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Abstract

R. Glassey and W. Strauss have proved in [Arch. Rational Mech. Anal. 92
(1986), 59–90] thatC1 solutions to the relativistic Vlasov-Maxwell system in three
space dimensions do not develop singularities as long as the support of the dis-
tribution function in the momentum variable remains bounded. The present paper
simplifies their proof.

1. Introduction

1.1. The relativistic Vlasov-Maxwell system

The Vlasov-Maxwell system is a mean-field, kinetic model for plasmas. Within
the formalism of kinetic theory, it describes the motion of a gas of charged, relativ-
istic particles (e.g., electrons or ions). Each particle is subject to the electromagnetic
field created by all the other particles, but not to its own self-consistent electromag-
netic field which is neglected in this model.

For simplicity, we give up the constraint of global neutrality and consider only
the case of a single species of charged particles, with distribution function denoted
by f . Precisely, f (t, x, ξ) is the phase space density of particles which at time t > 0
are located at the point x ∈ R3 and have momentum ξ ∈ R3. Let E ≡ E(t, x)

and B ≡ B(t, x) be respectively the electric and magnetic fields. In dimensionless
variables chosen so that the speed of light, the charge and the mass of the particles
are all equal to unity, the unknown distribution function f and electromagnetic field
(E,B) satisfy the Vlasov-Maxwell system

∂tf + v(ξ) · ∇xf = − divξ [(E + v(ξ)× B)f ],
∂tE − curlx B = −jf , divx E = ρf ,

∂tB + curlx E = 0, divx B = 0.

(1.1)
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In this system, ρf and jf denote respectively the charge and current densities

ρf (t, x) =
∫

R3
f (t, x, ξ)dξ, jf (t, x) =

∫
R3
v(ξ)f (t, x, ξ)dξ,

while v(ξ) is the relativistic velocity corresponding to a momentum ξ for particles
with mass 1 (in units such that the speed of light is 1):

v(ξ) = ξ√
1 + |ξ |2 . (1.2)

The system (1.1) is supplemented with the initial data

f (0, x, ξ) = f in(x, ξ) ≥ 0, x ∈ R3, ξ ∈ R3,

(E,B)(0, x) = (Ein, Bin)(x), x ∈ R3.
(1.3)

1.2. Glassey-Strauss’ conditional result

In [5] Glassey & Strauss have proved the following remarkable result: any
classical (C1) solution of the system (1.1) does not develop singularities as long as
the distribution function f has compact support in the momentum variable ξ . For
each f ≡ f (t, x, ξ), let

Rf (t) = inf{r > 0 | f (t, x, ξ) = 0 for each x ∈ R3 and |ξ | > r}.
Theorem 1.1 (Glassey-Strauss [5]). Let τ > 0; let f ∈ C1([0, τ )× R3 × R3) and
(E,B) ∈ C1([0, τ )×R3) be a solution of (1.1)with initial data f in ∈ C1

c (R
3×R3)

and (Ein, B in) ∈ C2
c (R

3) satisfying the compatibility condition

divx E
in =

∫
R3
f indξ, divx B

in = 0. (1.4)

If

lim
t→τ−

(
‖f (t)‖

W
1,∞
x,ξ

+ ‖(E,B)(t)‖
W

1,∞
x

)
= +∞,

then
lim
t→τ− Rf (t) = +∞.

The proof in [5] is based on a very ingenious argument: derivatives of the fields
(E,B)with respect to x are controlled in terms of (∂t + v(ξ) · ∇x)mf form = 1, 2
and traded for derivatives of f with respect to ξ only. When the charge and current
densities are computed, these ξ -derivatives disappear after integration by parts in
the variable ξ . However, this argument itself relies on rather formidable explicit
computations, especially for the derivatives of the fields (E,B) in terms of f . In
the present paper, we give a shorter proof of Theorem 1.1. The simplifications come
mainly from (a) expressing the field (E,B) in terms of distributions of Lienard-
Wiechert potentials and (b) a division lemma expressing second derivatives of the
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forward fundamental solution of the wave equation in terms of the first and sec-
ond power of the streaming operator acting on that same fundamental solution. In
particular (b) is done in a direct and intrinsic way that avoids the repeated use of
Green’s formula on the wave cone as in [5]. Moreover, (b) extends naturally to the
two-dimensional case – which required a distinct treatment by the former method
(see [3, 4]).

As in [1], the division lemma (Lemma 3.1) allows us to estimate the regularity
of ξ -averages of u ≡ u(t, x, ξ) satisfying a coupled wave-transport system of the
form

�t,xu = f, (∂t + v(ξ) · ∇x)f = P(t, x, ξ,Dξ )g,

where g is given. The pseudo-differential approach in [1] leads to Lp estimates
(1 < p < +∞) in a quite general framework, being essentially based on the gap
between the characteristic speeds of �t,x and (∂t+v(ξ)·∇x). The method described
in the present work makes use, in a deeper way, of the structure of the D’Alembert
operator �t,x , as does [5], and especially of its (forward) fundamental solution Y
in physical space (i.e., in the (t, x)-variables). The decomposition (3.5) below plus
the fact that Y is a measure (in the case of space dimension 3) leads toL∞ estimates
– at the only expense of a logarithmic term in ∇xf for the last piece b2

ij Y in that
decomposition: see Section 5.3. While these features were already present in [5], it
seems that Lemma 3.1 is new; in any case, its proof is based solely on commutation
properties of �t,x with the Lorentz boosts and not on the explicit form of Y .

Another, new proof of Glassey-Strauss’ conditional theorem has been recently
given by Klainerman & Staffilani [7]. Their proof is rather different from either
that in [5] or the present one. Maybe a combination of their arguments with the ones
in the present work could help in proving the global existence of classical solutions
without having to assume Glassey-Strauss’ condition on Rf .

2. Distributions of Lienard-Wiechert potentials

The formulation of (1.1) involving distributions of Lienard-Wiechert potentials
appeared first in [1] and is recalled below. Let u ≡ u(t, x, ξ) solve

�t,xu = f, u
∣∣
t=0 = ∂tu

∣∣
t=0 = 0.

Choose a vector field AI ≡ AI (t, x) ∈ R3 such that

divx AI = 0, curlx AI = B in, (2.1)

and solve for A0 the wave equation

�A0 = 0, A0
∣∣
t=0 = AI , ∂tA

0
∣∣
t=0 = −Ein. (2.2)

Define the electromagnetic potential (φ,A) by

φ(t, x) =
∫

R3
u(t, x, ξ)dξ, A(t, x) = A0(t, x)+

∫
R3
v(ξ)u(t, x, ξ)dξ, (2.3)
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and the electromagnetic field (E,B) by the usual formulas

E = −∂tA− ∇xφ, B = curlx A. (2.4)

Then the fields (E,B) verify Maxwell’s system of equations,

∂tE − curlx B = −
∫

R3
v(ξ)f dξ, divx E =

∫
R3
f dξ,

∂tB + curlx E = 0, divx B = 0,

E
∣∣
t=0 = Ein, B

∣∣
t=0 = B in.

Hence the relativistic Vlasov-Maxwell system (1.1) can be put in the equivalent
form

∂tf + v(ξ) · ∇xf = divξ [Kuf ],
�t,xu = f,

(2.5)

where Ku is minus the Lorentz force field given by the formula

Ku(t, x, ξ) = ∂tA
0(t, x)− v(ξ)× curlx A

0(t, x)

+ ∂t
∫

R3
v(ξ)u(t, x, ξ)dξ + ∇x

∫
R3
u dξ

− v(ξ)× curlx

∫
R3
v(ξ)u(t, x, ξ) dξ (2.6)

with A0 being defined by (2.2), (2.1). The initial conditions are

f
∣∣
t=0 = f in, u

∣∣
t=0 = 0, ∂tu

∣∣
t=0 = 0, (2.7)

where f in, Ein and B in are assumed to satisfy the compatibility condition (1.4).
Notice that the electromagnetic potential (2.3) satisfies the Lorentz gauge condition

∂tφ + divx A = 0. (2.8)

(Indeed, setting G = ∂tφ + divx A and averaging Vlasov’s equation in ξ , we have
�G = ∂tρf + divx jf = 0 with G

∣∣
t=0 = ∂tG

∣∣
t=0 = 0).

3. A division lemma

Let Y ∈ D′(R4) be the forward fundamental solution of the d’Alembertian,
which is characterized by

�t,xY = δ(t,x)=(0,0), suppY ⊂ {(t, x) ∈ R4 | |x| ≤ t}.
Although most of the present section can be understood without using the explicit
formula giving Y , we recall it below for convenience (with a slight abuse of nota-
tion):

Y (t, x) = 1t>0

4πt
δ(|x| − t). (3.1)
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Notice that the distribution Y is homogeneous of degree −2 in R4. For j = 1, 2, 3,
let Lj = xj ∂t + t∂xj ; it is easy to check that [�, Lj ] = 0. On the other hand,
Ljδ(t,x)=(0,0) = 0, and this relation, together with the fact that Lj commutes with
�, implies that

LjY = 0, j = 1, 2, 3. (3.2)

With each v ∈ R3 is associated the streaming operator T = ∂t + v · ∇x . Let Mm

be the space of C∞ homogeneous functions of degree m on R4 \ 0. Below, we use
the notation

x0 := t, and ∂j := ∂xj , j = 0, . . . , 3. (3.3)

The main result in the present section is

Lemma 3.1 (Division lemma). For each v ∈ R3 such that |v| < 1,

– there exists functions aki ≡ aki (t, x) where i = 0, . . . , 3 and k = 0, 1, such
that aki ∈ M−k and

∂iY = T (a0
i Y )+ a1

i Y, i = 0, . . . , 3; (3.4)

– there exists functions bkij ≡ bkij (t, x) with i, j = 0, . . . , 3, k = 0, 1, 2, such

that bkij ∈ M−k and

∂2
ij Y = T 2(b0

ij Y )+ T (b1
ij Y )+ b2

ij Y, i, j = 0, . . . , 3; (3.5)

– moreover, the functions b2
ij satisfy the conditions

∫
S2
b2
ij (1, y)dσ (y) = 0, i, j = 0, . . . , 3, (3.6)

where dσ(y) is the rotation-invariant surface element on the unit sphere S2

of R3. In both formulas (3.4) and (3.5), a0
i Y , a1

i Y , b0
ij Y and b1

ij Y designate,

for each i, j = 0, . . . , 3, the unique extensions1 as homogeneous distributions
on R4 of those same expressions – which are a priori only defined on R4 \ 0.
Likewise, b2

ij Y designates, for i, j = 0, . . . , 3 the unique extension as a homo-

geneous distribution of degree −4 on R4 of that same expression for which the
relation (3.5) holds in the sense of distributions on R4.

Remark. The first and second statements in Lemma 3.1 hold verbatim in space
dimension 2. As for the third statement, the degree of homogeneity of b2

ij Y is −3

in R3 in the case of space dimension 2, and the condition (3.6) becomes
∫

|y|<1

b2
ij (1, y)√
1 − |y|2 dy = 0, i, j = 0, . . . , 2. (3.7)

1 We abandon in the main body of the text the notation ḟ for the unique homogeneous
extension to R4 of a distribution f on R4 \ 0 that is homogeneous of degree > −4; this
notation is used in the appendix only for the sake of clarity.
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Proof. Observe that

3∑
j=1

vjLj = (x · v − t)∂t + tT ,

(t − x · v)Li + xi

3∑
j=1

vjLj = t[(t − x · v)∂i + xiT ], i = 1, 2, 3.

These relations and (3.2) imply that

(t − x · v)∂tY = tT Y, t (x · v − t)∂iY = txiT Y, i = 1, 2, 3. (3.8)

Set
α0(t, x) = t

t − x · v , αi(t, x) = xi

x · v − t
, i = 1, 2, 3.

Since |v| < 1, the functions αi are C∞ near the support of the restriction of Y
to R4 \ 0: hence αiT Y defines, for i = 0, . . . , 3, a distribution on R4 \ 0 that is
homogeneous of degree −3. It has a unique extension as a homogeneous distribu-
tion of degree −3 on R4, still denoted by αiT Y . Because of (3.8), the distribution
∂iY − αiT Y has support in the set {(t, x) ∈ R4 | x · v = t} ∪ {(t, x) ∈ R4 | t = 0};
since Y is supported in the wave cone {(t, x) ∈ R4 | |x| ≤ t}, it follows that

supp(∂iY − αiT Y ) ⊂{(t, x) ∈ R4 | x · v = t or t = 0}
∩ {(t, x) ∈ R4 | |x| ≤ t} = {(0, 0)}.

Thus ∂iY − αiT Y is both a homogeneous distribution on R4 of degree −3 and a
finite linear combination of δ(t,x)=(0,0) and of its derivatives: hence

∂iY − αiT Y = 0, i = 0, . . . , 3.

The same holds if we replace αi by a smooth truncation a0
i of it near its singular set:

indeed, as observed above, this singular set {(t, x) ∈ R4 | x · v = t} does not inter-
sect the support of Y restricted to R4 \0. Hence ∂iY = a0

i T Y = T (a0
i Y )−T (a0

i )Y

and formula (3.4) holds with

a0
i (t, x) = αi(t, x)χ

( |x|
t

)
, and a1

i = −T a0
i , i = 0, . . . , 3, (3.9)

where χ ∈ C∞
c (R+) satisfies

0 ≤ χ ≤ 1, χ
∣∣[

0, 1
2 + 1

2|v|
] ≡ 1, suppχ ⊂

[
0, 1

|v|
[
.

By the same argument, the equality

∂i(mY) = T (ma0
i Y )+

(
∂im− T (ma0

i )
)
Y, i = 0, . . . , 3 (3.10)

holds in the sense of distributions on R4 for each m ∈ M0 – where mY , ma0
i Y

and (∂im− T (ma0
i ))Y designate the homogeneous extensions to R4 of these same

distributions that are defined and homogeneous of degree > −4 on R4 \ 0.
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If m ∈ M−1, the distributions mY and ma0
i Y for i = 0, . . . , 3 are homoge-

neous of degree −3 in R4\0 and thus have unique extensions to R4 as homogeneous
distributions of degree −3 (see appendix). Since

∂i(mY)− T (ma0
i Y ) =

(
∂im− T (ma0

i )
)
Y, i = 0, . . . , 3

in the sense of distributions on R4 \ 0, the right-hand side of the above equality
extends as a homogeneous distribution of degree −4 on R4. Hence (see appendix)

Res0

(
∂im− T (ma0

i )
)
Y = 0.

Using (6.3) and the formula for Y in the case of space dimension 3, we can write
this condition in the following, more explicit form: for each χ ∈ C∞

c ((0,+∞)),∫
R4

(
∂im− T (ma0

i )
)
(t, x)χ(t2 + |x|2)Y (t, dx)dt

=
∫ +∞

0

χ(2t2)

4πt

∫
|x|=t

(
∂im− T (ma0

i )
)
(t, x)dσt (x)dt = 0.

Here, dσt (x) designates the surface element on the sphere of equation |x| = t .
Also, in the case of space dimension 3, the distribution Y is in fact a measure – we
recall from (3.1) that Y (t, dx) ≡ 1t>0

4πt dσt (x) – which makes it legitimate to write
the left-hand side of the equality above as an integral.

The function ∂im−T (ma0
i ) is homogeneous of degree −2 on R4 \0, so that, in

terms of the new variable y = x/t , the last integral in the relation above becomes
∫ +∞

0

χ(2t2)

4πt

∫
|x|=t

(
∂im− T (ma0

i )
)
(t, x)dσt (x)dt

=
∫ +∞

0

χ(2t2)

4πt
dt

∫
|y|=1

(
∂im− T (ma0

i )
)
(1, y)dσ (y).

Eventually ∫
S2

(
∂im− T (ma0

i )
)
(1, x)dσ (x) = 0. (3.11)

In order to obtain (3.5), we apply ∂j to both sides of the relation (3.4) so as to
obtain

∂2
ij Y = T (∂i(a

0
j Y ))+ ∂i(a

1
j Y ), i, j = 0, . . . , 3.

Then we apply (3.10), first with m = a0
j ∈ M0, then with m = a1

j = −T a0
j ∈

M−1: this leads to (3.5) with

b0
ij = a0

i a
0
j ,

b1
ij = ∂ia

0
j − T (a0

i a
0
j )+ a0

i a
1
j , i, j = 0, . . . , 3,

b2
ij = ∂ia

1
j − T (a0

i a
1
j ),

(3.12)

the functions aki being defined in (3.9).
Finally, the condition (3.11) with m = a1

j is equivalent to (3.6).
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4. Bounds on the electromagnetic field

After these preparations, we give the proof of Theorem 1.1. Since the solu-
tion (f,E,B) belongs to C1([0, τ ) × R3 × R3) × C1([0, τ ) × R3)2, the distri-
bution function f is constant along the characteristic curves of the vector field
(v(ξ),−Ku(t, x, ξ)) – observe that divξ Ku(t, x, ξ) = 0 (see (2.5), (2.6)). In par-
ticular

‖f ‖L∞([0,τ ]×R3×R3) = ‖f in‖L∞(R3×R3), (4.1)

and, since f in has compact support,

sup
t∈[0,τ ′]

Rf (t) < +∞ for each τ ′ ∈ [0, τ ).

Hence proving Theorem 1.1 amounts to proving the implication

sup
t∈[0,τ )

Rf (t) < +∞ ⇒ sup
t∈[0,τ )

(
‖f (t)‖

W
1,∞
x,ξ

+ ‖(E,B)(t)‖
W

1,∞
x

)
< +∞.

(4.2)

From now on, assume that

sup
t∈[0,τ )

Rf (t) = r∗. (4.3)

In other words

f (t, x, ξ) ≡ 0 and u(t, x, ξ) ≡ 0, t ∈ [0, τ ), x ∈ R3, |ξ | > r∗. (4.4)

Next we want to estimate the electromagnetic field in L∞([0, τ ) × R3). Start
from the relation2 u = Y � (1t≥0f ) and use Lemma 3.1 to compute, for each
m ≡ m(ξ) in C(R3),

∂j

∫
m(ξ)u(t, x, ξ)dξ =

∫
m(ξ)

(
∂jY � (1t≥0f )

)
(t, x, ξ)dξ

=
∫
m(ξ)

(
(a0
j Y ) � T (1t≥0f )

)
(t, x, ξ)dξ

+
∫
m(ξ)

(
(a1
j Y ) � (1t≥0f )

)
(t, x, ξ)dξ

for j = 0, . . . , 3, with akj ≡ akj (t, x, ξ) given by (3.9) for v ≡ v(ξ) as in (1.2).

First, akj ∈ C∞((R4 \ 0)× R3); also ∂βξ a
k
j (·, ·, ξ) is an element of M−k for each

ξ ∈ R3 and each multi-index β ∈ N3. By the first equation in (2.5),

T (1t≥0f ) = δt=0f
in + 1t≥0 divξ (Kuf );

2 In what follows the notation f � g always means convolution in R4
t,x ; the symbol �x

designates the convolution in the variable x ∈ R3 only.
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hence, if m ∈ W 1,∞, we find that∫
m(ξ)

(
(a0
j Y ) � T (1t≥0f )

)
(t, x, ξ)dξ

=
∫ ((

−∇ξ (ma0
j )Y

)
� (1t≥0Kuf )

)
(t, x, ξ)dξ

+
∫
m(ξ)

((
a0
j (t, ·, ·)Y (t, ·)

)
�x f

in
)
(x, ξ)dξ.

Let φ ∈ C∞
c (R

3) satisfy

φ ≥ 0, φ(ξ) = 1 for |ξ | ≤ r∗, φ(ξ) = 0 for |ξ | ≥ 2r∗. (4.5)

By the support condition (4.4), for each m ∈ C(R3), we have∫
R3
m(ξ)f (t, x, ξ)dξ =

∫
R3
φ(ξ)m(ξ)f (t, x, ξ)dξ,

∫
R3
m(ξ)u(t, x, ξ)dξ =

∫
R3
φ(ξ)m(ξ)u(t, x, ξ)dξ.

(4.6)

Since Y (t, ·) is a positive measure with total mass t , it follows from (4.6) that∣∣∣∣∂j
∫
m(ξ)u(t, x, ξ)dξ

∣∣∣∣
≤ ‖m‖W 1,∞‖φa0

j ‖L∞
t,x (W

1,∞
ξ )

4
3πr

∗3
∫ t

0
(t − s)‖fKu(s, ·, ·)‖L∞ ds

+‖m‖L∞‖φta1
j‖L∞ 4

3πr
∗3
∫ t

0
‖f (s, ·, ·)‖L∞ds

+‖m‖L∞‖φa0
j ‖L∞ 4

3πr
∗3t‖f in‖L∞ . (4.7)

Without loss of generality, we only consider the case where B in = 0; hence A0 =
−Y (t, ·) �x Ein ∈Ct(W 2,∞

x ). We recall at this point the elementary estimates that
hold for k = 0, 1, 2:

‖A0(t)‖
W
k,∞
x

≤ t‖Ein‖Wk,∞

‖∂tA0(t)‖
W
k−1,∞
x

≤ (1 + t)‖Ein‖Wk,∞ .
(4.8)

Define

Im(t) = sup
j=0,... ,3

∥∥∥∥∂j
∫
m(ξ)u(t, ·, ξ)dξ

∥∥∥∥
L∞

;

by using (4.8), (4.7) and (2.6), we see, for each t ∈ [0, τ ) and some positive constant
C(τ, r∗, ‖m‖W 1,∞ , ‖f in‖L∞) > 0, that

Im(t) ≤ C(τ, r∗, ‖m‖W 1,∞ , ‖f in‖L∞)

(
1 +

∫ t

0
(I1(s)+ Iv(s)) ds

)
. (4.9)

Using (4.9) form ≡ 1 andm = v and applying Gronwall’s inequality, we find that

sup
t∈[0,τ )

Im(t) < +∞ for each m ∈ W 1,∞(R3). (4.10)
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In particular, using again (2.6), we find eventually that

‖Ku‖L∞([0,τ )×R3;Wk,∞
ξ )

< +∞ for each k ≥ 0. (4.11)

5. Bounds on first derivatives

For each m ∈ C(R3), we have, by using Lemma 3.1 and the support condition
(4.4),

∂ij

∫
m(ξ)u(t, x, ξ)dξ =

∫
m(ξ)∂ijY � (1t≥0f )(t, x, ξ)dξ

=
∫
m(ξ)

(
(b0
ij Y ) � T

2(1t≥0f )
)
(t, x, ξ)dξ

+
∫
m(ξ)

(
(b1
ij Y ) � T (1t≥0f )

)
(t, x, ξ)dξ

+
∫
m(ξ)

(
(b2
ij Y ) � (1t≥0f )

)
(t, x, ξ)dξ

=S1 + S2 + S3

for j = 0, . . . , 3, where bkij ≡ bkij (t, x, ξ) is given by (3.12). In the second integral
appearing in the right-hand side of the relation above, T (1t≥0f ) is replaced by
δt=0f

in + 1t≥0 divξ (Kuf ), in view of the first equation in (2.5) in the previous
section. Likewise, in the first integral in the right-hand side of the equality above,
T 2(1t≥0f ) is expressed as

T 2(1t≥0f ) =T (δt=0f
in)+ T

(
1t≥0 divξ (Kuf )

)
=δ′t=0f

in + δt=0

(
v · ∇xf in + divξ (K

in
u f

in)
)

+ 1t≥0 divξ
(
f TKu +Ku divξ (Kuf )

)+ 1t≥0[T , divξ ](Kuf )
=δ′t=0f

in + δt=0

(
v · ∇xf in + divξ (K

in
u f

in)
)

+ 1t≥0∇⊗2
ξ : (fK⊗2

u )+ 1t≥0 divξ (f TKu − fKu · ∇ξKu)
− (∇ξ v)T : ∇x

(
1t≥0fKu

)
.

Below, we shall use the notation

Jm(t) = sup
i,j=0,... ,3

∥∥∥∥∂ij
∫
m(ξ)u(t, ·, ξ)dξ

∥∥∥∥
L∞
.
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5.1. Estimating S1

We decompose further:

S1 =
∫
m(ξ)(b0

ij Y ) �
(
δ′t=0f

in + δt=0(v · ∇xf in + divξ (K
in
u f

in))
)
dξ

+
∫ ((

∇⊗2
ξ (mb0

ij )Y
)
�
(

1t≥0fK
⊗2
u

))
(t, x, ξ) dξ

+
∫ ((

−∇ξ (mb0
ij )Y

)
�
(
1t≥0(f TKu − fKu · ∇ξKu)

))
(t, x, ξ)dξ

+
∫
m(ξ)

((
∇ξ v · ∇x(b0

ij Y )
)
�
(
1t≥0fKu

))
(t, x, ξ)dξ

=S11 + S12 + S13 + S14.

By using the classical estimates (4.8) for the wave equation, together with the
support condition (4.4) and the definition of φ in (4.5), we get

|S11| ≤ ‖φmb0
ij‖L∞

x (W
1,∞
t,ξ )

× 4
3πr

∗3(1 + τ)2‖f in‖W 1,∞

(
1 + ‖K in

u ‖
L∞([0,τ )×R3;W 1,∞

ξ )

)
.

(5.1)

By the same argument as in Section 4

|S12| ≤ ‖φmb0
ij‖L∞

t,x (W
2,∞
ξ )

4
3πr

∗3 1
2τ

2‖f in‖L∞‖Ku‖2
L∞([0,τ )×R3×R3)

. (5.2)

Likewise

|S13| ≤ ‖φmb0
ij‖L∞

t,x (W
1,∞
ξ )

4
3πr

∗3‖f in‖L∞

×
(∫ t

0
(t − s)(J1(s)+ Jv(s))ds + ‖K‖2

L∞([0,τ )×R3;W 1,∞
ξ )

)
.

(5.3)

In S14, we apply once more Lemma 3.1 – or (3.10) with m = b0
ij ∈ M0 and

j = 1, 2, 3 – so as to write

∂k(b
0
ij Y ) = T (b0

ij a
0
kY )−

(
∂kb

0
ij − T (b0

ij a
0
k )
)
Y ;

substituting this in the expression giving S14 and proceeding as in Section 4 leads
to

|S14| ≤ 4
3πr

∗3‖f in‖L∞

[
sup

k=0,... ,3
‖φma0

kb
0
ij‖L∞

t,x (W
1,∞
ξ )

×
(

1 + ‖Ku‖L∞([0,τ )×R3;W 1,∞
ξ )

)∫ t

0
(t − s)(J1(s)+ Jv(s))ds

+ sup
k=0,... ,3

∥∥∥φm
(
t∂kb

0
ij − tT (b0

ij a
0
k )
)∥∥∥

L∞ ‖Ku‖L∞([0,τ )×R3×R3)

+ sup
k=0,... ,3

‖φma0
kb

0
ij‖L∞ 1

2 t
2‖K in‖L∞

]
. (5.4)
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5.2. Estimating S2

This part of the argument follows Section 4, except b1
ij ∈ M−1 while a0

i ∈ M0.
Thus

S2 =
∫ ((

−∇ξ (mb1
ij )Y

)
� (1t≥0Kuf )

)
(t, x, ξ)dξ

+
∫
m(ξ)

(
(b1
ij (t, ·, ·)Y (t, ·)) �x f in

)
(x, ξ)dξ,

so that, by the same estimates as those leading to the last two terms in the right-hand
side of (4.7), we arrive at

|S2| ≤ ‖φmtb1
ij‖L∞

t,x (W
1,∞
ξ )

4
3πr

∗3
(
τ‖Ku‖L∞([0,τ )×R3×R3) + ‖f in‖L∞

)
. (5.5)

5.3. Estimating S3

Let φ ∈ C∞
c (R

4 \ 0); since b2
ij is homogeneous of degree −2 (we recall from

Lemma 3.1 that b2
ij (·, ·, ξ) ∈ M−2), we have

〈b2
ij Y, φ〉 =

∫ +∞

0

∫
S2

1

4πt
b2
ij (t, tω, ξ)φ(t, tω)t

2dσ(ω)dt

=
∫ +∞

0

∫
S2

1

4πt
b2
ij (1, ω, ξ)φ(t, tω)dσ(ω)dt

(where dσ(ω) is the rotation-invariant surface element on S2). Further, the relation
(3.6) shows that, for each ψ ∈ C∞

c (R
4), the quantity

〈p.v.(b2
ij Y ), ψ〉 =

∫ +∞

θ

∫
S2
b2
ij (1, ω, ξ)

ψ(t, tω)

4πt
dσ(ω) dt

+
∫ θ

0

∫
S2
b2
ij (1, ω, ξ)

ψ(t, tω)− ψ(t, 0)

4πt
dσ(ω) dt (5.6)

is independent of θ ∈ R+. This defines p.v.(b2
ij Y ) as a homogeneous distribution

of degree −4 on R4 that extends b2
ij Y
∣∣
R4\0. Hence (see appendix)

b2
ij (·, ·, ξ)Y − p.v.

(
b2
ij (·, ·, ξ)Y

)
= cij (ξ)δ(t,x)=(0,0), (5.7)

where cij ∈ C∞(R3) – we recall that the left-hand side of the equality above is of
class C∞ in ξ – and p.v. stands for “principal value”.

Therefore, for θt ∈ (0, t) to be chosen later,

S3 −
∫
m(ξ)cij (ξ)f (t, x, ξ) dξ

=
∫
m(ξ)

(
p.v.(b2

ij Y ) � (1t≥0f )
)
(t, x, ξ) dξ

=
∫
m(ξ)

∫ t

θt

∫
S2
b2
ij (1, ω, ξ)f (t − s, x − sω, ξ)

dσ (ω)ds

4πs
dξ

+
∫
m(ξ)

∫ θt

0

∫
S2
b2
ij (1, ω, ξ)

f (t−s, x−sω, ξ)−f (t−s, x, ξ)
4πs

dσ(ω) dsdξ.
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The first integral in the right-hand side of the relation above is estimated by∣∣∣∣
∫ t

θt

∫
S2
b2
ij (1, ω, ξ)f (t − s, x − sω, ξ)

dσ (ω)ds

4πs

∣∣∣∣
≤ ln(t/θt )‖b2

ij (1, ·, ξ)‖L∞(S2)‖f ‖L∞ ,

while the second is estimated by∣∣∣∣
∫ θt

0

∫
S2
b2
ij (1, ω, ξ)

f (t − s, x − sω, ξ)− f (t − s, x, ξ)

4πs
dσ(ω)ds

∣∣∣∣
≤ θt‖b2

ij (1, ·, ξ)‖L∞(S2)‖∇xf ‖L∞([0,t]×R3×R3).

Choosing

θt = inf

(
1

‖∇xf ‖L∞([0,t]×R3×R3)

, t

)

we find that

|S3| ≤ Cr∗3‖m‖L∞
[
‖cij‖L∞(B(0,r∗))‖f ‖L∞ + ‖b2

ij (1, ·, ·)‖L∞(S2×R3)

× (
1 + ‖f ‖L∞ ln+

(
t‖∇xf ‖L∞([0,t]×R3×R3)

)) ]
, (5.8)

where ln+ z = sup(ln z, 0).

Remark. In the case of space dimension 2, a similar argument, based on (3.7)
instead of (3.6), leads to an estimate that involves a logarithmic term just as in
(5.8). The condition (3.7) is not apparent in [3, 4], which uses instead the fact that
b2
ij Y is a linear combination of derivatives of distributions that are homogeneous

of degree ≥ −2 in R3 – see p. 344 of [3, 4]. As explained in the appendix, this is
equivalent to (3.7).

5.4. Proof of Theorem 1.1

The estimates (5.1)–(5.5) and (5.8) show that, for each m ∈ W 2,∞(R3), there
exists a positive constant C2 ≡ C2(τ, r

∗, ‖m‖W 2,∞ , ‖f in‖W 1,∞) such that

Jm(t
′) ≤ C2(τ, r

∗, ‖m‖W 2,∞ , ‖f in‖W 1,∞)

×
(

1 +
∫ t ′

0
(J1(s)+ Jm(s))ds + ln+

(‖∇xf ‖L∞([0,t]×R3×R3)

))
(5.9)

for each t and t ′ such that 0 < t ′ < t < τ . Using (5.9) with m ≡ 1 and m = v and
applying Gronwall’s inequality shows that, for each t ∈ [0, τ ),

J1(t)+ Jv(t) ≤ 2C2e
2C2τ

(
1 + ln+

(‖∇xf ‖L∞([0,t]×R3×R3)

))
. (5.10)

In particular, this implies the existence of yet another positive constant C3 ≡
C3(τ, r

∗, ‖m‖W 2,∞ , ‖f in‖W 1,∞) such that

‖Ku(t)‖W 1,∞
x,ξ

≤ C3e
2C2τ

(
1 + ln+

(‖∇xf ‖L∞([0,t]×R3×R3)

))
. (5.11)

Finally, differentiating in (x, v) the transport equation (2.5) and integrating in t
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shows that

‖∇x,ξ f (t)‖L∞
x,ξ

≤‖∇x,ξ f in‖L∞
x,ξ

+
∫ t

0

(
‖∇ξ v‖L∞ + ‖∇x,ξKu(s)‖L∞

x,ξ

)
‖∇x,ξ f (s)‖L∞

x,ξ
ds.

(5.12)

The estimates (5.11) and (5.12) show that the Lipschitz semi-norm off , i.e.,N(t) =
sups∈[0,t] ‖∇x,ξ f (s)‖L∞

x,ξ
satisfies a logarithmic Gronwall inequality of the form

N(t) ≤ N(0)+ C

∫ t

0
(1 + ln+N(s))N(s)ds, t ∈ [0, τ ].

This implies that N ∈ L∞([0, τ ]). Inserting this in (5.10) and using (2.4) shows
that (E,B) ∈ L∞([0, τ ],W 1,∞(R3)), which in turn implies Theorem 1.1.

6. Appendix: Homogeneous distributions

This section recalls some classical material from [2] (Chapter III, Section 3.3)
and [6] (pp. 75–79 and Theorem 3.2.3).

A distribution f on RN (or RN \ 0) is homogeneous of degree α if 〈f,Mλφ〉 =
λα+N 〈f, φ〉 (where Mλφ(x) = φ(x/λ)) for each λ > 0 and each φ ∈ C∞

c (R
N)

(resp. φ ∈ C∞
c (R

N \ 0)). Equivalently, f ∈ D′(RN) (or in D′(RN \ 0)) is homo-
geneous of degree α if and only if

divx(xf ) = (α +N)f on RN (resp. on RN \ 0) (6.1)

in the sense of distributions (Euler’s relation in conservation form).
For α > −N , each homogeneous distribution f of degree α on RN \ 0 has a

unique extension ḟ that is a homogeneous distribution on RN .
If f ∈ D′(RN \ 0) is homogeneous of degree −N , divx((xf )·) is a homo-

geneous distribution of degree −N on RN supported in {0}, hence there exists
c ∈ R

divx((xf )
·) = cδx=0 in the sense of distributions on RN. (6.2)

The constant c in the right-hand side of (6.2) is called the residue of f at 0 and
denoted Res0f . Equivalently, the residue of f at 0 can be defined by the relation

〈f,�〉 = Res0f
1

|SN−1|

∫
RN
�(x)

dx

|x|N , (6.3)

whenever �(x) = φ(|x|) with φ ∈ C∞
c ((0,+∞)).
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Any f ∈ D′(RN \ 0) which is homogeneous of degree −N can be extended as
a homogeneous distribution ḟ of degree −N on RN if and only if Res0f = 0. For
each χ ∈ C∞

c (R
N), set X(x) = ∫ 1

0 ∇xχ(tx)dt ; we have χ(x) = χ(0)+ x ·X(x)
and X ∈ C∞(RN). Given f ∈ D′(RN \ 0) that is homogeneous of degree −N
with Res0f = 0 and φ ≡ φ(|x|) in C∞

c (R
N) such that φ ≡ 1 near 0, the linear

functional
χ �→ 〈f, (1 − φ)χ〉 + 〈(xf )·, φX〉

is a homogeneous extension of f to RN . Two homogeneous extensions of f may
differ by a multiple of δx=0.
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