New trends in holomorphic dynamics II: Moduli space

Salt Lake City Workshop

Charles Favre

CNRS

April 8th, 2023

Brief recap

$$f(z) = rac{P(z)}{Q(z)} \colon \hat{\mathbb{C}} \ o \hat{\mathbb{C}} ext{ with } d = \max\{ \deg(P), \deg(Q) \} \ \geq 2$$

F(*f*) = {*z*, {*fⁿ*}_n is normal near *z*}: open, tame dynamics
 J(*f*) = Ĉ \ *F*(*f*): compact, chaotic dynamics

Study how J(f) behaves when f is varying

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Define the space of rational maps

Brief recap

$$f(z) = rac{P(z)}{Q(z)} \colon \hat{\mathbb{C}} \ o \hat{\mathbb{C}} ext{ with } d = \max\{ \deg(P), \deg(Q) \} \ \geq 2$$

F(*f*) = {*z*, {*fⁿ*}_n is normal near *z*}: open, tame dynamics
 J(*f*) = Ĉ \ *F*(*f*): compact, chaotic dynamics

Study how J(f) behaves when f is varying

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Define the space of rational maps

Brief recap

$$f(z) = rac{P(z)}{Q(z)} \colon \hat{\mathbb{C}} \ o \hat{\mathbb{C}} ext{ with } d = \max\{ ext{deg}(P), ext{deg}(Q)\} \ \geq 2$$

F(*f*) = {*z*, {*fⁿ*}_n is normal near *z*}: open, tame dynamics
 J(*f*) = Ĉ \ *F*(*f*): compact, chaotic dynamics

Study how J(f) behaves when f is varying

(日) (日) (日) (日) (日) (日) (日)

Define the space of rational maps

The quadratic case

 $f_c(z) = z^2 + c$ with $c \in \mathbb{C}$.

https://www.math.univ-toulouse.fr/~Cheritat/Applets

(ロ) (同) (三) (三) (三) (三) (○) (○)

Theorem

Either $f^n(0)$ is bounded, and $K(f_c)$, $J(f_c)$ are connected.

• Or $f^n(0)$ is unbounded, and $K(f_c) = J(f_c)$ is a Cantor set.

The quadratic case

 $f_c(z) = z^2 + c$ with $c \in \mathbb{C}$.

https://www.math.univ-toulouse.fr/~Cheritat/Applets

Theorem

• Either $f^n(0)$ is bounded, and $K(f_c), J(f_c)$ are connected.

• Or $f^n(0)$ is unbounded, and $K(f_c) = J(f_c)$ is a Cantor set.

The quadratic case

 $f_c(z) = z^2 + c$ with $c \in \mathbb{C}$.

https://www.math.univ-toulouse.fr/~Cheritat/Applets

Theorem

- Either $f^n(0)$ is bounded, and $K(f_c), J(f_c)$ are connected.
- Or $f^n(0)$ is unbounded, and $K(f_c) = J(f_c)$ is a Cantor set.

Mandelbrot set $\mathcal{M} = \{ c \in \mathbb{C}, f_c^n(0) \text{ is bounded} \}$

The space of rational maps of degree d

$$f_{a,b}(z) = \frac{P_a(z)}{Q_b(z)} = \frac{a_0 z^d + a_1 z^{d-1} + \dots + a_d}{b_0 z^d + b_1 z^{d-1} + \dots + b_d}$$

• *f* is determined by
$$[a:b] \in \mathbb{P}^{2d+1}_{\mathbb{C}}$$
;

▶
$$P^{-1}(0) \cap Q^{-1}(0) = \emptyset$$
 is equivalent to $\operatorname{Res}(P_a, Q_b) = 0$

Observation

 Rat_d is an affine subvariety of dimension 2d + 1, Zariski open in $\mathbb{P}^{2d+1}_{\mathbb{C}}.$

The space of rational maps of degree d

$$f_{a,b}(z) = \frac{P_a(z)}{Q_b(z)} = \frac{a_0 z^d + a_1 z^{d-1} + \dots + a_d}{b_0 z^d + b_1 z^{d-1} + \dots + b_d}$$

Observation Rat_d is an affine subvariety of dimension 2d + 1, Zariski open in $\mathbb{P}^{2d+1}_{\mathbb{C}}$.

The space of rational maps of degree d

$$f_{a,b}(z) = \frac{P_a(z)}{Q_b(z)} = \frac{a_0 z^d + a_1 z^{d-1} + \dots + a_d}{b_0 z^d + b_1 z^{d-1} + \dots + b_d}$$

Observation

 Rat_d is an affine subvariety of dimension 2d+1, Zariski open in $\mathbb{P}^{2d+1}_{\mathbb{C}}.$

The moduli space of rational maps of degree *d*

$$f_{a,b}(z) = \frac{P_a(z)}{Q_b(z)} = \frac{a_0 z^d + a_1 z^{d-1} + \dots + a_d}{b_0 z^d + b_1 z^{d-1} + \dots + b_d}$$

Action of SL(2, \mathbb{C}) on Rat_d by conjugation: $f \sim \phi \circ f \circ \phi^{-1}$ Theorem (Silverman)

- The ring R := C[Rat_d]^{SL(2,C)} is finitely generated, and M_d := Spec(R) is a connected affine algebraic variety of dimension 2d - 2.
- The map $Rat_d \rightarrow M_d$ induces a bijection

 $\operatorname{Rat}_d / \operatorname{SL}(2, \mathbb{C}) \xrightarrow{\simeq} M_d.$

The moduli space of rational maps of degree *d*

$$f_{a,b}(z) = \frac{P_a(z)}{Q_b(z)} = \frac{a_0 z^d + a_1 z^{d-1} + \dots + a_d}{b_0 z^d + b_1 z^{d-1} + \dots + b_d}$$

Action of SL(2, \mathbb{C}) on Rat_d by conjugation: $f \sim \phi \circ f \circ \phi^{-1}$

Theorem (Silverman)

- The ring R := C[Rat_d]^{SL(2,C)} is finitely generated, and M_d := Spec(R) is a connected affine algebraic variety of dimension 2d - 2.
- The map $Rat_d \rightarrow M_d$ induces a bijection

 $\operatorname{Rat}_d / \operatorname{SL}(2, \mathbb{C}) \xrightarrow{\simeq} M_d.$

The moduli space of rational maps of degree *d*

$$f_{a,b}(z) = \frac{P_a(z)}{Q_b(z)} = \frac{a_0 z^d + a_1 z^{d-1} + \dots + a_d}{b_0 z^d + b_1 z^{d-1} + \dots + b_d}$$

Action of SL(2, \mathbb{C}) on Rat_d by conjugation: $f \sim \phi \circ f \circ \phi^{-1}$ Theorem (Silverman)

- The ring R := ℂ[Rat_d]^{SL(2,ℂ)} is finitely generated, and M_d := Spec(R) is a connected affine algebraic variety of dimension 2d - 2.
- The map $Rat_d \rightarrow M_d$ induces a bijection

$$\operatorname{Rat}_d / \operatorname{SL}(2, \mathbb{C}) \xrightarrow{\simeq} M_d.$$

(Levy): M_d is irreducible and rational

► $M_2 \simeq \mathbb{A}^2_{\mathbb{C}}$ (Milnor)

▶ Polynomial case: $P(z) = z^d + a_2 z^{d-2} + \cdots + a_d$, hence $MPol_d = \mathbb{C}^{d-1}/G$ with *G* finite;

Marked points:

$$(f, p_1, \cdots, p_N) \sim (\phi \circ f \circ \phi^{-1}, \phi(p_1), \cdots, \phi(p_N))$$

marked periodic points, marked critical points

(Levy): M_d is irreducible and rational

• $M_2 \simeq \mathbb{A}^2_{\mathbb{C}}$ (Milnor)

▶ Polynomial case: $P(z) = z^d + a_2 z^{d-2} + \cdots + a_d$, hence $MPol_d = \mathbb{C}^{d-1}/G$ with *G* finite;

Marked points:

$$(f, p_1, \cdots, p_N) \sim (\phi \circ f \circ \phi^{-1}, \phi(p_1), \cdots, \phi(p_N))$$

(日) (日) (日) (日) (日) (日) (日)

marked periodic points, marked critical points

(Levy): M_d is irreducible and rational

- $M_2 \simeq \mathbb{A}^2_{\mathbb{C}}$ (Milnor)
- ▶ Polynomial case: $P(z) = z^d + a_2 z^{d-2} + \cdots + a_d$, hence $MPol_d = \mathbb{C}^{d-1}/G$ with *G* finite;

Marked points:

$$(f, p_1, \cdots, p_N) \sim (\phi \circ f \circ \phi^{-1}, \phi(p_1), \cdots, \phi(p_N))$$

(日) (日) (日) (日) (日) (日) (日)

marked periodic points, marked critical points

(Levy): M_d is irreducible and rational

•
$$M_2 \simeq \mathbb{A}^2_{\mathbb{C}}$$
 (Milnor)

- ▶ Polynomial case: $P(z) = z^d + a_2 z^{d-2} + \cdots + a_d$, hence $MPol_d = \mathbb{C}^{d-1}/G$ with *G* finite;
- Marked points:

$$(f, p_1, \cdots, p_N) \sim (\phi \circ f \circ \phi^{-1}, \phi(p_1), \cdots, \phi(p_N))$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

marked periodic points, marked critical points

(Levy): M_d is irreducible and rational

•
$$M_2 \simeq \mathbb{A}^2_{\mathbb{C}}$$
 (Milnor)

- ▶ Polynomial case: $P(z) = z^d + a_2 z^{d-2} + \cdots + a_d$, hence $MPol_d = \mathbb{C}^{d-1}/G$ with *G* finite;
- Marked points:

$$(f, p_1, \cdots, p_N) \sim (\phi \circ f \circ \phi^{-1}, \phi(p_1), \cdots, \phi(p_N))$$

marked periodic points, marked critical points

$\{f_{\lambda}\}$ holomorphic family of rational maps of degree $d \geq 2$

 $\lambda \in \Lambda$ complex manifold (e.g., finite cover of M_d , or of $Mpoly_d$) $F \colon \Lambda \times \hat{\mathbb{C}} \to \Lambda \times \hat{\mathbb{C}}, F(\lambda, z) = (\lambda, f_\lambda(z))$ holomorphic

Slogan

Decompose $\Lambda =$ Stab \sqcup Bif where

- Stab *is open, the dynamics is stable under perturbation;*
- Bif is closed, the dynamics is unstable under perturbation.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

{ f_{λ} } holomorphic family of rational maps of degree $d \ge 2$ $\lambda \in \Lambda$ complex manifold (e.g., finite cover of M_d , or of $Mpoly_d$) $F : \Lambda \times \hat{\mathbb{C}} \to \Lambda \times \hat{\mathbb{C}}, F(\lambda, z) = (\lambda, f_{\lambda}(z))$ holomorphic

Slogan

Decompose $\Lambda =$ Stab \sqcup Bif where

- Stab is open, the dynamics is stable under perturbation;
- ▶ Bif is closed, the dynamics is unstable under perturbation.

 $\{f_{\lambda}\}$ holomorphic family of rational maps of degree $d \ge 2$ $\lambda \in \Lambda$ complex manifold (e.g., finite cover of M_d , or of $Mpoly_d$) $F \colon \Lambda \times \hat{\mathbb{C}} \to \Lambda \times \hat{\mathbb{C}}, F(\lambda, z) = (\lambda, f_{\lambda}(z))$ holomorphic

Slogan

Decompose $\Lambda =$ Stab \sqcup Bif where

- Stab *is open, the dynamics is stable under perturbation;*
- Bif is closed, the dynamics is unstable under perturbation.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 $\{f_{\lambda}\}$ holomorphic family of rational maps of degree $d \ge 2$ $\lambda \in \Lambda$ complex manifold (e.g., finite cover of M_d , or of $Mpoly_d$) $F: \Lambda \times \hat{\mathbb{C}} \rightarrow \Lambda \times \hat{\mathbb{C}}, F(\lambda, z) = (\lambda, f_{\lambda}(z))$ holomorphic

Slogan

Decompose $\Lambda = \text{Stab} \sqcup \text{Bif where}$

- Stab *is open, the dynamics is stable under perturbation;*
- ▶ Bif is closed, the dynamics is unstable under perturbation.

Definition Stab_c = $\{\lambda_0, \{\lambda \mapsto f_{\lambda}^n(c)\}_n \text{ is normal at } \lambda_0 \text{ for any critical point } c\}$

▶ In *MPoly*₂, Stab_c = Int(\mathcal{M}) $\sqcup \mathbb{C} \setminus \mathcal{M}$;

If f ∈ Rat_d is hyperbolic (all critical points converge to attracting cycles), then f ∈ Stab_c.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition Stab_c = $\{\lambda_0, \{\lambda \mapsto f_{\lambda}^n(c)\}_n \text{ is normal at } \lambda_0 \text{ for any critical point } c\}$

▶ In *MPoly*₂, Stab_c = Int(\mathcal{M}) $\sqcup \mathbb{C} \setminus \mathcal{M}$;

If f ∈ Rat_d is hyperbolic (all critical points converge to attracting cycles), then f ∈ Stab_c.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition

Stab_c = $\{\lambda_0, \{\lambda \mapsto f_{\lambda}^n(c)\}_n \text{ is normal at } \lambda_0 \text{ for any critical point } c\}$

- ▶ In *MPoly*₂, Stab_c = Int(\mathcal{M}) $\sqcup \mathbb{C} \setminus \mathcal{M}$;
- If f ∈ Rat_d is hyperbolic (all critical points converge to attracting cycles), then f ∈ Stab_c.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The stable locus II

Definition

 $Stab_{p} = \{\lambda, \text{ the type of periodic orbit remains locally the same}\}$

Proposition

if $\lambda_0 \in Stab_p$, then there exists a map h: $Per(f_{\lambda_0}) \times U \to \hat{\mathbb{C}}$ such that

•
$$h(\cdot, \lambda)$$
: $Per(f_{\lambda_0}) \rightarrow Per(f_{\lambda})$ is bijective;

▶ $\lambda \mapsto h(p, \lambda)$ is holomorphic

 \longrightarrow get a holomorphic motion of $J(f_{\lambda_0})$

 $h: J(f_{\lambda_0}) \times U \to \hat{\mathbb{C}}$

$$h(J(f_{\lambda_0}), \lambda) = J(f_{\lambda})$$

$$f_{\lambda}(h(z, \lambda)) = h(f_{\lambda_0}(z), \lambda)$$

The stable locus II

Definition Stab_p = { λ , the type of periodic orbit remains locally the same}

Proposition

if $\lambda_0 \in \text{Stab}_p$, then there exists a map h: $Per(f_{\lambda_0}) \times U \to \hat{\mathbb{C}}$ such that

•
$$h(\cdot, \lambda)$$
: $Per(f_{\lambda_0}) \rightarrow Per(f_{\lambda})$ is bijective;

• $\lambda \mapsto h(p, \lambda)$ is holomorphic

 \longrightarrow get a holomorphic motion of $J(f_{\lambda_0})$

 $h: J(f_{\lambda_0}) \times U \to \hat{\mathbb{C}}$

$$h(J(f_{\lambda_0}), \lambda) = J(f_{\lambda})$$

$$f_{\lambda}(h(z, \lambda)) = h(f_{\lambda_0}(z), \lambda)$$

The stable locus II

Definition Stab_p = { λ , the type of periodic orbit remains locally the same}

Proposition

if $\lambda_0 \in \text{Stab}_p$, then there exists a map h: $Per(f_{\lambda_0}) \times U \to \hat{\mathbb{C}}$ such that

•
$$h(\cdot, \lambda)$$
: $Per(f_{\lambda_0}) \rightarrow Per(f_{\lambda})$ is bijective;

• $\lambda \mapsto h(p, \lambda)$ is holomorphic

 \longrightarrow get a holomorphic motion of $J(f_{\lambda_0})$

 $h: J(f_{\lambda_0}) \times U \to \hat{\mathbb{C}}$

$$h(J(f_{\lambda_0}),\lambda) = J(f_{\lambda})$$

$$f_{\lambda}(h(z,\lambda)) = h(f_{\lambda_0}(z),\lambda)$$

Mané-Sad-Sullivan theory

Theorem

The following conditions are equivalent:

- 1. $\lambda \in \mathsf{Stab}_c$
- **2**. $\lambda \in \mathsf{Stab}_p$
- there exists a holomorphic motion of J(f_λ) compatible with the dynamics
- 4. the Julia set moves continuously in the Hausdorff topology

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Mané-Sad-Sullivan theory

Theorem

The following conditions are equivalent:

- 1. $\lambda \in \mathsf{Stab}_c$
- **2**. $\lambda \in \mathsf{Stab}_p$
- there exists a holomorphic motion of J(f_λ) compatible with the dynamics
- 4. the Julia set moves continuously in the Hausdorff topology Stab is open and dense in Λ .

(ロ) (同) (三) (三) (三) (三) (○) (○)

Fatou conjecture

Recall *f* is hyperbolic iff all critical points converge to some attracting orbit.

Conjecture

The set of hyperbolic maps coincides with the set of stable maps in $\ensuremath{M_d}$

Theorem (Douady-Hubbard)

If \mathcal{M} is locally connected, then the set of hyperbolic quadratic polynomials is dense in MPoly₂.

McMullen, Yoccoz, Avila, Kahn, Lyubich,...

Fatou conjecture

Recall *f* is hyperbolic iff all critical points converge to some attracting orbit.

Conjecture

The set of hyperbolic maps coincides with the set of stable maps in $\ensuremath{M_d}$

Theorem (Douady-Hubbard)

If \mathcal{M} is locally connected, then the set of hyperbolic quadratic polynomials is dense in MPoly₂.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

McMullen, Yoccoz, Avila, Kahn, Lyubich,...

Fatou conjecture

Recall *f* is hyperbolic iff all critical points converge to some attracting orbit.

Conjecture

The set of hyperbolic maps coincides with the set of stable maps in $\ensuremath{M_d}$

Theorem (Douady-Hubbard)

If M is locally connected, then the set of hyperbolic quadratic polynomials is dense in MPoly₂.

(ロ) (同) (三) (三) (三) (三) (○) (○)

McMullen, Yoccoz, Avila, Kahn, Lyubich,...

The Mandelbrot set is connected (Douady-Hubbard, Sibony)

$$f_c(z) = z^2 + c$$

 $f_c^n(c) = c^{2^n} + l.o.t.$

1.
$$g_c(z) = \lim_{n \to \infty} \frac{1}{2^n} \log \max\{1, |f_c^n(z)|\}$$

2. $g_{\mathcal{M}}(c) = g_c(c)$
3. $g_{\mathcal{M}}(c) = \log |\Phi(c)|$ with $\Phi(c) := \lim_n (f_c^n(c))^{1/2^n}$

— Potential theoretic approach to stability: DeMarco, Berteloot

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The Mandelbrot set is connected (Douady-Hubbard, Sibony)

$$f_c(z) = z^2 + c$$

 $f_c^n(c) = c^{2^n} + l.o.t.$

1.
$$g_{c}(z) = \lim_{n \to \infty} \frac{1}{2^{n}} \log \max\{1, |f_{c}^{n}(z)|\}$$

2. $g_{\mathcal{M}}(c) = g_{c}(c)$
3. $g_{\mathcal{M}}(c) = \log |\Phi(c)|$ with $\Phi(c) := \lim_{n} (f_{c}^{n}(c))^{1/2^{n}}$

 \longrightarrow Potential theoretic approach to stability: DeMarco, Berteloot

References

 Berteloot. Bifurcation currents in holomorphic families of rational maps

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Silverman: The arithmetics of dynamical systems
- Benini: A survey on MLC, Rigidity and related topics