiber V, and ChT (&)
is the character of V. But the latter coincides with ch® (€) by definition, see
2.2.

Using [B2] 4.2, we derive now the following

Corollary. The map ch” : GT(X) — Hyp(X) is injective, and its image is
dense.

4. The equivariant Todd class of complete, simplicial toric varieties

4.1. Equivariant Riemann-Roch

Theorem. Let X = Xy be a complete, simplicial toric variety. Then there
exists a unique class Td"(X) € Hy(X) (the equivariant Todd class of X)
such that

VI (F) = /X T(F) Td"(X)

for any coherent, T-linearized sheaf F on X. Moreover, for any o € %(d),
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restriction to X, of Td”(X) is the following element of Hyp(X,) = S(Mg):

d
T =Y ez

meQ°NM i=1

with notation as in 2.1.

Proof. By 1.4, we have

Moreover, we have by 2.1:

S(xg (F) = chy (F)S(x5 (Ox)) = chy (F)( Y e[ —em)".
meMNQ° =1
Define Td?(X) € S(Mgq) by the formula of the theorem. Then the Td’ (X)

(o € ¥(d)) glue together into Td”(X) € Ry (this can be checked directly;
it will be a consequence of an alternative formula for T'd” (X), proved in the
next subsection). By 3.3, we have

Tdy(X) = (=1)" @, S(x} (Ox))
and hence, by 3.5:

/ (X)) Td'(X) = 3 hl(F)SHEO0) = Y SHIF))
X 2(d)

oex(d)

This proves existence of the class T'd?(X). Unicity follows from corollaries
3.5 and 3.6.

Corollary. (i) For any equivariant morphism 7 : X' — X between complete,
simplicial toric varieties, we have Td" (X) = 7, Td" (X’).

(i) The image of Td" (X)) in H*(X) = A*(X)q is the Todd class of X defined
in [F1].

Proof. (i) follows from unicity of Td* (X) and from vanishing of R/, O for
all 7 > 1.

(ii) follows from the fact that the ring A*(X)q is generated by Chern
characters of T-equivariant line bundles.
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4.2. A closed formula for the equivariant Todd class

Let ¥ be a simplicial fan. Define a homomorphism from the torus (C*)*()

to T, by mapping (¢;)res) to [ [ cx) nr(t7) (vecall that n; is a one-parameter
subgroup of T'). We denote by G the kernel of this homomorphism.

For any simplicial cone o generated by elements n, where 7 € 3(1), we
denote by G, the intersection of G with the subgroup (C*)°™") of (C*)*®).
More concretely,

Gy ={(t:)reoy | t- €C*, [] nelts) =1}

T€o(1)

identifies to the quotient N,/ >
the multiplicity of o.

We denote by Gz, C G the union of all subgroups G, (0 € ¥). Simi-
larly, we denote by G's(1) the union of all subgroups GG, where o ranges over
simplicial cones generated by subsets of 3(1). For 7 € ¥(1), we denote by
a, : Gyy — C* the restriction to Gy of the 7-component (C*)*® — C*.,
Then restriction of a, to GG, is a character, and this character is non-trivial
if and only if 7 is an edge of o.

Finally, recall that the equivariant cohomology class of the divisor D, is
denoted by F:

reo(1y Zn-. In particular, the order of G, is

Theorem. Let X = Xy, be a complete, simplicial toric variety. 'Then,
notation being as above, the equivariant Todd class of X is given by

TUETED Sl | e
—_ a/T ) T
g€Gy TEX( 1)
Moreover, we have

ra"x)= > ]I ; el F

QEGz(l) TEZ( )

In particular, Td” (X)) can be expressed in terms of ¥(1) only.

Proof. The first formula defines a class 6 in Hp(X) ~ Ry; in terms of
piecewise formal power series, we have

0= Z H _;:OT evr

geGy, TeX(1)
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where ¢, is defined in 3.3. We check that 6, = Td.(X) for all o € ¥(d).
This will imply that the TdZ (X) glue together into an element of Rs..

Let g € Gy and let 0 € X(d). If g ¢ G, then there exists an edge T of
¥ such that a,(g) # 1, and such a 7 is not an edge of o. Then the formal
power series expansion of

1 —a,(g)err
is divisible by ¢,, and ¢, vanishes identically on o. It follows that

=2 1 =g
geGD‘ TEE
Moreover, for g € G, and 7 ¢ (1), restriction to o of

.
1 —a,(g)es

is equal to 1, because x,(¢g) = 1 and (¢,), = 0. It follows that
=2 H e
gEGa TEO’

Notation being as in 2.1, we obtain

Denote by M,y C Mq the dual lattice to Ny(1). Then M, () is generated by
the ¢; 'm; (1 <4 < d). The group G, acts on the group algebra C[M, 1)) by

qg- eqi_lmi _ ai(g)eqi_lmi
and the algebra of invariants for this action is C[M]. Consider the subalgebra

of C[M,q)] generated by ed '™ . e% mi_ Then this subalgebra is stable
under GJ, and its algebra of 1nvariants identifies to the algebra of regular
functions on X,. By Molien’s formula, it follows that

Xz (0x) = rG\IZH — —— .

1
g€Gs i=1
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Therefore, we obtain (using 2.1)

d d -1
_ m —q; "My
0, = |Galxy (Ox) [T (a7 m) = 161 Y- e ] T
i=1 meMnNQ? =1

and hence
d
Or = |Go| IM N Q7|(J] ) TdE(X) = TdZ(X) .
i=1

To obtain the second formula, we observe that, for g € Gx), the term

F,
I —er

T€X(1)

vanishes when g ¢ Gf.

Corollary The equivariant Todd class of a complete, smooth toric variety

Xy is given by
F,
rd'(X)= 1] ==

TEX(1)

Proof. Recall that Xy is smooth if and only if each cone ¢ is generated by
part of a basis of N. This is equivalent to: N, = ) ) Zn. for all o, or
to: G’y consists in one point.

TET

4.3. The combinatorics of the equivariant Todd class

Let X = Xy, be a complete, simplicial toric variety. Following an idea of
[P1], we define the mock equivariant Todd class of X by

F:
1—efr

TD"(X) = []

TEX(1)

where F, denotes the equivariant cohomology class of D,. We will analyze
the difference T'd” (X) — TDT(X). Let ¢ be the largest integer such that
each cone in (¢ — 1) is generated by part of a basis of N; then c is the
codimension in X of its singular locus.
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Proposition. Notation being as above, the lowest degree term in Td" (X)) —
T DT (X) occurs in degree at least c. Moreover, its term of degree c equals

Z t(o) Fy

oeX(c)

where t(o) is given by

t(o) =2 mult(o Z Hl—i—zcotmﬁ]).

9€Gos,g#1 j=1
Here each g in G, = Ny /Ny is represented by » ¢, x;n; where ny,...,n,
are the primitive vectors on edges of o.

Proof. By 4.2, we have

Td"(X)-TD"(X)= > H Ry gy

9€Gx,g#1 T€3(1

Write Gy as the disjoint union of the sets G2 (o € X) where GY denotes
the complement in G, of the union of its subsets G, (0’ a face of o). For
g € G2, observe that a,(g) = 1 if and only if 7 ¢ o(1). Tt follows that
Td"(X) —TDT(X) can be written as

FT
> ZHl—a —) ([T AT 1o F)

0€X,0£0 geGY reo(l T€o(1) T¢o(1)

Moreover, the set GY is empty unless dim(c) > ¢, and G = G,, if dim(0) = c.
It follows that all terms of degree less than ¢ in T'd”(X) — T DT(X) vanish,
and that its term of degree ¢ equals

22 N =) I 7

ceX(c) 9€Gs,9#1 T€0(1) T€0(1)

Now we have [] = mult(c)~F, by 3.3, and moreover

TEO’

Z H Z Hl—ememm:)

9€Go,9#1 TEO’ MIS(EPR g;él 7=1
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Z H exrp ZT('LU]
2sin(mx;)
QGG0793A1J 1

This proves our formula.

4.4. A connection with higher Dedekind sums

Notation being as in 4.3, assume for simplicity that ¢ = d, i.e. that any
(d — 1)-dimensional cone in ¥ is generated by part of a basis of N. Then,
for a fixed o0 € ¥(d), we can find a basis (e,...,eqs) of N and integers
P, ..., Pd-1,q such that:

(i) o is generated by eq,...,eq1 and pre; + -+ + pg_1€4-1 + qeq,
(i1)) 0 < p1,...,pa—1 < q and py,...,ps_1 are prime to gq.

Generalizing results of Pommersheim ([P1] Theorem 3 for d = 2, [P2]
Theorem 4 for d = 3), we will express the rational number #(o) defined in
4.3, in terms of higher Dedekind sums. These sums are defined as follows by
Zagier, see [Z].

Let n be an even positive integer; let aq,...,a, and ¢ be integers such
that ¢ > 0 and that aq,...,a, are prime to q. Then set

q—1
‘ o n/2 wkay wka,,
s(q;aq,...,a,) = (—1 cot - cot
( ) == (=1) k§1 ( . ) ( . )
(Zagier’s notation is d(p; as, . .., a,)).

Proposition. Notation being as above, we have

1
t(g)ZQTq(q_1+ Z S(QSPiu“-»pigj)

1<i1 < <ig<d—1

- Z S(Q§pi17---;pz’2j_171))

1<y <o <igj 1 <d—1

and moreover

t(o) = i (1—q)%4(—1)4 Z fy - Kaa {plkl +- +pd71kd—1}

2 d—1
q 1<ky,....kg—1<q—1 1 I

where {x} denotes the fractional part of x.
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Proof. We can identify G, = N/N,q) with the set
{n = (z1+przq)er+ -+ (Ta1+pa—12d)ed—1+qraeq | n € N, 0 < zq,..., 24 < 1}.

Then n € G, if and only if: x4 = kq~! for some integer k with 0 < k < ¢—1,
and moreover x; + prkq™!, ..., wq_1 + pa_1kq~! are integers. It follows that
mult(c) = q and, using 4.3, that

—_

K

1 d—1

Ho)= 57> (1+ icot(rkq™Y)) H (1- icot(”]zpj)) .

b
Il

This proves our first formula. For the second formula, remember that

d
Td(X)=|MnQ°|™" " !
=Y el
meMNQ° j=1
and that

S oy

TDI(X) =[] —=

o1 L—el
with notation as in 2.1. Denoting by (e7, ..., e}) the dual basis of (e, ..., eq),
we have here m; = ge; —pjejfor 1 <j<d—1,and mg=cej Soq =...=
ga = q. Moreover, M N Q7 consists in all points (E?;i kiqg7tm;) + zamq

where kq, ..., ks 1 are integers between 0 and ¢ — 1, and where 24 = {(p1k;1 +

4 paika1)g )
By 3.3 and 4.3, the lowest degree term in TdL(X) — TDI(X) is

(—1)%(o)q" H mj .

Because the constant term in TDT(X) is 1, it follows that (—1)%¢'~% (o) is
the coefficient of H?Zl m; in the expansion of

into a power series in my, ..., my. Moreover, this expansion involves no term
of degree 1,2,...,d — 1.
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Let uy, ..., uq,v1,...,v4 be homogeneous elements in S*(Mgq) (of degree
equal to their index) such that

g Z e =14u+--+ug

and that .

11 i Lo+ +
+ pry /U]. “ .. ’Ud
j=1 glem — 1)

up to terms of degree at least d + 1. Then we must have u; = v; for 1 < j <
d—1, and hence (—1)%¢'~% (o) is the coefficient of H;l:l m; in ug —vg. This
implies our second formula.

Remark. For d = 2, we obtain

(¢—1)?* < k ok
q -1+ cot cot — + —1—
t(o) = E . =) = 10 2 q{ q}
This amounts to the classical identity
q—1 q—1
k1 1 1 T km
- — = - = — cot(—)cot(—
kl(q 2)({ } 5) = 1 2 (q) ( . )

(see e.g. [Z] p. 151).

4.5. Fuler-MacLaurin formula for convex lattice polytopes

Let P C Mg be a convex lattice polytope (i.e. the convex hull of finitely
many points of M) of dimension d. For each facet F' of P, there exists a
unique primitive vector (ng, Ap) € N x Z such that the affine form =z —
(np,x)+ A is identically zero on F', and is positive on P\ F. To each face G
of P, we associate the cone o in Nq generated by the ny such that F'is a
facet of P which contains G. This defines a complete fan > p. We identify the
set Xp(1) with the set of all facets of P, and we denote it by F for simplicity.

For h = (h;).cr € R”, we define a convex polytope P(h) in Mg by the
inequalities

(nq,x)y+ A +h,>0.
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In particular, P(0) = P. On the other hand, we define a differential operator
of infinite order Toddx(0/0h) (the Todd operator associated to F) by

0 ah
Toddr(0/0h) = [] 5 e / PP

geGr TEF

with notation as in 4.2. Then Toddr(0/0h) acts for example on the space of
polynomial functions in A.

Theorem. For any polynomial function ¢ on Mg, the function h — fp(h) o(x) dx
is continuous and piecewise polynomial. Moreover, we have

> plm) = (Toddr(0/oh) [ ola)da)uco

mePNM P(h)

Proof. There exists a neighborhood U of the origin in R”, and a complete
fan ® in R” such that, for h € U, the fan & p(n) only depends on the smallest
cone of ® which contains h. If moreover h is in the interior of some maximal
cone C' in ®, then X p(;) is a simplicial subdivision of 3, with the same set of
edges. We fix such a maximal cone C, and we set X := Xppjand X = Xy.

For any h € R”, define a T-stable divisor (with real coefficients) on X
by

D(h):= > (Ar+h,)D- .
TEX(1)

If h € CNU and if moreover kh € Z% for some non-zero integer k, then
the divisor (with integral coefficients) kD(h) is Cartier and generated by its
global sections, see [O] 2.1 and 2.7. Moreover, we have:

X(Ox (kD)= > ™.
meMnkP(h)
By theorem 4.1, we have
/ ekc1(D(h))TdT(X) _ Z em
X meMnkP(h)

where ¢;(D(h)) € H2(X) denotes the equivariant cohomology class of D(h).
Viewing ¢;(D(h)) as a piecewise linear function, we have by 3.3:

a(D(h) == (A +hr)er

TEF
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For o € ¥(d), denote by ¢, (h) the element of Mg such that ¢;(D(h)) coincides
with ¢,(h) on o. Then we have, using 3.5:

Yoooem= Y eteWoiTdl(X) .

meMnkP(h) oex(d)

Evaluating both sides at a point k~'y of Nr where y does not belong to any
hyperplane generated by some (d — 1)-dimensional cone of ¥, and dividing
by k%, we obtain

E Y eaplmay) = Y eap(—co(h)(y)) Py (y) AT (X) (K My) .
meP(h)Nk—1M ceX(d)

This equation holds for all £ such that kh is integral. Therefore, letting
k — oo and remembering that the constant term of T'dZ(X) is 1, we obtain

/ e = 3 eml=cot)oly)
P oex(d)

This holds for all rational points h in C° N U and hence (by continuity) for
all points in C° N U. Therefore, we obtain using 3.5:

[ em@dr= [ = 3 Ot hoe)
P(h) X rex(1)

for any h € C°NU. ;From this formula, we deduce that for any polynomial
function f on R”, we have

(f((?/@h)/ exp(x) dr)p—o :/

P(h) X

exp(— Z Arpr) f(—p7) -
TeF
Using the second formula in theorem 4.2, it follows that

(Toddf(f)/ah)/ exp(x) da:)hoz/ e DIl (X) = Z e .

P(h) X meMNP

Expanding both sides into power series and observing that any polynomial
function is a linear combination of powers of linear forms, we obtain our
formula.
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