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Introduction

In this set of notes we shall study properties of linear differential equations
of a complex variable with coefficients in either the ring convergent (or formal)
power series or in the polynomial ring. The point of view that we have chosen is
intentionally algebraic. This explains why we shall consider the D-module associated
with such equations. In order to solve an equation (or a system) we shall begin by
finding a “normal form” for the corresponding D-module, that is by expressing it as
a direct sum of elementary D-modules. It is then easy to solve the corresponding
equation (in a similar way, one can solve a system of linear equations on a vector
space by first putting the matrix in a simple form, e.g. triangular form or (better)
Jordan canonical form).

This lecture is supposed to be an introduction to D-module theory. That is
why we have tried to set out this classical subject in a way that can be generalized in
the case of many variables. For instance we have introduced the notion of holonomy
(which is not difficult in dimension one), we have emphazised the connection between
D-modules and meromorphic connections. Because the notion of a normal form
does not extend easily in higher dimension, we have also stressed upon the notions
of nearby and vanishing cycles.

The first chapter consists of a local algebraic study of D-modules. The
coefficient ring is either C{x} (convergent power series) or C[[x]] (formal power
series). The main results concern however the latter case. The second chapter deals
with the extension of these results to the former case. Many analytic results will
then be necessary. The most difficult one will not be proved here and concerns the
resolution of some non linear equation. Finally, the third chapter deals with the
global study of linear differential equations on the Riemann sphere.

The results contained in these notes may all be found (at least in some form)
in the literature on the subject, given in the bibliography. We have tried to make
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these notes self-contained and readable without (or with very few) prerequisites. We
have given references for the statements (with some comments) in a special chapter.
Let us only mention here that we have greatly benefitted of handwritten notes of a
future book by Bernard Malgrange [33] (see now [35]).

Chapter I

Algebraic methods

1. The algebra D

1.1. Some results of commutative algebra

General references are [1, 2, 3, 4]. We shall consider differential operators in
one variable with coefficient in one of the following three rings: C[x] (polynomials
in one variable), C{x} (convergent power series), C[[x]] (formal power series), which
satisfy the following elementary properties:

1. C[x] is graded by the degree of polynomials, and this graduation induces an
increasing filtration. It is a noetherian ring, all the ideals of which are of the
type (x− a)C[x], a ∈ C.

2. If m is the maximal ideal of C[x] generated by x, one has

C[[x]] = lim←−
k

C[x]/mk.

The ring C[[x]] is a noetherian local ring: every power series with a nonzero
constant term is invertible. This ring is also a discrete valuation ring. The
filtration by powers of the maximal ideal (also called the m-adic filtration) is
the filtration mk = {f ∈ C[[x]] |v(f) ≥ k}. One has grm(C[[x]]) = C[x].

3. C{x} ⊂ C[[x]] is the subring of power series whose radius of convergence is
strictly positive. Except the definition by projective limit, it satisfies the same
properties as C[[x]].

4. One can also consider intermediate rings between C{x} and C[[x]] (formal
power series with Gevrey type conditions).

1.2. Definition of D

1.2.1. — The rings considered previously come equipped with a derivation
operator ∂/∂x. Let f ∈ C[x] (resp. C{x}, resp. C[[x]]). One has the following
commutation relation between the derivation operator ∂/∂x and the multiplication
operator f : [

∂

∂x
, f

]
=
∂f

∂x
(1.2.2)
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where the R.H.S. is the multiplication operator by ∂f/∂x; this means that for all
g ∈ C[x] one has: [

∂

∂x
, f

]
· g =

∂fg

∂x
− f ∂g

∂x
=
∂f

∂x
· g.

One defines the Weyl algebra A1(C) (resp. the algebra D of linear differential
operators with coefficients in C{x}, resp. the algebra D̂ (coefficients in C[[x]])) as
the quotient algebra of the free algebra generated by the coefficient ring and an
element denoted by ∂x, quotient by the relations (1.2.2) for all f in the ring of
coefficients. We shall use the following notation: A1(C) = C[x]〈∂x〉 . . .

Remark. — A1(C) is a non commutative algebra. By definition, C[x] is a left
module on A1(C): ∂x operates as ∂/∂x, and f ∈ C[x] operates as mutliplication by
f , the product in A1(C) is then induced by the composition law of operators.

Proposition 1.2.3. — Every element in A1(C) (resp. D, D̂) can be written
in a unique way as

∑n
i=0 ai(x)∂

i
x, where for all i, ai(x) ∈ C[x] (resp. . . . ).

Proof. — Every element in A1(C) is a sum of “monomials” which are products

of powers of ∂x and elements of C[x]. Such a monomial can be written α1(x)∂
i1
x · · ·

αk(x)∂
ik
x . One uses the commutation relations (1.2.2) in order to write it in the

expected form. One has to show now that an element P =
∑n
i=0 ai(x)∂

i
x is not zero

in A1(C) if and only if one of the coefficients ai is not zero. In order to do that, it
suffices to let A1(C) act on C[x] (on the left) in the way explained before and to
find a nonzero f ∈ C[x] such that P (f) 6= 0 (left as an exercise). 2

1.2.4. Some formulae. — The following (easy to prove) formulae may be
useful:[

∂x, x
k
]

= kxk−1

[∂jx, x] = j∂j−1
x

[
∂jx, x

k
]

=
∑
i≥1

k(k − 1) · · · (k − i+ 1) · j(j − 1) · · · (j − i+ 1)

i!
xk−i∂j−ix

where by convention negative powers are zero and zero powers equal 1.

1.3. Some properties

1.3.1. — Denote now by A one of the three rings of coefficients considered
above. The ring A〈∂x〉 comes equipped with an increasing filtration denoted by
F (A〈∂x〉): an operator P is in Fk if the maximal total power of ∂x that appears in
a monomial of P is less than or equal to k. The degree of P (denoted by degP )
with respect to FA〈∂x〉 is the unique integer k such that P ∈ FkA〈∂x〉−Fk−1A〈∂x〉.
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This does not depend on the way one writes P. One has FkA〈∂x〉 = {0} for k < 0
and F0A〈∂x〉 = A. Moreover, for all i and j one has FiA〈∂x〉 ·FjA〈∂x〉 = Fi+jA〈∂x〉.

Lemma 1.3.2. — If degP = k, degQ = `, then the commutator [P,Q] has
degree less than or equal to k + `− 1. 2

Proposition 1.3.3. — The ring A〈∂x〉 is simple (it does not contain any
proper two-sided ideal).

Proof. — Let I be a nonzero two-sided ideal of A〈∂x〉 and P ∈ I − {0}.
One may write P =

∑n
i=1 ai(x)∂

i
x with an 6= 0. Then Q

def
= [P, x] belongs to I and

Q =
∑n
i=0 iai(x)∂

i−1
x . Hence, if n ≥ 1, there exists Q in I of degree n−1. Continuing

this process, one proves that I contains a nonzero element R of A. Assume that
A = C[x]. One then considers commutators with ∂x to prove that I contains a
nonzero constant, hence I = A〈∂x〉. If A = C{x} or A = C[[x]] one can argue as
follows: if k = v(R) (the valuation of R), then I contains xk (by dividing R by a
unit) then one commutes k times with ∂x to show that I contains a constant. 2

Proposition 1.3.4. — The graded ring

grFA〈∂x〉 def
=

∞⊕
k=0

FkA〈∂x〉/Fk−1A〈∂x〉

is isomorphic (as a graded ring) to the ring of polynomials in one variable ξ on A
(with the graduation given by the degree in ξ), the variable ξ being the class of ∂x.

Proof. — Immediate consequence of the previous lemma. 2

Corollary 1.3.5. — A〈∂x〉 is a left and right noetherian ring.

Proof. — One has to show that every left (or right) ideal I in A〈∂x〉 admits
a finite number of generators. Consider the filtration of I induced by FA〈∂x〉:
Fk(I) = FkA〈∂x〉 ∩ I. Then grF (I) is an ideal of grFA〈∂x〉 = A[ξ] and admits a
finite number of generators pi (i = 1, . . . , r). One may assume that each generator
pi is homogeneous with respect to F (simply replace the set of generators by the set
of their homogeneous components). For each i, let Pi ∈ I an element with principal
symbol equal to pi. Then I is generated by the set {Pi|i = 1, . . . , r}: by induction
on j one proves that Fj(I) is contained in the left ideal generated by this set. In
fact, let P ∈ Fj(I) − Fj−1(I) and let σj(P ) ∈ grFj its principal symbol. One has a
homogeneous relation:

σj(P ) =
∑

aipi

with ai ∈ grj−deg pi
(A〈∂x〉). Therefore P −∑ aiPi ∈ Fj−1(I), so one gets the result.

2
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2. The structure of left ideals of D

In this section, we shall consider only a local situation. The ring of coefficients
will then be either C{x} or C[[x]]. We shall only consider the case of convergent
coefficients, the case of formal coefficients being completely analogous.

2.1. Division by an operator

Let P ∈ D written as P = ad(x)∂
d
x + · · ·+ a0(x), with ad 6= 0. By definition,

the exponent of P is the pair of integers

exp(P ) = (v(ad), d) ∈ N2

where d = degP and v(ad) is the valuation of ad. This exponent is additive under
product:

exp(PQ) = exp(P ) + exp(Q)

(sum in N2). In fact, if Q = be(x)∂
e
x + · · ·+ b0(x), one can write PQ = adbe∂

d+e
x +R

with degR < d+ e. One deduces of this a “division statement”:

Proposition 2.1.1. — Let A ∈ D and P ∈ D with exp(P ) = (v, d). There
exists a unique pair (Q,R) of elements of D such that

1. A = PQ+R

2. R =
∑v−1
k=0

∑degA
`=d uk,`(x)x

k∂`x + S with degS < d and uk,` is a unit.

Remark. — One has an analogous statement (division on the right): A =
PQ′ +R′.

Proof. — The proof of the proposition is elementary (induction on degA). The
pairs (k, `) which appear in the expansion of R are contained in the dotted part of
fig. 1.

2.2. Division basis

Given an ideal I, the set Exp (I) is defined as the subset of N2 consisting of all
exp(P ) for P ∈ I. One has

Exp (I) + N2 = Exp (I)

because I is an ideal of D. Such a set has the form indicated in fig. 2. The dotted
part of the boundary of Exp (I) is denoted by ES (I) and will be called the stairs of
I. We shall use the following notation:

ES (I) =
{
(αp, p), (αp+1, p+ 1), . . . , (αq, q)

}
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where p is the minimal degree of elements in I and in general αj is the minimal
valuation of the elements of I which have degree j. These assertions are easily
deduced from the division statement above. One then has (as can be seen on the
picture)

Exp (I) =
⋃

p≤j<q

{
(αj, j) + N× {0}

}
∪
{
(αq, q) + N2

}

Definition 2.2.1. — A division basis of the ideal I consists of the data for
all (αj, j) ∈ ES (I) of an element Pj of I with exp(Pj) = (αj, j).

Remark. — Take a minimal system (αj1 , j1), . . . , (αjr , jr) of elements of ES (I)

such that Exp (I) =
⋃r
k=1

{
(αj

k
, jk) + N2

}
(these are the vertices of the stairs where

the angle is directed toward the origin). It is then easy to construct a division basis
Pp, . . . , Pq knowing only Pj1 , . . . , Pjr (of course one must have j1 = p and jr = q).

The previous terminology comes from the following proposition:

Proposition 2.2.2. — Let I be a proper ideal of D and let Pp, . . . , Pq be a
division basis of I.
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1. For all A ∈ D there exist unique elements Qp, Qp+1, . . . , Qq−1 ∈ C {x}, Qq ∈ D
and R ∈ D such that

A = QpPp + · · ·+QqPq +R

with

R =
degA∑
`=p

α`−1∑
k=0

uk,`x
k∂`x + S

and degS < p.

2. With these notations, one has A ∈ I if and only if R = 0.

Consequently, all monomials appearing in R are essentially under the stairs of I
(up to units uk,`). Remark that one can give an analogous statement using only the
minimal system Pj1 , . . . , Pjr , but in that case the operators Qj1

, . . . , Qjr
are in D.

Proof. — The existence of such a division comes from the division statement
2.1.1: one divides first A by Pq, then one divides the part of the remainder which is
of degree less than q by Pq−1, and so on.

Moreover one gets that A ∈ I if and only if R ∈ I. But if R 6= 0 one has
exp(R) 6∈ Exp (I), hence R ∈ I if and only if R = 0. This gives the second part of
the proposition and also the uniqueness of R.

In order to show the uniqueness of Qp, . . . , Qq it is sufficient to prove that if

QpPp + · · ·+QqPq = 0

with Qp, . . . , Qq−1 ∈ C{x} and Qq ∈ D then all these operators are zero. This can
be easily proved by considering the highest degree term of such a sum. 2

Corollary 2.2.3. — Let I ′ ⊂ I be two ideals of D with ES (I ′) = ES (I).
Then one has I ′ = I.

Proof. — A division basis P ′p, . . . , P
′
q for I ′ is also one for I. The criterion for

an operator to belong to I ′ is then the same as the one for I, because of the previous
proposition. 2

2.3. An ideal is generated by two elements

A division basis is then a system of generators of I, which is sufficiently redundant
in order that the previous proposition is true. However let us now prove

Proposition 2.3.1. — If Pp, . . . , Pq is a division basis for I then I is gener-
ated by only Pp and Pq.
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Proof. — Let J = D · Pp + D · Pq ⊂ I and consider the left D-module I/J .
This is a finite type module over D but also over C{x}: it is actually generated
over C{x} by the classes of Pp+1, . . . , Pq−1 due to 2.2.2. The following lemma will
be useful:

Lemma 2.3.2. — The left D-module I/D · Pp is a torsion module, i.e. for
every A ∈ I there exits k such that xkA ∈ D · Pp.

In order to prove this lemma, one remarks that in the elementary division of A
by P , if one has exp(A) ∈ exp(P ) + N2 then the remainder R has degree less than
degA. Choose n1 such that exp(xn1A) ∈ exp(Pp) + N2. One has

xn1A = B1Pp +R1 degR1 < degA

and by induction one finds n such that

xnA = BPp +R

with degR < degPp = p. But R belongs to I so R = 0. 2

One concludes from this lemma that I/J is also a torsion module. In order
to prove that I/J = {0}, one uses the following lemma:

Lemma 2.3.3. — Let M be a left D-module of finite type, which is also of
finite type over C{x}. Then M is a free C{x}-module.

Indeed, if M is of finite type over C{x}, the C-vector space M/xM has finite
dimension. Let e1, . . . , en be a basis of this vector space and e1, . . . , en a set of
representatives inM. Nakayama’s lemma shows that this set is a set of generators
ofM over C{x}. Hence one gets a surjective mapping

C{x}n −→M −→ 0

which induces an isomorphism modulo the maximal ideal. Let K be the kernel
of this mapping. We shall prove that K = 0. An element in K can be written∑
aiεi with ai ∈ C{x} and (εi)i=1,...,n is the canonical basis of C{x}n. One then has∑
aiei = 0 inM. Hence, becauseM is also a left D-module, one has ∂x(

∑
aiei) = 0.

Put ∂xej =
∑
bjiei. Then for all i one gets

∑
i

(
∂ai/∂x+

∑
j ajbji

)
ei = 0 and so∑

i

(
∂ai/∂x+

∑
j ajbji

)
εi ∈ K. Continuing this process one is led to the case where

there exists i such that v(ai) = 0 (i.e. ai is a unit). Considering now the class
modulo the maximal ideal one obtains a contradiction if K 6= 0. This concludes the
proof of the lemma and consequently the proof of the proposition. 2
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As an easy consequence one gets

Corollary 2.3.4. — If M is a left D-module of finite type which is also a
finite dimensional vector space, then M = {0}. 2

This is a way to express Bernstein inequality. One can give an easy direct proof
of this: one considers the trace of the commutator [∂x, x] on M. It must be zero
because M is a finite dimensional vector space and dimM because M is a left
D-module. HenceM = {0}.

2.3.5. Exercises.

1. Show that if a left ideal I of D is generated by one element P then P is a
division basis for I.

2. Let

P = x4(1 + x)∂5
x + x3(1 + x2)∂3

x + 1.

Divide P by x∂x + 3 and also by x2∂3
x + 1.

3. Let I be a left ideal of D given by a set of generators (P1, . . . , Pr). Imagine a
simple algorithm in order to construct a division basis for I.

3. Holonomic D-modules

3.1. Differential systems, solutions

3.1.1. — Let P be a linear differential operator with coefficients in C{x},
written as P =

∑d
i=1 ai(x)∂

i
x, with ai ∈ C{x}. One says that 0 is a singular point

for P if ad(0) = 0. If 0 is not singular then P admits d solutions in C{x} and these
are independant over C.

Generally speaking, if u is a solution for P in some functional space then u is
also a solution for any operator of the form Q · P with Q ∈ D. Hence the solutions
depend only on the left ideal I of D generated by P .

More precisely, let F be a function space acted on by differential operators. A
solution u of P in F defines a left D-linear morphism D/I → F given by Q 7→ Q(u).
The space of solutions (which is a C-vector space) depends only on the left D-module
D/I. We are therefore led to the following definition:

Definition 3.1.2. — A linear differential system is a left D-module of finite
type.

Because D is left noetherian, one verifies
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Lemma 3.1.3. — A differential system M is of finite presentation, i.e. there
exists an exact sequence

Dq ϕ−→ Dp −→M −→ 0

where ϕ is given by the right multiplication by some matrix Φ with coefficients in
D. 2

3.1.4. Some function spaces.

1. C{x}, C[[x]]

2. K
def
= C{x} [x−1], K̂

def
= C[[x]] [x−1]

3. Nα,p
def
= D/D · (x∂x − α)p+1, with α ∈ C and p ∈ N. This D-module is

the set of Nilsson class functions isomorphic as a C{x}-module to
⊕p

k=0K ⊗
xα(log x)k/k!. These are germs of multi-valued functions of the variable x.

4. Õ is the space of germs of all multi-valued functions.

3.2. Good filtrations, characteristic variety

Let M be a differential system. If M = D/D · P , one may associate with
M the graded grFD-module grFD/grFD · σ(P ). We want now to associate such a
graded module to each differential system.

Definition 3.2.1. — Let FM be an increasing filtration ofM indexed by Z.

1. We say that (M, FM) is a filtered module over the filtered ring (D, FD) if
M =

⋃
FkM and there exists ` such that FkM = 0 for k ≤ `. Moreover one

asks that for all k and ` F`D · FkM⊂ Fk+`M.

2. We say that the filtered module is good (or that the filtration FM is good)
if moreover one has the following two properties: FkM is a C{x} module of
finite type for all k and there exists k0 such that for all k ≥ k0 and for all `
one has

F`D · FkM = Fk+`M.

Remark that if (M, FM) is a filtered module, then the associated graded module

grFM =
⊕
k∈Z

grFkM
def
=
⊕
k∈Z

FkM/Fk−1M

is naturally equipped with a structure of module over grFD. One has the following
caracterization of a good filtration:

Proposition 3.2.2. — Let (M, FM) be a filtered left D-module. Then the
following conditions are equivalent:

1. FM is a good filtration of M (relatively to FD).
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2. grFM is a grFD-module of finite type.

3. There exists a surjective morphism Dp →M→ 0, a decomposition p =
∑
i pi

(and Dp =
⊕

iDpi) and integers ni such that FM is the filtration ofM induced
by

⊕
i FDpi [ni], where one denotes by F [n] the filtration defined by F [n]k =

Fn+k.

Moreover, if M admits a good filtration then M is of finite type over D.

Proof. — We shall just give a sketch of proof, the details are left as an exercise.
First, given some filtered D-module (M, FM), any submodule M′ and any quo-
tientM′′ come equipped with a structure of filtered module: just use the naturally
induced filtration FkM′ = FkM∩M′ and FkM′′ = Im (FkM→M′′). One shows
easily that a good filtration of M induces a good filtration on a quotient module.
So the third property implies the first. The converse is proven by taking generators
ofM wich are adapted to the filtration (take generators of each FkM over C{x} for
k ≤ k0). The third property implies the second one, just by grading the morphism
Dp →M. The converse is proven in the same way as in 1.3.5. 2

Remark however that condition 2 holds because one knows that FkM = 0 for
k � 0. Remark also that a differential system admits many good filtrations (so at
least one).

Proposition 3.2.3. — Let FM and F ′M be two good filtrations ofM. Then
there exists `0 such that for all k one has

Fk−`0 ⊂ F ′k ⊂ Fk+`0 .

Proof. — Let k′0 such that F`D ·F ′kM = F ′k+`M for all ` and all k ≥ k′0. There
exists `0 such that F ′k′0

M ⊂ F`0M: indeed for all k, F`M∩ F ′k′0M is a sub-C{x}-
module of finite type of F ′k′0

M and one has

⋃
`

[
F`M∩ F ′k′0M

]
= F ′k′0M

hence this sequence (indexed by `) is stationary. Therefore one concludes that for
all k ≤ k′0 one has F ′kM⊂ Fk+`0M and for k ≥ k′0

F ′kM = F ′k−k′0+k′0
M = Fk−k′0

D · Fk′0M
⊂ Fk−k′0

D · F`0M
⊂ Fk−k′0+`0

M
⊂ Fk+`0M. 2
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3.2.4. — The ring grFD is isomorphic to C{x} [ξ] as we have seen before. Let
M be a noetherian grFD-module. One defines the support of M as the set of prime
ideals of C{x} [ξ] associated with the annihilator ideal of M :

√
AnnM = p1 ∩ · · · ∩ pr.

If M is a graded module, then its annihilator is a graded ideal as well as each pi.

Definition 3.2.5. — Let M be a linear differential system and FM a good
filtration of M. The characteristic variety of M is the support of grFM.

3.2.6. — This definition infers that the support of grFM does not depend on
the choice of a good filtration but only onM. Let us verify this point: assume that
we are given two good filtrations FM and GM. We know that there exists `0 such
that for all k one has

Fk−`0M⊂ GkM⊂ Fk+`0M.

We shall show that √
Ann grFM =

√
Ann grGM.

Let ϕ ∈
√

Ann grFM. There exists an a such that ϕa ∈ Ann grFM, i.e. for all
k one has ϕaFkM ⊂ Fk−1M. One deduces of this (by iterating the process) that
there exists a b such that for all k one has

ϕbFk+`0M⊂ Fk−`0M

and hence for all k
ϕbGkM⊂ Gk−1M.

Consequently one obtains that ϕ ∈
√

Ann grGM. By symmetry the other inclusion
is also satisfied. 2

Examples.

1. Let P =
∑d
i=0 ai(x)∂

i
x, with ad 6= 0, ad(0) = 0 andM = D/D · P . Then

grFM = grFD/grFD · σ(P )

where FM is the filtration naturally induced on M, Ann grFM = σ(P ) and

σ(P ) = ad(x)ξ
d. So grFD · σ(P ) = grF · (xvξd) and

√
Ann grFM = (x) ∩ (ξ).

The variety associated with
√

Ann grFM is the subset of the space T (which

is the germ along {0} ×C of C2) defined by the equation xξ = 0.

2. Let M = D/I where I is a proper ideal of D. Choose a division basis for I
{Pp, . . . , Pq} and consider the corresponding presentation ofM:

Dp−q+1 −→ D −→ M −→ 0

(Qp, . . . , Qq) 7→ ∑
QjPj

and the filtration induced by FD.
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Lemma 3.2.7. — grFM = grFD /(σ(Pp), . . . , σ(Pq)) .

Proof. — By definition one has a surjective mapping

grFD −→ grFM−→ 0

which kernel is equal to grF I if one defines FkI = FkD ∩ I. We have to show
that grF I is the ideal generated by the symbols of the division basis. This
follows directly from the definition of Exp (I): indeed, if P ∈ I then exp(P ) ∈
Exp (I) and exp(P ) = exp(Pi) + (βi,mi) for some i ∈ {p, . . . , q} and some
(βi,mi) ∈ N2. Put exp(Pi) = (αi, i), σ(Pi) = ui(x)x

αiξi where ui is a unit and
σ(P ) = u(x)xαξd where u is a unit. Then σ(P ) = (u(x)/ui(x))x

βiξmiσ(Pi). 2

The annihilator of grFM is then equal to (σ(Pp), . . . , σ(Pq)) and its radical
is the intersection of the ideals (x) and (ξ), i.e. the ideal (xξ).

3.2.8. Some properties of the characteristic variety.

• CarM is defined by equations which are homogeneous with respect to the
variable ξ (namely of the form a(x)ξd), because grFM is a graded grFD-
module.

• Here are the different possibilities for CarM:

– CarM = T , i.e.
√

Ann grFM = {0} which is obtained for instance with
M = D or Dp or Dp +M′,M′ any system.

– CarM = {ξ = 0}. Example: M = D/D · P with P =
∑d
i=o ai(x)∂

i
x and

ad(0) 6= 0.

– CarM = {x = 0}. Example: P = a0(x), with a0(0) = 0.

– CarM = {x = 0} ∪ {ξ = 0}. This is the general case.

• CarM cannot be supported on a point (Bernstein inequality). Indeed, if
this would be the case, then for any good filtration FM there would exist
v such that xv ∈ Ann grFM and d such that ξd ∈ Ann grFM. Assume for
instance that FkM = 0 for k < 0. Then for all k ≥ 0 one has xvkFkM = 0
and ∂dkx FkM = 0. Choose generators m1, . . . ,mr of M and put FkM =∑
i FkD ·mi. One obtains

xvm1 = · · · = xvmr = 0 and ∂dxm1 = · · · = ∂dxmr = 0.

This implies that M is a finite dimensional C-vector space, so M = {0} and
CarM = ∅.

3.3. Holonomic systems

Definition 3.3.1. — Let M be a linear differential system. One says that
M is holonomic if M = 0 or if CarM⊂ {x = 0} ∪ {ξ = 0}.
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Examples. — Dp is not holonomic and D/I is holonomic as soon as I is not
equal to 0.

3.3.2. Some properties. — Let 0 → M′ → M → M′′ → 0 be an exact
sequence of left D-modules.

1. M is of finite type over D if and only if so areM′ andM′′.

2. Moreover,M is holonomic if and only if so areM′ andM′′.

Proof. — The first point is clear. Let us prove the second one. In fact one has
the following equality:

CarM = CarM′ ∪ CarM′′.(3.3.3)

Indeed let FM be a good filtration of M. The image filtration FM′′ is good
and so is the induced filtration FM′: by definition one can use the exact sequence
0 → grFM′ → grFM → grFM′′ → 0 in conjunction with proposition 3.2.2. This
exact sequence also shows that√

Ann grFM =
√

Ann grFM′ ∩
√

Ann grFM′′.

Remark also that M is holonomic if and only if M is a successive extension
of modules isomorphic to D/I with nonzero ideals I of D (take an element m of
M and consider the D-module D ·m which is of the form D/I, then consider the
quotientM/D ·m and repeat the process; conclude by noetherianity). But one can
give a more precise statement.

Theorem 3.3.4. — Let M be a left D-module of finite type. Then M is
holonomic if and only ifM is of finite length over D, i.e. every decreasing sequence
of left D-modules is stationary.

Corollary 3.3.5. — LetM be a holonomic left D-module. Then there exists
an element m ∈M which generatesM, i.e. there exists an isomorphismM' D/I
for some nonzero ideal I of D.

This corollary is a direct consequence of the previous theorem and the following
one, which is due to Stafford:

Theorem 3.3.6. — Let A be a simple ring, which is of infinite length as a left
A-module. Then every left A-module of finite length is generated by one element.

The fact that D is simple was proven in 1.3.3 and the fact that D is of infinite
length is left as an exercise.
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Proof of theorem 3.3.4. — We shall use some results of commutative algebra
as explained in the following subsection 3.4. Let M be a left D-module of finite
type and FM be a good filtration.

Proposition 3.3.7. — The dimension dimgrFD,0 grFM and the multiplicity
egrFD,0grFM do not depend on the good filtration F

Let us just give a sketch of proof. Let FM andGM be two good filtrations. First
one may assume that for all k one has FkM ⊂ GkM (the shift of a filtration does
not affect dimension and multiplicity of the corresponding graded module). One
obtains a morphism grFM→ grGM which kernel and cokernel have support at one
point, so of dimension 0. One concludes by using the fact that dimgrFD,0 grFM≥ 1
(Bernstein inequality) and the same for G: the difference between the two Hilbert
functions is then of degree 0, so these two Hilbert functions have the same dominant
term.

We have the following characterization of holonomic D-module.

Lemma 3.3.8. — M is holonomic if and only if dimgrFD,0 grFM = 1.

Proof. — It is enough to prove that dimgrFD,0 grFM = 2 if M = D and
dimgrFD,0 grFM = 1 if M = D/I with I 6= 0 because every module of finite type is
a finite extension of such modules. For the first case the result is clear (cf. 3.4) and
for the second one computes the dimension with a division basis and Exp (I).

Let now M be a holonomic D-module and consider a decreasing sequence
M ⊃ M1 ⊃ · · ·. The dimension of every corresponding graded module is one so
the multiplicity is a decreasing function. It must then be stationary. The corre-
sponding value must be 0 because of the additivity property of multiplicity (cf.
3.4). Conversely, if M is of finite length, no factor isomorphic to D can appear as
a subquotient ofM. HenceM is holonomic. 2

Proof of theorem 3.3.6. — Let M be a left A-module of finite length. We shall
use induction on the length of M denoted by ` (this is the maximal length of a chain
of submodules of M). If ` = 1, M has no proper submodule hence is generated by
any nonzero element. In particular M is cyclic. Assume that ` is bigger than 1 and
that the result is true for any module of length less than `. It is then possible to
find m′ ∈ M such that M ′ = A ·m′ is of length 1 (because M is of finite length).
Hence M/M ′ is of length less than ` and therefore can be generated by one element.
Choose m′′ ∈ M which class in M/M ′ is a generator and put M ′′ = A · m′′. We
conclude that M = M ′ +M ′′. We shall show that M is generated by an element of
the form m′′ + αm′ for some α ∈ A.
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Consider the following surjective morphisms A→M ′ and A→M ′′ (product
on the right by m′ or m′′) and their kernel K ′ and K ′′. Because M (hence M ′ and
M ′′) is of finite length and A of infinite length, one has K ′ 6= 0 and K ′′ 6= 0 (and
these left ideals are different from A). Because A is simple, the two-sided ideal K ′′A
is equal to A. Let α ∈ A such that K ′′α 6= K ′ and consider m = m′′ + αm′. We
shall show that M = A ·m.

Let us first prove that K ′ +K ′′α = A. In fact, K ′ +K ′′α is an ideal strictly
containing K ′ and one has a surjective morphism

M ′ = A/K ′ → A/K ′ +K ′′α→ 0.

The kernel K ′ +K ′′α/K ′ is a submodule of M ′ which is nonzero. Hence it is equal
to M ′, which proves the assertion.

Put 1 = λ′+λ′′α with λ′ ∈ K ′ and λ′′ ∈ K ′′. One sees that (because K ′ ·m′ = 0)

m′ = λ′m′ + λ′′αm′ = λ′′αm′

hence (because K ′′ ·m′′ = 0)

m′ = λ′′m′′ + λ′′αm′ = λ′′m.

Consequently m′ ∈ A ·m and m′′ ∈ A ·m. 2

3.4. Appendix on dimension and multiplicities

Recall some well known facts (see for instance [2, Chap.8, §4.3] or the last
chapter of [1]). Let A = C{x} [ξ] and let M be a noetherian A-module. Define the
Hilbert function

HM(T ) =
∞∑
n=0

dimC

[
(x, ξ)nM/(x, ξ)n+1M

]
T n.

Proposition 3.4.1. — There exist d ∈ N and R ∈ Z[T, T−1] such that

HM(T ) =
R(T )

(1− T )d
.

Moreover one has R(1) > 0. 2

The integer d is called the dimension of M over A at 0 and is denoted by dimA,0M .
The integer R(1) is denoted by eA,0(M) and is called the multiplicity of M at 0. Let
us give some properties without proof:

1.

dimCM/(x, ξ)nM = eA,0(M)
nd

d!
+ βnn

d−1

and lim
n→∞

βn exists.
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2. dimA,0M ≥ 0 and this dimension is zero if and only if M is supported on {0}.

3. eA,0(M) = 0 if and only if M = {0}.

4. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence. Then one has
dimA,0M = max

(
dimA,0M

′, dimA,0M
′′
)

and if all these dimensions are equal

then eA,0(M) = eA,0(M
′) + eA,0(M

′′).

4. Meromorphic connections

Let M be a C{x}-module of finite type. Then, if M is nonzero, multiplication
by x : M → M is not bijective. This follows immediately from Nakayama’s lemma
(see the references in commutative algebra). We shall now see that “Nakayama’s
lemma” is not true over the ring D. In fact there exist many non trivial holonomic D-
modules on which (left) multiplication by x is bijective: these are called meromorphic
connections.

4.1. Localization of a C {x}-module

Let C{x} [x−1] be the ring of Laurent series. This is a field and will be
denoted by K. In the same way one denotes by K̂ the field of formal Laurent series
C[[x]] [x−1]. Let M be a C{x}-module. We denote by M [x−1] the K-vector space
M⊗C{x}K. In general, if M is of finite type over C{x}, M [x−1] is of finite dimension
over K. Remark however that M [x−1] is not of finite type over C{x} in general.
We have a C{x}-linear mapping

M −→M ⊗K

given by m 7→ m ⊗ 1. Remark that this mapping is an isomorphism if and only if
multiplication by x on M is bijective. The localization satisfies the following two
properties, which proof is left as an exercise (or see the references in commutative
algebra).

Lemma 4.1.1. — The kernel of this mapping is the submodule of torsion ele-
ments of M , i.e. the set of m ∈ M such that there exists k with xk ·m = 0. The
cokernel is also a torsion module. 2

Lemma 4.1.2. — Localization is an exact functor, namely if 0→M ′ →M →
M ′′ → 0 is an exact sequence of C{x}-modules, then the corresponding sequence
0→M ′ ⊗K →M ⊗K →M ′′ ⊗K → 0 is also exact. 2

4.2. Localization of a holonomic D-module

Let M be a left D-module. First we consider it only as a C{x}-module and
letM[x−1] be the localized module.

Proposition 4.2.1. — M[x−1] admits a natural structure of a left D-module
and the natural mapping M→M[x−1] is left D-linear.
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Proof. — One defines the action of ∂x onM[x−1] with the help of Leibniz rule:

∂x(m⊗ x−k) =
(
(∂xm)⊗ x−k

)
− km⊗ x−k−1.

We leave as an exercise the proof of D-linearity. 2

Corollary 4.2.2. — The kernel and the cokernel of M→M[x−1] are also
left D-modules. 2

Remark. — As for C{x}-modules of finite type, M[x−1] may not be of finite
type over D (being however of finite type over the ring D[x−1] of linear differential
operators with coefficients in K). For instance, D[x−1] is not of finite type over D.
The main result of this section will be however the following:

Theorem 4.2.3. — Let M be a holonomic D-module. Then M[x−1] is of
finite type over D and even is holonomic.

4.2.4. Filtration VD. — Before giving the proof of this theorem, we shall
introduce a new filtration of D, which will appear to be useful later on. This
filtration is denoted by VD. This is an increasing filtration, indexed by Z. Let
P =

∑
ai(x)∂

i
x ∈ D. We say that P ∈ VkD if maxi(i− v(ai)) ≤ k. Let us give first

some elementary properties of this filtration.

1. V0D = C{x} 〈x∂x〉, x ∈ V−1D and ∂x ∈ V1D.

2. The filtration VD induces on C{x} ⊂ D the opposite filtration to the m-adic
filtration, i.e. VkD ∩ C{x} = m−k for all k, if one puts m−k = C{x} for
k ≥ 0. The graded ring obtained from C{x} is then isomorphic to C[x] (with
its oppposite usual grading).

3. For all k ≥ 0, one has:

V−kD = xkV0D = V0Dxk

and
VkD = ∂kxV0D + Vk−1D = V0D∂kx + Vk−1D.

4. A monomial xα1∂β1
x x

α2∂β2
x · · ·xαr∂βr

x is in VkD if k ≥ β1+· · ·+βr−(α1+· · ·+αr).

5. If P ∈ Vk, then (x∂x + k) · P − P · (x∂x) ∈ Vk−1.

6. For all k ≥ 0, multiplication on the left (or on the right) by x induces a
bijective mapping

V−kD −→ V−k−1D.

7. The graded ring grVD is isomorphic to the Weyl algebra C[x]〈∂x〉, and this
isomorphism is compatible with graduation if one takes on the Weyl algebra
the grading induced by the V -filtration.
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Proposition 4.2.5. — Let P ∈ V0D. Then right multiplication by P

D ·P−→ D

is strict with respect to VD.

Proof. — One has to show that VkD ·P = VkD∩D ·P . Let A ∈ D ·P , written
as A = QP and assume that A ∈ VkD and Q ∈ Vk+`D for some ` ≥ 0. Then we have
[Q][P ] = 0 in grVk+`D if ` > 0. But right multiplication by [P ], grVk+`D

·[P ]−→ grVk+`D
is injective (exercise). Then [Q] = 0 in grVk+`D, so by induction Q ∈ VkD. 2

Corollary 4.2.6. — Let P ∈ V0D and consider the exact sequence

0 −→ D ·P−→ D −→ D/D · P −→ 0.

Consider on M = D/D · P the filtration induced by VD:

UkM def
= VkD/VkD ∩D · P.

Then the sequence

0 −→ VkD
·P−→ VkD −→ UkM −→ 0

is exact for all k. 2

Proof of theorem 4.2.3. — We shall first reduce the proof to the case where
M = D/D · P . We know that M is an extension of modules of the form D/I for
some proper ideals I. Because localization is an exact functor, it is sufficient to
prove the theorem for such modules (one could also use the theorem proved in the
previous section saying that M is in fact isomorphic to such a module, but it is
not necessary). Choose a division basis {Pp, . . . , Pq} for I . One has a surjective
morphism

D/D · Pp −→ D/I −→ 0

which kernel is equal to I/D · Pp. We have yet seen that this is a torsion module
(see lemma 2.3.2). Hence the induced morphism

D/D · Pp[x−1] −→ D/I[x−1]

is an isomorphism. One is then reduced to the case of one generator and one relation.

ConsiderM = D/D ·P for some nonzero P ∈ D. We shall reduce to the case
where P ∈ V0D−V−1D. Assume that P ∈ VkD−Vk−1D with k > 0. Put P ′ = xkP .
Then D · P ′ ⊂ D · P and we get a surjective mapping

D/D · P ′ −→ D/ · P −→ 0

which kernel D · P/D · P ′ is a torsion module (if Q ∈ D and k > 0, there exists
some N such that xNQ = Q′xk for some Q′; hence xNQP = Q′xkP ∈ D · P ′).
Consequently these two modules have isomorphic localized modules. Assume now
that k < 0. Then we know that P = xkP ′ for some P ′ ∈ V0D, so we can apply the
same argument as above.
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We shall then assume now that P = b(x∂x) + xP ′ where b is a nonzero
polynomial in one variable with constant coefficients and P ′ ∈ V0D (this is equivalent
to saying that P ∈ V0D − V−1D). We can now state:

Lemma 4.2.7. — Left multiplication by x

D/D · P x·−→ D/D · P

is bijective (i.e. D/D · P = D/D · P [x−1]) if and only if one has b(k) 6= 0 for all
k ∈ N.

Proof. — We shall use the filtration U (D/D · P ) introduced above. First, inde-
pendently of the hypothesis that b(k) 6= 0 for k ∈ N, one sees that left multiplication
by x

U0 (D/D · P )
x·−→ U−1 (D/D · P )

is bijective. Indeed, consider the following diagram:

0 −→ V0D
·P−→ V0D −→ U0 (D/D · P ) −→ 0

yx· yx· yx·
0 −→ V−1D

·P−→ V−1D −→ U−1 (D/D · P ) −→ 0

We know from 4.2.6 that the two horizontal lines are exact and we have also seen
that the two left vertical maps are bijective. We then obtain the desired assertion
by the snake lemma.

In order to prove the lemma, we must now see that under the hypothesis that
we have made,

M/U0M
x·−→ M/U−1M

withM = D/D · P is bijective. It is enough to prove that for all k ≥ 1,

UkM/Uk−1M
x·−→ Uk−1M/Uk−2M

is bijective. Remark the following fact: for all k ∈ Z we have

b(x∂x + k) · UkM⊂ Uk−1M.

Indeed, let Q ∈ VkD. It is enough to see that

b(x∂x + k) ·Q ∈ Vk−1D +D · P.

We have (because of the properties of VD that we have mentioned):

b(x∂x + k) ·Q = Q · b(x∂x) +Q′ Q′ ∈ Vk−1D
= QP −QxP ′ +Q′

= QP +Q′′ Q′′ ∈ Vk−1D
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which gives the desired result. One deduces from this that the operator induced by
left multiplication by x∂x + 1 on UkM/Uk−1M admits a minimal polynomial which
divides b(s+ k− 1). If b(k− 1) 6= 0 for all k ≥ 1, one deduces that x∂x + 1 = ∂xx is
invertible on UkM/Uk−1M for all k ≥ 1. This implies that left multiplication by x

UkM/Uk−1M
x·−→ Uk−1M/Uk−2M

is injective. Surjectivity is obtained in the same way. 2

It follows from this lemma that if the condition on the zeros of b is satisfied,
then M is isomorphic to its localized module, so in particular the latter is of finite
type over D and also holonomic, because so isM. What happens when the condition
of the lemma is not satisfied ? Let P = b(x∂x) + xP ′ as above. There always exits
k0 ∈ N such that for all k ≥ k0 one has b(k) 6= 0. Consider then the left D-module
D/D (b(x∂x + 1) + P ′x). One has a D-linear mapping

D/D (b(x∂x) + xP ′) −→ D/D (b(x∂x + 1) + P ′x)

given by right multiplication by x. Choose P ′′ ∈ V0D such that xP ′′ = P ′x. In the
same way we get a D-linear mapping

D/D (b(x∂x) + xP ′) −→ D/D (b(x∂x + 2) + P ′′x)

and iterating the process we get

D/D (b(x∂x) + xP ′) −→ D/D
(
b(x∂x + k0 + 1) + P (k0+1)x

)
.

So by the previous lemma, the last module obtained is isomorphic to its localized
module. We can conclude if we know that the kernel and cokernel of this mapping
are torsion modules. This is done step by step and left as an exercise. 2

Examples. — Let P = x∂x + α with α ∈ C. ThenM =M[x−1] if and only if
α 6∈ N. If P = x2∂x + α, thenM =M[x−1] if and only if α 6= 0.

As a corollary of the proof we have also obtained

Corollary 4.2.8. — LetM be a holonomic module. Then its localized mod-
ule is isomorphic to D/D·P for some nonzero P ∈ D (in fact even in V0D−V−1D).

Proof. — We know thatM is isomorphic to some D/I, so

M[x−1] ' D/D · Pp[x−1] ' D/D · P

for some P constructed as above. 2
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4.2.9. Exercise. — LetM = D/D · (x∂x−α)p with α ∈ C and p ∈ N−{0}.

1. Determine the set A ∈ C of complex numbers α for whichM is a meromorphic
connection.

2. Show thatM admits a submodule isomorphic to D/D·(x∂x−α) and a quotient
isomorphic to D/D · (x∂x − α).

3. Let α, β ∈ A. Show that there exists a non trivial left D-linear homomorphism
from D/D · (x∂x − α)p in D/D · (x∂x − β)q if and only if α − β ∈ Z (one can
begin with the case where p = q = 1).

4.3. Meromorphic connections and localized holonomic D-modules

We are now in position to compare two a priori distinct notions: from one
side the notion of a holonomic D-module isomorphic to its localized module (i.e. on
which left multiplication by x is invertible) and from the other side the notion of a
meromorphic connection.

Definition 4.3.1. — A meromorphic connectionMK is a K-vector space of
finite dimension equipped with a derivation ∂x:

1. ∂x :MK →MK is C-linear.

2. For all f ∈ K and all m ∈MK one has ∂x(fm) = (∂f/∂x)m+ f∂xm.

Choose a basis e = (e1, . . . , ed) of MK over K. The matrix A of ∂x in this
basis has coefficients in K. Put

∂xei =
∑
j

ai,jej

with ai,j ∈ K. The meromorphic connexion MK corresponds to the linear system
of linear differential equations ∂/∂x − A. If one changes the basis by a matrix
B ∈ Gld(K) the new matrix of ∂x is A′ = BAB−1 + ∂B/∂xB−1.

Theorem 4.3.2. — A meromorphic connection determines a holonomic lo-
calized D-module and conversely.

Proof. — Let us give some explanation. Let M be a holonomic localized
module. ThenM is also a module of finite type over the ring D[x−1] = K〈∂x〉 so is
a K-vector space with a derivation ∂x. It is asserted that this vector space is finite
dimensional. Conversely, let MK be a meromorphic connection. Then MK is a
K〈∂x〉-module of finite type. It is asserted that it is also of finite type over D.
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So let M be a holonomic localized D-module. We may assume that M is
generated by one element m (one can reduce to that case by successive extensions
or use directly 3.3.5). Then m is also a generator of M over K〈∂x〉. Because M is
holonomic there exists a nonzero P such that P · m = 0, hence ∂dxm is in the K-
vector space generated by m, ∂xm, . . . , ∂

d−1
x m. One deduces that M is a K-vector

space of dimension ≤ d.

Conversely, letMK be a meromorphic connection. This also a K〈∂x〉-module
of finite type. Choose an increasing filtration by sub-D-modules of finite typeM0 ⊂
· · · ⊂ M` ⊂ · · · ⊂ MK (for instance,M0 is the sub-D-module generated by a basis
of MK over K and M`+1 is the sub-D-module generated by M` and (1/x)M`).
Each M` is holonomic: otherwise, MK would have a subquotient isomorphic to
D, and also, because localization is exact, a subquotient isomorphic to D[x−1]; but
this module is certainly not a finite dimensional K-vector space. We conclude that
eachM`[x

−1] is D-holonomic, contained inMK and by the previous result a finite
dimensional vector space. The filtration of MK by the notherian K〈∂x〉-modules
M`[x

−1] must be stationary, soMK =M`[x
−1] for ` big enough. 2

We know that a holonomic localized D-module is isomorphic to D/D · P for
some P . We shall now give the corresponding statement for meromorphic connec-
tions (known as “lemme du vecteur cyclique”).

Proposition 4.3.3. — Let MK be a meromorphic connection. There exists
an element m ∈MK and an integer d such that m, ∂xm, . . . , ∂

d−1
x m is a K-basis of

MK.

Proof. — We can adapt the proof above and use the fact thatMK ' D/D ·P
to get the result. We shall give another proof. Let m1, . . . ,md be a K-basis ofMK .
One adds a new parameter s: one considers the ring K[s] andMK [s] = ⊕skMK =
K[s] ⊗K MK and one puts ∂x(s) = 0 (MK [s] is a trivial family of meromorphic
connections parametrized by C[s]). Consider for all i = 1, . . . , d and p ≥ d,

µi =
p∑

k=0

(s− x)k

k!
∂kxmi ∈MK [s].

Then

∂xµi = −
p∑

k=1

(s− x)k−1

(k − 1)!
∂kxmi +

p∑
k=0

(s− x)k

k!
∂k+1
x mi =

(s− x)p

k!
∂p+1
x mi

and ∂kxµi ≡ 0 mod (s− x)p−k+1. Put

µ(s) = µ = µ1 + (x− s)µ2 + · · ·+ (x− s)d−1

(d− 1)!
µd−1.

If one computes modulo (s − x) on gets µ ≡ µ1, ∂xµ ≡ µ2,. . . ,∂
d−1
x µ ≡ µd. Hence

µ ∧ ∂xµ ∧ · · · ∧ ∂d−1
x µ 6≡ 0. We deduce that for general σ ∈ K the restriction of this

element to s = σ is nonzero, which means that µ(σ) satisfies the requirement. 2
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5. Formal structure of meromorphic connections

In this section, we shall work with the ring D̂[x−1] = K̂〈∂x〉 also denoted by
D
K̂

where K̂ = C[[x]] [x−1]. The results of the previous section are also valid when

D is replaced with D̂. However the main results of this section (theorems 5.3.1 and
5.4.7) will not be true over D.

5.1. Slopes and Newton polygon

Let M
K̂

be a meromorphic connection over K̂ (we shall say that M
K̂

is a
formal meromorphic connection). We have given two proofs of the fact thatM

K̂
is

isomorphic to D
K̂
/D

K̂
· P for some P ∈ D

K̂
. One may assume moreover that all

the coefficients of P belong to C[[x]] and that at least one of them is a unit when P
is expressed in term of x∂x: just multiply P by the right power of x (this does not
affectM

K̂
). Write P =

∑
ai(x)(x∂x)

i with ai ∈ C[[x]] and at least one ai is a unit.

For every “monomial” ai(x)(x∂x)
i associate the point (i,−v(ai)) of N × Z

and define the Newton polygon N(P ) of P to be the convex hull of the set

⋃
i

{
(i,−v(ai))−N2

}
.

This Newton polygon does not depend on the way one writes P . We get the following
picture:

−v
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s
@

@

s
A
A
A
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s
s

N(P )

Figure 3

Definition 5.1.1. — We shall say that P is regular (or has a regular singu-
larity at 0) if N(P ) is a quadrant. We shall say that a meromorphic connection
M

K̂
is regular if it is isomorphic to D

K̂
/D

K̂
· P with P regular.

Remarks.

1. One may define the notion of regularity of an operator P in D or in D̂. The
Newton polygon is defined in the same way: if P =

∑
bi(x)∂

i
x then N(P ) is

the convex hull of the union of the sets (i, i− v(bi))−N2. The only difference
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is that we may not assume here that the origin is a point in the boundary of
N(P ).

2. The fact that P is regular depends only on the associated meromorphic con-
nection D

K̂
/D

K̂
· P . In fact, the Newton polygon of P depends only on the

associated meromorphic connection, as we shall see below.

3. P =
∑
ai(x)(x∂x)

i with ai ∈ C[[x]] is regular if and only if the coefficient ad of
the dominant term is a unit.

We shall now consider with more details the notion of slopes of the Newton
polygon. Fix a linear form L of two variables with coefficients λ0 and λ1 in N and
relatively prime: L(s0, s1) = λ0s0 + λ1s1. We shall define for each such L a new
filtration of D

K̂
(one can do the same for D, D̂, DK) which interpolates between

FD
K̂

and VD
K̂

(these two filtrations are defined in the same way as in 1.3.1 and
4.2.4). Let P ∈ D

K̂
. If P is a monomial xa∂bx with a ∈ Z and b ∈ N, we put

ordL(P ) = L(b, b− a)

and if P =
∑d
i=0 bi(x)∂

i
x with bi ∈ K̂ we put

ordL(P ) = max
i
L(i, i− v(ai)).

We now define the increasing filtration LVD
K̂

indexed by Z as

LVλDK̂ =
{
P ∈ D

K̂
|ordL(P ) ≤ λ

}
.

One has the following properties:

1. If L = L0 with L0(s0, s1) = s0 then L0VD
K̂

= FD
K̂

and if L = L1 with
L1(s0, s1) = s1 then L1VD

K̂
= VD

K̂
.

2. ordL(∂x) = L(1, 1) = λ0 + λ1, ordL(x) = −λ1 and ordL(x−1) = λ1.

3. One has ordL(PQ) = ordL(P ) + ordL(Q) and if λ0 6= 0 one has also the
inequality ordL([P,Q]) ≤ ordL(P ) + ordL(Q)− 1. Consequently, if λ0 6= 0 the

graded ring gr
LVD

K̂

def
=
⊕

λ∈Z gr
LV
λ DK̂ is a commutative ring. Denote by ξ the

class of ∂x in this ring. Then this ring is isomorphic to K̂[ξ]. This isomorphism
is compatible with graduations if one puts on K̂[ξ] the twisted graduation
defined by L as above (this is left as an exercise). One denotes by σL(P )
(L-symbol of P ) the class of P in gr

LV
ordL(P )DK̂ . For instance, σL(xa∂bx) = xaξb.

Example. — Let P = x2∂x + 1 and L as above with λ0 6= 0. Let us compute
σL(P ). One has

ordL(x2∂x) = L(1,−1) = λ0 − λ1

ordL(1) = L(0, 0) = 0

so one may distinguish three cases:
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• λ0 − λ1 > 0, σL(P ) = x2ξ in gr
LV
λ0−λ1

D
K̂

.

• λ0 = λ1(= 1), σL(P ) = x2ξ + 1 in gr
LV
0 DK̂ .

• λ0 − λ1 < 0, σL(P ) = 1.

5.1.2. — Let M
K̂

be a formal meromorphic connection. For each L as above,
one may define the notion of a good filtration (relative to LVD

K̂
): a filtration LUM

K̂

is good if it is induced by a direct sum of shifted LVD
K̂

-filtrations. Remark however
that in order for a filtration to be good, it is not sufficient that the graded module
is of finite type over the graded ring gr

LVD
K̂

, because filtrations LU do not satisfy
LUλ = 0 for λ� 0.

5.1.3. Exercise. — Denote by RL(D
K̂

) the Rees ring associated with the
filtration LVD

K̂
: this ring is the subring of D

K̂
[u, u−1] (where u is a new variable)

defined by

RL(D
K̂

) =
⊕
k∈Z

LVkDK̂ · u
k

(verify first that this is a subring). Let LUM
K̂

be a filtration ofM
K̂

indexed by Z.

1. Show that (M
K̂
, LUM

K̂
) is a filtered module over the filtered ring (D

K̂
, LVkDK̂)

if and only if

RL(M
K̂

)
def
=
⊕
k∈Z

LUkMK̂
· uk

is a module over RL(D
K̂

) (in a natural way).

2. Show that the Rees ring RL(D
K̂

) is a (left and right) noetherian ring (one can
adapt the proof of corollary 1.3.5).

3. Show that the filtration LUM
K̂

is good if and only if the Rees moduleRL(M
K̂

)
is of finite type over RL(D

K̂
).

4. Conclude that ifM′
K̂

is a submodule ofM
K̂

and if LUM
K̂

is a good filtration,

then the induced filtration LUM′
K̂

= LUM
K̂
∩M′

K̂
is good, and an analogous

statement for a quotient.

5. Given a good filtration LUM
K̂

, show that a filtration LU ′M
K̂

is good if and
only if there exists ` ∈ N such that for all k ∈ Z one has

LUk−`MK̂
⊂ LU ′kMK̂

⊂ LUk+`MK̂
.

6. Verify that all the previous results are also valid over the rings D, D̂, C[x]〈∂x〉.
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One proves in the same way as in 3.2.6 the following

Proposition 5.1.4. — Let L be a linear form with λ0 6= 0. Denote by
Car L(M

K̂
) the support of gr

LUM
K̂

defined by
√

Ann grLUM
K̂
. Then this support

does not depend on the choice of the good filtration LUM
K̂
. 2

Example. — IfM
K̂

= D
K̂
/D

K̂
·P then the annihilator ideal is equal to the ideal

generated by σL(P ). The previous example shows that this ideal is homogeneous
with respect to the L-grading but not always bi-homogeneous (this did not happen
for the filtration F ).

Definition 5.1.5. — A linear form L as above with λ0 6= 0 is called as slope
for M

K̂
if Car L(M

K̂
) is not defined by a monomial. This means that the ideal√

Ann grLUM
K̂

is not equal to one of the following ideals of D
K̂
: (xξ), (ξ), (x), (1).

Of course, in D
K̂

the first two ideals coincide as well as the other ones, but as
given here this definition can be extended to the rings used in the previous sections
without any change. We have then obtained an intrinsic definition of slopes. If
M

K̂
= D

K̂
/D

K̂
· P and λ0, λ1 6= 0 then L is a slope for M

K̂
iff σL(P ) is not a

monomial. Remark that the linear form L0 (for which λ1 = 0) is never a slope for
M

K̂
, because the F -symbol of P is always a monomial (up to a unit). This exactly

means that L is a slope iff L is the direction of a side of N(P ) which is not vertical.

We shall now consider the linear form L1 which is not treated in the same
way because grVD

K̂
is not commutative.

Definition 5.1.6. — Given a meromorphic connection M
K̂
, we shall say

that L1 is a slope forM
K̂

if for all linear form L with λ0 6= 0 one has Car L(M
K̂

) 6=
∅, i.e.

√
Ann grLUM

K̂
6= K̂[ξ].

Let us explain this definition in terms of N(P ). Assume as we did before that
P ∈ V0D̂ − V−1D̂, which means that P has coefficients in C[[x]] and one of them is
a unit. Then one proves easily (left as an exercise):

Lemma 5.1.7. — L1 is a slope for M
K̂

if and only if N(P ) has a vertex on
the horizontal axis different from the origin.

This means exactly that N(P ) has a horizontal side (see fig. 4).

We shall denote by P(M
K̂

) the set of all slopes ofM
K̂

. These correspond to the
directions of the non vertical sides of N(P ). Let us give some elementary properties
of P(M

K̂
) which are proven by using for instance the behaviour of Car L(M

K̂
)

under a morphism (analogous to 3.3.3).

1. P(M
K̂

) is non empty ifM
K̂
6= {0}.
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Figure 4: L1 is a slope
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Figure 5: L1 is not a slope

2. In an exact sequence of connections 0 → M′
K̂
→ M

K̂
→ M′′

K̂
→ 0 one has

P(M
K̂

) = P(M′
K̂

) ∪ P(M′′
K̂

).

3. Let ϕ : M′
K̂
→ M

K̂
a D

K̂
-linear morphism. If P(M

K̂
) ∩ P(M′

K̂
) = ∅, then

ϕ = 0.

4. M
K̂

is regular iff P(M
K̂

) = {L1}.

5.1.8. Exercise. — Give an intrinsic definition of the Newton polygon (i.e.
in term ofM

K̂
only and good filtrations).

5.2. Formal structure of regular connections

LetM
K̂

be a regular formal meromorphic connection.

Lemma 5.2.1. — There exists a basis of M
K̂

over K̂ such that the matrix of
x∂x has entries in C[[x]].

Proof. — Choose a cyclic vector m and consider the basis m, ∂xm, . . . , ∂
d−1
x m.

Then m satisfies an equation of the form ∂dxm +
∑d−1
i=0 bi(x)∂

i
xm = 0. We may in

fact write bi(x) = xib′i(x) with b′i ∈ C[[x]], because of regularity. This implies that
m,x∂xm, . . . , (x∂x)

d−1m is also a basis ofM
K̂

. The matrix of x∂x in this basis has
entries in C[[x]]. 2

Theorem 5.2.2. — Let M
K̂

be a regular formal meromorphic connection.
Then there exists a basis for which the matrix of x∂x is constant.

Proof. — Start with a basis m1, . . . ,md for which the matrix A(x) of x∂x has
entries in C[[x]]. Assume first that the following condition is satisfied: two distinct
eigenvalues of A0 (constant part of A) do not differ by an integer. We shall find a
basis m′ = (m′1, . . . ,m

′
d) for which the matrix is A0. Let B(x) ∈ Gl(d,C[[x]]) and

put

m′i =
∑
j

bij(x)mj.
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The matrix of x∂x in the basis m′ is

BAB−1 + x(∂B/∂x)B−1.(5.2.3)

One then search for a B such that

BAB−1 + x
∂B

∂x
B−1 = A0

that is

x
∂B

∂x
= A0 ·B −B · A.

Put B =
∑∞

0 xkBk and A =
∑∞

0 xkAk. We shall find Bk inductively. In degree 0
one must have

0 = A0B0 −B0A0

so one may take B0 = Id . In degree p ≥ 1 one can write

(pId − A0)Bp +BpA0 = Φ (B0, . . . , Bp−1;A0, . . . , Ap)

where Φ is a polynomial. If one knows B0, . . . , Bp−1 one may then solve for Bp

thanks to the following lemma

Lemma 5.2.4. — Let P ∈ End(Cp) and Q ∈ End(Cq) be given. Then the
following equation

XP −QX = Y

has a unique solution X ∈ Hom(Cp,Cq) for all Y ∈ Hom(Cp,Cq) if and only if P
and Q have no common eigenvalue.

One applies the lemma to P = pId − A0 and Q = −A0.

Proof of the lemma. — Let ϕ : Hom(Cp,Cq)→ Hom(Cp,Cq) given by ϕ(X) =
XP −QX. One shows that the eigenvalues of ϕ are precisely the differences λi−µj
where λi is an eigenvalue of P and µj one of Q. Hence ϕ is bijective iff for all i, j
the difference λi − µj is nonzero. 2

One has now to get rid of the hypothesis made on the eigenvalues of A0.
Start with a basis m of M

K̂
for which the matrix of x∂x has entries in C[[x]]. Let

{λ1, . . . , λp} the set of eigenvalues of A0.

Lemma 5.2.5. — There exists a basis m′ ofM
K̂

for which the matrix A′ has
entries in C[[x]] and A′0 admits λ1 + 1, λ2, . . . , λp as eigenvalues.

By induction this lemma gives a basis of M
K̂

for which the hypothesis made
above is satisfied. 2
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Proof of the lemma. — Let B ∈ Gl(d, K̂) the transition matrix. Then A′ is
given by 5.2.3. Remark first that if B has constant coefficients, the second term in
5.2.3 vanishes. So we may assume that A0 is a Jordan matrix. We may write

A =

(
P 0
0 Q

)
+ xA(1)

where Q contains only the Jordan blocks associated with λ1. Put

B =

(
Id 0
0 xId

)
.

Then A′0 admits λ1 + 1, λ2, . . . , λp as eigenvalues. 2

Corollary 5.2.6. — If M
K̂

is a regular formal meromorphic connection,
then M

K̂
is isomorphic to a direct sum of elementary such connections, namely

those isomorphic to D
K̂
/D

K̂
· (x∂x − α)p (with α ∈ C and p ∈ N).

Proof. — One chooses a basis for which the matrix of x∂x is constant and then
by a constant change of basis one gets a Jordan matrix. 2

5.3. Factorization into one slope terms

We shall now consider the general case of a formal meromorphic connection,
without hypothesis of regularity.

Theorem 5.3.1. — Let M
K̂

be a formal meromorphic connection and let{
L(1), . . . , L(r)

}
be the set of its slopes. There exists a unique (up to permutation)

splitting M
K̂

=
⊕r

i=1M
(i)

K̂
into meromorphic connections with P(M(i)

K̂
) =

{
L(i)

}
.

Proof of uniqueness. — Consider two such splittings M
K̂

=
⊕r

i=1M
(i)

K̂
=⊕r

i=1M
′(i)
K̂

. Each element in M
K̂

is the sum of its projections in each M(i)

K̂
. The

restriction to M′(i)
K̂

of the projection M
K̂
→ M(j)

K̂
is zero for i 6= j, because the

two modules have no common slope. This proves that M′(i)
K̂
⊂ M(i)

K̂
. The converse

inclusion is obtained in the same way. 2

Proof of existence. — Put M
K̂

= D
K̂
/D

K̂
· P and assume that N(P ) has at

least two non vertical sides. Split N(P ) in two parts N1 and N2 (see fig. 6).

Lemma 5.3.2. — There exists a splitting P = P1P2 with

1. N(P1) ⊂ N1 and N(P2) ⊂ N2,

2. A is a vertex of N(P1) and the origin is a vertex of N(P2).



Algebraic theory of differential equations 31

−v
d

s H
HHH

s
@

@

s sA
−v

d
s
A
A
A
A

s
s

Figure 6

Proof. — Let L be a linear form such that the line L = L(A) has contact with
N(P ) in A only. Put a = L(A). Put σL(P ) = αx`ξk with α ∈ C and (k, k− `) = A.
If P = P1P2 one must have σL(P ) = σL(P1)σL(P2). So put σL(P1) = σL(P ) and
σL(P2) = 1. One then looks for P1 and P2 in the following form: P1 is of degree k
and

P1 = P
(a)
1 + P

(a−1)
1 + P

(a−2)
1 + · · ·

P2 = 1 + P
(−1)
2 + P

(−2)
2 + · · ·

with P
(a)
1 = αx`∂kx and each term in the sum is L-homogeneous, the exponents giving

the L-degree. These homogeneous parts must then satisfy

P (a−1) = αx`∂kxP
(−1)
2 + P

(a−1)
1

P (a−2) = αx`∂kxP
(−2)
2 + P

(a−2)
1 + P

(a−1)
1 P

(−1)
2

... =
...

Argue now by induction: one wants to prove that for all h one may find P
(a−h)
1 and

P
(−h)
2 such that these equations are satisfied and N(P

(a−h)
1 ) ⊂ N1, N(P

(−h)
2 ) ⊂ N2.

For h = 1 this is elementary division: one may write P (a−1) = Q(a−1) +R(a−1) where
Q(a−1) (resp. R(a−1)) is the sum of monomials contained in N1 (resp. N2 + A), so

R(a−1) can be written αx`∂kxR
′. Put P

(a−1)
1 = Q(a−1) and P

(−1)
2 = R′.

One must have

P (a−h−1) = αx`∂kxP
(−h−1)
2 + P

(a−h−1)
1 +

h∑
j=1

P
(a−j)
1 P

(j−h−1)
2

so one divides P (a−h−1)−∑h
j=1 P

(a−j)
1 P

(j−h−1)
2 by αx`∂kx and take the L-homogeneous

part to get P
(a−h−1)
1 and P

(−h−1)
2 . 2

As a consequence of this lemma, one gets an exact sequence

0 −→ D
K̂
· P2/DK̂ · P −→ DK̂/DK̂ · P −→ DK̂/DK̂ · P2 −→ 0.
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Lemma 5.3.3. — Right multiplication by P2 induces an isomorphism of left
D
K̂
-modules

D
K̂
/D

K̂
· P1

·P2−→ D
K̂
· P2/DK̂ · P.

Proof. — Surjectivity is clear. For the injectivity, let Q ∈ D
K̂

be such that
QP2 ∈ DK̂ · P . One has to prove that Q ∈ D

K̂
· P1. One has QP2 = RP1P2 hence

(Q − RP1)P2 = 0. But right multiplication by P2 on D
K̂

is injective (consider the
symbols for the filtration FD

K̂
). So Q−RP1 = 0 and Q ∈ D

K̂
· P1. 2

We have now obtained an exact sequence

0 −→ D
K̂
/D

K̂
· P1 −→ DK̂/DK̂ · P −→ DK̂/DK̂ · P2 −→ 0.

Corollary 5.3.4. — P(P ) = P(P1) ∪ P(P2) and P(P1) ∩ P(P2) = ∅.

The second equality comes from the properties of the Newton polygons of P1

and P2. In fact, one can prove that N(P1) = N1 and N(P2) = N2 (first one proves
that N(P ) = N(P1P2) = N(P1) + N(P2), then one deduces the equality from the
inclusions given in lemma 5.3.2).

We shall now prove that the exact sequence above splits, i.e. we have a
splitting

D
K̂
/D

K̂
· P = D

K̂
/D

K̂
· P1 ⊕DK̂/DK̂ · P2.

Lemma 5.3.5. — With P1 and P2 as above, there exist Q,R ∈ D
K̂

such that

QP1 + P2R = 1.

Assume that this lemma is proven. Consider then the D
K̂

-linear morphism

D
K̂
−→ D

K̂
/D

K̂
· P

which sends 1 to the class of 1 − RP2 and hence each T ∈ D
K̂

to the class of
T (1 − RP2). The image of the left ideal D

K̂
· P2 is zero: let TP2 be an element of

this ideal. Its image is then the class of TP2(1−RP2). But we have

TP2(1−RP2) = T (1− P2R)P2 = T (QP1)P2 = TQP ∈ D
K̂
· P.

We have then constructed a section of the projection D
K̂
/D

K̂
· P → D

K̂
/D

K̂
· P2.
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Proof of lemma 5.3.5. — One uses here also the decomposition into L-homoge-
neous components. We shall impose that Q has L-order 0 and R L-order −a − 1.
So write

Q = 1 +Q(−1) +Q(−2) + · · ·
R = R(−a−1) +R(−a−2) + · · ·

and these L-homogeneous components must satisfy

1 = 1

0 = Q(−1) + P
(−1)
1 + P

(a)
2 R(−a−1)

0 = Q(−2) +Q(−1)P
(−1)
1 + P

(a)
2 R(−a−2) + P

(a−1)
2 R(−a−1)

... =
...

In general one obtains that P
(a)
2 R(−a−h) + Q(−h) is equal to something known by

induction. One gets Q and R by an inductive process. 2

5.3.6. Exercise. — Let P = x(x∂x)
2 + x∂x + 1/2.

1. Show thatM = D/D · P is a meromorphic connection.

2. Draw the Newton polygon of P and find the formal decomposition of M
K̂

without computation.

3. Show thatM cannot be decomposed into a direct sum of two D-modules:

(a) Show that there exists a product decomposition

P = (x(x∂x) + v(x)) · (x∂x + u(x))

with u, v ∈ C[[x]].

(b) Compute by induction the coefficients of u.

(c) Show that u 6∈ C{x} and conclude.

5.3.7. Exercise. — LetM
K̂

andM′
K̂

be two meromorphic connections. Show
that the tensor product M

K̂
⊗
K̂
M′

K̂
comes equipped with a natural structure of

D
K̂

-module. Show that if M′
K̂

is regular and nonzero, then the set of slopes of
M

K̂
⊗K M′

K̂
is exactly the set of slopes of M

K̂
(use the classification of formal

meromorphic connections).

5.4. Formal structure (general case)

5.4.1. Ramification. — Let π : C→ C be the function defined by t 7→ tq = x.
This function induces a mapping denoted by π∗ : C{x} ↪→ C{t} (and C[[x]] ↪→ C[[t]])
by putting π∗f = f ◦ π, i.e. π∗ (

∑
anx

n) =
∑
ant

qn. In the same way one obtains
π∗ : K ↪→ L = C{t} [t−1] and K̂ ↪→ L̂ = C[[t]] [t−1]. Hence L (resp. L̂) is a finite
extension of K (resp. K̂).
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5.4.2. Exercise. — The Galois group of L/K (resp. L̂/K̂) is the cyclic group
Z/qZ.

Let M
K̂

be a formal meromorphic connexion. One first defines π∗M
K̂

as a

vector space over L̂: π∗M
K̂

= L̂ ⊗
K̂
M

K̂
. Then one defines the action of ∂t by:

t∂t · (1⊗m) = q(1⊗ (x∂x ·m)) and hence

t∂t · (ϕ⊗m) = q(ϕ⊗ (x∂x ·m)) +

(
(t
∂ϕ

∂t
)⊗m

)
.

One deduces from this formula the action of ∂t = t−1(t∂t).

Lemma 5.4.3. — Let P(M
K̂

) =
{
L(1), . . . , L(r)

}
be the set of slopes of M

K̂
.

Then P(M
L̂
) =

{
L′(1), . . . , L′(r)

}
with L(s0, s1) = λ0s0 + λ1s1 and L′(s0, s1) =

λ0s0 + (λ1/q)s1.

Proof. — Let M
K̂

= D
K̂
/D

K̂
· P . Then M

L̂
= D

L̂
/D

L̂
· P ′ where, if one

writes P =
∑
ai(x)(x∂x)

i, one puts P ′ =
∑
qiai(t

q)(t∂t)
i. Consequently, N(P ′) can

be obtained from N(P ) by a dilatation of the vertical axis in a ratio of 1 to q. If
L is a slope of M

K̂
we know that λ1 6= 0 so that we may associate with L the

number λ0/λ1 which is also called a slope. This number is then multiplied by q after
ramification. 2

Remark that as a consequence of this lemma, there always exists a ramification
such that all the slopes of π∗M

K̂
are integers. Remark also that degP ′ = degP .

5.4.4. Elementary meromorphic connections. — Let R(z) =
∑k
i=1 αiz

i be a
deg k polynomial without constant term with coefficients in C. We shall denote by
FR
K̂

the following meromorphic connection: the K̂-vector space is isomorphic to K̂
with a basis denoted by e(R). The action of x∂x is defined by

x∂x(ϕ · e(R)) =

[
(x
∂ϕ

∂x
) + ϕx

∂R(x−1)

∂x

]
· e(R).

This means that e(R) plays the role of expR(x−1) (verify that this defines a mero-
morphic connection).

Definition 5.4.5. — An elementary meromorphic connection (over K̂) is a
connection isomorphic to FR

K̂
⊗
K̂
G
K̂

where G
K̂

is an elementary regular meromorphic
connection.

5.4.6. Exercise. — Let G
K̂

= D
K̂
/D

K̂
· (x∂x − α)p. Find P such that FR

K̂
⊗
K̂

G
K̂

= D
K̂
/D

K̂
· P . Show that this connection has only one slope and compute it.
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We can now state the main theorem of this section.

Theorem 5.4.7. — LetM
K̂

be a formal meromorphic connection. There ex-
ists an integer q such that the connection π∗M

K̂
= M

L̂
is isomorphic to a direct

sum of elmentary formal meromorphic connections.

Remarks.

1. This result is analogous to Puiseux theorem for plane algebraic (or algebroid)
curves.

2. If at least one slope ofM
K̂

is not an integer then the ramification is necessary,
because the slope of an elementary formal connection is an integer (see exercise
above).

Proof of the theorem 5.4.7. — The proof is done by induction on the lexico-
graphically ordered pair (dim

K̂
M

K̂
, κ) where κ ∈ N∪{+∞} is equal to the biggest

slope of M
K̂

, i.e. the biggest ratio λ0/λ1 (this represents the most vertical side of
N(P ) which is not vertical) if this slope is an integer, and is equal to +∞ if not.
Remark that dim

K̂
M

K̂
= degP ifM

K̂
= D

K̂
/D

K̂
· P .

We may first assume that M
K̂

has only one slope L by applying induction

to each term of the splitting into one slope terms. One calls σL(P ) ∈ K̂[ξ] the
determinant equation of P . Because L is a slope, σL(P ) has at least two monomials
and is homogeneous of degree ordL(P ) = 0 because P is chosen with coefficients in
C[[x]], one of them being a unit. Write

σL(P ) =
∑

L(i,j)=0

αijx
j(xξ)i.

Let θ = xλ0(xξ)λ1 where we assume that λ0 and λ1 are relatively prime integers.
Then we can write

σL(P ) =
∑
k≥0

αkθ
k

with α0 6= 0 because the origin is a vertex of N(P ).

First case: λ1 = 1. — This means that the slope is an integer (hence κ < +∞).
Consider the factorization

σL(P ) = ∗
∏
β

(θ − β)γβ

where ∗ is constant and choose a root β0 of this polynomial. Put R(z) = (β0/(λ0 +
1))zλ0+1 and consider M

K̂
⊗ FR

K̂
. If e is a cyclic vector for M

K̂
then e⊗ e(R) is a

cyclic vector forM
K̂
⊗FR

K̂
. If P (x, x∂x) · e = 0 then

P

(
x, x∂x − x

∂R(x−1)

∂x

)
· e⊗ e(R) = 0
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and here we have x · ∂R(x−1)/∂x = β0x
−(λ0+1). Denote P ′ = P (x, x∂x + βx−(λ0+1)).

Then one verifies that P ′ has coefficients in C[[x]]. Moreover, σL(P ′) =
∑
k≥0 αk(θ+

β0)
k. Distinguish two cases:

1. The determinant equation has only one root β0. Then σL(P ′) = ∗θr. This
implies that L is not a slope for P ′. Moreover, one verifies in the same way
that if L′ is another linear form with λ′0/λ

′
1 > λ0/λ1(= λ0) then L′ is not a

slope for P ′ (one proves that for such a linear form one has σL′(P
′) = σL′(P )).

Hence either κ(M
K̂
⊗ FR

K̂
) < κ(M

K̂
) or κ(M

K̂
⊗ FR

K̂
) = +∞. In the first

case, apply induction to obtain a splitting after ramification of M
L̂
⊗ FR

L̂
.

Tensor the corresponding direct sum of elementary meromorphic connections
with F−R

L̂
to obtain the splitting of M

L̂
. In the other case, apply the case

κ = +∞ below.

2. The determinant equation has more than one root. Then L is a slope of P ′

and the same argument as above shows that if L′ is such that λ′0/λ
′
1 > λ0

then L′ is not a slope for P ′. However, P ′ has at least one more slope because
σL(P ′) = θβ0Q(θ) vanishes for θ = 0, which means that the segment between
the origin and the point of coordinates (degP ′,−λ0 degP ′) (which is a vertex
of N(P ′)) cannot be a side of N(P ′). One can now split M

K̂
⊗ FR

K̂
into one

slope terms and argue as above.

Second case: λ1 > 1 (i.e. κ = +∞). — The slope is not an integer so one
ramifies in degree q = λ1. ConsiderM

L̂
= D

L̂
/D

L̂
· P ′. Then P ′ has only one slope

L′ as explained in 5.4.3 and σL′(P
′) =

∏
(θ− β)γβ with θ =

[
tλ0(t∂t)

]λ1

= θ′λ1 . This

implies that σL′(P
′) has at least two distinct roots when considered as a polynomial

in the variable θ′. One then applies the second possibility of the first case treated
above. 2

6. Formal structure of holonomic D̂-modules

We shall now extend the results of the previous section to holonomic D̂-
modules. We know that a torsion module has a simple structure, so what we have
to do is to describe in simple terms the extension of a meromorphic connection by
a torsion module. The notion of (moderate) nearby and vanishing cycles will be
useful for that purpose.

6.1. Moderate nearby and vanishing cycles

The results of this section apply to modules over D, D̂, or C[x]〈∂x〉. We shall
only consider the case of D. Let UM be a filtration ofM good for VD (see §4.2.4
and exercise 5.1.3). We shall develop below the notions introduced in §4.2.4.
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Proposition 6.1.1. — There exists a polynomial B ∈ C[s] − {0} such that
for all k ∈ Z one has

B(x∂x + k) · UkM⊂ Uk−1M.

This polynomial B depends on the filtration UM. A minimal polynomial satis-
fying this property is called a Bernstein polynomial for the filtration UM.

Proof. — We leave it as an exercise, but we shall indicate the main steps.

1. If the property is satisfied for one good filtration, it is satisfied for all ones
(changing the polynomial B). One uses for that 5.1.3–5.

2. In an exact sequence 0 → M′ → M → M′′ → 0, the property is satisfied
for M if and only if it is satisfied for M′ and M′′. One uses for that a good
filtration onM and one induces it onM′ andM′′ (see 5.1.3–4).

3. One is then reduced to the case whereM = D/D ·P . IfM is local, one takes
P ∈ V0D− V−1D (corollary 4.2.8) and one takes the filtration induced by VD
(as in corollary 4.2.6). The case whereM is a torsion module is treated in the
same way.

If one considers Bernstein polynomials B (for UM) and B′ (for U ′M),
the inclusions 5.1.3–5 show that B′(s) divides the product

∏`
j=−`+1B(s + j) and

conversely. In other words, the roots of B and the roots of B′ coincide modulo Z.
We shall now construct a filtration for which the roots of B are contained in the set
(see fig. 7)

Σ = {α ∈ C |−1 ≤ Reα ≤ 0, Imα ≥ 0 if Reα = −1, Imα < 0 if Reα = 0}

0−1
s

qqq qqqqqqq q q q q q
q q qq q q q q q
q q qq q q q q q
q q qq q q q q q
q q qq q q q q q
q q qq q q q q q
q q qq q q q q q
q q qq q q q q q
q qq q q q qq q q

Figure 7: the set Σ
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What is important here is that if α, β ∈ Σ, then α − β ∈ Z ⇔ α = β.
One could do the same construction for any section σ : C/Z→ C of the projection
C→ C/Z.

Proposition 6.1.2. — There exists a unique filtration, denoted by VM, sat-
isfying the following properties:

1. VM is a filtration (indexed by Z) good for VD,

2. the roots of the Bernstein polynomial b of VM are contained in Σ.

Before giving the proof of this proposition, let us state the following corollary:

Corollary 6.1.3. — Let 0→M′ →M→M′′ → 0 be an exact sequence of
holonomic modules. Then VM′ = VM∩M′ and VM′′ = Image(VM→M′′).

Indeed, put for instance UM′ = VM∩M′. This is a good filtration of M′,
due to Artin-Rees lemma (5.1.3–4) and its Bernstein polynomial divides the one of
VM, hence has its roots in Σ. From unicity one deduces that UM′ = VM′. 2

One concludes also that any morphism of holonomic D-modules is strictly
compatible with the V -filtration: if ϕ : M → M1 is such a morphism, then Kerϕ
and Imϕ are holonomic and one has

VKerϕ = Kerϕ ∩ VM , V Imϕ = Imϕ ∩ VM1 = ϕ(VM).

In other words, if one denotes by grV ϕ : grVM → grVM1 the graded morphism
associated with ϕ, one has

Ker grV ϕ = grV (Kerϕ) and Coker grV ϕ = grV (Cokerϕ) .

Proof of proposition 6.1.2. — Start with a good filtration UM with Bernstein
polynomial B. Put B = B1 · B2. Consider the following filtration U ′M: put for all
k ∈ Z

U ′kM = Uk−1M+B2(x∂x + k) · UkM.

This defines a good filtration (5.1.3–5) and its Bernstein polynomial divides B1(s) ·
B2(s−1). Continuing this process, one obtains a good filtration U ′M for which the
roots of the Bernstein polynomial are contained in the set Σ + ` for some ` ∈ Z.
Put then VkM = U ′k−`M.
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We shall now give some properties of this filtration VM.

1. For each k ∈ Z, grVkM is a module of finite type over the ring grV0 D = C[x∂x].
Moreover, the endomorphism x∂x admits a minimal polynomial b(x∂x + k) on
this space, which implies that grVkM is a finite dimensional C-vector space.

2. Left multiplication by x : VkM→ Vk−1M (remember that x ∈ V−1D) induces
a C-linear mapping

x : grVkM−→ grVk−1M.

In the same way, ∂x : VkM→ Vk−1M induces

∂x : grVkM−→ grVk+1M.

The first mapping is invertible as soon as k 6= 0 and the second one as soon
as k 6= −1: indeed, for k 6= 0 the composed mapping ∂x · x : grVkM→ grVkM
is invertible because its minimal polynomial β(s) is equal to b(s+ k − 1) and
hence β(0) = b(k − 1) 6= 0 if k 6= 0. In the same way, the composed mapping
x · ∂x : grVkM→ grVkM is invertible when k 6= −1.

3. When k ≤ −1, left multiplication by x : VkM → Vk−1M is invertible. This
property does not follow directly from the previous one, but as a consequence
of this one, it is enough to show that there exists ` ≤ −1 for which x : V`M→
V`−1M is invertible, and it is also enough to show that this last propety is
valid for some good filtration UM. Use then a presentation of M and argue
as in the proof of lemma 4.2.7.

6.1.4. Exercises.

1. Show that the natural morphismM→M[x−1] induces an isomorphism

VkM−→ VkM[x−1]

for all k ≤ −1.

2. M is a torsion module if and only if V−1M = {0}.

3. IfM = D/D · P with P ∈ V0D− V−1D, P = b(x∂x) + xP ′, and if the roots of
b are contained in Σ, then one has for all k ∈ Z

VkM = VkD/D · P ∩ VkD.

6.1.5. — We may now introduce the “nearby cycles” and the “vanishing cycles”
ofM. For a holonomic moduleM put

Ψ(M) = grV−1M
Φ(M) = grV0M.
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Each of these vector spaces comes equipped with a “monodromy operator”

T = exp (−2iπx∂x) =
∞∑
n=0

1

n!
(−2iπx∂x)

n

and the following diagrams commute:

Ψ(M)
∂x−→ Φ(M)yT yT

Ψ(M)
∂x−→ Φ(M)

and

Ψ(M)
x←− Φ(M)yT yT

Ψ(M)
x←− Φ(M)

One considers the following mappings

can : Ψ(M)→ Φ(M) for “canonical”

var : Φ(M)→ Ψ(M) for “variation”

which satisfy
can ◦ var = T − Id : Φ(M)→ Φ(M)

var ◦ can = T − Id : Ψ(M)→ Ψ(M)

and which are defined as follows:

can = ∂x

and

var =
∞∑
n=1

(−2iπ)n

n!
(x∂x)

n−1 · x = x ·
∞∑
n=1

(−2iπ)n

n!
(∂xx)

n−1.

6.1.6. Exercises.

1. Show that there exists no torsion submodule ofM if and only if var : Φ(M)→
Ψ(M) is injective.

2. Show thatM admits no torsion quotient if and only if can : Ψ(M)→ Φ(M)
is onto.

3. Show thatM =M[x−1] if and only if var : Φ(M)→ Ψ(M) is bijective.

6.2. Regular holonomic D̂-modules

6.2.1. — We have seen in corollary 5.2.6 that a regular connection over K̂ is
isomorphic to a direct sum of elementary such connections D

K̂
/D

K̂
(x∂x − α)p. It

follows from exercise 4.2.9 that two such connections, corresponding to α, p and β, q,
are isomorphic if and only if α − β ∈ Z and p = q. Hence the datum of a regular
meromorphic connection over K̂ (up to isomorphism) is equivalent to the datum of
a C-vector space equipped with an automorphism (up to isomorphism): one asso-
ciates with the connection D

K̂
/D

K̂
(x∂x − α)p the space Cp with the automorphism

corresponding to the Jordan block of size p with eigenvalue exp(−2iπα). We shall
now extend this correspondence to regular D̂-modules.
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Definition 6.2.2. — We shall say that a D̂-module is regular if the associated
meromorphic connection M̂[x−1] is regular (i.e. M̂[x−1]i = 0).

Every submodule and every quotient of a regular module is also regular. A
module which is extension of two regular modules is regular. Every torsion module
is regular.

6.2.3. — Consider the following category C: the objects are the symbols E
c−→
←−

v

F

where E and F are finite dimensional vector spaces, c and v are two linear mappings
which satisfy the property that

TE
def
= cv − Id E : E → E and TF

def
= vc− Id F : F → F

are invertible. A morphism between two such symbols consists of a pair (e, f),
e : E → E ′ and f : F → F ′ linear, such that the following diagrams commute:

E
c−→ Fye yf

E ′
c′−→ F ′

and

E
v←− Fye yf

E ′
v′←− F ′

and in particular e◦TE = TE′ ◦ e and f ◦TF = TF ′ ◦ f . One verifies easily that (e, f)
is an isomorphism if and only if e and f are isomorphisms.

6.2.4. Exercises.

1. Define the kernel and the cokernel of a morphism as objects in the category C.

2. Show that any object for which v is an isomorphism is isomorphic to an object
of the form

E
TE−Id E−→
←−
Id E

E

and the datum of such an object is equivalent to the datum of the space E
equipped with the automorphism TE.

3. If E = {0}, then c = v = 0 and TF = Id F

Theorem 6.2.5. — The correspondence which associates with each holonomic

D̂-module the object Ψ(M̂)
can−→
←−
var

Φ(M̂) of the category C is an equivalence of cate-

gories.

Remark. — Under this correspondence, M̂ is equal to its localized module if
and only if var is invertible and the corresponding object of C is isomorphic to the
object

Ψ(M)
T−Id−→
←−
Id

Ψ(M).

In the same way, M̂ is a torsion module if and only if Ψ(M) = {0}.
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Proof. — It is done in two steps. One considers first the correspondence which
associates with each M̂ its V -graded module grV M̂, which is a holonomic graded
module over the ring grV D̂ = C[x]〈∂x〉. 2

Lemma 6.2.6. — If M̂ is regular holonomic, there exists a functorial isomor-
phism

M̂ ' C[[x]]⊗C[x] grV M̂.

Proof. — Consider for each α ∈ C the following vector subspace

Pα(M̂) =
⋃
n∈N

Ker (x∂x + α+ 1)n.

One has Pα(M̂) ⊂ VkM̂ if α ≤ k (take an element m ∈ Pα(M̂), consider the
submodule D̂ · m and verify that m ∈ Vk(D̂ · m)) and Pα(M̂) ∩ Pβ(M̂) = {0} if
α 6= β; hence one obtains a mapping⊕

{α| −(α+1)∈Σ+k}
Pα(M̂) −→ grVk M̂(6.2.7)

for all k ∈ Z. We shall show that this mapping is invertible, which will prove in
particular that Pα(M̂) is a finite dimensional C-vector space. Let α be such that
−(α + 1) ∈ Σ + k. We shall show that Pα(M̂) ∩ Vk−1M̂ = {0}, which will prove

injectivity. If m ∈ Pα(M̂)∩ Vk−1M̂, there exists n such that (x∂x +α+ 1)n ·m = 0

and one has also b(x∂x + k− 1) ·m ∈ Vk−2M̂. But the polynomials (s+α+ 1)n and

b(s+ k− 1) have no common factor, so m ∈ Pα(M̂)∩ Vk−2M̂. One can iterate this
process. It is then enough to prove that⋂

k∈Z
VkM̂ = {0} .(6.2.8)

Since VkM̂ = VkM̂[x−1] for k ≤ −1, one may assume that M̂ = M̂[x−1] and one
may use the formal classification of regular formal connections to be reduced to the
case of elementary ones. This case can be checked easily.

Before proving surjectivity, put

P (M̂) =
⊕
k∈Z

⊕
{α| −(α+1)∈Σ+k}

Pα(M̂).

One verifies that P (M̂) is a sub-C[x]〈∂x〉-module of M̂ (one has x · Pα(M̂) ⊂
Pα−1(M̂) and ∂x · Pα(M̂) ⊂ Pα+1(M̂)). If M̂′ ⊂ M̂ is a submodule, one has

P (M̂′) = P (M̂) ∩ M̂′ and if M̂′′ is a quotient of M̂, the image of P (M̂) in M̂′′ is
contained in P (M̂′′). Consider now the inclusion

i : C[[x]]⊗C[x] P (M̂) ↪→ M̂.(6.2.9)
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This inclusion is an isomorphism: this is easily verified for regular meromorphic
connections, due to formal classification, as well as for torsion modules. Let M̂1 be
the image of M̂ in M̂[x−1]. Because P (M̂1) = P (M̂[x−1])∩ M̂1, one deduces that
(6.2.9) is an isomorphism for M̂1. Let us show that the mapping P (M̂)→ P (M̂1) is
surjective. Let m ∈ M̂. Assume that the image of m in M̂1 is contained in P (M̂1).
Then there exists a polynomial bm such that bm(x∂x) · m ∈ Ker (M̂ → M̂1), i.e.
there exists k such that xkbm(x∂x) · m = 0, hence ∂kxx

kbm(x∂x) · m = 0. Hence
m ∈ P (M̂), which proves the assertion. One concludes from that and from the
previous cases that (6.2.9) is an isomorphism in general.

The isomorphism (6.2.9) induces an isomorphism at the graded level:

P (M̂)
∼−→ grV M̂.

This gives the surjectivity of (6.2.7). The isomorphism in the lemma is then obtained
as follows:

C[[x]]⊗C[x] P (M̂)
i−→ M̂

y1⊗grV i

C[[x]]⊗C[x] grV M̂

Functoriality comes from the fact that if ϕ : M̂ → M̂′ is a morphism of holonomic
D̂-modules, one has ϕ(P (M̂)) ⊂ P (ϕ(M̂)). 2

This lemma proves that the correspondence which associates with each reg-
ular M̂ its graded module grV M̂ is an equivalence between the category of regular
holonomic D̂-modules and the category of graded holonomic grV D̂-modules.

The second step consists in showing that the latter category is equivalent to
the category C. Indeed, starting with an object in C, one may construct a graded
grV D̂-module using formulas for can and var to define the action of x and ∂x. Details
are left as an exercise.

6.3. Holonomic D̂-modules

We want to apply the previous results to holonomic D̂-modules. Let M̂ be
such a module. One has an exact sequence

0 −→ K −→ M̂ ϕ−→ M̂[x−1] −→ C −→ 0

where K and C are torsion D̂-modules: each element m ∈ K (resp. ∈ C) satisfies
xnm = 0 for some n. One knows the structure of M̂[x−1] because of the corre-
spondence of §4.3. So one may write M̂[x−1] = M̂[x−1]r ⊕ M̂[x−1]i where the
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first summand (regular part) corresponds to the terms with horizontal slope and
the second summand to the terms with non horizontal slope (irregular part) in the
splitting of M̂[x−1]. The structure of holonomic D̂-modules is given by the following
theorem:

Theorem 6.3.1. — Let M̂ be a holonomic D̂-module. Then one has a unique
splitting M̂ = M̂r ⊕ M̂i where M̂r is regular and M̂i ' M̂[x−1]i.

This theorem describes completely the structure of holonomic D̂-modules with
the help of the results obtained in the previous sections.

Proof. — Define M̂r as the inverse image in M̂ of M̂[x−1]r. This is a regular
module because K is a torsion module. One has now to find M̂i. In order to do
that, we have two possibilities: either use an argument analogous to the one given
in lemma 5.3.5 or use the following construction. Let UM̂ be a filtration good with
respect to the filtration V D̂. Put

RadU(M̂) =
⋂
λ∈Z

UλM̂ ⊂ M̂.

This object has the following properties which proofs are left as an exercise:

1. RadU(M̂) does not depend on the choice of the good filtration U . It will be
denoted by Rad(M̂).

2. Rad(M̂) is a sub-D̂-module of finite type of M̂.

3. If M̂′ is a submodule of M̂ then Rad(M̂′) = Rad(M̂) ∩ M̂′.

4. M̂ = Rad(M̂) if and only if for each m ∈ M̂ there exists P ∈ V−1D̂ such that
m = P ·m.

5. Left multiplication by x is invertible on Rad(M̂).

6. One has Rad(M̂[x−1]i) = M̂[x−1]i.

7. Rad(M̂r) = {0} (see proof of (6.2.8)).

Put now M̂i = Rad(M̂) (note that this is the right definition when M̂ is a
meromorphic connection). We have M̂i ∩ M̂r = {0} and we have to show that the
induced morphism

M̂i −→ M̂[x−1]i

is surjective. Let M̂1 be the image of M̂ in M̂[x−1]. Then we have Rad(M̂1) =
Rad(M̂[x−1]) = M̂[x−1]i because the cokernel C is a torsion module and we have
an exact sequence

0 −→ Rad(M̂1) −→ Rad(M̂[x−1]) −→ Rad(C)

the last term being zero.
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The morphism M̂ → M̂1 induces an isomorphism Rad(M̂) ' Rad(M̂1): we
know that the induced morphism is injective, because Rad(K) = 0. Let us show
that it is surjective. Let m ∈ M̂ such that its image in M̂1 belong to Rad(M̂1).
Then there exists P ∈ V−1D̂ such that m = P · m + m′ for some m′ ∈ K. Hence
there exists k such that xkm = xkP · m. Write xkP = Qxk for some Q ∈ V−1D̂.

One concludes that xkm ∈ Rad(M̂). But left multiplication by x is bijective on
Rad(M̂) so m ∈ Rad(M̂). 2

6.3.2. Exercise. — Show that the mapping (6.2.7) is injective even when M̂
is not regular: show that Pα(M̂) ∩ Rad(M̂) = {0} for each α ∈ C (use the fourth
property of Rad given above).

Chapter II

Analytic structure of holonomic D-modules

1. Regularity and irregularity

1.1. Structure of regular meromorphic connections

We shall now give the statements for regular meromorphic connections defined
over K which are analogous to theorem I–5.2.2 and corollary I–5.2.6.

Theorem 1.1.1. — Let MK be a regular meromorphic connection. There
exists a basis ofMK over K for which the matrix of x∂x is constant and has Jordan
normal form. Consequently,MK is isomorphic to a direct sum of elementary regular
meromorphic connections.

Proof. — One has to show, following the proof of I–5.2.2 that if A =
∑
k≥0Akx

k

has convergent entries, then the matrix B which is solution of the system

B0 = Id , x
∂B

∂x
= A0B −BA

has also convergent entries (one may assume that eigenvalues of A0 do not differ by
a nonzero integer). In order to do that, we shall use the following

Proposition 1.1.2. — LetMK be a meromorphic connection with a K-basis
for which the matrix of x∂x has entries in C{x}. Then every formal solution ofMK

is in fact convergent.

Proof. — Consider a linear system of dimension d for which the matrix C(x)
has entries in C{x}. Let

∑∞
k=0 akx

k be a formal solution, with ak ∈ Cd and put
C(x) =

∑
j>0Cjx

j. One must have
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C0 · a0 = 0 , (C0 − kId ) ak = −
k∑
j=1

Cj · ak−j.

Let ` be such that C0 − kId is invertible for all k ≥ `. There exists a constant c
independent of k such that for all k ≥ ` one has∥∥∥(C0 − kId )−1

∥∥∥ ≤ c(1.1.3)

where for a matrix A = (aij) we put ‖A‖ = max
∑
j

∣∣∣aij∣∣∣.
1.1.4. Exercise. — Prove this assertion (use the fact that if C is a matrix

such that ‖C‖ < 1 then the series log (Id − C) = −∑j≥1(1/j)C
j converges and

Id − C = exp

−∑
j≥1

(1/j)Cj

 ;

deduce that ∥∥∥(Id − C)−1
∥∥∥ ≤ (1− ‖C‖)−1

if ‖C‖ < 1 and conclude).

From the inequality 1.1.3 one deduces that for all k ≥ ` one has

‖ak‖ ≤ c
k∑
j=1

‖Cj‖
∥∥∥ak−j∥∥∥ .

Consider now the series

ϕ(x) =
+∞∑
j=1

‖Cj‖xj.

If the series C(x) converges for |x| < ρ, then so does the series ϕ(x) (indeed one
knows that for ρ′ < ρ the sequence Cjρ

′j is bounded by Mρ′ < +∞, hence ‖Cj‖ ≤
Mρ′ρ

′−j and the series
∑+∞
j=1 ‖Cj‖xj converges as soon as the series Mρ′

∑+∞
j=1 |x|

j /ρ′j

converges, i.e. when |x| < ρ′).

Put now

αk =


‖ak‖ for k < `

c
∑k
j=1 ‖Cj‖αk−j for k ≥ `.

It is easily seen by induction over k that for all k one has ‖ak‖ ≤ αk. We shall show
that there exists ρ1 > 0 such that the series

∑
αkx

k is convergent for |x| < ρ1, which
will imply that the series

∑
akx

k does so.

Lemma 1.1.5. — One has

∞∑
k=0

αkx
k = (1− cϕ(x))−1

‖a0‖+
∑̀
j=1

‖aj‖ − c j∑
i=1

‖Ci‖
∥∥∥aj−i∥∥∥

 · xj
 .
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Proof. — Exercise.

Because ϕ(0) = 0 the series (1− cϕ(x))−1 is convergent for |x| < ρ1 for some
ρ1 > 0. The other term of the product being a polynomial, this implies that the
series

∑
αkx

k is convergent for |x| < ρ1 and this proves the proposition. 2

Let us end the proof of theorem 1.1.1. Since B is solution of a linear system
where the matrix of x∂x has entries in C{x}, one deduces from the previous propo-
sition that B has entries in C{x}. This gives the result when the eigenvalues of A0

do not differ by a nonzero integer. When this is not so, one may apply the method
given in lemma I–5.2.5, because the matrix which was used there has entries in K.
2

We shall now give various regularity criteria for a meromorphic connection.

Corollary 1.1.6. — Let MK be a meromorphic connection. The following
conditions are equivalent:

1. MK is regular (i.e. isomorphic to DK/DK · P and N(P ) is a quadrant).

2. The set of slopes P(MK) is equal to {L1} (horizontal slope).

3. There exists a basis of MK for which the matrix of x∂x has entries in C{x}.
4. There exists a basis of MK for which the matrix of x∂x is constant.

5. MK is isomorphic to a (finite) direct sum of elementary regular meromorphic
connections.

6. The formal meromorphic connection associated with MK is regular.

Proof. — Equivalence between 1 and 2 has been shown in §5.1 over the field K̂
but the proof is the same over K. That 2 implies 3 is evident, and the implication
3⇒ 4 is given by the previous theorem. The fact that 4⇒ 5 comes from the Jordan
canonical form of a matrix with entries in C, 5 ⇒ 1 is trivial and 1 ⇔ 6 follows
from the definition of regularity. 2

1.2. Regular holonomic D-modules

Let nowM be a holonomic D-module. We shall say thatM is regular if the
corresponding meromorphic connection MK = K ×C{x}M = M[x−1] is regular.
Every sub-D-module and every quotient module of a regular holonomic D-module
is so. We shall give various regularity criteria. As was stated after definition I–5.1.1
one may define the set P(M) by using the characteristic varieties Car L(M). Hence
definitions I–5.1.1 and I–5.1.5 may be extended to D-modules of finite type. Given
a holonomic D-module we shall denote by P ′(M) ⊂ P(M) the set of slopes which
are not horizontal (i.e. P ′(M) = P(M)−{L1} if L1 ∈ P(M) and P ′(M) = P(M)
if L1 6∈ P(M)).
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Proposition 1.2.1. — A holonomic D-module M is regular if and only if
P(M) = {L1}.

Proof. — IfN is a torsion holonomicD-module one verifies easily that P(M) =
{L1}. Indeed, it is enough to compute Car L(N ) when N = D/D · x`. One deduces
that

P ′(M) = P ′(M
[
x−1

]
).

SinceM [x−1] is regular if and only if P ′(M [x−1]) = ∅, one gets the result. 2

Proposition 1.2.2. — Let M be a holonomic D-module isomorphic to D/I
where I is a nonzero left ideal of D. Let {Pp, . . . , Pq} be a division basis of I. The
following conditions are equivalent:

1. M is regular;

2. there exists P ∈ I − {0} such that the Newton polygon N(P ) is a quadrant;

3. the Newton polygon N(Pp) is a quadrant;

4. for each element Pj of the division basis N(Pj) is a quadrant.

Proof. — Equivalence between 1 and 3 is clear becauseM and D/D · Pp have
the same localized module. That 3 implies 2 is trivial and the fact that 2 implies
1 comes from the fact that M is a quotient of D/D · P , which is a regular module
(because the non horizontal slopes P ′(D/D · P ) are the non horizontal slopes of
N(P )). Let us now prove that 3 implies 4. By definition, if one puts exp(Pj) =
(αj, j), one can divide xαj−1−αjPj by Pp, . . . , Pj−1 and more precisely one has a
relation

xαj−1−αjPj =
(
∂x + uj,j−1

)
Pj−1 + uj,j−2Pj−2 + · · ·+ uj,pPp

with uj,k ∈ C{x}. Assume by induction that Pp, . . . , Pj−1 are regular. This implies
that the RHS is also regular and hence the LHS is so. This implies that Pj is regular.
2

1.2.3. — Let M be a holonomic D-module. A lattice of M is a sub-C{x}-
module of finite type which generatesM overD. For instance, ifM is generated over
D bym1, . . . ,mr, the C{x}-module C{x}·m1+· · ·+C{x}·mr is a lattice. Recall that
if VD denotes the filtration introduced in §4.2.4 one has C{x} ⊂ V0D = C{x} 〈x∂x〉.

Proposition 1.2.4. — LetM be a holonomic D-module. The following prop-
erties are equivalent:

1. M is regular;

2. there exists a lattice stable under x∂x;

3. there exists a sub-V0D-module of finite type which generates M and which is
also of finite type over C{x};
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4. every sub-V0D-module of finite type is also of finite type over C{x}.

Remark that the second property is analogous to property 3 of corollary 1.1.6.

Proof. — 2 and 3 are two formulations of the same property. Let us show that
3 ⇒ 4. Let U satisfies 3 and let U ′ be a sub-V0D-module of finite type of M. For
all k ≥ 0 put

Uk = U + ∂xU + · · ·+ ∂kxU ⊂M.

Then Uk is of finite type over V0D and also over C{x}. Moreover there exists k such
that U ′ ⊂ Uk becauseM =

⋃
k Uk. This implies that U ′ is of finite type over C{x}.

Equivalence between 1 and 2: it is enough to see thatM satisfies 2 if and only if
M[x−1] does so. Remark first that in an exact sequence 0→M′ →M→M′′ → 0,
M satisfies 2 if and only ifM′ andM′′ do so. It is then enough to show that ifM
is a torsion module, thenM satisfies property 2. Such a module is a finite extension
of modules isomorphic to D/D · xk for some k and property 2 is clearly satisfied for
such modules (use the fact that such a module is obtained by successive extensions
of modules isomorphic to D/D · x). 2

1.2.5. — Results of §1.1 show that the category of regular meromorphic con-
nections (over K) is equivalent to the category of formal ones. One can show, in the
same way as in theorem 6.2.5 that the category of regular holonomic D-modules is
equivalent to the category C, hence also to the category of regular D̂-modules.

1.3. Irregularity

We shall now give a numerical criterion for a holonomic D-module to be
regular. We shall define an index i(M), which vanishes exactly whenM is regular.
This index behaves in an additive way in exact sequences.

1.3.1. — Let M and N be two left D-modules. Consider the C-vector space
of D-linear morphisms from M to N , denoted by HomD(M,N ). In general this
space does not carry any natural structure (e.g. a structure of C{x} or D-module).
Remark however that if N admits a structure of right D-module (for instance if
N = D) then HomD(M,N ) comes equipped with such a structure. As we mentioned
earlier, this space HomD(M,N ) is the space of solutions ofM inN . IfM = D/D·P
with P ∈ D then

HomD(M,N ) = Ker [P · : N −→ N ] .

Given an operator P , one is interested not only on solutions of P · u = 0 with
u ∈ N but also on solutions of P · u = f for a given f ∈ N . The cokernel of
left multiplication by P in N is the set of (classes of) elements f in N for which
the equation P · u = f has no solution in N . This is a first explanation of why
one is interested not only on the kernel but also on the cokernel of P : N → N .
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Here is another explanation. Let N = C{x} and consider the operator P = x,
corresponding to the torsion module M = D/D · x. Then HomD(M,N ) = 0
because (left) multiplication x : C{x} → C{x} is injective. However the cokernel is
isomorphic to C and the class of 1 ∈ C{x}, denoted by δ, satisfies then the equation
x · δ = 0. This class plays the role of the Dirac distribution at the origin. We have
then introduced in the theory an object analogous to the Dirac distribution, keeping
inside the holomorphic frame. This leads us to the following

Definition 1.3.2. — Let M = D/D · P and N be a left D-module. The
solution complex of M in N is the two term complex

N P ·−→ N

where the differential is equal to left multiplication by P . The solutions of P in N
are the two cohomology groups of this complex, namely KerP and CokerP .

1.3.3. — We shall now generalize this definition to the case of a left D-module
of finite type. In order to do that, we shall first recall some facts of homological
algebra. LetM be such a module. ThenM admits a resolution by free D-modules:

· · · ϕi−→ Dpi
ϕi−1−→ Dp1 ϕ0−→ Dp0 −→M −→ 0

where the ϕi are left D-linear morphisms (hence are given by right multiplication by
a matrix with entries in D) and satisfy ϕi+1 ◦ϕi = 0 and moreover Kerϕi = Imϕi+1.
Recall that this resolution is constructed step by step by taking generators of Kerϕi
at each step. With such a complex one may construct a new complex:

HomD(Dp0 ,N )
ψ0−→ HomD(Dp1 ,N )

ψ1−→ · · ·
ψi−1−→ HomD(Dpi ,N )

ψi−→ · · ·(1.3.4)

where ψi is the mapping obtained by composing with ϕi. One has Kerψ0 =
HomD(M,N ). The cohomology of this last complex is denoted by ExtiD(M,N ).
One then has

Ext0
D(M,N ) = HomD(M,N )

ExtiD(M,N ) = Kerψi/Imψi−1 for i ≥ 1

A short exact sequence

0 −→M′ −→M −→M′′ −→ 0

gives rise to a long exact sequence

0 −→ HomD(M′′,N ) −→ HomD(M,N ) −→ HomD(M′,N ) −→
−→ Ext1

D(M′′,N ) −→ Ext1
D(M,N ) −→ Ext1

D(M′,N ) −→ · · ·

Proposition 1.3.5. — Let M be a left D-module of finite type. Then we
have ExtiD(M,N ) = 0 for i ≥ 2 and every left D-module N .
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Proof. — Given a short exact sequence as before, if the result is true for M′

andM′′, it is also true forM, because of the long exact sequence above. SinceM
is obtained by successive extensions of D-module isomorphic to D/I, it is enough
to prove the result for such modules.

If I = {0} thenM is free and ExtiD(M,N ) = 0 for i ≥ 1. If I 6= {0} thenM is
holonomic. If I is generated by one element P , then M' D/D · P and M admits
a resolution

0 −→ D ·P−→ D −→M −→ 0

hence the result is true. IfM is a torsion module, thenM is obtained by successive
extensions of modules isomorphic to D/D · xk hence the result is also true for such
modules. In general one uses the two short exact sequences

0 −→ K −→ M −→ M1 −→ 0

0 −→ M1 −→ M[x−1] −→ C −→ 0

where M1 = Image (M→M[x−1]). Since M[x−1] is isomorphic to D/D · P for
some P and since C is a torsion module, the result is true for M1 (use the long
exact sequence above). Since K is a torsion module, the result is then true for M.
2

1.3.6. Exercise.

1. LetM be a left D-module of finite type.

(a) Show that HomD(M,D) can be equipped with a natural structure of
right D-module and that it is then of finite type over D.

(b) Same question for Ext1
D(M,D) (one can use in both cases a free presen-

tation ofM).

(c) Show that ifM is holonomic, one has HomD(M,D) = {0}.

2. Let N be a right D-module of finite type. Show that if one puts

∂x · n def
= n · (−∂x)

x · n def
= n · x

for each n ∈ N , one defines a structure of left D-module on N , and in that
way N becomes a left D-module of finite type.

3. If M is a left holonomic D-module, one denotes by M∗ the left D-module
associated with Ext1

D(M,D). Show that if

0 −→M′ −→M −→M′′ −→ 0

is an exact sequence of holonomic left D-modules, then the (dual) sequence

0 −→M′′∗ −→M∗ −→M′∗ −→ 0

is also exact.
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4. IfM = D/D ·P with P 6= 0, Show that there exists an operator P ∗ such that
M∗ = D/D · P ∗. Compute it in terms of P . Show that P and P ∗ have same
Newton polygon.

5. Show that ifM is a torsion module, thenM∗ also. Give an example for which
M is equal to its localized module, but notM∗.

Definition 1.3.7. — The complex (1.3.4) is called the solution complex of
M in N . The cohomology groups of this complex (namely HomD(M,N ) and
Ext1

D(M,N ) if M is of finite type) are the solutions spaces of M in N .

Remark. — As notation brings in evidence, the groups ExtiD(M,N ) do not
depend on the choice of a resolution ofM by free D-modules. However the solution
complex ofM in N does depend on such a resolution. What is independent of such
a resolution is some equivalence class of complexes in a derived category. We shall
not use this here.

The dimension of the usual solution space of P · u = 0 in N is given by
dim Ker [P : N → N ]. With the previously introduced notion of solutions, the di-
mension becomes an index:

Definition 1.3.8. — LetM be a left D-module of finite type and N be a left
D-module. If the spaces of solutions HomD(M,N ) and Ext1

D(M,N ) have finite
dimension over C, we say that the index of M in N is defined and we put

χ(M,N ) = dimC HomD(M,N )− dimC Ext1
D(M,N ).

From the long exact sequence above one deduces

Proposition 1.3.9. — Let 0 → M′ → M → M′′ → 0 be a short exact
sequence of left D-module of finite type. If χ(M′,N ) and χ(M′′,N ) are defined,
then so is χ(M,N ) and one has

χ(M,N ) = χ(M′,N ) + χ(M′′,N ). 2

Remark. — Given a short exact sequence 0 → N ′ → N → N ′′ → 0 one has
an analogous statement

χ(M,N ) = χ(M,N ′) + χ(M,N ′′)

if both right terms are defined. This is proven by using the corresponding (covariant)
long exact sequence.
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In the following we shall be interested on the indices of M in one of the
following left D-module: C{x}, C[[x]], C[[x]] /C{x}, K, K̂, K̂/K. The principal
result is the following

Theorem 1.3.10. — Let M be a holonomic D-module.

1. The indices of M in one of the above D-modules are defined.

2. Ext1
D(M,C[[x]] /C{x}) = 0 (hence χ(M,C[[x]] /C{x}) ≥ 0).

3. Ext1
D(M, K̂/K) = 0 (hence χ(M, K̂/K) ≥ 0) and

χ(M,C[[x]] /C{x}) = χ(M, K̂/K).

4.

χ(M,C[[x]] /C{x}) = χ(M[x−1],C[[x]] /C{x}).

5. M is regular if and only if χ(M,C[[x]] /C{x}) = 0.

The (Malgrange-Komatsu) irregularity ofM is the number

i(M) = χ(M,C[[x]] /C{x}).

Proof. — Consider first the case where M is a torsion module. It is enough
to consider the case whereM' D/D · xk for some k ≥ 0. The solution complex in
C{x} is then equal to

C{x} xk

−→ C{x}
hence HomD(M,C{x}) = 0 and dimC Ext1

D(M,C{x}) = k. The same result holds
for C[[x]]. This implies that i(M) = 0. Moreover solutions in K or K̂ are zero
because xk : K → K is bijective. All the statements of the theorem are then
satisfied for such modules.

We shall now prove the theorem when M = M[x−1]. This will imply
that statements 1, 2, 3 and 4 are true in general, by using the exact sequence
of localization and the result for torsion modules. The statement 5 will then be
obtained using 4 and the local case. We may now assume that M ' D/D · P for
some P . We may write P = b(x∂x) + xP ′ with P ′ ∈ V0/cD and b(k) 6= 0 for k ∈ N
(lemma I–4.2.7). We may also write P =

∑d
i=0 ai(x)(x∂x)

i with ad 6= 0 and at least
one of the coefficients ai is a unit. We shall show the following properties:

1. The index of P : C{x} → C{x} is defined and χ(M,C{x}) = −v(ad).

2. The index of P : K → K is defined and χ(M, K) = −v(ad).

3. The kernel and cokernel of P : C[[x]]→ C[[x]] are zero, hence we have χ(M,C[[x]]) =
0.

4. The index of P : K̂ → K̂ is defined and χ(M, K̂) = 0.

These results imply that i(M) = v(ad) and this is enough to prove the theorem.
Before going further, it is interesting to give the geometrical meaning of i(M) with
the Newton polygon N(P ) (see fig. 8).
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Figure 8

We shall first show assertions (c) and (d). One has (x∂x)
i(x`) = `ix` for all

` ∈ Z hence

P (x`) =

(
d∑
i=0

ai(x)`
i

)
x`.

We may then write P (x`) = b(`)x` + terms of order > `. If m̂ denotes the maximal
ideal of C[[x]], one deduces that for all ` ≥ 0 P induces an isomorphism

m̂`/m̂`+1 P−→ m̂`/m̂`+1.

Consequently P induces an isomorphism

C[[x]] /m̂` −→ C[[x]] /m̂`

for all ` ≥ 0, and assertion (c) is obtained by taking the projective limit. Let us
prove (d) in the same way: it is enough to show that

P : K̂/C[[x]] −→ K̂/C[[x]]

has an index and that this index is zero. Filter the quotient K̂/C[[x]] by the images
of x`C[[x]] for ` ≤ 0. Then P is compatible with this filtration as we have yet seen
and induces multiplication by b(`) on the graded part of order `. So for ` � 0
P induces an isomorphism on this graded part. This implies that the kernel and
cokernel of P : K̂/C[[x]]→ K̂/C[[x]] are equal to the kernel and cokernel of

P : x`C[[x]] /C[[x]] −→ x`C[[x]] /C[[x]]

for some `� 0. Because x`C[[x]] /C[[x]] has finite dimension, the kernel and cokernel
have also finite dimension and these dimensions are equal, which proves (d).

Now (b) can be deduced from (a), (c) and (d): indeed, one has

K/C{x} ' K̂/C[[x]]

hence χ(M, K/C{x}) is defined and is equal to 0. Consequently, assuming (a),
χ(M, K) is defined and is equal to χ(M,C{x}).
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We shall now show statement (a). Remark first that

Ker [P : C{x} −→ C{x}] = {0}

because this is true when C{x} is replaced by C[[x]]. We are then reduced to show
that

dimC Coker [P : C{x} −→ C{x}] = v(ad).

Let ∆r be a closed disk in C centered at zero and with radius r. Consider the
space Bm(∆r) of functions which are C∞ in some open neighborhood of ∆r and
which are holomorphic in the interior of ∆r. This is a Banach space for the norm

‖f‖m = sup
|α|≤m

sup
∆r

∣∣∣∣∣ ∂|α|f

∂α1u∂α2v

∣∣∣∣∣
where we have put x = u + iv, α = (α1, α2) and |α| = α1 + α2. We shall use the
following results:

Proposition 1.3.11. — For all m ≥ 0 the injection Bm+1(∆r) ↪→ Bm(∆r)
is compact. 2

Theorem 1.3.12. — Let U, V : E → F be continuous linear operators be-
tween two Banach spaces. If the index of U is defined and if V is compact then the
index of U + V is defined and is equal to the index of V . 2

Now P defines a continuous operator Bd(∆r) → B0(∆r) for each r > 0 suffi-
ciently small. We shall prove that this operator has an index, and that this index
is equal to −v(ad). Remark that P = ad(x)(x∂x)

d +Q with degQ < d. Because of
the previous proposition, Q induces a compact operator Bd(∆r)→ B0(∆r), and we
are reduced to show that the index of ad(x)(x∂x)

d is equal to −v(ad). This comes
from the fact that ∂x has index 1 and x has index −1. 2

1.3.13. Exercise. — Let P = x2∂x + 1.

1. Find a formal solution f of the equation

P · f = x

and show that f 6∈ C{x}.

2. LetM = D/D · P . Compute

dim HomD(M,C[[x]] /C{x}) and dim Ext1
D(M,C[[x]] /C{x})

and give a basis of each of these vector spaces.
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1.4. The local index theorem

We shall formulate the previous results in a form which can be generalized di-
rectly for holonomic D-modules in more than one variable. So letM be a holonomic
D-module. We have defined earlier the characteristic variety CarM as a subset of
T (cotangent space to the germ (C, 0) with coordinates (x, ξ)). Recall that CarM
is contained in the union of the two subvarieties {x = 0} and {ξ = 0}. We shall now
define the characteristic cycle ChM: in order to do that we shall associate with
each component of CarM a multiplicity.

Let FM be a good filtration ofM. Consider the graded module grFM on the
graded ring grFD = C{x} [ξ]. We shall localize at the generic point of the x-axis.
Recall some properties of localization at a prime ideal p of a commutative ring A
(see the references in commutative algebra): Ap denotes the ring obtained from A
by inverting all elements in A which are not in p. Then Ap is a local ring with
maximal ideal pAp. If M is a A-module, one can define in the same way the module
Mp and one has Mp ' Ap⊗AM . Consider now the prime ideal (ξ) in grFD and the
localized module grFM(ξ) over rhe localized ring grFD(ξ). We may then define as in
§3.4 the multiplicity of this module at the origin of the local ring (i.e. by changing
the module grFM by grFM(ξ) and the ideal (x, ξ) by the ideal (ξ)grFD(ξ)). We
shall denote by e{ξ=0}(M) this multiplicity. In an analogous way one defines the
multiplicity e{x=0}(M). The characteristic cycle ChM will now be defined as the
formal linear combination

ChM = e{ξ=0}(M) · {ξ = 0}+ e{x=0}(M) · {ξ = 0} .

One can show the following properties of the characteristic cycle, using results on
multiplicities given in §3.4 and the fact that Ap is flat over A:

1. e{x=0}(M) and e{ξ=0}(M) do not depend on the choice of the good filtration
used to define them.

2. e{x=0}(M) and e{ξ=0}(M) are non negative integers, not both equal to zero if
M 6= 0 (Bernstein inequality).

3. In an exact sequence 0→M′ →M→M′′ → 0 of holonomic D-modules one
has

ChM = ChM′ + ChM′′

equality which means that e{x=0}(M) = e{x=0}(M′) + e{x=0}(M′′) and the
same for e{ξ=0}(M).

Definition 1.4.1. — The algebraic index of M, denoted by χalg(M) is the
index of its characteristic cycle, namely

χalg(M) = χ(ChM)
def
= e{ξ=0}(M)− e{x=0}(M).

The algebraic index is an additive function (in exact sequences). This index can
take positive or negative values.



Algebraic theory of differential equations 57

Examples.

1. If M is of finite type over C{x} then M is C{x}-free and e{x=0}(M) = 0,
e{ξ=0}(M) = rankC{x}M.

2. IfM is a torsion module, e{ξ=0}(M) = 0 and e{x=0}(M) 6= 0.

3. If M = D/D · P with P ∈ D, P =
∑d
i=0 ai(x)(x∂x)

i, ad 6= 0 then χalg(M) =
−v(ad). Indeed one has

grFM' C{x} [ξ]/C{x} [ξ]xv(xξ)d

with v = v(ad). Hence e{ξ=0}(M) = d and e{x=0}(M) = v + d.

We can now formulate the local index theorem:

Theorem 1.4.2. — Let M be a holonomic D-module. One has the equality

χ(M,C{x}) = χalg(M)(= χ(ChM)).

Proof. — It was essentially done in the previous section. Indeed, since both
terms behave in an additive way in exact sequences, it is enough to prove the equality
when M = M[x−1] or when M is a torsion module. In the first case, both terms
are equal to −v(ad) and in the second case one verifies that both terms are equal to
−k whenM' D/D · xk. 2

1.4.3. Index of a D̂-module. — It follows from the previous computations
that the index of a holonomic D-module depends only on its associated formalized

module M̂ def
= C[[x]] ⊗C{x}M. Indeed, if FM is a good filtration of M one may

verify that the filtration FM̂ def
= C[[x]]⊗C{x} FM is a good filtration of M̂ and that

grFM̂ ' C[[x]] ⊗C{x} grFM. This implies that the associated multiplicities are the

same for M and for M̂. Consequently one has χalg(M̂) = χalg(M) (if for instance
M = D/D · P as above, then M̂ = D̂/D̂ · P and the two numbers are equal to
−v(ad)).

If now M̂ is a holonomic D̂-module (which does not necessarily come from
a holonomic D-module) on may define the algebraic index of M̂ by χalg(M̂) =
χ(ChM̂). However the index of holomorphic solutions does not have any meaning
because C{x} is not a D̂-module. Moreover the index of formal solutions is not very
interesting because if for instance M̂ is a connection, this index is equal to 0.

1.4.4. Algebraic computation of irregularity. — We have seen how to com-
pute the algebraic index whenM is a connection or a torsion module. We shall give
a general formula for this index. Let us begin with a formula for multiplicity.
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Proposition 1.4.5. — LetM be a holonomic D-module (or a holonomic D̂-
module). Let FM be a good filtration of M. Then for k sufficiently large

1. the graded part FkM/Fk−1M is a finite dimensional C-vector space,

2. the induced mapping ∂x : FkM/Fk−1M→ Fk+1M/FkM is bijective,

3. the dimension of FkM/Fk−1M (which does not depend on k) does not depend
on the good filtration FM and behaves in an additive way in exact sequences.
This dimension is equal to e{x=0}(M).

Proof. — Let FM be a good filtration of M. Then FkM[x−1] is an in-
creasing filtration of K-vector spaces in M[x−1]. Since this one has finite di-
mension over K, one deduces that there exists k0 such that for k ≥ k0 one has
FkM[x−1] = Fk−1M[x−1]. This implies that for such k the quotient FkM/Fk−1M
is a C{x}-torsion module, hence a finite dimensional vector space. This proves the
first assertion.

The second is proven by using the fact that if FM is a good filtration, there
exists k1 such that for k ≥ k1 one has FkM = Fk−1M + ∂x · Fk−1M (hence the
mapping induced by ∂x is onto for k ≥ k1 and bijective for k sufficiently large,
because of the first assertion).

In order to prove the third assertion, it is enough to compare the dimensions
for two good filtrations FM and GM satisfying for all k

FkM⊂ GkM⊂ Fk+`0M

for some `0 ≥ 0 and which satisfy the first two assertions for all k ≥ 0 (a shift in a
filtration does not affect the asymptotic value of the dimension of the graded parts).
Put P (FM/F0M, k) = dimC FkM/F0M. With the previous assumptions, one has

P (FM/F0M, k) = dF · (k − 1)

where dF = dimC Fk/Fk−1. We see that P (FM/F0M, k) is a degree one polynomial
in k, with dominating coefficient equal to dF . In the same way P (GM/G0M, k)
satisfies the same property, with dominating coefficient equal to dG. We have as-
sumed that F0M[x−1] =M[x−1] = G0M[x−1], so dimCG0/F0 <∞. Consequently
P (GM/F0M, k) satisfies the same property with dominating coefficient dG. More-
over one has

P (FM/F0M, k) ≤ P (GM/F0M, k) ≤ P (FM/F0M, k + `0)

hence the dominating terms of these polynomials are equal.

The additive behaviour in exact sequences is now clear, by taking the filtrations
induced by the central one.
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Let us compute the number that we have obtained. IfM is a torsion module,
for instance ifM = D/D · xk, this number is equal to k (take the natural filtration
on this quotient to compute it). IfM =M[x−1] = D/D · P with P ∈ V0D − V−1D
then this number is equal to v(ad) + d (same computation). This ends the proof of
the proposition. 2

In order to obtain in a similar way the index of M, we shall start with a
sub-V0D-module of finite type N ⊂M such that D · N =M (for instance, if UM
is a filtration good for VM one can take N = UkM for k large enough). The ring
V0D may be identified with C{x} [x∂x]. Consider on this ring the filtration FV0D
by the degree with respect to x∂x. One can define the notion of a good filtration
FN .

Proposition 1.4.6. — Let M be a holonomic D-module and N be a sub-
V0D-module which generates M over D (similar statement over D̂). The number
dimC FkN/Fk−1N is finite and independent of k for large k, independent of the good
filtration FN and independent of the sub-V0D-module N (which generates M). It
is additive in exact sequences and is in fact equal to the irregularity i(M).

Proof. — For fixed N the proof is identical to the previous one (one uses the
mapping induced by x∂x instead of the one induced by ∂x). The proof that the
number is the same for two sub-V0D-modules generating M is left as an exercise.
Additivity in exact sequences is an easy consequence. So one is reduced to compute
the number for torsion modules (where it is equal to 0, because FkN is constant
for large k forM = D/D · x`) and for connections (where one can take the natural
sub-V0D-module N = V0D/V0D · P since P ∈ V0/D to obtain v(ad)). 2

Remark. — We have obtained another proof of the fact that M is regular
if and only if any such N is of finite type over C{x}, because i(M) = 0 is then
equivalent to the fact that FkN = N for large k.

2. Analytic structure of meromorphic connections

Given a meromorphic connection MK , the structure of the corresponding
formal connection M

K̂
= K̂ ⊗KMK is essentially known: after a convenient ram-

ification, the connection M
L̂

can be decomposed into a direct sum of elementary
formal connections. It may happen (see exercise I–5.3.6) that this splitting cannot
be lifted at the analytic level. The main result of this section is that, for any half-line
in the complex plane, starting from the origin, intersecting the unit circle in a point
θ, this splitting can be lifted if the coefficients are germs at the origin of holomorphic
functions defined in some small sectorial domain around this line. In order to prove
this, we shall construct first an analytic model M1

K of M
K̂

and we shall try to lift
in such sectors the formal isomorphism M

K̂

∼−→ M1
K̂

. We shall first explain some
results about morphisms betwenn two connections.
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2.1. Morphisms between two connections

LetMK and NK be two meromorphic connections.

Proposition 2.1.1. — HomK(MK ,NK) may be naturally equipped with a
structure of a meromorphic connection. Let ϕ ∈ HomK(MK ,NK). Then ϕ is
left D-linear if and only if ∂x · ϕ = 0.

Proof. — HomK(MK ,NK) is a finite dimensional K-vector space. One defines
the action of ∂x on this space by

(∂xϕ)(m) = ∂x[ϕ(m)]− ϕ(∂xm)

for all m ∈MK and one verifies easily that this defines a structure of a meromorphic
connection. It is then clear that

∂xϕ = 0 ⇐⇒ ∀m ∈MK , ∂x[ϕ(m)] = ϕ(∂xm). 2

The proof of the following proposition is left as an exercise.

Proposition 2.1.2. — Let FRK be an elementary formal connection (see §I–
5.4.4). Then the K-linear isomorphism

HomK(FRK ⊗KMK ,NK) −→ HomK(MK ,F−RK ⊗K NK)

ϕ 7−→ e(−R(1/x)) · ϕ · e(R(1/x))

is left D-linear. 2

Proposition 2.1.3.

K̂ ⊗K HomK(MK ,NK) = Hom
K̂

(M
K̂
,N

K̂
). 2

2.1.4. Exercises.

1. Show that

Ker ∂x : HomK (DK/DK · (x∂x − α)p,DK/DK · (x∂x − β)q) −→
−→ HomK (DK/DK · (x∂x − α)p,DK/DK · (x∂x − β)q)

is zero if α− β 6∈ Z and is a C-vector space of dimension inf(p, q) otherwise.

2. Take the notations of §I–5.4.4. Show that

Ker ∂x : HomK

(
FRK ⊗ GK ,FR

′

K ⊗ G ′K
)
→ HomK

(
FRK ⊗ GK ,FR

′

K ⊗ G ′K
)

is zero if R 6= R′ and is equal to

Ker ∂x : HomK (GK ,G ′K)→ HomK (GK ,G ′K)

if R = R′.
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3. Compute

Ker ∂x : Hom
L̂

(
M

L̂
,N

L̂

)
→ Hom

L̂

(
M

L̂
,N

L̂

)
when the extension L̂ of K̂ is chosen such that both M

L̂
and N

L̂
admit a

splitting into elementary connections.

4. Compute the irregularity of HomK(MK ,NK).

2.2. Asymptotic expansions

2.2.1. — Let ∆r denote the open disc centered at 0 in C with radius r > 0. Let
U be an open interval on the unit circle (for some statements, it will be important
that U is not equal to the unit circle itself). Denote by ∆∗r(U) ⊂ ∆r the open set
defined as

∆∗r(U) =
{
z ∈ ∆r|z = ρeiθ, 0 < ρ < r, θ ∈ U

}
.

Let f be a holomorphic function on ∆∗r(U) and let ϕ̂ ∈ K̂ be a formal Laurent
series. Put

ϕ̂ =
∑

n≥−n0

anx
n

with an ∈ C.

Definition 2.2.2. — We say that ϕ̂ is an asymptotic expansion for f at 0 if
for all m ∈ N one has

lim
x→0,x∈∆∗r(U)

∣∣∣x−m∣∣∣ ·
∣∣∣∣∣∣xn0f(x)−

∑
0≤n≤m

anx
n

∣∣∣∣∣∣ = 0.

We shall take the following notations: A(U, r) ⊂ O(∆∗r(U)) denotes the set of
functions which admits an asymptotic power series, A(U, r) =

⋂
V A(V, r) where V

is a relatively compact open subset of U and A(U) =
⋃
rA(U, r).

2.2.3. Exercise. — Show that the correspondence U 7→ A(U) defines a sheaf
on the unit circle.

2.2.4. Some elementary properties.

1. If ϕ̂ is an asymptotic expansion for f then one has

a0 = lim
x→0,x∈∆∗r(U)

xn0f(x)

and for m > 0,

am = lim
x→0,x∈∆∗r(U)

x−m

xn0f(x)−
∑

0≤n≤m−1

anx
n

 .
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In particular this asymptotic expansion is unique: indeed, remark first that f
admits an identically zero asymptotic expansion if and only if for all p ∈ Z
one has

lim
x→0,x∈∆∗r(U)

xpf(x) = 0.

So if f ∈ A(U, r), and if f admits a non identically zero asymptotic expansion,
the coefficients are given by the previous formulae.

2. One may now define a mapping A(U) → K̂ denoted by f 7→ f̂ . One verifies
that A(U) is a subring of O(∆∗r(U)) and that this mapping is a morphism of
rings.

3. Denote by A<0(U) the kernel of this morphism. For instance the function
x 7→ e−1/x has a zero asymptotic expansion in some sector around θ = 0. If
f ∈ A(U) − A<0(U) then f is invertible in A(U) and one has f̂−1 = f̂−1.
Indeed one may assume that limx→0 f(x) 6= 0 after multiplication by some
power of x. This implies that f−1 is holomorphic in some open set ∆∗r(U) for
r sufficiently small.

4. A(U) is stable under derivation. In fact, let f ∈ A(U) and let f̂ =
∑
−n0≤n anx

n

its asymptotic expansion. One may easily assume that n0 = 0. One has for
each m ≥ 0

f(x) =
m∑
n=0

anx
n +Rm(x)xm

with
lim

x→0,x∈∆∗r(U)
Rm(x) = 0.

This implies that Rm is holomorphic in ∆∗r(U). One has

f ′(x) =
m∑
n=0

nanx
n−1 +mxm−1Rm(x) + xmR′m(x).

If Cρ is a circle centered at x with radius ρ contained in ∆∗r(U) one has

|R′m(x)| ≤ 1

ρ
·max
z∈Cρ

|R(z)|

because of Cauchy theorem. Let V be a relatiely compact open set in U . There
exists a positive number α such that for all x ∈ ∆∗r(V ) one has Cα|x| ⊂ ∆∗r(U).

This proves that f̂ ′ is an asymptotic expansion for f ′ in ∆∗r(V ) at 0.

5. A(U) contains K as a subfield.

The following lemma, known as Borel-Ritt lemma, will be useful later on.

Lemma 2.2.5. — If U is a proper open interval of the unit circle the mapping

A(U) −→ K̂

is onto.
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It follows from this lemma that one has an exact sequence

0 −→ A<0(U) −→ A(U) −→ K̂ −→ 0.

Proof. — One first reduces the proof to the case where U is an interval of the
form ]− γ, γ[ on the unit circle, with 0 < γ ≤ π by composing with a rotation. Let∑
n≥0 anx

n ∈ K̂ (it is enough to prove the result when this series is in C[[x]]). We
shall consider a series of the form ∑

n≥0

anαn(x)x
n

where αn(x) = 1 − exp(−bn/xβ) for some bn > 0 and 0 < β < 1 to be defined. In
fact one puts

β = π/2γ

so that βθ ∈]− π/2, π/2[ for all θ ∈]− γ, γ[ and

bn =

{
1/ |an| if an 6= 0
0 otherwise

The maximum principle implies that for z ∈ C such that Re (z) < 0 one has
|1− ez| < |z|. This implies that

|anαn(x)xn| ≤ |an| |bn|
∣∣∣xn−β∣∣∣

for Argx ∈ U hence the series
∑
anαn(x)x

n is dominated by the series

∞∑
n=1

|x|n−β

which converges as soon as |x| < 1 so defines a holomorphic function in ∆∗1(U). We
shall now compute the asymptotic expansion for f . We have for all m ≥ 0

x−m
[
f(x)−

m∑
n=0

a− nxn
]

= −
m∑
n=0

an exp(−bn/xβ)x−(m−n) +
∑

n≥m+1

anαn(x)x
n−m.

The first term goes to zero when x→ 0, x ∈ ∆∗1(U) because one has Re (−bn/xβ) < 0
on that domain. The second term is dominated by

∑
n≥m+1 |x|

n−m−β in this domain,
so tends to zero also. 2

2.3. Statement of the main result and consequences

Theorem 2.3.1. — Let MK be a meromorphic connection. There exists an
integer q ≥ 1 such that, after the ramification x = tq, one has, for all θ ∈ S1 and
each sufficiently small interval V centered at θ

AL(V )⊗LML ' AL(V )⊗L
(
FRL ⊗ GL

)
.
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Corollary 2.3.2. — Let MK be a meromorphic connection. For all θ ∈ S1

and each sufficiently small interval U centered at θ, the formal decomposition into
one slope terms M

K̂
= ⊕M(Li)

K̂
can be lifted into a decomposition

A(U)⊗KMK ' ⊕M(Li)
A(U).

Proof. — The property is clear after some ramification, as a consequence of
the theorem. Choose a K-basis m ofMK . There exists a matrix BL(t) with entries

in AL(V ) such that the basis B̂L(t) ·m is adapted to the splitting of M
L̂

into one
slope terms. Let BK(x) be the matrix obtained from BL(t) by taking the trace of

each entry in BL(t). Then the basis ̂BK(x) ·m is adapted to the splitting of M
K̂

into one slope terms. 2

Corollary 2.3.3. — Let MK and M′
K be two meromorphic connections.

Assume that we are given a left D
K̂
-linear morphism ϕ̂ : M

K̂
→ M′

K̂
. Then, for

all θ ∈ S1 and each sufficiently small interval U centered at θ, ϕ̂ can be lifted into a
DA(U)-linear morphism

ϕU : A(U)⊗KMK −→ A(U)⊗KM′
K .

If moreover ϕ̂ is an isomorphism, then so is ϕU .

Proof. — Consider the connection NK = HomK(MK ,M′
K) and the corre-

sponding formal connection N
K̂

= Hom
K̂

(M
K̂
,M′

K̂
). We have seen above that a

DK-linear morphism can be interpreted as an horizontal element of NK (i.e. an
element killed by ∂x). The first part is then a consequence of the following

Lemma 2.3.4. — Let NK be a meromorphic connection. Then for all θ ∈ S1

and each sufficiently small interval U centered at θ, the natural mapping

Ker
[
∂x : NA(U) → NA(U)

]
−→ Ker

[
∂x : N

K̂
→ N

K̂

]
is onto.

If moreover ϕ̂ is an isomorphism and if AU is the matrix of ϕU for given basis of
MK andM′

K , then ÂU is the matrix of ϕ̂ in these bases. Because det ÂU = ̂detAU
is not zero in K̂, so is detAU in K. 2

Proof of the lemma. — Consider a lifting ⊕N (Li)
A(U) of the splitting of NK into

one slope terms, as given by the previous corollary. If Li is not horizontal (i.e. if

N (Li)

K̂
is irregular), then one has

Ker
[
∂x : N (Li)

K̂
→ N (Li)

K̂

]
= {0}
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because an element in this kernel defines a D
K̂

-linear morphism K̂ → N (Li)

K̂
and the

trivial connection has no non horizontal slope. It is then enough to show that

Ker
[
∂x : N (L1)

A(U) → N
(L1)
A(U)

]
−→ Ker

[
∂x : N (L1)

K̂
→ N (L1)

K̂

]
is onto when L1 is the horizontal slope. Because of theorem 2.3.1 there exists a
regular meromorphic connection GK such that

N (L1)

K̂
' G

K̂
and N (L1)

A(U) ' A(U)⊗K GK .

It is then enough to prove that

Ker [∂x : GK → GK ] −→ Ker
[
∂x : G

K̂
→ G

K̂

]
is onto. But this mapping is in fact bijective, by applying the results in the regular
case. 2

2.4. Proof of the main result

Let MK be a meromorphic connection. Choose first a ramified covering
t 7→ x = tq in order to apply theorem I–5.4.7:

M
L̂
' ⊕FR

L̂
⊗ G

L̂
.

Put M
L̂

= M′
L̂
⊕M′′

L̂
where M′

L̂
is the sum of terms FR

L̂
⊗ G

L̂
for which R has

maximal degree (say k) and with fixed dominating coefficient (say α ∈ C), M′′
L̂

being the sum of the other terms. The proof will be done by induction, by showing
that this splitting can be lifted to AL(V ) when V is sufficiently small. However, the
terms M′

AL(V ) and M′′
AL(V ) do not come necessarily from modules defined over L.

That is why the proof has to be done for modules defined over AL(V ).

Lemma 2.4.1. — Let MAL(V ) be a free AL(V )-module equipped with a con-
nection and let M

L̂
its formalized module. A splitting of M

L̂
as above can be lifted

to a splitting of MAL(V ) when V is sufficiently small.

Once this lemma is proven, one may argue by induction on k (maximal degree of
polynomials R which appear in the splitting of M

L̂
, i.e. largest slope of M

L̂
) and

dim
L̂
M

L̂
. IfM′′

L̂
6= 0 one may apply induction to both termsM′

AL(V ) andM′′
AL(V ).

IfM′′
AL(V ) = 0, one may apply induction to F (−αt−k)

AL(V ) ⊗MAL(V ). The first step is the
case whereM

L̂
is regular. One must prove a result analogous to theorem I–5.2.2:

Lemma 2.4.2. — Let MAL(V ) be a free AL(V )-module equipped with a con-
nection such that M

L̂
is regular. There exists a AL(V )-basis m of MAL(V ) such

that the matrix of t∂t in this basis is constant.
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Proof. — Let m′ be a basis of MAL(V ) and denote by m̂′ the corresponding

basis ofM
L̂
. We know that there exists a matrix Ĉ ∈ Gl(d, L̂) such that the matrix

of t∂t in the basis m̂′ is constant. Because of lemma 2.2.5 there exists a matrix
C ∈ Gl(d,AL(V )) which lifts Ĉ. Consider now the basis m = C ·m′. The matrix of
t∂t in this basis may hence be written as A0 + A′ where A0 is constant and Â′ = 0.
We shall find a matrix B ∈ Gl(d,AL(V )) such that the matrix of t∂t in the basis
B ·m is equal to A0. As in the proof of theorem I–5.2.2 one must have:

t
dB

dt
= A0B −BA0 −BA′

and one asks that B̂ = Id . From a general point of view, consider a linear differential
system defined on AL(V ) equipped with a basis for which the matrix of t∂t can be
written C = C0 +C ′ where C0 is constant and Ĉ ′ = 0. We want to show that every
formal solution of the corresponding formal system can be lifted to a solution of
the original system (this is analogous to proposition 1.1.2). After taking the tensor
product with the system corresponding to t−C0 (one chooses some determination of
log t in ∆∗r(V )) one is reduced to the case where C0 = 0. In ∆∗r(V ) a fundamental
matrix of solutions is given by a primitive of C ′(t)/t. Since this matrix admits
an asymptotic expansion (equal to zero), every primitive matrix also (equal to a
constant matrix), and this proves the lemma. 2

Proof of lemma 2.4.1. — Begin as in the previous lemma: there exists a basis
m ofMAL(V ) such that the corresponding basis m̂ is compatible with the splitting
ofM

L̂
. Let

A =

 A11 A12

A21 A22


be the matrix of t∂t in this basis, with Â12 = Â21 = 0 and Â11, Â22 given. We shall
try to find a matrix C with the following form

C =

 Id C12

C21 Id


with entries in AL(V ) and with Ĉ12 = Ĉ21 = 0, such that in the basis C ·m, t∂t has
matrix  A′11 0

0 A′22


The matrices C12 and C21 must satisfy the following equations

A11 + C12A21 = A′11
A22 + C21A12 = A′22
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and
d/dtC12 + A12 + C12A22 = A′11C12

d/dtC21 + A21 + C21A11 = A′22C21

and so in particular the following equations must be satisfied

d/dtC12 + A12 + C12A22 − A11C12 − C12A21C12 = 0
d/dtC21 + A21 + C21A11 − A22C21 − C21A12C21 = 0

with Ĉ12 = Ĉ21 = 0, and in fact if these equations are satisfied, one deduces that the
previous ones also. We now have obtained for C12 (as well as for C21) a non linear
equation of a special type. The existence of a solution for such an equation with a
zero asymptotic expansion in some sector will follow from the theorem below, which
will not been proven here.

Theorem 2.4.3. — Consider a system of non linear differential equations

tk
dui
dt

= λiui + fi(t, u1, . . . , ur)

for i = 1, . . . , r, where for each i one has

• λi ∈ C, λi 6= 0,

• fi is a polynomial in u1, . . . , ur with coefficients in AL(V ) for some sector V ,

• the coefficients of these polynomials have an asymptotic expansion of order
≥ 0,

• moreover, the coefficients of the terms of degree ≤ 1 have positive order.

Then if the associated formal system is linear there exists in every sufficiently small
subsector U of V a set of solutions u1, . . . , ur in AL(U) with ûi = 0 for i = 1, . . . , r.
2

By applying the theorem to the previous equations one obtains the required
matrices C12 and C21, and this proves the existence of the splitting of MAL(V ) for
V sufficiently small. 2

Chapter III

Holonomic D-modules on the Riemann sphere

We shall consider in this chapter global properties of D-modules. Many results
in this chapter are valid for a compact Riemann surface. We shall restrict however
for simplicity to the case of the Riemann sphere P1(C).

1. Algebraic properties

1.1. Holonomic modules over the Weyl algebra C[x]〈∂x〉

Many properties have yet been seen in chapter I.



68 Claude Sabbah

1.1.1. — Let P ∈ C[x]〈∂x〉. Write P =
∑d
i=0 ai(x)∂

i
x with ai ∈ C[x] and ad 6≡ 0.

The singular points of the operator P are defined as the zeros of ad. We shall use
the following division statement:

Lemma 1.1.2. — Let A ∈ C[x]〈∂x〉. One may write in a unique way

A = PQ+R = Q′P +R′

with (Q,R), (Q′, R′) ∈ C[x, a−1
d (x)]〈∂x〉 and degR < degP, degR′ < degP . 2

The proof is elementary. Let now I be a (left) ideal of the ring C[x]〈∂x〉. There
exists in I an operator P of minimal degree. If P and P ′ are two such operators,
written as P =

∑d
i=0 ai(x)∂

i
x, P

′ =
∑d
i=0 a

′
i(x)∂

i
x the operator a′dP − adP ′ has degree

less than d and is contained in I, so is equal to zero. Moreover such a P generates
the ideal I over the ring C[x, a−1

d (x)]〈∂x〉. This is easily deduced from the previous
lemma.

1.1.3. — Let M be a C[x]〈∂x〉-module of finite type. This module is then
equal to a successive extension of modules isomorphic to C[x]〈∂x〉/I for some ideals
I. We say that M is holonomic if every ideal which appears in such an extension is
nonzero.

Remark. — Let Oa be the ring of germs of holomorphic functions at a point
a ∈ C and

Da = Oa〈∂x〉 = Oa ⊗C[x] C[x]〈∂x〉.
Then M is holonomic if and only if for all a ∈ C, the Da-module of finite type
Ma = Oa ⊗C[x] M is holonomic.

Theorem I–3.3.6 may be applied to holonomic C[x]〈∂x〉-modules, so one de-
duces that every such module is isomorphic to C[x]〈∂x〉/I. The following proposition
follows now from the previous results:

Proposition 1.1.4. — Let M be a holonomic C[x]〈∂x〉-module. There exists
an operator P ∈ C[x]〈∂x〉 and a surjective morphism

C[x]〈∂x〉/C[x]〈∂x〉 · P −→M −→ 0

which kernel is supported on points (i.e. is a torsion module over C[x]) and these
points are singular points of P . 2

We can now analyse the local structure of a holonomic C[x]〈∂x〉-module.

Proposition 1.1.5. — Let M be a holonomic C[x]〈∂x〉-module. There exists
a finite set Σ ⊂ C such that the restriction of M to the open set U = C − Σ
is a projective module of finite type over the ring of regular functions over U , or
equivalently (see [4] ) for every a ∈ U the Da-module Ma is free of finite type over
Oa.
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Proof. — Let P as above and put Σ = a−1
d (o). Then

C[x, a−1
d (x)]〈∂x〉/C[x, a−1

d (x)]〈∂x〉 · P
∼−→ C[x, a−1

d (x)]⊗M

hence it is enough to show the result for the first module. When the dominating
coefficient of P does not vanish in a, the module Da/Da ·P is of finite type over Oa,
hence free of rank d = degP (lemma I–2.3.3). 2

The set of points a ∈ C such that Ma is not free of finite type over Oa is the
set of singular points of M on C. it is a finite set of points.

1.2. Algebraic D
P1-modules

1.2.1. — Let U be an affine open set of P1. We can define the ring of algebraic
differential operators on U without choosing a coordinate on U . In order to do
that, consider the O(U)-module of derivations of O(U) (which is the ring of regular
functions on U): A derivation D is a C-linear operator on O(U) which satisfies
Leibniz rule. If U = C − Σ, where Σ is a finite set of points, if one chooses a
coordinate x on U and an equation f for Σ, we have

O(U) = C[x, f(x)−1]

and the module of derivations is generated by ∂x. The ring D(U) of differential
operators is the ring generated by O(U) and the module of derivations, subject to
the relations

[D, g] = D(g)

for all g ∈ O(U). If V ⊂ U is an affine open subset, one has

D(V ) = O(V )⊗O(U) D(U).

In this way one defines an algebraic sheaf D
P1 on P1.

1.2.2. — We shall refer to [5] for elementary notions in algebraic geometry that
will be used below. Let M be an algebraic (sheaf of) D

P1-module. We shall say
that M is coherent if locally (for the Zariski topology) M has finite presentation
over D

P1 . Since for every affine open set U of P1, the ring DP1(U) is noetherian
(see corollary I–1.3.5), one deduces thatM is coherent if and only if for each affine
open set U of P1 the module M(U) is of finite type over D(U). In the same way,
we shall say that M is DP1-holonomic if for each affine open set the D(U)-module
is so, i.e. M(U) is equal to an extension of modules isomorphic to D(U)/I where I
is a nonzero ideal of D(U).
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Examples.

1. Let U = P1−{0,∞} = C∗. If one chooses a coordinate x which vanishes at 0
one has O(U) = C[x, x−1] and DP1(U) = C[x, x−1]〈∂x〉. LetM be a coherent
DP1|U -module (i.e. M(U) is DP1(U)-noetherian). Let j : U ↪→ P1 denote
the inclusion. We shall construct a DP1-module denoted by j+M. Consider
the two charts U0 = P1 − {∞) and U∞ = P1 − {0}, with U = U0 ∩ U∞.
The chart U0 ' C comes equipped with the coordinate x and the chart U∞
with the coordinate z: on U one has z = x−1 and z∂z = −x∂x. We shall
define j+M(U0), j+M(U∞) as well as the restriction mappings to U . Put
j+M(U0) = M(U) considering M(U) as a module over C[x]〈∂x〉. In the
same way put j+M(U∞) =M(U) as a module over C[z]〈∂z〉. The restriction
mappings are equal to identity.

Lemma 1.2.3. — j+M is a coherent DP1-module.

Proof. — It is enough to show that M(U) is coherent over the ring
C[x]〈∂x〉 (and the same for the variable z). We know thatM(U) is generated
by one element over C[x, x−1]〈∂x〉 (theorem I–3.3.6) so we may write

M(U) ' C[x, x−1]〈∂x〉/I

and moreover we may assume that the generators P1, . . . , Pr of I are contained
in C[x]〈∂x〉 (after multiplication by some power of x). Put

N0 = C[x]〈∂x〉/C[x]〈∂x〉 · (P1, . . . , Pr).

Then N0 is holonomic over C[x]〈∂x〉 as well as N0[x
−1] (theorem I–4.2.3).

Moreover one has N0[x
−1] = M(U) as C[x]〈∂x〉-modules, which proves the

lemma. 2

2. Let P ∈ C[x]〈∂x〉 be a nonzero differential operator andM0 be the associated
holonomic module (M0 = C[x]〈∂x〉/C[x]〈∂x〉·P ). There exists a unique k ∈ Z
such that

xkP =
d∑
i=0

ai(x
−1)(x∂x)

i

with ai ∈ C[x−1] and ai(∞) 6= 0 for at least one i. With U as above, one has

M0(U) = C[x, x−1]〈∂x〉/C[x, x−1]〈∂x〉 · (xkP )
= C[z, z−1]〈∂z〉/C[z, z−1]〈∂z〉 · (

∑d
i=0 ai(z)(−z∂z)i).

One obtains in that way an extension ofM0 to a DP1-module which satisfies

M(U∞) = C[z]〈∂z〉/C[z]〈∂z〉 · (
d∑
i=0

ai(z)(−z∂z)i).
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1.2.4. Exercise. — Let P ∈ C[x]〈∂x〉 be a nonzero operator. Put

P =
d∑
i=0

aijx
j∂ix.

Let N0,∞(P ) be the boundary of the convex hull of the set

⋃
{i,j|aij 6=0}

[(i, i− j)− (N× {0})]

1. Show how to recover the Newton polygon of P at 0 from N0,∞.

2. Same question for the Newton polygon at infinity (use the construction given
in the previous example 2).

3. Show that P is regular at 0 and ∞ iff N0,∞ is a rectangle.

4. Compute the length of the vertical side (which is not on the vertical axis) of
N0,∞ in terms of the characteristic cycle of P at its singular points.

1.3. The algebraic de Rham complex

1.3.1. — Let Ω1
P1 = Ω1 be the sheaf of algebraic differential forms on P1. If

O(1) denotes the canonical line bundle on P1 (see [5]) one has an isomorphism
Ω1 ' O(−2) (this means that the differential form which is equal to dx in the chart
P1 − {∞} has a double pole at infinity, because of the relation dx = d(1/z) =
−dz/z2). The algebraic de Rham complex on P1 is the complex of sheaves

0 −→ O
P1

d−→ Ω1
P1 −→ 0

where d is the usual differential.

1.3.2. — Let M be a (sheaf of) DP1-module. One may then twist the usual
de Rham complex:

0 −→ M
dM−→ Ω1

P1 ⊗O
P1
M −→ 0

The differential dM is defined as follows: in an affine chart U with coordinate x, dx
is a basis of Ω1(U) and if m ∈M(U) one puts

dM(m) = dx⊗ (∂xm).

1.3.3. Exercise. — Show that dM does not depend on the choice of the
coordinate in the chart U and hence defines a C-linear morphism of sheaves.
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Remark. — It is important to notice that dM is only C-linear and hence
Ker dM and Coker dM are sheaves of C-vector spaces (without any other structure
in general). If M = O

P1 one recovers the usual algebraic de Rham complex. If
M = DP1 one verifies (by computing in any affine chart) that Ker dD

P1
= {0} and

that Coker dD
P1

= Ω1
P1 .

1.3.4. Exercise. — Show that Ω1
P1 admits a natural structure of right DP1-

module (use Lie derivative). Show that when DP1 is equipped with its natural
structure of right DP1-module then Coker dD

P1
admits also such a structure and

that the isomorphism above is compatible with this structure of right DP1-module.

1.3.5. — Let U be an affine open set of P1 and consider the complex of C-vector
spaces consisting of global sections over U of the algebraic de Rham complex

0 −→ M(U)
dM(U)−→ Ω1

P1(U)⊗O
P1 (U)M(U) −→ 0

If M is equal to DP1 then as we have seen above Coker dM(U) is equal to Ω1
P1(U)

and hence is not a finite dimensional vector space over C. We shall see below that
this cannot happen whenM is holonomic.

Theorem 1.3.6. — When U is an affine open set of P1 and M is DP1-
holonomic, the complex

0 −→ M(U)
dM(U)−→ Ω1

P1(U)⊗O
P1 (U)M(U) −→ 0

has finite dimensional cohomology.

Proof. — Remark first that the snake lemma shows that in an exact sequence

0 −→M′ −→M −→M′′ −→ 0

of DP1-modules, if the theorem is true for two of these modules, it is also true for the
third one. Proposition 1.1.4 (applied to the ring DP1(U)) reduces then the theorem
to the case whereM(U) = D(U)/D(U)·P for some P ∈ D(U). Choose a coordinate
x on U so that D(U) = O(U)〈∂x〉. The algebraic de Rham complex is equal to the
complex

0 −→ M(U)
∂x·−→ M(U) −→ 0.

It is easy to verify that the cokernel has finite dimension: put P = a0 + ∂xP
′ with

a0 ∈ O(U) and P ′ ∈ D(U). The cokernel is equal to

D(U)/D(U) · P + ∂x · D(U).

We then get a surjective mapping

O(U) −→ D(U)/D(U) · P + ∂x · D(U)
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and the ideal O(U) ·a0 is sent to 0. Hence the dimension of the cokernel is less than
or equal to dimCO(U)/(a0).

In order to estimate the dimension of the kernel, one may use the presentation
ofM(U): one has a commutative diagram

0 −→ D(U)
·P−→ D(U) −→ M(U) −→ 0

y∂x·
y∂x·

y∂x·

0 −→ D(U)
·P−→ D(U) −→ M(U) −→ 0

and the first two vertical maps are injective. One may identify the kernel of these
maps to O(U). So let Q ∈ D(U) such that QP = ∂xR for some R ∈ D(U).
Put Q = q0 + ∂xQ

′ with q0 ∈ O(U). So one gets q0P = ∂xR
′ (and [Q] = [q0] in

D(U)/∂xD(U)). Because q0P = Pq0 − P (q0) one obtains the following equation for
q0 (with the notations above):

(∂xP
′)(q0) = ∂x ·R′′

for some R′′ in D(U). This implies in fact that q0 is a solution of the differential
equation (∂xP

′)(q0) = 0. The space of such solutions is finite dimensional, so this
implies that the kernel of ∂x :M(U)→M(U) is also finite dimensional.

Remark. — It is simpler to show that the complex

0 −→ M(U)
x·−→ M(U) −→ 0

has finite dimensional cohomology. Take for instance U = P1−{∞} and consider the
filtration VM(U) obtained like in §I–6.1. The previous complex is quasi-isomorphic
to the complex

0 −→ grV0M(U)
x·−→ grV−1M(U) −→ 0

and each term in this complex (hence the cohomology) is a finite dimensional C-
vector space. One can show the previous theorem (for the mapping ∂x) by using a
Fourier transform: put ξ = ∂x and ∂ξ = −x. One then has C[x]〈∂x〉 = C[ξ]〈∂ξ〉 and
one has the relation

[∂ξ, ξ] = [−x, ∂x] = 1.

Now M(U) is also holonomic as a C[ξ]〈∂ξ〉-module and one may apply the above
computation.

1.3.7. — With an algebraic sheaf F of C-vector spaces on P1 are associated
cohomology groups H∗(P1,F) and with a complex F• of such sheaves are associated
hypercohomology groups H∗(P1,F•). These are C-vector spaces (see for instance
[5]). We shall now be interested on the hypercohomology of the algebraic de Rham
complex Ω•

P1 ⊗M whenM is holonomic.
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Theorem 1.3.8. — Let M be a holonomic DP1-module. Then

dimC H i(P1,Ω•P1 ⊗M)

{
= 0 if i 6= 0, 1
< +∞ if i = 0, 1

Remarks.

1. It may be more natural to consider the de Rham complex shifted by 1, that is
Ω•

P1 ⊗M[1]. This complex has nonzero hypercohomology at most in degrees
−1 and 0.

2. The theorem above is valid for every coherent DP1-module unlike theorem
1.3.6. This comes from the fact that P1 is a compact Riemann surface. We
shall not give the proof of this general statement and refer for it to [10] or [13].
An easy exercise consits in showing that the theorem is true whenM = DP1 .

Proof of theorem 1.3.8. — Assume first that there exists a point in P1 taken as
the point at infinity, such that one hasM = j+j

∗M where j : U = P1−{∞} ↪→ P1

denotes the inclusion and j∗M denotes the restriction of M to this affine open set
U . Because U is affine one has

H i(P1,Ωk ⊗M) = H i(U,Ωk ⊗ j∗M) = 0

for i 6= 0 and k = 0, 1 and

H0(P1,Ωk ⊗M) = H0(U,Ωk ⊗ j∗M) = Ωk(U)⊗M(U).

Moreover one has an exact sequence

0 −→H0(P1,Ω• ⊗M) −→ H0(P1,Ω0 ⊗M) −→
−→ H0(P1,Ω1 ⊗M) −→H1(P1,Ω• ⊗M) −→ · · ·

and consequently H?(P1,Ω• ⊗ M) is equal to the cohomology of the algebraic
de Rham complex over U . One may then apply theorem 1.3.6

In general one uses the exact sequence of localization

0 −→ K −→M −→ j+j
∗M−→ C −→ 0

where K and C have support at ∞. One may apply the previous result to j+j
∗M

and also to K and C (by changing the point at infinity) and one obtains the theorem
using long exact sequences of hypercohomology.

2. Algebraic/analytic comparison theorems (Abstract)

This section has not been written up. I shall only give the abstract of the
results explained during the lecture. The reader will find useful references in the
bibliographical guide.
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2.1. GAGA

One introduces the sheaf Dan
P1 of differential operators on P1 with analytic

coefficients and proves the coherence of Dan
P1 . If Man is a coherent Dan

P1-module,
GAGA theorem asserts that there exists a coherentD

P1-moduleM such thatMan =
Dan

P1 ⊗DM. The proof is based on the existence of a lattice in Man, i.e a coherent
Oan

P1-module which generates Man at each point of P1 (one then may apply the
classical GAGA theorem). This result is in fact local and has to be proved only
for holonomic modules. One then uses the formal structure of such modules at a
singular point to get a formal lattice which will be used to construct the convergent
lattice.

One proves also thatM is holonomic if and only ifMan is so.

2.2. Analytic de Rham complex and local comparison

When Man is a Dan
P1-module one may define the analytic de Rham complex

DRan(Man). WhenMan is holonomic, this complex has constructible cohomology.
It is in some sense dual to the complex of solutions of Man in Oan introduced in
II–1.3.2.

Assume thatMan is holonomic. Let V be a small neighborhood of a singular
point x ∈ P1 ofMan and let j : V ∗ = V − {x} ↪→ V be the open inclusion. IfMan

is a meromorphic connexion at x (i.e its germ at x is a localized Danx -module), then
the local comparison theorem asserts that ifMan is regular at x, one has

DRan(Man)x =
[
Rj∗j

−1DRan(Man)
]
x
.

2.3. Global comparison theorem

Let M be a DU -module, where U is an affine open set of P1. The global
comparison theorem asserts that if (j+M)an is regular (at each point of P1), the
cohomology of the algebraic de Rham complex Ω• ⊗M is equal to the hypercoho-
mology

H∗(U,DRan(Man)).

This result can be deduced from the local comparison theorem and standard homo-
logical arguments.

2.4. Global index

When M is a holonomic DU -module but perhaps not regular, the differ-
ence between Euler characteristics of Ω•(U) ⊗M and H∗(U,DRan(Man)) can be
computed in term of local irregularities. This gives a global index theorem.
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Bibliographical guide

1. Chapter I

The results of section 1 may easily be generalized to many variables. The
reader may consult the book [9], from where are taken the proofs in this section.
The definition of Gevrey conditions may be found in [20].

Division theorems are important in analytic geometry. They allow to analyse
the structure of ideals. For instance the notion of a division basis of an ideal was
used at the beginning of the century for convergent or formal power series in many
variables (it is also called Gröbner basis). The fact that this notion may be used
also in the case of differential operators comes from the fact that the graded ring
grFD for the F -filtration is a ring of polynomials with coefficients in a ring of power
series. The results of section 2 are developed in [16] (see also [30] for analogous
results in many variables).

The notion of holonomy (introduced in section 3) is not difficult in dimension
1. For generalizations, the reader may consult [9]. The microlocal approach to
characteristic varieties is developed in the book by M. Kashiwara [12] as well as in
the second part of the book of F. Pham [14]. Bernstein’s approach to holonomy may
be found in his paper [17], and also in the paper by F. Ehlers in [10].

Section 4 makes the link between the classical notion of a meromorphic
connection and the notion of a localized D-module (following [33]). Classically,
a meromorphic connection consists of a vector bundle with a connection admitting
poles. In the case of many variables, it is necessary to consider also coherent sheaves.
The notion which is independent of such a vector bundle (or sheaf) is obtained by
working over the ring of functions localized on poles of the connection (in §4 it is
the ring C[x, x−1]). The main theorem is theorem 4.2.3. It has been generalized in
many variables by Kashiwara [31]. We have insisted on the V -filtration because it
is important for the theory of moderate nearby and vanishing cycles. The proof of
proposition 4.3.3 given here is taken from [33] where it is attributed to N. Katz.

It is easy to define the Newton polygon for an operator (even in many
variables). One important point (which was singled out by Y. Laurent in [32]) is to
define it for D-modules. It is easier to define first the set of slopes of this polygon.
That is what is done in §5.1. Such a notion appears usually when one wants to
compare many filtrations on the same object.

The structure theorem of formal regular meromorphic connections (subsection
5.2) is essentially taken from [7] and [19]. The quite simple proof of theorem 5.4.7
(via theorem 5.3.1) is taken from [33] (see now [35]). It is a small simplification of
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the proof in [24]. Other proofs are given in [26], [23], [25], [21] (see also [36]) and
[22].

The notion of (moderate) nearby and vanishing cycles (section 6.1) is important
for the classification of regular holonomic D-modules in many variables. For the link
with microsolutions the reader may consult [16] as well as the paper of L. Narvaez
in [34]. The approach given here is due to Beilinson, Kashiwara, Malgrange.

2. Chapter II

§1.1 contains classical results. The proof of theorem 1.1.1 is taken from
[7]. In §1.2 the various regularity criteria are easy consequences of theorem 1.1.1.
Proposition 1.2.2 was stated in [16].

In §1.3, theorem 1.3.10 and its proof are due to Malgrange [19]. It has been
generalized recently by Z. Mebkhout to the case of many variables (the positivity
statement is replaced by a perversity statement concerning the irregularity sheaf).

The local index theorem of §1.4, which is a consequence of theorem 1.3.10, has
been generalized by Kashiwara in [12]. In dimension bigger than one, the geometry
of the characteristic variety is more complicated and local Euler obstruction enters
in the formula for χalg(M). The formula for the index given in proposition 1.4.6 is
due to Deligne [11].

The presentation given in §2 is due to Malgrange [28], [33] (see also [27]). The
paragraph on asymptotic expansions is a summary of a chapter in Wasow’s book
[7]. In that book the proof of theorem 2.3.1 does not clearly separate the formal
case and the analytic case. That is why we have followed [27]. However, the proof of
theorem 2.4.3 may be found in [7]. Another presentation as well as a generalization
to the case power series satisfying Gevrey conditions are given in [29].

3. Chapter III

One should consult [10] for the first section of the chapter and [11], [35] for the
second one.
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[34] Séminaire des Plans sur Bex, Travaux en Cours 34 Hermann, Paris, (1987).

References added on September 91
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