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Abstract 

In this article a diffusion equation is obtained as a limit of a reversible kinetic equation scaled appropriately. This limiting 
diffusion is produced by the collisions of the particles with the boundary. Indeed, these particles follow a reversible reflection 
law having convenient mixing properties. This model, based on "Arnold's cat map", can be handled with Fourier series instead 
of the symbolic dynamics associated to a Markov partition. As a consequence, optimal convergence results can be obtained 
by elementary means and illustrate the apparition of irreversibility in macroscopic limits. 

O. Introduction 

"Irreversibility" is a fundamental notion in Statistical Mechanics. It is also a misleading one, and we feel useful 

to recall some basic facts. In doing so, we follow suggestions from the referee, whom we thank for his help in 
clarifying the presentation of this paper. 

Consider a mechanical system made of a (large) number N of  identical point particles; denote by xj  (t) and vj (t), 

respectively, the position of the j th  particle at time t and its velocity. Starting at time t = 0 with an initial state of  

the system denoted by (Xj (0), Uj (0))l<j <N, one lets the system evolve until time t > 0 into (xj (t), i)j (t))l_<j_<N. 

One then changes instantaneously the velocity of  each particle into its opposite, which leads to the new state 

(xj (t) ,  - v j  (t))l<_j<N, and lets the system evolve further until time 2t. If the final state thus reached is identical to 
(xj (0), vj (0))l_<j<N, the dynamics considered will be called "reversible"; otherwise it will be called irreversible. 

One of  the central issues in nonequilibrium statistical mechanics is the derivation of macroscopic dynamics such 

as hydrodynamics from first principle equations. For example, the Euler or Navier-Stokes systems for a perfect ideal 
gas can be derived from the Boltzmann equation for, say, a gas of  hard spheres, which in turn can be derived from the 

Liouville equation (or equivalently the system of Hamilton's equations) for the N-body classical hamiltonian with 
hard-sphere interactions. These derivations are mostly "formal", except in particular regimes where mathematical 
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proofs have been given: see for example [ 1-3,9,10,13,17,19]. There are structural obstacles to a global understanding 
of these questions. One difficulty is that the partial differential equations (PDEs) involved are mostly nonlinear. 
Another conceptual difficulty is related to the notion of irreversibility. Indeed, whereas the Liouville equation is 
reversible in the sense described above, neither the Boltzmann equation nor the Euler and Navier-Stokes systems 
are. Indeed, these models contain in some sense Carnot's "Second Principle of Thermodynamics", and this can be 
seen most easily by noticing that these models have a natural notion of entropy which increases until the system 
reaches an equilibrium. 

It appears therefore desirable to isolate the difficulties described above, and for one thing, to discuss the apparition 
of irreversibility on macroscopic dynamics on examples which can be analyzed as explicitly as possible (which, by 
the way, almost rules out dynamics described by nonlinear PDEs). Such an example has been studied in a remarkable 
series of papers by Bunimovich and Sinai [5,6] and more recently by Bunimovich et al. [7,8]. They have considered 
the periodic Lorentz gas, i.e. the dynamics of a population of point particles interacting with a periodic array of 
infinitely heavy circular obstacles through elastic collisions. They showed that, under the assumption that the billiard 
has the property of "finite horizon" (see [6] for more details) the long time, large scale limiting dynamics of these 
particles is described by a linear diffusion equation with diffusion constant given by the Green-Kubo formula. 
However, their analysis relies on sophisticated tools from ergodic theory, namely the construction of a "Markov 
sieve" for the billiard dynamics thus generated. 

The goal of the present paper is to give another example of a "reversible" dynamics, which, after some appropriate 
scaling, leads to an "irreversible" limiting dynamics. In particular, we believe that it might be of some interest to 
provide such an example that could be completely analyzed by elementary and explicit techniques and without 
appealing to general and abstract constructions from ergodic theory, as in the work of Bunimovich et al. 

Before describing the particular (class of) models described in this paper, we want to make as clear as possible 
some very simple remarks concerning irreversibility. We refer in particular to [ 16,20] for a precise and yet elementary 
presentation of these notions. 

First, we insist that, although the model treated by Bunimovich et al. or ours give some insight on the apparition of 
irreversibility when macroscopic limits are taken, it is likely that the apparition of irreversibility when the Boltzmann 
equation is derived from Classical Mechanics is governed by a different mechanism. Indeed, in this latter case, there 

are two different notions of entropy involved: 
(a) Gibbs entropy 

f ftN(xl, UI . . . . .  XN, UN)log f ( x l ,  Vl . . . . .  XN, UN)dx~ du1 . . .  dxn dON, SG(t) 

where fN is the solution of the N-body Liouville equation 

(b) Boltzmann H function 

- f rt(x,, o,) log F(xl, Vl) dxl dvl, H(t)  

where F is the number density which is the solution of the Boltzmann equation. 
It is believed (and in some cases proved) that, under the assumption that the number of particles tends to infinity 

as the radius of each particle tends to zero according to the very particular Boltzmann-Grad limit (see [10]), and if 

the initial state is factorized, i.e. 

N f0 (XI' vl . . . . .  XN' UN) = F 0 ( x l '  v l ) " "  FO(XN, ON), 

then at further times the solution of the Liouville equation will remain approximately so with F being a solution of 
the Boltzmann equation. In other words, the first marginal of the solution of the N-body Liouville equation follows 
approximately the dynamics prescribed by the Boltzmann equation. However 
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- like any integral of  any function of fN,  SC (t) = Sc (0) (a consequence of Liouville 's theorem for hamiltonian 

dynamics); 
- by Boltzmann's H theorem, H(t) increases until Ft reaches an equilibrium state. 

Observe however that for a factorized state 

I Ft(Xl, Vl) "" " Ft(XN, VN) log (Ft (Xl, vl)" " • Ft(XN, VN)) dxl dvl . . .  dxn dVN SG(t) 

=Nmt)(f F,(x,o) dxdo) N-' 
so that, in the limit as N --+ +c~ ,  one cannot infer the behavior of the Boltzmann entropy from that of  the Gibbs 

entropy. Also, as explained in [20], irreversibility is described by the Boltzmann entropy and not by the Gibbs 
entropy. Notice however, that one can hardly speak of apparition of irreversibility in this case, since irreversibility 

is introduced from the beginning by considering the marginals of  the solution of the Liouville equation. 
After this lengthy introduction on irreversibility, let us explain in which sense the model that we analyze below (as 

well as the one studied by Bunimovich et al.) might provide some understanding of the apparition of irreversibility 

as macroscopic limits are taken. 
Our model will be reversible in the following sense: it is described by a continuous unitary group of L2(X, #) 

where X is a phase space of the form ~a × y and /z  a measure on X whose integral along the fibers Y gives 
the Lebesgue measure on R a. When appropriately scaled, its long time, large scale limiting evolution is governed 

by the heat equation on ~d which is the archetype of irreversible systems and generates a continuous contraction 
semigroup on L 2 (l~d). Moreover, as is well known, the L 2 norm of the solution of the heat equation decreases unless 

the solution is in equilibrium (the only equilibrium solution in L2(R a) being 0). What happens can be explained very 
easily in terms of weak topologies: denote by G~ the unitary group corresponding to the scaled reversible evolution 
and by exp(tDA) the diffusion semigroup with diffusion constant D (here e > 0 denotes a small scaling parameter, 

and the macroscopic limit corresponds to letting E --* 0). For all t > 0 and all smooth initial data ¢ c C ~ ( R d ) ,  the 
scaled family G~ - ¢ converges weakly to exp(tDA) • ¢, but not in the norm topology. As a consequence, nonlinear 

functionals of  G~ • ¢ do not converge to the corresponding expressions with exp(tDA) - ¢ in place of  G~ • ¢. This 
applies in particular to the L 2 norm, and this explains how the L 2 norm of the limiting solution decreases while 

that of  the scaled microscopic dynamics (the one corresponding to the unitary group G~) remains constant under 

the evolution. 
Before describing in detail the mechanical system that we shall analyze in this paper, we conclude this impres- 

sionistic survey of the notion of irreversibility as related to our model by recalling for readers who might have more 
background in Physics than in Mathematics the notion of weak convergence which is central to our discussion, as 

can be understood from the explanation above. 
We believe that the most intuitive way of understanding weak topologies in Hilbert spaces consists in looking at 

the particular model H = L 2 (S l), the space of square-integrable functions on the circle (or equivalently defined 

on the real line R and periodic of  period, say, one). Then, functions can be thought as superpositions of  elementary 
waves via the theory of Fourier series. For a function u 6 H,  we denote by fi(k) its Fourier coefficient of  order 

k 6 77. Then a family of  functions (uE) indexed by ~ E]0, 1[ is said to: 
(i) converge to u in the weak topology of H if and only if, for all k 6 77, the family of Fourier coefficients of order 

k, fie (k) converges to fi (k) as E --+ O; 
(ii) converge to u in the strong (or norm) topology of H if and only if, as e -+ O, 

f luE(x) - u(x)l 2 dx = Z Ifi¢(k) - fi(k)l 2 ---> O. 
k E ~  

S I 
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Fig. 1. 

Another formulation of  (i) is as follows: 

(i t) the family (u~) converges to u in the weak topology of  H as E ~ 0 if and only if, for any interval I of  S l one has 

f u,(x)dx-> f u(x)dx. 
I I 

This makes more intuitive the relation between weak convergence and coarse graining. 

It is clear from this presentation that strong convergence implies weak convergence, whereas the converse is 

wrong, unless additional assumptions are made on the decay of  the Fourier coefficients at high wave numbers 

(uniform - in ~ - smallness as the wave number tends to infinity). Since nonlinear functionals of  u~ would involve 
a nonlocal interaction of  the Fourier coefficients of  u~, it is also clear that such nonlinear functionals of u~, as 

for example, the quadratic mean, are not continuous with respect to the weak topology. We refer to [ 15] for a 
comprehensive introduction to the notion of  weak convergence in L p spaces. 

To conclude this list of  remarks, we hope to have made clear what is meant here by reversibility and irreversibility, 

and how the way these notions are used in the present work differs from the more classical situation considered in 
statistical mechanics, i.e. the derivation of  kinetic theory from hamiltonian dynamics. 

I. Presentation of the model 

Between two horizontal plates, a family of  particles evolve as a Knudsen gas, i.e. a gas with no interparticle 
collisions. The vertical components of  the velocities of the particles are all assumed to have modulus c > 0. The 

horizontal components of  their velocities c a ( w )  are parametrized by }-2 = R2/(2rry)2.  Whenever the particles hit 

the top or bottom plate, their vertical velocities are changed into their opposite while their horizontal velocities are 
modified by the right action of  a hyperbolic automorphism of T 2 (cf. Fig. 1). 

We shall use the following notations: the position of  the particles is denoted by (x, z) 6 •d × (0, h) and the vertical 

component of  the velocity of  the particles by 4-c. The horizontal component of  this velocity is given by ca(o)), 
~o 6 T 2, where a : -1] .2 -+ R d denotes a smooth zero mean vector field. The nonnegative functions f+  (t, x, z, oJ) 
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(resp. f - ( t ,  x, Z, o9)) represent the number density of particles which at time t occupy the position (x, z) and move 
with velocity (ca(w), +c) (resp. (ca(w), -c)) .  

The following hyperbolic automorphism T of the torus (Arnold's cat map) defined by 

Wl 1 o91 
T ( o 9 2 ) = ( ~  l ) ( w 2 )  (mod2rr) (1) 

will be the only case treated here for computational simplicity. However, it will be clear throughout the paper that 
our method would apply to any hyperbolic automorphism of 7 n. The map T : ~-2 _+ ~-2 is one-to-one and C a ;  it 
preserves the measure dwi dw2/4zr 2 and its inverse (which also is a C a map) is given by 

The densities f~: satisfy the Liouville system of equations 

O t f  + "}- ca(og) • Oxf + -4- COzf + = 0, x E ~d, 0 < Z < h, o9 G T 2 (3) 

with the following boundary conditions on the plates: 

f+( t ,  x, O, o9) = f - ( t ,  x, O, Tw), x c ~d, o9 6 1] -2, (4a) 

f - ( t ,  x, h, o9) = f+( t ,  x, h, Tog), x E R d, to E -i]-2. (4b) 

Their value at t = 0 is given by the following initial condition: 

f+(0 ,  x ,z ,  og)=~b(x), x E R  d, 0 < Z  < h ,  o9E-1] -2 , (5) 

which is compatible with an approximation, as h -+ 0, by a horizontal diffusion, and avoids initial layers in the 
limiting process. 

Since the densities f +  satisfy Eq. (3), they are constant along the characteristic lines of the system; hence 

f+( t ,  x, z, o9) = q~ x - h Z a(r%)) + O(h). (6) 
k=0 

The asymptotic limit leading to a horizontal diffusion will be obtained by letting.h go to zero and observing the 
system for large positive times. A small parameter e being introduced, h is changed into Eh (thus letting the collision 
frequency go to ec) and t into t/E. The problem of interest (3)-(5) becomes 

~20tf? q-c fa(og) .Oxf?  4 -COzf?=O,  X e R  d, 0 < z < h ,  ogEq] -2. 

f+( t ,  X, O, w) = f~-(t, x, O, Tw), x C= [~d, 09 E ~2, 

f ~ - ( t , x , h , w ) = f + ( t , x , h ,  Tw), x 6 R  d, O9E-[] -2, 

f~(0 ,  x, z, o9) = ~b(x), x e R d, 0 < z < h, to E 1-2. 

Its solution is given by (see (6)) 

f ~  (t, x, Z, o9) = ~b (x  - Eh [a/E2h] \ 
k~__O a (Tkw ) )  + 0 ( ~ ) ,  

(7) 

(8a) 

(8b) 

(9) 

(lO) 
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therefore most of  the analysis is reduced to studying the limit, as E ~ O, of  the expression 

( [ct/E2hl ) 
~p,(t,x, to)=() x - e h  Z a(Tkw) " 

k = 0  

37 

(l l)  

2. Notations and main results 

The following notation will be systematically used below: 

l I (F) = ~ F(w)dw. 

~-2 

The formula UTf = f o T with the mapping T given by (I) defines an operator UT in the space L2(-[1-2); this 
operator is unitary and therefore its adjoint is given by U~f = UTlf = f o T -I. 

Definition I. A coboundary is an element of Im(l - U7). Two functions f and g belonging to L2(~ -2) are said to 

be cohomologous if and only if f - g is a coboundary and this equivalence relation will be denoted f ~ g. 

The next proposition describes the elementary properties of  what will be, in the limit E ~ 0, the diffusion 

coefficient. It is essentially based on the ergodic and mixing properties of  the mapping T. 

Proposition 2. 
(1) Any function a e Lz(T  a) which sat is fes  the relation a = a o T is constant and the subspace Im(1 - Ur) is 

dense in the space of  functions a ~ L2(-{ 2) such that < a > =  0 (notice that this space is invariant under T). 

Let s > 0 and a : 7I .2 ~ R d belong to the Sobolev class HS(-~2), with mean value (a) = O. 

(2) One has 

D(a)= ½(a 2) + Z ( a o  T k ®a) = 1 1 o r k > 0, (12) 

_ k = 0  

where the series 

Z l[ (a o T k ® a)ll < + ~  
k_>l 

for any norm II • II on Md(~). 
(3) Let ~ ~ ~a  and b ¢ HS(-[]-2; I~ a) such that (b) = 0. I f a  • s e ~ b .  s e then ~ - D(a)~ = ~. D(b)~. 
(4) For any s a E ~d,  the following properties are equivalent: 

(i) D(a)~ = 0; 
(ii) s e - D(a)~ = 0; 

(iii) the sequence of  functions fN ' ~ of  L2(3 -2) 

N 

f N ' ~  : Z ( a o T k ) "  
k = l  

is (uniformly with respect to N)  bounded in L2(T2); 

(iv) the function a • s ~ is a coboundary. 
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The main result of this paper is the following. 

Theorem 3. Let a : q]-2 ~ ~d be in the class C3(]  -2) with mean value (a) = 0 and let ¢p E C ~ ( ~  d) be an initial 

data. Denote by u(t, x)  the solution of 

8tu : l h c V x  • (D(a)Vxu) ,  u(0, x) = ¢p(x). (13) 

Then the family of  functions f ~  defined by (7)-(9) converges to u(x,  t) as e --~ 0 in the following sense: for any 

r > 0 and any compact  K C ~d 

( f ~ ( t , x , z , w ) )  ---> u ( t , x ) ,  C0([0, r]  × K × ~2x]0 ,  h[), (14a) 

f ~ ( t ,  x ,  z, w) ---> u(t,  x), C0([0, r] ,  w* - L°° (~  d × 3]-2)). (14b) 

Furthermore with 9E (x, t) defined by formula (11) one has 

I I f~  - ~P¢IIL~(R×Rdx(O,h)×~2) : O(~). (15) 

The proof of this theorem is tailored on the proof of the Ito formula (cf. for instance [ 12]); in particular it will 

be shown that the average of the different products appearing in a Taylor expansion are, in the limit, completely 

decorrelated and therefore converge to the product of  the corresponding limiting averages. In the original Ito formula, 
this point is straightforward since (by construction) the Brownian motion has independent increments. At variance 

in the present paper, the independence is obtained only in the limit E ~ 0 and, as will be shown below, is a 
consequence of the different mixing properties of  the map T. 

An analogous result has been proven by Denker and Philipp [ 14] for suspensions of finite type subshifts under 
H61der continuous maps. It would be theoretically possible to reduce the present analysis to this situation by coding 

the mapping T with a Markov partition. However, we recall that our goal in the present paper is to give an example of  
diffusion approximation of a reversible system which is as explicit as possible and uses only elementary techniques. 

In the present case, Fourier series expansions are used instead of a Markov partition as a coding of the system, l 
The outline of  the paper is as follows. In Section 3, the basic mixing properties of the map T are given (property 

(H 1) of  Proposition 5); they are based on the fact that the eigenvalues of  the matrix defining the cat map are algebraic 
of  degree 2 and therefore satisfy a diophantine condition. The mixing property (H 1) is used to prove Proposition 2. 

Then the decorrelation properties of  the process (property (H2)) are first proven in Proposition 6. This implies 
property (H3) of  Corollary 7, used to estimate the remainder of the Taylor expansion formula. Then Proposition 8 

and Corollary 9 provide all the material for the proof of Theorem 3 which belongs to Section 4. Section 5 contains 
final remarks and comments  on the numerical simulations. 

3. Proofs of  the mixing properties and of  Proposition 2 

As announced above, the proofs are based on Fourier series techniques. Indeed the properties of the dynamical 
system induced by the map T on the torus -I] -2 are most conveniently translated into those of the dynamical system 
defined in 7/2 (the dual group of q]-2) by the iteration of the matrix 

1 1 " 

1 While going through the revision of this manuscript, we became aware of an independent contribution by Babovski [22] on the same 
model. He uses the coding based on a Markov partition fnstead of the explicit method of the present article, and hence his analysis is a 
particular case of [ 14]. However, he provides a phenomenological derivation of models similar to (3)-(5) as a linearization of the law of 
specular reflection at a rough surface. This might add some practical interest for this class of examples. 
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The matrix M is strictly hyperbolic, i.e. it has two (distinct) real eigenvalues given by 

, ~ + =  1 + 0 ,  )~_ =)~+l ,  w i t h 0 =  ½ ( l + ~ )  (16) 

and the corresponding eigenvectors (generating the unstable and stable manifolds) are 

e+ = #  ( 0 1 ) ,  e = # ( 1 0 )  (17) 

with # = (1 + 0 2) -  l/e. The vectors (e+, e_) define an orthonormal basis. In this basis M reduces to the diagonal 

form 

0 ;._ ' 

Most of  the results that we shall obtain are based on the fact that the eigenvalues of M are algebraic numbers and 
therefore satisfy a diophantine estimate. We recall this simple fact (originally due to Kronecker) in the following 

lemma. 

Lemma 4. Let 0 = ½(! + v/5). Then: 

(i) best rational approximation f o r  0 

1 
inf 10 - p/q[  > (18) 

( p . q ) = l  - -  (1 + V'~)q 2'  

(ii) diophantine estimate f o r  0 

1 
inf IqO - p] > • (19) 

(p,q)Ey2\{o} - -  (1 + ~/5) sup(Ipl,  Iql) 

Proof  The minimal polynomial of  0 over Q is P ( X )  = X 2 - X - 1 = (X - O)(X + O-I) .  Let p and q be two 

integers (p, q) ---- 1. First P ( p / q )  ~ 0 since P has no rational root, and therefore 

]p2 _ qp _ q2] 1 
]P(P/q)[---- q2 > q2" (20) 

On the other hand 

[P (p/q)]  ]P (P/q)] 1 
~ . 

j p /q  - O] = [P/q _ 0 + 0 + 0 -1 ] ]p/q - 0 + 4'5] q2(]p/q  _ O] + v/-5) 

Considering both cases IP/q - 01 > 1 and IP/q - 01 < 1, one obtains for any pair of integers (p, q) with q g: 0 

l ) (21) Ip/q-Ol->inf 1,(l+~/~)q2 ' 

which proves (i). 
(ii) follows directly from (i). [] 

Proposition 5. Let 0 < X (R) be a nonincreasing positive function such that 

lim x ( R ) = O .  
R--~ oo 
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Consider the class of functions 

Hx = { f E L2(T2) s't" Z '-f(k)'2 ~ x(R)2"f"2} • 
Ikll,lk21>R 

Then one has the following: 

(i) Rate of Mixing. For all ( f ,  g) ~ H x such that ( f )  = (g) = 0, 
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with Co -- - -  (22) 

(ii) Property (HI): Exponential mixing. For all s > 0 and all f c HS(]/-2) such that I f )  = 0, the self-correlation 
coefficient defined as 

Cf(n) = ( f  o T n . f )  

satifies the decay estimate: 

CI[ 2e-Sn~ = log (½(3 + ,¢~)). (23) ICy(n)l < flls with ot 

Proof With the Plancherel formula one has, for any pair ( f ,  g) 6 L2(T 2) with mean value ( f )  = (g) = 0, the 
formula: 

1 
( f  o T n • g) = ~ 2  Z f(M-nk)g(-k)" (24) 

k¢O 

For any R > 0, decompose the above sum into two parts corresponding to KR and K~ with K~ given by 

KR = {k ~ 7/2 s.t, sup(Ikll, [k21) < R}. 

Since g belongs to the class Hx, the Cauchy-Schwarz inequality yields the estimate: 

I ~ f (M-nk)g(-k)  <- "f'I2"g'}2x(R). (25) 
k 

For k ~ KR, one introduces the decomposition k = (k - e+)e+ + (k • e_)e_;  Kronecker's estimate (19) shows that 

Ek.e-I > O-)lk[ -I > (~/2RO) -l,  

whence 

IM-"kl >_ ~- 
,/ RO " 

Using that f ~ H x and that )~ is nonincreasing, this implies the estimate: 

Z f(M-nk)g,(-k) < Ilfllzllgllzx ~,~RO~] (26) 
kEKR--{O} 

Relation (22) is obtained by choosing R = Col/2•n+/e in (25) and (26). To obtain the exponential rate of mixing 
(23), one specializes (22) to the case f = g and uses the expression X (R) = R-S(ll f IIs II f 1121) j/2. [] 
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Proof of Proposition 2. Let k c y2 \ 0. Since ker (M - ~._ I )  is a line with irrational slope, the orthogonal projection 

of k on ker (M - ~._ I )  is not 0 and therefore [M-nk[ ~ +o~ as n ~ +o~.  

Let a 6 L2(q] -2) and consider its Fourier series: 

a(w) = ~ fi(k)e ikC°. 

k ¢ l  2 

The relation a = a o T shows that for any k 6 7/2 and any n one has 

fi(k) = fi(M "k). 

B u t a  6 12(y2) since a 6 L2(ql-2): hence for all k -# 0 in ?72 fi(k) --  f i (M-nk) --* 0 as n ~ +oc .  Therefore fi _--_- 0 

on 7/2 \ {0}, which means that a is a constant. This proves the ergodic property ker (1 - UT) = ~.  The same remark 

applies to the kernel of  the adjoint (1 - Ur)* = UT 1 (Ur - I) in L2(-0 -2) which also is reduced to the constants. 

Therefore the set of  coboundaries is dense in the space of  functions a 6 L2(q] -2) such that (a) = 0. 

For condition (2), start with the formula 

(a o T k ® a o T l) = (a o T k-I ® a), (27) 

which follows from the invariance of  the measure dwl dw2 under T. Summing with respect to m ---- k - / yields 

a ° T k  ---- Z Z ( a ° T k - l ® a )  ---- N(a®2) + 2  ( N - m ) ( a ° T m ® a )  (28) 
\ k = 0  k = 0  / = 0  m = l  

or in other words 

(a ®2) + 2 Z (a T r e ® a ) =  

m = l  

N, )o2) N 
Z 2 m ( a o T m ® a ) .  
k=0 a ° T k  "[- N m--I 

(29) 

1 l im 1 a o T  k 
D(a) = ~ N--,~ \ - - ~  k=0 

and completing the proof of  (2). 
To prove condition (3), write a ~ b as a - b = $ - tp o T and use the relation: 

N - I  2 2 1 Z (~ " b) o T k ~. D(b)~ = l i m  ~ k=o 

(30) 

Since the vector field a has mean zero and is of  Sobolev class H s with s > 0, it follows from Proposition 5 that the 

exponential estimate (23) holds; it implies the absolute convergence of  the series 

~--~ (a o T m ® a), 
m > l  

which appears in the left-hand side of  (12) (Proposition 2 (2)) and of  

~~ rn ( a o T re®a) .  

m > l  

Therefore, the last term of  the right-hand side of  (29) goes to zero, leading to the relation 
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1 . Tk T k T k + !  = lim (s e a)  o + ( ~ . ~ p )  o - ( ~ . ~ p )  o 
N--+ o~ k=0 

N - I  ~) 2 2 1 Z Tk = lim (a o • = ¢ • D(a)¢. (31) 
N--+oo ~ k=0 

Since the matrix D(a) is symmetric and nonnegative, conditions (4) (i) and (ii) are equivalent. To prove that (4) (ii) 

implies 4 (iii), write (29) in the form 

N-1 2 2 
k~=O(~ .a) oT k = U ~ . D ( a ) ~ - 2 U  Z ((~'a)°Tm(~'a))  

m>_N 

N- I  
- 2 Z m((~ .a) o Tm(~ .a)). (32) 

m=l 

We recall that, thanks to the exponential decay estimate (23), the series 

Z [ r n ( ( ~ . a )  o T m ( ~ . a ) ) l  <-q-CX~ and Z [ ( ( ~ ' a ) ° T m ( ~ ' a ) ) l = ° ( 1 )  " (33) 

rn>l m>N 

Hence, if one assumes that s e - D(a)¢ = 0, one has 

~ ( ~ . a )  oT k 2 < 2 s u p ( N  Z [((~'a) oTm(~'a))l) 
k=0 2 N>0 m>N 

+ 2 Z Im((¢ • a) o Tm(~ • a))L < +oo .  (34) 
m>l 

Finally, to prove that (iii) implies (iv) observe that the sequence fN " ~ is, in any case, the "formal inverse" for 

the equation 

a - ¢ = g ¢ - g ¢ o T .  (35) 

Since the sequence 

N 
fN '¢  = Z a ° T k ' ~  

k=l 

is bounded in L2(q]-2), one can consider f ,  one of its weak L2(q] -2) l imit  points and, using Lemma 4, one has, for 

any function q~ E C ~ ( T 2 ) ,  

((fN -- fN o T)q~) -- (~ • aq~) = --(~ • a o T N+I dp) ~ O, for N --+ cx:~, (36) 

which shows t h a t f - f o T = a . ~ .  [] 

As we said above, the proof of  Theorem 2 follows in many respects the proof of  the Ito formula. Therefore it 
will be important to study the decorrelation of events occurring in two separate intervals of  time, uniformly with 
respect to the size of these intervals, and under the only assumption that their mutual distance is large enough. This 
is dealt with in the following proposition. What we prove is a property similar to the "Weak Bernouilli property" as 
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introduced by Omstein and Weiss (cf. [4]). The main difference with the classical formulation as in [4] is the use 

of  trigonometric polynomials instead of  indicator functions of  the elements of  a partition. 

Proposition 6. The transformation T has the following property: 

Property (H2). There exist two constants 130 > 0 and 131 such that for all l, m c N, U C {n . . . . .  n + l}, 

V C {n . . . . .  n + m} and for all pair of  trigonometric polynomials P, Q, of degree less than R, one has, for all 
n > 1 3 0 1 o g R + f l j ,  

(37) 

Proof  This proof follows that of Proposition 5. The method is similar to the one used by Katznelson [18], but here 

a more precise result is needed and proven. Observe that it is enough to study expressions of  the following type: 

)( ) 4rr2 exp ioJ- Z M-ksek exp ion. Z Mkqk do) 
~2 keU kcV 

4--~ 2 l f e x p  i°-' ' ~  M-k~k d°~ key 4 ~ 2 f e x p  iw'kev +2 / 

with ~k E KR, for all k such that n < k < n + 1 and r/k 6 KR, for all k such that n < k < n + m (where, as in the 
proof of  Proposition 5, KR = {k c 7/2 s.t. sup([kl [, [k2l) _< R}). 

With the notations 

XU = Z M-k~k '  X+ = Z MkTlk" 
kEU kcV 

relation (37) is equivalent to the following assertion: 

There exist 13o > 0 and 131 such that 

X u + X + = 0  ~ X u = 0 a n d X + = 0  V n > 1 3 o l o g R + 1 3 1 ,  Vl, m e N .  (39) 

Denote by 1 = Re+ and S = Re_ the unstable and stable manifolds of  M acting on R 2. Let ~ 6 KR; one has 

tXcJ" e+l < Z [M-n'~k" e+l = Z l,~k" M n e+l---- Z)'+k-l'~k" e+l. 
kcU kEU k~U 

Proceeding likewise with X +, for all ~ and 17 in KR one has 

)n ~n 
IX;; • e+l _< V'2R - I - z _ '  Ix  + -  e-I _< x /2R 1 - ),--_" ( 4 0 )  

This implies that X U belongs to a neighborhood S~ of  S while X + belongs to a neighborhood 1~ of  I given by the 
formulas: 

{ } 1~ = X ~ R2 s.t. IX . e_I < ~ R  I _ ;~ - , 

{ X"- ] 
S~ = X E R 2 s.t. IX • e+l _< x/2R 1 - )~_ ' 

(41) 
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Fig. 2. 

Since X~ -4- X + = 0, both X U and X + belong to gn ,R  = SnR f-) I~ (cf. Fig. 2) which for an n greater than a given 
value No is contained in KR. Whenever they are not both equal to zero, the diophantine estimate (19) of Lemma 4 

can be used to give. 

1 1 
IX U . e + l >  or I X + . e - I >  (42) 

- (1 + x / ~ ) R  - (1 + x/-5)R" 

For n > (2 log R + log(x/2(1 + Vr5))/log ~.+, one has 

1 > ,¢/2R ~.n_ (43)  
(1 + ~/'5)R 1 - ~._" 

Therefore, if n is greater than 

( 2 log R + log(~/2(1 + ~ /5 ) ) )  
sup no, log ~.+ ' 

X~ and X + are both equal to zero. [] 

Corollary 7. Let 0 < X (R) be a nonincreasing positive function going to 0 as R tends to infinity, such that 

x ( R )  = O ( ( 1 / l o g R )  6) for R ---> +oe .  (44) 
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Consider the class of functions defined by 

I 1 / W x = H x N f • L°°(~ -2) s.t. 4Jr--- ~ E If(k)l < I[fl[o~x(R) VR > 0 . (45) 
sup(Ikl hlk21)> R 

Then one has: 

Proper~ (H3). For all f • W x such that ( f )  = 0 

1 N 
v /~  E f ° Tk 

k=0 

is uniformly bounded (with respect to N) in L4(qf2). 

Proof The proof follows the same line as the one indicated by Ratner [21] when the mapping T is replaced by any 
K system. For the sake of being complete, we give a proof based only on property (H2) (which is more restrictive 
than assuming the K property). First observe that 

E f ° T k  = E ( f ° T k ' f ° T k 2 f ° T k 3 f ° T k 4 )  
k=0 O<kl ,k2,k3,k4 <N 

= 4 !  E ( f  ° Tk' f ° TkZ f ° Tk3 f ° Tk4)' (46) 
0<kl <k2_<k3 _<k4 <N 

and introduce the following sets of indices: 

Z = {  (kl'k2'k3'k4) s ' t 'O<kl  <k2 <k3 <k4 < N' 2<i<4sup [k i -k i_ l l  < NI/3}, 

B = {(kl, k2, k3, kn) s.t. 0 < kl < k2 < k3 < k4 < N, k2 - kl > NI/3}, (47) 

C = {(kl, k2, k3, k4) s.t. 0 < kl < k2 < k3 < k4 < N, k3 - k2 > NI/3}, 

D = {(kl, k2, k3, k4) s.t. 0 < kl < k2 < k3 < k4 < N, k4 - k3 > NI/3}. 

One has 

A N B = A N C = A N D = ~  and 0,1 . . . . .  N 4 = A O B U C U D  (48) 

with the subsets B, C and D having nonempty intersection. From relation (48) one deduce the estimate: 

( N 4) 

E f o Tk <4! E I(f  ° Tk' f ° Tk~" f ° Tk3 f ° Tk4)l 
k=0 (kl ,k2,k3,k4)cA 

+ 4 !  E [ ( f ° T k ' f ° T k 2 f ° T k 3 f ° T k 4 } [  
(kl ,k2,k3,k4)EB 

+ 4 !  E [ ( f ° T k ~ f ° T k ~ f ° T k 3 f ° T k 4 ) l  
(kl k2 k3 k4)EC 

+ 4 !  E I ( f ° T k t f ° T k 2 f ° T k 3 f ° T k 4 ) ] "  (49) 
(kl ,k2,k3,k4)ED 
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To prove the corollary we show that all the terms which appears in (49) are uniformly bounded with respect to N 2. 
This will be done in three steps: step 1: terms of (49) with support in A; step 2: terms with support in B or D (the 
proof being similar in these two cases); and step 3: terms with support in C. For steps 2 and 3 the Fourier expansion 
of f truncated at degree R will be used; it is denoted by P R ( f )  and since f ~ W x one has 

If(w) - e R ( f ) ( c o ) l  <_ x(R)IIfI[~.  (50) 

Step  1: S u m m a t i o n  wi th  s uppor t  in A.  Observe that ~A < 3 ! N ( N  1/3 + 1)3; this implies the estimate: 

Z I ( f ° T / q ' f ° T k 2 " f ° T k 3 " f ° T k 4 ) l < 3 ! N ( N l / 3 + l ) 3 1 1 f l l 4 "  
(kl,k2,k3 k4)EA 

(51) 

Step  2: S u m m a t i o n  wi th  s u p p o r t  in B a n d  D. As already noticed, the proof is similar for these two terms and 
therefore only the sum with support in B is considered. 

Since f belongs to W x , estimate (50) shows that 

I ( f  o T k~ . f o T k2 • f o T k3 . f 0 Tk4)[ 

(kl ,k2,k3,k4)EB 

< Z I ( P R ( f )  o T k' • P R ( f )  o T ~2 • P R ( f )  o T k3 • P R ( f )  o Tk4)l 
(kl ,k2,k3,ka)EB 

A- 4N 4 II f 1lax (R) (sup(x in) ,  1)) 3. (52) 

To use property (H2), write 

(PR( f )  o T k~ • PR(f) o T k2 • P R ( f )  o T k3 • P R ( f )  o T k4) 

= ( e R ( f )  o T k'-~ • P R ( f )  o T k2-K • P R ( f )  o T ~3"-x • e R ( f )  o T k 4 - r ) .  (53) 

In (53) choose x = [l(kl  + k2)], notice that P R ( f )  is of mean value zero (because f is of mean value zero) and 
apply Proposition 6 to the sets 

U : {x--kl}, V = {k2-t¢,k3-x,  k4-x}. 

It shows that, for 

( N I / 3  = 2151 ) 
R = exp \ 2130 

and for any (kl, k2, k3, k4) c B, one has 

( P R ( f )  o T k' P R ( f )  o Tkz P R ( f )  o Tk3 P R ( f )  o T k4) = 0. (54) 

Therefore with X (R) = O((1/ log R) 6) for R ~ +c~, the estimate 

4 4 (  (g ' /3  - 2/~1 ) )  
Z I(f  o T k' . f o T k: • f o T k3 • f o Tk4)l  < 4N I[fllocX exp = O(N 2) 

(kl ,k2,k3.k4)eB -- 2f10 

is deduced from (52). 

(55) 
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S tep  3: S u m m a t i o n  wi th  s uppor t  in C. As in step 2 write 

Y~.  [ ( f  o T k' . f o T k2 . f o Tk3 . f o T k 4 ) [  

(kl ,k2,k3,k4)EC 

< Z I ( e R ( f )  o T kl • P R ( f )  o T k2 • P R ( f )  o T k3 • P R ( f )  0 Tk4),[ 

(kt ,k2,k3,k4)EC 

+ 4 N 4 I I f l I 4 x ( R ) ( s u p ( x ( R ) ,  1)) 3. 

Then for any (kl, k2, k3, k4) E C, apply Proposition 6 to the sets 

U = {K -- kl, x - k2} and V ----- {k3 - to, k4 - K} 

with x = [½(k2 + k3)]. It shows that, for 

( N ' / 3  - 2/3,) 
R = exp 2~0 ' 

one has 

( e g ( f )  o T k' • P R ( f )  o T k2 " P R ( f )  o Tk3 • e R ( f )  o T k4 ) 

= ( P R ( f )  ° T k' " P R ( f )  o T k 2 ) ( P R ( f )  o T k3 • P R ( f )  o T k ' ) .  

Therefore 

Z I(f  o T k' • f 0 T k2 • f 0 T k3 • f 0 Tk4)l 
(kl k2 k3 k4)eC 

< Z I(PR(f) o T kl • P R ( f )  o T k 2 ) { P R ( f )  o T k3 • P R ( f )  o Tk4)l 
Ikl,k2 k3 k4)EC 

+ 4N4 II f 1[ 4 X (R). 

47 

(56) 

(57) 

(58) 

On the other hand 

~ I(PR(f) o T k' • P R ( f )  o T k 2 ) ( P R ( f )  o T k3 • PR(f)  o Tk4)l 
(kl k2 k3 k4)EC 

-< Z I(PR(f) o T kj • e R ( f )  o T k 2 ) I I ( P R ( f  ) o T k3 • e R ( f )  o Tk4)l 
0<kl ,k2,k3,k4<N 

( Y~.__ T k' )2  
= ~ I ( P R ( f )  o • P R ( f )  o Tk2)l . 

\O<kl,k2<_N 

(59) 

Since f belongs to the class W x C H x,  P R ( f )  also belongs to the class H x and the estimate (22) of Proposition 5 
can be used to give 

[(PR ( f )  0 T k' • PR ( f )  o Tk2)[ ~ ~ II f II 2 X (Co~-~ 2-k' )/2). (60) 



48 C. Bardos et al./Physica D 104 (1997) 32-60 

n/2 The sum Y-~n>_0 X (C0;v+) converges (by assumption: see (44)) and therefore 

Z [ (PR( f )°Tk ' 'PR( f )°Tk2)[  <(2~ ~ 1  Ilfll2)2 Z x(C°I~2-k')/2)=O(N2)" (61) 
0<kl ,k2<_N 0<kl ,k2<_N 

With (56)-(58) and (61) one obtains, for 

(NI/3 - 2 i l l )  
R = exp 2~0 ' 

the formula 

Z I(f  o T k~ • f o T k2 • f o T k3 • f o Tk4)l 
(kl ,k2,k3,k4)EC 

< 4N4llfll4 x (exp ( Nl/3 - 2fll 2~o ) )  +O(N2) <- CN2' 

which concludes the proof of step 3 and of Corollary 7. [] 
To further extend the decorrelation properties, this section is concluded with Proposition 8 involving functions 

f ~ H s (R d) and Corollary 9 which allows to consider smooth functions with subquadratic growth at infinity. 

Proposition 8. Assume that the vector field a is smooth enough (say a 6 C3(qY 2, •2)) and satisfies < a > =  0. 
Then for any pair of functions f and g E Hs(R d) with l d  < s one has 

ii [ct/e2h] \ i I [c(t+r)/E2h] ) )  
f l e h  k~=o a ° T k } g {  eh Z a ° T l  

/ \ l=[c(t+3)/~2h] 

- f Eh ~ a o T  ~ g Eh ~ aoT'  
k=0 l=[c(t +6)/E2h] 

(:s-d~2 ) 
< Hfilsligiis C - - + e - a H ( K , & e )  (62) 
- s - d/2 

with H(K, 8, ~) given by 

c,, rc" ; 
H ( K , & E ) = - ~ - e x p t  v ~2 ] e x p ~ T E - e x p ~ - - - ~ )  ) "  (63) 

In (62) and (63) C, C' and C" denote some constants independent of E, 6 and t, t + r in the bounded interval [0, K]. 

Proof First represent f and g in terms of their Fourier transforms: 

f(x)= f ei~.xf(~ ) d~ f i_.x ̂  drl (2zr)a, g(x) = e" g(rl) (2-~r--3d 
Rd Rd 

and observe that since f and g belong to HS(~ d) the above integrals can, in the sequel, be replaced by 

f,,x,= f ei~'xf(se)ds~/(2~r)d, f e i O ' X ~ ( r l ) d r l / ( 2 r r )  d .  

RdN{le~l<l} RdN{lesel< 1} 

(64) 

(65) 



C. Bardos et al./Physica D 104 (1997) 32~50 49 

This truncation introduces in the proof an error of the order of II f lls IIg IIs (~s-d/e)/(s  -- d /2)  which correspond to 

the first term in the right-hand side of (62) and reduces the proof of  the Proposition 8 to estimating the expression: 

e -d  sup exp(i~ • Eha o T k) 1-'[ exp(i~ • eha o T l) 
Isel-<l,l~Tl-<l ~ k=O l=[c(t+8)/~2h] 

- 17  exp(i~ • ~ha o T k) 1-- I  exp(it/ .  ~ha o T t) . (66) 
k=0 l=[c(t+S)/E2h] 

However Proposition 6 (property (H2) or relation (37)) cannot be directly applied to the above formula because 

the functions exp(i~,  eha) and exp(i~,  eha) are not trigonometric polynomials in the variable w. Therefore these 
functions have to be approximated by their truncated Fourier series. In order to do so it is convenient to introduce 
the following notations: 

0~ (co) = exp(is e . ha(to)), 

PR (0~) = Z 0~ (k) exp(ik • co), (67) 
sup(Ikl I,Ik21<R) 

A~,R = Z [O~(k)l. 
sup(Ikl hlk21_>R) 

Assuming that a E C3(T 2, 1~2), the quantities A~,R are finite and one has 

IIPR(O~) -- 0~ Iloo _< ~ 10¢(k)l = A#,R, 
sup(Ikl I,[k21>e 

IIIPR(O#)[- llloo < IIPR(O~) --0~11oo _< A~,R, (68) 

Ileg(O~)llo¢ <_ (1 + A~,R), 

and 

C 
Va, 0 < a < 1, AR = sup A~,R < 

i~l_<l - (1 - a ) R  l -a  " 

Going back to (66), one has the inequality 

1-I 1-I YI 
k=O l=[c(t4_8)/E2h] ~ k=O I ~l=[c(t+8)/E2h] 

<-- PR(OE~) o T k I-]  PR(OEo) o T k 
"~ k=0 l=[c(t_t_8)/E2h] 

~t k=0 I ~l=[c(t+8)/E2h] 

A- 0e~ o T k I-I  0~  o T k 
k=0 l=[c(t+8)/e2h] 

- -  PR(OE~ ) o T k F I  PR(O~u) o T k 
k=O l=[c(t+8)/~2h] 

(69) 
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k=0 I ~l=[c(t+3)/~2h] 

X k=0 PR(OE~) o Tk/ PR(OEo) o Tk[ I • (70) 

The property (H3) can be used for the first term of the right-hand side of (70) which turns out to be zero for 

R=exp(~o([C(t+8)/ '2h]-[ct /E2h]-~l)  ) . (71) 

The estimates (68) and (69) can be used to control the second and third term of (70), with lEVI __5 1 and I,r/I _< 1 
their sum is bounded by 

Fc(_, +,] Fo(~_+ ~)l ( Fc(t+__,l/ 2AR L E2h (1 + AR) [c(t+r)/Ezh] << 2AR L ~2h J exp AR [ ,2 h j ] .  (72) 

With (69) and the choice of R given by (71), the right-hand side of (72) satisfies the following estimate: 

[c(/+~) l ( Fc~+~)ll c,, ( c,sl rc" ( c , ~  
AR[. ~-~ .]exp AR[. E2 h j ]  < - ~ - e x p k - - - ~ - } e x p ~ - T e x p  - , 2  ] ]  (73) 

which leads to the function H(K, 8, , )  and completes the proof. [] 

Corollary 9. 
g ~ C°°(R d) with subquadratic growth at infinity as follows: 

Ig(x)l + ~ IVf~g(x)t < Cg(1 + Ixl2). 
l<l<_[d/2+l] 

Assume that the vector field a satisfies the assumptions of Proposition 8. Let f ~ C~(R d) and 

Then for any positive constant M 

(74) 

)> I ,h S ,  aor* g ,h ~ aor' 
k=0 l=[c(t+3)/~2h] 

- I f l ,  h k~=o aoTk g ,h ~ aoT  ! 
I=[c(t+8)/¢2h] 

_ a o T k ~/r -__+ 2E 2 

N>0 k=0 4 \ 

[ Es-al2 ) 
+CgllfllsM(d+2)/z|Cls d 2 + ' -dH(K '8 ' ' )  (75) \ - /  

where s is chosen equal to [d/2 + 1], Ilflls represent the H s Sobolev norm of f and H(K, S, ,)  is the function 
defined by (63). As before, the constants are independent of t, r , ,  and S. 

Proof Introduce a cutoff function XM E C°°(~ 2) with the following properties: 

VX, 0 < XM ~ 1, XM(X) = 1 if Ixl <_ M, XM(X) ---- 0 for Ix[ _> 2M (76) 
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and denote by gM the function gxM. From the formula Ig - gMI < Iglllxl>M one deduces the estimate 

< (cj2h  a o 1 (  a o T')> 
k = 0  / \ l=[c(t+S)/~2h] 

- f ~h Z a e T  k } ) / g  eh Z acT' 
k = O  / / ~  \ l=[c(t+8)/E2hl 

< f Eh Z a oT k gM ~h Z a oTl 
k = 0  / \ i=[c(t+8)/~2hl 

- f eh Z a o T  k gM eh Z a o T  l 
k = O  l=[c(t+8)/e2h] 

g ( [cU+r)/~zhl a o ) 
+ 2llfllec [ - -  Eh Z Tt (c°) 

, /  
I=[c(t+8)/e2hl t, ~ "~[c(t+r)/~2hl 

. . . .  aoT'(~o)l>M 
z---,l=lc( +8)/~Zh] 

dw. 

Corollary 7 shows that 

Eh [c(t+r)/E2h] 
Tl(w) m e s  w s.t. _ _  a o 

I=[c(t+8)/~2h] 

< sup - - Z a ° T  k ~ / r - 8 + 2 E  2 

- N>0 ~ k=0 m " 

Using the Cauchy-Schwarz inequality and the subquadratic growth of g (74), this implies 

g(~h [c(t+r)/~2h] Tl(o))) 
f Z ao 

I=[c(t+S)/E2hl " ~ c(t+r)/~2h ~1 
~n ~ 2 a o l  (w) >M 

z,--al= c(t+~)/~ hi I-- 

 c sup _ aoT k 
N>0 k=0 m 

do) 

Therefore, with estimate (62), one concludes that 

k = 0  / \ l=[c(t+8)/E2h] 

51 

(77) 

(78) 

(79) 
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< 21lfll~Cg sup a o T k 
- -  N > 0  k=0 M 

+llfllsllgMII, C - - + e - a H ( K , 8 ,  e) s - d/2 

Since (74) shows that IlgM IIs is bounded by CgM ('~+2)/2, (80) completes the proofof 

Corollary 9. [] 

(80) 

4. Proof of Theorem 2 

As it was said in the introduction the proof of Theorem 2 is inspired by the proof the Ito formula for the Brownian 
motion. Therefore the starting point is the Taylor formula at order three for the increment. 

(~E(t + r , x , . ,  .)) - (~E(t,x,., .)) 

= v4~ x - ~ h  ~_, a(r%~t .~h y~ a(rk~o) 
k=[ct/~2h]+l 

+ V24~ x--Eh k~=o a(Tk°))) : Eh E a(Tk~°)) ) 
k=[ct/E2h]+l / I 

+ 0  Eh y~  a(Tkw) • (81/ 
k=[ct/E2hl+ 1 

The analysis of the limit for e ~ 0 in the above expression will be done in three steps and C will be used to denote 
various constants independent of e and r. 

Step 1: Estimate of the remainder. One has 

or, using H61der's inequality with N = [cr/e2h] 

{eh ~ a(Tk~o)~ ) <  ~2-~(Eh~/N) 3 k--~0 a(Tk°))) l )  +O((eh)3)" 
[ \ k=[ct/E2h]+l / t [ 

Using Corollary 7, the following bound is deduced from (83) 

( ,3 / 
l imsup( eh Z a(Tk°9)~ < C(~Cc-h)3/2v3/2" 

e-->O \ k=[ct/e2h]+l / 

(82) 

(83) 

(84) 
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Step 2: Decorrelation in (81). Since the treatment of the linear term is simpler than the treatment of the quadratic 

term (but follows the same lines), only the latter will be considered in detail. A "small" positive time 6 is introduced 
and one has 

(~2~)(x --Eh [ct/E2h]k~=o a(Zko)))\ " (6h i~([tct~riiii~]lZ a(Zk°))) ®2) 

- V ~  x - E h  ~ a(r~o) : ~h ~_, a(rk~o) 
k=0 k=[c(t+8)/~2h]+l 

x- h a(r  o) 
k=0 k=[ct/e2h]+ 1 

k=[c(t+6)/~Zh]+l 
The first term of the right-hand side of (85) is bounded by 

,[V2dpl[~( [c(t+6)/E2hlEh k=lct/~2h]+lZ a o T k ) i  

Ii _< I[V24~11~ sup - - Z a o T k  (c6+2~2h)h. 
N>0 ~ k=0 

Similarly the second term is bounded by 

The only remaining term is 

V2~b x ~h k~=o a(Tk~o)) : Z a(Tk°9) " 
C k=[c(t+6)/~2h]+ 1 

Here Corollary 9 is used with g(x) = x ®2 leading to the following estimate: 

( x ~h_ [ct/e2hlk~=O a(Tk°2) ) Z a(Tk°2)l\®2\) 
c k=lct/~2hl+l ! I 

_{V2fb(x ,h [ct/'2h] \ .  @2 - ~ a(Tk°9)))((~hc [c(t+r)/~2hla(Tkw) ) 
C k=[ct/~2h]+l 

(85) 

(86) 

(87) 
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+ IIg~4~ll~ sup - -  Z a o T k ~/(cr + 2E2h)(cS + 2~2h)h 
N>0 ~ k=0 

+ IIV~4~ll~ suPN>0 (----~N ~ ~  a ° T k ) k = 0  24(eS+2E2h)h 

q_2,,V2~bllo~ sup (___~N ~.~ ~ ) 4 ( ~ ) a o T k ~/r - + 2~ 2 2 

N>0 k=0 4 

+ CIIVx24~lls M (d+2~/2 C ~ - -  + e-d/-/(K, 8, e) . (88) 
s -- d/2 

For a given r ~ (0, 1), and 0 < E < r one uses the special form of the function H(K,  8, E); it shows that, by 

choosing 

8 = E and M = 6. -(2s-d)/4(d+2) 

one has 

limsup/E--,0 / Vx24~ x c ~ a(Tkw))  ~k=lct/Ezhl+l 

_ V2q~ x Eh ~ a(Tko9 ) . Z a(Tko>)} ~ = 0 .  (89) 
C k=[ct/E2h]+l / II  

Denote by uE (t, x) the family of functions (~E (t, x, .)). Starting with (81), using Step 3: Weak and strong limits. 
the estimate for the remainder (84), the L ~ bounds on Vq~ and V2~b, the inequality 

#{k s.t. [ct/e2h] + 1 < k < [c(t + r)/E2hl} < [cr/E2h] + 1, (90) 

and property (H3) from Corollary 7, we arrive at the (uniform in r ~ [0, 1] and E 6 [0, 1]) bound: 

[u~(t + r ,x)  - uE(t,x, ")1 < C~r-r + E2. (91) 

It follows from Ascoli's theorem that the family u~ is relatively compact in C°([0, r]; w* - L~(~d)) .  Let u be a 
limit point of this family and rename as usual, f f ,  ~p~ and uE the corresponding subfamilies, with u~ converging to 
u. Starting from the "Ito" formula (82), using (84) and (89) one obtains 

u(t + r, x) - u(t, x) 

= lim{u~(t + r ,x )  - u,( t ,x)}  ~:----~ 0 
] [ eq/-~'[c(t+r)/E2h]-[ct/~2h]-I \®2\1 

= r c h l i m  [1  2 ~ V x U , ( t , x ) : l i m ( |  ~ ~ a(Tkw)|  ~ / -'1"- O(~') 3/2 (92) 
,--,0 [ , -~0\\v'c~ k=0"" ] / I  
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or with (12) (cf. Proposition 2(2).) 

u(t + r, x)  - u(t, x)  = l hcr O(a) : VZu(t,  x) + O(r)  3/2. (93) 

Dividing (93) by r and letting r go to zero, one sees that u solves the initial value problem for the diffusion equation 

du l hcD(a ) 2 • V~u, u(x,O) = 4)(x). (94) 
dt 

The solution of (94) being unique, it follows that the whole families 

( f ~ ( t , x ,  og)} or uE(x,t)={O~(t,x, og))= 4) x - e h  ~ a(T~og) 
k=0 

converge in C°([0, rl;  w* - L~(Na))  to u(t, x). 
Observing that the problem (7)-(10) is translation invariant in the variable x ~ Na and using the regularity of 

4) c C2([Ra), one can see that the family of functions u~ (t, x) satisfies the (uniform in e) estimate 

Ilu~(t, x)llc~(~,+ 62(R5/)) -< C. (95) 

Acoli's theorem, (91) and (95) show that for any r > 0 and any compact K C ~a, the sequence u~ (t, x) converges 

to u(t, x) in C([0, r] × K). This argument completes the proof of the strong convergence of the averages (14a). 
Finally let f be in the w* closure in L ~ ( ~  + x ~ × -!] -2) of the family ,p~(t. x,  o9). One deduces from (11) that 

f is invariant under the action of T 

f ( t ,  x, co) = f ( t ,  x,  To)). (96) 

The ergodicity property (Proposition 2 (1)) implies that f is independent of w and therefore coincide with the 
function u(t, x): this demonstrates the convergence (14b) and concludes the proof of Theorem 3. [] 

5. Final remarks  and numerical  exper iments  

The model (3)-(5) defines a global broken hamiltonian flow which induces an isometry on  LP(~  d × ~-2) for all 

1 < p _< cx~. In particular the quantity [[f+(t , . ,  ")[[2 + [ I f¢( t , . ,  ')H2 is conserved for any E > 0 at variance with 
the quantity []u(t, -)][2. Therefore the type of convergence which is given in Theorem 3 (strong for the average and 

weak for the solution itself) is optimal with the exception of the trivial case where D(a) = 0 which correspond to 
no diffusion. In this situation the solution exhibits an initial layer near t = 0 which is taken care of by the time 

scaling and the solution f ~ ( x ,  t, zw) converges strongly to its initial value 4)(x) 
The paradox of deriving a well-posed irreversible problem for t > 0 from a reversible problem can be explained 

from the following facts. 
(1) The scaling has been done with the a priori choice of considering the solution for large positive times. 
(2) It gives the correct approximation at the order ~ of local averages of the solution in terms of the local averages 

of its initial data; the dependence on o9 is lost in the approximation. In some sense, this decay of information 
can be estimated by the decay of the L 2 n o r m  of u which, for the diffusion equation, is the linearized version of 

the classical entropy. 
The relevance of the above remarks depends of course on the analysis of the strict positivity of the diffusion matrix 

D(a). In tact it results from proposition 2 that D(a) = 0 fora  varying in a dense subset of Lz(q]-2)/~ (isomorphic to 
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Fig. 3. The time evolution of the particle density when a is not a coboundary. 

the space of mean zero functions in L2(]-2)). Furthermore the diffusion is degenerate in the directions ~ for which 

the "excursion length" 

N 

fN  "~ = ~ ~ ( a o  T k ) .  
k= l  

is (uniformly with respect to N) bounded in L2(:[1-2), an observation which turns out to be in agreement with the 

intuition. 
Although the space of  coboundaries is dense in the subspace of L2(q] -2) consisting of mean zero functions, it is 

not L 2 closed. In other words, it is possible to find smooth funtions of L2(]  -2) not being coboundaries. For example, 

observe that f o r d  = 1 and a (wl ,  0)2) = coso)l one has D(a) = 1. 
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Fig. 4. Some individual trajectories. 

More  general ly  it would  be ext remely  useful to have an explici t  expression o f  D(a) .  For d = l it can be easily 

obtained in terms of  the Fibonacci  sequence F,, 

F 0 = 0 .  Fi = 1, F,; = F , , _ l + F n  2. (97) 

Observe  that the minimal  polynomia l  o f  the matrix M is X 2 - 3X + 1 and introduce the matrix P = M - / which 

has minimal  polynomial  X 2 - X - 1, then on one hand one has 

M = P +  I = p2 (98) 

and on the other  hand 

p,~ = pn -1  + p n - 2  (99) 
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Fig. 5. The time evolution of the particle density when a is a coboundary. 

and this implies  the formula  

M"=(F2"+' F2n ). 
F2n F2n-1 

Therefore,  with the diffusion matrix given by (12) one has, for any funct ion f : -I] .2 --> ~ in H s with s > 0: 

1 
D(f )  - ~{f2) 

1 
= Z ( fO Tn" f ) =  ~ 2  Z Z } (Mnk)} ( - k )  

n>l n>_l kE712-{O} 
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1 
-- 42r 2 Z Z f (F2n+lkl  + F2nk2, F2nkl + F 2 n - l k 2 ) / ( - k l ,  -k2 ) .  (100) 

k6~2-{0} n>l 

In particular, since the Fibonacci  sequence is rapidly increasing this will provide an exact formula (involving a small 

number of nonzero terms) for D ( f )  whenever f is a trigonometric polynomial.  

The numerical experiments were done by the third author. They intend to illustrate the difference between the 

diffusive and the nondiffusive case. In two space variables the trajectories of  128 particles over 1000 interactions 

with the upper and lower boundary have been obtained. The diffusive case (see Fig. 3) corresponds to horizontal 
velocity field: 

a(co) = (al (co), a2(w)) = (coscol, coso)2). (101) 

As shown on Fig. 4 the trajectory of  a single particle is in general ergodic, however notice that even in this case 

some exceptional trajectories are not ergodic. This will be the case for any particle starting with a velocity a(wo) 

with w0 any periodic point for the mapping T. For instance in Fig. 4 is plotted the path of a single particle driven 

by the flow given by (101) with initial velocity: 

a(wo), co0 : (0, l s r ) .  (102) 

Observe the relation w0 : T3wo which correspond to the behavior of the particle. 

Fig. 5 is devoted to the simulation (128 particles and 1000 collisions) of  the nondiffusive case with a vector field 
given by the formula: 

a' (co) = a(Tco) - a ( T )  

First there is an initial layer then the process stabilizes to a stationary state. The various colors in Figs. 4 and 5 are 

coding the different direction of  the velocity vectors in the 3-dimensional space. 
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