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Abstract. The goal of a classification algorithm is to predict at best the
class of an object from some observations of this object. A typical example is
the spam filter of our mailbox, which predicts (more or less fairly) whether a
mail is a spam or not. We introduce in these notes the main basic concepts of
the theory of supervised statistical classification and some of the most popular
classification algorithms. We highlight along the way the importance of some
mathematical tools including symmetrization, convexification, concentration
inequalities, contraction and reproducing kernel Hilbert spaces.
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1 Introduction
The early 21st century has seen a dramatic increase of the use of mathematics both in
private companies and in academic labs. This raise of the importance of mathematics goes
in pair with the explosion of data production and computing power. In the industry, math-
ematical modeling can appear at every stage of the life of a product. From the technical
conception, with intensive numerical simulation, via the production, with the optimization
of resources and fluxes, to the marketing and the distribution with forecasts based on the
analysis of huge data bases. In academic labs, mathematical modeling becomes more and
more crucial, in particular in biology and medicine, where scientists have to handle massive
data sets produced by the virtue of recent biotechnological developments.

Automatic classification is perhaps one of the most invasive uses of mathematics. The
goal of automatic classification is to predict at best the class y of an object x from some
observations. A typical example is the spam filter of our mailbox, which predicts (more or
less fairly) whether a mail is a spam or not. It is omnipresent in our daily life, by filtering
the spams in our mailbox, reading automatically post-code on our letters or recognizing
faces on photos that we post in social networks. It is also very important in sciences,
e.g. in medicine for early diagnosis of diseases from high-throughput data or for in silico
exploration of candidate drugs.

We introduce in these notes the main basic concepts of (supervised) statistical learning.
We describe in Section 2 the mathematical modeling of a generic classification problem. In
Section 3 we analyze the prediction accuracy of a universal classification algorithm and in
Section 4 we derive from this theoretical algorithm some practical and popular algorithms.
The appendices gather some technical results involved in the definition and analysis of the
classification algorithm.

2 Mathematical modeling
For the sake of simplicity, we will restrict in these notes to the case where we have only two
classes (as for the spam filter). The problem of automatic classification can be modeled as
follows. Let X be some measurable space. We observe conjointly a data point X ∈ X and
a label Y ∈ {−1 + 1}. Our aim is to find a function h : X → {−1,+1}, called classifier,
such that h(X) predicts at best the label Y .

Assume that the couple (X, Y ) ∈ X × {−1 + 1} is sampled from a distribution P. For a
classifier h : X → {−1,+1} the probability of misclassification is

L(h) = P(Y 6= h(X)).

Since |Y − h(X)| ∈ {0, 2}, we have

L(h) =
1

4
E
[
(Y − h(X))2

]
=

1

4
E
[
(Y − E [Y |X])2

]
+

1

4
E
[
(E [Y |X]− h(X))2

]
.
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Therefore L(h) is minimal for the so-called Bayes classifier

h∗(X) = sign(E [Y |X]) where sign(x) = 1x>0 − 1x≤0 for x ∈ R.

When the distribution P is known, we simply use the Bayes classifier h∗ in order to have
the smallest possible probability of misclassification. Unfortunately, the distribution P is
usually unknown, so we cannot compute the Bayes classifier h∗.

In practice, we only have access to some training data (Xi, Yi)i=1,...,n i.i.d. with distribution
P and our goal is to build from this training data a classifier ĥ : X → {−1,+1} such that
L(ĥ)− L(h∗) is as small as possible.

3 Empirical risk minimization
Since P is unknown we cannot compute the probability of misclassification L(h). We can
compute instead the empirical probability of misclassification

L̂n(h) :=
1

n

n∑
i=1

1Yi 6=h(Xi) = P̂n(Y 6= h(X)),

where P̂n = 1
n

∑n
i=1 δ(Xi,Yi). To a set H of classifiers, we call dictionary, we can associate

the so-called empirical risk minimization classifier

ĥH ∈ argmin
h∈H

L̂n(h). (1)

The definition of this classifier is natural, yet we face two issues: which dictionary H should
be chosen and how does ĥH behave compared to h∗? These two issues are of course strongly
connected. Decomposing the difference between the misclassification probabilities L(ĥH)
and L(h∗), we find

0 ≤ L(ĥH)− L(h∗) = min
h∈H

L(h)− L(h∗)︸ ︷︷ ︸
approximation error

+L(ĥH)−min
h∈H

L(h)︸ ︷︷ ︸
stochastic error

.

The first term measures the quality of the approximation of h∗ by some classifier h ∈ H.
This approximation error is purely deterministic and enlarging the dictionary H can only
reduce it. The second term measures the error made by minimizing over h ∈ H the
empirical misclassification probability L̂n(h) instead of the true misclassification probability
L(h). This term is stochastic and it tends to increase when H increases. This phenomenon
is illustrated in Figure 1. In this illustration in X = R2, the classifiers of the dictionary
Hlin = {h(x) = sign(〈w, x〉) : ‖w‖ = 1} are not flexible enough and they produce poor
classification. In this case the approximation error is large. On the other hand the classifiers
of the dictionary Hpoly = {h(x) = 2 1A(x)− 1 : A polygon in X} are very flexible and can
always reproduce exactly the classification of the data (Xi, Yi)i=1,...,n. The empirical error
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Figure 1: Examples of classification produced by different dictionaries. Left: with the linear
classifiers Hlin. Center: with the polygon classifiers Hpoly. Right: with classifiers based on
quadratic forms.

L̂n(ĥHpoly) is then always 0, but ĥHpoly tends to produce poor classification of new data
(X, Y ) and the stochastic term L(ĥH)−minh∈H L(h) is large. The last example, based on
a less flexible set of quadratic classifiers produces a better result.

To choose a good dictionary H, we shall then find a good balance between the approxi-
mation properties of H and its size. The first step towards a principle for choosing the
dictionary H is to assess the misclassification probability of the empirical risk minimizer
ĥH.

3.1 Misclassification probability of ĥH
As mentioned above, increasing the size of H tends to increase the stochastic error L(ĥH)−
minh∈H L(h). Actually, it is not really the size of the dictionary that matters, but rather
its flexibility in terms of classification. For example, we cannot classify correctly the three
labeled points

{(
(0, 1),+1

)
,
(
(1, 1),−1

)
,
(
(1, 0),+1

)}
with a classifier in Hlin. Conversely, for

any set of labeled points (xi, yi)i=1,...,n, there exists h ∈ Hpoly such that h(xi) = yi.

In order to capture this classification flexibility, we introduce the shattering coefficient

Sn(H) = max
(x1,...,xn)∈Xn

card {(h(x1), . . . , h(xn)) : h ∈ H} , (2)

which gives the maximal number of different labeling of n points that the classifiers in
H can produce. For example, since n points can be arbitrarily labelled with classifiers in
Hpoly, we have Sn(Hpoly) = 2n. On the contrary, the number of possible labeling of n points
with classifiers in Hlin is more limited. Actually Proposition 1 in Section 3.3 ensures that
Sn(Hlin) ≤ (n + 1)2. Next theorem provides an upper-bound of the stochastic error and
a confidence interval for the misclassification probability L(ĥH) in terms of the shattering
coefficient.
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Theorem 1 Control of the stochastic error

For any t > 0, with probability at least 1− e−t we have

L(ĥH)−min
h∈H

L(h) ≤ 4

√
2 log(2 SH(n))

n
+

√
2t

n
(3)

and ∣∣L(ĥH)− L̂n(ĥH)
∣∣ ≤ 2

√
2 log(2 SH(n))

n
+

√
t

2n
(4)

Proof. Next lemma shows that the left-hand terms in (3) and (4) can be upper bounded in
terms of maximum difference over H between the empirical misclassification probability and the
true misclassification probability

∆̂n(H) = sup
h∈H

∣∣L̂n(h)− L(h)
∣∣. (5)

Lemma 1.1
We have the upper-bounds

L(ĥH)−min
h∈H

L(h) ≤ 2 ∆̂n(H) and
∣∣L(ĥH)− L̂n(ĥH)

∣∣ ≤ ∆̂n(H).

Proof of Lemma 1.1. For any h ∈ H, we have L̂n(ĥH) ≤ L̂n(h) and therefore

L(ĥH)− L(h) = L(ĥH)− L̂n(ĥH) + L̂n(ĥH)− L(h)
≤ L(ĥH)− L̂n(ĥH) + L̂n(h)− L(h)
≤ 2 ∆̂n(H).

Since this inequality is true for any h ∈ H, the first bound of Lemma 1.1 follows. The second
bound is obvious. 2

In order to prove Theorem 1, it remains to prove that we have

∆̂n(H) ≤ 2

√
2 log(2 SH(n))

n
+

√
t

2n

with probability at least 1− e−t. We split the proof of this bound into two lemmas.

Lemma 1.2
With probability at least 1− e−t, we have

∆̂n(H) ≤ E
[
∆̂n(H)

]
+

√
t

2n
.
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Proof of Lemma 1.2. We have ∆̂n(H) = F ((X1, Y1), . . . , (Xn, Yn)) with

F : (X × {−1,+1})n → R

((x1, y1), . . . , (xn, yn)) 7→ 1
n

sup
h∈H

∣∣∣ n∑
i=1

1yi 6=h(xi) − L(h)
∣∣∣ .

For any (x1, y1), . . . , (xn, yn), (x′i, y
′
i) ∈ X × {−1,+1}, we have∣∣F ((x1, y1), . . . , (x′i, y

′
i), . . . , (xn, yn))− F ((x1, y1), . . . , (xi, yi), . . . , (xn, yn))

∣∣ ≤ 1
n
,

so according to McDiarmid concentration inequality (see Theorem 4 in Appendix B), with prob-
ability at least 1 − e−2ns2 , we have ∆̂n(H) ≤ E

[
∆̂n(H)

]
+ s. Lemma 1.2 follows by setting

s =
√
t/(2n). 2

It remains to bound the expectation of ∆̂n(H) in terms of SH(n).

Lemma 1.3
For any dictionary H we have the upper-bound

E
[
∆̂n(H)

]
≤ 2

√
2 log(2 SH(n))

n
.

Proof of Lemma 1.3. The proof of Lemma 1.3 is based on a classical and elegant symmetrization
argument.

The first step of the symmetrization is to represent the misclassification probability L(h) as the
expectation of an empirical misclassification probability

L(h) = P(Y 6= h(X)) = Ẽ

[
1
n

n∑
i=1

1eYi 6=h( eXi)
]
,

where (X̃i, Ỹi)i=1,...,n is independent of (Xi, Yi)i=1,...,n and is identically distributed. In the follow-
ing, Ẽ will refer to the expectation with respect to the variables (X̃i, Ỹi)i=1,...,n and E will refer to
the expectation with respect to the variables (Xi, Yi)i=1,...,n. According to Jensen’s and Fatou’s
inequalities, we have

E
[
∆̂n(H)

]
= E

[
sup
h∈H

∣∣∣∣∣ 1n
n∑
i=1

1Yi 6=h(Xi) − Ẽ

[
1
n

n∑
i=1

1eYi 6=h( eXi)
] ∣∣∣∣∣
]

≤ EẼ

[
sup
h∈H

∣∣∣ 1
n

n∑
i=1

(
1Yi 6=h(Xi) − 1eYi 6=h( eXi)

) ∣∣∣] .
The second step is to capitalize on the symmetry of the variables 1Yi 6=h(Xi) − 1eYi 6=h( eXi) . We in-

troduce n i.i.d. random variables (σi)i=1,...,n independent of (Xi, Yi, X̃i, Ỹi)i=1,...,n with distribution
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Pσ(σi = 1) = Pσ(σi = −1) = 1/2. By symmetry, we notice that
(
σi
(
1Yi 6=h(Xi) − 1eYi 6=h( eXi)))i=1,...,n

has the same distribution as
(
1Yi 6=h(Xi) − 1eYi 6=h( eXi)

)
i=1,...,n

, so we have

E
[
∆̂n(H)

]
≤ EẼEσ

[
sup
h∈H

∣∣∣ 1
n

n∑
i=1

σi

(
1Yi 6=h(Xi) − 1eYi 6=h( eXi)

) ∣∣∣]

≤ 2EEσ

[
sup
h∈H

∣∣∣ 1
n

n∑
i=1

σi1Yi 6=h(Xi)
∣∣∣]

≤ 2 max
y∈{−1,+1}n

max
x∈Xn

Eσ

[
sup
h∈H

∣∣∣ 1
n

n∑
i=1

σi1yi 6=h(xi)
∣∣∣] ,

where the second inequality simply follows from the triangular inequality. For any (x, y) ∈ X n ×
{−1,+1}n, let us define the set

VH(x, y) =
{

(1y1 6=h(x1), . . . ,1yn 6=h(xn)) : h ∈ H
}
.

The last upper-bound on E
[
∆̂n(H)

]
can be written as

E
[
∆̂n(H)

]
≤ 2
n
× max
y∈{−1,+1}n

max
x∈Xn

Eσ

[
sup

v∈VH(x,y)
|〈σ, v〉|

]
,

where 〈x, y〉 is the canonical scalar product on Rn. We notice that for any y ∈ {−1,+1}n there is
a bijection between VH(x, y) and the set {(h(x1), . . . , h(xn)) : h ∈ H}. As a consequence we have
the upper-bound

max
y∈{−1,+1}n

max
x∈Xn

card(VH(x, y)) ≤ Sn(H).

In view of the last two inequalities, it simply remains to prove that

Eσ
[
sup
v∈V
|〈σ, v〉|

]
≤
√

2n log (2 card(V)), for any finite V ⊂ {−1, 0,+1}n (6)

in order to conclude the proof of Lemma 1.3. Let us prove (6). Writing V# = V ∪ −V, Jensen’s
inequality ensures that for any s > 0

Eσ
[
sup
v∈V
|〈σ, v〉|

]
= Eσ

[
sup
v∈V#

〈σ, v〉

]
≤ 1

s
log Eσ

[
sup
v∈V#

es〈σ,v〉

]

≤ 1
s

log

∑
v∈V#

Eσ
[
es〈σ,v〉

] . (7)

Combining the facts that the σi are independent, (ex+e−x) ≤ 2ex
2/2 for all x ∈ R and v2

i ∈ {0, 1}
for all v ∈ V#, we have

Eσ
[
es〈σ,v〉

]
=

n∏
i=1

Eσ [esviσi ] =
n∏
i=1

1
2

(esvi + e−svi)

≤
n∏
i=1

es
2v2i /2 ≤ ens

2/2.
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Plugging this inequality in (7), we obtain

Eσ
[
sup
v∈V
|〈σ, v〉|

]
≤ log(card(V#)

s
+
ns

2
for any s > 0.

The right-hand side is minimal for s =
√

2 log(card(V#))/n, which gives the upper bound

Eσ
[
sup
v∈V
|〈σ, v〉|

]
≤
√

2n log(card(V#)) .

We finally obtain (6) by noticing that card(V#) ≤ 2 card(V). The proof of Lemma 1.3 is complete.
2

The bounds (3) and (4) are obtained by combining the three lemmas. 2

3.2 Dictionary selection

Let us consider a collection {H1, . . . ,HM} of classifiers dictionaries. We would like to select
among this collection, the dictionary H∗ with the smallest misclassification probability
L(ĥH∗). The so-called oracle dictionary H∗ depends on the unknown distribution P, so
it is not accessible to the statistician. In the following, we will build on Theorem 1 in
order to design a data-driven procedure for selecting a dictionary Hbm among the collection
{H1, . . . ,HM}, with performances similar to those of H∗.

The oracle dictionary H∗ is obtained by minimizing the misclassification probability L(ĥH)
over H ∈ {H1, . . . ,HM}. A first idea is to select Hbm by minimizing over the collection
{H1, . . . ,HM} the empirical misclassification probability L̂n(ĥH). This selection procedure
will not give good results since for any H ⊂ H′ we always have L̂n(ĥH′) ≤ L̂n(ĥH), so the
procedure will tend to select the largest possible dictionary. For designing a good selection
procedure, we have to take into account the fluctuations of L̂n(ĥH) around L(ĥH). The
bound (4) in Theorem 1 give us a control of these fluctuations. Building on this bound we
have the following result.

Theorem 2 Dictionary selection

Let us consider the dictionary selection procedure

m̂ = argmin
m=1,...,M

{
L̂n(ĥHm) + pen(Hm)

}
, with pen(H) = 2

√
2 log(2 Sn(H))

n
.

Then, for any t > 0, with probability at least 1− e−t we have

L(ĥH bm) ≤ min
m=1,...,M

{
inf
h∈Hm

L(h) + 2 pen(Hm)

}
+

√
2 log(M) + 2t

n
. (8)



Journées XUPS : Mathematical Foundation of Statistical Learning 9

Before proving Theorem 2 let us comment the bound (8). Since minh∈H L(h) ≤ L(ĥH), we
obtain with probability 1− e−t

L(ĥH bm) ≤ L(ĥH∗) + 2 pen(H∗) +

√
2 log(M) + 2t

n
.

In particular, we can compare the misclassification probability of the selected classifier with
the misclassification probability of the best classifier among the collection

{
ĥH1 , . . . , ĥHM

}
.

We also notice that the bound (8) increases as
√

2 log(M)/n with the number M of
candidate dictionaries. Finally, the results remain valid if we take pen(H) larger than
2
√

2 log(2 Sn(H))/n.

Proof of Theorem 2. We recall the notation ∆̂n(H) = suph∈H
∣∣L̂n(h)−L(h)

∣∣. According to
Lemma 1.2 and Lemma 1.3 we have with probability at least 1− e−t

∆̂n(Hm) ≤ pen(Hm) +

√
log(M) + t

2n
, simultaneously for all m = 1, . . . ,M. (9)

Therefore, according to Lemma 1.1 and the selection criterion we have with probability at least
1− e−t

L(ĥH bm) ≤ L̂n(ĥH bm) + pen(Hbm) +

√
log(M) + t

2n

≤ min
m=1,...,M

{
L̂n(ĥHm) + pen(Hm)

}
+

√
log(M) + t

2n
. (10)

To conclude, we only need to control the size of L̂n(ĥHm) in terms of infh∈Hm L(h). This can be
done directly by combining (3) and (4), but the resulting bound is not tight.

In order to compare L̂n(ĥHm) to infh∈Hm L(h), let us notice that for any h ∈ Hm we have

L̂n(ĥHm) ≤ L̂n(h) ≤ L(h) + ∆̂n(Hm),

so taking the infimum over h ∈ Hm we obtain for all m = 1, . . . ,M

L̂n(ĥHm) ≤ inf
h∈Hm

L(h) + ∆̂n(Hm).

Combining this bound with (9) and (10), we obtain

L(ĥH bm) ≤ min
m=1,...,M

{
inf

h∈Hm
L(h) + 2 pen(Hm)

}
+ 2

√
log(M) + t

2n
.

The proof of Theorem 2 is complete. 2

Remark: Combining (9) and Lemma 1.1, we obtain the confidence interval for the mis-
classification probability

P
(
L(ĥH bm) ∈

[
L̂n(ĥH bm)− δ(m̂, t), L̂n(ĥH bm) + δ(m̂, t)

])
≥ 1− e−t

with δ(m̂, t) = pen(Hbm) +

√
log(M) + t

2n
.
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3.3 Vapnik-Chervonenkis dimension

Computing the shattering coefficient Sn(H) can be tricky in practice. Nevertheless, a
nice combinatorial property of the shattering coefficients provides a simple upper-bound
for Sn(H), which depends on H only through a single quantity, the so-called Vapnik-
Chervonenkis dimension of H.
By convention we set S0(H) = 1. We call VC-dimension of H the integer dH defined by

dH = sup
{
d ∈ N : Sd(H) = 2d

}
∈ N ∪ {+∞} .

It corresponds to the maximum number of points in X that can be arbitrarily classified
by the classifiers in H. Next proposition gives an upper-bound of the shattering coefficient
Sn(H) in terms of the VC-dimension dH.

Proposition 1 Sauer’s lemma

Let H be a set of classifiers with finite VC-dimension dH. For any n ∈ N we have

Sn(H) ≤
dH∑
i=0

Ci
n ≤ (n+ 1)dH with Ci

n =

{
n!

i! (n−i)! for n ≥ i

0 for n < i.

Proof. We first prove the inequality

Sk(H) ≤
dH∑
i=0

Cik (11)

for any H with finite VC-dimension dH, by induction on k.

Let us consider the case k = 1. If dH = 0, it means that no point can be shattered so all points
can be labelled in only one way. Therefore S1(H) = 1 which is equal to C0

1 . If dH ≥ 1, we have
S1(H) = 2 which is also equal to C0

1 + C1
1 .

Assume now that (11) is true for all k ≤ n−1. Let us consider H with finite VC-dimension dH. As
mentioned above, when dH = 0 all points can only be labelled in one way so Sk(H) = 1 and (11)
is true for all k. We assume now that dH ≥ 1. Let x1, . . . , xn be n points in X and define

H(x1, . . . , xn) = {(h(x1), . . . , h(xn)) : h ∈ H} .

The set H(x1, . . . , xn) depends only on the values of h on {x1, . . . , xn}, so we can replace H by
F =

{
h|{x1,...,xn} : h ∈ H

}
in the definition of H(x1, . . . , xn). Since dF is not larger than dH, we

can assume with no loss of generality, that X = {x1, . . . , xn} and H = F in the following. Let us
consider the set

H′ =
{
h ∈ H : h(xn) = 1 and h′ = h− 2× 1{xn} ∈ H

}
.

Since H(x1, . . . , xn) = H′(x1, . . . , xn) ∪ (H \H′)(x1, . . . , xn) we have

card (H(x1, . . . , xn)) ≤ card
(
H′(x1, . . . , xn)

)
+ card

(
(H \H′)(x1, . . . , xn)

)
. (12)

Let us bound apart the cardinality of H′(x1, . . . , xn) and the cardinality of (H \H′)(x1, . . . , xn).
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1. First, we note that card (H′(x1, . . . , xn)) = card (H′(x1, . . . , xn−1)) since h(xn) = 1 for all
h ∈ H′. Second, we observe that the VC-dimension dH′ of H′ is at most dH − 1. Actually,
if d points xi1 , . . . , xid of X = {x1, . . . , xn} are shattered by H′, then xn /∈ {xi1 , . . . , xid}
since h(xn) = 1 for all h ∈ H′. Furthermore, the set {xi1 , . . . , xid , xn} is shattered by H
due to the definition of H′, so d+ 1 ≤ dH, which implies dH′ ≤ dH− 1. Applying (11) with
k = n− 1 we obtain that

card
(
H′(x1, . . . , xn)

)
= card

(
H′(x1, . . . , xn−1)

)
≤

dH−1∑
i=0

Cin−1. (13)

2. When h, h′ ∈ H \ H′ fulfill h(xi) = h′(xi) for i = 1, . . . , n − 1, they also fulfill h(xn) =
h′(xn) by definition of H′. Therefore, we have as above card ((H \H′)(x1, . . . , xn)) =
card ((H \H′)(x1, . . . , xn−1)). Furthermore dH\H′ is not larger than dH since H \ H′ ⊂ H
so equation (11) with k = n− 1 gives

card
(
(H \H′)(x1, . . . , xn)

)
= card

(
(H \H′)(x1, . . . , xn−1)

)
≤

dH∑
i=0

Cin−1 . (14)

Combining (12), (13) and (14), we obtain that

card (H(x1, . . . , xn)) ≤
dH∑
i=1

Ci−1
n−1 +

dH∑
i=0

Cin−1 =
dH∑
i=0

Cin ,

since Cin−1 + Ci−1
n−1 = Cin for i ≥ 1. As a consequence (11) is true for k = n and the induction is

complete.

The second upper-bound of the proposition is obtained by
d∑
i=0

Cin ≤
d∑
i=0

ni

i!
≤

d∑
i=0

Cid n
i = (1 + n)d.

The proof of Proposition 1 is complete. 2

Let us give some examples of VC-dimension for some simple dictionaries on X = Rd. The
proofs are let as exercises.
Example 1: linear classifiers.
The VC-dimension of the set H = {h(x) = sign(〈w, x〉) : ‖w‖ = 1} of linear classifiers is d.
Example 2: affine classifiers.
The VC-dimension of the set H = {h(x) = sign(〈w, x〉+ b) : ‖w‖ = 1, b ∈ R} of affine
classifiers is d+ 1.
Example 3: hyper-rectangle classifiers.
The VC-dimension of the setH =

{
h(x) = 2 1A(x)− 1 : A hyper-rectangle of Rd

}
of hyper-

rectangle classifiers is 2d.
Example 4: convex polygon classifiers.
The VC-dimension of the set H =

{
h(x) = 2 1A(x)− 1 : A convex polygon of Rd

}
of con-

vex polygon classifiers is +∞ (consider n points on the unit sphere : for any subset of
these points you can choose their convex hull as convex polygon).
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4 From theoretical to practical classifiers

4.1 Empirical risk convexification

The empirical risk classifiers analyzed in the previous section have some very nice statis-
tical properties, but they cannot be used in practice because of their computational cost.
Actually, there is no efficient way to minimize (1) since neither H nor L̂n are convex. Some
of the most popular classification algorithms are obtained by a simple convex relaxation of
the minimization problem (1). The empirical misclassification probability L̂n is replaced
by some convex surrogate and the set of classifiers H is replaced by some convex functional
set F ⊂ RX .
Let us consider some convex set F of functions from X to R. A function f ∈ F is not
a classifier, but we can use it for classification by classifying the data points according to
the sign of f . In other words we can associate to f the classifier sign(f). The empirical
misclassification probability of this classifier can be written as

L̂n(sign(f)) =
1

n

n∑
i=1

1{Yi sign(f)(Xi)<0} =
1

n

n∑
i=1

1{Yi f(Xi)<0}.

Let us replace this empirical misclassification probability L̂n by some convex surrogate,
which is more amenable to numerical computations. A simple and efficient way to obtain a
convex criterion is to replace the loss function z → 1z<0 by some convex function z → `(z).
Building on this simple idea, we will focus in the following on classifiers obtained by the
procedure

ĥF = sign(f̂F) where f̂F = argmin
f∈F

L̂`n(f) with L̂`n(f) =
1

n

n∑
i=1

`(Yi f(Xi)). (15)

This classifier can be computed efficiently since both F and L̂`n are convex. Many popular
classifiers are obtained by solving (15) with some specific choices of F and `, see Section 4.3
and 4.4 for some examples.

Some popular convex loss `

It is natural to consider a convex loss function ` which is non-increasing and non-negative.
Usually, we also ask that `(z) ≥ 1z<0 for all z ∈ R since in this case we can give an upper-
bound on the misclassification probability, see Theorem 3. Some classical loss functions
are

• the exponential loss `(z) = e−z

• the logit loss `(z) = log2(1 + e−z)

• the hinge loss `(z) = (1− z)+ (with (x)+ = max(0, x))

see Figure 2 for a plot of these three functions.
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Figure 2: Plot of the exponential, hinge and logit losses

Some classical functional sets F

The main popular convex functional sets F can be grouped into two class.

A first popular class of sets F is obtained by taking a linear combination of a finite family
H = {h1, . . . , hp} of classifiers

F =

{
f : f(x) =

p∑
j=1

βjhj(x) with βj ∈ C
}
, (16)

where C is a convex subset of Rp. Typical choices for C are the `1-ball {β ∈ Rp : |β|1 ≤ R},
the simplex

{
β ∈ Rp : βj ≥ 0,

∑p
j=1 βj ≤ 1

}
or the whole space Rp. This choice appears

for example in boosting methods, see Section 4.4. The basic classifiers {h1, . . . , hp} are
often called weak learners. A popular choice of weak learners is hj(x) = sign(xj − tj) with
tj ∈ R.

A second popular class of sets F is obtained by taking a ball of a Reproducing Kernel
Hilbert Space (RKHS). We refer to the Appendix A for a brief introduction to RKHS.
More precisely, let Fk be a RKHS with reproducing kernel k and write ‖f‖F for the
Hilbert norm of f ∈ Fk. For notational simplicity, in the following we simply write F for
Fk. Minimizing L̂`n over the ball {f ∈ F : ‖f‖F ≤ R} is equivalent to minimizing over F
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the dual Lagrangian problem

f̂F = argmin
f∈F

L̃`n(f) with L̃`n(f) =
1

n

n∑
i=1

`(Yi f(Xi)) + λ‖f‖2F , (17)

for some λ > 0. This kind of classifier appears for example in Support Vector Machine
algorithms, presented in Section 4.3. It turns out that the minimizer f̂F of (17) is of the
form

f̂F =
n∑
i=1

β̂i k(Xi, .). (18)

Actually, let V be the linear space spanned by k(X1, .), . . . , k(Xn, .). Decomposing f =
fV + fV ⊥ on V ⊕ V ⊥, we have by the reproducing property f(Xi) = 〈f, k(Xi, .)〉F =
〈fV , k(Xi, .)〉F = fV (Xi), so the Pythagorean formula gives

L̃`n(fV + fV ⊥) =
1

n

n∑
i=1

`
(
YifV (Xi)

)
+ λ‖fV ‖2F + λ‖fV ⊥‖2F .

Since λ is positive, any minimizer f̂ of L̃`n must fulfills f̂V ⊥ = 0, so it is of the form (18).
Furthermore, the reproducing property ensures again that 〈k(Xi, .), k(Xj, .)〉F = k(Xi, Xj)
so ∥∥∥∥ n∑

j=1

βjk(Xj, .)

∥∥∥∥2

F
=

n∑
i,j=1

βiβjk(Xi, Xj).

The minimization problem (17) is then equivalent to

f̂F =
n∑
j=1

β̂j k(Xj, .)

with β̂ = argmin
β∈Rn

{
1

n

n∑
i=1

`

( n∑
j=1

βjYik(Xj, Xi)

)
+ λ

n∑
i,j=1

βiβjk(Xi, Xj)

}
. (19)

This formulation is of major importance in practice, since it reduces the infinite-dimensional
minimization problem (17) into a n-dimensional minimization problem which can be solved
efficiently. In the Section 4.3 on Support Vector Machines, we will give a more precise
description of the solution of this problem when ` is the hinge loss.

4.2 Statistical properties

The classifier ĥF given by (15) with F and ` convex has the nice feature to be easy to
compute, but does-it have some good statistical properties?
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Link with the bayes classifier

The empirical risk minimizer ĥH of Section 3 was minimizing the empirical version of the
misclassification probability P(Y 6= h(X)) over some set H of classifiers. The function f̂F
minimizes instead the empirical version of E [`(Y f(X))] over some functional set F . The
classifier ĥH can then be viewed as an empirical version of the bayes classifier h∗ which
minimizes P(Y 6= h(X)) over the set of measurable functions h : X → {−1,+1}, whereas
the function f̂F is an empirical version of the function f `∗ which minimizes E [`(Y f(X))]
over the set of measurable functions f : X → R. A first point is to understand the link
between the bayes classifier h∗ and the sign of the function f `∗ . It turns out that under
very weak assumptions on `, the sign of f `∗ exactly coincides with the bayes classifier h∗, so
sign(f `∗) minimizes the misclassification probability P(Y 6= h(X)). Let us check this point.

Conditioning on X we have

E [`(Y f(X)] = E [E [`(Y f(X)|X]]

= E [`(f(X))P(Y = 1|X) + `(−f(X))(1− P(Y = 1|X))] .

Assume that ` is decreasing, differentiable and strictly convex (e.g. exponential or logit
loss). Minimizing the above expression gives that f `∗(X) is the solution of

`′(−f(X))

`′(f(X))
=

P(Y = 1|X)

1− P(Y = 1|X)
.

Since ` is strictly convex, we have f(X) > 0 if and only if `′(−f(X))/`′(f(X)) > 1, so

f `∗(X) > 0 ⇐⇒ P(Y = 1|X) > 1/2 ⇐⇒ E[Y |X] = 2P(Y = 1|X)− 1 > 0 .

Since h∗(X) = sign(E [Y |X]) (see Section 2), we obtain sign(f `∗) = h∗. This equality also
holds true for the hinge loss ` (check it!).

To sum up the above discussion, the target function f `∗ approximated by f̂F does perfectly
make sense for the classification problem since its sign coincides with the best possible
classifier h∗.

Upper-bound on the misclassification probability

We focus now on the misclassification probability L(ĥF) of the classifier ĥF = sign(f̂F)
given by (15). In practice, it is important to have an upper-bound of the misclassification
probability L(ĥF) which can be computed from the data. Next theorem provides such an
upper-bound for some typical examples of set F .
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Theorem 3 Confidence bound on L(ĥF)

For any R > 0, we set ∆`(R) = |`(R)−`(−R)|. We assume here that the loss-function `
is convex, non-increasing, non-negative, α-Lipschitz on [−R,R] and fulfills `(z) ≥ 1z<0

for all z in R. We consider the classifier ĥF given by (15).

(a) When F is of the form (16) with C = {β ∈ Rp : |β|1 ≤ R}, we have with probability
at least 1− e−t

L(ĥF) ≤ L̂`n(f̂F) + 2αR

√
2 log(2p)

n
+ ∆`(R)

√
t

2n
. (20)

(b) Let F be the ball of radius R of a RKHS with kernel k fulfilling k(x, x) ≤ 1 for all
x ∈ X . Then, we have with probability at least 1− e−t

L(ĥF) ≤ L̂`n(f̂F) +
2αR√
n

+ ∆`(R)

√
t

2n
. (21)

Proof. We first prove a general upper-bound for L(ĥF ), similar to Theorem 1.

Lemma 3.1
Assume that supf∈F |f(x)| ≤ R < +∞. For any loss ` fulfilling the hypotheses of Theorem 3, we
have with probability at least 1− e−t

L(ĥF ) ≤ L̂`n(f̂F ) +
2α
n

max
x∈Xn

Eσ

[
sup
f∈F

∣∣∣∣ n∑
i=1

σif(xi)
∣∣∣∣
]

+ ∆`(R)

√
t

2n
(22)

where σ1, . . . , σn are i.i.d. random variables with distribution Pσ(σi = 1) = Pσ(σi = −1) = 1/2.

Proof of Lemma 3.1. The proof of this lemma relies on the same arguments as the proof of
Theorem 1. The first point is to notice that since `(z) ≥ 1z<0 for all real z, we have

L(ĥF ) = P(Y f̂F (X) < 0) ≤ L`(f) with L`(f) = E [`(Y f(X))]
≤ L̂`n(f) + ∆̂`

n(F) where ∆̂`
n(F) = sup

f∈F

∣∣L̂`n(f)− L`(f)
∣∣.

As in Lemma 1.2, the McDiarmid concentration inequality (Theorem 4 in the Appendix B) ensures
that with probability at least 1− e−t we have

∆̂`
n(F) ≤ E

[
∆̂`
n(F)

]
+ ∆`(R)

√
t

2n
.

To conclude the proof of the lemma, it only remains to prove that

E
[
∆̂`
n(F)

]
≤ 2α

n
max
x∈Xn

Eσ

[
sup
f∈F

∣∣∣∣ n∑
i=1

σif(xi)
∣∣∣∣
]
. (23)
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Following exactly the same lines as in the proof of Lemma 1.3 (replacing 1Yi 6=h(Xi) by `(Yif(Xi)))
we obtain

E
[
∆̂`
n(F)

]
≤ 2
n

max
y∈{−1,+1}n

max
x∈Xn

Eσ

[
sup
f∈F

∣∣∣∣ n∑
i=1

σi`(yif(xi))
∣∣∣∣
]
.

We finally use the α-Lipschitz property of ` to conclude : according to the Contraction principle
(see Proposition 5 in Appendix B) we have

Eσ

[
sup
f∈F

∣∣∣∣ n∑
i=1

σi`(yif(xi))
∣∣∣∣
]
≤ αEσ

[
sup
f∈F

∣∣∣∣ n∑
i=1

σiyif(xi)
∣∣∣∣
]

= αEσ

[
sup
f∈F

∣∣∣∣ n∑
i=1

σif(xi)
∣∣∣∣
]
.

Combining the last two bounds gives (23) and the proof of Lemma 3.1 is complete. �

(a) Let us prove now the bound (20). The map β →
∑n

i=1 σi
∑p

j=1 βjhj(xi) is linear, so it reaches
its maximum and minimum on the `1-ball C at one of the vertices of C. Therefore, we have

Eσ

[
sup
f∈F

∣∣∣∣ n∑
i=1

σif(xi)
∣∣∣∣
]

= REσ

[
max
j=1,...,p

∣∣∣∣ n∑
i=1

σihj(xi)
∣∣∣∣
]
.

It remains to apply the inequality (6) with V = {(hj(x1), . . . , hj(xn)) : j = 1, . . . , p} whose cardi-
nality is at most p in order to obtain

Eσ

[
sup
f∈F

∣∣∣∣ n∑
i=1

σif(xi)
∣∣∣∣
]
≤ R

√
2n log(2p).

The bound (20) follows from Lemma 3.1.

(b) We now turn to the second bound (21) and write ‖.‖F for the norm in the RKHS. According
to the reproducing formula and the Cauchy Schwartz inequality, we have∣∣∣∣ n∑

i=1

σif(xi)
∣∣∣∣ =

∣∣∣∣〈f, n∑
i=1

σik(xi, .)
〉
F

∣∣∣∣ ≤ ‖f‖F∥∥∥∥ n∑
i=1

σik(xi, .)
∥∥∥∥
F
.

Applying again Cauchy-Schwartz inequality, we obtain

Eσ

[
sup
‖f‖F≤R

∣∣∣∣ n∑
i=1

σif(xi)
∣∣∣∣
]
≤ R Eσ

[∥∥∥∥ n∑
i=1

σik(xi, .)
∥∥∥∥
F

]

≤ R

√√√√Eσ

[∥∥∥∥ n∑
i=1

σik(xi, .)
∥∥∥∥2

F

]

≤ R

√√√√ n∑
i=1

k(xi, xi)Eσ[σ2
i ] ≤ R

√
n,

where we have used k(x, x) ≤ 1 in the last inequality and E [σiσj ] = 0 for i 6= j in the previous
one. Combining again the reproducing property with the Cauchy-Schwartz inequality, we obtain

|f(x)| = |〈f, k(x, .)〉F | ≤ R
√
k(x, x) ≤ R.
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The Lemma 3.1 then gives

L(ĥF ) ≤ L̂`n(f̂F ) +
2αR√
n

+ ∆`(R)

√
t

2n
,

and the proof of Theorem 3 is complete. 2

It is possible do derive risk bounds similar to (3) for L(ĥH), we refer to Bousquet, Boucheron
and Lugosi [1] for a review of such results. In the remaining of these notes, we will describe
two very popular classification algorithms : the so-called Support Vector Machine and
AdaBoost.

4.3 Support Vector Machine

The Support Vector Machine (SVM) algorithm corresponds to the estimator (17) with
the hinge loss `(z) = (1− z)+. The final classification is performed according to ĥF(x) =

sign(f̂F(x)). It turns out that there is a very nice geometrical interpretation of the solution
f̂F , from which originates the name "Support Vector Machine".

Proposition 2 Support Vectors

The solution of (17) is of the form f̂F(x) =
∑n

i=1 β̂i k(Xi, x) with
β̂i = 0 if Yif̂F(Xi) > 1

β̂i = Yi/(2λn) if Yif̂F(Xi) < 1

0 ≤ Yiβ̂i ≤ 1/(2λn) if Yif̂F(Xi) = 1 .

The vectors Xi with index i such that β̂i 6= 0 are called support vectors.

Proof. Writing K for the matrix [k(Xi, Xj)]i,j=1,...,n, we know from (19) that the solution of (17)
is of the form f̂F =

∑n
j=1 β̂j k(Xj , .) with

β̂ = argmin
β∈Rn

{
1
n

n∑
i=1

(
1− Yi[Kβ]i

)
+

+ λβTKβ

}
.

The above minimization problem is not smooth, so we introduce some slack variables ξ̂i = (1 −
Yi[Kβ̂]i)+ and rewrite the minimization problem as

(β̂, ξ̂) = argmin
β, ξ ∈ Rn such that
ξi ≥ 1− Yi[Kβ]i
ξi ≥ 0

{
1
n

n∑
i=1

ξi + λβTKβ

}
. (24)

This problem is now smooth and convex and the Karush-Kuhn-Tucker conditions for the La-
grangian dual problem

(β̂, ξ̂) = argmin
β,ξ∈Rn

{
1
n

n∑
i=1

ξi + λβTKβ −
n∑
i=1

(
αi(ξi − 1 + Yi[Kβ]i) + γiξi

)}
.
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ξ>0

ξ>0

ξ>0

Figure 3: Classification with a linear SVM: the separating hyperplane
{
x ∈ Rd : 〈ŵ, x〉 = 0

}
is represented in black, the margin-hyperplanes

{
x ∈ Rd : 〈ŵ, x〉 = +1

}
and{

x ∈ Rd : 〈ŵ, x〉 = −1
}

are represented in dotted blue and red respectively. The
support vectors are represented by squares.

gives the formulas

first-order conditions : 2λ[Kβ̂]j =
n∑
i=1

KijαiYi and αj + γj =
1
n
,

slackness conditions : min(αi, ξ̂i − 1 + Yi[Kβ̂]i) = 0 and min(γi, ξ̂i) = 0.

We deduce from the first first-order conditions that β̂i = αiYi/(2λ). Since f̂F (Xi) = [Kβ̂]i, the
first slackness condition enforces that β̂i = 0 if Yif̂F (Xi) > 1. The second slackness condition
together with the second first-order optimality condition enforces that β̂i = Yi/(2λn) if ξ̂i > 0
and 0 ≤ Yiβ̂i ≤ 1/(2λn) otherwise. To conclude the proof of the proposition, we notice that when
ξ̂i > 0 we have β̂i and αi non-zero, and therefore Yif̂F (Xi) = 1 − ξ̂i < 1 according to the first
slackness condition. 2

Let us now interpret geometrically Proposition 2.

Geometrical interpretation : linear kernel

We start with the simplest kernel k(x, y) = 〈x, y〉 for all x, y ∈ Rd. The associated RKHS
is the space of linear forms F =

{
〈w, .〉 : w ∈ Rd

}
. In this case

f̂F(x) =
n∑
i=1

β̂i〈Xi, x〉 = 〈ŵ, x〉 with ŵ =
n∑
i=1

β̂iXi ,

so the classifier ĥF(x) = sign(〈ŵ, x〉) assigns labels to points according to their position rel-
ative to the hyperplane

{
x ∈ Rd : 〈ŵ, x〉 = 0

}
. The normal to the hyperplane ŵ is a linear
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φ
FX

Figure 4: Classification with a non-linear kernel: the linear classification in F produces a
non-linear classification in X via the reciprocal image of φ.

combination of the support vectors, which are the data points Xi such that Yi〈ŵ,Xi〉 ≤ 1.
They are represented by squares in the Figure 3. The hyperplanes

{
x ∈ Rd : 〈ŵ, x〉 = +1

}
and

{
x ∈ Rd : 〈ŵ, x〉 = −1

}
are usually called margin-hyperplanes. We notice the follow-

ing important property of the SVM. If we add to the learning dataset a point Xn+1 which
fulfills Yn+1〈ŵ,Xn+1〉 > 1, then the vector ŵ and the classifier ĥF do not change. In other
words, only data points that are wrongly classified or classified with not enough margin
(i.e. Yi〈ŵ,Xi〉 ≤ 1) do influence the separating hyperplane

{
x ∈ Rd : 〈ŵ, x〉 = 0

}
.

Geometrical interpretation : arbitrary positive definite kernels

Let us denote by φ : X → F the map φ(x) = k(x, .). According to the reproducing
property and Proposition 2, we have

f̂F(x) = 〈f̂F , φ(x)〉F =

〈 n∑
i=1

β̂iφ(Xi), φ(x)

〉
F
.

A point x ∈ X is classified according to the sign of the above scalar product. Therefore
the points φ(x) ∈ F are classified according to the linear classifier on F

f 7→ sign (〈ŵφ, f〉F) where ŵφ =
n∑
i=1

β̂iφ(Xi).

The separating frontier
{
x ∈ X : f̂F(x) = 0

}
of the classifier ĥF is therefore the reciprocal

image by φ of the hyperplane {f ∈ F : 〈ŵφ, f〉F = 0}, as represented in Figure 4. We
observe, that the kernel k delinearalizes the SVM, in the sense that it produces a non-
linear classifier ĥF with the same computational cost as a linear one in Rn.

You can observe SVM in action with the following recreative applet:
http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml
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φ FX

Figure 5: Classification of molecules with a SVM.

Why are RKHS useful?

There are mainly two main reasons for using RKHS. The first reason is that using RKHS al-
lows to delinearlize some algorithm by mapping X in F with φ : x→ k(x, .), as represented
in Figure 4. It then provides non-linear algorithms with almost the same computational
complexity as a linear one.

The second reason is that it allows to apply to any set X some algorithms that are defined
for vectors. Assume for example that we want to classify some proteins or molecules
according to their therapeutic properties. Let X represents our set of molecules. For any
x, y ∈ X , let us represent by k(x, y) how similar they are for us. If our kernel k : X×X → R
is positive definite, then we can directly apply the SVM algorithm in order to classify
them, see Figure 5. Of course, the key point in this case is to design the kernel k. Usually,
the kernel k(x, y) is designed according to some properties of x, y which are known to be
relevant for the classification problem. For example, the number of common short sequences
is a useful index of similarity between two proteins. The computational complexity for
evaluating k(x, y) is also an issue which is crucial in many applications with complex
data. We refer to Jean-Philippe Vert’s slides on computational biology for many promising
applications in biology and medicine:
http://cbio.ensmp.fr/∼jvert/talks/120302ensae/ensae.pdf

4.4 AdaBoost

AdaBoost is an algorithm which computes an approximation of the estimator (15) with
the exponential loss `(z) = e−z and the functional space F = span {h1, . . . , hp} where
h1, . . . , hp are p arbitrary classifiers.

The principle of the AdaBoost algorithm is to perform a greedy minimization of (15). More
precisely it computes a sequence of functions f̂m for m = 0, . . . ,M by starting from f̂0 = 0
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and then solving for m = 1, . . . ,M

f̂m = f̂m−1+βmhjm where (βm, jm) = argmin
j = 1, . . . , p
β ∈ R

1

n

n∑
i=1

exp
(
−Yi

(
f̂m−1(Xi) + βhj(Xi)

))
.

The final classification is performed by ĥM(x) = sign(f̂M(x)) which is an approximation of
ĥH defined by (15).

The exponential loss allows to compute (βm, jm) very efficiently. Actually, setting w(m)
i =

n−1 exp(−Yif̂m−1(Xi)), we have

1

n

n∑
i=1

exp
(
−Yi

(
f̂m−1(Xi) + βhj(Xi)

))
= (eβ − e−β)

n∑
i=1

w
(m)
i 1hj(Xi) 6=Yi + e−β

n∑
i=1

w
(m)
i .

When the condition

errm(j) =

∑n
i=1w

(m)
i 1hj(Xi)6=Yi∑n
i=1w

(m)
i

≤ 1

2
for all j = 1, . . . , p,

is fulfilled, the minimizers (βm, jm) are given by

jm = argmin
j=1,...,p

errm(j) and βm =
1

2
log

(
1− errm(jm)

errm(jm)

)
.

Noticing that −Yih(Xi) = 21Yi 6=h(Xi) − 1 we obtain the standard formulation of the Ad-
aBoost algorithm.

AdaBoost

Init: w(1)
i = 1/n, for i = 1, . . . , n

Iterate: For m = 1, . . . ,M do

jm = argmin
j=1,...,p

errm(j)

2βm = log(1− errm(jm))− log(errm(jm))

w
(m+1)
i = w

(m)
i exp(2βm1hjm (Xi)6=Yi), for i = 1, . . . , n

STOP if min
j=1,...,p

errm+1(j) > 1/2

Output: f̂M(x) =
∑M

m=1 βmhjm(x).

We notice that the AdaBoost algorithm gives more and more weight in errm(j) to the data
points Xi which are wrongly classified at the stage m.

You can observe AdaBoost in action (with half-plane weak-learners hj) with the following
recreative applet: http://cseweb.ucsd.edu/∼yfreund/adaboost/
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5 Going beyond these lecture notes
For the reader interested to go beyond the basic concepts presented in these lecture notes,
we refer to the survey by Boucheron, Bousquet and Lugosi [1] for recent developments on
the topic and a comprehensive bibliography. For more practical consideration, we refer
to the book by Hastie, Tibshirani and Friedman [5] where many practical algorithms are
described and discussed. Finally, we point out that the concepts introduced here arise also
for the ranking problem (rank at best some data, as google does), see Clémençon, Lugosi
and Vayatis [3].

A Reproducing kernel Hilbert spaces
Reproducing Kernel Hilbert Spaces (RKHS) are some functional Hilbert spaces, where the
smoothness of a function is driven by its norm. RKHS also fulfill a special "reproducing
property" which is crucial in practice since it allows efficient numerical computations.

A function k : X × X → R is said to be a positive definite kernel if it is symmetric
(k(x, y) = k(y, x) for all x, y ∈ X ) and if for any N ∈ N, x1, . . . , xN ∈ X and a1, . . . , aN ∈ R
we have

N∑
i,j=1

aiajk(xi, xj) ≥ 0. (25)

Examples of positive definite kernels in X = Rd:

• linear kernel: k(x, y) = 〈x, y〉

• Gaussian kernel: k(x, y) = e−‖x−y‖
2/2σ2

• histogram kernel (d = 1): k(x, y) = min(x, y)

• exponential kernel: k(x, y) = e−‖x−y‖/σ

We can associate to a positive definite kernel k a special Hilbert subspace F of RX called
reproducing kernel Hilbert space associated to k.

Proposition 3 Reproducing Kernel Hilbert Space (RKHS)

To any positive definite kernel k on X , we can associate a (unique) Hilbert space F ⊂ RX
fulfilling

• k(x, .) ∈ F for all x ∈ X

• reproducing property: f(x) = 〈f, k(x, .)〉F for all x ∈ X and f ∈ F .

The space F is called the reproducing kernel Hilbert space associated to k.
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Proof. Let us consider the linear space F0 spanned by the family {k(x, .) : x ∈ X}

F0 =
{
f : X → R : f(x) =

N∑
i=1

aik(xi, x), N ∈ N, x1, . . . , xN ∈ X , a1, . . . , aN ∈ R
}
.

To any f =
∑N

i=1 aik(xi, .) and g =
∑M

j=1 bjk(yj , .) we associate

〈f, g〉F0 :=
N∑
i=1

M∑
j=1

aibjk(xi, yj) =
N∑
i=1

aig(xi) =
M∑
j=1

bjf(yj).

From the last two equalities we see that 〈f, g〉F0 does not depend on the choice of the expansion of
f and g, so it is well-defined. Furthermore, the application (f, g)→ 〈f, g〉F0 is bilinear, symmetric,
positive (according to (25)) and we have the reproduction property

f(x) = 〈f, k(x, .)〉F0 for all x ∈ X and f ∈ F0.

The Cauchy-Schwartz inequality 〈f, g〉F0 ≤ ‖f‖F0‖g‖F0 and the reproduction formula give

|f(x)| ≤
√
k(x, x) ‖f‖F0 . (26)

As a consequence ‖f‖F0 = 0 implies f = 0 so 〈f, g〉F0 is a scalar product. Therefore F0 is a
pre-Hilbert space and to obtain F we only need to complete F0.

Let us consider two sequences (xi) ∈ XN and (ai) ∈ RN fulfilling
∑

i,j≥1 aiajk(xi, xj) < +∞.
According to (26) for any M < N and x ∈ X we have

∣∣∣ N∑
i=M+1

aik(xi, x)
∣∣∣ ≤√k(x, x)

N∑
i,j=M+1

aiajk(xi, xj).

When
∑

i,j≥1 aiajk(xi, xj) is finite, the right-hand side goes to 0 when M,N goes to infinity, so
the partial series

∑N
i=1 aik(xi, x) is Cauchy and it converges when N → ∞. We can therefore

define the space

F =
{
f : X → R : f(x) =

∞∑
i=1

aik(xi, x), (xi) ∈ XN, (ai) ∈ RN,
∑
i,j≥1

aiajk(xi, xj) < +∞
}

and the bilinear form

〈f, g〉F :=
∞∑

i,j=1

aibjk(xi, yj) =
∞∑
i=1

aig(xi) =
∞∑
j=1

bjf(yj)

for f =
∑∞

i=1 aik(xi, .) and g =
∑∞

j=1 bjk(yj , .). Exactly as before, the application (f, g)→ 〈f, g〉F
is a scalar product fulfilling the reproduction property

f(x) = 〈f, k(x, .)〉F for all x ∈ X and f ∈ F .
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Finally, the space F endowed with 〈., .〉F is the completion in RX of F0 endowed with 〈., .〉F0 , so
it is a reproducing kernel Hilbert space. 2

The norm of a function f in a RKHS F is strongly linked to its smoothness. This appears
clearly in the inequality

|f(x)− f(x′)| = |〈f, k(x, .)− k(x′, .)〉F | ≤ ‖f‖F ‖k(x, .)− k(x′, .)‖F .

Let us illustrate this point by describing the RKHS associated to the histogram and Gaus-
sian kernels.

Example 1: RKHS associated to the histogram kernel.
The Sobolev space

F =
{
f ∈ C([0, 1],R) : f is a.e. differentiable with f ′ ∈ L2([0, 1]) and f(0) = 0

}
endowed with the scalar product 〈f, g〉F =

∫ 1

0
f ′g′ is a RKHS with reproducing kernel

k(x, y) = min(x, y) on [0, 1]. Actually, k(x, .) ∈ F for all x ∈ [0, 1] and

f(x) =

∫ 1

0

f ′(y)1y≤x dy = 〈f, k(x, .)〉F , for all f ∈ F and x ∈ [0, 1].

In this case the norm ‖f‖F corresponds simply to the L2-norm of the derivative of f . The
smaller is this norm, the smoother is f .

Example 2: RKHS associated to the Gaussian kernel.
Let us write F[f ] for the Fourier transform in Rd with normalization

F[f ](ω) =
1

(2π)d/2

∫
Rd
f(t)e−i〈ω,t〉, for f ∈ L1(Rd) ∩ L2(Rd) and ω ∈ Rd.

For any σ > 0, the functional space

Fσ =

{
f ∈ C0(Rd) ∩ L1(Rd) such that

∫
Rd

∣∣F[f ](ω)
∣∣2eσ|ω|2/2 dω < +∞

}
,

endowed with the scalar product 〈f, g〉Fσ = (2πσ2)−d/2
∫

Rd F[f ](ω)F[g](ω)eσ|ω|
2/2 dω is a

RKHS associated with the Gaussian kernel k(x, y) = exp(−‖y − x‖2/2σ2). Actually, for
all x ∈ Rd the function k(x, .) belongs to Fσ and straightforward computations give

〈k(x, .), f〉Fσ = F−1
[
F[f ]

]
(x) = f(x) for all f ∈ F and all x ∈ Rd.

The space Fσ gathers very regular functions and the norm ‖f‖Fσ directly controls the
smoothness of f . We note that when σ increases the space Fσ shrinks and contains
smoother and smoother functions.



Journées XUPS : Mathematical Foundation of Statistical Learning 26

B Concentration inequalities
Non-asymptotic analyses in statistical learning often rely on McDiarmid concentration
inequality [6].

Theorem 4 McDiarmid (1989)

Let X be some measurable set and let us consider F : X n → R such that there exists
δ1, . . . , δn fulfilling∣∣F (x1, . . . , x

′
i, . . . , xn)− F (x1, . . . , xi, . . . , xn)

∣∣ ≤ δi, for all x1, . . . , xn, x
′
i ∈ X ,

for any i = 1, . . . , n. Then for any t > 0 and any independent random variables
X1, . . . , Xn, we have

P
(
F (X1, . . . , Xn) > E [F (X1, . . . , Xn)] + t

)
≤ exp

(
− 2t2

δ2
1 + . . .+ δ2

n

)
.

We refer to the Chapter 9 of Devroye, Györfi and Lugosi [4] for the classical proof of this re-
sult, combining a Markov inequality with martingale arguments. A more conceptual proof
based on the Entropy method is given in Boucheron, Lugosi and Massart [2], Chapter 6.

Another important concept in statistical learning theory is the Contraction Principle.

Theorem 5 Contraction Principle

Let Z be a bounded subset of Rn and ϕ : R → R an α-Lipschitz function fulfilling
ϕ(0) = 0. For σ1, . . . , σn i.i.d. random variables with distribution Pσ(σi = 1) = Pσ(σi =
−1) = 1/2, we have

Eσ

[
sup
z∈Z

∣∣∣∣ n∑
i=1

σiϕ(zi)

∣∣∣∣
]
≤ αEσ

[
sup
z∈Z

∣∣∣∣ n∑
i=1

σizi

∣∣∣∣
]
.

A concise proof is available in Chapter 11 of the book by Boucheron, Lugosi and Massart [2].
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