Dynamics of polynomial maps

Charles Favre

The dynamical Mordell-Lang conjecture

p-adic methods

Xie's approach

Algebraic dynamics of polynomial maps: the dynamical Mordell-Lang conjecture

Charles Favre charles.favre@polytechnique.edu

17th of April, 2015

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

The dynamical Mordell-Lang conjecture

- *f* : X → X regular dominant map of an algebraic variety defined over C;
- $V \subset X$ a subvariety, and $x \in X$ a point;

Conjecture (Denis, Bell-Ghioca-Tucker)

The set of hitting times $\{n \in \mathbb{N}, f^n(x) \in V\}$ is a finite union of arithmetic sequences.

An arithmetic sequence is a set $\{an + b, n \in \mathbb{N}\}$ for some integers *a*, *b* (possibly zero)

Dynamics of polynomial maps

Charles Favre

The dynamical Mordell-Lang conjecture

p-adic methods

Origin of the conjecture

Theorem (Skolem-Mahler-Lech's theorem)

Suppose $u_n \in \mathbb{C}$ is defined by a recurrence relation $u_{n+k+1} = a_k u_{n+k} + \cdots + a_0 u_n$, $a_i \in \mathbb{C}$. Then the set $\{n \in \mathbb{N}, u_n = 0\}$ is a finite union of arithmetic sequences.

Conjecture \Rightarrow Theorem.

Take $X = \mathbb{A}^{k+1}_{\mathbb{C}}$, *f* linear, $x = (u_0, \dots, u_k)$, and *V* a hyperplane.

Theorem (Falting-Vojta)

Let G be a (semi)-abelian variety over \mathbb{C} , let V be a subvariety, and let Γ be a finitely generated subgroup of $G(\mathbb{C})$. Then $V(\mathbb{C}) \cap \Gamma$ is a finite union of cosets of subgroups of Γ .

Dynamics of polynomial maps

Charles Favre

The dynamical Mordell-Lang conjecture

p-adic methods

Origin of the conjecture

Theorem (Skolem-Mahler-Lech's theorem)

Suppose $u_n \in \mathbb{C}$ is defined by a recurrence relation $u_{n+k+1} = a_k u_{n+k} + \cdots + a_0 u_n$, $a_i \in \mathbb{C}$. Then the set $\{n \in \mathbb{N}, u_n = 0\}$ is a finite union of arithmetic sequences.

Conjecture \Rightarrow Theorem.

Take $X = \mathbb{A}^{k+1}_{\mathbb{C}}$, *f* linear, $x = (u_0, \cdots, u_k)$, and *V* a hyperplane.

Theorem (Falting-Vojta)

Let G be a (semi)-abelian variety over \mathbb{C} , let V be a subvariety, and let Γ be a finitely generated subgroup of $G(\mathbb{C})$. Then $V(\mathbb{C}) \cap \Gamma$ is a finite union of cosets of subgroups of Γ .

Dynamics of polynomial maps

Charles Favre

The dynamical Mordell-Lang conjecture

p-adic methods

- $f : \mathbb{A}^2 \to \mathbb{A}^2$ polynomial dominant map;
- *V* an irreducible curve, and $x \in X$ a point.

Conjecture

When $\{n \in \mathbb{N}, f^n(x) \in V\}$ is infinite, then either x or V is pre-periodic.

Theorem (J. Xie)

For any polynomial map $f:\mathbb{A}^2_{\mathbb{Q}}\to\mathbb{A}^2_{\mathbb{Q}}$ the previous conjecture is true.

Dynamics of polynomial maps

Charles Favre

The dynamical Mordell-Lang conjecture

p-adic methods

Xie's approach

・ロト・日本・日本・日本・日本・日本

Theorem (Bell-Ghioca-Tucker)

For any polynomial automorphism $f : \mathbb{A}^2_{\mathbb{C}} \to \mathbb{A}^2_{\mathbb{C}}$ the set $\{n \in \mathbb{N}, f^n(x) \in V\}$ is infinite iff x or V is periodic.

- Their method applies to any étale maps in any dimension.
- Elaboration of the original method of Skolem based on *p*-adic methods.

Dynamics of polynomial maps

Charles Favre

The dynamical Mordell-Lang conjecture

p-adic methods

Xie's approach

・ロト・日本・モート ヨー うへで

- Use a specialization argument to reduce to the case f, x, V have coefficients in Q.
- Pick a large prime number p not dividing denominators in the coef. of f, x, V, and such that f mod p remains an automorphism.

Work in \mathbb{Q}_p : completion of \mathbb{Q} w.r.t the *p*-adic norm $|p| = \frac{1}{p}$.

$$\mathbb{Z}_{
ho}:=\{\ x\in\mathbb{Q}_{
ho},\ |x|_{
ho}\leq1\}= ext{closure of }\mathbb{Z}$$
 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Charles Favre

The dynamical Mordell-Lang conjecture

p-adic methods

Skeleton of the argument

1. Replace f by
$$f^N$$
 to get $\overline{f}(\overline{x}) = \overline{x}$ in $\mathbb{A}^2_{\mathbb{F}_p}$;

- 2. Extend the map $n \mapsto f^n(x)$ to an analytic map $\Phi : \mathbb{Z}_p \to \mathbb{A}^2_{\mathbb{Q}_p}$ s.t. $\Phi(n) = f^n(x)$ for all n;
- For an equation $V = \{h = 0\}$ we have

$$\{n \in \mathbb{N}, f^n(x) \in V\} \subset \{t \in \mathbb{Z}_p, h \circ \Phi(t) = 0\}$$

which is finite or equal to \mathbb{Z}_p .

Dynamics of polynomial maps

Charles Favre

The dynamical Mordell-Lang conjecture

p-adic methods

Kie's approach

・ロト・四ト・モート ヨー うへぐ

Theorem (Poonen)

Let $f(x) = \sum_{l} a_{l} x^{l}$, $|a_{l}| \to 0$, $a_{l} \in \mathbb{Z}_{p}$ be an analytic automorphism of the closed unit polydisk $\overline{B(0,1)}^{d}$ such that

$$f \equiv id \mod p^c \text{ with } c > \frac{1}{p-1}$$
.

Then there exists an analytic map Φ on $\mathbb{Z}_p \times \overline{B(0,1)}^d$ s.t. $\Phi(n,x) = f^n(x)$ for all n.

- Any point belongs to a one dimensional disk on which f is conjugated to a translation by 1.
- In the complex domain, an analog statement holds in 1d, but not in 2d!
- One line proof but the margin is too small!!!

Dynamics of polynomial maps

Charles Favre

The dynamical Mordell-Lang conjecture

p-adic methods

Xie's approach

・ロト・西・・田・・田・・日・

Theorem (Poonen)

Let $f(x) = \sum_{l} a_{l} x^{l}$, $|a_{l}| \to 0$, $a_{l} \in \mathbb{Z}_{p}$ be an analytic automorphism of the closed unit polydisk $\overline{B(0,1)}^{d}$ such that

$$f \equiv id \mod p^c \text{ with } c > \frac{1}{p-1}$$
.

Then there exists an analytic map Φ on $\mathbb{Z}_p \times \overline{B(0,1)}^d$ s.t. $\Phi(n,x) = f^n(x)$ for all n.

- Any point belongs to a one dimensional disk on which *f* is conjugated to a translation by 1.
- In the complex domain, an analog statement holds in 1d, but not in 2d!
- One line proof but the margin is too small!!!

Dynamics of polynomial maps

Charles Favre

The dynamical Mordell-Lang conjecture

p-adic methods

Xie's approach

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 ─ のへで

Theorem (J. Xie)

Pick any polynomial map $f : \mathbb{A}^2_{\overline{\mathbb{Q}}} \to \mathbb{A}^2_{\overline{\mathbb{Q}}}$, any irred. curve V and any point x. If the set $\{n \in \mathbb{N}, f^n(x) \in V\}$ is infinite, then either x or V are pre-periodic.

- 1. A local analog of DML for special maps.
- 2. Arithmetical arguments : Siegel's theorem, height argument.
- Affine geometry: existence of good compactifications, a special device to construct auxiliary polynomials.

Dynamics of polynomial maps

Charles Favre

The dynamical Mordell-Lang conjecture

p-adic methods

A simplified situation

- f, x and V are defined over \mathbb{Q} ;
- *f* is alg. stable in \mathbb{P}^2 and deg(f^n) $\rightarrow \infty$;
- H_{∞} is contracted to a point, say q_{∞} ;
- ► the invariant valuation in V'₃ is not divisorial, e.g. e(f) < λ(f);</p>
- the curve V is a line.

Assumption: *x* is not preperiodic and the set $\mathcal{N} := \{n \in \mathbb{N}, f^n(x) \in V\}$ is infinite.

Aim: V is preperiodic.

Dynamics of polynomial maps

Charles Favre

The dynamical Mordell-Lang conjecture

p-adic methods

Xie's approach

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

The line contains the super-attracting point I

Dynamics of polynomial maps

Charles Favre

The dynamical Mordell-Lang conjecture

p-adic methods

Xie's approach

Step 1: $f^n(x) o q_\infty \in \mathbb{P}^2_{\mathbb{C}}$ is impossible

- Blow-up at q_∞: f maps again the whole divisor to a fixed point q_∞^{<1>} that attracts x. Repeat the process until q_∞^{<n>} is not in the closure of V.
- Same argument works when C is replaced by some P²_{C_n} for some prime p.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

The line contains the super-attracting point II

Step 2: the point x is preperiodic

- ► Uniform upper bound for |fⁿ(x)|_p for all n ∈ N and all place p.
- Height of $f^n(x)$ is bounded for all $n \in \mathcal{N}$.

Remark

This ends the proof when f is a Hénon automorphism. When f is birational, Xie proves that V not periodic implies $f^n(V) \ni q_{\infty}$ for some n. Dynamics of polynomial maps

Charles Favre

The dynamical Mordell-Lang conjecture

p-adic methods

Xie's approach

・ロト・四ト・ヨト・ヨー もくの

The line contains the super-attracting point II

Step 2: the point x is preperiodic

- ► Uniform upper bound for |fⁿ(x)|_p for all n ∈ N and all place p.
- Height of $f^n(x)$ is bounded for all $n \in \mathcal{N}$.

Remark

This ends the proof when f is a Hénon automorphism. When f is birational, Xie proves that V not periodic implies $f^n(V) \ni q_{\infty}$ for some n.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Dynamics of polynomial maps

Charles Favre

The dynamical Mordell-Lang conjecture

p-adic methods

The line does not contain the super-attracting point

Build a sequence of irrreducible pre-images

$$V_{-k+1} \xrightarrow{f} V_{-k} \xrightarrow{f^k} V$$

with $\mathcal{N}_k := \{n \in \mathbb{N}, f^n(x) \in V_{-k}\}$ infinite.

 Siegel's theorem: V_{-k} has at most two places at infinity

Simplification: V_{-k} has a single place for all k.

$$u_{-k}({\pmb{P}}):=\mathrm{ord}_\infty({\pmb{P}}|_{V_{-k}})\in\mathbb{Z}\cup\{+\infty\}$$
 associated to V_{-k} .

Dynamics of polynomial maps

Charles Favre

The dynamical Mordell-Lang conjecture

p-adic methods

Xie's approach

・ロト・西ト・ヨト ・ヨー シタの

Assumption: the map *f* has at least three points of indeterminacy in a good compactification

Theorem

There exists $P \in \mathbb{C}[x, y]$ s.t. $\nu_{-k}(P) > 0$ for all $k \ge 0$.

Consequence

The function $P|_{V_{-k}}$ is identically zero for all k and V is pre-periodic.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Dynamics of polynomial maps

Charles Favre

The dynamical Mordell-Lang conjecture

p-adic methods

Auxiliary polynomial : existence

- Choose a resolution $f^M : X \to \mathbb{P}^2$
- ► $X = \mathbb{A}^2 \sqcup (\cup_1^s E_i \cup F)$ with F (reducible but) connected, and $f^{-M} \{-\deg\} \subset \{\operatorname{ord}_{E_i}\}$
- The curve V_{-k} does not intersect F

Aim: build an ample divisor supported on *F* so that $X \setminus F$ is affine.

- roughly: start with $\frac{1}{\lambda(f)^M}(f^M)^*H_{\infty} \in NS_{\mathbb{R}}(X);$
- modify it to get zero value on the E_i 's.
- Need to contract a couple of E_i's.
- \rightarrow Look at Xie's paper for detail !!!

Dynamics of polynomial maps

Charles Favre

The dynamical Mordell-Lang conjecture

p-adic methods

The difficulties in the general case

- The curve might have more than one place at infinity (≤ 2 by Siegel's theorem).
- The case the invariant valuation is divisorial is substantially harder.
- Remove the assumption on the existence of sufficiently many indeterminacy points: need to construct suitable height and prove a height bound.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

• Need to treat the case $e = \lambda(f)^2$ separately.

Dynamics of polynomial maps

Charles Favre

The dynamical Mordell-Lang conjecture

p-adic methods