Theorem 1 (Lech's embedding theorem). Let L be any field which is finitely generated over \mathbb{Q} , and S be a finite subset of L. Then for infinitely many primes p, there exists a field embedding $i: L \to \mathbb{Q}_p$ such that $i(S) \subset \mathbb{Z}_p$.

Proof. We begin with the following lemma.

Lemma 1. For any non-constant polynomial $g \in \mathbb{Q}[x]$ there exists infinitely many primes p such that g admits a solution modulo p (in the sense that there exists an integer $b \in \mathbb{N}$ such that $|g(b)|_p < 1$).

Granting this lemma we proceed with the proof of the theorem.

Let d be the degree of transcendance of L over \mathbb{Q} . Then L is a finite extension of the field $F = \mathbb{Q}(t_1, \dots, t_d)$. By the primitive element theorem, we may find θ such that $L = F[\theta]$. Denote by $f(x) = x^d + c_1(t)x^{d-1} + \dots + c_d(t)$ the minimal polynomial of θ over F. This is an irreducible polynomial, which has only simple roots. In particular its discriminant $\Delta(f)$ is a non-zero constant in F.

We may (and shall) suppose that θ and all c_i 's belong to S.

Note that any element of L is a polynomial in θ with coefficients in F, hence we may find $P \in \mathbb{Z}[t]$ such that $P \cdot s \in \mathbb{Z}[t, \theta]$ for all $s \in S$.

Lemma 2. For any non-zero element $\Phi \in F$ there exist infinitely many $a \in \mathbb{N}^d$ such that $\Phi(a_1, \dots, a_d) \neq 0$.

Apply the previous lemma to $\Phi := \Delta(f) \times P$, and fix $a \in \mathbb{N}^d$ such that $\Phi(a) \neq 0$. Now pick a prime p such that the following conditions hold:

- (1) $|f_a(b)|_p < 1$ for some $b \in \mathbb{N}$;
- (2) $|\Delta(f_a)|_p = 1;$
- (3) $|P(a)|_p = 1.$

Observe that conditions (2) and (3) are satisfied for all but finitely many primes since $\Phi(a) \in \mathbb{Q}^*$. And condition (1) is satisfied for infinitely many primes by Lemma 1. In the remaining of the proof p, b and a are fixed.

We first build the field embedding on F. As \mathbb{Q}_p is uncountable, we may find $\epsilon_1, \dots, \epsilon_d \in \mathbb{Q}_p$ which are algebraically independent over \mathbb{Q} . Dividing them by a suitable power of p, we may suppose that $|\epsilon_i| = \text{for all } i$. We set $\iota(t_i) := a_i + p\epsilon_i$. Note that $a_1 + p\epsilon_1, \dots, a_d + p\epsilon_d \in \mathbb{Q}_p$ are algebraically independent over \mathbb{Q} , hence ι extends to a field embedding $\iota: F \to \mathbb{Q}_p$. Our aim is now to extend ι to L.

Recall that by construction $P(t) \in \mathbb{Z}(t)$ and $P(t) \cdot c_i(t) \in \mathbb{Z}[t]$. Consider the polynomial $f_{a+p\epsilon}(x) = x^d + c_1(a+p\epsilon)x^{d-1} + \cdots + c_d(a+p\epsilon) \in \mathbb{Z}_p[x]$. By (3), we have $|P(a+p\epsilon) - P(a)|_p \le 1/p < 1$, and $|c_i(a+p\epsilon) - c_i(a)|_p \le 1/p < 1$, so that

$$|f_{a+p\epsilon}(b)|_p = |f_{a+p\epsilon}(b) - f_a(b)|_p \le \max_i \{|c_i(a+p\epsilon) - c_i(a)|_p\} < 1$$

Since $|\Delta(f_a)|_p = 1$, we obtain $\Delta(\tilde{f}_a) = \widetilde{\Delta(f_a)} \neq 0$ hence $\tilde{f}_a \in \mathbb{F}_p[x]$ has only simple roots. It follows that $\tilde{f}_a(x) = (x - \tilde{b})Q(x)$ with $Q(\tilde{b}) \neq 0$ and $\tilde{f}'_a(\tilde{b}) \neq 0$, which implies $|f'_{a+p\epsilon}(b)|_p = 0$

1. We may thus apply Hensel's lemma to the polynomial $f_{a+p\epsilon}$ and the approximate root b, and we conclude to the existence of $\beta \in \mathbb{Q}_p$ such that $f_{a+p\epsilon}(\beta) = 0$ and $|\beta - b| < 1$ (hence in particular $|\beta| \leq 1$).

Extend *i* to a ring homomorphism $i: F[x] \to \mathbb{Q}_p$ by setting $i(x) = \beta$. By construction the kernel of *i* contains the polynomial f, since

$$i(f) = i(x^d + c_1(t)x^{d-1} + \dots + c_d(t)) = \beta^d + c_1(a + p\epsilon)\beta^{d-1} + \dots + c_d(a + p\epsilon) = 0$$

It follows that i factors through F[x]/(f) which is isomorphic to L. We obtain in this way a field embedding $i: L \to \mathbb{Q}_p$ satisfying $i(\theta) = \beta$.

Now pick any $s \in S$, and write $P \cdot s = Q(t, \theta)$ with $Q \in \mathbb{Z}[t, x]$. Then $|i(s)|_p \times |P(a+p\epsilon)|_p \le 1$, and since $P \in \mathbb{Z}[t]$, and $|P(a)|_p = 1$ we conclude that $|i(s)|_p \le 1$ as required. \Box

Proof of Lemma 2. We may suppose that Φ is a polynomial. We prove the theorem by induction on d. For d = 1, then it follows from the fact that \mathbb{N} is infinite and a non-constant polynomial admits only finitely many zeroes. Write $\Phi(t_0, t_1, \dots, t_d) = \sum_I \Phi_I(t_0)T^I$ with $T = (t_1, \dots, t_d)$. By the previous argument there exists an integer a_0 such that $\Phi_I(a_0) \neq 0$ for all multi-indices I such that $\Phi_I \neq 0$. To conclude, we apply the induction step to $\Phi(a_0, t_1, \dots, t_d)$.

Proof of Lemma 1. We may suppose that $f \in \mathbb{Z}[x]$. We proceed by contradiction, and pick a finite set of primes $P := \{p_1, \dots, p_n\}$ such that all primes factors of f(b) belong to P for all $b \in \mathbb{N}$.

Set $N = p_1 \cdots p_k$ and choose an integer $a \in \mathbb{N}$ such that $f(a) \neq 0$. Since all prime factors of f(a) belongs to P, there exists an integer $j \geq 1$ such that $f(a) \mid N^{j-1}$. Observe that for each n, we have $f(a + N^j n) = f(a) \mod (N^j)$. Note that

$$|f(a)|_{p_i} \ge |N^{j-1}|_{p_i} = p_i^{1-j} > |N^j|_{p_i}$$

hence $|f(a + N^{j}n)|_{p_{i}} = |f(a)|_{p_{i}}$ for all $i = 1, \dots, k$.

Since all prime factors of $f(a + N^j n)$ belong to P, we infer $f(a + N^j n) = \pm f(a)$. This implies one of the two polynomials $f(a + N^j T) \pm f(a)$ to have infinitely many roots which is absurd.

CNRS - Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau Cedex, France

Email address: charles.favre@polytechnique.edu