Equidistribution of hyperbolic centers using Arakelov geometry

Introduction

Charles Favre
favre@math.polytechnique.fr

July 18, 2013

Number theory and dynamics

- Additive number theory: proof of Szemeredi's theorem by Furstenberg
- Diophantine approximation problems: proof of the Oppenheim conjecture by Margulis; proof of Khintchine theorem by Sullivan
- Arithmetic dynamics: set of conjectures promoted by Silverman concerning rational maps $f: X_{K} \rightarrow X_{K}$ defined over a number field (Dynamical Lehmer's conjecture, Manin-Mumford, Mordell-Lang, Uniform Boundedness Conjecture, etc.)

The parameter space of quadratic polynomials

Fix $c \in \mathbb{C}$, and define

$$
P_{c}(z):=z^{2}+c
$$

Interested in the behaviour of

$$
z, P_{c}(z), P_{c}^{2}(z)=P_{c}\left(P_{c}(z)\right), \ldots, P_{c}^{n}(z), \ldots
$$

The parameter space of quadratic polynomials

Fix $c \in \mathbb{C}$, and define

$$
P_{c}(z):=z^{2}+c
$$

Interested in the behaviour of

$$
z, P_{c}(z), P_{c}^{2}(z)=P_{c}\left(P_{c}(z)\right), \ldots, P_{c}^{n}(z), \ldots
$$

- $K(c):=\left\{z \in \mathbb{C},\left|P_{c}^{n}(z)\right|=O(1)\right\}$ (the filled-in Julia set is compact)
- Dichotomy: either a Cantor set, or a connected set
- $\mathcal{M}:=\{c \in \mathbb{C}, K(c)$ is connected $\}$ (the Mandelbrot set)

The Mandelbrot set and some Julia sets

Introduction
The quadratic case
The higher
dimensional case
Beyond
equidistribution

Special points in the Mandelbrot set

$$
\begin{aligned}
\operatorname{Per}(n) & =\{c, \text { critical point has exact period } n\} \\
& =\left\{c, P_{c}^{n}(0)=0, P_{c}^{k}(0) \neq 0 \text { for } 1 \leq k<n\right\}
\end{aligned}
$$

Introduction

Special points in the Mandelbrot set

$\operatorname{Per}(n)=\{c$, critical point has exact period $n\}$

$$
=\left\{c, P_{c}^{n}(0)=0, P_{c}^{k}(0) \neq 0 \text { for } 1 \leq k<n\right\}
$$

$P_{c}^{1}(0)=c$
$P_{c}^{2}(0)=c^{2}+c=c(c+1)$
$P_{c}^{3}(0)=\left(c^{2}+c\right)^{2}+c=c\left(1+c+2 c^{2}+c^{3}\right)$
$P_{c}^{4}(0)=\left(c^{2}+c\right)\left(1+2 c^{2}+3 c^{3}+3 c^{4}+3 c^{5}+c^{6}\right)$

Introduction

The quadratic case

Special points in the Mandelbrot set

$\operatorname{Per}(n)=\{c$, critical point has exact period $n\}$

$$
=\left\{c, P_{c}^{n}(0)=0, P_{c}^{k}(0) \neq 0 \text { for } 1 \leq k<n\right\}
$$

$P_{c}^{1}(0)=c$

$$
P_{c}^{2}(0)=c^{2}+c=c(c+1)
$$

$$
P_{c}^{3}(0)=\left(c^{2}+c\right)^{2}+c=c\left(1+c+2 c^{2}+c^{3}\right)
$$

$$
P_{c}^{4}(0)=\left(c^{2}+c\right)\left(1+2 c^{2}+3 c^{3}+3 c^{4}+3 c^{5}+c^{6}\right)
$$

Theorem (Douady-Hubbard)

$$
\sum_{m \mid n} \# \operatorname{Per}(m)=2^{n-1}
$$

whence $\# \operatorname{Per}(n) \sim 2^{n-1}$

Hyperbolic centers

Hyperbolic centers

Theorem (Levine)

Introduction

The quadratic case
The higher
dimensional case
Beyond
equidistribution

$$
\mu_{n}:=\frac{1}{2^{n-1}} \sum_{c \in \operatorname{Per}(n)} \delta_{c} \longrightarrow \mu_{\mathcal{M}}:=\text { harmonic measure of } \mathcal{M}
$$

Hyperbolic centers

Theorem (Levine)

Introduction

The quadratic case
$\mu_{n}:=\frac{1}{2^{n-1}} \sum_{c \in \operatorname{Per}(n)} \delta_{c} \longrightarrow \mu_{\mathcal{M}}:=$ harmonic measure of \mathcal{M}

Basic tool: harmonic analysis

- $\mu_{\mathcal{M}}=\Delta g_{\mathcal{M}}=\frac{i}{\pi} \partial \bar{\partial} g_{\mathcal{M}}$
- $\mu_{n}=\Delta g_{n}$

Aim: prove that $g_{n} \rightarrow g_{\mathcal{M}}$ in $L_{\text {loc }}^{1}$.

Analytic proof

- $\Delta \log |w-c|=\delta_{c}$
- One may take

$$
g_{n}(c)=\frac{1}{2^{n-1}} \log \left|P_{c}^{n}(0)\right|
$$

Introduction

The quadratic case
The higher
dimensional case
Beyond
equidistribution

Analytic proof

- $\Delta \log |w-c|=\delta_{c}$
- One may take

$$
g_{n}(c)=\frac{1}{2^{n-1}} \log \left|P_{c}^{n}(0)\right|
$$

Introduction

The quadratic case

- Construction of $g_{\mathcal{M}}$:
- Green function:
$g_{c}(z):=\lim _{n} \frac{1}{2^{n-1}} \log \max \left\{1,\left|P_{c}^{n}(z)\right|\right\} \geq 0$
- $K(c)=\left\{g_{c}=0\right\}$

$$
g_{\mathcal{M}}(c):=g_{c}(0)=\lim _{n} \frac{1}{2^{n-1}} \log \max \left\{1,\left|P_{c}^{n}(0)\right|\right\}
$$

Analytic proof

- $\Delta \log |w-c|=\delta_{c}$
- One may take

$$
g_{n}(c)=\frac{1}{2^{n-1}} \log \left|P_{c}^{n}(0)\right|
$$

- Construction of $g_{\mathcal{M}}$:
- Green function:

$$
\begin{aligned}
& g_{c}(z):=\lim _{n} \frac{1}{2^{n-1}} \log \max \left\{1,\left|P_{c}^{n}(z)\right|\right\} \geq 0 \\
- & K(c)=\left\{g_{c}=0\right\}
\end{aligned}
$$

$$
g_{\mathcal{M}}(c):=g_{c}(0)=\lim _{n} \frac{1}{2^{n-1}} \log \max \left\{1,\left|P_{c}^{n}(0)\right|\right\}
$$

1. $g_{n} \leq g_{\mathcal{M}}$ everywhere
2. $g_{n} \rightarrow g_{\mathcal{M}}$ uniformly outside \mathcal{M}
3. The trick: $\Delta g_{n} \rightarrow 0$ on $\operatorname{Int}(\mathcal{M})$

Adelic proof (Baker-H'sia)

- Construction of a suitable height function such that $\operatorname{Per}(n) \subset\left\{h_{\mathcal{M}}=0\right\}$
- Use equidistribution of points of small height (Autissier)

The latter result goes back to Bilu and Szpiro-Ullmo-Zhang in their work on the Bogomolov conjecture.

Introduction

The quadratic case

Adelic proof (Baker-H'sia)

Fix v a place in \mathbb{Q}, and $c \in \mathbb{C}_{v}$.

$$
\begin{aligned}
g_{c, v}(z) & :=\lim _{n} \frac{1}{2^{n-1}} \log \max \left\{1,\left|P_{c}^{n}(z)\right|_{v}\right\} \\
g_{\mathcal{M}, v}(c) & =g_{c, v}(0) \\
g_{\mathcal{M}, \infty}(c) & =g_{\mathcal{M}}(c) \text { and } g_{\mathcal{M}, p}(c)=\log ^{+}|c|_{p} \\
h_{\mathcal{M}}(c) & :=\frac{1}{\operatorname{deg}(c)} \sum_{c^{\prime} \sim c} \sum_{v \in M_{\mathbb{Q}}} g_{\mathcal{M}, v}\left(c^{\prime}\right)
\end{aligned}
$$

$h_{\mathcal{M}}$ differs from the standard height by a bounded function

Adelic proof (Baker-H'sia)

Theorem (Autissier)
For any sequence of disjoint finite sets $Z_{n} \subset \overline{\mathbb{Q}}$ that are invariant under $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ and such that $h_{\mathcal{M}} \mid z_{n}=0$ then

$$
\frac{1}{\# Z_{n}} \sum_{p \in Z_{n}} \delta_{p} \rightarrow \mu_{\mathcal{M}}
$$

Apply this to $Z_{n}=\operatorname{Per}(n)$

Analytic vs Global method

Theorem (F.- Rivera-Letelier, Okuyama)
For any C^{1} function φ,

$$
\left|\frac{1}{2^{n-1}} \sum_{c \in \operatorname{Per}(n)} \varphi(c)-\int \varphi \mu_{\mathcal{M}}\right| \leq C \frac{\sqrt{n}}{2^{n / 2}}|\varphi|_{C^{1}}
$$

Introduction

The quadratic case
The higher
dimensional case

Beyond

equidistribution

Analytic vs Global method

Theorem (F.- Rivera-Letelier, Okuyama)
For any C^{1} function φ,

$$
\left|\frac{1}{2^{n-1}} \sum_{c \in \operatorname{Per}(n)} \varphi(c)-\int \varphi \mu_{\mathcal{M}}\right| \leq C \frac{\sqrt{n}}{2^{n / 2}}|\varphi|_{C^{1}}
$$

Theorem (Buff-Gauthier)

$$
\frac{1}{2^{n-1}} \sum_{c \in \operatorname{Per}(n, \lambda)} \delta_{c} \longrightarrow \mu_{\mathcal{M}}:=\text { harmonic measure of } \partial \mathcal{M}
$$

where

$$
\operatorname{Per}(n, \lambda)=\left\{c, P_{c}^{n}(z)=z,\left(P_{c}^{n}\right)^{\prime}(z)=\lambda\right\}
$$

The parameter space of polynomials of degree $d=3$

Charles Favre

Introduction

The quadratic case
The higher
dimensional case

Beyond

equidistribution

The parameter space of polynomials of degree $d=3$

$$
\begin{aligned}
P_{c, a}(z) & =\frac{1}{3} z^{3}-\frac{c}{2} z^{2}+a^{3} \\
\operatorname{Crit}\left(P_{c, a}\right) & =\left\{P_{c, a}^{\prime}=0\right\}=\left\{c_{1}:=c, c_{0}:=0\right\} \\
\operatorname{Per}\left(n_{0}, n_{1}\right) & :=\left\{(c, a) \in \mathbb{C}^{2}, P_{c, a}^{n_{i}}\left(c_{i}\right)=c_{i} \text { for } i=0,1\right\}
\end{aligned}
$$

The quadratic case
The higher
dimensional case
Beyond
equidistribution

Theorem (F.-Gauthier)

If $n_{0}^{(k)} \neq n_{1}^{(k)}$ and $\min n_{i}^{(k)} \rightarrow \infty$ then

$$
\frac{1}{3^{n_{0}^{(k)}+n_{1}^{(k)}}} \sum_{p \in \operatorname{Per}\left(n_{0}^{(k)}, n_{1}^{(k)}\right)} \delta_{p} \longrightarrow \mu_{\mathcal{M}_{3}}
$$

where $\mu_{\mathcal{M}_{3}}$ is the equilibrium measure of the connectedness locus of cubic polynomials.

Analytic method

- The Green function is well-defined:

$$
g_{c, a}(z):=\lim _{n} \frac{1}{3^{n}} \log \max \left\{1,\left|P_{c, a}^{n}(z)\right|\right\}
$$

- $g_{0}=g_{c, a}\left(c_{0}\right), g_{1}=g_{c, a}\left(c_{1}\right)$.
- Connectedness locus is $\left\{g_{0}=g_{1}=0\right\}$ and is compact
- Equilibrium measure: $\mu_{\mathcal{M}}:=\left(d d^{c}\right)^{2} G(c, a)$ with

$$
G=\max \left\{g_{0}, g_{1}\right\}
$$

Analytic method

- The Green function is well-defined:

$$
g_{c, a}(z):=\lim _{n} \frac{1}{3^{n}} \log \max \left\{1,\left|P_{c, a}^{n}(z)\right|\right\}
$$

- $g_{0}=g_{c, a}\left(c_{0}\right), g_{1}=g_{c, a}\left(c_{1}\right)$.
- Connectedness locus is $\left\{g_{0}=g_{1}=0\right\}$ and is compact
- Equilibrium measure: $\mu_{\mathcal{M}}:=\left(d d^{c}\right)^{2} G(c, a)$ with

$$
G=\max \left\{g_{0}, g_{1}\right\}
$$

Warning: the analytic method only applies when $n_{0}^{(k)} \gg n_{1}^{(k)} \rightarrow \infty$ (Dujardin -F.)

Strategy

- Construction of a natural height where $\operatorname{Per}\left(n_{0}, n_{1}\right) \subset\left\{h_{\mathcal{M}_{3}}=0\right\}$
- Application of Yuan's theorem of equidistribution of points of small heights

Introduction

The quadratic case
The higher dimensional case

Strategy

- Construction of a natural height where $\operatorname{Per}\left(n_{0}, n_{1}\right) \subset\left\{h_{\mathcal{M}_{3}}=0\right\}$
- Application of Yuan's theorem of equidistribution of points of small heights

Difficulties:

1. Height should be defined at finite places in a special way (semi-positive adelic metric)
2. Points should be generic

Introduction

The quadratic case

Construction of the height

The construction is similar to the quadratic case.

- $g_{c, a, v}(z)=\lim _{n} \frac{1}{3^{n}} \log \max \left\{1,\left|P_{c, a}^{n}(z)\right| v\right\}$
- $G_{v}=\max \left\{g_{c, a, v}\left(c_{0}\right), g_{c, a, v}\left(c_{1}\right)\right\}$
- For $p \geq 5$ then $G_{v}=\log \max \{1,|c|,|a|\}$

$$
h_{\mathcal{M}_{3}}(c, a):=\frac{1}{\operatorname{deg}(c, a)} \sum_{\left(c^{\prime}, a^{\prime}\right) \sim(c, a)} \sum_{v \in M_{\mathbb{Q}}} g_{\mathcal{M}, v}\left(c^{\prime}, a^{\prime}\right)
$$

It differs from the standard height by a bounded factor.
$\operatorname{Per}\left(n_{0}, n_{1}\right) \subset\left\{h_{\mathcal{M}_{3}}=0\right\}$

Yuan's theorem

Introduction

The quadratic case
The higher dimensional case

Yuan's theorem

Theorem

- The line bundle: $\mathcal{O}(1) \rightarrow \mathbb{P}_{\mathbb{Q}}^{2}$;
- Metrization: $|\sigma|_{v}:=e^{-G_{v}}$ on \mathbb{A}^{2} (with $\operatorname{div}(\sigma)$ the hyperplane at infinity)

The associated height function is $h_{\mathcal{M}_{3}}$.
Suppose F_{n} is a sequence of finite subsets of $\mathbb{P}^{2}(\overline{\mathbb{Q}})$ that are defined over \mathbb{Q} such that

- $h_{\mathcal{M}_{3}}\left(F_{n}\right) \rightarrow 0$;
- For any subvariety $Z \subsetneq \mathbb{P}^{2}, \frac{\#\left(F_{n} \cap Z\right)}{\# F_{n}} \rightarrow 0$.

Then

$$
\frac{1}{\# F_{n}} \sum_{p \in F_{n}} \delta_{p} \rightarrow \mu_{\mathcal{M}_{3}} \text { in } \mathbb{A}^{2}(\mathbb{C})
$$

Yuan's theorem

Theorem

- The line bundle: $\mathcal{O}(1) \rightarrow \mathbb{P}_{\mathbb{Q}}^{2}$;
- Metrization: $|\sigma|_{v}:=e^{-G_{v}}$ on \mathbb{A}^{2} (with $\operatorname{div}(\sigma)$ the hyperplane at infinity)

The associated height function is $h_{\mathcal{M}_{3}}$.
Suppose F_{n} is a sequence of finite subsets of $\mathbb{P}^{2}(\overline{\mathbb{Q}})$ that are defined over \mathbb{Q} such that

- $h_{\mathcal{M}_{3}}\left(F_{n}\right) \rightarrow 0$;
- For any subvariety $Z \subsetneq \mathbb{P}^{2}, \frac{\#\left(F_{n} \cap Z\right)}{\# F_{n}} \rightarrow 0$.

Then

$$
\frac{1}{\# F_{n}} \sum_{p \in F_{n}} \delta_{p} \rightarrow \mu_{\mathcal{M}_{3}} \text { in } \mathbb{A}^{2}(\mathbb{C})
$$

Genericity

Theorem

Fix a sequence $n_{0}^{(k)} \neq n_{1}^{(k)}$ and $\min n_{i}^{(k)} \rightarrow \infty$, and pick any curve $Z \subset \mathbb{A}^{2}$. Then

$$
\lim _{k \rightarrow \infty} \frac{\# \operatorname{Per}\left(n_{0}^{(k)}, n_{1}^{(k)}\right) \cap Z}{\# \operatorname{Per}\left(n_{0}^{(k)}, n_{1}^{(k)}\right)}=0
$$

Introduction

The quadratic case

The higher

 dimensional case
Beyond

equidistribution

Genericity

Theorem

Fix a sequence $n_{0}^{(k)} \neq n_{1}^{(k)}$ and $\min n_{i}^{(k)} \rightarrow \infty$, and pick any curve $Z \subset \mathbb{A}^{2}$. Then

$$
\lim _{k \rightarrow \infty} \frac{\# \operatorname{Per}\left(n_{0}^{(k)}, n_{1}^{(k)}\right) \cap Z}{\# \operatorname{Per}\left(n_{0}^{(k)}, n_{1}^{(k)}\right)}=0
$$

Introduction
The quadratic case
The higher
dimensional case

Proof.

- $\operatorname{Per}_{\varepsilon}(n)=\left\{(c, a), P_{c, a}^{n}\left(c_{\varepsilon}\right)=c_{\varepsilon}\right\}$ has degree $3^{n} ;$
- Lower bound $\# \operatorname{Per}\left(n_{0}, n_{1}\right)=\# \operatorname{Per}_{0}\left(n_{0}\right) \cap \operatorname{Per}_{1}\left(n_{1}\right)=3^{n_{0}+n_{1}}$
- Upper bound
$\operatorname{Per}\left(n_{0}, n_{1}\right) \cap \boldsymbol{Z} \subset\left(\operatorname{Per}_{0}\left(n_{0}\right) \cap \boldsymbol{Z}\right) \cup\left(\operatorname{Per}_{1}\left(n_{1}\right) \cap \boldsymbol{Z}\right)$ $\# \operatorname{Per}\left(n_{0}, n_{1}\right) \cap Z \leq \operatorname{deg}(Z) 3^{\max n_{0}, n_{1}}$

Transversality problems

Theorem (Adam Epstein)

Pick $n_{0} \neq n_{1}$. Then $\operatorname{Per}_{0}\left(n_{0}\right)$ and $\operatorname{Per}_{1}\left(n_{1}\right)$ are smooth at any of their intersection points, and intersect transversally there.

Method inspired by Teichmüller theory. Relies on purely analytical tools (contraction properties of suitable operators in a complex Banach algebra).

Characterization of special subvarieties

Special points:

- $h_{\mathcal{M}_{3}}(c, a)=0$
- both critical points have a finite orbit

Question

Describe irreducible curves in \mathbb{A}^{2} for which the set of special points is infinite.

Chambert-Loir answered this for the standard height function (Bogomolov conjecture for semi-abelian varieties).

Characterization of special subvarieties

Conjecture (Baker-DeMarco)

Let $V \subset \mathbb{A}^{2}$ be an irreducible curve containing infinitely many (c, a) such that both critical points of $P_{c, a}$ have a finite orbit.
Then

- either one of the two critical points has finite orbit for all $v \in V$;
- or there exists a critical dynamically defined relation, i.e a closed subvariety $Z \subset V \times\left(\mathbb{A}^{1}\right)^{2}$ invariant by the map $(v, z, w) \mapsto\left(v, P_{v}(z), P_{v}(w)\right)$ and containing $\left(v, c_{0}, c_{1}\right)$ for all $v \in V$.

Beyond equidistribution: characterization of special subvarieties

Introduction

Example

$P_{c, a}(c)=0$ defines a special curve $\left\{6 a^{3}=c^{3}\right\}$

Beyond equidistribution: characterization of special subvarieties

Example

$P_{c, a}(c)=0$ defines a special curve $\left\{6 a^{3}=c^{3}\right\}$

Example

The family $P_{t}(z)=z^{3}-3 t z^{2}+\left(2 t^{3}+t\right)$ is special.

- $c_{0}=0, c_{1}=2 t$
- $h_{t}(z)=-z+2 t$ satisfies $h_{t} \circ f_{t}=f_{t} \circ h_{t}$
- $Z=\left\{\left(t, z, h_{t}(z)\right)\right\}$

Characterization of special subvarieties

Theorem (Baker-DeMarco)
In the space of cubic polynomials $P_{a, b}=z^{3}+a z+b$. Consider the curve

$$
\operatorname{Per}(\lambda)=\left\{P_{a, b} \text { admits a fixed point with multiplier } \lambda\right\}
$$

Then $\operatorname{Per}(\lambda)$ contains infinitely many points for which both critical points are periodic iff $\lambda=0$.

