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Reminder
The valuative space is a tree

Global valuations
Dynamics of P∗

Remember yesterday

P : C2 → C2 polynomial, dominant.

dn = deg(Pn), d∞ = limn d1/n
n

Theorem
Either P = (Q(x), R(x , y)) is a skew product;
Or dn

∞ ≤ dn ≤ C · dn
∞

d∞ is a quadratic integer.
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Reminder
The valuative space is a tree

Global valuations
Dynamics of P∗

Method

V1 = {ν : C[x , y ] → R centered at ∞, ν(φ) < 0, A(ν) < 0}
P∗ν(φ) = ν(φ ◦ P).

Study the dynamics of P∗ : V1 → V1
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Key results

Theorem
V1 is a tree

Theorem (Eigenvaluation)

P∗ν = λν for some ν ∈ V1

Theorem (Structure of valuations in V1)
Suppose ν ∈ V1

Either C1(−deg) ≤ ν ≤ C2(−deg)

Or ν is associated to a rational fibration.
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1 Reminder

2 The valuative space is a tree
The elements
The topology

3 Global valuations
Definition of V1
Thinness
Proof of the structure theorem

4 Dynamics of P∗
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The elements
The topology

Valuations

Definition
Valuation ν : C[x , y ] \ {0} → R

ν|C∗ ≡ 0;
ν(φ1φ2) = ν(φ1) + ν(φ2);
ν(φ1 + φ2) ≥ min{ν(φ1), ν(φ2)};
ν centered at infinity.
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Definition
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ν|C∗ ≡ 0;
ν(φ1φ2) = ν(φ1) + ν(φ2);
ν(φ1 + φ2) ≥ min{ν(φ1), ν(φ2)};
min{ν(X ), ν(Y )} < 0

Charles Favre Dynamics and valuations



Reminder
The valuative space is a tree

Global valuations
Dynamics of P∗

The elements
The topology

Examples

π

νE(f ) = ordE(f ◦ π)

Divisorial valuation

EL∞

π

Quasimonomial valuation

z1

z2

ν(f ) = νz,s(f ◦ π)

L∞

−deg
Monomial valuation.
νs(

∑
aijx iy j) =

min{is1 + js2, aij 6= 0}
Divisorial valuation
Quasimonomial or
Abhyankhar valuations.
Zariski or infinitely singular
valuations
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The elements
The topology

Pencil valuations

C with one place at infinity C = P−1(0)

Moh ⇒ Cλ = P−1(λ) has one place at infinity.

νC(Q) = − (C·Q−1(0))C2
deg(C) curve valuation

ν|C|(Q) = minλ νCλ
(Q)
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The elements
The topology

Topology

V = { normalized valuations min{ν(x), ν(y)} = −1}
Order relation ν ≤ µ ⇔ ∀φ, ν(φ) ≤ µ(φ)

Compact for the pointwise convergence.
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The elements
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Geometry

Theorem
(V,≤) is a tree:

−deg is the unique minimal element;
({−deg ≤ · ≤ ν},≤) ' ([0, 1],≤)

Quasimonomial segments: {π∗ν(s1,s2) s.t. a1s1 + a2s2 = −1}.
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Why V is a tree?

π

(C2, 0)

Xπ

E1

E2

Le graphe dual

E1 E2
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Why V is a tree?

π

(C2, 0)

Xπ

E3

E4

π

(C2, 0)

Xπ

E3

E7

E1

E5

E6

E2

Le graphe dual

E7

E6E5
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Definition of V1
Thinness
Proof of the structure theorem

Idea

Ex. P(x , y) = (x , xy), P∗νs,t = νs,s+t hence P∗V 6⊂ V
Valuations are local object
Some carry global informations:

−deg
pencil valuation
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Definition of V1
Thinness
Proof of the structure theorem

A new valuation space

Definition

V1 = {ν ∈ V, ν(φ) < 0∀φ, and A(ν) < 0}

Theorem
V1 is a closed subtree of V.

Theorem
ν ∈ V1

Either C1(−deg) ≤ ν ≤ C2(−deg)

Or ν is a rational pencil valuation
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Definition of V1
Thinness
Proof of the structure theorem

Thinness

π : X → P2, E ⊂ π−1L∞
A(divE) = divE(π∗dx ∧ dy) + 1
A(tν) = tA(ν)
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Thinness
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Thinness

π : X → P2, E ⊂ π−1L∞
A(divE) = divE(π∗dx ∧ dy) + 1
A(tν) = tA(ν)

A(−deg) = −2
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Thinness

π : X → P2, E ⊂ π−1L∞
A(divE) = divE(π∗dx ∧ dy) + 1
A(tν) = tA(ν)

A(νs,t) = s + t
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Global valuations
Dynamics of P∗

Definition of V1
Thinness
Proof of the structure theorem

Thinness

π : X → P2, E ⊂ π−1L∞
A(divE) = divE(π∗dx ∧ dy) + 1
A(tν) = tA(ν)

A(νs,t) = s + t
A(ν|C|) < 0 iff |C| is a rational pencil.

Theorem
For all ν ∈ V, A : [−deg, ν] → [−2, A(ν)] is a bijection

Charles Favre Dynamics and valuations



Reminder
The valuative space is a tree

Global valuations
Dynamics of P∗

Definition of V1
Thinness
Proof of the structure theorem

Proof

Theorem

{ν ∈ V, ν(φ) < 0∀φ, and A(ν) < 0} is a closed subtree of V.

Proof.
ν 7→ ν(φ) is increasing
ν 7→ A(ν) is increasing
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Global valuations
Dynamics of P∗

Definition of V1
Thinness
Proof of the structure theorem

Proof

Theorem

Theorem
ν ∈ V1

Either C1(−deg) ≤ ν ≤ C2(−deg)

Or ν is a rational pencil valuation

Idea of proof. p = center of ν.
ν  {Pk} key polynomials

Monomial {X , Y}
Quasim.  {X , Y , X p + θY q , · · · , PN}

Pk ∈ C[x , y ] irreducible, analytically irreducible at p
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Theorem
ν  {Pk}
ν ∈ V1 ⇒ P−1

k (0) has one place at infinity .

sup
ν(φ)

deg(φ)
= max

ν(Pk )

deg(Pk )
.

induction on the number of key pol.
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Reminder
The valuative space is a tree

Global valuations
Dynamics of P∗

Fixed point theorem
Attracting eigenvaluation

Basics

P∗ν(φ) = ν(φ ◦ P)

P∗ν = d(P, ν)× P•ν

P• : V1 → V1 continuous
d(P, ν) = −min{ν(x ◦ P), ν(y ◦ P)} ≥ 0
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Summary

P∗ν = λν

ν rational pencil ⇒ P skew product
C1(−deg) ≤ ν ≤ C2(−deg)

λn/ deg(Pn) ∈ [C2, C1]
d∞ = λ

Why d∞ is a quadratic integer?
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Attracting eigenvaluation

Theorem
P•ν? = ν?.
There exists U 3 ν? such that Pn

•ν → ν? for all ν ∈ U.
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Idea of proof

For a suitable parameterization on V1

P• : α 7→ aα + b
cα + d

with a, b, c, d ∈ N.
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Global valuations
Dynamics of P∗

Fixed point theorem
Attracting eigenvaluation

Consequences in picture

p
L∞

C2

C2P

P̂
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Global valuations
Dynamics of P∗

Fixed point theorem
Attracting eigenvaluation

Towards monomialization

Theorem

There exists π : X → P2 and p ∈ π−1(L∞) such that
P is holomorphic at p
Critical set of P is included in π−1(L∞) and contracted to p.

Normal form for (P, p)
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Rigid germs

Definition

f : (C2, 0) → (C2, 0) is rigid if
⋃

n Crit (f n) has normal crossing
singularities.

Theorem (Favre 2000)
Suppose f rigid and not invertible. Then f =

(αz, wzq + P(z))

(αz, wp)

(zp, λwzq + P(z))

(αz, zcwd)

(zawb, zcwd)

...
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Conclusion

When ν? is divisorial or an end point then d(P, ν?) is an
integer
When ν? is irrational qm.
(P, p) is locally monomial
Local computation ⇒ d∞ is a quadratic integer.
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