# On square roots of class $\boldsymbol{C}^{m}$ of nonnegative functions of one variable 

Jean-Michel Bony, Ferruccio Colombini<br>and Ludovico Pernazza


#### Abstract

We investigate the regularity of functions $g$ such that $g^{2}=f$, where $f$ is a given nonnegative function of one variable. Assuming that $f$ is of class $C^{2 m}$ ( $m>1$ ) and vanishes together with its derivatives up to order $2 m-4$ at all its local minimum points, one can find a $g$ of class $C^{m}$. Under the same assumption on the minimum points, if $f$ is of class $C^{2 m+2}$ then $g$ can be chosen such that it admits a derivative of order $m+1$ everywhere. Counterexamples show that these results are sharp.


Mathematics Subject Classification (2010): 26A15 (primary); 26A27 (secondary).

## Introduction

In this paper we study the regularity of functions $g$ of one variable whose square is a given nonnegative function $f$.

For a function $f$ of class $C^{2}$, first results are due to G. Glaeser [6] who proved that $f^{1 / 2}$ is of class $C^{1}$ if the second derivative of $f$ vanishes at the zeros of $f$, and to T. Mandai [8] who proved that one can always choose $g$ of class $C^{1}$. More recently in [1] (and later in [7]), for functions $f$ of class $C^{4}$, it was proved that one can find $g$ of class $C^{1}$ and twice differentiable at every point.
F. Broglia and the authors proved in [3] that this result is sharp in the sense that it is not possible to have in general a greater regularity for $g$. They also showed that if $f$ is of class $C^{4}$ and vanishes at all its (local) minimum points, one can always find $g$ of class $C^{2}$ and that the result is sharp. Later, in [4] it was proved that for $f$ of class $C^{6}$ vanishing at all its minimum points one can find $g$ of class $C^{2}$ and three times differentiable at every point.

In this paper we generalize these results. First we prove that for $f$ of class $C^{2 m}, m=1,2, \ldots, \infty$, vanishing at its (local) minimum points together with all its derivatives up to order $(2 m-4)$ one can find $g$ of class $C^{m}$ (Theorem 2.2). If the derivatives vanish only up to order $2 m-6$ at all the minimum points, the other assumptions being unchanged, $g$ can be chosen $m$ times differentiable at every point (Theorem 3.1, where $m$ is replaced by $m+1$ ).

Received May 30, 2009; accepted in revised form October 28, 2009.

Counterexamples are given to show that these assumptions cannot be relaxed and that the regularity of $g$ cannot be improved in general.

## 1. Precised square roots

In this paper, $f$ will always be a nonnegative function of one real variable whose regularity will be precised below. Our results being of local character, we may and will assume that the support of $f$ is contained in $[0,1]$.
Definition 1.1. Assuming $f$ of class $C^{2 m}, m=1,2, \ldots, \infty$, we say that $g$ is a square root of $f$ precised up to order $m$, if $g$ is a continuous function satisfying $g^{2}=f$ and if, for any (finite) integer $k \leq m$ and for any point $x_{0}$ which is a zero of $f$ of order exactly $2 k$, the function $x \mapsto\left(x-x_{0}\right)^{k} g(x)$ keeps a constant sign near $x_{0}$.

It is clear that $g$ cannot be $m$ times differentiable at every point if this condition is not fulfilled.

It is easy to show the existence of square roots precised up to order $m$ and even to describe all of them. Let us consider the closed set

$$
\begin{equation*}
G=\left\{x \in \mathbb{R} \mid f(x)=0, f^{\prime}(x)=0, \ldots, f^{(2 m)}(x)=0\right\} \tag{1.1}
\end{equation*}
$$

with the convention that all derivatives vanish if $m=\infty$. Its complement is a union of disjoint intervals $J_{v}$. In $J_{v}$, the zeros of $f$ are isolated and of finite order $\leq 2 m$. For a square root precised up to order $m$, one should have $|g|=f^{1 / 2}$ and the restriction of $g$ to $J_{v}$ should be one of two well defined functions $+g_{v}$ and $-g_{v}$ thanks to the condition on the change of sign. There is a bijection between the set of families $\left(\epsilon_{v}\right)$ with $\epsilon_{v}= \pm 1$ and the set of square roots precised up to order $m$ : one has just to set $g(x)=\epsilon_{\nu} g_{\nu}(x)$ for $x \in J_{v}$ and $g(x)=0$ for $x \in G$.

A modulus of continuity is a continuous, positive, increasing and concave function defined on an interval $\left[0, t_{0}\right]$ and vanishing at 0 . Any continuous function $\varphi$ defined on a compact set $K$ has a modulus of continuity, i.e. a function $\omega$ as above such that for every $t_{1}, t_{2}$ with $\left|t_{2}-t_{1}\right|<t_{0}$, one has $\left|\varphi\left(t_{2}\right)-\varphi\left(t_{1}\right)\right|<\omega\left(\left|t_{2}-t_{1}\right|\right)$. One says that $\varphi \in C^{\omega}(K)$. If $\varphi \in C^{k}(K)$ and if $\omega$ is a modulus of continuity of $\varphi^{(k)}$, one says that $\varphi \in C^{k, \omega}(K)$.

We now state two lemmas taken almost literally from [2, Lemme 4.1, Lemme 4.2 and Corollaire 4.3]. Note that in the rest of this section $m$ will not be allowed to take the value $\infty$.

Lemma 1.2. Let $\varphi \in C^{2 m}(J)$ be nonnegative, where $J$ is a closed interval contained in $[-1,1]$, and let $M=\sup \left|\varphi^{(k)}(x)\right|$ for $0 \leq k \leq 2 m$ and $x \in J$. Assume that for some $j \in\{0, \ldots, m\}$, the inequality $\varphi^{(2 j)}(x) \geq \gamma>0$ holds for $x \in J$ and that $\varphi$ has a zero of order $2 j$ at some point $\xi \in J$.

Let us define $H$ and $\psi$ in $J$ by

$$
\varphi(x)=(x-\xi)^{2 j} H(x), \quad \psi(x)=(x-\xi)^{j} H(x)^{1 / 2}
$$

Then, $H \in C^{2 m-2 j}(J)$ and $\psi \in C^{2 m-j}(J)$. Moreover, there exists $C_{1}$, depending only on $m$, such that

$$
\begin{equation*}
\left|\psi^{(k)}(x)\right| \leq C_{1} \gamma^{\frac{1}{2}-k} M^{k}, \quad k=1, \ldots, 2 m-j \tag{1.2}
\end{equation*}
$$

Lemma 1.3. Let $\varphi$ be a nonnegative function of one variable, defined and of class $C^{2 m}$ in the interval $[-1,1]$ such that $\left|\varphi^{(2 m)}(t)\right| \leq 1$ for $|t| \leq 1$ and that $\max _{0 \leq j \leq m-1} \varphi^{(2 j)}(0)=1$.
(i) There exists a universal positive constant $C_{0}$, such that

$$
\begin{equation*}
\left|\varphi^{(k)}(t)\right| \leq C_{0}, \quad \text { for }|t| \leq 1 \text { and } 0 \leq k \leq 2 m \tag{1.3}
\end{equation*}
$$

(ii) There exist universal positive constants $a_{j}$ and $r_{j}, j=0, \ldots, m-1$, such that one of the following cases occurs:
(a) One has $\varphi(0) \geq a_{0}$ and then $\varphi(t) \geq a_{0} / 2$ for $|t| \leq r_{0}$.
(b) For some $j \in\{1, \ldots, m-1\}$ one has $\varphi^{2 j}(t) \geq a_{j}$ for $|t| \leq r_{j}$ and $\varphi$ has a local minimum in $\left[-r_{j}, r_{j}\right]$.

In the following proposition, $G$ is defined by (1.1) and $d(x, G)$ denotes the distance of $x$ from $G$. When $G=\emptyset,(a)$ and (b) are always true and condition (1.4) disappears.

Proposition 1.4. Assuming that $f$ is of class $C^{2 m}$, the three following properties are equivalent.
(a) There exists $g \in C^{m}$ such that $g^{2}=f$.
(b) Any function $g$ which is a square root of $f$ precised up to order $m$ belongs to $C^{m}$.
(c) There exists a modulus of continuity $\omega$ such that

$$
\begin{equation*}
\left|\frac{d^{k}}{d x^{k}} f^{1 / 2}(x)\right| \leq d(x, G)^{m-k} \omega(d(x, G)) \tag{1.4}
\end{equation*}
$$

for any $x$ such that $f(x) \neq 0$ and any $k \in\{0, \ldots, m\}$.
Proof. It is clear that $(\mathrm{b}) \Rightarrow(\mathrm{a})$ : as said above, precised square roots do exist. Under assumption (a), $g$ and its derivatives up to order $m$ should vanish on $G$. If $\omega$ is a modulus of continuity of $g^{(m)}$ one gets $\left|g^{(m)}(x)\right| \leq \omega(d(x, G))$. Successive integrations prove that the derivatives $g^{(k)}$ are bounded by the right hand side of (1.4). These derivatives being equal, up to the sign, to those of $f^{1 / 2}$ when $f$ does not vanish, $(a) \Rightarrow(c)$ is proved.

Let us assume (c) and consider any connected component $J_{v}$ of the complement of $G$. Near each zero of $f$ in $J_{v}$, which is of order exactly $2 j$ for some $j \in\{1, \ldots, m\}$, the precised square root $g_{v}$ is given (up to the sign) by Lemma 1.2
and so it is of class $C^{m}$. Moreover, the estimate (1.4) extends by continuity to the points $x \in J_{v}$ where $f$ vanishes and one has

$$
\left|g_{v}^{(k)}(x)\right| \leq d(x, G)^{m-k} \omega(d(x, G))
$$

for $x \in J_{v}$ and $k \in\{0, \ldots, m\}$.
If we define $g$ equal to $\epsilon_{\nu} g_{v}$ in $J_{v}$ and to 0 in $G$, it remains to prove the existence and the continuity of the derivatives of $g$ at any point $x_{0} \in G$. By induction, the estimates above prove, for $k=0, \ldots, m-1$, that $g^{k+1}\left(x_{0}\right)$ exists and is equal to 0 and that $g^{k+1}(x) \rightarrow 0$ for $x \rightarrow x_{0}$. The proof is complete.

Corollary 1.5. Let $f$ be a nonnegative $C^{\infty}$ function of one variable such that for any $m$ there exists a function $g_{m}$ of class $C^{m}$ with $g_{m}^{2}=f$. Then there exists $g$ of class $C^{\infty}$ such that $g^{2}=f$.

Actually, if $g$ is any square root of $f$ precised up to order $\infty$, it is precised up to order $m$ for any $m$ and thus of class $C^{m}$ for any $m$ by the proposition above.

## 2. Continuously differentiable square roots

We start with an auxiliary result which contains the main argument. The function $f \in C^{2 m}, m \geq 2$, and the set $G \neq \emptyset$ are as above, and $\Gamma$ is a closed subset of $G$. We will use this lemma for $p=0$, in which case $\Gamma$ can be disregarded, and for $p=1$.

Lemma 2.1. Assume that $m \neq \infty$ and $f$ and all its derivatives up to order $2 m-4$ (included) vanish at all its local minimum points. Assume moreover that there exist a modulus of continuity $\alpha$ and constants $C>0$ and $p \geq 0$ such that

$$
\begin{equation*}
\left|f^{(2 m)}(x)\right| \leq C d(x, \Gamma)^{2 p} \alpha(d(x, G)) \tag{2.1}
\end{equation*}
$$

Then, there exists a constant $\bar{C}$ such that

$$
\begin{equation*}
\left|\frac{d^{k}}{d x^{k}} f^{1 / 2}(x)\right| \leq \bar{C} d(x, \Gamma)^{p} d(x, G)^{m-k} \alpha(d(x, G))^{1 / 2} \tag{2.2}
\end{equation*}
$$

for any $x$ such that $f(x) \neq 0$ and any $k \in\{0, \ldots, m\}$.
Proof. Let $J$ be any connected component of the complement of $G$ and for $x \in J$, let $\widehat{x}$ be (one of) the nearest endpoint(s) of $J$. The distance between $x$ and $\widehat{x}$ is thus equal to $d(x, G)$ and we remark that, for $y$ between $x$ and $\widehat{x}$, we have $d(y, \Gamma) \leq$ $2 d(x, \Gamma)$. Integrating $2 m-k$ times the estimate for $f^{(2 m)}$ between $\widehat{x}$ and $x$ we get

$$
\left|f^{(k)}(x)\right| \leq C^{\prime} d(x, \Gamma)^{2 p} d(x, G)^{2 m-k} \alpha(d(x, G))
$$

for $k=0, \ldots, 2 m$, the constant $C^{\prime}$ being independent of $J$.

Next, for $x$ in $J$ such that $f(x) \neq 0$, we define as in [2],

$$
\rho(x)=\max _{0 \leq k \leq m-1}\left\{\left[\frac{f_{+}^{(2 k)}(x)}{C^{\prime} d(x, \Gamma)^{2 p} \alpha(d(x, G))}\right]^{\frac{1}{2 m-2 k}}\right\}
$$

One has thus $\rho(x) \leq d(x, G)$ and

$$
\left|f^{(k)}(x)\right| \leq C^{\prime} d(x, \Gamma)^{2 p} \alpha(d(x, G)) \rho(x)^{2 m-k}
$$

for $k=0, \ldots, 2 m$. The auxiliary function

$$
\varphi(t)=\frac{f(x+t \rho(x))}{C^{\prime} d(x, \Gamma)^{2 p} \alpha(d(x, G)) \rho(x)^{2 m}}
$$

is defined in $[-1,1]$ and satisfies the assumptions of Lemma 1.3. Two cases should be considered.

1.     - One has $\varphi(0) \geq a_{0}$ and then $\varphi(t) \geq a_{0} / 2$ for $|t| \leq r_{0}$ while the derivatives of $\varphi$ are uniformly bounded by $C_{0}$. Thus, there exists an universal constant $C^{\prime \prime}$ such that $\left|\frac{d^{k}}{d x^{k}} \varphi^{1 / 2}(t)\right| \leq C^{\prime \prime}$ in this interval. We have thus, by the change of variable $t \mapsto x+t \rho(x)$,

$$
\left|\frac{d^{k}}{d x^{k}} f^{1 / 2}(x)\right| \leq C^{\prime \prime} d(x, \Gamma)^{p} \rho(x)^{m-k} \alpha(d(x, G))^{1 / 2}
$$

which implies (2.2).
2. - We are in case (b) of Lemma 1.3: all the derivatives of $\varphi$ are bounded by $C_{0}$ and for some $j \in\{1, \ldots, m-1\}$ one has $\varphi^{2 j}(t) \geq a_{j}$ for $|t| \leq r_{j}$ and $\varphi$ has a local minimum at some point $\xi \in\left[-r_{j}, r_{j}\right]$. Our assumptions imply that $\varphi^{2 k}(\xi)$ vanishes for $k \in\{0, \ldots, m-2\}$ so $j$ is necessarily equal to $m-1$. We can thus set $\varphi(t)=(t-\xi)^{2 m-2} H(t)$ and $\psi(t)=(t-\xi)^{m-1} H(t)^{1 / 2}$ as in Lemma 1.2. There is a universal constant $C^{\prime \prime \prime}$ (computed from $C_{0}$ and $a_{m-1}$ ) such that $\left|\frac{d^{k}}{d x^{k}} \psi(t)\right| \leq C^{\prime \prime \prime}$ for $|t| \leq r_{m-1}$. In particular, for $t=0$, these derivatives coincide up to the sign with those of $\varphi^{1 / 2}$. The change of variable $t \mapsto x+t \rho(x)$ gives again the estimates (2.2) on the derivatives of $f^{1 / 2}(x)$. The proof is complete.

Theorem 2.2. Let $f$ be a nonnegative function of one variable of class $C^{2 m}$ with $m \geq 2$ such that, at all its minimum points, $f$ and its derivatives up to the order $(2 m-4)$ vanish. Then any square root of $f$ precised up to order $m$ is of class $C^{m}$.
Proof. The result is evident if $G$ is empty and we can thus assume $G \neq \emptyset$. If $\alpha$ is a modulus of continuity of $f^{(2 m)}$, we have $\left|f^{2 m}(x)\right| \leq \alpha(d(x, G))$ which is the assumption (2.1) for $p=0$. By the preceding lemma, we have the estimates

$$
\left|\frac{d^{k}}{d x^{k}} f^{1 / 2}(x)\right| \leq \bar{C} d(x, G)^{m-k} \alpha(d(x, G))^{1 / 2}
$$

when $f(x) \neq 0$. By Proposition 1.4, this implies that all the square roots precised up to order $m$ are of class $C^{m}$. The case $m=\infty$ follows now from Corollary 1.5 .

Remark 2.3. It is certainly not necessary to assume that $f$ vanishes at all its minimum points. For instance, we could also allow nonzero minima at points $\bar{x}_{i}, i \in \mathbb{N}$, provided that the values $f\left(\bar{x}_{i}\right)$ be not "too small". With the notations of Lemma 2.1, it suffices to have $f\left(\bar{x}_{i}\right) \geq C \alpha\left(d\left(\bar{x}_{i}, G\right)\right) \rho\left(\bar{x}_{i}\right)^{2 m}$ for some uniform positive constant $C$.

It is clear that the assumption $f \in C^{2 m}$ of Theorem 2.2 cannot be weakened to $f \in C^{2 m-1,1}$ (take $f(t)=t^{2 m}+\frac{1}{2} t^{2 m-1}|t|$ ). The two following counterexamples show that in the general case no stronger regularity is possible (Theorem 2.4) and that the vanishing of $2 m-4$ derivatives cannot be replaced by the vanishing of $2 m-6$ derivatives (Theorem 2.5).

Theorem 2.4. For any given modulus of continuity $\omega$ there is a nonnegative function $f$ of class $C^{\infty}$ on $\mathbb{R}$ such that, at all its minimum points, $f$ and all its derivatives up to the $(2 m-4)$-th one vanish, but there is no function $g$ of class $C^{m, \omega}$ such that $g^{2}=f$.

Proof. Let $\chi \in C^{\infty}(\mathbb{R})$ be the even function with support in [-2,2] defined by $\chi(t)=1$ for $t \in[0,1]$ and by $\chi(t)=\exp \left\{\frac{1}{(t-2) e^{1 /(t-1)}}\right\}$ for $t \in(1,2)$. We note that the logarithm of $\chi$ is a concave function on $(1,2)$. For every $(a, b) \in[0,1] \times[0,1]$, $(a, b) \neq(0,0)$, and every $m \geq 1$ the function $t \mapsto \log \left(a t^{2 m}+b t^{2 m-2}\right)$ is concave on $(0,+\infty)$ and thus the function

$$
t \mapsto \chi^{2}(t)\left(a t^{2 m}+b t^{2 m-2}\right)
$$

has only one local maximum point and no local minimum points in (1,2), for its logarithmic derivative vanishes exactly once. Set

$$
\begin{array}{ll}
\rho_{n}=\frac{1}{n^{2}}, & t_{n}=2 \rho_{n}+\sum_{j=n+1}^{\infty} 5 \rho_{j},  \tag{2.3}\\
I_{n}=\left[t_{n}-2 \rho_{n}, t_{n}+2 \rho_{n}\right], & \alpha_{n}=\frac{1}{2^{n}}
\end{array}
$$

and

$$
\varepsilon_{n}=\omega^{-1}\left(\alpha_{n}\right), \quad \quad \beta_{n}=\alpha_{n} \varepsilon_{n}^{2}
$$

Notice that the $I_{n}$ 's are closed and disjoint and that, for $n \geq 4$, one has

$$
\begin{equation*}
\varepsilon_{n} \leq \alpha_{n} \leq \rho_{n} . \tag{2.4}
\end{equation*}
$$

Define

$$
f=\sum_{n=4}^{\infty} \chi^{2}\left(\frac{t-t_{n}}{\rho_{n}}\right)\left(\alpha_{n}\left(t-t_{n}\right)^{2 m}+\beta_{n}\left(t-t_{n}\right)^{2 m-2}\right)
$$

Clearly, $f$ is of class $C^{\infty}$ : this is obvious at every point except perhaps at the origin, but for small $t \in I_{n}$ and a suitable positive constant $C_{k}$ one has that

$$
\left|f^{(k)}(t)\right| \leq C_{k} \rho_{n}^{2 m-2-k} \alpha_{n}
$$

that converges to 0 as $t$ goes to 0 (which implies that $n$ goes to infinity). Moreover, $f$ takes the value 0 at all its local minimum points, which are the points $t_{n}$ and the points between $I_{n}$ and $I_{n+1}$.

We argue by contradiction and look for functions $g$ of class $C^{m, \omega}$ such that $g^{2}=f$; but any such $g$ must be of the form

$$
\begin{equation*}
g=\sum_{n=1}^{\infty} \sigma_{n} \chi\left(\frac{t-t_{n}}{\rho_{n}}\right)\left(t-t_{n}\right)^{m-1} \sqrt{\beta_{n}+\alpha_{n}\left(t-t_{n}\right)^{2}} \tag{2.5}
\end{equation*}
$$

for some choice of the signs $\sigma_{n}= \pm 1$. In order to evaluate $g^{(m)}$, let us calculate first $\left(\sqrt{\left.\beta_{n}+\alpha_{n}\left(t-t_{n}\right)^{2}\right)}\right)^{(h)}$ for $h=1, \ldots, m$. To this end, we will use Faà di Bruno's formula (see [5]), with $F(x)=x^{1 / 2}$ and $\psi(t)$ given by $\psi(t)=\beta+\alpha t^{2}$ :

$$
(F \circ \psi)^{(h)}=\sum_{j=1}^{h}\left(F^{(j)} \circ \psi\right) \sum_{p(h, j)} h!\prod_{i=1}^{h} \frac{\left(\psi^{(i)}\right)^{\mu_{i}}}{\left(\mu_{i}!\right)(i!)^{\mu_{i}}},
$$

where:

$$
p(h, j)=\left\{\left(\mu_{1}, \ldots, \mu_{h}\right): \mu_{i} \geq 0, \sum_{i=1}^{h} \mu_{i}=j, \sum_{i=1}^{h} i \mu_{i}=h\right\} .
$$

Now obviously we have:

$$
F^{(j)}(x)=\left(x^{1 / 2}\right)^{(j)}=2^{-j}(2 j-3)!!(-1)^{j+1} x^{1 / 2-j}
$$

where, for $n$ odd, $n!!=1 \cdot 3 \cdots n$ and, for $n$ even, $n!!=2 \cdot 4 \cdots n$. Moreover, in our case, the only nonzero terms are those with $i=1$ or $i=2$ and $\mu_{1}=2 j-h$, $\mu_{2}=h-j$, with $\left[\frac{h+1}{2}\right] \leq j \leq h$. So we have:

$$
\begin{align*}
& \left.\left(\sqrt{\beta+\alpha t^{2}}\right)\right)^{(h)} \\
& =\sum_{j=\left[\frac{h+1}{2}\right]}^{h} \frac{h!2^{j-h}(2 j-3)!!(-1)^{j+1}\left(\beta+\alpha t^{2}\right)^{1 / 2-j} \alpha^{j} t^{2 j-h}}{(2 j-h)!(h-j)!} . \tag{2.6}
\end{align*}
$$

We calculate now $g^{(m)}(t)$ for $t \in \tilde{I}_{n}:=\left[t_{n}-\rho_{n}, t_{n}+\rho_{n}\right]$, with $g$ given by (2.5).
We note that on $\tilde{I}_{n}$ one has $g(t)=\sigma_{n}\left(t-t_{n}\right)^{m-1} \sqrt{\beta_{n}+\alpha_{n}\left(t-t_{n}\right)^{2}}$, and so, for $t \in \tilde{I}_{n}$ :

$$
\begin{equation*}
g^{(m)}(t)=\sigma_{n} \sum_{h=1}^{m} \frac{(m)!}{h!(m-h)!}\left(t-t_{n}\right)^{h-1} \frac{(m-1)!}{(h-1)!}\left(\sqrt{\beta_{n}+\alpha_{n}\left(t-t_{n}\right)^{2}}\right)^{(h)} . \tag{2.7}
\end{equation*}
$$

Now, set $t_{n}^{\prime}=t_{n}+\lambda \varepsilon_{n}$, with $\lambda$ to be chosen later, $1 / 2 \leq \lambda \leq 1$, so that, thanks to (2.4), $t_{n}^{\prime} \in \tilde{I}_{n}$. Taking (2.6) and (2.7) into account, we have:

$$
\begin{aligned}
g^{(m)}\left(t_{n}^{\prime}\right)= & \sigma_{n} \alpha_{n}^{1 / 2} \sum_{h=1}^{m} \frac{(m)!}{h!(m-h)!} \frac{(m-1)!}{(h-1)!} \\
& \times \sum_{j=\left[\frac{h+1}{2}\right]}^{h} \frac{h!2^{j-h}(2 j-3)!!(-1)^{j+1} \lambda^{2 j-1}\left(1+\lambda^{2}\right)^{\frac{1}{2}-j}}{(2 j-h)!(h-j)!}=\sigma_{n} \alpha_{n}^{1 / 2} \mathcal{K}_{m}(\lambda) .
\end{aligned}
$$

Since $\mathcal{K}_{m}(\lambda)$ is a nonzero polynomial of degree $2 m-1$ in $\frac{\lambda}{\left(1+\lambda^{2}\right)^{1 / 2}}$, we can choose a value $\lambda_{0}, 1 / 2 \leq \lambda_{0} \leq 1$, in such a way that $\mathcal{K}_{m}\left(\lambda_{0}\right) \neq 0$. But now since $g^{(m)}\left(t_{n}\right)=0$ we have that

$$
\begin{aligned}
\frac{\left|g^{(m)}\left(t_{n}+\lambda_{0} \varepsilon_{n}\right)-g^{(m)}\left(t_{n}\right)\right|}{\omega\left(\lambda_{0} \varepsilon_{n}\right)} & =\frac{\left|g^{(m)}\left(t_{n}+\lambda_{0} \varepsilon_{n}\right)\right|}{\omega\left(\lambda_{0} \varepsilon_{n}\right)}=\frac{\alpha_{n}^{1 / 2}\left|\mathcal{K}_{m}\left(\lambda_{0}\right)\right|}{\omega\left(\lambda_{0} \varepsilon_{n}\right)} \\
& \geq \frac{\alpha_{n}^{1 / 2}\left|\mathcal{K}_{m}\left(\lambda_{0}\right)\right|}{\omega\left(\varepsilon_{n}\right)}=\frac{\left|\mathcal{K}_{m}\left(\lambda_{0}\right)\right|}{\alpha_{n}^{1 / 2}}
\end{aligned}
$$

that goes to infinity as $n \rightarrow \infty$.

Theorem 2.5. There is a nonnegative function $f$ of class $C^{\infty}$ on $\mathbb{R}$ such that, at all its minimum points, $f$ and all its derivatives up to the $(2 m-6)$-th one vanish, but there is no function $g$ of class $C^{m}$ such that $g^{2}=f$.

Proof. Let $\chi$ be a function of class $C^{\infty}$ as in Theorem 2.4 and define $\rho_{n}, t_{n}, I_{n}$ and $\alpha_{n}$ as in (2.3); define also

$$
\varepsilon_{n}=\alpha_{n}, \quad \quad \beta_{n}=\alpha_{n} \varepsilon_{n}^{2}
$$

and

$$
f=\sum_{n=4}^{\infty} \chi^{2}\left(\frac{t-t_{n}}{\rho_{n}}\right)\left(\alpha_{n}\left(t-t_{n}\right)^{2 m-2}+\beta_{n}\left(t-t_{n}\right)^{2 m-4}\right) .
$$

The function $f$ is obviously of class $C^{\infty}$ and satisfies our hypotheses. Again, any function $g$ of class $C^{m-1}$ such that $g^{2}=f$ is of the form

$$
g=\sum_{n=1}^{\infty} \sigma_{n} \chi\left(\frac{t-t_{n}}{\rho_{n}}\right)\left(t-t_{n}\right)^{m-2} \sqrt{\beta_{n}+\alpha_{n}\left(t-t_{n}\right)^{2}}
$$

for some choice of the signs $\sigma_{n}= \pm 1$.

Now, set $t_{n}^{\prime}=t_{n}+\lambda \varepsilon_{n}$, with $1 / 2 \leq \lambda \leq 1$ : thanks to (2.4), $t_{n}^{\prime} \in \tilde{I}_{n}$. Taking (2.6) and (2.7) into account we have again that

$$
\begin{aligned}
g^{(m)}\left(t_{n}^{\prime}\right)= & \sigma_{n} \frac{\alpha_{n}^{1 / 2}}{\varepsilon_{n}} \sum_{h=2}^{m} \frac{(m)!}{h!(m-h)!} \frac{(m-2)!}{(h-2)!} \\
& \times \sum_{j=\left[\frac{h+1}{2}\right]} \frac{h!2^{j-h}(2 j-3)!!(-1)^{j+1} \lambda^{2 j-2}\left(1+\lambda^{2}\right)^{\frac{1}{2}-j}}{(2 j-h)!(h-j)!}=\sigma_{n} \frac{1}{\alpha_{n}^{1 / 2}} \mathcal{H}_{m}(\lambda)
\end{aligned}
$$

where $\mathcal{H}_{m}$ is a polynomial function in $\frac{\lambda}{\left(1+\lambda^{2}\right)^{1 / 2}}$; for some good choice of $\lambda$, then, this expression goes to infinity as above.

## 3. Differentiable square roots

Theorem 3.1. Let $f$ be a nonnegative function of one variable of class $C^{2 m+2}$ $(2 \leq m \leq \infty)$ such that, at all its minimum points, $f$ and all its derivatives up to the order $(2 m-4)$ vanish. Then any square root $g$ of $f$ which is precised up to order $m+1$ is of class $C^{m}$ and its derivative of order $m+1$ exists everywhere.
Proof. Since $f$ is also a function of class $C^{2 m}$ and $g$ is in particular precised up to order $m$ we already know that $g$ is of class $C^{m}$.

Let us consider the following closed set

$$
\begin{equation*}
\Gamma=\left\{x \in \mathbb{R} \mid f(x)=0, f^{\prime}(x)=0, \ldots, f^{(2 m+2)}(x)=0\right\} \tag{3.1}
\end{equation*}
$$

If it is empty, the set $G$ is made of isolated points where $f^{(2 m+2)}(x) \neq 0$ and, thanks to the condition on the signs, $g$ is of class $C^{m+1}$. So, we may assume $\Gamma \neq \emptyset$ and thus, for the same reason, $g$ is of class $C^{m+1}$ outside $\Gamma$. What remains to prove is that $g^{(m)}$ is differentiable at each point of $\Gamma$.

The function $\Phi$ defined by $\Phi(x)=d(x, \Gamma)^{-2} f^{(2 m)}(x)$ outside $\Gamma$ and by $\Phi(x)=0$ in $\Gamma$ is continuous and vanishes on $G$. If $\alpha$ is a modulus of continuity of $\Phi$, one has thus

$$
\begin{equation*}
\left|f^{(2 m)}(x)\right| \leq d(x, \Gamma)^{2} \alpha(d(x, G)) \tag{3.2}
\end{equation*}
$$

which is the assumption (2.1) of Lemma 2.1 with $p=1$. Thanks to this lemma, we get

$$
\left|g^{(m)}(x)\right|=\left|\frac{d^{m}}{d x^{m}} f^{1 / 2}(x)\right| \leq \bar{C} d(x, \Gamma) \alpha(d(x, G))^{1 / 2}
$$

for $x$ such that $f(x) \neq 0$ and $k \in\{0, \ldots, m\}$. By continuity, the estimate of $g^{(m)}(x)$ is also valid for the isolated zeros of $f$, and it is trivial for $x \in \Gamma$. For $x_{0} \in \Gamma$ one has thus $\left|g^{(m)}(x)-g^{(m)}\left(x_{0}\right)\right| /\left|x-x_{0}\right| \leq C \alpha(d(x, G))^{1 / 2}$ which converges to 0 for $x \rightarrow x_{0}$. This proves that $g^{m+1}\left(x_{0}\right)$ exists and is equal to 0 , which ends the proof.

Remark 3.2. We have already proved that, under the assumptions of the theorem, $g$ is not of class $C^{m+1}$ in general (Theorem 2.5 with $m$ replaced by $m+1$ ). Counterexamples analogous to those given above show that the hypotheses cannot be relaxed.

## References

[1] D. Alekseevsky, A. Kriegl, P. W. Michor and M. Losik, Choosing roots of polynomials smoothly, Israel J. Math. 105 (1998), 203-233.
[2] J.-M. Bony, Sommes de carrés de fonctions dérivables, Bull. Soc. Math. France 133 (2005), 619-639.
[3] J.-M. Bony, F. Broglia, F. Colombini and L. Pernazza, Nonnegative functions as squares or sums of squares, J. Funct. Anal. 232 (2006), 137-147.
[4] J.-M. Bony, F. Colombini and L. Pernazza, On the differentiability class of the admissible square roots of regular nonnegative functions, In: "Phase Space Analysis of Partial Differential Equations", 45-53, Progr. Nonlinear Differential Equations Appl., Vol. 69, Birkhäuser Boston, Boston, MA, 2006.
[5] F. Faì di Bruno, Note sur une nouvelle formule du calcul différentiel, Quarterly J. Pure Appl. Math. 1 (1857), 359-360.
[6] G. Glaeser, Racine carrée d'une fonction différentiable, Ann. Inst. Fourier (Grenoble) 13 (1963), 203-210.
[7] A. Kriegl, M. Losik and P.W. Michor, Choosing roots of polynomials smoothly, II, Israel J. Math. 139 (2004), 183-188.
[8] T. MANDAI, Smoothness of roots of hyperbolic polynomials with respect to one-dimensional parameter, Bull. Fac. Gen. Ed. Gifu Univ. 21 (1985), 115-118.

École Polytechnique Centre de Mathématiques 91128 Palaiseau Cedex, France bony@math.polytechnique.fr<br>Dipartimento di Matematica Università di Pisa Largo B. Pontecorvo, 5 56127 Pisa, Italia colombini@dm.unipi.it<br>Dipartimento di Matematica Università di Pavia Via Ferrata, 1 27100 Pavia, Italia pernazza@mail.dm.unipi.it

