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Number theory and dynamics

I Additive number theory: proof of Szemeredi’s
theorem by Furstenberg

I Diophantine approximation problems: proof of the
Oppenheim conjecture by Margulis; proof of
Khintchine theorem by Sullivan

I Arithmetic dynamics: set of conjectures promoted by
Silverman concerning rational maps f : XK 99K XK
defined over a number field (Dynamical Lehmer’s
conjecture, Manin-Mumford, Mordell-Lang, Uniform
Boundedness Conjecture, etc.)



Charles Favre

Introduction

The quadratic case

The higher
dimensional case

Beyond
equidistribution

The parameter space of quadratic
polynomials

Fix c ∈ C, and define

Pc(z) := z2 + c

Interested in the behaviour of

z,Pc(z),P2
c (z) = Pc(Pc(z)), . . . ,Pn

c (z), . . .

I K (c) := {z ∈ C, |Pn
c (z)| = O(1)} (the filled-in Julia

set is compact)
I Dichotomy: either a Cantor set, or a connected set
I M := {c ∈ C, K (c) is connected } (the Mandelbrot

set)
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The Mandelbrot set and some Julia sets
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Special points in the Mandelbrot set

Per(n) = {c, critical point has exact period n}
= {c, Pn

c (0) = 0,Pk
c (0) 6= 0 for 1 ≤ k < n}

P1
c (0) = c

P2
c (0) = c2 + c = c(c + 1)

P3
c (0) = (c2 + c)2 + c = c(1 + c + 2c2 + c3)

P4
c (0) = (c2 + c)(1 + 2c2 + 3c3 + 3c4 + 3c5 + c6)

Theorem (Douady-Hubbard)

∑
m|n

#Per(m) = 2n−1

whence #Per(n) ∼ 2n−1
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Hyperbolic centers

Theorem (Levine)

µn :=
1

2n−1

∑
c∈Per(n)

δc −→ µM := harmonic measure ofM

Basic tool: harmonic analysis

I µM = ∆gM = i
π∂∂̄gM

I µn = ∆gn

Aim: prove that gn → gM in L1
loc.
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Analytic proof

I ∆ log |w − c| = δc
I One may take

gn(c) =
1

2n−1 log |Pn
c (0)|

I Construction of gM:
I Green function:

gc(z) := limn
1

2n−1 log max{1, |Pn
c (z)|} ≥ 0

I K (c) = {gc = 0}

gM(c) := gc(0) = lim
n

1
2n−1 log max{1, |Pn

c (0)|}

1. gn ≤ gM everywhere
2. gn → gM uniformly outsideM
3. The trick: ∆gn → 0 on Int(M)
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Adelic proof (Baker-H’sia)

I Construction of a suitable height function such that
Per(n) ⊂ {hM = 0}

I Use equidistribution of points of small height
(Autissier)

The latter result goes back to Bilu and
Szpiro-Ullmo-Zhang in their work on the Bogomolov
conjecture.
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Adelic proof (Baker-H’sia)

Fix v a place in Q, and c ∈ Cv .

gc,v (z) := lim
n

1
2n−1 log max{1, |Pn

c (z)|v}

gM,v (c) = gc,v (0)

gM,∞(c) = gM(c) and gM,p(c) = log+ |c|p

hM(c) :=
1

deg(c)

∑
c′∼c

∑
v∈MQ

gM,v (c′)

hM differs from the standard height by a bounded
function
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Adelic proof (Baker-H’sia)

Theorem (Autissier)

For any sequence of disjoint finite sets Zn ⊂ Q̄ that are
invariant under Gal(Q̄/Q) and such that hM|Zn = 0 then

1
#Zn

∑
p∈Zn

δp → µM

Apply this to Zn = Per(n)
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Analytic vs Global method

Theorem (F.- Rivera-Letelier, Okuyama)

For any C1 function ϕ,∣∣∣∣∣∣ 1
2n−1

∑
c∈Per(n)

ϕ(c)−
∫
ϕµM

∣∣∣∣∣∣ ≤ C
√

n
2n/2 |ϕ|C1

Theorem (Buff-Gauthier)

1
2n−1

∑
c∈Per(n,λ)

δc −→ µM := harmonic measure of ∂M

where

Per(n, λ) = {c, Pn
c (z) = z, (Pn

c )′(z) = λ}
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The parameter space of polynomials of
degree d = 3

Pc,a(z) =
1
3

z3 − c
2

z2 + a3

Crit(Pc,a) = {P ′c,a = 0} = {c1 := c, c0 := 0}
Per(n0,n1) := {(c,a) ∈ C2, Pni

c,a(ci) = ci for i = 0,1}

Theorem (F.-Gauthier)

If n(k)
0 6= n(k)

1 and min n(k)
i →∞ then

1

3n(k)
0 +n(k)

1

∑
p∈Per(n(k)

0 ,n(k)
1 )

δp −→ µM3

where µM3 is the equilibrium measure of the
connectedness locus of cubic polynomials.
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Analytic method

I The Green function is well-defined:

gc,a(z) := lim
n

1
3n log max{1, |Pn

c,a(z)|}

I g0 = gc,a(c0), g1 = gc,a(c1).
I Connectedness locus is {g0 = g1 = 0} and is

compact
I Equilibrium measure: µM := (ddc)2G(c,a) with

G = max{g0,g1}

Warning: the analytic method only applies when
n(k)

0 � n(k)
1 →∞ (Dujardin -F.)
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Strategy

I Construction of a natural height where
Per(n0,n1) ⊂ {hM3 = 0}

I Application of Yuan’s theorem of equidistribution of
points of small heights

Difficulties:
1. Height should be defined at finite places in a special

way (semi-positive adelic metric)
2. Points should be generic
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Construction of the height

The construction is similar to the quadratic case.
I gc,a,v (z) = limn

1
3n log max{1, |Pn

c,a(z)|v}
I Gv = max{gc,a,v (c0),gc,a,v (c1)}
I For p ≥ 5 then Gv = log max{1, |c|, |a|}

hM3(c,a) :=
1

deg(c,a)

∑
(c′,a′)∼(c,a)

∑
v∈MQ

gM,v (c′,a′)

It differs from the standard height by a bounded factor.
Per(n0,n1) ⊂ {hM3 = 0}
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Yuan’s theorem

Theorem

I The line bundle: O(1)→ P2
Q;

I Metrization: |σ|v := e−Gv on A2 (with div(σ) the
hyperplane at infinity)

The associated height function is hM3 .
Suppose Fn is a sequence of finite subsets of P2(Q̄) that
are defined over Q such that

I hM3(Fn)→ 0;

I For any subvariety Z ( P2, #(Fn∩Z )
#Fn

→ 0.
Then

1
#Fn

∑
p∈Fn

δp → µM3 in A2(C)
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Genericity

Theorem
Fix a sequence n(k)

0 6= n(k)
1 and min n(k)

i →∞, and pick
any curve Z ⊂ A2. Then

lim
k→∞

# Per(n(k)
0 ,n(k)

1 ) ∩ Z

# Per(n(k)
0 ,n(k)

1 )
= 0

Proof.

I Perε(n) = {(c,a), Pn
c,a(cε) = cε} has degree 3n;

I Lower bound
# Per(n0,n1) = #Per0(n0) ∩ Per1(n1) = 3n0+n1

I Upper bound
Per(n0,n1) ∩ Z ⊂ (Per0(n0) ∩ Z ) ∪ (Per1(n1) ∩ Z )
#Per(n0,n1) ∩ Z ≤ deg(Z )3max n0,n1
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Transversality problems

Theorem (Adam Epstein)

Pick n0 6= n1. Then Per0(n0) and Per1(n1) are smooth at
any of their intersection points, and intersect transversally
there.

Method inspired by Teichmüller theory. Relies on purely
analytical tools (contraction properties of suitable
operators in a complex Banach algebra).
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Characterization of special subvarieties

Special points:
I hM3(c,a) = 0
I both critical points have a finite orbit

Question
Describe irreducible curves in A2 for which the set of
special points is infinite.

Chambert-Loir answered this for the standard height
function (Bogomolov conjecture for semi-abelian
varieties).
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Characterization of special subvarieties

Conjecture (Baker-DeMarco)

Let V ⊂ A2 be an irreducible curve containing infinitely
many (c,a) such that both critical points of Pc,a have a
finite orbit.
Then

I either one of the two critical points has finite orbit for
all v ∈ V;

I or there exists a critical dynamically defined relation,
i.e a closed subvariety Z ⊂ V × (A1)2 invariant by
the map (v , z,w) 7→ (v ,Pv (z),Pv (w)) and containing
(v , c0, c1) for all v ∈ V.
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Beyond equidistribution: characterization of
special subvarieties

Example

Pc,a(c) = 0 defines a special curve {6a3 = c3}

Example

The family Pt (z) = z3 − 3tz2 + (2t3 + t) is special.
I c0 = 0, c1 = 2t
I ht (z) = −z + 2t satisfies ht ◦ ft = ft ◦ ht

I Z = {(t , z,ht (z))}
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Characterization of special subvarieties

Theorem (Baker-DeMarco)

In the space of cubic polynomials Pa,b = z3 + az + b.
Consider the curve

Per(λ) = {Pa,b admits a fixed point with multiplier λ}

Then Per(λ) contains infinitely many points for which both
critical points are periodic iff λ = 0.
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