Equidistribution of hyperbolic centers using Arakelov geometry

Charles Favre favre@math.polytechnique.fr

July 18, 2013

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Number theory and dynamics

- Additive number theory: proof of Szemeredi's theorem by Furstenberg
- Diophantine approximation problems: proof of the Oppenheim conjecture by Margulis; proof of Khintchine theorem by Sullivan
- ► Arithmetic dynamics: set of conjectures promoted by Silverman concerning rational maps f : X_K --→ X_K defined over a number field (Dynamical Lehmer's conjecture, Manin-Mumford, Mordell-Lang, Uniform Boundedness Conjecture, etc.)

Charles Favre

Introduction

The quadratic case

The higher dimensional case

The parameter space of quadratic polynomials

Fix $c \in \mathbb{C}$, and define

$$P_c(z) := z^2 + c$$

Interested in the behaviour of

$$z, P_c(z), P_c^2(z) = P_c(P_c(z)), \ldots, P_c^n(z), \ldots$$

- K(c) := {z ∈ C, |Pⁿ_c(z)| = O(1)} (the filled-in Julia set is compact)
- Dichotomy: either a Cantor set, or a connected set
- M := {c ∈ C, K(c) is connected } (the Mandelbrot set)

Charles Favre

Introduction

The quadratic case

The higher dimensional case

The parameter space of quadratic polynomials

Fix $c \in \mathbb{C}$, and define

$$P_c(z) := z^2 + c$$

Interested in the behaviour of

$$z, P_c(z), P_c^2(z) = P_c(P_c(z)), \ldots, P_c^n(z), \ldots$$

- *K*(*c*) := {*z* ∈ C, |*P*ⁿ_c(*z*)| = *O*(1)} (the filled-in Julia set is compact)
- Dichotomy: either a Cantor set, or a connected set
- M := {c ∈ C, K(c) is connected } (the Mandelbrot set)

Charles Favre

Introduction

The quadratic case

The higher dimensional case

The Mandelbrot set and some Julia sets

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Special points in the Mandelbrot set

$$\begin{aligned} \mathsf{Per}(n) &= \{c, \text{ critical point has exact period } n\} \\ &= \{c, \, \mathcal{P}_c^n(0) = 0, \mathcal{P}_c^k(0) \neq 0 \text{ for } 1 \leq k < n \end{aligned}$$

$$P_c^1(0) = c$$

$$P_c^2(0) = c^2 + c = c(c+1)$$

$$P_c^3(0) = (c^2 + c)^2 + c = c(1 + c + 2c^2 + c^3)$$

$$P_c^4(0) = (c^2 + c)(1 + 2c^2 + 3c^3 + 3c^4 + 3c^5 + c^6)$$

Theorem (Douady-Hubbard)

$$\sum_{m|n} \# \operatorname{Per}(m) = 2^{n-1}$$

whence $\# Per(n) \sim 2^{n-1}$

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Special points in the Mandelbrot set

$$\begin{aligned} \mathsf{Per}(n) &= \{c, \text{ critical point has exact period } n\} \\ &= \{c, \, \mathcal{P}_c^n(0) = 0, \mathcal{P}_c^k(0) \neq 0 \text{ for } 1 \leq k < n \end{aligned}$$

$$\begin{array}{rcl} P_c^1(0) &=& c \\ P_c^2(0) &=& c^2 + c = c(c+1) \\ P_c^3(0) &=& (c^2+c)^2 + c = c(1+c+2c^2+c^3) \\ P_c^4(0) &=& (c^2+c)(1+2c^2+3c^3+3c^4+3c^5+c^6) \end{array}$$

Theorem (Douady-Hubbard)

$$\sum_{m|n} \# \operatorname{Per}(m) = 2^{n-1}$$

whence # Per(n) $\sim 2^{n-1}$

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Special points in the Mandelbrot set

$$\begin{aligned} \mathsf{Per}(n) &= \{c, \text{ critical point has exact period } n\} \\ &= \{c, \, \mathcal{P}_c^n(0) = 0, \, \mathcal{P}_c^k(0) \neq 0 \text{ for } 1 \leq k < n\} \end{aligned}$$

$$P_c^1(0) = c$$

$$P_c^2(0) = c^2 + c = c(c+1)$$

$$P_c^3(0) = (c^2 + c)^2 + c = c(1 + c + 2c^2 + c^3)$$

$$P_c^4(0) = (c^2 + c)(1 + 2c^2 + 3c^3 + 3c^4 + 3c^5 + c^6)$$

Theorem (Douady-Hubbard)

$$\sum_{m|n} \# \operatorname{Per}(m) = 2^{n-1}$$

whence $\# Per(n) \sim 2^{n-1}$

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Hyperbolic centers

centers of 983 hyperbolic components of Mandelbrot set for periods 1-10 made in 3441 sec

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Hyperbolic centers

Theorem (Levine)

$$\mu_n := \frac{1}{2^{n-1}} \sum_{c \in \operatorname{Per}(n)} \delta_c \longrightarrow \mu_{\mathcal{M}} := \text{ harmonic measure of } \mathcal{M}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Basic tool: harmonic analysis

 $\blacktriangleright \ \mu_{\mathcal{M}} = \Delta g_{\mathcal{M}} = \frac{i}{\pi} \partial \bar{\partial} g_{\mathcal{M}}$

•
$$\mu_n = \Delta g_n$$

Aim: prove that $g_n \to g_{\mathcal{M}}$ in L^1_{loc} .

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Hyperbolic centers

Theorem (Levine)

$$\mu_n := \frac{1}{2^{n-1}} \sum_{c \in \operatorname{Per}(n)} \delta_c \longrightarrow \mu_{\mathcal{M}} := \text{ harmonic measure of } \mathcal{M}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Basic tool: harmonic analysis

•
$$\mu_{\mathcal{M}} = \Delta g_{\mathcal{M}} = \frac{i}{\pi} \partial \bar{\partial} g_{\mathcal{M}}$$

• $\mu_n = \Delta g_n$

Aim: prove that $g_n \rightarrow g_M$ in L^1_{loc} .

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Analytic proof

- $\blacktriangleright \Delta \log |\boldsymbol{w} \boldsymbol{c}| = \delta_{\boldsymbol{c}}$
- One may take

$$g_n(c) = \frac{1}{2^{n-1}} \log |P_c^n(0)|$$

► Construction of g_M:

- Green function: $g_c(z) := \lim_{n \to 1} \log \max\{1, |P_c^n(z)|\} \ge$
- $\blacktriangleright K(c) = \{g_c = 0\}$

 $g_{\mathcal{M}}(c) := g_{c}(0) = \lim_{n} \frac{1}{2^{n-1}} \log \max\{1, |P_{c}^{n}(0)|\}$

- 1. $g_n \leq g_{\mathcal{M}}$ everywhere
- 2. $g_n o g_{\mathcal{M}}$ uniformly outside $\mathcal M$
- 3. The trick: $\Delta g_n \to 0$ on $\operatorname{Int}(\mathcal{M})$

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Analytic proof

- $\blacktriangleright \Delta \log |\boldsymbol{w} \boldsymbol{c}| = \delta_{\boldsymbol{c}}$
- One may take

$$g_n(c) = rac{1}{2^{n-1}} \log |P_c^n(0)|$$

- Construction of $g_{\mathcal{M}}$:
 - Green function: $g_c(z) := \lim_{n \ge 2^{n-1}} \log \max\{1, |P_c^n(z)|\} \ge 0$ • $K(c) = \{g_c = 0\}$

$$g_{\mathcal{M}}(c) := g_{c}(0) = \lim_{n} \frac{1}{2^{n-1}} \log \max\{1, |P_{c}^{n}(0)|\}$$

1. $g_n \leq g_M$ everywhere

- 2. $g_n o g_{\mathcal{M}}$ uniformly outside $\mathcal M$
- 3. The trick: $\Delta g_n \to 0$ on $\operatorname{Int}(\mathcal{M})$

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Analytic proof

- $\blacktriangleright \Delta \log |\boldsymbol{w} \boldsymbol{c}| = \delta_{\boldsymbol{c}}$
- One may take

$$g_n(c) = rac{1}{2^{n-1}} \log |P_c^n(0)|$$

- Construction of $g_{\mathcal{M}}$:
 - Green function: $g_c(z) := \lim_{n \ 2^{n-1}} \log \max\{1, |P_c^n(z)|\} ≥ 0$
 K(c) = {*g*_c = 0}

$$g_{\mathcal{M}}(c) := g_{c}(0) = \lim_{n} \frac{1}{2^{n-1}} \log \max\{1, |P_{c}^{n}(0)|\}$$

・ロト ・ 理 ・ エヨ ・ エヨ ・ うへつ

- 1. $g_n \leq g_{\mathcal{M}}$ everywhere
- 2. $g_n
 ightarrow g_{\mathcal{M}}$ uniformly outside \mathcal{M}
- **3**. The trick: $\Delta g_n \rightarrow 0$ on $Int(\mathcal{M})$

Charles Favre

Introduction

The quadratic case

The higher dimensional case

- ► Construction of a suitable height function such that $Per(n) \subset \{h_M = 0\}$
- Use equidistribution of points of small height (Autissier)

The latter result goes back to Bilu and Szpiro-Ullmo-Zhang in their work on the Bogomolov conjecture.

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Adelic proof (Baker-H'sia)

Fix *v* a place in \mathbb{Q} , and $c \in \mathbb{C}_{v}$.

$$\begin{array}{lcl} g_{c,v}(z) &:= & \lim_n \frac{1}{2^{n-1}} \log \max\{1, |P_c^n(z)|_v\} \\ g_{\mathcal{M},v}(c) &= & g_{c,v}(0) \\ g_{\mathcal{M},\infty}(c) &= & g_{\mathcal{M}}(c) \text{ and } g_{\mathcal{M},p}(c) = \log^+ |c|_p \end{array}$$

$$h_{\mathcal{M}}(c) := rac{1}{\deg(c)} \sum_{c' \sim c} \sum_{v \in M_{\mathbb{Q}}} g_{\mathcal{M},v}(c')$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

 $h_{\mathcal{M}}$ differs from the standard height by a bounded function

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Theorem (Autissier)

For any sequence of disjoint finite sets $Z_n \subset \overline{\mathbb{Q}}$ that are invariant under $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ and such that $h_{\mathcal{M}}|_{Z_n} = 0$ then

$$\frac{1}{\#Z_n}\sum_{\boldsymbol{p}\in Z_n}\delta_{\boldsymbol{p}}\to\mu_{\mathcal{M}}$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Apply this to $Z_n = Per(n)$

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Analytic vs Global method

Theorem (F.- Rivera-Letelier, Okuyama) For any C^1 function φ ,

$$\left| rac{1}{2^{n-1}} \sum_{oldsymbol{c} \in ext{Per}(n)} arphi(oldsymbol{c}) - \int arphi \mu_\mathcal{M}
ight| \leq C \, rac{\sqrt{n}}{2^{n/2}} |arphi|_{C^1}$$

Theorem (Buff-Gauthier)

 $\frac{1}{2^{n-1}}\sum_{c\in\operatorname{Per}(n,\lambda)}\delta_c\longrightarrow \mu_{\mathcal{M}}:=\text{ harmonic measure of }\partial_{\mathcal{M}}$

where

$$\operatorname{Per}(n,\lambda) = \{c, P_c^n(z) = z, (P_c^n)'(z) = \lambda\}$$

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Analytic vs Global method

Theorem (F.- Rivera-Letelier, Okuyama) For any C^1 function φ ,

$$\left| rac{1}{2^{n-1}} \sum_{oldsymbol{c} \in \operatorname{Per}(n)} arphi(oldsymbol{c}) - \int arphi \mu_{\mathcal{M}}
ight| \leq C \, rac{\sqrt{n}}{2^{n/2}} |arphi|_{C^1}$$

Theorem (Buff-Gauthier)

$$\frac{1}{2^{n-1}}\sum_{c\in \operatorname{Per}(n,\lambda)}\delta_c \longrightarrow \mu_{\mathcal{M}} := \text{ harmonic measure of }\partial\mathcal{M}$$

where

$$\operatorname{Per}(n,\lambda) = \{ c, P_c^n(z) = z, (P_c^n)'(z) = \lambda \}$$

Charles Favre

Introduction

The quadratic case

The higher dimensional case

The parameter space of polynomials of degree d = 3

$$P_{c,a}(z) = \frac{1}{3}z^3 - \frac{c}{2}z^2 + a^3$$

Crit($P_{c,a}$) = { $P'_{c,a} = 0$ } = { $c_1 := c, c_0 := 0$ }
Per(n_0, n_1) := {(c, a) $\in \mathbb{C}^2$, $P^{n_i}_{c,a}(c_i) = c_i$ for $i = 0, 1$]

Theorem (F.-Gauthier)

If $n_0^{(k)} \neq n_1^{(k)}$ and min $n_i^{(k)} \to \infty$ then

$$\frac{1}{3^{n_0^{(k)}+n_1^{(k)}}}\sum_{p\in\operatorname{Per}(n_0^{(k)},n_1^{(k)})}\delta_p\longrightarrow \mu_{\mathcal{M}_{\mathcal{S}}}$$

where μ_{M_3} is the equilibrium measure of the connectedness locus of cubic polynomials.

Charles Favre

Introduction

he quadratic case

The higher dimensional case

The parameter space of polynomials of degree d = 3

$$P_{c,a}(z) = \frac{1}{3}z^3 - \frac{c}{2}z^2 + a^3$$

Crit($P_{c,a}$) = { $P'_{c,a} = 0$ } = { $c_1 := c, c_0 := 0$ }
Per(n_0, n_1) := { $(c, a) \in \mathbb{C}^2, P^{n_i}_{c,a}(c_i) = c_i \text{ for } i = 0, 1$ }

Theorem (F.-Gauthier)
If
$$n_0^{(k)} \neq n_1^{(k)}$$
 and min $n_i^{(k)} \to \infty$ then

$$\frac{1}{3^{n_0^{(k)} + n_1^{(k)}}} \sum_{p \in \operatorname{Per}(n_0^{(k)}, n_1^{(k)})} \delta_p \longrightarrow \mu_{\mathcal{M}_3}$$

where $\mu_{\mathcal{M}_3}$ is the equilibrium measure of the connectedness locus of cubic polynomials.

Charles Favre

Introduction

he quadratic case

The higher dimensional case

The Green function is well-defined:

$$g_{c,a}(z) := \lim_{n} \frac{1}{3^{n}} \log \max\{1, |P_{c,a}^{n}(z)|\}$$

•
$$g_0 = g_{c,a}(c_0), g_1 = g_{c,a}(c_1).$$

- ► Connectedness locus is {g₀ = g₁ = 0} and is compact
- Equilibrium measure: $\mu_{\mathcal{M}} := (dd^c)^2 G(c, a)$ with

$$G = \max\{g_0, g_1\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Warning: the analytic method only applies when $n_{
m o}^{(k)}\gg n_{
m i}^{(k)} o\infty$ (Dujardin -F.)

Charles Favre

Introduction

The quadratic case

The higher dimensional case

The Green function is well-defined:

$$g_{c,a}(z) := \lim_{n} \frac{1}{3^{n}} \log \max\{1, |P_{c,a}^{n}(z)|\}$$

•
$$g_0 = g_{c,a}(c_0), g_1 = g_{c,a}(c_1).$$

- ► Connectedness locus is {g₀ = g₁ = 0} and is compact
- Equilibrium measure: $\mu_{\mathcal{M}} := (dd^c)^2 G(c, a)$ with

$$G = \max\{g_0, g_1\}$$

Warning: the analytic method only applies when $n_0^{(k)} \gg n_1^{(k)} \to \infty$ (Dujardin -F.)

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Beyond equidistribution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- ► Construction of a natural height where $Per(n_0, n_1) \subset \{h_{M_3} = 0\}$
- Application of Yuan's theorem of equidistribution of points of small heights

Difficulties:

- Height should be defined at finite places in a special way (semi-positive adelic metric)
- 2. Points should be generic

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Beyond equidistribution

・ロト・四ト・ヨト・ヨー もくの

- ► Construction of a natural height where $Per(n_0, n_1) \subset \{h_{\mathcal{M}_3} = 0\}$
- Application of Yuan's theorem of equidistribution of points of small heights

Difficulties:

- 1. Height should be defined at finite places in a special way (semi-positive adelic metric)
- 2. Points should be generic

Charles Favre

Introduction

The quadratic case

The higher dimensional case

The construction is similar to the quadratic case.

• $g_{c,a,v}(z) = \lim_{n \to \infty} \frac{1}{3^n} \log \max\{1, |P_{c,a}^n(z)|_v\}$

•
$$G_v = \max\{g_{c,a,v}(c_0), g_{c,a,v}(c_1)\}$$

• For $p \ge 5$ then $G_v = \log \max\{1, |c|, |a|\}$

$$h_{\mathcal{M}_3}(\boldsymbol{c}, \boldsymbol{a}) := rac{1}{\mathsf{deg}(\boldsymbol{c}, \boldsymbol{a})} \sum_{(\boldsymbol{c}', \boldsymbol{a}') \sim (\boldsymbol{c}, \boldsymbol{a})} \sum_{\boldsymbol{v} \in M_{\mathbb{Q}}} g_{\mathcal{M}, \boldsymbol{v}}(\boldsymbol{c}', \boldsymbol{a}')$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

It differs from the standard height by a bounded factor. $Per(n_0, n_1) \subset \{h_{\mathcal{M}_3} = 0\}$

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Yuan's theorem

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Beyond equidistribution

・ロト・日本・モー・ 日・ うくぐ

Yuan's theorem

Theorem

• The line bundle:
$$\mathcal{O}(1) \to \mathbb{P}^2_{\mathbb{Q}}$$
;

Metrization: |σ|_ν := e^{-G_ν} on A² (with div(σ) the hyperplane at infinity)

The associated height function is $h_{\mathcal{M}_3}$. Suppose F_n is a sequence of finite subsets of $\mathbb{P}^2(\overline{\mathbb{Q}})$ that are defined over \mathbb{Q} such that

•
$$h_{\mathcal{M}_3}(F_n) \rightarrow 0;$$

► For any subvariety $Z \subsetneq \mathbb{P}^2$, $\frac{\#(F_n \cap Z)}{\#F_n} \to 0$.

Then

$$\frac{1}{\#F_n}\sum_{\rho\in F_n}\delta_\rho\to\mu_{\mathcal{M}_3} \text{ in } \mathbb{A}^2(\mathbb{C})$$

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Beyond equidistribution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Yuan's theorem

Theorem

- The line bundle: $\mathcal{O}(1) \to \mathbb{P}^2_{\mathbb{Q}}$;
- Metrization: |σ|_v := e^{-G_v} on A² (with div(σ) the hyperplane at infinity)

The associated height function is $h_{\mathcal{M}_3}$. Suppose F_n is a sequence of finite subsets of $\mathbb{P}^2(\overline{\mathbb{Q}})$ that are defined over \mathbb{Q} such that

► $h_{\mathcal{M}_3}(F_n) \rightarrow 0;$

• For any subvariety $Z \subsetneq \mathbb{P}^2$, $\frac{\#(F_n \cap Z)}{\#F_n} \to 0$.

Then

$$\frac{1}{\#F_n}\sum_{\rho\in F_n}\delta_\rho\to\mu_{\mathcal{M}_3} \text{ in } \mathbb{A}^2(\mathbb{C})$$

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Beyond equidistribution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Genericity

Theorem

Fix a sequence $n_0^{(k)} \neq n_1^{(k)}$ and min $n_i^{(k)} \to \infty$, and pick any curve $Z \subset \mathbb{A}^2$. Then

$$\lim_{k \to \infty} \frac{\# \operatorname{Per}(n_0^{(k)}, n_1^{(k)}) \cap Z}{\# \operatorname{Per}(n_0^{(k)}, n_1^{(k)})} = 0$$

Proof.

- Per_ε(n) = {(c, a), Pⁿ_{c,a}(c_ε) = c_ε} has degree 3ⁿ;
- Lower bound

 $\# \operatorname{Per}(n_0, n_1) = \# \operatorname{Per}_0(n_0) \cap \operatorname{Per}_1(n_1) = 3^{n_0 + n_1}$

Upper bound

 $\operatorname{Per}(n_0, n_1) \cap Z \subset (\operatorname{Per}_0(n_0) \cap Z) \cup (\operatorname{Per}_1(n_1) \cap Z) \\ \operatorname{#Per}(n_0, n_1) \cap Z \leq \operatorname{deg}(Z) 3^{\max n_0, n_1}$

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Genericity

Theorem

Fix a sequence $n_0^{(k)} \neq n_1^{(k)}$ and min $n_i^{(k)} \to \infty$, and pick any curve $Z \subset \mathbb{A}^2$. Then

$$\lim_{k \to \infty} \frac{\# \operatorname{Per}(n_0^{(k)}, n_1^{(k)}) \cap Z}{\# \operatorname{Per}(n_0^{(k)}, n_1^{(k)})} = 0$$

Proof.

- $\operatorname{Per}_{\varepsilon}(n) = \{(c, a), P_{c,a}^{n}(c_{\varepsilon}) = c_{\varepsilon}\}$ has degree 3^{n} ;
- Lower bound # $Per(n_0, n_1) = #Per_0(n_0) \cap Per_1(n_1) = 3^{n_0+n_1}$
- ► Upper bound $\operatorname{Per}(n_0, n_1) \cap Z \subset (\operatorname{Per}_0(n_0) \cap Z) \cup (\operatorname{Per}_1(n_1) \cap Z)$ $\#\operatorname{Per}(n_0, n_1) \cap Z \leq \deg(Z)3^{\max n_0, n_1}$

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Theorem (Adam Epstein)

Pick $n_0 \neq n_1$. Then $Per_0(n_0)$ and $Per_1(n_1)$ are smooth at any of their intersection points, and intersect transversally there.

Method inspired by Teichmüller theory. Relies on purely analytical tools (contraction properties of suitable operators in a complex Banach algebra). Charles Favre

Introduction

The quadratic case

The higher dimensional case

Characterization of special subvarieties

Special points:

►
$$h_{\mathcal{M}_3}(c, a) = 0$$

both critical points have a finite orbit

Question

Describe irreducible curves in \mathbb{A}^2 for which the set of special points is infinite.

Chambert-Loir answered this for the standard height function (Bogomolov conjecture for semi-abelian varieties).

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Characterization of special subvarieties

Conjecture (Baker-DeMarco)

Let $V \subset \mathbb{A}^2$ be an irreducible curve containing infinitely many (c, a) such that both critical points of $P_{c,a}$ have a finite orbit.

Then

- either one of the two critical points has finite orbit for all v ∈ V;
- or there exists a critical dynamically defined relation, i.e a closed subvariety Z ⊂ V × (A¹)² invariant by the map (v, z, w) ↦ (v, P_v(z), P_v(w)) and containing (v, c₀, c₁) for all v ∈ V.

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Beyond equidistribution: characterization of special subvarieties

Example

$$P_{c,a}(c) = 0$$
 defines a special curve $\{6a^3 = c^3\}$

Example

The family $P_t(z) = z^3 - 3tz^2 + (2t^3 + t)$ is special.

▶
$$c_0 = 0, c_1 = 2t$$

- $h_t(z) = -z + 2t$ satisfies $h_t \circ f_t = f_t \circ h_t$
- ► $Z = \{(t, z, h_t(z))\}$

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Beyond equidistribution

Beyond equidistribution: characterization of special subvarieties

Example

$$P_{c,a}(c) = 0$$
 defines a special curve $\{6a^3 = c^3\}$

Example

The family $P_t(z) = z^3 - 3tz^2 + (2t^3 + t)$ is special.

•
$$c_0 = 0, c_1 = 2t$$

•
$$h_t(z) = -z + 2t$$
 satisfies $h_t \circ f_t = f_t \circ h_t$

•
$$Z = \{(t, z, h_t(z))\}$$

Charles Favre

Introduction

The quadratic case

The higher dimensional case

Beyond equidistribution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○の≪⊙

Characterization of special subvarieties

Theorem (Baker-DeMarco)

In the space of cubic polynomials $P_{a,b} = z^3 + az + b$. Consider the curve

 $\operatorname{Per}(\lambda) = \{ \boldsymbol{P}_{a,b} \text{ admits a fixed point with multiplier } \lambda \}$

Then $Per(\lambda)$ contains infinitely many points for which both critical points are periodic iff $\lambda = 0$.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Charles Favre

Introduction

The quadratic case

The higher dimensional case