On square roots of class C^m of nonnegative functions of one variable

JEAN-MICHEL BONY, FERRUCCIO COLOMBINI AND LUDOVICO PERNAZZA

Abstract. We investigate the regularity of functions g such that $g^2 = f$, where f is a given nonnegative function of one variable. Assuming that f is of class C^{2m} (m > 1) and vanishes together with its derivatives up to order 2m - 4 at all its local minimum points, one can find a g of class C^m . Under the same assumption on the minimum points, if f is of class C^{2m+2} then g can be chosen such that it admits a derivative of order m + 1 everywhere. Counterexamples show that these results are sharp.

Mathematics Subject Classification (2010): 26A15 (primary); 26A27 (secondary).

Introduction

In this paper we study the regularity of functions g of one variable whose square is a given nonnegative function f.

For a function f of class C^2 , first results are due to G. Glaeser [6] who proved that $f^{1/2}$ is of class C^1 if the second derivative of f vanishes at the zeros of f, and to T. Mandai [8] who proved that one can always choose g of class C^1 . More recently in [1] (and later in [7]), for functions f of class C^4 , it was proved that one can find g of class C^1 and twice differentiable at every point.

F. Broglia and the authors proved in [3] that this result is sharp in the sense that it is not possible to have in general a greater regularity for g. They also showed that if f is of class C^4 and vanishes at all its (local) minimum points, one can always find g of class C^2 and that the result is sharp. Later, in [4] it was proved that for f of class C^6 vanishing at all its minimum points one can find g of class C^2 and three times differentiable at every point.

In this paper we generalize these results. First we prove that for f of class C^{2m} , $m = 1, 2, ..., \infty$, vanishing at its (local) minimum points together with all its derivatives up to order (2m - 4) one can find g of class C^m (Theorem 2.2). If the derivatives vanish only up to order 2m - 6 at all the minimum points, the other assumptions being unchanged, g can be chosen m times differentiable at every point (Theorem 3.1, where m is replaced by m + 1).

Received May 30, 2009; accepted in revised form October 28, 2009.

Counterexamples are given to show that these assumptions cannot be relaxed and that the regularity of *g* cannot be improved in general.

1. Precised square roots

In this paper, f will always be a nonnegative function of one real variable whose regularity will be precised below. Our results being of local character, we may and will assume that the support of f is contained in [0, 1].

Definition 1.1. Assuming f of class C^{2m} , $m = 1, 2, ..., \infty$, we say that g is a square root of f precised up to order m, if g is a continuous function satisfying $g^2 = f$ and if, for any (finite) integer $k \le m$ and for any point x_0 which is a zero of f of order exactly 2k, the function $x \mapsto (x-x_0)^k g(x)$ keeps a constant sign near x_0 .

It is clear that *g* cannot be *m* times differentiable at every point if this condition is not fulfilled.

It is easy to show the existence of square roots precised up to order m and even to describe all of them. Let us consider the closed set

$$G = \{x \in \mathbb{R} \mid f(x) = 0, f'(x) = 0, \dots, f^{(2m)}(x) = 0\},$$
(1.1)

with the convention that all derivatives vanish if $m = \infty$. Its complement is a union of disjoint intervals J_{ν} . In J_{ν} , the zeros of f are isolated and of finite order $\leq 2m$. For a square root precised up to order m, one should have $|g| = f^{1/2}$ and the restriction of g to J_{ν} should be one of two well defined functions $+g_{\nu}$ and $-g_{\nu}$ thanks to the condition on the change of sign. There is a bijection between the set of families (ϵ_{ν}) with $\epsilon_{\nu} = \pm 1$ and the set of square roots precised up to order m: one has just to set $g(x) = \epsilon_{\nu}g_{\nu}(x)$ for $x \in J_{\nu}$ and g(x) = 0 for $x \in G$.

A modulus of continuity is a continuous, positive, increasing and concave function defined on an interval $[0, t_0]$ and vanishing at 0. Any continuous function φ defined on a compact set *K* has a modulus of continuity, *i.e.* a function ω as above such that for every t_1, t_2 with $|t_2 - t_1| < t_0$, one has $|\varphi(t_2) - \varphi(t_1)| < \omega(|t_2 - t_1|)$. One says that $\varphi \in C^{\omega}(K)$. If $\varphi \in C^k(K)$ and if ω is a modulus of continuity of $\varphi^{(k)}$, one says that $\varphi \in C^{k,\omega}(K)$.

We now state two lemmas taken almost literally from [2, Lemme 4.1, Lemme 4.2 and Corollaire 4.3]. Note that in the rest of this section *m* will not be allowed to take the value ∞ .

Lemma 1.2. Let $\varphi \in C^{2m}(J)$ be nonnegative, where J is a closed interval contained in [-1, 1], and let $M = \sup |\varphi^{(k)}(x)|$ for $0 \le k \le 2m$ and $x \in J$. Assume that for some $j \in \{0, ..., m\}$, the inequality $\varphi^{(2j)}(x) \ge \gamma > 0$ holds for $x \in J$ and that φ has a zero of order 2j at some point $\xi \in J$.

Let us define H *and* ψ *in* J *by*

$$\varphi(x) = (x - \xi)^{2j} H(x)$$
, $\psi(x) = (x - \xi)^j H(x)^{1/2}$.

Then, $H \in C^{2m-2j}(J)$ and $\psi \in C^{2m-j}(J)$. Moreover, there exists C_1 , depending only on m, such that

$$\left|\psi^{(k)}(x)\right| \le C_1 \gamma^{\frac{1}{2}-k} M^k, \quad k = 1, \dots, 2m-j.$$
 (1.2)

Lemma 1.3. Let φ be a nonnegative function of one variable, defined and of class C^{2m} in the interval [-1, 1] such that $|\varphi^{(2m)}(t)| \leq 1$ for $|t| \leq 1$ and that $\max_{0 \leq j \leq m-1} \varphi^{(2j)}(0) = 1$.

(i) There exists a universal positive constant C_0 , such that

$$\left|\varphi^{(k)}(t)\right| \le C_0, \quad \text{for } |t| \le 1 \text{ and } 0 \le k \le 2m.$$
 (1.3)

- (ii) There exist universal positive constants a_j and r_j , j = 0, ..., m-1, such that one of the following cases occurs:
 - (a) One has $\varphi(0) \ge a_0$ and then $\varphi(t) \ge a_0/2$ for $|t| \le r_0$.
 - (b) For some $j \in \{1, ..., m-1\}$ one has $\varphi^{2j}(t) \ge a_j$ for $|t| \le r_j$ and φ has a local minimum in $[-r_j, r_j]$.

In the following proposition, G is defined by (1.1) and d(x, G) denotes the distance of x from G. When $G = \emptyset$, (a) and (b) are always true and condition (1.4) disappears.

Proposition 1.4. Assuming that f is of class C^{2m} , the three following properties are equivalent.

- (a) There exists $g \in C^m$ such that $g^2 = f$.
- (b) Any function g which is a square root of f precised up to order m belongs to C^m .
- (c) There exists a modulus of continuity ω such that

$$\left|\frac{d^k}{dx^k}f^{1/2}(x)\right| \le d(x,G)^{m-k}\omega(d(x,G)),\tag{1.4}$$

for any x such that $f(x) \neq 0$ and any $k \in \{0, ..., m\}$.

Proof. It is clear that (b) \Rightarrow (a): as said above, precised square roots do exist. Under assumption (a), g and its derivatives up to order m should vanish on G. If ω is a modulus of continuity of $g^{(m)}$ one gets $|g^{(m)}(x)| \leq \omega(d(x, G))$. Successive integrations prove that the derivatives $g^{(k)}$ are bounded by the right hand side of (1.4). These derivatives being equal, up to the sign, to those of $f^{1/2}$ when f does not vanish, $(a) \Rightarrow (c)$ is proved.

Let us assume (c) and consider any connected component J_{ν} of the complement of *G*. Near each zero of *f* in J_{ν} , which is of order exactly 2j for some $j \in \{1, ..., m\}$, the precised square root g_{ν} is given (up to the sign) by Lemma 1.2

and so it is of class C^m . Moreover, the estimate (1.4) extends by continuity to the points $x \in J_v$ where f vanishes and one has

$$\left|g_{\nu}^{(k)}(x)\right| \leq d(x,G)^{m-k}\omega(d(x,G))$$

for $x \in J_{\nu}$ and $k \in \{0, \ldots, m\}$.

If we define g equal to $\epsilon_{\nu}g_{\nu}$ in J_{ν} and to 0 in G, it remains to prove the existence and the continuity of the derivatives of g at any point $x_0 \in G$. By induction, the estimates above prove, for k = 0, ..., m - 1, that $g^{k+1}(x_0)$ exists and is equal to 0 and that $g^{k+1}(x) \to 0$ for $x \to x_0$. The proof is complete.

Corollary 1.5. Let f be a nonnegative C^{∞} function of one variable such that for any m there exists a function g_m of class C^m with $g_m^2 = f$. Then there exists g of class C^{∞} such that $g^2 = f$.

Actually, if g is any square root of f precised up to order ∞ , it is precised up to order m for any m and thus of class C^m for any m by the proposition above.

2. Continuously differentiable square roots

We start with an auxiliary result which contains the main argument. The function $f \in C^{2m}$, $m \ge 2$, and the set $G \ne \emptyset$ are as above, and Γ is a closed subset of G. We will use this lemma for p = 0, in which case Γ can be disregarded, and for p = 1.

Lemma 2.1. Assume that $m \neq \infty$ and f and all its derivatives up to order 2m - 4 (included) vanish at all its local minimum points. Assume moreover that there exist a modulus of continuity α and constants C > 0 and $p \ge 0$ such that

$$\left| f^{(2m)}(x) \right| \le C d(x, \Gamma)^{2p} \alpha(d(x, G)).$$
(2.1)

Then, there exists a constant \overline{C} such that

$$\left|\frac{d^k}{dx^k}f^{1/2}(x)\right| \le \bar{C}d(x,\Gamma)^p d(x,G)^{m-k}\alpha(d(x,G))^{1/2}$$
(2.2)

for any x such that $f(x) \neq 0$ and any $k \in \{0, ..., m\}$.

Proof. Let *J* be any connected component of the complement of *G* and for $x \in J$, let \hat{x} be (one of) the nearest endpoint(s) of *J*. The distance between *x* and \hat{x} is thus equal to d(x, G) and we remark that, for *y* between *x* and \hat{x} , we have $d(y, \Gamma) \leq 2d(x, \Gamma)$. Integrating 2m - k times the estimate for $f^{(2m)}$ between \hat{x} and *x* we get

$$|f^{(k)}(x)| \le C' d(x, \Gamma)^{2p} d(x, G)^{2m-k} \alpha(d(x, G))$$

for k = 0, ..., 2m, the constant C' being independent of J.

Next, for x in J such that $f(x) \neq 0$, we define as in [2],

$$\rho(x) = \max_{0 \le k \le m-1} \left\{ \left[\frac{f_+^{(2k)}(x)}{C'd(x,\Gamma)^{2p}\alpha(d(x,G))} \right]^{\frac{1}{2m-2k}} \right\}$$

One has thus $\rho(x) \leq d(x, G)$ and

$$|f^{(k)}(x)| \le C'd(x,\Gamma)^{2p}\alpha(d(x,G))\rho(x)^{2m-k}$$

for $k = 0, \ldots, 2m$. The auxiliary function

$$\varphi(t) = \frac{f(x + t\rho(x))}{C'd(x, \Gamma)^{2p}\alpha(d(x, G))\rho(x)^{2m}}$$

is defined in [-1, 1] and satisfies the assumptions of Lemma 1.3. Two cases should be considered.

1. — One has $\varphi(0) \ge a_0$ and then $\varphi(t) \ge a_0/2$ for $|t| \le r_0$ while the derivatives of φ are uniformly bounded by C_0 . Thus, there exists an universal constant C'' such that $\left|\frac{d^k}{dx^k}\varphi^{1/2}(t)\right| \le C''$ in this interval. We have thus, by the change of variable $t \mapsto x + t\rho(x)$,

$$\left|\frac{d^k}{dx^k}f^{1/2}(x)\right| \le C'' d(x,\Gamma)^p \rho(x)^{m-k} \alpha(d(x,G))^{1/2}$$

which implies (2.2).

2. — We are in case (b) of Lemma 1.3: all the derivatives of φ are bounded by C_0 and for some $j \in \{1, \ldots, m-1\}$ one has $\varphi^{2j}(t) \ge a_j$ for $|t| \le r_j$ and φ has a local minimum at some point $\xi \in [-r_j, r_j]$. Our assumptions imply that $\varphi^{2k}(\xi)$ vanishes for $k \in \{0, \ldots, m-2\}$ so j is necessarily equal to m-1. We can thus set $\varphi(t) = (t-\xi)^{2m-2}H(t)$ and $\psi(t) = (t-\xi)^{m-1}H(t)^{1/2}$ as in Lemma 1.2. There is a universal constant C''' (computed from C_0 and a_{m-1}) such that $\left|\frac{d^k}{dx^k}\psi(t)\right| \le C'''$ for $|t| \le r_{m-1}$. In particular, for t = 0, these derivatives coincide up to the sign with those of $\varphi^{1/2}$. The change of variable $t \mapsto x + t\rho(x)$ gives again the estimates (2.2) on the derivatives of $f^{1/2}(x)$. The proof is complete.

Theorem 2.2. Let f be a nonnegative function of one variable of class C^{2m} with $m \ge 2$ such that, at all its minimum points, f and its derivatives up to the order (2m - 4) vanish. Then any square root of f precised up to order m is of class C^m .

Proof. The result is evident if G is empty and we can thus assume $G \neq \emptyset$. If α is a modulus of continuity of $f^{(2m)}$, we have $|f^{2m}(x)| \leq \alpha(d(x, G))$ which is the assumption (2.1) for p = 0. By the preceding lemma, we have the estimates

$$\left|\frac{d^k}{dx^k}f^{1/2}(x)\right| \le \bar{C}d(x,G)^{m-k}\alpha(d(x,G))^{1/2}$$

when $f(x) \neq 0$. By Proposition 1.4, this implies that all the square roots precised up to order *m* are of class C^m . The case $m = \infty$ follows now from Corollary 1.5.

Remark 2.3. It is certainly not necessary to assume that f vanishes at all its minimum points. For instance, we could also allow nonzero minima at points $\bar{x}_i, i \in \mathbb{N}$, provided that the values $f(\bar{x}_i)$ be not "too small". With the notations of Lemma 2.1, it suffices to have $f(\bar{x}_i) \ge C\alpha(d(\bar{x}_i, G))\rho(\bar{x}_i)^{2m}$ for some uniform positive constant C.

It is clear that the assumption $f \in C^{2m}$ of Theorem 2.2 cannot be weakened to $f \in C^{2m-1,1}$ (take $f(t) = t^{2m} + \frac{1}{2}t^{2m-1}|t|$). The two following counterexamples show that in the general case no stronger regularity is possible (Theorem 2.4) and that the vanishing of 2m - 4 derivatives cannot be replaced by the vanishing of 2m - 6 derivatives (Theorem 2.5).

Theorem 2.4. For any given modulus of continuity ω there is a nonnegative function f of class C^{∞} on \mathbb{R} such that, at all its minimum points, f and all its derivatives up to the (2m - 4)-th one vanish, but there is no function g of class $C^{m,\omega}$ such that $g^2 = f$.

Proof. Let $\chi \in C^{\infty}(\mathbb{R})$ be the even function with support in [-2, 2] defined by $\chi(t) = 1$ for $t \in [0, 1]$ and by $\chi(t) = \exp\left\{\frac{1}{(t-2)e^{1/(t-1)}}\right\}$ for $t \in (1, 2)$. We note that the logarithm of χ is a concave function on (1, 2). For every $(a, b) \in [0, 1] \times [0, 1]$, $(a, b) \neq (0, 0)$, and every $m \ge 1$ the function $t \mapsto \log(at^{2m} + bt^{2m-2})$ is concave on $(0, +\infty)$ and thus the function

$$t \mapsto \chi^2(t)(at^{2m} + bt^{2m-2})$$

has only one local maximum point and no local minimum points in (1, 2), for its logarithmic derivative vanishes exactly once. Set

$$\rho_n = \frac{1}{n^2}, \qquad t_n = 2\rho_n + \sum_{j=n+1}^{\infty} 5\rho_j,$$

$$I_n = [t_n - 2\rho_n, t_n + 2\rho_n], \quad \alpha_n = \frac{1}{2^n}$$
(2.3)

and

$$\varepsilon_n = \omega^{-1}(\alpha_n), \qquad \qquad \beta_n = \alpha_n \varepsilon_n^2.$$

Notice that the I_n 's are closed and disjoint and that, for $n \ge 4$, one has

$$\varepsilon_n \le \alpha_n \le \rho_n \,. \tag{2.4}$$

Define

$$f = \sum_{n=4}^{\infty} \chi^2 \left(\frac{t - t_n}{\rho_n} \right) (\alpha_n (t - t_n)^{2m} + \beta_n (t - t_n)^{2m-2}).$$

Clearly, f is of class C^{∞} : this is obvious at every point except perhaps at the origin, but for small $t \in I_n$ and a suitable positive constant C_k one has that

$$|f^{(k)}(t)| \le C_k \rho_n^{2m-2-k} \alpha_n$$

that converges to 0 as t goes to 0 (which implies that n goes to infinity). Moreover, f takes the value 0 at all its local minimum points, which are the points t_n and the points between I_n and I_{n+1} .

We argue by contradiction and look for functions g of class $C^{m,\omega}$ such that $g^2 = f$; but any such g must be of the form

$$g = \sum_{n=1}^{\infty} \sigma_n \chi \left(\frac{t - t_n}{\rho_n} \right) (t - t_n)^{m-1} \sqrt{\beta_n + \alpha_n (t - t_n)^2}$$
(2.5)

for some choice of the signs $\sigma_n = \pm 1$. In order to evaluate $g^{(m)}$, let us calculate first $\left(\sqrt{\beta_n + \alpha_n(t - t_n)^2}\right)^{(h)}$ for h = 1, ..., m. To this end, we will use Faà di Bruno's formula (see [5]), with $F(x) = x^{1/2}$ and $\psi(t)$ given by $\psi(t) = \beta + \alpha t^2$:

$$(F \circ \psi)^{(h)} = \sum_{j=1}^{h} (F^{(j)} \circ \psi) \sum_{p(h,j)} h! \prod_{i=1}^{h} \frac{(\psi^{(i)})^{\mu_i}}{(\mu_i!)(i!)^{\mu_i}},$$

where:

$$p(h, j) = \left\{ (\mu_1, \dots, \mu_h) : \mu_i \ge 0, \sum_{i=1}^h \mu_i = j, \sum_{i=1}^h i \mu_i = h \right\}.$$

Now obviously we have:

$$F^{(j)}(x) = (x^{1/2})^{(j)} = 2^{-j} (2j-3)!! (-1)^{j+1} x^{1/2-j}$$

where, for *n* odd, $n!! = 1 \cdot 3 \cdots n$ and, for *n* even, $n!! = 2 \cdot 4 \cdots n$. Moreover, in our case, the only nonzero terms are those with i = 1 or i = 2 and $\mu_1 = 2j - h$, $\mu_2 = h - j$, with $\left\lfloor \frac{h+1}{2} \right\rfloor \le j \le h$. So we have:

$$\left(\sqrt{\beta + \alpha t^2}\right)^{(h)} = \sum_{j=\left[\frac{h+1}{2}\right]}^{h} \frac{h! 2^{j-h} (2j-3)!! (-1)^{j+1} (\beta + \alpha t^2)^{1/2-j} \alpha^j t^{2j-h}}{(2j-h)! (h-j)!} .$$
(2.6)

We calculate now $g^{(m)}(t)$ for $t \in \tilde{I}_n := [t_n - \rho_n, t_n + \rho_n]$, with g given by (2.5). We note that on \tilde{I}_n one has $g(t) = \sigma_n (t - t_n)^{m-1} \sqrt{\beta_n + \alpha_n (t - t_n)^2}$, and so, for $t \in \tilde{I}_n$:

$$g^{(m)}(t) = \sigma_n \sum_{h=1}^m \frac{(m)!}{h!(m-h)!} (t-t_n)^{h-1} \frac{(m-1)!}{(h-1)!} \left(\sqrt{\beta_n + \alpha_n (t-t_n)^2}\right)^{(h)}.$$
 (2.7)

Now, set $t'_n = t_n + \lambda \varepsilon_n$, with λ to be chosen later, $1/2 \le \lambda \le 1$, so that, thanks to (2.4), $t'_n \in \tilde{I}_n$. Taking (2.6) and (2.7) into account, we have:

$$g^{(m)}(t'_{n}) = \sigma_{n} \alpha_{n}^{1/2} \sum_{h=1}^{m} \frac{(m)!}{h!(m-h)!} \frac{(m-1)!}{(h-1)!}$$
$$\times \sum_{j=\left[\frac{h+1}{2}\right]}^{h} \frac{h! 2^{j-h} (2j-3)!!(-1)^{j+1} \lambda^{2j-1} (1+\lambda^{2})^{\frac{1}{2}-j}}{(2j-h)!(h-j)!} = \sigma_{n} \alpha_{n}^{1/2} \mathcal{K}_{m}(\lambda).$$

Since $\mathcal{K}_m(\lambda)$ is a nonzero polynomial of degree 2m - 1 in $\frac{\lambda}{(1 + \lambda^2)^{1/2}}$, we can choose a value λ_0 , $1/2 \le \lambda_0 \le 1$, in such a way that $\mathcal{K}_m(\lambda_0) \ne 0$. But now since $g^{(m)}(t_n) = 0$ we have that

$$\frac{|g^{(m)}(t_n + \lambda_0 \varepsilon_n) - g^{(m)}(t_n)|}{\omega(\lambda_0 \varepsilon_n)} = \frac{|g^{(m)}(t_n + \lambda_0 \varepsilon_n)|}{\omega(\lambda_0 \varepsilon_n)} = \frac{\alpha_n^{1/2} |\mathcal{K}_m(\lambda_0)|}{\omega(\lambda_0 \varepsilon_n)}$$
$$\geq \frac{\alpha_n^{1/2} |\mathcal{K}_m(\lambda_0)|}{\omega(\varepsilon_n)} = \frac{|\mathcal{K}_m(\lambda_0)|}{\alpha_n^{1/2}}$$

that goes to infinity as $n \to \infty$.

Theorem 2.5. There is a nonnegative function f of class C^{∞} on \mathbb{R} such that, at all its minimum points, f and all its derivatives up to the (2m - 6)-th one vanish, but there is no function g of class C^m such that $g^2 = f$.

Proof. Let χ be a function of class C^{∞} as in Theorem 2.4 and define ρ_n , t_n , I_n and α_n as in (2.3); define also

$$\varepsilon_n = \alpha_n, \qquad \qquad \beta_n = \alpha_n \varepsilon_n^2$$

and

$$f = \sum_{n=4}^{\infty} \chi^2 \left(\frac{t - t_n}{\rho_n} \right) \left(\alpha_n (t - t_n)^{2m-2} + \beta_n (t - t_n)^{2m-4} \right)$$

The function f is obviously of class C^{∞} and satisfies our hypotheses. Again, any function g of class C^{m-1} such that $g^2 = f$ is of the form

$$g = \sum_{n=1}^{\infty} \sigma_n \chi \left(\frac{t - t_n}{\rho_n} \right) (t - t_n)^{m-2} \sqrt{\beta_n + \alpha_n (t - t_n)^2}$$

for some choice of the signs $\sigma_n = \pm 1$.

Now, set $t'_n = t_n + \lambda \varepsilon_n$, with $1/2 \le \lambda \le 1$: thanks to (2.4), $t'_n \in \tilde{I}_n$. Taking (2.6) and (2.7) into account we have again that

$$g^{(m)}(t'_{n}) = \sigma_{n} \frac{\alpha_{n}^{1/2}}{\varepsilon_{n}} \sum_{h=2}^{m} \frac{(m)!}{h!(m-h)!} \frac{(m-2)!}{(h-2)!} \times \sum_{j=\left[\frac{h+1}{2}\right]}^{h} \frac{h!2^{j-h}(2j-3)!!(-1)^{j+1}\lambda^{2j-2}(1+\lambda^{2})^{\frac{1}{2}-j}}{(2j-h)!(h-j)!} = \sigma_{n} \frac{1}{\alpha_{n}^{1/2}} \mathcal{H}_{m}(\lambda)$$

where \mathcal{H}_m is a polynomial function in $\frac{\lambda}{(1+\lambda^2)^{1/2}}$; for some good choice of λ , then, this expression goes to infinity as above.

3. Differentiable square roots

Theorem 3.1. Let f be a nonnegative function of one variable of class C^{2m+2} $(2 \le m \le \infty)$ such that, at all its minimum points, f and all its derivatives up to the order (2m - 4) vanish. Then any square root g of f which is precised up to order m + 1 is of class C^m and its derivative of order m + 1 exists everywhere.

Proof. Since f is also a function of class C^{2m} and g is in particular precised up to order m we already know that g is of class C^m .

Let us consider the following closed set

$$\Gamma = \{ x \in \mathbb{R} \mid f(x) = 0, f'(x) = 0, \dots, f^{(2m+2)}(x) = 0 \}.$$
(3.1)

If it is empty, the set G is made of isolated points where $f^{(2m+2)}(x) \neq 0$ and, thanks to the condition on the signs, g is of class C^{m+1} . So, we may assume $\Gamma \neq \emptyset$ and thus, for the same reason, g is of class C^{m+1} outside Γ . What remains to prove is that $g^{(m)}$ is differentiable at each point of Γ .

The function Φ defined by $\Phi(x) = d(x, \Gamma)^{-2} f^{(2m)}(x)$ outside Γ and by $\Phi(x) = 0$ in Γ is continuous and vanishes on G. If α is a modulus of continuity of Φ , one has thus

$$\left|f^{(2m)}(x)\right| \le d(x,\Gamma)^2 \alpha(d(x,G)),\tag{3.2}$$

which is the assumption (2.1) of Lemma 2.1 with p = 1. Thanks to this lemma, we get

$$\left|g^{(m)}(x)\right| = \left|\frac{d^m}{dx^m}f^{1/2}(x)\right| \le \bar{C}d(x,\Gamma)\alpha(d(x,G))^{1/2}$$

for x such that $f(x) \neq 0$ and $k \in \{0, ..., m\}$. By continuity, the estimate of $g^{(m)}(x)$ is also valid for the isolated zeros of f, and it is trivial for $x \in \Gamma$. For $x_0 \in \Gamma$ one has thus $|g^{(m)}(x) - g^{(m)}(x_0)| / |x - x_0| \leq C\alpha (d(x, G))^{1/2}$ which converges to 0 for $x \to x_0$. This proves that $g^{m+1}(x_0)$ exists and is equal to 0, which ends the proof.

Remark 3.2. We have already proved that, under the assumptions of the theorem, g is not of class C^{m+1} in general (Theorem 2.5 with m replaced by m + 1). Counterexamples analogous to those given above show that the hypotheses cannot be relaxed.

References

- D. ALEKSEEVSKY, A. KRIEGL, P. W. MICHOR and M. LOSIK, Choosing roots of polynomials smoothly, Israel J. Math. 105 (1998), 203–233.
- [2] J.-M. BONY, Sommes de carrés de fonctions dérivables, Bull. Soc. Math. France 133 (2005), 619–639.
- [3] J.-M. BONY, F. BROGLIA, F. COLOMBINI and L. PERNAZZA, Nonnegative functions as squares or sums of squares, J. Funct. Anal. 232 (2006), 137–147.
- [4] J.-M. BONY, F. COLOMBINI and L. PERNAZZA, On the differentiability class of the admissible square roots of regular nonnegative functions, In: "Phase Space Analysis of Partial Differential Equations", 45–53, Progr. Nonlinear Differential Equations Appl., Vol. 69, Birkhäuser Boston, Boston, MA, 2006.
- [5] F. FAÀ DI BRUNO, Note sur une nouvelle formule du calcul différentiel, Quarterly J. Pure Appl. Math. 1 (1857), 359–360.
- [6] G. GLAESER, Racine carrée d'une fonction différentiable, Ann. Inst. Fourier (Grenoble) 13 (1963), 203–210.
- [7] A. KRIEGL, M. LOSIK and P.W. MICHOR, Choosing roots of polynomials smoothly, II, Israel J. Math. 139 (2004), 183–188.
- [8] T. MANDAI, Smoothness of roots of hyperbolic polynomials with respect to one-dimensional parameter, Bull. Fac. Gen. Ed. Gifu Univ. 21 (1985), 115–118.

École Polytechnique Centre de Mathématiques 91128 Palaiseau Cedex, France bony@math.polytechnique.fr

Dipartimento di Matematica Università di Pisa Largo B. Pontecorvo, 5 56127 Pisa, Italia colombini@dm.unipi.it

Dipartimento di Matematica Università di Pavia Via Ferrata, 1 27100 Pavia, Italia pernazza@mail.dm.unipi.it