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The general setup

X is an algebraic variety defined over a field k

I f : X → X is a regular (dominant) map
I f n = f ◦ · · · ◦ f︸ ︷︷ ︸

n times

Ask questions of algebraic nature on this dynamical
system. Recent sport motivated by:

I the study of holomorphic dynamical systems in
arbitrary dimensions;

I the arithmetic of torsion points on abelian varieties
(these are preperiodic points for the doubling map).
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The restricted setup

Focus on (dominant) polynomial maps

f (x , y) = (P(x , y),Q(x , y)) : A2
C → A2

C .

I This is a non-trivial class of examples: Hénon maps

(x , y) 7→ (ay , x + P(y))

have been studied in depth (over C and R), and their
dynamics is complicated (positive entropy).

I It is easier to deal with than arbitrary maps: small
dimension, simple geometry.
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The program

1. Construction of projective compactifications adapted
to the dynamics (Favre-Jonsson).

2. The dynamical Mordell-Lang conjecture (Xie).
3. The dynamical Manin-Mumford problem

(Dujardin-Favre).
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Degree growth

I deg(f ) = max{deg(P),deg(Q)} ∈ N∗;

Problem
Describe the sequence deg(f n):

I give an asymptotic;
I compute all degrees.

Motivation: in (P2, ωFS) the entropy is bounded by

htop(f )
Gromov
≤ sup

C
lim sup

n

1
n

log vol(f−n(C)) =

max
{

e(f ), lim sup
n

1
n

log deg(f n)

}
.

e(f ) = #f−1{p} = topological degree of f .
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Basics on degrees

I deg(f ◦ g) ≤ deg(f )× deg(g);
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Basics on degrees

I deg(f ◦ g) ≤ deg(f )× deg(g);

Proof.
If f = (P,Q), g = (R,S), then we have
f ◦ g = (P(R,S),Q(R,S)).
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Basics on degrees

I deg(f ◦ g) ≤ deg(f )× deg(g);

Invariance under conjugacy
I if g = h−1 ◦ f ◦ h, for some h ∈ Aut[A2

k ] then

0 <
1
C
≤ deg(gn)

deg(f n)
≤ C <∞ .

Dynamical degree
I The limit λ(f ) := limn deg(f n)1/n exists.

Upper bound
I By Bezout e(f ) ≤ λ(f )2.
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Some examples: automorphisms

By Jung and Friedland-Milnor any f ∈ Aut[A2
C] is

conjugated to
I affine map or elementary map

f (x , y) = (ax + b, cy + P(x))

in which case deg(f n) ≤ deg(f ) for all n.
I Hénon-like map f = h1 ◦ · · · ◦ hk with

hi = (aiy , x + Pi(y))

di := deg(Pi) ≥ 2, in which case
deg(f n) = deg(f )n = (

∏
i di)

n for all n.

hence λ(f ) is an integer.
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Some examples: monomial maps

I if f (z) = f (x , y) = (xayb, xcyd ) = zM with

M =

[
a c
b d

]
, ad 6= bc, a,b, c,d ∈ N

then f n(z) = zMn
, and λ(f ) is the spectral radius of

M.

hence λ(f ) is a quadratic integer.
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Algebraic stability

I There is a simple geometric condition under which
deg(f n) can be controlled (Fornaess-Sibony).

Definition
A rational map f : X 99K X is algebraically stable iff for
any irreducible curve E ⊂ X, the image variety f̌ n(E) is
not a point of indeterminacy for any n ≥ 1.

Definition
A projective surface X ⊃ A2

C is a good dynamical
compactification for f if the (rational) extension of f to X is
algebraically stable.
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Algebraic stability: examples and
consequences

I Affine map and Hénon-like maps are alg. stable in
P2;

I an elementary map (x , y + P(x)) is alg. stable in a
suitable Hirzebruch surface;

I a monomial map is alg. stable in a suitable product
of weighted projective lines.

Fact
When f is alg. stable in X, then (f n+m)∗ = (f n)∗ ◦ (f m)∗ for
the natural actions of f n on the (real) Neron-Severi space
of X .

I λ(f ) is an algebraic integer;
I
∑

n≥0 deg(f n)T n ∈ Z(T ) (if X dominates P2)
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Main results

Theorem
Any polynomial map of A2

k admits an iterate for which
there exists a good dynamical compactification X ⊃ A2

k .
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Main results: precise form

Theorem
When e(f ) < λ(f )2, one can choose X s.t.

1. H∞ := X \ A2
k is irreducible and not contracted by f ;

2. H∞ is irreducible and contracted to a smooth point of
X that is fixed by f N , N � 1;

3. H∞ has two components intersecting transversally at
a fixed point that are contracted to that point by f N .

Corollary

For any polynomial map of A2
k , the real number λ(f ) is a

quadratic integer.
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First tentative

Optimistic hope:
I find X = A2

C t E with E irreducible and f̌ (E) = E ;
I if E exists, the divisorial valuation ordE : C[x , y ]→ Z

is f∗-invariant in the sense

f∗(ordE )(P) := ordE (P ◦ f ) = λ(f ) ordE (P) .

Difficulties.
I How to find a fixed point for the projective action of f∗

on divisorial valuations?
I If a divisorial valuation ν is fixed, is it possible to

compactify A2
C by adding one irreducible component

E at infinity such that ν = ordE?
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Identify good valuations

Definition
A good divisorial valuation is a one proportional to ordE
where A2

k t E is a compactification.

I X = A2
k t D, with D = E1 ∪ · · · ∪ Er , and νi = ordEi .

I Dual divisor: Ěi · Ej := δij

Fact
νi is good iff Ěi · Ěi > 0.
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Identify good valuations

Definition
A good divisorial valuation is a one proportional to ordE
where A2

k t E is a compactification.

I X = A2
k t D, with D = E1 ∪ · · · ∪ Er , and νi = ordEi .

I Dual divisor: Ěi · Ej := δij

Theorem
νi is good⇔ Ěi · Ěi > 0⇔ Ěi is nef and big

Remark
Ěi · Ěi only depends on νi not on the choice of a model
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The space of good valuations I

Definition
Let V1 be the space of good divisorial valuations on
C[x , y ], i.e. of the form tordE with t > 0 and E is a
component at infinity in some compactification such that
Ě · Ě > 0.

Remark
A valuation ν ∈ V1 is close to −deg since ν(P) < 0 for all
non constant polynomials.
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The space of good valuations II

To get a space amenable to a fixed point theorem:

Definition
Let V2 be the closure of V1 in the space of all (non-trivial)
valuations ν : C[x , y ]→ R−.

Theorem
The space V2 is a cone over

V ′2 := {ν ∈ V2, min{ν(x), ν(y)} = −1} ,

and V ′2 is a compact R-tree.
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A tree dream
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The space of good valuations III

For technical reason, and get a better description of the
end points of the tree:

Definition
Let V3 be the closure of the set of good divisorial
valuations tordE such that

A(tordE ) := t (1 + ordE (dx ∧ dy)) < 0 .

Theorem
The space V3 is a cone over

V ′3 := { ν ∈ V3, min{ν(x), ν(y)} = −1} ,

and V ′3 is an R-tree whose divisorial end points are either
good or associated to a rational pencil.
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Existence of the fixed point

Theorem
A polynomial map induces a natural continuous map f• on
the R-tree V ′3.
This map admits a fixed point which attracts all good
divisorial valuations when e(f ) < λ(f )2.

I Invariance of V ′3 is by invariance of nef divisors and
the jacobian formula.

I Existence of the fixed point follows from a tracking
argument.

I The attraction property is deeper: 1√
e(f )

f ∗ is an

isometry on the hyperbolic space lim−→X
NSR(X ).
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Construction of the compactification

If the invariant valuation ν is
I divisorial ordE : either it is good (pick A2

k t E) or
associated to an rational invariant fibration (pick a
suitable Hirzebruch surface);

I not divisorial: allows to construct by induction a
sequence of blow ups Xn+1 → Xn → P2, and f N is
alg. stable in Xn for some n,N � 1.
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