Theorem 1 (Lech's embedding theorem). Let L be any field which is finitely generated over \mathbb{Q}, and S be a finite subset of L. Then for infinitely many primes p, there exists a field embedding $\imath: L \rightarrow \mathbb{Q}_{p}$ such that $\imath(S) \subset \mathbb{Z}_{p}$.

Proof. We begin with the following lemma.
Lemma 1 . For any non-constant polynomial $g \in \mathbb{Q}[x]$ there exists infinitely many primes p such that g admits a solution modulo p (in the sense that there exists an integer $b \in \mathbb{N}$ such that $\left.|g(b)|_{p}<1\right)$.

Granting this lemma we proceed with the proof of the theorem.
Let d be the degree of transcendance of L over \mathbb{Q}. Then L is a finite extension of the field $F=\mathbb{Q}\left(t_{1}, \cdots, t_{d}\right)$. By the primitive element theorem, we may find θ such that $L=F[\theta]$. Denote by $f(x)=x^{d}+c_{1}(t) x^{d-1}+\cdots+c_{d}(t)$ the minimal polynomial of θ over F. This is an irreducible polynomial, which has only simple roots. In particular its discriminant $\Delta(f)$ is a non-zero constant in F.

We may (and shall) suppose that θ and all c_{i} 's belong to S.
Note that any element of L is a polynomial in θ with coefficients in F, hence we may find $P \in \mathbb{Z}[t]$ such that $P \cdot s \in \mathbb{Z}[t, \theta]$ for all $s \in S$.

Lemma 2. For any non-zero element $\Phi \in F$ there exist infinitely many $a \in \mathbb{N}^{d}$ such that $\Phi\left(a_{1}, \cdots, a_{d}\right) \neq 0$.

Apply the previous lemma to $\Phi:=\Delta(f) \times P$, and fix $a \in \mathbb{N}^{d}$ such that $\Phi(a) \neq 0$. Now pick a prime p such that the following conditions hold:
(1) $\left|f_{a}(b)\right|_{p}<1$ for some $b \in \mathbb{N}$;
(2) $\left|\Delta\left(f_{a}\right)\right|_{p}=1$;
(3) $|P(a)|_{p}=1$.

Observe that conditions (2) and (3) are satisfied for all but finitely many primes since $\Phi(a) \in \mathbb{Q}^{*}$. And condition (1) is satisfied for infinitely many primes by Lemma 1. In the remaining of the proof p, b and a are fixed.

We first build the field embedding on F. As \mathbb{Q}_{p} is uncountable, we may find $\epsilon_{1}, \cdots, \epsilon_{d} \in \mathbb{Q}_{p}$ which are algebraically independent over \mathbb{Q}. Dividing them by a suitable power of p, we may suppose that $\left|\epsilon_{i}\right|=$ for all i. We set $\imath\left(t_{i}\right):=a_{i}+p \epsilon_{i}$. Note that $a_{1}+p \epsilon_{1}, \cdots, a_{d}+p \epsilon_{d} \in \mathbb{Q}_{p}$ are algebraically independent over \mathbb{Q}, hence \imath extends to a field embedding \imath : $F \rightarrow \mathbb{Q}_{p}$. Our aim is now to extend \imath to L.

Recall that by construction $P(t) \in \mathbb{Z}(t)$ and $P(t) \cdot c_{i}(t) \in \mathbb{Z}[t]$. Consider the polynomial $f_{a+p \epsilon}(x)=x^{d}+c_{1}(a+p \epsilon) x^{d-1}+\cdots+c_{d}(a+p \epsilon) \in \mathbb{Z}_{p}[x]$. By (3), we have $|P(a+p \epsilon)-P(a)|_{p} \leq$ $1 / p<1$, and $\left|c_{i}(a+p \epsilon)-c_{i}(a)\right|_{p} \leq 1 / p<1$, so that

$$
\left|f_{a+p \epsilon}(b)\right|_{p}=\left|f_{a+p \epsilon}(b)-f_{a}(b)\right|_{p} \leq \max _{i}\left\{\left|c_{i}(a+p \epsilon)-c_{i}(a)\right|_{p}\right\}<1
$$

Since $\left|\Delta\left(f_{a}\right)\right|_{p}=1$, we obtain $\Delta\left(\tilde{f}_{a}\right)=\widetilde{\Delta\left(f_{a}\right)} \neq 0$ hence $\tilde{f}_{a} \in \mathbb{F}_{p}[x]$ has only simple roots. It follows that $\tilde{f}_{a}(x)=(x-\tilde{b}) Q(x)$ with $Q(\tilde{b}) \neq 0$ and $\tilde{f}_{a}^{\prime}(\tilde{b}) \neq 0$, which implies $\left|f_{a+p \epsilon}^{\prime}(b)\right|_{p}=$ 1. We may thus apply Hensel's lemma to the polynomial $f_{a+p \epsilon}$ and the approximate root b, and we conclude to the existence of $\beta \in \mathbb{Q}_{p}$ such that $f_{a+p \epsilon}(\beta)=0$ and $|\beta-b|<1$ (hence in particular $|\beta| \leq 1$).

Extend \imath to a ring homomorphism $\imath: F[x] \rightarrow \mathbb{Q}_{p}$ by setting $\imath(x)=\beta$. By construction the kernel of \imath contains the polynomial f, since

$$
\imath(f)=\imath\left(x^{d}+c_{1}(t) x^{d-1}+\cdots+c_{d}(t)\right)=\beta^{d}+c_{1}(a+p \epsilon) \beta^{d-1}+\cdots+c_{d}(a+p \epsilon)=0
$$

It follows that \imath factors through $F[x] /(f)$ which is isomorphic to L. We obtain in this way a field embedding $\imath: L \rightarrow \mathbb{Q}_{p}$ satisfying $\imath(\theta)=\beta$.

Now pick any $s \in S$, and write $P \cdot s=Q(t, \theta)$ with $Q \in \mathbb{Z}[t, x]$. Then $|\imath(s)|_{p} \times|P(a+p \epsilon)|_{p} \leq$ 1 , and since $P \in \mathbb{Z}[t]$, and $|P(a)|_{p}=1$ we conclude that $|\imath(s)|_{p} \leq 1$ as required.

Proof of Lemma 2. We may suppose that Φ is a polynomial. We prove the theorem by induction on d. For $d=1$, then it follows from the fact that \mathbb{N} is infinite and a non-constant polynomial admits only finitely many zeroes. Write $\Phi\left(t_{0}, t_{1}, \cdots, t_{d}\right)=\sum_{I} \Phi_{I}\left(t_{0}\right) T^{I}$ with $T=\left(t_{1}, \cdots, t_{d}\right)$. By the previous argument there exists an integer a_{0} such that $\Phi_{I}\left(a_{0}\right) \neq 0$ for all multi-indices I such that $\Phi_{I} \neq 0$. To conclude, we apply the induction step to $\Phi\left(a_{0}, t_{1}, \cdots, t_{d}\right)$.
Proof of Lemma 1. We may suppose that $f \in \mathbb{Z}[x]$. We proceed by contradiction, and pick a finite set of primes $P:=\left\{p_{1}, \cdots, p_{n}\right\}$ such that all primes factors of $f(b)$ belong to P for all $b \in \mathbb{N}$.

Set $N=p_{1} \cdots p_{k}$ and choose an integer $a \in \mathbb{N}$ such that $f(a) \neq 0$. Since all prime factors of $f(a)$ belongs to P, there exists an integer $j \geq 1$ such that $f(a) \mid N^{j-1}$. Observe that for each n, we have $f\left(a+N^{j} n\right)=f(a) \bmod \left(N^{j}\right)$. Note that

$$
|f(a)|_{p_{i}} \geq\left|N^{j-1}\right|_{p_{i}}=p_{i}^{1-j}>\left.\left|N^{j}\right|\right|_{p_{i}}
$$

hence $\left|f\left(a+N^{j} n\right)\right|_{p_{i}}=|f(a)|_{p_{i}}$ for all $i=1, \cdots, k$.
Since all prime factors of $f\left(a+N^{j} n\right)$ belong to P, we infer $f\left(a+N^{j} n\right)= \pm f(a)$. This implies one of the two polynomials $f\left(a+N^{j} T\right) \pm f(a)$ to have infinitely many roots which is absurd.

CNRS - Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau Cedex, France

Email address: charles.favre@polytechnique.edu

