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Montel’s Theorem

Ω ⊂ C an open set.

Theorem
For any sequence of holomorphic maps
fn : Ω→ P1(C) \ {0,1,∞}, there exists a subsequence fnj that
converges uniformly on compact subsets of Ω to a holomorphic
function f .

either f (Ω) ⊂ P1(C) \ {0,1,∞};
or f is a constant map.
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Proof of Montel’s theorem: the bounded case.

Sur les suites de fonctions infinies: (Annales de l’ENS 1907)
http://www.numdam.org/

Assume fn : Ω→ B(0,1).
Cauchy’s estimates imply the equicontinuity of the fn’s;
Arzelà-Ascoli’s theorem: the family {fn} is relatively
compact;
Ω is separable: one can make a diagonal extraction
argument
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Proof of Montel’s theorem: the general case.

Sur les familles normales de fonctions analytiques: (Annales de
l’ENS 1916): http://www.numdam.org/

Assume fn : Ω→ P1(C) \ {0,1,∞}.
fn contracts the hyperbolic metric which implies the
equicontinuity of the family {fn}.
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Applications of Montel’s theorem

Fatou, Julia, Montel. Michèle Audin.

≥ 1918 Fatou and Julia give the first applications in one
variable complex dynamics.

Definition

A family F of holomorphic functions Ω→ P1(C) is normal if any
sequence {fn} ⊂ F admits a converging subsequence.
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Dynamical applications of Montel’s theorem

f rational map on P1(C) or an entire map of C.
Fatou(f ) = {z ∈ P1(C), s.t . {f n} is normal near z}
Julia(f ) = P1(C) \ Fatou(f )

Theorem
Repelling periodic orbits are dense in the Julia set.

λ-lemma (Mané-Sad-Sullivan)
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Non-archimedean fields

(k , | · |) complete non-archimedean valued field:
|z| = 0 iff z = 0;
|zw | = |z| |w |;
|z + w | ≤ max{|z|, |w |}.

- Ring of integers: Ok = {z, |z| ≤ 1};
- Unique (maximal) ideal: mk = {z, |z| < 1};
- Residue field: k̃ = Ok/mk .
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Examples

k = C((T )) with |R(T )| = exp(−ord0(R)).

Ok = C[[T ]], mk = (T ), k̃ = C

p > 0 a prime number.

k = Fp((T )) with |R(T )| = exp(−ord0(R)). Here k̃ = Fp.
k = Qp with the p-adic norm.

Ok = Zp, mk = (p), k̃ = Fp
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Why doing non-archimedean dynamics?

It’s fun! It mixes ideas closely related to complex analysis,
and more number theoretic or algebraic ideas.
Degeneracies of holomorphic objects lead to
non-archimedean objects (e.g. Morgan-Shalen, Kiwi,
DeMarco-McMullen)

z 7→ z2 + c, c ∈ C

z 7→ z2 + T acts on C((T−1))
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The unit ball

Definition

A closed ball (in k) is a set B̄(z, r) = {w ∈ k , |z − w | ≤ r}.
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H’sia and Hu-Yang’s theorem

Definition
An analytic map f on a ball is given by a converging power
series f (z) =

∑
j≥0 ajz j .

Counter-example

Take |ζn| = 1 such that |ζn − ζm| = 1 if n 6= m (possible if k̃ is
infinite).

Theorem (H’sia and Hu-Yang)

Any family of analytic maps on a ball avoiding 0 is
equicontinuous for the projective metric.
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The Berkovich affine line: definition

k is algebraically closed.
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The Berkovich affine line: definition

A closed ball: B̄(z, r) = {w ∈ k , |z − w | ≤ r}.

Definition

The Berkovich line A1
k "is" the set of all closed balls in k

(together with some extra points).
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The Berkovich affine line: picture
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The Berkovich affine line: topology

A1
k has a natural tree structure;

P ∈ k [T ], |P(x)| := supx |P| : A1
k → R;

The weakest topology on A1
k such that x 7→ |P(x)| is

continuous is locally compact (Tychonov),
but if k̃ is uncountable, it is non-metrizable.
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Analytic functions on balls

A ball in A1
k is i(z, r) = {x ∈ A1

k , x ⊂ B(z, r)}.

f (z) =
∑

j

ajz j

Claim
The image of a ball by an analytic function remains a ball.

f induces a (continuous) map from i(z, r) to A1
k .
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The counter example in the Berkovich framework

The Gauss point xg corresponds to B̄(0,1).

Example

Take |ζn| = 1 such that |ζn − ζm| = 1 if n 6= m. Then ζn → xg .

But xg is not an analytic function.
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Non-archimedean Montel’s theorem

Ω ⊂ A1
k any open set.

Theorem

Any sequence of analytic functions fn : Ω→ A1
k \ {0,1} admits

a subsequence that is pointwise converging.

Theorem

Assume char(k̃) = 0. Any sequence of analytic functions
fn : Ω→ A1

k \ {0,1} admits a subsequence converging
pointwise to a continuous function.
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k any open set.

Theorem

Any sequence of analytic functions fn : Ω→ A1
k \ {0,1} admits

a subsequence that is pointwise converging.

Example

If char(k) = p > 0, take fn(z) = zpn!
, and Ω = A1

k \ {0,1}. Then
fn converges pointwise to a non-continuous function.

Theorem
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k \ {0,1} admits a subsequence converging
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Non-archimedean normal families

Definition

A family F of analytic functions Ω→ P1
k is normal if any

subsequence {fn} ⊂ F admits a sub-subsequence that is
pointwise converging to a continuous function.

The Fatou set of a polynomial/entire function f : A1
k → A1

k is the
set of points at which {f n} forms a normal family.

Theorem

If char(k̃) = 0 then the closure of the set of periodic cycles
contains the Julia set.

Over Cp: Bezivin.
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The setting

Ω = i(0,1) = {x , x ⊂ B(0,1)}.
fn : Ω→ A1

k \ {0,1} analytic.

fn(z) =
∑

j≥0 a(n)
j z j converging on i(0,1).
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Reduction to the bounded case

The image of a ball remains a ball hence

fn(Ω) ⊂ i(ζn,1)

for some ζn (with i(ζ) = {z, |z| > 1} if |ζ| > 1).

1 Either there exists a subsequence |ζn − ζm| = 1 if n 6= m;
2 or fn(Ω) ⊂ i(ζ,1) for some fixed ζ (and all n).

Case (1): fn → xg (easy)
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Sequential compactness

Case (2): Power series:

fn(z) =
∑
j≥0

a(n)
j z j , such that |a(n)

j | ≤ 1 .

Polynomials of uniform bounded degree:

fn(z) =
d∑
0

a(n)
j z j , such that |a(n)

j | ≤ 1 .

a(n) = (a(n)
0 , ...,a(n)

d ) ∈ B̄(0,1)d+1

Embed B̄(0,1)d+1 in the Berkovich polydisk īd+1(0,1).
Extract a(n) = (a(n)

0 , ...,a(n)
d )→ α ∈ īd+1(0,1);

Theorem (F.- Poineau)

The Berkovich (closed) unit polydisk īd+1(0,1) is sequentially
compact. Charles Favre A non-archimedean Montel’s theorem
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Extract a(n) = (a(n)
0 , ...,a(n)

d )→ α ∈ īd+1(0,1);
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Convergence

fn(z) =
∑d

0 a(n)
j z j , with (a(n)

0 , ...,a(n)
d )→ α ∈ īd+1(0);

For any P ∈ k [T0, ...,Td ], |P(a(n)
0 , ...,a(n)

d )| converges;

z,w ∈ k , then |fn(z)− w | = |(
∑d

0 Tjz j − w)(a(n)
0 , ...,a(n)

d )|
converges;
whence fn(z) converges in A1

k .
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Final remarks

the reduction to the polynomial case:

the reduction to the polynomial case.
the restriction on the residual characteristic appears when
dealing with more general open subsets of A1

k ;
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Final remarks

the reduction to the polynomial case: z ∈ B̄(0,1)

z + ζnz2 → B(z, |z|2) with ζn → xg .
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Final remarks

the reduction to the polynomial case: z ∈ B̄(0,1)

z + ζnz2 + ξnz3 → B(z, |z|2) with ζn → xg , |ξn| ≤ 1 .

the reduction to the polynomial case.
the restriction on the residual characteristic appears when
dealing with more general open subsets of A1

k ;
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Questions

extension to arbitrary analytic curves (use uniformization of
non-archimedean curves).
what is the structure of the set of continuous maps
f : Ω→ A1

k that are pointwise limits of analytic functions?
Define analytic motion, and prove a version of λ-lemma.
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