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Abstract 

In the first part of t h i s  paper, we study the half space boundary value problem for the Boltzmann 
equation with an incoming distribution, obtained when considering the boundary layer arising in the 
kinetic theory of gases as the mean free path tends to zero. We linearize it about a drifting 
Maxwellian and prove that, as conjectured by Cercignani [4], the problem is well-posed when the drift 
velocity u exceeds the sound speed c, but that one (respectively four, five) additional conditions must 
be imposed when 0 < u < c (respectively - c < u < 0 and u < - c). 

In the second part, we show that the well-posedness and the asymptotic behavior results for 
kinetic layers equations with prescribed incoming flux can be extended to more general and realistic 
boundary conditions. 

1. Kinetic Layer Problems with Incoming Flux 

1.1. Introduction. We consider the boundary layer problem arising in the 
kinetic theory of gases when the mean free path tends to zero. The resulting 
half-space problem for the Boltzmann equation is 

aF 
(1.1.1) 5 1 ~  = Q ( F ,  F), x > 0, I = (51, 5 2 ,  t 3 )  E R3, 

where Q is the collision operator defined by 

with 

(1.1.3) 
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We restrict ourselves to collision kernels for hard sphere gas satisfying the 
angular cut-off assumption as proposed by Grad [9]: 

(1.1.4) q(v, W )  = alV* W J .  

We are interested in solutions F such that 

(1.1.5) 

where 

(1.1.6) 

is the Maxwellian distribution whose parameters ( p,, u,, T,) describe the mac- 
roscopic flow to which we match the boundary layer. Linearizing around M ,  in 
the form F = M ,  + MAl'f, equation (1.1.1) has the form 

af (1.1.7) 61x + LMf = 

with 

(1.1.8) LMf = 2MG'/2Q(M,, MA/2f). 

It is clear that no changes arise if u, has components along the axis orthogonal 
to x, but that the x-component of u,, denoted by u, can provide significant 
changes. 

Shifting the velocities by changing El to El + u, equation (1.1.7) can be 
rewritten as 

(1.1.9) (6' + u ) g  + Lf = 0 

with 

(1.1 .lo) 

and 

Lf = 2M-'/'Q( M ,  M1l2f) 

(1.1.11) 

We look for bounded solutions of (1.1.9) with a given distribution + of incoming 
particles at x = 0: 

(1.1.12) f ( 0 ,  6 )  = +(O,  61 + ' 0. 
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Equations (1.1.9), (1.1.12) with u = 0 have been studied by Bardos, Cafisch, 
Nicolaenko [2] and Cercignani [4]. They proved that the problem is well posed 
when the mass flux defined by j t1M1/’ f (x ,  E )  d t  (which is a constant in x) is 
specified. When u # 0, Cercignani [4] conjectured that the number of additional 
conditions to ensure the well-posedness of the problem depends on the value of u 
compared to the Mach number of the flow at infinity c = dfT, and that it is 
simply related to the signature of the quadratic form 

(1.1.13) 

(which can be viewed as the linearized entropy ffux), in the nullspace N ( L )  of L. 
More precisely, when u > m, the problem is well posed for any incoming 
distribution +. When 0 < u < dST,, it is well posed when looking for solutions 
with vanishing mass flux (which is no longer constant) at infinit . The conjecture 
claims also that, when - dST, < u < 0, (respectively u < - k), one has to 
give four (respectively five) additional conditions. 

The proof of a similar conjecture was given by Arthur and Cercignani [l] and 
Greenberg and Van der Mee [lo] in the case of the linearized Bhatganar-Gross- 
Krook (BGK) model. 

Cercignani’s conjecture can be supported by formally looking at the com- 
pressible Euler equations for (p, u, 2‘) linearized around the constant velocity u, 
( u  # 0, f I/fT,). It is a hyperbolic system with characteristic values A, = A, = 

A, = u, A, = u + \/ST,, A, = u - dfT,. The values of the conserved quanti- 
ties along the corresponding characteristics are determined by the initial condi- 
tions for incoming characteristics and boundary conditions for outgoing ones. 
For example, when u > \/ST,, there are five outgoing characteristics and one has 
to give the values of ( p ,  u,  T) at the boundary. When 0 < u < \/3, I T  there is one 
incoming characteristic and one has to impose four boundary conditions. 

The aim of this work is to give a rigorous proof of Cercignani’s conjecture for 
equations (1.1.9), (1.1.12). It is based on energy type estimates and on the 
construction of a solution as the limit, as B + 00, of solutions fB defined in the 
slab [0, B]. The main new tool to handle such a problem, since it is related to 
the determination of admissible boundary conditions for a hyperbolic system, 
will the linearized entropy flux (the entropy for the Boltzmann equation being the 
H function): 

!(El + M x ,  El2 d5. 

Essentially, we shall have to choose a boundary condition at x = B for fs such 
that the projection of the limit solution on N( L) has a positive linearized entropy 
flux at infinity. 

The following subsections are organized as follows: in subsection 1.2, we give 
some preliminaries and state the main results; in subsection 1.3, the problem in 
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the slab [0, B ]  is studied; the solution in [0, co[ is constructed in subsection 1.4; 
subsection 1.5 is devoted to th em of uniqueness; in subsection 1.6, we deal 
with the special cases u = f and in subsection 1.7, we reformulate the 
invariant relations in a more general and intrinsic way. 

1.2. Preliminaries and results. The linearized operator L defined in (1.1.8) is 
non-negative and selfadjoint on L2(R3). Due to the interaction law (1.1.4), it can 
be split as 

(1.2.1) 

(1.2.2) 

L = v ( 6 )  - K ,  

'a(1 + 161) 5 '(6) 5 Vl(1 + 160, 

where the collision frequency v(4) satisfies, for hard sphere balls, 

vo and v 1  being constants which depend on T,, and K a compact operator on 
L2(R3) which can be defined by 

(1.2.4) 

The domain of L is 

(1.2.5) D ( L )  = { f €  L2(R3),  V ( 6 y 2 f E  LZ(R3)) 

and its nullspace N ( L )  is a five-dimensional subspace spanned by X,, a = 
O,1; * . ,4 ,  with 

go( ( )  = L M 1 / 2 ,  6 
\IT, 
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The collision invariants have been chosen in such a way that 

(1.2.6) P( xu, Jib) = 0, fy + 8, 
and that 

/wagB d t  = 0, a += P ,  
that is the 2, have been constructed in order to form an orthogonal basis of 
N( L) with respect to both the usual scalar product and P. Note that 

i = 0,1,2, P( wi, Ri)  = p,u, 

P(%, W 3 )  = P& + /E), 
P( W,, 2 4 )  = Pm( u - \IfT,). 

(1.2.7) 

Consequently, the signature u of the restriction of the quadratic form P to N( L) 

(5 ,O)  if u > /$Ta, 
(40)  if u = m, 
(41) if o < u < dfTm, 
(1,l) if u = 0, 
(1,4) if - m< u < 0, 
(0,4) if u = - m, 
(0 ,5 )  if u < - m. 
For convenience, we denote X, = X J  /-- in the nondegenerate 

cases. We recall that any function f can be split in a unique way as 
(1.2.8) f = w/ + q/ ,  

where q, f N ( L )  is its hydrodynamic part and w, E R ( L )  = N ( L )  
part. We also have, for some p > 0, 

its kinetic 

(1.2.9) 

Finally, we introduce the notations 

(1.2.10) 
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The space of functions f equipped with the norm 11 f 1 1 2 , y  is denoted by 
P ( R  3, LY(W +)). 

Let us now state the results. 
Consider the system 

(1.2.13) ( u  + E g  + Lf- 0, x > 0, 

We are going to consider any function + satisfying one of the following two 
conditions : 

(1.2.15) 

(1.2.17) z-= { ff, P( xu, xu) < o}, 

(1.2.18) I0 = {a, P( x,, Xu) = o}. 

THEOREM 1.2.1. Let X u  be given real constants for a E I -  and + satisfy- 
ing (1.2.15), then the system (1.2.13)-(1.2.14) has a unique solution f € L"(dx, 
L2(& + uI d o )  such that 

Moreover, we have 

(1.2.20) P(f, Xu) = 0, a E IO, x > 0, 

and there exists a unique qm E N ( L )  such that 

for small enough y > 0. ' 
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In addition, if + satisfies (1.2.15'), 

(1.2.21') f - q" E Lw(ey*dx,  L 2 ( v d t ) ) .  

Although the difference between the weights It1 + ul and v(l) does not 
appear relevant at the present stage, it will be of significant importance in Section 
2 for ammodation boundary conditions. 

In the following subsections 1.3,1.4 and 1.5, we shall restrict our attention to 
cases where the quadratic form P is nondegenerate. 

1.3. The approximate problem in the slab [0, B ] .  Consider the problem 

(1.3.1) O < x < B ,  

(1.3.2) f B ( 0 , O  = +(tL u + t1 > 0. 

One has to impose a boundary condition at x = B. Notice that, when u = 0, a 
natural condition is a reflection condition (see [2], [4]) 

(1.3.3) fB(& 0 = f , ( B ,  RE), 

where ( = (tl, t2, Is) and RE = (-tl, t2, t3). It ensures existence of a solution 
such that P( fB, fB)( B) = 0. This property is preserved when taking the limit as 
B 4 00. The aim of the lemma below is (in the nondegenerated cases u # 0, 
f \/3T,) to write boundary conditions at x = B which ensure P( fB., fB) (  B )  2 0; 
they will provide existence of a solution f B  such that certain quantities indepen- 
dent of x (namely P ( f B ,  Xu) for a E I-) vanish at x = B. These properties will 
be preserved when passing to the limit as B + 00. 

LEMMA 1.3.1. Assume that P is nondegenerate; then there exists a linear 

(i) for all g E G ,  P ( g ,  g )  2 0 and G is maximal with respect to this property, 
(ii) for all g E G and all a E I - ,  

subspace G of L2( It1 + u{ d [ )  such that 

P(g, Xu) = 0, 
(iii) for all a E I + ,  Xu E G. 

Proof: First decompose the space Y = L2(It1 + uI d t )  into 

v =  N ( L )  a3 w, 
where W is the orthogonal complement of N ( L )  with respect to the form P.  Let 
S be the set of subspaces of W where P is positive. The subspace G is 
constructed as follows: 

x c  w, 
where X is a maximal element of S. To prove the existence of X it is sufficient, 

G = span{ Xi, i E I + }  + X, 
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by Zorn's lemma, to prove that S is inductive. Clearly, if A is a totally ordered 
subset of S,  the subspace of all linear finite combinations of vectors belonging to 
a set of A is an upper bound for A. Now, G satisfies properties (ii) and (E) of the 
lemma. To prove that it is maximal, use a contradiction argument: suppose that 
P is positive on a subspace G, C I/ that contains G and denote by Gi its 
projection (orthogonal with respect to P) on W. For any g E G,, one has 

g = g ' +  C k i X i +  C k i X i ,  g' E Gi. 

Clearly, g' + X i ,  I-kiXi  E G,; thus P(g', g') r_ 0. But X is maximal and hence 
Gi = X and CiEI-k iX i  E GI. Computing P ( C i , I - k , X i , ~ i E I - k i X i ) ,  one ob- 
tains that k i  = 0 for i E I - .  Thus G, = G and G is maximal. 

(1.3.4) ( U  + C,)% + L f B  = 0, O < x < B ,  

ic I+ iel- 

To construct a solution of 

(1.3.5) 

(1.3.6) 

+ 51 ' 0, 

we consider the penalized system (we drop the indices B) 

(1.3.7) ( u  + &)$ + Lf" + E f e =  0, O < x < B ,  

(1.3.8) f"0,E)  = +(O, 24 + 51 ' 0, 

(1.3.9) f " ( B ,  5 )  E G. 
It is classical to prove that (1.3.7)-(1.3.9) has a unique solution with vl/'fe E 
L2([0, B] X W3). To get uniform estimates with respect to E, one first writes 

(1.3.10) 
v(E)w,? dxd5 5 1 

[0, B ] X R 3  

To show that qr' remains bounded in L2([0, B] X W3), one uses a contradiction 
argument: suppose that 

(1.3.11) 

and denote ge = f"/A". It is bounded in L2([0, B] x W3) and satisfies 

(1.3.12) 

Thus, 

A" = '. dxdt + 00, E + 0, 
&I, B]XR"' 

1 
A ( u  + &)!& + Eg" + X L W y  = 0. 

( u  + &)7& age --* 0, E + 0. (1.3.1 3) 
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Using a compactness theorem of Golse, Perthame, Sentis [8], there exists a 
subsequence of g' such that qgc (thus g') strongly converges in L2([0, B] X W') 
and for a.e. x to a function 2 = Z&&XB E N ( L )  independent of x.  To prove 
that Z is identically 0, one multiplies equation (1.3.12) by X, and integrates over 
u + t1 > 0 and (0, x); setting 

(1.3.14) 

one has 

1 
g e X , & d t  = xP+(+, X,). 

+ &.tXL+€, 2 0  

Taking the limit as E + 0, we see that P'(2 ,  X,) = 0. Noticing that the form 
P+ is positive definite on N(L), we have bs = 0; thus Z = 0, which contradicts 
lllqg.lll = 1. Consequently, qge remains bounded in L2([0, B] X W'). We can pass 
to the limit as E + 0 and obtain a solution fB of (1.3.4)-(1.3.5) such that 

Let us check that fB satisfies (1.3.6). From the positivity of the quadratic 
form P on G and the property of maximality of G, one obtains that G is a closed 
(convex) subspace of L2(& + ul d t ) .  It is thus weakly closed. To prove that 
fB E G, it is sufficient to prove that the sequence f' remains bounded in 
L2( It1 + uI d t )  uniformly in E. In view of the previous estimates and equation 
(1.3.7), v'/'f' and (Il + u )  d,f' remain bounded in L2((0, B) X R'). Thus, the 
function 

v1'2fB E L2([o, B ]  x W3). 

(1.3.16) g ( x )  = /It1 + ulf ' (El2dt  

is bounded in W'.'(O, B). The injection from W',l(O, B) into c<I) being 
continuous, we have proved that 

(1.3.17) I l f " l  L2(,t1 +", d € )  < c, 
independently of E. 

UNIFORM ESTIMATES WITH RESPECT TO B FOR THE SOLUTION fB OF 
(1.3.4)-(1.3.6). 

PROPOSITION 1.3.1. The solution fB of (1.3.4)-(1.3.6) which can be written in 
the form 

4 

(1.3.18) fB = wB + qS = wB + c u , " ( x ) x a  
a-0 
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satisJies the uniform estimates 

(1.3.19) 

and, for any y < p / C i  (where C; is a positive constant depending on p ) ,  

(1.3.22) 

Proof Estimate (1.3.19) is obtained as usual by multiplying equation (1.3.4) 
by f B  and integrating over [0, B ]  X W'. To obtain (1.3.20), one multiples equa- 
tion (1.3.4) by X u  and integrates over u + t1 > 0 and [0, x ] :  

(1.3.23) 

One has 
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where C depends only on (p and p. P +  being positive definite on N(L) ,  one 
immediately obtains (1.3.20). 

Multiplying equation (1.3.4) by X, and integrating over I, one sees that the 
quantities P ( f , ,  Xu) are independent of x. From the boundary conditions 
(1.3.6), these constants, denoted by k;, are equal to 0 for a E I-. 

The form P being nondegenerate, there exists a unique qg E N( L )  such that 

(1.3.27) p(q,m, Xu) = W B ,  Xu) = k,B. 

The function fB = fB - q; satisfies 

(1.3.28) ( u  + <I)$  + LwB = 0. 

Thus, 

+ ~ B ~ ~ w ~ e 2 y x  d t  dx 0 .  

From the definition of q:, it is clear that qg E G. Thus f B ( B ,  4) E G and 
p ( f B , f B ) ( ~ )  2 0. Also, 

The coefficients of q; of the basis {Xu} can be written in the form 

(1.3.31) 

and are thus bounded independently of B by estimates (1.3.20)-(1.3.21). Conse- 
quen tl y, 

Now, 

(1.3.33) 
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Using (1.3.27), a simple computation gives 

(1.3.34) p ( q B  - qg, q B  - qg) = - p ( w B ,  q B  - qg) 
and 

4 

p ( w B ,  4 B  - qr) = c p ( w B ,  x u ) p ( q B  - 4:, x u ) p ( x a *  xu) 
u-0  

(1.3.35) 
4 

= - c p (  W B ,  x u ) " (  x u ,  
u-0  

Thus, 

(1.3.36) /'P( f B ,  fB)ezYx dx 5 + IEl)w," d( dx. 
0 

Therefore estimate (1.3.22) holds for 0 -= y < C,vo. This completes the proof of 
Proposition 1.3.1. 

1.4. Construction of a solution in 10, m]. We now prove the existence part of 
Theorem 1.2.1 in the nondegenerate cases. 

Proof: First notice that we can restrict our attention to the case where the 
constants A, are equal to zero. Indeed, consider f defined by 

(1.4.1) 

(1.4.4) /(& + U ) X a g d E  = 0, a E I-; 

f is a solution of (1.2.13), (1.2.14), (1.2.19). 
The solution f is constructed as the limit, as B + 00, of the solutions fB of 

(1.3.4)-(1.3.6): from estimates (1.3.19)-(1.3.22), there exists a sequence B, -, 00 

such that 

wB" 4 w weakly in L2(eYx Q Y d o ,  0," + Q, weakly in ~ ! , ( d x )  

and f =  w + C2,0a,X, is a weak solution of (1.2.13) in Lfw(dx 0 vdt). It 
satisfies 
(1.4.5) P(f, X u )  = ku, a E I, 
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where the constants ka are the limits of k t  as B + GO. They are finite because 
the kt are bounded uniformly with respect to B. By construction, k ,  = 0 for 
a cz I-. 

Let q" E N ( L )  be defined by 

(1.4.6) P( qm, X a )  = k,. 
One has 

(1.4.7) P( 4" - 4, X,) = P( W ,  X a ) ;  

thus, 

(1.4.8) 

and estimate (1.2.22) is proved. 

q m  - q E L*( eYX rlX Q Y d o ,  

L" ESTIMATE WHEN + SATISFIES (1.2.15). The function $= f - q" satisfies 
equation (1.2.13). Following [4], we use the integral form of (1.2.13) and denote 
X = Y([)/(& + u);  we have 

First consider the case El + u .c 0 and let x go to infinity. Equation (1.4.9) has 
the form 

Thus we have 

Consequently, using (1.2.22), 

(1.4.12) 

6 CSf. 

For the case El + u > 0, one takes x = 0 in (1.4.9): 

(1.4.13) 



422 F. CORON, F. GOLSE, AND C. SULEM 

For y small enough, ( A  - y)  is always positive: 

e'Ylf(y, 01 s I(+ - qm)(E)le(y-"y 

(1.4.14) 

And so, using relation (1.2.22), 

(1.4.15) 

Combining (1.4.12) and (1.4.15) we obtain the estimate (1.2.21). 

La ESTIMATE WHEN + SATISFIES (1.2.15'). First consider the case + u < 0. 
To estimate the right-hand side of (1.4.10), one separates the cases -1  < El + u 
< 0 and & + u < -1. For I1 + u < -1, one writes 

(1.4.16) 

For - 1 < t1 + u < 0, one splits up the neighborhood of y: 

(1.4.17) 

with 

(1.4.18) 

and 
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Thus, for a < t ,  

The second term of the right-hand side of (1.4.20) is given by 

6 Cllfllz,,, 
Combining (1.4.20) and (1.4.21), one gets 

c 
(1.4.22) IJ1t,+u*ojl12,Y I -gllle’”flll + CEal l f l12,y.  

For the case $1 + u > 0, one uses (1.4.13). 
+ u > 1, Again, for 

(1.4.23) 

C( lmKf(s ,  5)2e2Ys ds Y2 . 
For 0 < t1 + u < 1, 

(1.4.24) 

and 



424 F. CORON, F. GOLSE, AND C. SULEM 

Thus 

C 

Combining (1.4.22) and (1.4.26), we get 

+ -pllr~’”fal + C&Ullf112,y‘ 

C 
(1.4.27) l l f l 1 2 , y  4 II+ - q r n l l L ~ ( ” d l ; ~ , + u > O )  + - p l l l ~ ~ x f l l l ~ +  C&”llfl12,y. 

Choosing E such that CE’ < 1 and using estimate (1.2.22), and the fact that the 
coefficients of qm of the basis {Xu} are finite, one has estimate (1.2.21‘). 

1.5. Uniqueness. 

THEOREM 1.5.1. Letf  E Lrn(dx; L2(& + u( d o )  be such that 

(1.5.3) a E I - .  

Then f = 0. 

(1 S .8 )  
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By the hypothesis, P(f, f )  E Lm(R+); thus v ~ / ~ w ~  E L2(W+ X R3). It 
follows that there exists a sequence x ,  3 00 such that P ( X , ,  wJ)(xn) + 0 
and P(wJ, W,) (X, )  4 0. But P ( f ,  f ) ( x )  is a decreasing function of x and 
P ( f ,  f )(O) I; 0 because of (1.52). Thus P ( f ,  f ) ( x )  is identically equal to 0. 
Consequently, WJ is also identically equal to 0 and q is a constant (with respect 
to x ) .  This constant is equal to 0 from the condition at x = 0. Thus the function 
f is identically 0. 

Remark 1.5.1, In the case 0 < u < {f T, , the condition P(  f ,  X,) = 0 is 
m. It is in 

1.6. The degenerated cases u = 0, f \/3T,. We are now interested in the 

equivalent to mJ = jt, fM1/*  d t  = 0 as x + 00 because f + 0 as x 
this form that Cercignani [4] conjectured that the problem was well posed. 

special cases u = 0, f m, where the quadratic form P is degenerate. 

LEMMA 1.6.1. If f is a bounded solution of (1.2.13), it satisfies 

(1.6.1) P(f, X,) = O for all a E 1'. 

Proof: Notice that, for u = 0, k {fT, , 

for all a E I o  and all p E I, (1 A.2) 

but N( L )  = R( L )  and thus 

P( X,, Xs) = 0, 

(1.6.3) (t1 + u ) X a  E R ( L ) ,  a E IO. 

,Following [4], if f is a bounded solution of (1.2.13), it satisges, for any a E I o ,  

d 
0 = - -~ ( f ,  dx ~ - l ( ( t l +  u ) X a > >  + IL~L-'((I, + u ) X a )  d t  

(1.6.4) 
d 

= x P ( f ,  ~ - ' ( ( t , +  u ) X a ) )  + ~ ( f ,  Xa), 

because L is selfadjoint. Moreover, the quantities P( f ,  X,) are constant. If such 
a constant were not zero, it would imply that the corresponding scalar product 
P(f, L-l((t1 + u ) X a ) )  which appears in (1.6.4) has a linear growth which is in 
contradiction with the assumption that f E Lm(dx, L2(1t1 + uI d t ) ) .  Thus, 
~ ( f ,  X,) = 0, for a E IO. 

LEMMA 1.6.2. The matrix A defined by 

P( x a ,  x,) 9 

P( x,, L-l(( t1  + u)X,)), 

a E I + U  10, p E I+,  

a E I + U  1 0 ,  p E 1 0 ,  
(1.6.5) A,, = 

is invertible. 
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Proof: We write A in the form of four blocks defined above. Since the X, 
form a P-orthogonal set, the upper right block is zero. Moreover, the submatrix 
Aap for (a, p )  E I' x I' defines a positive symmetric quadratic form because L 
is selfadjoint and satisfies the coercivity property (1.2.9). Then the matrix A is 
invertible. 

We are now going to prove Theorem 1.2.1 in the case where P is degenerate. 

Proof: To prove the existence of a solution, let us come back to subsections 
1.3-1.4, and make slight modifications to fit the degenerate cases. First we adapt 
Lemma 1.3.1 by replacing I -  by I - U  I' in (ii) and If by I'U I' in (iii). The 
construction of a solution fB of (1.3.4)-(1.3.6) by considering the penalized 
system is extended without modifications. We thus have a solution fE satisfying 
estimates (1.3.19)-(1.3.20). Using Lemma 1.6.2, it is possible to construct 4; E 

C n N ( L )  such that 

(1.6.6) P( Xu, 42) = P( Xu, f E )  for all a E I + ,  

Notice that the last quantity is constant (see equation (1.6.4) and use the fact that 
P ( f ,  X,), which is constant, is equal to zero for a E I' at x = B because 

Equations (1.6.6)-(1.6.7) together with estimates (1.3.19)-(1.3.20) and a trick 
similar to (1.3.31) prove that the coefficients of q; of the basis of N ( L )  remain 
bounded independently of B. In order to estimate the second term of the 
left-hand side of (1.3.31), we notice that, from the definition of 4g, qB - q; is 
controlled in terms of ws. Thus, for y small enough, we have estimate (1.3.22). 

The construction of a solution in [0, m[ and the L" estimate are extended to 
the degenerate cases without modifications. 

We prove uniqueness as in subsection 1.5, following the proof of Theorem 
1.5.1. Equalities (1.5.4)-(1.5.6) still hold and we use Lemma 1.6.1 to prove that 
(1.5.7) is also true in the degenerate case. We complete the proof as in subsection 
1.5. 

1.7. An abstract formulation of the invariant relations. In Theorem 1.2.1, we 
have proved that, for any A,, a E I-, there exists a unique bounded solution of 
(1.2.13)-(1.2.14) satisfying 

f(B, *) E C). 

(1.7.1) P( f 7  X,) = A,, a E I-. 

This condition clearly depends on the choice of the basis X u  in N(L) .  
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If we look carefully at the above proofs, it appears that the essential point to 
ensure that problem (1.2.13), (1.2.14), (1.2.19) is well posed is the positivity of the 
entropy flux at infinity. This, however, is independent of the spectral decomposi- 
tion of the quadratic form P restricted to N ( L ) ,  and can be formulated without 
reference to any special basis like the X, in the previous subsections. 

THEOREM 1.7.1. Let H be a subspace of N( L )  on which the form P is positive 
and which is maximal with respect to this property. For any I E N( L),  there exists 
a unique solution fof (1.2.13)-(1.2.14) in L"(dx; L2(v d o )  such that 

(1.7.2) lim (f- I )  E H .  
x- m 

Before turning to the proof of this theorem (which is an extension of the 
proof given in the previous subsections), let us give some remarks and lemmas. 

Remark 1.7.1. Such subspaces H exist. Take for example H = span(X,, 

This theorem generalizes Theorem 1.2.1: choose H given above and define 
1 = C,,I-A,X,. Moreover, it is by no means a straightforward consequence of 
our previous results even in the nondegenerate case. To justify this last statement, 
it is sufficient to construct a subspace H that contains an isotropic vector h of P 
(for example, in the case 0 < u < dsr,, h = X, + X,, with a E I+ and 
/3 E I-). Such a space cannot be obtained by a direct application of our previous 
arguments . 

In the same way, for u = 0, the results of Bardos et al. [2] and Cercignani [4] 
are not, strictly speaking, corollaries of Theorem 1.2.1. However, they can be 
included, together with Theorem 1.2.1 in the same frame and stated as Theorem 
1.7.1. Moreover, it turns out that the abstract condition defined below in Lemma 
1.7.1 and the constructions of [2] and 141 are the same in the special case u = 0. 
Indeed, the subspace 

a E I0 u I+).  

(1.7.3) G = { f L2( 1611 d'$), f B (  B ,  6) = fB( Rt)}  
satisfies condition (i) of Lemma 1.3.1. Let us check the maximality property: first, 
if f E G, then P( f, f )  = 0. Let 

(1.7.4) F = { f E  L2(1t11dt), ~ B ( B ,  t )  =fB(B, R t ) ,  P(f ,  f) L 0 ) .  

For f E F, decompose f = f++ f-, with 

f+(O = M E )  +fW)  and f-(O = +(f(t) + f ( R t ) ) ;  
f E F and f + E  F lead to f - ~  F. For any even function 9 and any real number 
A ,  9 + A f-E F, therefore, 

0 5 P ( f , f )  = 4AJ t19f- d t .  
C,>O 

Thus f-= 0, and G is maximal. 
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We state now some remarks concerning the quadratic form P .  
Let H be a subspace of N ( L )  that contains the elements of the nullspace 

N , ( P )  = N ( L )  n N ( L ) I P  restricted to N(L)  of P, and 

(1.7.5) H I p =  { f ~ N ( L ) / f o r a l l h ~ H , P ( f , h ) = O }  

its orthogonal complement with respect to P in N(L) .  One has 

(1.7.6) H = ( H l y .  

Let H be as in Theorem 1.7.1. Then the dimension of the subspace H is 
determined by u and is equal to Card( I' u I+). Indeed H necessarily contains 
the nullspace of P ,  because it is maximal, and thus the X, for a E 1'. Now 
consider the restriction of P to the subspace H' of H where it is definite. From 
the positivity of P on H and the maximality of H, one gets 

H n s p a n ( X , , c u ~ ~ - )  = {O}, 

H I  nspan(X,,a E I+) = ( 0 ) .  

Moreover, for H satisfying the assumptions of Theorem 1.7.1, the subspace G of 
Lemma 1.3.1 is constructed as follows: 

(1.7.7) 

(1.7.8) G = H + X ,  x c  w, 
where X is a maximal element of S ( W  and S being defined in the proof of 
Lemma 1.3.1). 

The goal of the next lemma is to formulate the statement f ( B ,  *) E G in 
terms of invariant quantities. 

LEMMA 1.7.1. I f f ( B ,  0 )  E G ,  then 

(1.7.9) 

the inverse assertion being true i f f  ( B ,  * )  E N( L) .  

f ( B ,  *) E G * ( f o r a f l h  E H I p ,  P ( h ,  f ) ( B )  = 0 ) ,  

Proof of Theorem 1.7.1. Let us return to the proof of Theorem 1.2.1 and 
modify it as necessary. For the existence proof, we take 1 = 0. Estimates (1.3.4) to 
(1.3.20) are still valid and one has to replace equation (1.3.21) by 

(1.7 SO) + u)f ,hd(  = 0, for all h E H' , 

To prove estimate (1.3.22), one has to construct qg. Let us solve, in N(L) ,  the 
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system 

(1.7.11) P( qg, h )  = P( f, h )  for all h E N (  L ) ,  

(1.7.12) 
for all h E Nl.( P )  

Equation (1.7.11) represents five minus dimN,( P) nontrivial equations. For any 
h E N , ( P )  and n E N(L), one has P ( h ,  n) = 0. Thus, (tl + u)h belongs to 
N(L)' and L-'((& + u ) h )  is defined. The function q2 which belongs to the 
five-dimensional space N ( L )  is then defined by five equations. To prove that the 
system (1.7.11)-(1.7.12) is well posed, let us consider the associated homogeneous 
system referred to as (1.7.11')-(1.7.12') and prove that it has only the trivial 
solution. Equation (1.7.11') ensures that the solution denoted by 4°F E N,(P) 
and equation (1.7.12') with h = 4; leads to 

P(q% L-y(E1 + UP))) = P(f9 h )  

(1.7.13) 

and thus, from the coercivity property (1.2.9), to 48" = 0. 
Equation (1.7.11), together with Lemma 1.7.1 and the above remarks, ensures 

that qg E H and thus the first term of the left-hand side of (1.3.29) computed at 
x = B is positive. 

Computations similar to (1.3.31)-(1.3.35) ensure that qz is bounded uni- 
formly with respect to B and that (qB - qF) (x ,  *) can be controlled by wB(x,  0 )  

in L2(v &)-norm. 
The proof of uniqueness is obtained as before. 

2. Accomodation Boundary Conditions 

2.1. Introduction and main results. Space vehicle aerodynamics has raised a 
new interest in understanding the presumably complex interaction between a 
rarefied gas flow and a body surface. In this context, the special case of specular 
reflection 

F(x9 t )  = F( x ,  4 - 2(t  n , ) n , )  

(where n x  is the exterior unit normal vector at point x of the wall) appears rather 
academic. In particular, one has to take into account: matter ablation at the wall, 
thermalization of molecules impinging the wall, etc. To this end, one is led to 
introduce the following type of boundary conditions (see Cercignani [3] and 
Ferziger-Kaper [7]): 
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The term S(x,  5 )  in the right-hand side of (2.1.1) is to model the surface emission 
in the flow due to the wall deterioration and the scattering kernel R(5’ + 5, x )  is 
to model the complex reflection mechanism at the wall (including for example 
thermalization processes). A special case of (2.1.1) is the well-known Maxwell 
boundary condition given by 

R(5’  + 5 ,  x) = (1 - cu)S([’ - 5 + 2 n ,  5 )  + a14 nxlMwr 
(2.1.2) 

where M ,  is the thermalization Maxwellian at the wall, and (Y is the “accomoda- 
tion coefficient”. 

In this work, we shall mainly consider the boundary condition (2.1.1), with 
additional assumptions on the scattering kernel that can be derived from physical 
arguments (see [3]): 

there exists a Maxwellian state M ,  such that 

15 n,Ww(5’ )R(5 ’  + 5 ,  x )  
(2.1.3~) 

= It n , J M , ( t ) R (  - 5  + -5 ‘ ,  x ) ,  5 n ,  > 0, 5’ n ,  < 0. 

Condition (2.1.3~) is referred to as “the law of reciprocity” and ensures that M,,, 
satisfies the boundary condition (2.1.1) with S(x, 5 )  = 0. The following ad- 
ditional property can be derived from the above properties (see [3]). 

PROPOSITION 2.1.1. For any function F satisfying the boundary condition 
(2.1.1) with a null source term (S(x, 5 )  = 0), one has 

(2.1.4) j5 nxF2A4;’ d t  5 0 

with equality if and on& if 

either F is a .e .  proportional to M,,  

or R (5 ‘  + I )  is proportional to a Dirac mass. 

The proof of this proposition is given in [3]. Throughout the present work, we 
shall exclude the latter situation, corresponding to the case of a specular 
reflection (i.e., (2.1.2) with a = 0). 
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Let us now state our main result. We consider the half-space problem: 

(2.1.5) El% + Lf = 0 ,  x > 0, 

(where L is the linearized collision operator around the Maxwellian state M,, 
and F = M, + M:/'f; see Section 1) supplemented with the transformed 
boundary condition derived from (2.1.1) and the prescribed mass flux condition: 

I E l l f  (0, 0~:w dE = A ,  
L < O  

(2.1.6) 

where X is a given constant. Notice that, since M, satisfies the boundary 
condition (2.1.1), it is equivalent to require that M:"f satisfies (2.1.1), i.e., 

E n ,  > 0, 

where s = M;'/'S. We have 

THEOREM 2.1.1. For any constant A, and any source term s(6) in 
L'(t1 > 0; ltll d o ,  there exists a unique solution f of the problem (2.1.5), (2.1.19, 
(2.1.6) in L"(dx; L2(1&1 d o ) .  This solution f has the following asymptotic behavior 
as x -+ + 00: there exists a unique qy in the nullspace of L such that 

for any small enough y > 0. 

The following subsections are organized as follows: 
In subsection 2.2, we prove a compactness property for the Albedo operator. 
In subsection 2.3, we give the proof of Theorem 2.1.1. 

2.2. Compactness of the Albedo operator. The compactness of the Albedo 
operator is a somewhat general property for half-space problems in kinetic theory 
(in the simple case of the transport equation with isotropic scattering, a computa- 
tional proof using for example Chandrasekhar's calculus can be given; see 
Chandrasekhar [5]).  

LEMMA 2.2.1. Let us consider the equation (2.1.5), together with the massflux 
condition 

(2.2.1) 
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The Albedo operator A is defined by 

The operator A is compact on L2(E1 > 0, ltll dh). 

Proof: Denote by Y the space for half-densities on which A is defined: 
V = L2(& > 0, ltll d&). Let f , (O,  *) be a sequence of V that converges weakly 
to f(0, *), associated to solutions f , ( x ,  5 )  of the problem (2.1.5)-(2.2.1) and 
f ( x ,  E ) ,  respectively. Notice that the continuous mapping 

is of finite rank, and therefore compact from V into N ( L )  c L2(v d5)  (see 
Section 1). Thus, there exists a sequence of qz that converges strongly to q7. 

We recall that, following our assumptions, the sequence f,(x, 5 )  - q z  is 
bounded in L2(dx Q v d o ,  which in turn implies that 

(2.2.3) 

is bounded in L2(dx €31 d t )  since K is in particular bounded in L2(d t ) .  From 
this, we deduce that K(f, - q z )  converges to K(f - qfm) strongly in 
L;=(dx; L’(d5)) (using the fact that K is compact on L2(d5) and the averaging 
results of Golse, Lions, Perthame and Sentis; see Dautray-Lions [6]). 

We then use the classical integral representation for the solution of 
(2.1.5)-(2.2.1): introducing g ,  = (f, - qz) - (f - qfm), we have 

m l  
(2.2.4) g,(O, $) = - j -e-ys/ItII(Kg,)(s, 5 )  ds, 51 c 0. 

0 1511 

We point out that 

(2.2.5) 

We know that Kg, + 0 strongly in L;,,Jdx; L2(dE)) and Kg, is uniformly 
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bounded in L2(eYx dx @ dE). Thus, we have 

g,(o,  0 )  + 0 

in L2(E1 < 0; ltll d o ,  which proves the announced compactness. 

LEMMA 2.2.2. Consider equation (2.1.5) together with zero mass flux condition 

The corresponding albedo operator 

is a contraction on L2(& > 0; lE1l d t ) .  

Proof: The linearized entropy flux P(f, f) goes to zero at infinity (see [2] 
and Section 1) and is nonincreasing with respect to x .  Therefore, P(f, f ) ( x  = 0) 
2 0, and thus 

llAOfIIL~~It,ldt) 6 IlfllLq1611dt); 

whence the announced conclusion follows. 

2.3. The fixed point result. We first introduce a suitable framework to 
reduce the existence part in Theorem 2.1.1 to a fixed point result. Let II be the 
orthogonal projection in V on (R M:/2)  and denote by R the operator defined 
by 

9 acts on L2(& dt ;  tl > 0) and, from (2.1.4), 9 is a contracting mapping since 
M ,  satisfies the boundary condition (2.1.1) with S = 0, Milz  is an eigenvector of 
9 for the eigenvalue 1. Moreover, according to the law of reciprocity (2.1.3c), 9 
is a selfadjoint operator on Lz(& > 0; El d t )  equipped with the natural scalar 
product, and R induces a strictly contracting mapping on (BPMi’’) I, that is 
I I9xl l  < llxll, for any x E (R Mi/’) . We consider the following problem: 

a v  E‘E + L u - 0 ,  x > o ,  
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where f i  is to be fixed later, in order to satisfy (2.1.6). Consider the mapping T 
defined by 

(2.3.2) T4E) = 4 -0, I1 > 0. 

is continuous on V (see [2]). Then we have the following result: 

PROPOSITION 2.3.1. For any fi  E R, the mapping T has a unique $xed point 
in V. 

Before going into the proof, let us show that the existence part of Theorem 
2.1.1 follows from Proposition 2.3.1. 

Let u E V be a fixed point of T with a parameter f i  that will be chosen later. 
There exists a function f E L“(dx; L2(&1 d t ) )  which is a solution of (P); in 
particular, f satisfies 

(2.3.3) f(0, -0 = u ( t ) ,  I 1  > 0, 

(2.3.4) f ( 0 ,  El > 0) = f i M y  + w 0 nu + s. 
Introducing the decomposition u = nu + CM;l2 in the latter equation, using 
the fact that M i l 2  is invariant under the action of 9, and knowing the 
prescribed mass flux of f in terms of s as imposed in system (P), we conclude 
that f i  = C, the coordinate of u on Mi/’. To obtain exactly equation (2.1.6) for 
the mass flux, we notice that 

(2.3.5) 

thus, it is enough to adjust the parameter f i  in order to fit A. 

Now we prove Proposition 2.3.1. 

Proof of Proposition 2.3.1. Consider uo = u - XIlMi/2 with 

it is clear that uo solves problem (P) with s replaced by s - XIIM;/’ and zero 
mass flux condition. Therefore, 

TU = A,{ fiM;/’ + w 0 nu + s - X[,M;’2 1 + A<lhf;”. 
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Observe now that the Frkhet derivative of the (affine) operator T is equal to 
A, 0 9 0 ll which, by Lemma 2.2.2 is a strictly contracting mapping on V, and, 
by Lemma 2.2.1, is compact. Therefore, N ( I  - (A, 0 9 0 n)*) = 0, which proves 
the announced conclusion by the Fredholm alternative. 
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