New trends in holomorphic dynamics I: Fatou-Julia theory

Salt Lake City Workshop

Charles Favre

CNRS, Ecole polytechnique

April 7th, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let X be any complex manifold (\mathbb{C} , $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, \mathbb{C}/Λ , \mathbb{C}^d , $\mathbb{P}^d_{\mathbb{C}}$, etc.)

Q1 Pick $f: X \to X$ holomorphic. Describe the orbits $\{f^{\circ n}(z)\}_{n \in \mathbb{N}}$ for all $z \in X$.

Q2 Suppose $\{f_t\}_{t \in \Lambda}$ is a family of holomorphic maps. Describe the changes in the dynamics of f_t in terms of t.

Focus on $X = \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

$$f(z) = rac{P(z)}{Q(z)}$$
 with $P, Q \in \mathbb{C}[z], P^{-1}(0) \cap Q^{-1}(0) = \emptyset$,

 $d := \max\{\deg(P), \deg(Q)\} \ge 2$

Let X be any complex manifold (\mathbb{C} , $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, \mathbb{C}/Λ , \mathbb{C}^d , $\mathbb{P}^d_{\mathbb{C}}$, etc.)

Q1 Pick $f: X \to X$ holomorphic. Describe the orbits $\{f^{\circ n}(z)\}_{n \in \mathbb{N}}$ for all $z \in X$.

Q2 Suppose $\{f_t\}_{t \in \Lambda}$ is a family of holomorphic maps. Describe the changes in the dynamics of f_t in terms of t.

Focus on $X = \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

$$f(z) = rac{P(z)}{Q(z)}$$
 with $P, Q \in \mathbb{C}[z], P^{-1}(0) \cap Q^{-1}(0) = \emptyset$,

 $d := \max\{\deg(P), \deg(Q)\} \ge 2$

Let X be any complex manifold (\mathbb{C} , $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, \mathbb{C}/Λ , \mathbb{C}^d , $\mathbb{P}^d_{\mathbb{C}}$, etc.)

- Q1 Pick $f: X \to X$ holomorphic. Describe the orbits $\{f^{\circ n}(z)\}_{n \in \mathbb{N}}$ for all $z \in X$.
- Q2 Suppose $\{f_t\}_{t \in \Lambda}$ is a family of holomorphic maps. Describe the changes in the dynamics of f_t in terms of t.

Focus on $X = \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

$$f(z) = rac{P(z)}{Q(z)}$$
 with $P, Q \in \mathbb{C}[z], P^{-1}(0) \cap Q^{-1}(0) = \emptyset$,

 $d := \max\{\deg(P), \deg(Q)\} \ge 2$

Let X be any complex manifold (\mathbb{C} , $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, \mathbb{C}/Λ , \mathbb{C}^d , $\mathbb{P}^d_{\mathbb{C}}$, etc.)

- Q1 Pick $f: X \to X$ holomorphic. Describe the orbits $\{f^{\circ n}(z)\}_{n \in \mathbb{N}}$ for all $z \in X$.
- Q2 Suppose $\{f_t\}_{t \in \Lambda}$ is a family of holomorphic maps. Describe the changes in the dynamics of f_t in terms of t.

Focus on $X = \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

$$f(z)=rac{P(z)}{Q(z)} ext{ with } P, Q \in \mathbb{C}[z], \ P^{-1}(0) \cap Q^{-1}(0) = \emptyset,$$

 $\textit{d} := \max\{ \deg(\textit{P}), \deg(\textit{Q}) \} \geq 2$

Let X be any complex manifold (\mathbb{C} , $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, \mathbb{C}/Λ , \mathbb{C}^d , $\mathbb{P}^d_{\mathbb{C}}$, etc.)

- Q1 Pick $f: X \to X$ holomorphic. Describe the orbits $\{f^{\circ n}(z)\}_{n \in \mathbb{N}}$ for all $z \in X$.
- Q2 Suppose $\{f_t\}_{t \in \Lambda}$ is a family of holomorphic maps. Describe the changes in the dynamics of f_t in terms of t.

Focus on $X = \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

$$f(z)=rac{P(z)}{Q(z)} ext{ with } P,Q\in \mathbb{C}[z],\ P^{-1}(0)\cap Q^{-1}(0)=\emptyset,$$

 $\textit{d} := \max\{ \deg(\textit{P}), \deg(\textit{Q}) \} \geq 2$

Original developments (1910 -)

- Normal families
- Fatou, Julia, Montel

QC revolution (1980 –)

- Quasi-conformal techniques and renormalization
- Sullivan, Douady-Hubbard, McMullen, Lyubich, Yoccoz, Thurston, ...

Original developments (1910 -)

- Normal families
- Fatou, Julia, Montel

QC revolution (1980 –)

- Quasi-conformal techniques and renormalization
- Sullivan, Douady-Hubbard, McMullen, Lyubich, Yoccoz, Thurston, ...

Original developments (1910 -)

- Normal families
- Fatou, Julia, Montel

QC revolution (1980 -)

- Quasi-conformal techniques and renormalization
- Sullivan, Douady-Hubbard, McMullen, Lyubich, Yoccoz, Thurston, ...

Dynamics in several complex variables (1990 -)

- Currents, pluripotential theory
- Bedford-Smillie, Fornaess-Sibony, Hubbard, Dinh, Guedj, Diller, Jonsson, ...

Algebraic and arithmetic dynamics (2010 -)

- Algebraic and arithmetic intersection theory
- Silverman, S.-W. Zhang, DeMarco, Ghioca, Xie, Cantat, Dujardin, ...

Dynamics in several complex variables (1990 -)

- Currents, pluripotential theory
- Bedford-Smillie, Fornaess-Sibony, Hubbard, Dinh, Guedj, Diller, Jonsson, ...

Algebraic and arithmetic dynamics (2010 –)

- Algebraic and arithmetic intersection theory
- Silverman, S.-W. Zhang, DeMarco, Ghioca, Xie, Cantat, Dujardin, ...

(日) (日) (日) (日) (日) (日) (日)

Fatou and Julia sets

$$f(z) = \frac{P(z)}{Q(z)}$$
 of degree $d \ge 2$.

Fatou set: F_f := {z, {fⁿ}_n normal family near z} (tame dynamics)

► Julia set: $J_f = \hat{\mathbb{C}} \setminus F_f$ (chaotic dynamics)

Observation

The Fatou set (resp. Julia set) is open (resp. closed) and totally invariant.

Theorem

The Julia set is always non-empty (uncountable and perfect)

Fatou and Julia sets

$$f(z) = \frac{P(z)}{Q(z)}$$
 of degree $d \ge 2$.

- Fatou set: F_f := {z, {fⁿ}_n normal family near z} (tame dynamics)
- Julia set: $J_f = \hat{\mathbb{C}} \setminus F_f$ (chaotic dynamics)

The Fatou set (resp. Julia set) is open (resp. closed) and to invariant.

Theorem

The Julia set is always non-empty (uncountable and perfect)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Fatou and Julia sets

$$f(z) = \frac{P(z)}{Q(z)}$$
 of degree $d \ge 2$.

- Fatou set: F_f := {z, {fⁿ}_n normal family near z} (tame dynamics)
- Julia set: $J_f = \hat{\mathbb{C}} \setminus F_f$ (chaotic dynamics)

ŕ

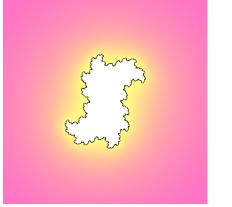
Observation

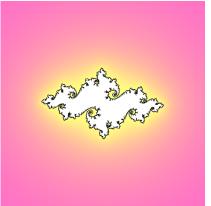
The Fatou set (resp. Julia set) is open (resp. closed) and totally invariant.

Theorem

The Julia set is always non-empty (uncountable and perfect)

►
$$f(z) = z^{\pm d}$$
, $J(f) = S^1 = \{|z| = 1\}$, $f^{-1}\{0, \infty\} = \{0, \infty\}$;
 $f(z) = z^{\pm d} + \epsilon$, $J(f)$ is a quasi-circle.





・ロト ・聞ト ・ヨト ・ヨト

æ

► Lattès maps: π : $\mathbb{C}/\Lambda \to \hat{\mathbb{C}}$, $f_L(\pi(z)) = \pi(az)$ with $|a|^2 > 1$, $a\Lambda \subset \Lambda$, $J(f_L) = \hat{\mathbb{C}}$;

Observation $a = 2, \pi$ is 2 : 1, ther

$$f(z) = \frac{4z(1-z)(1-t^2z)}{(1-t^2z^2)^2}$$

 Many small perturbations of f_L have Julia sets equal to Ĉ (Rees,...)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

► Lattès maps: π : $\mathbb{C}/\Lambda \to \hat{\mathbb{C}}$, $f_L(\pi(z)) = \pi(az)$ with $|a|^2 > 1$, $a\Lambda \subset \Lambda$, $J(f_L) = \hat{\mathbb{C}}$;

Observation $a = 2, \pi$ is 2 : 1, then

$$f(z) = \frac{4z(1-z)(1-t^2z)}{(1-t^2z^2)^2}$$

 Many small perturbations of f_L have Julia sets equal to Ĉ (Rees,...)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

► Lattès maps: π : $\mathbb{C}/\Lambda \to \hat{\mathbb{C}}$, $f_L(\pi(z)) = \pi(az)$ with $|a|^2 > 1$, $a\Lambda \subset \Lambda$, $J(f_L) = \hat{\mathbb{C}}$;

Observation $a = 2, \pi$ is 2 : 1, then

$$f(z) = \frac{4z(1-z)(1-t^2z)}{(1-t^2z^2)^2}$$

Many small perturbations of f_L have Julia sets equal to C
(Rees,...)

(日) (日) (日) (日) (日) (日) (日)

Polynomial Julia sets

$f(z) = z^d + a_1 z^{d-1} + \dots + a_d \in \mathbb{C}[z]; f^{-1}\{\infty\} = \{\infty\}$

For $|z| \ge R \gg 1$, then $|f(z)| \ge \frac{1}{2}|z|^d$, and $|f^n(z)| \sim |z|^{d^n} \to \infty$

Filled-in Julia set $K(f) = \{z, |f^n(z)| = O(1)\}.$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Observation $J(f) = \partial K(f)$.

Polynomial Julia sets

$$f(z) = z^d + a_1 z^{d-1} + \dots + a_d \in \mathbb{C}[z]; f^{-1}\{\infty\} = \{\infty\}$$

- For $|z| \ge R \gg 1$, then $|f(z)| \ge \frac{1}{2}|z|^d$, and $|f^n(z)| \sim |z|^{d^n} \to \infty$
- Filled-in Julia set $K(f) = \{z, |f^n(z)| = O(1)\}.$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Observation $J(f) = \partial K(f)$.

Polynomial Julia sets

$$f(z) = z^d + a_1 z^{d-1} + \dots + a_d \in \mathbb{C}[z]; f^{-1}\{\infty\} = \{\infty\}$$

For
$$|z| \ge R \gg 1$$
, then $|f(z)| \ge \frac{1}{2}|z|^d$, and $|f^n(z)| \sim |z|^{d^n} \to \infty$

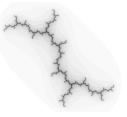
Filled-in Julia set
$$K(f) = \{z, |f^n(z)| = O(1)\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Observation $J(f) = \partial K(f)$.

Examples of Julia sets (pictures)

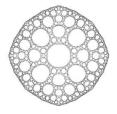
 $c = -0.12 + 0.74\,i$

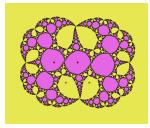


c = i

 $e^{2i\pi t} 2(z-4)/(1-4z)$ with

t = .6151732





 $z^2 - 0,06/z^2$

Theorem Suppose f(z) = z, and write $\lambda := f'(z)$.

- 1. If $|\lambda| < 1$, then $z \in F(f)$ (attracting);
- 2. if $|\lambda| > 1$, then $z \in J(f)$ (repelling);
- 3. if λ is a root of unity then $z \in J(f)$ (parabolic);
- 4. $\lambda = e^{2i\pi\theta}$, θ badly approximable by rationals (Siegel, Brjuno), then $z \in F(f)$.

$$heta=rac{p_n}{q_n} ext{ and } \sum_n rac{\log q_{n+1}}{q_n} \ <\infty$$

Remark

Theorem Suppose f(z) = z, and write $\lambda := f'(z)$.

- 1. If $|\lambda| < 1$, then $z \in F(f)$ (attracting);
- 2. if $|\lambda| > 1$, then $z \in J(f)$ (repelling);
- 3. if λ is a root of unity then $z \in J(f)$ (parabolic);
- 4. $\lambda = e^{2i\pi\theta}$, θ badly approximable by rationals (Siegel, Brjuno), then $z \in F(f)$.

$$heta=rac{p_n}{q_n} ext{ and } \sum_n rac{\log q_{n+1}}{q_n} \ <\infty$$

Remark

Theorem Suppose f(z) = z, and write $\lambda := f'(z)$. 1. If $|\lambda| < 1$, then $z \in F(f)$ (attracting);

- 1. If |X| < 1, then $Z \in I(I)$ (attracting),
- 2. *if* $|\lambda| > 1$, *then* $z \in J(f)$ *(repelling);*
- 3. if λ is a root of unity then $z \in J(f)$ (parabolic);
- 4. $\lambda = e^{2i\pi\theta}$, θ badly approximable by rationals (Siegel, Brjuno), then $z \in F(f)$.

$$heta=rac{p_n}{q_n} ext{ and } \sum_n rac{\log q_{n+1}}{q_n} \ <\infty$$

Remark

Theorem Suppose f(z) = z, and write $\lambda := f'(z)$.

- 1. If $|\lambda| < 1$, then $z \in F(f)$ (attracting);
- 2. if $|\lambda| > 1$, then $z \in J(f)$ (repelling);
- 3. if λ is a root of unity then $z \in J(f)$ (parabolic);
- 4. $\lambda = e^{2i\pi\theta}$, θ badly approximable by rationals (Siegel, Brjuno), then $z \in F(f)$.

$$heta=rac{p_n}{q_n} ext{ and } \sum_n rac{\log q_{n+1}}{q_n} \ <\infty$$

Remark

Theorem Suppose f(z) = z, and write $\lambda := f'(z)$. 1. If $|\lambda| < 1$, then $z \in F(f)$ (attracting); 2. if $|\lambda| > 1$, then $z \in J(f)$ (repelling); 3. if λ is a root of unity then $z \in J(f)$ (parabolic); 4. $\lambda = e^{2i\pi\theta}$, θ badly approximable by rationals (Siegel, Brjuno), then $z \in F(f)$.

$$heta=rac{p_n}{q_n} ext{ and } \sum_n rac{\log q_{n+1}}{q_n} \ <\infty$$

Remark

Theorem Suppose f(z) = z, and write $\lambda := f'(z)$. 1. If $|\lambda| < 1$, then $z \in F(f)$ (attracting); 2. if $|\lambda| > 1$, then $z \in J(f)$ (repelling); 3. if λ is a root of unity then $z \in J(f)$ (parabolic); 4. $\lambda = e^{2i\pi\theta}$, θ badly approximable by rationals (Siegel, Brjuno), then $z \in F(f)$.

$$heta = rac{p_n}{q_n} ext{ and } \sum_n rac{\log q_{n+1}}{q_n} \ < \infty$$

Remark

Theorem Suppose f(z) = z, and write $\lambda := f'(z)$. 1. If $|\lambda| < 1$, then $z \in F(f)$ (attracting); 2. if $|\lambda| > 1$, then $z \in J(f)$ (repelling); 3. if λ is a root of unity then $z \in J(f)$ (parabolic); 4. $\lambda = e^{2i\pi\theta}$, θ badly approximable by rationals (Siegel, Brjuno), then $z \in F(f)$.

$$heta=rac{p_n}{q_n} ext{ and } \sum_n rac{\log q_{n+1}}{q_n} \ <\infty$$

Remark

Fatou components

Theorem

Let U be a fixed Fatou component. One of the following possibilities occur:

- 1. U contains an attracting fixed point p and $f^n|_U \rightarrow p$;
- 2. ∂U contains a parabolic fixed point p, and $f^n|_U \rightarrow p$;
- 3. *U* is a disk or an annulus and $f|_U$ is conjugate to $z \mapsto e^{2i\pi\theta}$, $\theta \in \mathbb{R} \setminus \mathbb{Q}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem

The set of periodic Fatou components is finite.

Fatou components

Theorem

Let U be a fixed Fatou component. One of the following possibilities occur:

- 1. U contains an attracting fixed point p and $f^n|_U \rightarrow p$;
- 2. ∂U contains a parabolic fixed point p, and $f^n|_U \rightarrow p$;
- 3. *U* is a disk or an annulus and $f|_U$ is conjugate to $z \mapsto e^{2i\pi\theta}$, $\theta \in \mathbb{R} \setminus \mathbb{Q}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem

The set of periodic Fatou components is finite.

Sullivan's theorem

Theorem

Any Fatou component is eventually mapped to a periodic component.

Remark

 Not true if f is transcendental (Baker, Rippon-Stellard, Benini-Fagella-Evdoridou, Martí-Pete-Rempe-Waterman),

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

 not true in higher dimensions (Astorg-Buff-Dujardin-Peters-Raissy, Berger-Biebler).

Dynamics on the Julia set

Slogan The dynamics $f: J(f) \rightarrow J(f)$ is chaotic!

Theorem

- 1. $\cup_{n\geq 0} f^{-n}(z)$ is dense in J(f) for all $z \in J(f)$;
- 2. the set $\{z \in J(f), \overline{\{f^n(z)\}_n} = J(f)\}$ is dense;
- 3. repelling periodic orbits are dense in J(f);
- 4. $z \in J(f)$, $U \ni z$, then $f^n(U) \supset J(f)$ for some n.

Observation

f admits a unique measure of maximal entropy log d, which is ergodic, and represents the distribution of the repelling periodic orbits.

Dynamics on the Julia set

Slogan

The dynamics $f: J(f) \rightarrow J(f)$ is chaotic!

Theorem

- 1. $\cup_{n\geq 0} f^{-n}(z)$ is dense in J(f) for all $z \in J(f)$;
- 2. the set $\{z \in J(f), \overline{\{f^n(z)\}_n} = J(f)\}$ is dense;
- 3. repelling periodic orbits are dense in J(f);
- 4. $z \in J(f)$, $U \ni z$, then $f^n(U) \supset J(f)$ for some n.

Observation

f admits a unique measure of maximal entropy log d, which is ergodic, and represents the distribution of the repelling periodic orbits.

Dynamics on the Julia set

Slogan

The dynamics $f: J(f) \rightarrow J(f)$ is chaotic!

Theorem

- 1. $\cup_{n\geq 0} f^{-n}(z)$ is dense in J(f) for all $z \in J(f)$;
- 2. the set $\{z \in J(f), \overline{\{f^n(z)\}_n} = J(f)\}$ is dense;
- 3. repelling periodic orbits are dense in J(f);
- 4. $z \in J(f)$, $U \ni z$, then $f^n(U) \supset J(f)$ for some n.

Observation

f admits a unique measure of maximal entropy log d, which is ergodic, and represents the distribution of the repelling periodic orbits.

References

- M. Audin: Fatou, Julia, Montel
- Milnor: Dynamics in one complex variables
- Carleson-Gamelin: Complex dynamics
- Hubbard: Dynamics in one complex variable

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Pictures:

- Wikipedia
- Robert Devaney
- Arnaud Chéritat