A non-archimedean Montel's theorem

Charles Favre favre@math.polytechnique.fr

Work in progress with J. Kiwi and E. Trucco

ヘロア 人間 アメヨア 人口 ア

æ

Montel's Theorem

$\Omega \subset \mathbb{C}$ an open set.

Theorem

For any sequence of holomorphic maps $f_n : \Omega \to \mathbb{P}^1(\mathbb{C}) \setminus \{0, 1, \infty\}$, there exists a subsequence f_{n_j} that converges uniformly on compact subsets of Ω to a holomorphic function f.

- either $f(\Omega) \subset \mathbb{P}^1(\mathbb{C}) \setminus \{0, 1, \infty\};$
- or *f* is a constant map.

- 4 同 ト 4 回 ト 4 回 ト

Montel's Theorem

 $\Omega \subset \mathbb{C}$ an open set.

Theorem

For any sequence of holomorphic maps $f_n : \Omega \to \mathbb{P}^1(\mathbb{C}) \setminus \{0, 1, \infty\}$, there exists a subsequence f_{n_j} that converges uniformly on compact subsets of Ω to a holomorphic function f.

- either $f(\Omega) \subset \mathbb{P}^1(\mathbb{C}) \setminus \{0, 1, \infty\};$
- or *f* is a constant map.

イロト イポト イヨト イヨト

Montel's Theorem

 $\Omega \subset \mathbb{C}$ an open set.

Theorem

For any sequence of holomorphic maps $f_n : \Omega \to \mathbb{P}^1(\mathbb{C}) \setminus \{0, 1, \infty\}$, there exists a subsequence f_{n_j} that converges uniformly on compact subsets of Ω to a holomorphic function f.

- either $f(\Omega) \subset \mathbb{P}^1(\mathbb{C}) \setminus \{0, 1, \infty\};$
- or f is a constant map.

Proof of Montel's theorem: the bounded case.

Sur les suites de fonctions infinies: (Annales de l'ENS 1907) http://www.numdam.org/

Assume $f_n : \Omega \rightarrow B(0, 1)$.

- Cauchy's estimates imply the equicontinuity of the *f_n*'s;
- Arzelà-Ascoli's theorem: the family {*f_n*} is relatively compact;
- Ω is separable: one can make a diagonal extraction argument

イロト 不得 とくほ とくほとう

Proof of Montel's theorem: the bounded case.

Sur les suites de fonctions infinies: (Annales de l'ENS 1907) http://www.numdam.org/

Assume $f_n : \Omega \rightarrow B(0, 1)$.

- Cauchy's estimates imply the equicontinuity of the *f_n*'s;
- Arzelà-Ascoli's theorem: the family {*f_n*} is relatively compact;
- Ω is separable: one can make a diagonal extraction argument

・ロト ・ 理 ト ・ ヨ ト ・

Proof of Montel's theorem: the bounded case.

Sur les suites de fonctions infinies: (Annales de l'ENS 1907) http://www.numdam.org/

Assume $f_n : \Omega \rightarrow B(0, 1)$.

- Cauchy's estimates imply the equicontinuity of the *f_n*'s;
- Arzelà-Ascoli's theorem: the family {*f_n*} is relatively compact;
- Ω is separable: one can make a diagonal extraction argument

ヘロン 人間 とくほ とくほ とう

Proof of Montel's theorem: the bounded case.

Sur les suites de fonctions infinies: (Annales de l'ENS 1907) http://www.numdam.org/

Assume $f_n : \Omega \rightarrow B(0, 1)$.

- Cauchy's estimates imply the equicontinuity of the *f_n*'s;
- Arzelà-Ascoli's theorem: the family {*f_n*} is relatively compact;
- Ω is separable: one can make a diagonal extraction argument

ヘロン 人間 とくほ とくほ とう

Proof of Montel's theorem: the general case.

Sur les familles normales de fonctions analytiques: (Annales de l'ENS 1916): http://www.numdam.org/

Assume $f_n : \Omega \to \mathbb{P}^1(\mathbb{C}) \setminus \{0, 1, \infty\}.$

f_n contracts the hyperbolic metric which implies the equicontinuity of the family {*f_n*}.

ヘロト ヘ戸ト ヘヨト ヘヨト

Applications of Montel's theorem

Fatou, Julia, Montel. Michèle Audin.

 \geq 1918 Fatou and Julia give the first applications in one variable complex dynamics.

Definition

A family \mathcal{F} of holomorphic functions $\Omega \to \mathbb{P}^1(\mathbb{C})$ is normal if any sequence $\{f_n\} \subset \mathcal{F}$ admits a converging subsequence.

ヘロン ヘアン ヘビン ヘビン

Applications of Montel's theorem

Fatou, Julia, Montel. Michèle Audin.

 \geq 1918 Fatou and Julia give the first applications in one variable complex dynamics.

Definition

A family \mathcal{F} of holomorphic functions $\Omega \to \mathbb{P}^1(\mathbb{C})$ is normal if any sequence $\{f_n\} \subset \mathcal{F}$ admits a converging subsequence.

くロト (過) (目) (日)

Dynamical applications of Montel's theorem

f rational map on $\mathbb{P}^1(\mathbb{C})$ or an entire map of \mathbb{C} .

- Fatou $(f) = \{z \in \mathbb{P}^1(\mathbb{C}), s.t. \{f^n\} \text{ is normal near } z\}$
- Julia $(f) = \mathbb{P}^1(\mathbb{C}) \setminus \text{Fatou}(f)$

Theorem

Repelling periodic orbits are dense in the Julia set.

• λ-lemma (Mané-Sad-Sullivan)

イロト 不得 とくほ とくほとう

Dynamical applications of Montel's theorem

f rational map on $\mathbb{P}^1(\mathbb{C})$ or an entire map of \mathbb{C} .

• Fatou $(f) = \{z \in \mathbb{P}^1(\mathbb{C}), s.t. \{f^n\} \text{ is normal near } z\}$

• Julia
$$(f) = \mathbb{P}^1(\mathbb{C}) \setminus \text{Fatou}(f)$$

Theorem

Repelling periodic orbits are dense in the Julia set.

λ-lemma (Mané-Sad-Sullivan)

ヘロト ヘアト ヘビト ヘビト

Dynamical applications of Montel's theorem

f rational map on $\mathbb{P}^1(\mathbb{C})$ or an entire map of \mathbb{C} .

• Fatou $(f) = \{z \in \mathbb{P}^1(\mathbb{C}), s.t. \{f^n\} \text{ is normal near } z\}$

• Julia
$$(f) = \mathbb{P}^1(\mathbb{C}) \setminus \text{Fatou}(f)$$

Theorem

Repelling periodic orbits are dense in the Julia set.

λ-lemma (Mané-Sad-Sullivan)

ヘロト 人間 ト ヘヨト ヘヨト

Non-archimedean fields

$(k, |\cdot|)$ complete non-archimedean valued field:

- |z| = 0 iff z = 0;
- |ZW| = |Z||W|;
- $|z+w| \leq \max\{|z|, |w|\}.$
- Ring of integers: $\mathcal{O}_k = \{z, |z| \le 1\};$
- Unique (maximal) ideal: $\mathfrak{m}_k = \{z, |z| < 1\};$
- Residue field: $\tilde{k} = \mathcal{O}_k / \mathfrak{m}_k$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Non-archimedean fields

- $(k, |\cdot|)$ complete non-archimedean valued field:
 - |z| = 0 iff z = 0;
 - $|\mathbf{Z}\mathbf{W}| = |\mathbf{Z}| |\mathbf{W}|;$
 - $|z + w| \leq \max\{|z|, |w|\}.$
- Ring of integers: $\mathcal{O}_k = \{z, |z| \le 1\};$
- Unique (maximal) ideal: $\mathfrak{m}_k = \{z, |z| < 1\};$
- Residue field: $\tilde{k} = \mathcal{O}_k / \mathfrak{m}_k$.

《曰》《御》《臣》《臣》 [臣]

Non-archimedean fields

- $(k, |\cdot|)$ complete non-archimedean valued field:
 - |z| = 0 iff z = 0;
 - $|\mathbf{Z}\mathbf{W}| = |\mathbf{Z}| |\mathbf{W}|;$
 - $|z+w| \leq \max\{|z|, |w|\}.$
- Ring of integers: $\mathcal{O}_k = \{z, |z| \le 1\};$
- Unique (maximal) ideal: $\mathfrak{m}_k = \{z, |z| < 1\};$
- Residue field: $\tilde{k} = \mathcal{O}_k / \mathfrak{m}_k$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Non-archimedean fields

- $(k, |\cdot|)$ complete non-archimedean valued field:
 - |z| = 0 iff z = 0;
 - $|\mathbf{Z}\mathbf{W}| = |\mathbf{Z}| |\mathbf{W}|;$
 - $|z+w| \leq \max\{|z|, |w|\}.$
- Ring of integers: $\mathcal{O}_k = \{z, |z| \le 1\};$
- Unique (maximal) ideal: $\mathfrak{m}_k = \{z, |z| < 1\};$
- Residue field: $\tilde{k} = \mathcal{O}_k / \mathfrak{m}_k$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Non-archimedean fields

- $(k, |\cdot|)$ complete non-archimedean valued field:
 - |z| = 0 iff z = 0;
 - $|\mathbf{Z}\mathbf{W}| = |\mathbf{Z}| |\mathbf{W}|;$
 - $|z+w| \leq \max\{|z|, |w|\}.$
- Ring of integers: $\mathcal{O}_k = \{z, |z| \le 1\};$
- Unique (maximal) ideal: $\mathfrak{m}_k = \{z, |z| < 1\};$
- Residue field: $\tilde{k} = \mathcal{O}_k / \mathfrak{m}_k$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Examples

• $k = \mathbb{C}((T))$ with $|R(T)| = \exp(-\operatorname{ord}_0(R))$. $\mathcal{O}_k = \mathbb{C}[[T]], \mathfrak{m}_k = (T), \tilde{k} = \mathbb{C}$

p > 0 a prime number.

• $k = \mathbb{F}_{\rho}((T))$ with $|R(T)| = \exp(-\operatorname{ord}_{0}(R))$. Here $\tilde{k} = \mathbb{F}_{\rho}$.

• $k = \mathbb{Q}_p$ with the *p*-adic norm.

$$\mathcal{O}_k = \mathbb{Z}_p, \, \mathfrak{m}_k = (p), \, \tilde{k} = \mathbb{F}_p$$

イロン 不得 とくほ とくほ とうほ

Examples

•
$$k = \mathbb{C}((T))$$
 with $|R(T)| = \exp(-\operatorname{ord}_0(R))$.
 $\mathcal{O}_k = \mathbb{C}[[T]], \mathfrak{m}_k = (T), \tilde{k} = \mathbb{C}$

p > 0 a prime number.

k = 𝔽_{*p*}((*T*)) with |*R*(*T*)| = exp(-ord₀(*R*)). Here *k̃* = 𝔽_{*p*}. *k* = 𝔇_{*p*} with the *p*-adic norm.

$$\mathcal{O}_k = \mathbb{Z}_p, \, \mathfrak{m}_k = (p), \, \tilde{k} = \mathbb{F}_p$$

イロト 不得 とくほ とくほとう

ъ

Examples

•
$$k = \mathbb{C}((T))$$
 with $|R(T)| = \exp(-\operatorname{ord}_0(R))$.
 $\mathcal{O}_k = \mathbb{C}[[T]], \mathfrak{m}_k = (T), \tilde{k} = \mathbb{C}$

p > 0 a prime number.

k = 𝔽_{*p*}((*T*)) with |*R*(*T*)| = exp(-ord₀(*R*)). Here *k̃* = 𝔽_{*p*}.
 k = ℚ_{*p*} with the *p*-adic norm.

$$\mathcal{O}_k = \mathbb{Z}_p, \, \mathfrak{m}_k = (p), \, \tilde{k} = \mathbb{F}_p$$

イロン 不得 とくほ とくほ とうほ

Examples

•
$$k = \mathbb{C}((T))$$
 with $|R(T)| = \exp(-\operatorname{ord}_0(R))$.
 $\mathcal{O}_k = \mathbb{C}[[T]], \mathfrak{m}_k = (T), \tilde{k} = \mathbb{C}$

p > 0 a prime number.

k = F_p((T)) with |R(T)| = exp(-ord₀(R)). Here k̃ = F_p.
k = Q_p with the *p*-adic norm.

$$\mathcal{O}_k = \mathbb{Z}_p, \, \mathfrak{m}_k = (p), \, \tilde{k} = \mathbb{F}_p$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

3

Why doing non-archimedean dynamics?

- It's fun! It mixes ideas closely related to complex analysis, and more number theoretic or algebraic ideas.
- Degeneracies of holomorphic objects lead to non-archimedean objects (e.g. Morgan-Shalen, Kiwi, DeMarco-McMullen)

$$z \mapsto z^2 + c, \ c \in \mathbb{C}$$

ヘロン 不通 とくほ とくほ とう

Why doing non-archimedean dynamics?

- It's fun! It mixes ideas closely related to complex analysis, and more number theoretic or algebraic ideas.
- Degeneracies of holomorphic objects lead to non-archimedean objects (e.g. Morgan-Shalen, Kiwi, DeMarco-McMullen)

$$z\mapsto z^2+c,\ c\in\mathbb{C}$$

 $z \mapsto z^2 + T$ acts on $\mathbb{C}((T^{-1}))$

ヘロト 人間 ト ヘヨト ヘヨト

Why doing non-archimedean dynamics?

- It's fun! It mixes ideas closely related to complex analysis, and more number theoretic or algebraic ideas.
- Degeneracies of holomorphic objects lead to non-archimedean objects (e.g. Morgan-Shalen, Kiwi, DeMarco-McMullen)

$$z \mapsto z^2 + c, \ c \in \mathbb{C}$$

 $\mapsto z^2 + T \text{ acts on } \mathbb{C}((T^{-1}))$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Why doing non-archimedean dynamics?

- It's fun! It mixes ideas closely related to complex analysis, and more number theoretic or algebraic ideas.
- Degeneracies of holomorphic objects lead to non-archimedean objects (e.g. Morgan-Shalen, Kiwi, DeMarco-McMullen)

$$z \mapsto z^2 + c, \ c \in \mathbb{C}$$

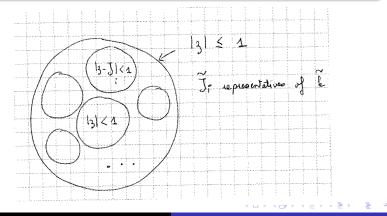
 $z \mapsto z^2 + T$ acts on $\mathbb{C}((T^{-1}))$

・ 同 ト ・ ヨ ト ・ ヨ ト …

The unit ball

Definition

A closed ball (in k) is a set $\overline{B}(z, r) = \{w \in k, |z - w| \le r\}$.



Charles Favre A non-archimedean Montel's theorem

H'sia and Hu-Yang's theorem

Definition

An analytic map f on a ball is given by a converging power series $f(z) = \sum_{j\geq 0} a_j z^j$.

Counter-example

Take $|\zeta_n| = 1$ such that $|\zeta_n - \zeta_m| = 1$ if $n \neq m$ (possible if \tilde{k} is infinite).

Theorem (H'sia and Hu-Yang)

Any family of analytic maps on a ball avoiding 0 is equicontinuous for the projective metric.

ヘロト ヘ戸ト ヘヨト ヘヨト

H'sia and Hu-Yang's theorem

Definition

An analytic map f on a ball is given by a converging power series $f(z) = \sum_{j \ge 0} a_j z^j$.

Counter-example

Take $|\zeta_n| = 1$ such that $|\zeta_n - \zeta_m| = 1$ if $n \neq m$ (possible if \tilde{k} is infinite).

Theorem (H'sia and Hu-Yang)

Any family of analytic maps on a ball avoiding 0 is equicontinuous for the projective metric.

イロト 不得 とくほ とくほとう

H'sia and Hu-Yang's theorem

Definition

An analytic map f on a ball is given by a converging power series $f(z) = \sum_{j \ge 0} a_j z^j$.

Counter-example

Take $|\zeta_n| = 1$ such that $|\zeta_n - \zeta_m| = 1$ if $n \neq m$ (possible if \tilde{k} is infinite).

Theorem (H'sia and Hu-Yang)

Any family of analytic maps on a ball avoiding 0 is equicontinuous for the projective metric.

ヘロト 人間 ト ヘヨト ヘヨト

э

The Berkovich affine line: definition

k is algebraically closed.

Charles Favre A non-archimedean Montel's theorem

ヘロト 人間 ト ヘヨト ヘヨト

3

The Berkovich affine line: definition

A closed ball: $\overline{B}(z,r) = \{w \in k, |z - w| \le r\}.$

Definition

The Berkovich line \mathbb{A}_k^1 "is" the set of all closed balls in k (together with some extra points).

ヘロン ヘアン ヘビン ヘビン

ъ

The Berkovich affine line: definition

A closed ball:
$$\overline{B}(z,r) = \{w \in k, |z-w| \le r\}.$$

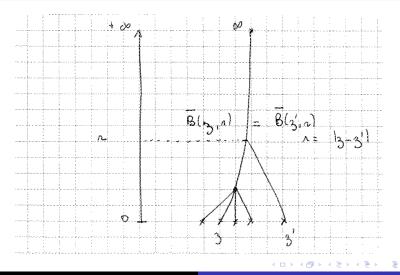
Definition

The Berkovich line \mathbb{A}_k^1 "is" the set of all closed balls in k (together with some extra points).

ヘロト ヘアト ヘビト ヘビト

э

The Berkovich affine line: picture



Charles Favre A non-archimedean Montel's theorem

The Berkovich affine line: topology

• \mathbb{A}_k^1 has a natural tree structure;

- $P \in k[T], |P(x)| := \sup_{x} |P| : \mathbb{A}^{1}_{k} \to \mathbb{R};$
- The weakest topology on A¹_k such that x → |P(x)| is continuous is locally compact (Tychonov),
- but if \tilde{k} is uncountable, it is non-metrizable.

ヘロト ヘ戸ト ヘヨト ヘヨト

The Berkovich affine line: topology

- \mathbb{A}_k^1 has a natural tree structure;
- $P \in k[T]$, $|P(x)| := \sup_{x} |P| : \mathbb{A}^{1}_{k} \to \mathbb{R}$;
- The weakest topology on A¹_k such that x → |P(x)| is continuous is locally compact (Tychonov),
- but if \tilde{k} is uncountable, it is non-metrizable.

ヘロト ヘ戸ト ヘヨト ヘヨト

The Berkovich affine line: topology

- \mathbb{A}_k^1 has a natural tree structure;
- $P \in k[T]$, $|P(x)| := \sup_{x} |P| : \mathbb{A}^{1}_{k} \to \mathbb{R}$;
- The weakest topology on A¹_k such that x → |P(x)| is continuous is locally compact (Tychonov),
- but if \tilde{k} is uncountable, it is non-metrizable.

くロト (過) (目) (日)

The Berkovich affine line: topology

- \mathbb{A}_k^1 has a natural tree structure;
- $P \in k[T]$, $|P(x)| := \sup_{x} |P| : \mathbb{A}^{1}_{k} \to \mathbb{R}$;
- The weakest topology on A¹_k such that x → |P(x)| is continuous is locally compact (Tychonov),
- but if \tilde{k} is uncountable, it is non-metrizable.

・ロット (雪) () () () ()

The Berkovich affine line: topology

- \mathbb{A}_k^1 has a natural tree structure;
- $P \in k[T]$, $|P(x)| := \sup_{x} |P| : \mathbb{A}^{1}_{k} \to \mathbb{R}$;
- The weakest topology on A¹_k such that x → |P(x)| is continuous is locally compact (Tychonov),
- but if \tilde{k} is uncountable, it is non-metrizable.

<週 > < 回 > < 回 > .

Analytic functions on balls

A ball in \mathbb{A}^1_k is $\beth(z, r) = \{x \in \mathbb{A}^1_k, x \subset B(z, r)\}.$

Claim

The image of a ball by an analytic function remains a ball.

• *f* induces a (continuous) map from $\beth(z, r)$ to \mathbb{A}_k^1 .

ヘロア ヘビア ヘビア・

Analytic functions on balls

A ball in
$$\mathbb{A}_k^1$$
 is $\beth(z, r) = \{x \in \mathbb{A}_k^1, x \subset B(z, r)\}.$

$$f(z)=\sum_j a_j z^j$$

Claim

The image of a ball by an analytic function remains a ball.

• *f* induces a (continuous) map from $\beth(z, r)$ to \mathbb{A}_k^1 .

・ロト ・ 理 ト ・ ヨ ト ・

э

Analytic functions on balls

A ball in
$$\mathbb{A}^1_k$$
 is $\beth(z, r) = \{x \in \mathbb{A}^1_k, x \subset B(z, r)\}$.

$$f(z)=\sum_j a_j z^j$$

Claim

The image of a ball by an analytic function remains a ball.

• *f* induces a (continuous) map from $\beth(z, r)$ to \mathbb{A}_k^1 .

ヘロン ヘアン ヘビン ヘビン

The counter example in the Berkovich framework

The Gauss point x_g corresponds to $\overline{B}(0, 1)$.

Example

Take $|\zeta_n| = 1$ such that $|\zeta_n - \zeta_m| = 1$ if $n \neq m$. Then $\zeta_n \to x_g$.

But x_g is **not** an analytic function.

ヘロン ヘアン ヘビン ヘビン

The counter example in the Berkovich framework

The Gauss point x_g corresponds to $\overline{B}(0, 1)$.

Example

Take $|\zeta_n| = 1$ such that $|\zeta_n - \zeta_m| = 1$ if $n \neq m$. Then $\zeta_n \to x_g$.

But x_g is **not** an analytic function.

ヘロト ヘアト ヘビト ヘビト

The counter example in the Berkovich framework

The Gauss point x_g corresponds to $\overline{B}(0, 1)$.

Example

Take $|\zeta_n| = 1$ such that $|\zeta_n - \zeta_m| = 1$ if $n \neq m$. Then $\zeta_n \to x_g$.

But x_g is not an analytic function.

イロト 不得 とくほ とくほとう

Non-archimedean Montel's theorem

$$\Omega \subset \mathbb{A}^1_k$$
 any open set.

Theorem

Any sequence of analytic functions $f_n : \Omega \to \mathbb{A}^1_k \setminus \{0, 1\}$ admits a subsequence that is pointwise converging.

Theorem

Assume char(\tilde{k}) = 0. Any sequence of analytic functions $f_n : \Omega \to \mathbb{A}^1_k \setminus \{0, 1\}$ admits a subsequence converging pointwise to a continuous function.

・ロト ・ 理 ト ・ ヨ ト ・

Non-archimedean Montel's theorem

 $\Omega \subset \mathbb{A}^1_k$ any open set.

Theorem

Any sequence of analytic functions $f_n : \Omega \to \mathbb{A}^1_k \setminus \{0, 1\}$ admits a subsequence that is pointwise converging.

Example

If char(k) = p > 0, take $f_n(z) = z^{p^{n!}}$, and $\Omega = \mathbb{A}^1_k \setminus \{0, 1\}$. Then f_n converges pointwise to a non-continuous function.

Theorem

Assume char(\tilde{k}) = 0. Any sequence of analytic functions $f_n : \Omega \to \mathbb{A}^1_k \setminus \{0, 1\}$ admits a subsequence converging pointwise to a continuous function.

Non-archimedean Montel's theorem

$$\Omega \subset \mathbb{A}^1_k$$
 any open set.

Theorem

Any sequence of analytic functions $f_n : \Omega \to \mathbb{A}^1_k \setminus \{0, 1\}$ admits a subsequence that is pointwise converging.

Theorem

Assume char(\tilde{k}) = 0. Any sequence of analytic functions $f_n : \Omega \to \mathbb{A}^1_k \setminus \{0, 1\}$ admits a subsequence converging pointwise to a continuous function.

ヘロト 人間 ト ヘヨト ヘヨト

Non-archimedean normal families

Definition

A family \mathcal{F} of analytic functions $\Omega \to \mathbb{P}^1_k$ is normal if any subsequence $\{f_n\} \subset \mathcal{F}$ admits a sub-subsequence that is pointwise converging to a continuous function.

The Fatou set of a polynomial/entire function $f : \mathbb{A}_k^1 \to \mathbb{A}_k^1$ is the set of points at which $\{f^n\}$ forms a normal family.

Theorem

If $char(\tilde{k}) = 0$ then the closure of the set of periodic cycles contains the Julia set.

Over \mathbb{C}_p : Bezivin.

・ロト ・ 理 ト ・ ヨ ト ・

Non-archimedean normal families

Definition

A family \mathcal{F} of analytic functions $\Omega \to \mathbb{P}^1_k$ is normal if any subsequence $\{f_n\} \subset \mathcal{F}$ admits a sub-subsequence that is pointwise converging to a continuous function.

The Fatou set of a polynomial/entire function $f : \mathbb{A}^1_k \to \mathbb{A}^1_k$ is the set of points at which $\{f^n\}$ forms a normal family.

Theorem

If $char(\tilde{k}) = 0$ then the closure of the set of periodic cycles contains the Julia set.

Over \mathbb{C}_p : Bezivin.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Non-archimedean normal families

Definition

A family \mathcal{F} of analytic functions $\Omega \to \mathbb{P}^1_k$ is normal if any subsequence $\{f_n\} \subset \mathcal{F}$ admits a sub-subsequence that is pointwise converging to a continuous function.

The Fatou set of a polynomial/entire function $f : \mathbb{A}^1_k \to \mathbb{A}^1_k$ is the set of points at which $\{f^n\}$ forms a normal family.

Theorem

If $char(\tilde{k}) = 0$ then the closure of the set of periodic cycles contains the Julia set.

Over C_p: Bezivin.

・ロト ・ 理 ト ・ ヨ ト ・

Non-archimedean normal families

Definition

A family \mathcal{F} of analytic functions $\Omega \to \mathbb{P}^1_k$ is normal if any subsequence $\{f_n\} \subset \mathcal{F}$ admits a sub-subsequence that is pointwise converging to a continuous function.

The Fatou set of a polynomial/entire function $f : \mathbb{A}^1_k \to \mathbb{A}^1_k$ is the set of points at which $\{f^n\}$ forms a normal family.

Theorem

If $char(\tilde{k}) = 0$ then the closure of the set of periodic cycles contains the Julia set.

Over \mathbb{C}_p : Bezivin.

ヘロン ヘアン ヘビン ヘビン

The setting

• $\Omega = \beth(0,1) = \{x, x \subset B(0,1)\}.$

- $f_n: \Omega \to \mathbb{A}^1_k \setminus \{0, 1\}$ analytic.
- $f_n(z) = \sum_{j \ge 0} a_i^{(n)} z^j$ converging on $\beth(0, 1)$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The setting

•
$$\Omega = \beth(0,1) = \{x, x \subset B(0,1)\}.$$

- $f_n: \Omega \to \mathbb{A}^1_k \setminus \{0, 1\}$ analytic.
- $f_n(z) = \sum_{j\geq 0} a_j^{(n)} z^j$ converging on $\beth(0,1)$.

イロト 不得 とくほと くほとう

The setting

•
$$\Omega = \beth(0,1) = \{x, x \subset B(0,1)\}.$$

•
$$f_n: \Omega \to \mathbb{A}^1_k \setminus \{0, 1\}$$
 analytic.

•
$$f_n(z) = \sum_{j \ge 0} a_j^{(n)} z^j$$
 converging on $\beth(0, 1)$.

<ロト <回 > < 注 > < 注 > 、

Reduction to the bounded case

The image of a ball remains a ball hence

 $f_n(\Omega) \subset \beth(\zeta_n, 1)$

for some ζ_n (with $\beth(\zeta) = \{z, |z| > 1\}$ if $|\zeta| > 1$).

• Either there exists a subsequence $|\zeta_n - \zeta_m| = 1$ if $n \neq m$; • or $f_n(\Omega) \subset \exists (\zeta, 1)$ for some fixed ζ (and all *n*).

Case (1): $f_n \rightarrow x_g$ (easy)

イロン 不得 とくほど 不良 とうほう

Reduction to the bounded case

The image of a ball remains a ball hence

 $f_n(\Omega) \subset \beth(\zeta_n, 1)$

for some ζ_n (with $\beth(\zeta) = \{z, |z| > 1\}$ if $|\zeta| > 1$).

Either there exists a subsequence |ζ_n - ζ_m| = 1 if n ≠ m;
 or f_n(Ω) ⊂ ⊐(ζ, 1) for some fixed ζ (and all *n*).

Case (1): $f_n \rightarrow x_g$ (easy)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Reduction to the bounded case

The image of a ball remains a ball hence

 $f_n(\Omega) \subset \beth(\zeta_n, 1)$

for some ζ_n (with $\beth(\zeta) = \{z, |z| > 1\}$ if $|\zeta| > 1$).

• Either there exists a subsequence $|\zeta_n - \zeta_m| = 1$ if $n \neq m$; • or $f_n(\Omega) \subset \overline{\zeta}(\zeta, 1)$ for some fixed ζ (and all n)

2 or $f_n(\Omega) \subset \exists (\zeta, 1)$ for some fixed ζ (and all *n*).

Case (1): $f_n \rightarrow x_g$ (easy)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Reduction to the bounded case

The image of a ball remains a ball hence

 $f_n(\Omega) \subset \beth(\zeta_n, 1)$

for some ζ_n (with $\beth(\zeta) = \{z, |z| > 1\}$ if $|\zeta| > 1$).

• Either there exists a subsequence $|\zeta_n - \zeta_m| = 1$ if $n \neq m$;

2 or $f_n(\Omega) \subset \beth(\zeta, 1)$ for some fixed ζ (and all *n*).

Case (1): $f_n \rightarrow x_g$ (easy)

イロン 不得 とくほ とくほう 一日

Sequential compactness

Case (2): Power series:

$$f_n(z) = \sum_{j \geq 0} a_j^{(n)} z^j, ext{ such that } |a_j^{(n)}| \leq 1 \;.$$

Polynomials of uniform bounded degree:

$$f_n(z) = \sum_0^d a_j^{(n)} z^j, ext{ such that } |a_j^{(n)}| \leq 1$$
 .

•
$$a^{(n)} = (a_0^{(n)}, ..., a_d^{(n)}) \in \overline{B}(0, 1)^{d+1}$$

- Embed $\overline{B}(0,1)^{d+1}$ in the Berkovich polydisk $\overline{\Box}^{d+1}(0,1)$
- Extract $a^{(n)} = (a_0^{(n)}, ..., a_d^{(n)}) \to \alpha \in \bar{\beth}^{d+1}(0, 1);$

Theorem (F.- Poineau)

The Berkovich (closed) unit polydisk $\exists^{d+1}(0,1)$ is sequentially

Sequential compactness

Case (2): Polynomials of uniform bounded degree:

$$f_n(z) = \sum_{0}^{d} a_j^{(n)} z^j$$
, such that $|a_j^{(n)}| \le 1$.

•
$$a^{(n)} = (a_0^{(n)}, ..., a_d^{(n)}) \in \overline{B}(0, 1)^{d+1}$$

• Embed $\overline{B}(0,1)^{d+1}$ in the Berkovich polydisk $\overline{\beth}^{d+1}(0,1)$.

• Extract
$$a^{(n)} = (a_0^{(n)}, ..., a_d^{(n)}) \to \alpha \in \bar{\beth}^{d+1}(0, 1);$$

Theorem (F.- Poineau)

The Berkovich (closed) unit polydisk $\overline{\supseteq}^{d+1}(0,1)$ is sequentially compact.

Sequential compactness

Case (2): Polynomials of uniform bounded degree:

$$f_n(z) = \sum_{0}^{d} a_j^{(n)} z^j$$
, such that $|a_j^{(n)}| \le 1$.

•
$$a^{(n)} = (a_0^{(n)}, ..., a_d^{(n)}) \in \bar{B}(0, 1)^{d+1}$$

• Embed $\overline{B}(0,1)^{d+1}$ in the Berkovich polydisk $\overline{\beth}^{d+1}(0,1)$.

• Extract
$$a^{(n)} = (a_0^{(n)}, ..., a_d^{(n)}) \to \alpha \in \bar{\beth}^{d+1}(0, 1);$$

Theorem (F.- Poineau)

The Berkovich (closed) unit polydisk $\overline{\supseteq}^{d+1}(0,1)$ is sequentially compact.

Sequential compactness

Case (2): Polynomials of uniform bounded degree:

$$f_n(z) = \sum_{0}^{d} a_j^{(n)} z^j$$
, such that $|a_j^{(n)}| \le 1$.

•
$$a^{(n)} = (a_0^{(n)}, ..., a_d^{(n)}) \in \bar{B}(0, 1)^{d+1}$$

• Embed $\overline{B}(0,1)^{d+1}$ in the Berkovich polydisk $\overline{\beth}^{d+1}(0,1)$.

• Extract $a^{(n)} = (a_0^{(n)}, ..., a_d^{(n)}) \to \alpha \in \bar{\beth}^{d+1}(0, 1);$

Theorem (F.- Poineau)

The Berkovich (closed) unit polydisk $\bar{\exists}^{d+1}(0,1)$ is sequentially compact.

Sequential compactness

Case (2): Polynomials of uniform bounded degree:

$$f_n(z) = \sum_{0}^{d} a_j^{(n)} z^j$$
, such that $|a_j^{(n)}| \le 1$.

•
$$a^{(n)} = (a_0^{(n)}, ..., a_d^{(n)}) \in \bar{B}(0, 1)^{d+1}$$

• Embed $\overline{B}(0,1)^{d+1}$ in the Berkovich polydisk $\overline{\beth}^{d+1}(0,1)$.

• Extract
$$a^{(n)} = (a_0^{(n)}, ..., a_d^{(n)}) \to \alpha \in \bar{\beth}^{d+1}(0, 1);$$

Theorem (F.- Poineau)

The Berkovich (closed) unit polydisk $\overline{\exists}^{d+1}(0,1)$ is sequentially compact.

Sequential compactness

Case (2): Polynomials of uniform bounded degree:

$$f_n(z) = \sum_{0}^{d} a_j^{(n)} z^j$$
, such that $|a_j^{(n)}| \le 1$.

•
$$a^{(n)} = (a_0^{(n)}, ..., a_d^{(n)}) \in \bar{B}(0, 1)^{d+1}$$

• Embed $\overline{B}(0,1)^{d+1}$ in the Berkovich polydisk $\overline{\beth}^{d+1}(0,1)$.

• Extract
$$a^{(n)} = (a_0^{(n)}, ..., a_d^{(n)}) \to \alpha \in \bar{\beth}^{d+1}(0, 1);$$

Theorem (F.- Poineau)

The Berkovich (closed) unit polydisk $\bar{\beth}^{d+1}(0,1)$ is sequentially compact.

Convergence

- $f_n(z) = \sum_{0}^{d} a_j^{(n)} z^j$, with $(a_0^{(n)}, ..., a_d^{(n)}) \to \alpha \in \bar{\beth}^{d+1}(0);$
- For any $P \in k[T_0, ..., T_d]$, $|P(a_0^{(n)}, ..., a_d^{(n)})|$ converges;
- $z, w \in k$, then $|f_n(z) w| = |(\sum_{0}^{d} T_j z^j w)(a_0^{(n)}, ..., a_d^{(n)})|$ converges;
- whence $f_n(z)$ converges in \mathbb{A}^1_k .

ヘロト ヘアト ヘビト ヘビト

Convergence

- $f_n(z) = \sum_{0}^{d} a_j^{(n)} z^j$, with $(a_0^{(n)}, ..., a_d^{(n)}) \to \alpha \in \bar{\beth}^{d+1}(0);$
- For any $P \in k[T_0, ..., T_d]$, $|P(a_0^{(n)}, ..., a_d^{(n)})|$ converges;
- $z, w \in k$, then $|f_n(z) w| = |(\sum_{0}^{d} T_j z^j w)(a_0^{(n)}, ..., a_d^{(n)})|$ converges;
- whence $f_n(z)$ converges in \mathbb{A}^1_k .

ヘロト ヘアト ヘビト ヘビト

Convergence

- $f_n(z) = \sum_{0}^{d} a_j^{(n)} z^j$, with $(a_0^{(n)}, ..., a_d^{(n)}) \to \alpha \in \bar{\beth}^{d+1}(0);$
- For any $P \in k[T_0, ..., T_d]$, $|P(a_0^{(n)}, ..., a_d^{(n)})|$ converges;
- $z, w \in k$, then $|f_n(z) w| = |(\sum_{0}^{d} T_j z^j w)(a_0^{(n)}, ..., a_d^{(n)})|$ converges;
- whence $f_n(z)$ converges in \mathbb{A}^1_k .

ヘロン ヘアン ヘビン ヘビン

Convergence

•
$$f_n(z) = \sum_0^d a_j^{(n)} z^j$$
, with $(a_0^{(n)}, ..., a_d^{(n)}) \to \alpha \in \bar{\beth}^{d+1}(0);$

- For any $P \in k[T_0, ..., T_d]$, $|P(a_0^{(n)}, ..., a_d^{(n)})|$ converges;
- $z, w \in k$, then $|f_n(z) w| = |(\sum_{i=0}^{d} T_j z^j w)(a_0^{(n)}, ..., a_d^{(n)})|$ converges;
- whence $f_n(z)$ converges in \mathbb{A}^1_k .

イロト 不得 とくほと くほとう

Final remarks

• the reduction to the polynomial case:

- the reduction to the polynomial case.
- the restriction on the residual characteristic appears when dealing with more general open subsets of A¹_k;

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Final remarks

• the reduction to the polynomial case: $z \in \overline{B}(0, 1)$

$$z + \zeta_n z^2 \to B(z, |z|^2)$$
 with $\zeta_n \to x_g$.

- the reduction to the polynomial case.
- the restriction on the residual characteristic appears when dealing with more general open subsets of A¹_k;

イロト 不得 とくほ とくほ とうほ

Final remarks

• the reduction to the polynomial case: $z \in \overline{B}(0, 1)$

$$z + \zeta_n z^2 + \xi_n z^3 o B(z, |z|^2)$$
 with $\zeta_n o x_g, |\xi_n| \le 1$.

- the reduction to the polynomial case.
- the restriction on the residual characteristic appears when dealing with more general open subsets of A¹_k;

イロト 不得 とくほ とくほ とうほ

Final remarks

• the reduction to the polynomial case.

 the restriction on the residual characteristic appears when dealing with more general open subsets of A¹_k;

ヘロト 人間 ト ヘヨト ヘヨト

Final remarks

- the reduction to the polynomial case.
- the restriction on the residual characteristic appears when dealing with more general open subsets of A¹_k;

イロト イポト イヨト イヨト

Questions

- extension to arbitrary analytic curves (use uniformization of non-archimedean curves).
- what is the structure of the set of continuous maps
 f : Ω → A¹_k that are pointwise limits of analytic functions?
- Define analytic motion, and prove a version of λ -lemma.

ヘロト ヘ戸ト ヘヨト ヘヨト

Questions

- extension to arbitrary analytic curves (use uniformization of non-archimedean curves).
- what is the structure of the set of continuous maps
 f : Ω → A¹_k that are pointwise limits of analytic functions?
- Define analytic motion, and prove a version of λ -lemma.

ヘロト ヘ戸ト ヘヨト ヘヨト

Questions

- extension to arbitrary analytic curves (use uniformization of non-archimedean curves).
- what is the structure of the set of continuous maps
 f : Ω → A¹_k that are pointwise limits of analytic functions?
- Define analytic motion, and prove a version of λ -lemma.

・ 同 ト ・ ヨ ト ・ ヨ ト