Dynamical system on valuation space

Charles Favre favre@math.jussieu.fr Mattias Jonsson mattiasj@kth.se

CNRS et Institut de Mathématiques de Jussieu KTH Stockholm

Sevilla, December 2005.

くロト (過) (目) (日)

æ

Remember yesterday

•
$$P : \mathbb{C}^2 \to \mathbb{C}^2$$
 polynomial, dominant.

• $d_n = \deg(P^n), d_\infty = \lim_n d_n^{1/n}$

Theorem

- Either P = (Q(x), R(x, y)) is a skew product;
- Or $d_{\infty}^n \leq d_n \leq C \cdot d_{\infty}^n$

 d_{∞} is a quadratic integer.

Remember yesterday

- $P : \mathbb{C}^2 \to \mathbb{C}^2$ polynomial, dominant.
- $d_n = \deg(P^n), d_\infty = \lim_n d_n^{1/n}$

Theorem

- Either P = (Q(x), R(x, y)) is a skew product;
- Or $d_{\infty}^n \leq d_n \leq C \cdot d_{\infty}^n$

 d_{∞} is a quadratic integer.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Remember yesterday

• $P : \mathbb{C}^2 \to \mathbb{C}^2$ polynomial, dominant.

•
$$d_n = \deg(P^n), d_\infty = \lim_n d_n^{1/r}$$

Theorem

- Either P = (Q(x), R(x, y)) is a skew product;
- Or $d_{\infty}^n \leq d_n \leq C \cdot d_{\infty}^n$

 d_{∞} is a quadratic integer.

Remember yesterday

• $P : \mathbb{C}^2 \to \mathbb{C}^2$ polynomial, dominant.

•
$$d_n = \deg(P^n), d_\infty = \lim_n d_n^{1/r}$$

Theorem

• Either P = (Q(x), R(x, y)) is a skew product;

• Or $d_{\infty}^n \leq d_n \leq C \cdot d_{\infty}^n$

 d_{∞} is a quadratic integer.

Remember yesterday

• $P : \mathbb{C}^2 \to \mathbb{C}^2$ polynomial, dominant.

•
$$d_n = \deg(P^n), d_\infty = \lim_n d_n^{1/r}$$

Theorem

- Either P = (Q(x), R(x, y)) is a skew product;
- Or $d_{\infty}^n \leq d_n \leq C \cdot d_{\infty}^n$

 d_{∞} is a quadratic integer.

Remember yesterday

• $P : \mathbb{C}^2 \to \mathbb{C}^2$ polynomial, dominant.

•
$$d_n = \deg(P^n), d_\infty = \lim_n d_n^{1/r}$$

Theorem

- Either P = (Q(x), R(x, y)) is a skew product;
- Or $d_{\infty}^n \leq d_n \leq C \cdot d_{\infty}^n$

 d_{∞} is a quadratic integer.

イロト イポト イヨト イヨト

Method

V₁ = {ν : C[x, y] → R centered at ∞, ν(φ) < 0, A(ν) < 0} P_{*}ν(φ) = ν(φ ∘ P).

Study the dynamics of $P_* : \mathcal{V}_1 \rightarrow \mathcal{V}_1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Method

V₁ = {ν : C[x, y] → R centered at ∞, ν(φ) < 0, A(ν) < 0}
 P_{*}ν(φ) = ν(φ ∘ P).

Study the dynamics of $P_* : \mathcal{V}_1 \rightarrow \mathcal{V}_1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Method

V₁ = {ν : C[x, y] → R centered at ∞, ν(φ) < 0, A(ν) < 0}
 P_{*}ν(φ) = ν(φ ∘ P).

Study the dynamics of $P_* : \mathcal{V}_1 \to \mathcal{V}_1$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Key results

Theorem

 \mathcal{V}_1 is a tree

Theorem (Eigenvaluation)

 ${\sf P}_*
u = \lambda
u$ for some $u \in {\mathcal V}_1$

Theorem (Structure of valuations in \mathcal{V}_1)

Suppose $\nu \in \mathcal{V}_1$

- *Either* $C_1(-\deg) \le \nu \le C_2(-\deg)$
- Or ν is associated to a rational fibration.

イロト 不得 とくほと くほとう

ъ

Key results

Theorem

 \mathcal{V}_1 is a tree

Theorem (Eigenvaluation)

 $P_*
u = \lambda
u$ for some $u \in \mathcal{V}_1$

Theorem (Structure of valuations in \mathcal{V}_1)

Suppose $\nu \in \mathcal{V}_1$

- *Either* $C_1(-\deg) \le \nu \le C_2(-\deg)$
- Or ν is associated to a rational fibration.

イロト 不得 とくほ とくほ とう

Key results

Theorem

 \mathcal{V}_1 is a tree

Theorem (Eigenvaluation)

 $P_*
u = \lambda
u$ for some $u \in \mathcal{V}_1$

Theorem (Structure of valuations in \mathcal{V}_1)

Suppose $\nu \in \mathcal{V}_1$

• Either $C_1(-\deg) \le \nu \le C_2(-\deg)$

Or v is associated to a rational fibration.

ヘロト 人間 とくほとく ほとう

Key results

Theorem

 \mathcal{V}_1 is a tree

Theorem (Eigenvaluation)

 $P_*
u = \lambda
u$ for some $u \in \mathcal{V}_1$

Theorem (Structure of valuations in \mathcal{V}_1)

Suppose $\nu \in \mathcal{V}_1$

- Either $C_1(-\deg) \le \nu \le C_2(-\deg)$
- Or ν is associated to a rational fibration.

イロト イポト イヨト イヨト

- 2 The valuative space is a tree
 - The elements
 - The topology
- 3 Global valuations
 - Definition of \mathcal{V}_1
 - Thinness
 - Proof of the structure theorem

Oynamics of P_{*}

- Fixed point theorem
- Attracting eigenvaluation

▲ 🗇 ▶ → 三 ▶ →

The elements The topology

Valuations

Definition

Valuation $\nu : \mathbb{C}[x, y] \setminus \{0\} \to \mathbb{R}$

•
$$u|_{\mathbb{C}^*} \equiv 0;$$

•
$$\nu(\phi_1\phi_2) = \nu(\phi_1) + \nu(\phi_2);$$

•
$$\nu(\phi_1 + \phi_2) \ge \min\{\nu(\phi_1), \nu(\phi_2)\};$$

• ν centered at infinity.

イロト 不得 とくほ とくほとう

E 990

The elements The topology

Valuations

Definition

Valuation $\nu : \mathbb{C}[x, y] \setminus \{0\} \to \mathbb{R}$

•
$$\nu|_{\mathbb{C}^*} \equiv 0;$$

•
$$\nu(\phi_1\phi_2) = \nu(\phi_1) + \nu(\phi_2);$$

•
$$\nu(\phi_1 + \phi_2) \ge \min\{\nu(\phi_1), \nu(\phi_2)\};$$

ヘロト 人間 とくほとくほとう

₹ 990

The elements The topology

Examples

Quasimonomial valuation

deg

- Monomial valuation. $\nu_s(\sum a_{ij}x^iy^j) = \min\{is_1 + js_2, a_{ij} \neq 0\}$
- Divisorial valuation
- Quasimonomial or Abhyankhar valuations.
- Zariski or infinitely singular valuations

ヘロン 人間 とくほとく ほとう

The elements The topology

Examples

Quasimonomial valuation

deg

- Monomial valuation. $\nu_s(\sum a_{ij}x^iy^j) = \min\{is_1 + js_2, a_{ij} \neq 0\}$
- Divisorial valuation
- Quasimonomial or Abhyankhar valuations.
- Zariski or infinitely singular valuations

ヘロン ヘアン ヘビン ヘビン

The elements The topology

Examples

Quasimonomial valuation

deg

- Monomial valuation. $\nu_s(\sum a_{ij}x^iy^j) = \min\{is_1 + js_2, a_{ij} \neq 0\}$
- Divisorial valuation
- Quasimonomial or Abhyankhar valuations.
- Zariski or infinitely singular valuations

・ロト ・ 理 ト ・ ヨ ト ・

The elements The topology

Examples

Quasimonomial valuation

deg

- Monomial valuation. $\nu_s(\sum a_{ij}x^iy^j) = \min\{is_1 + js_2, a_{ij} \neq 0\}$
- Divisorial valuation
- Quasimonomial or Abhyankhar valuations.
- Zariski or infinitely singular valuations

くロト (過) (目) (日)

ъ

The elements The topology

Examples

Quasimonomial valuation

deg

- Monomial valuation. $\nu_s(\sum a_{ij}x^iy^j) = \min\{is_1 + js_2, a_{ij} \neq 0\}$
- Divisorial valuation
- Quasimonomial or Abhyankhar valuations.
- Zariski or infinitely singular valuations

くロト (過) (目) (日)

ъ

The elements The topology

Pencil valuations

• *C* with one place at infinity $C = P^{-1}(0)$

- Moh $\Rightarrow C_{\lambda} = P^{-1}(\lambda)$ has one place at infinity.
- $\nu_C(Q) = -\frac{(C \cdot Q^{-1}(0))_{\mathbb{C}^2}}{\deg(C)}$ curve valuation

•
$$\nu_{|C|}(Q) = \min_{\lambda} \nu_{C_{\lambda}}(Q)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

The elements The topology

Pencil valuations

• *C* with one place at infinity $C = P^{-1}(0)$

- Moh $\Rightarrow C_{\lambda} = P^{-1}(\lambda)$ has one place at infinity.
- $\nu_C(Q) = -\frac{(C \cdot Q^{-1}(0))_{\mathbb{C}^2}}{\deg(C)}$ curve valuation

•
$$\nu_{|C|}(Q) = \min_{\lambda} \nu_{C_{\lambda}}(Q)$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

The elements The topology

Pencil valuations

- *C* with one place at infinity $C = P^{-1}(0)$
- Moh $\Rightarrow C_{\lambda} = P^{-1}(\lambda)$ has one place at infinity.
- $\nu_C(Q) = -\frac{(C \cdot Q^{-1}(0))_{\mathbb{C}^2}}{\deg(C)}$ curve valuation
- $\nu_{|C|}(Q) = \min_{\lambda} \nu_{C_{\lambda}}(Q)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

The elements The topology

Pencil valuations

- *C* with one place at infinity $C = P^{-1}(0)$
- Moh $\Rightarrow C_{\lambda} = P^{-1}(\lambda)$ has one place at infinity.
- $\nu_{\mathcal{C}}(\mathcal{Q}) = -\frac{(\mathcal{C} \cdot \mathcal{Q}^{-1}(0))_{\mathbb{C}^2}}{\deg(\mathcal{C})}$ curve valuation

• $\nu_{|C|}(Q) = \min_{\lambda} \nu_{C_{\lambda}}(Q)$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

The elements The topology

Pencil valuations

- *C* with one place at infinity $C = P^{-1}(0)$
- Moh $\Rightarrow C_{\lambda} = P^{-1}(\lambda)$ has one place at infinity.
- $\nu_C(Q) = -\frac{(C \cdot Q^{-1}(0))_{\mathbb{C}^2}}{\deg(C)}$ curve valuation

•
$$\nu_{|C|}(Q) = \min_{\lambda} \nu_{C_{\lambda}}(Q)$$

イロン 不得 とくほ とくほ とうほ

The elements The topology

Topology

• $\mathcal{V} = \overline{\{ \text{ normalized valuations } \min\{\nu(x), \nu(y)\} = -1 \} }$

- Order relation $\nu \leq \mu \Leftrightarrow \forall \phi, \nu(\phi) \leq \mu(\phi)$
- Compact for the pointwise convergence.

イロト 不得 とくほと くほとう

The elements The topology

Topology

- $\mathcal{V} = \overline{\{ \text{ normalized valuations } \min\{\nu(x), \nu(y)\} = -1 \} }$
- Order relation $\nu \leq \mu \Leftrightarrow \forall \phi, \nu(\phi) \leq \mu(\phi)$
- Compact for the pointwise convergence.

ヘロト 人間 とくほとくほとう

The elements The topology

Topology

- $\mathcal{V} = \overline{\{ \text{ normalized valuations } \min\{\nu(x), \nu(y)\} = -1 \} }$
- Order relation $\nu \leq \mu \Leftrightarrow \forall \phi, \nu(\phi) \leq \mu(\phi)$
- Compact for the pointwise convergence.

ヘロト 人間 とくほとくほとう

The elements The topology

Geometry

Theorem

 (\mathcal{V},\leq) is a tree:

• - deg is the unique minimal element;

• $(\{-\deg \leq \cdot \leq \nu\}, \leq) \simeq ([0, 1], \leq)$

Quasimonomial segments: { $\pi_*\nu_{(s_1,s_2)}$ s.t. $a_1s_1 + a_2s_2 = -1$ }.

◆□> ◆□> ◆注> ◆注> 二注:

The elements The topology

Geometry

Theorem

 (\mathcal{V},\leq) is a tree:

deg is the unique minimal element;

• $(\{-\deg \leq \cdot \leq \nu\}, \leq) \simeq ([0, 1], \leq)$

Quasimonomial segments: { $\pi_*\nu_{(s_1,s_2)}$ s.t. $a_1s_1 + a_2s_2 = -1$ }.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

The elements The topology

Geometry

Theorem

 (\mathcal{V}, \leq) is a tree:

• - deg is the unique minimal element;

•
$$(\{-\deg \le \cdot \le \nu\}, \le) \simeq ([0, 1], \le)$$

Quasimonomial segments: { $\pi_*\nu_{(s_1,s_2)}$ s.t. $a_1s_1 + a_2s_2 = -1$ }.

The elements The topology

Geometry

Theorem

 (\mathcal{V}, \leq) is a tree:

deg is the unique minimal element;

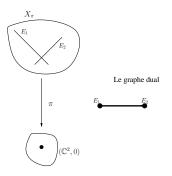
•
$$(\{-\deg \leq \cdot \leq \nu\}, \leq) \simeq ([0, 1], \leq)$$

Quasimonomial segments: $\{\pi_*\nu_{(s_1,s_2)} \text{ s.t. } a_1s_1 + a_2s_2 = -1\}.$

ヘロト 人間 とくほとくほとう

The elements The topology

Why \mathcal{V} is a tree?

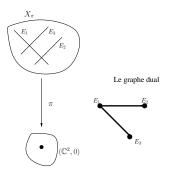


ヘロト 人間 とくほとくほとう

∃ 𝒫𝔄𝔅

The elements The topology

Why \mathcal{V} is a tree?

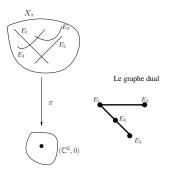


ヘロト 人間 とくほとくほとう

∃ 𝒫𝔄𝔅

The elements The topology

Why \mathcal{V} is a tree?

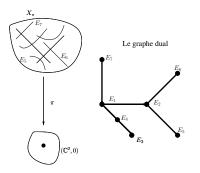


ヘロト 人間 とくほとくほとう

∃ 𝒫𝔄𝔅

The elements The topology

Why \mathcal{V} is a tree?

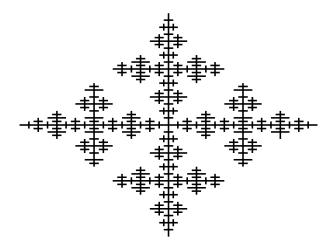


<ロト <回 > < 注 > < 注 > 、

∃ 𝒫𝔄𝔅

The elements The topology

Why \mathcal{V} is a tree?



<ロト <回 > < 注 > < 注 > 、

æ

 $\begin{array}{l} \text{Definition of } \mathcal{V}_1 \\ \text{Thinness} \\ \text{Proof of the structure theorem} \end{array}$

Idea

Ex. P(x, y) = (x, xy), $P_* \nu_{s,t} = \nu_{s,s+t}$ hence $P_* \mathcal{V} \not\subset \mathcal{V}$

- Valuations are local object
- Some carry global informations:
 - - deg
 - pencil valuation

 $\begin{array}{l} \text{Definition of } \mathcal{V}_1 \\ \text{Thinness} \\ \text{Proof of the structure theorem} \end{array}$

Idea

Ex. P(x, y) = (x, xy), $P_*\nu_{s,t} = \nu_{s,s+t}$ hence $P_*\mathcal{V} \not\subset \mathcal{V}$

- Valuations are local object
- Some carry global informations:
 - - deg
 - pencil valuation

 $\begin{array}{l} \text{Definition of } \mathcal{V}_1 \\ \text{Thinness} \\ \text{Proof of the structure theorem} \end{array}$

Idea

Ex. P(x, y) = (x, xy), $P_* \nu_{s,t} = \nu_{s,s+t}$ hence $P_* \mathcal{V} \not\subset \mathcal{V}$

- Valuations are local object
- Some carry global informations:
 - - deg
 - pencil valuation

 $\begin{array}{l} \text{Definition of } \mathcal{V}_1 \\ \text{Thinness} \\ \text{Proof of the structure theorem} \end{array}$

Idea

- Ex. P(x, y) = (x, xy), $P_*\nu_{s,t} = \nu_{s,s+t}$ hence $P_*\mathcal{V} \not\subset \mathcal{V}$
 - Valuations are local object
 - Some carry global informations:
 - - deg
 - pencil valuation

 $\begin{array}{l} \text{Definition of } \mathcal{V}_1 \\ \text{Thinness} \\ \text{Proof of the structure theorem} \end{array}$

Idea

Ex.
$$P(x, y) = (x, xy)$$
, $P_* \nu_{s,t} = \nu_{s,s+t}$ hence $P_* \mathcal{V} \not\subset \mathcal{V}$

- Valuations are local object
- Some carry global informations:

イロン 不同 とくほう イヨン

æ

 $\begin{array}{l} \text{Definition of } \mathcal{V}_1 \\ \text{Thinness} \\ \text{Proof of the structure theorem} \end{array}$

Idea

Ex.
$$P(x, y) = (x, xy)$$
, $P_* \nu_{s,t} = \nu_{s,s+t}$ hence $P_* \mathcal{V} \not\subset \mathcal{V}$

- Valuations are local object
- Some carry global informations:

pencil valuation

イロン 不同 とくほう イヨン

 $\begin{array}{l} \text{Definition of } \mathcal{V}_1 \\ \text{Thinness} \\ \text{Proof of the structure theorem} \end{array}$

Idea

Ex.
$$P(x, y) = (x, xy)$$
, $P_* \nu_{s,t} = \nu_{s,s+t}$ hence $P_* \mathcal{V} \not\subset \mathcal{V}$

- Valuations are local object
- Some carry global informations:
 - - deg
 - pencil valuation

イロン 不同 とくほう イヨン

 $\begin{array}{l} \text{Definition of } \mathcal{V}_1 \\ \text{Thinness} \\ \text{Proof of the structure theorem} \end{array}$

A new valuation space

Definition

$$\mathcal{V}_1 = \overline{\{\nu \in \mathcal{V}, \, \nu(\phi) < \mathbf{0} \, \forall \phi, \text{ and } A(\nu) < \mathbf{0}\}}$$

Theorem

 \mathcal{V}_1 is a closed subtree of \mathcal{V} .

Theorem

 $\nu \in \mathcal{V}_1$

- Either $C_1(-\deg) \le \nu \le C_2(-\deg)$
- Or ν is a rational pencil valuation

イロト 不得 とくほと くほとう

 $\begin{array}{l} \text{Definition of } \mathcal{V}_1 \\ \text{Thinness} \\ \text{Proof of the structure theorem} \end{array}$

A new valuation space

Definition

$$\mathcal{V}_1 = \overline{\{\nu \in \mathcal{V}, \, \nu(\phi) < \mathbf{0} \, \forall \phi, \text{ and } A(\nu) < \mathbf{0}\}}$$

Theorem

 \mathcal{V}_1 is a closed subtree of \mathcal{V} .

Theorem

 $\nu \in \mathcal{V}_1$

- Either $C_1(-\deg) \le \nu \le C_2(-\deg)$
- Or ν is a rational pencil valuation

イロト 不得 とくほと くほとう

 $\begin{array}{l} \text{Definition of } \mathcal{V}_1 \\ \text{Thinness} \\ \text{Proof of the structure theorem} \end{array}$

A new valuation space

Definition

$$\mathcal{V}_1 = \overline{\{\nu \in \mathcal{V}, \, \nu(\phi) < \mathbf{0} \, \forall \phi, \text{ and } A(\nu) < \mathbf{0}\}}$$

Theorem

 \mathcal{V}_1 is a closed subtree of \mathcal{V} .

Theorem

 $\nu \in \mathcal{V}_1$

- Either $C_1(-\deg) \le \nu \le C_2(-\deg)$
- Or ν is a rational pencil valuation

イロト 不得 とくほ とくほとう

 $\begin{array}{l} \text{Definition of } \mathcal{V}_1 \\ \text{Thinness} \\ \text{Proof of the structure theorem} \end{array}$

A new valuation space

Definition

$$\mathcal{V}_1 = \overline{\{\nu \in \mathcal{V}, \, \nu(\phi) < \mathbf{0} \, \forall \phi, \text{ and } A(\nu) < \mathbf{0}\}}$$

Theorem

 \mathcal{V}_1 is a closed subtree of \mathcal{V} .

Theorem

 $\nu \in \mathcal{V}_1$

• Either $C_1(-\deg) \le \nu \le C_2(-\deg)$

• Or ν is a rational pencil valuation

イロト 不得 とくほ とくほとう

 $\begin{array}{l} \text{Definition of } \mathcal{V}_1 \\ \text{Thinness} \\ \text{Proof of the structure theorem} \end{array}$

A new valuation space

Definition

$$\mathcal{V}_1 = \overline{\{\nu \in \mathcal{V}, \, \nu(\phi) < \mathbf{0} \, \forall \phi, \text{ and } A(\nu) < \mathbf{0}\}}$$

Theorem

 \mathcal{V}_1 is a closed subtree of \mathcal{V} .

Theorem

 $\nu \in \mathcal{V}_1$

- Either $C_1(-\deg) \le \nu \le C_2(-\deg)$
- Or ν is a rational pencil valuation

イロン イボン イヨン イヨン

э

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Thinness

$\pi: X \to \mathbb{P}^2, E \subset \pi^{-1}L_{\infty}$ • $A(\operatorname{div}_E) = \operatorname{div}_E(\pi^* dx \wedge dy) + 1$ • $A(t\nu) = tA(\nu)$

Charles Favre Dynamics and valuations

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Thinness

$\pi: X \to \mathbb{P}^2, E \subset \pi^{-1}L_{\infty}$ • $A(\operatorname{div}_E) = \operatorname{div}_E(\pi^* dx \wedge dy) + 1$ • $A(t\nu) = tA(\nu)$ •

Charles Favre Dynamics and valuations

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Thinness

$\pi: X \to \mathbb{P}^2, E \subset \pi^{-1}L_{\infty}$ • $A(\operatorname{div}_E) = \operatorname{div}_E(\pi^* dx \wedge dy) + 1$ • $A(t\nu) = tA(\nu)$

Charles Favre Dynamics and valuations

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Thinness

$$\pi: X \to \mathbb{P}^2, E \subset \pi^{-1}L_{\infty}$$

• $A(\operatorname{div}_E) = \operatorname{div}_E(\pi^* dx \wedge dy) + T$
• $A(t\nu) = tA(\nu)$

Charles Favre Dynamics and valuations

・ロト ・聞ト ・ヨト ・ヨト

E • 9 € (~

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Thinness

$$\pi: X \to \mathbb{P}^2, E \subset \pi^{-1}L_{\infty}$$
• $A(\operatorname{div}_E) = \operatorname{div}_E(\pi^* dx \wedge dy) + 1$
• $A(t\nu) = tA(\nu)$
• $A(-\operatorname{deg}) = -2$

・ロト ・聞ト ・ヨト ・ヨト

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Thinness

$$\pi: X \to \mathbb{P}^2, E \subset \pi^{-1}L_{\infty}$$
• $A(\operatorname{div}_E) = \operatorname{div}_E(\pi^* dx \wedge dy) + 1$
• $A(t\nu) = tA(\nu)$
• $A(\nu_{s,t}) = s + t$

・ロト ・聞ト ・ヨト ・ヨト

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Thinness

$$\begin{aligned} \pi: X \to \mathbb{P}^2, \ & E \subset \pi^{-1}L_{\infty} \\ \bullet \ & A(\operatorname{div}_E) = \operatorname{div}_E(\pi^*dx \wedge dy) + 1 \\ \bullet \ & A(t\nu) = tA(\nu) \\ \bullet \ & A(\nu_{s,t}) = s + t \\ \bullet \ & A(\nu_{|C|}) < 0 \text{ iff } |C| \text{ is a rational pencil.} \end{aligned}$$

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Thinness

$$\begin{aligned} \pi: X \to \mathbb{P}^2, & E \subset \pi^{-1}L_{\infty} \\ \bullet & A(\operatorname{div}_E) = \operatorname{div}_E(\pi^*dx \wedge dy) + 1 \\ \bullet & A(t\nu) = tA(\nu) \\ \bullet & A(\nu_{s,t}) = s + t \\ \bullet & A(\nu_{|C|}) < 0 \text{ iff } |C| \text{ is a rational pencil.} \end{aligned}$$

Theorem

For all
$$\nu \in \mathcal{V}$$
, $A : [-\deg, \nu] \rightarrow [-2, A(\nu)]$ is a bijection

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Proof

Theorem

 $\overline{\{\nu \in \mathcal{V}, \nu(\phi) < 0 \,\forall \phi, \text{ and } A(\nu) < 0\}}$ is a closed subtree of \mathcal{V} .

Proof.

- $\nu \mapsto \nu(\phi)$ is increasing
- $\nu \mapsto A(\nu)$ is increasing

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Proof

Theorem

 $\overline{\{\nu \in \mathcal{V}, \nu(\phi) < \mathbf{0} \, \forall \phi, \text{ and } \mathbf{A}(\nu) < \mathbf{0}\}}$ is a closed subtree of \mathcal{V} .

Proof.

• $\nu \mapsto \nu(\phi)$ is increasing

• $\nu \mapsto A(\nu)$ is increasing

Charles Favre Dynamics and valuations

イロト 不得 トイヨト イヨト 二日 二

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Proof

Theorem

 $\overline{\{\nu \in \mathcal{V}, \nu(\phi) < 0 \,\forall \phi, \text{ and } A(\nu) < 0\}}$ is a closed subtree of \mathcal{V} .

Proof.

- $\nu \mapsto \nu(\phi)$ is increasing
- $\nu \mapsto A(\nu)$ is increasing

イロト 不得 トイヨト イヨト 二日 二

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Proof

Theorem

 $\nu \in \mathcal{V}_1$

- Either $C_1(-\deg) \le \nu \le C_2(-\deg)$
- Or ν is a rational pencil valuation

Idea of proof. $p = \text{center of } \nu$.

- $\nu \rightsquigarrow \{P_k\}$ key polynomials
 - Monomial $\rightsquigarrow \{X, Y\}$
 - Quasim. $\rightsquigarrow \{X, Y, X^p + \theta Y^q, \cdots, P_N\}$
- $P_k \in \mathbb{C}[x, y]$ irreducible, analytically irreducible at p

イロン 不得 とくほ とくほ とうほ

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Proof

• Theorem Idea of proof. $p = \text{center of } \nu$. • $\nu \rightsquigarrow \{P_k\}$ key polynomials • Monomial $\rightsquigarrow \{X, Y\}$ • Quasim. $\rightsquigarrow \{X, Y, X^p + \theta Y^q, \cdots, P_N\}$

• $P_k \in \mathbb{C}[x, y]$ irreducible, analytically irreducible at p

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Proof

Theorem Idea of proof. $p = \text{center of } \nu$.

- $\nu \rightsquigarrow \{P_k\}$ key polynomials
 - Monomial $\rightsquigarrow \{X, Y\}$
 - Quasim. $\rightsquigarrow \{X, Y, X^p + \theta Y^q, \cdots, P_N\}$

• $P_k \in \mathbb{C}[x, y]$ irreducible, analytically irreducible at p

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Proof

Theorem Idea of proof. $p = \text{center of } \nu$.
• $\nu \rightsquigarrow \{P_k\}$ key polynomials
• Monomial $\rightsquigarrow \{X, Y\}$ • Quasim. $\rightsquigarrow \{X, Y, X^p + \theta Y^q, \cdots, P_N\}$ • $P_k \in \mathbb{C}[x, y]$ irreducible, analytically irreducible at p

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Proof

- Theorem Idea of proof. $p = \text{center of } \nu$.
 - $\nu \rightsquigarrow \{P_k\}$ key polynomials
 - Monomial $\rightsquigarrow \{X, Y\}$
 - Quasim. $\rightsquigarrow \{X, Y, X^p + \theta Y^q, \cdots, P_N\}$

• $P_k \in \mathbb{C}[x, y]$ irreducible, analytically irreducible at p

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Proof

- Theorem Idea of proof. $p = \text{center of } \nu$.
 - $\nu \rightsquigarrow \{P_k\}$ key polynomials
 - Monomial $\rightsquigarrow \{X, Y\}$
 - Quasim. $\rightsquigarrow \{X, Y, X^p + \theta Y^q, \cdots, P_N\}$

• $P_k \in \mathbb{C}[x, y]$ irreducible, analytically irreducible at p

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Proof

- Theorem Idea of proof. $p = \text{center of } \nu$.
 - $\nu \rightsquigarrow \{P_k\}$ key polynomials
 - Monomial $\rightsquigarrow \{X, Y\}$
 - Quasim. $\rightsquigarrow \{X, Y, X^p + \theta Y^q, \cdots, P_N\}$

• $P_k \in \mathbb{C}[x, y]$ irreducible, analytically irreducible at p

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Key polynomials

Theorem $\nu \rightsquigarrow \{P_k\}$ $\nu \in \mathcal{V}_1 \Rightarrow P_k^{-1}(0)$ has one place at infinity . $\sup \frac{\nu(\phi)}{\deg(\phi)} = \max \frac{\nu(P_k)}{\deg(P_k)}$.

induction on the number of key pol.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Key polynomials

Theorem

$$\begin{array}{l} \nu \rightsquigarrow \{P_k\}\\ \nu \in \mathcal{V}_1 \Rightarrow P_k^{-1}(0) \text{ has one place at infinity }.\\ \sup \frac{\nu(\phi)}{\deg(\phi)} = \max \frac{\nu(P_k)}{\deg(P_k)} \ . \end{array}$$

induction on the number of key pol.

ヘロト 人間 とくほとくほとう

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Key polynomials

Theorem

induction on the number of key pol.

ヘロト 人間 とくほとくほとう

Definition of \mathcal{V}_1 Thinness Proof of the structure theorem

Key polynomials

Theorem

$$\begin{array}{l} \nu \rightsquigarrow \{P_k\}\\ \nu \in \mathcal{V}_1 \Rightarrow P_k^{-1}(0) \text{ has one place at infinity }.\\ \sup \frac{\nu(\phi)}{\deg(\phi)} = \max \frac{\nu(P_k)}{\deg(P_k)} \ .\end{array}$$

induction on the number of key pol.

ヘロト 人間 とくほとくほとう

₹ 990

Fixed point theorem Attracting eigenvaluation

Basics

•
$$P_*\nu(\phi) = \nu(\phi \circ P)$$

$$\bullet P_*\nu = d(P,\nu) \times P_\bullet\nu$$

•
$$P_{\bullet}: \mathcal{V}_1 \to \mathcal{V}_1$$
 continuous

• $d(P,\nu) = -\min\{\nu(x \circ P), \nu(y \circ P)\} \ge 0$

ヘロト 人間 とくほとくほとう

Fixed point theorem Attracting eigenvaluation

Basics

•
$$P_*\nu(\phi) = \nu(\phi \circ P)$$

•
$$A(P_*\nu) = A(\nu) + \nu(\operatorname{Jac}(P))$$

•
$$P_*\nu = d(P,\nu) \times P_*\nu$$

•
$$P_{\bullet}: \mathcal{V}_1 \to \mathcal{V}_1$$
 continuous

•
$$d(P, \nu) = -\min\{\nu(x \circ P), \nu(y \circ P)\} \ge 0$$

Fixed point theorem Attracting eigenvaluation

Basics

•
$$P_*\nu(\phi) = \nu(\phi \circ P)$$

• $A(P_*\nu) = A(\nu) + \nu(\operatorname{Jac}(P)) \Rightarrow P_*\mathcal{V}_1 \subset \mathcal{V}_1$

•
$$P_*\nu = d(P,\nu) \times P_*\nu$$

•
$$P_{\bullet}: \mathcal{V}_1 \to \mathcal{V}_1$$
 continuous

•
$$d(P, \nu) = -\min\{\nu(x \circ P), \nu(y \circ P)\} \ge 0$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Fixed point theorem Attracting eigenvaluation

Basics

•
$$P_*\nu(\phi) = \nu(\phi \circ P)$$

• $A(P_*\nu) = A(\nu) + \nu(\operatorname{Jac}(P)) \Rightarrow P_*\mathcal{V}_1 \subset \mathcal{V}_1$
• $P_*\nu = d(P,\nu) \times P_*\nu$
• $P_* : \mathcal{V}_1 \to \mathcal{V}_1 \text{ continuous}$
• $d(P,\nu) = -\min\{\nu(x \circ P), \nu(y \circ P)\} \ge 0$

<ロト <回 > < 注 > < 注 > 、

∃ 𝒫𝔄𝔅

Fixed point theorem Attracting eigenvaluation

Basics

•
$$P_*\nu(\phi) = \nu(\phi \circ P)$$

• $A(P_*\nu) = A(\nu) + \nu(\operatorname{Jac}(P)) \Rightarrow P_*\mathcal{V}_1 \subset \mathcal{V}_1$
• $P_*\nu = d(P,\nu) \times P_*\nu$
• $P_\bullet: \mathcal{V}_1 \to \mathcal{V}_1 \text{ continuous}$
• $d(P,\nu) = -\min\{\nu(x \circ P), \nu(y \circ P)\} \ge 0$

Fixed point theorem Attracting eigenvaluation

Local degree

• $d(P, \nu) = -\min\{\nu(x \circ P), \nu(y \circ P)\}$

ヘロト 人間 とくほとくほとう

₹ 990

Fixed point theorem Attracting eigenvaluation

Local degree

•
$$d(P, \cdot) : \mathcal{V}_1 \to \mathbb{R}_+$$

ヘロト 人間 とくほとく ほとう

∃ 𝒫𝔄𝔅

-ixed point theorem Attracting eigenvaluation

Local degree

•
$$d(P, \cdot) : \mathcal{V}_1 \to \mathbb{R}_+$$

•
$$d(P, -\deg) = \deg(P)$$

Charles Favre Dynamics and valuations

ヘロト 人間 とくほとく ほとう

∃ 𝒫𝔄𝔅

Fixed point theorem Attracting eigenvaluation

Local degree

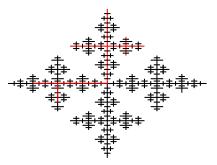
- $d(P, \cdot) : \mathcal{V}_1 \to \mathbb{R}_+$
- $d(P, -\deg) = \deg(P)$
- $d(P, \cdot)$ decreasing and locally cst outside a finite tree.

ヘロト 人間 とくほとくほとう

Fixed point theorem Attracting eigenvaluation

Local degree

- $d(P, \cdot) : \mathcal{V}_1 \to \mathbb{R}_+$
- *d*(*P*, − deg) = deg(*P*)
- $d(P, \cdot)$ decreasing and locally cst outside a finite tree.



・ 同 ト ・ ヨ ト ・ ヨ ト

Fixed point theorem Attracting eigenvaluation

Fixed pt thm

Theorem (Eigenvaluation)

 $P_{\bullet}: \mathcal{V}_1 \rightarrow \mathcal{V}_1$ has a fixed point $P_* \nu = \lambda \nu$ for some $\nu \in \mathcal{V}_1$

イロト 不得 とくほ とくほとう

Fixed point theorem Attracting eigenvaluation

Fixed pt thm

Theorem (Eigenvaluation)

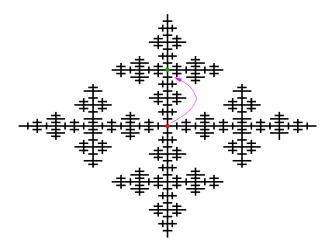
 $P_{\bullet}: \mathcal{V}_1 \rightarrow \mathcal{V}_1$ has a fixed point $P_*\nu = \lambda \nu$ for some $\nu \in \mathcal{V}_1$

Charles Favre Dynamics and valuations

ヘロト 人間 とくほとくほとう

Fixed point theorem Attracting eigenvaluation

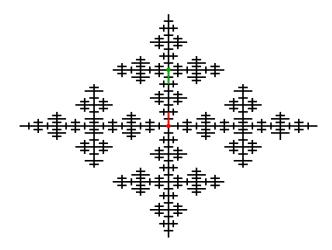
Proof



ヘロト 人間 とくほとくほとう

Fixed point theorem Attracting eigenvaluation

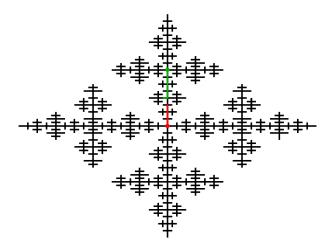
Proof



ヘロト 人間 とくほとくほとう

Fixed point theorem Attracting eigenvaluation

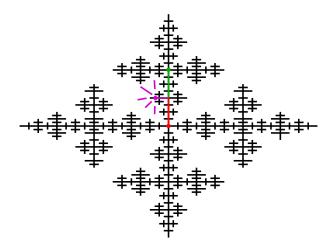
Proof



ヘロト 人間 とくほとくほとう

Fixed point theorem Attracting eigenvaluation

Proof



ヘロト 人間 とくほとくほとう

Fixed point theorem Attracting eigenvaluation

Summary

• $P_*\nu = \lambda \nu$

- ν rational pencil \Rightarrow *P* skew product
- $C_1(-\deg) \leq \nu \leq C_2(-\deg)$
 - $\lambda^n/\deg(P^n) \in [C_2, C_1]$

•
$$d_{\infty} = \lambda$$

Why d_{∞} is a quadratic integer?

ヘロト 人間 とくほとくほとう

Fixed point theorem Attracting eigenvaluation

Summary

•
$$P_*\nu = \lambda \nu$$

• ν rational pencil \Rightarrow *P* skew product

C₁(-deg) ≤ ν ≤ C₂(-deg)
 λⁿ/deg(Pⁿ) ∈ [C₂, C₁]
 d_∞ = λ

Why d_{∞} is a quadratic integer?

イロト 不得 とくほと くほとう

Fixed point theorem

Summary

•
$$P_*\nu = \lambda \nu$$

• ν rational pencil \Rightarrow *P* skew product

•
$$C_1(-\deg) \leq \nu \leq C_2(-\deg)$$

λⁿ/deg(Pⁿ) ∈ [C₂, C₁]
 d_∞ = λ

•
$$d_{\infty} = d_{\infty}$$

ヘロト 人間 とくほとくほとう

Fixed point theorem Attracting eigenvaluation

Summary

•
$$P_*\nu = \lambda \nu$$

• ν rational pencil \Rightarrow *P* skew product

•
$$C_1(-\deg) \leq \nu \leq C_2(-\deg)$$

•
$$\lambda^n/\deg(P^n) \in [C_2, C_1]$$

• $d_{\infty} = \lambda$

Why d_{∞} is a quadratic integer?

イロト 不得 とくほ とくほとう

Fixed point theorem Attracting eigenvaluation

Summary

•
$$P_*\nu = \lambda \nu$$

• ν rational pencil \Rightarrow *P* skew product

•
$$C_1(-\deg) \leq \nu \leq C_2(-\deg)$$

•
$$\lambda^n/\deg(P^n) \in [C_2, C_1]$$

•
$$d_{\infty} = \lambda$$

Why d_{∞} is a quadratic integer?

・ロト ・ ア・ ・ ヨト ・ ヨト

Fixed point theorem Attracting eigenvaluation

Summary

•
$$P_*\nu = \lambda \nu$$

• ν rational pencil \Rightarrow *P* skew product

•
$$C_1(-\deg) \le \nu \le C_2(-\deg)$$

• $\lambda^n/\deg(P^n) \in [C_2, C_1]$
• $d_{\infty} = \lambda$

Why
$$d_{\infty}$$
 is a quadratic integer?

ヘロト 人間 とくほとくほとう

∃ 𝒫𝔄𝔅

Fixed point theorem Attracting eigenvaluation

Attracting eigenvaluation

Theorem

 $P_{\bullet}\nu_{\star} = \nu_{\star}.$ There exists $U \ni \nu_{\star}$ such that $P_{\bullet}^{n}\nu \to \nu_{\star}$ for all $\nu \in U.$

Charles Favre Dynamics and valuations

イロト 不得 とくほ とくほ とう

E DQC

Fixed point theorem Attracting eigenvaluation

Attracting eigenvaluation

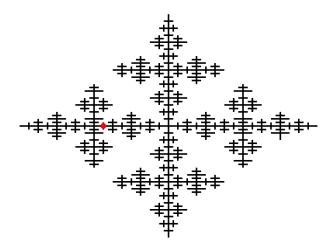
Theorem

 $P_{\bullet}\nu_{\star} = \nu_{\star}.$ There exists $U \ni \nu_{\star}$ such that $P_{\bullet}^{n}\nu \to \nu_{\star}$ for all $\nu \in U.$

イロト 不得 とくほと くほとう

Fixed point theorem Attracting eigenvaluation

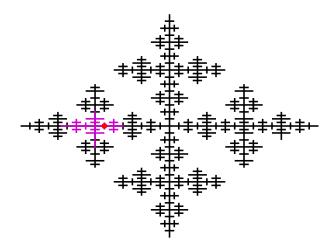
Animation



ヘロト 人間 とくほとくほとう

Fixed point theorem Attracting eigenvaluation

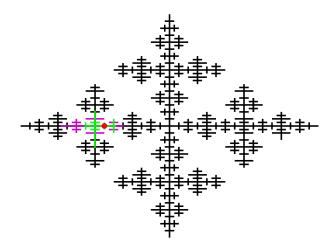
Animation



ヘロト 人間 とくほとくほとう

Fixed point theorem Attracting eigenvaluation

Animation



ヘロト 人間 とくほとくほとう

Fixed point theorem Attracting eigenvaluation

Idea of proof

For a suitable parameterization on \mathcal{V}_1

$$P_{\bullet}: \alpha \mapsto \frac{a\alpha + b}{c\alpha + d}$$

with $a, b, c, d \in \mathbb{N}$.

イロン 不同 とくほう イヨン

Fixed point theorem Attracting eigenvaluation

Idea of proof

For a suitable parameterization on \mathcal{V}_1

$$P_{\bullet}: \alpha \mapsto \frac{a\alpha + b}{c\alpha + d}$$

with $a, b, c, d \in \mathbb{N}$.

イロン 不同 とくほう イヨン

Fixed point theorem Attracting eigenvaluation

Idea of proof

For a suitable parameterization on \mathcal{V}_1

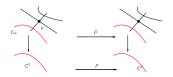
$$P_{\bullet}: \alpha \mapsto \frac{a\alpha + b}{c\alpha + d}$$

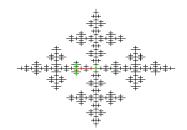
with $a, b, c, d \in \mathbb{N}$.

< ロ > < 同 > < 回 > < 回 > <</p>

Fixed point theorem Attracting eigenvaluation

Consequences in picture





イロト イポト イヨト イヨト

э

Fixed point theorem Attracting eigenvaluation

Towards monomialization

Theorem

There exists $\pi: X \to \mathbb{P}^2$ and $p \in \pi^{-1}(L_{\infty})$ such that

• P is holomorphic at p

• Critical set of P is included in $\pi^{-1}(L_{\infty})$ and contracted to p.

Normal form for (P, p)

ヘロト 人間 とくほとく ほとう

Fixed point theorem Attracting eigenvaluation

Towards monomialization

Theorem

There exists $\pi: X \to \mathbb{P}^2$ and $p \in \pi^{-1}(L_{\infty})$ such that

• P is holomorphic at p

• Critical set of P is included in $\pi^{-1}(L_{\infty})$ and contracted to p.

Normal form for (P, p)

ヘロト 人間 とくほとく ほとう

Fixed point theorem Attracting eigenvaluation

Towards monomialization

Theorem

There exists $\pi: X \to \mathbb{P}^2$ and $p \in \pi^{-1}(L_{\infty})$ such that

- P is holomorphic at p
- Critical set of P is included in $\pi^{-1}(L_{\infty})$ and contracted to p.

Normal form for (P, p)

イロト 不得 トイヨト イヨト

Fixed point theorem Attracting eigenvaluation

Towards monomialization

Theorem

There exists $\pi: X \to \mathbb{P}^2$ and $p \in \pi^{-1}(L_{\infty})$ such that

- P is holomorphic at p
- Critical set of P is included in $\pi^{-1}(L_{\infty})$ and contracted to p.

Normal form for (P, p)

ヘロト 人間 とくほとくほとう

Fixed point theorem Attracting eigenvaluation

Towards monomialization

Theorem

There exists $\pi: X \to \mathbb{P}^2$ and $p \in \pi^{-1}(L_{\infty})$ such that

- P is holomorphic at p
- Critical set of P is included in $\pi^{-1}(L_{\infty})$ and contracted to p.

Normal form for (P, p)

イロト 不得 トイヨト イヨト

Fixed point theorem Attracting eigenvaluation

Rigid germs

Definition

 $f: (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ is rigid if $\bigcup_n \operatorname{Crit} (f^n)$ has normal crossing singularities.

Theorem (Favre 2000)

Suppose f rigid and not invertible. Then f =

- $(\alpha z, wz^q + P(z))$
- $(\alpha z, W^p)$
- $(z^{p}, \lambda w z^{q} + P(z))$
- (α*z*, *z^cw^d*)
- $(Z^a W^b, Z^c W^d)$

Fixed point theorem Attracting eigenvaluation

Rigid germs

Definition

 $f: (\mathbb{C}^2, 0) \to (\mathbb{C}^2, 0)$ is rigid if $\bigcup_n \operatorname{Crit} (f^n)$ has normal crossing singularities.

Theorem (Favre 2000)

Suppose f rigid and not invertible. Then f =

- $(\alpha z, wz^q + P(z))$
- (αz, w^p)
- $(z^p, \lambda w z^q + P(z))$
- (αz, z^cw^d)

o ...

• $(z^a w^b, z^c w^d)$

Fixed point theorem Attracting eigenvaluation

Conclusion

- When ν_{*} is divisorial or an end point then d(P, ν_{*}) is an integer
- When ν_{*} is irrational qm.
 (P, p) is locally monomial
- Local computation \Rightarrow d_{∞} is a quadratic integer.

<ロト <回 > < 注 > < 注 > 、

Fixed point theorem Attracting eigenvaluation

Conclusion

- When ν_{*} is divisorial or an end point then d(P, ν_{*}) is an integer
- When ν_{*} is irrational qm.
 (P, p) is locally monomial
- Local computation \Rightarrow d_{∞} is a quadratic integer.

ヘロト 人間 とくほとくほとう

Fixed point theorem Attracting eigenvaluation

Conclusion

- When ν_{*} is divisorial or an end point then d(P, ν_{*}) is an integer
- When ν_{\star} is irrational qm.
 - (P, p) is locally monomial
- Local computation \Rightarrow d_{∞} is a quadratic integer.

ヘロト 人間 とくほとくほとう

Fixed point theorem Attracting eigenvaluation

Conclusion

- When ν_{*} is divisorial or an end point then d(P, ν_{*}) is an integer
- When ν_{*} is irrational qm.
 (P, p) is locally monomial
- Local computation $\Rightarrow d_{\infty}$ is a quadratic integer.

・ロト ・回 ト ・ ヨト ・ ヨトー

Fixed point theorem Attracting eigenvaluation

Conclusion

- When ν_{*} is divisorial or an end point then d(P, ν_{*}) is an integer
- When ν_{*} is irrational qm.
 (P, p) is locally monomial
- Local computation $\Rightarrow d_{\infty}$ is a quadratic integer.

イロト イポト イヨト イヨト