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Abstract

We establish a Stokes-Fourier limit for the Boltzmann equation considered over
any periodic spatial domain of dimension 2 or more. Appropriately scaled fami-
lies of DiPerna-Lions renormalized solutions are shown to have fluctuations that
globally in time converge weakly to a unique limit governed by a solution of
Stokes-Fourier motion and heat equations provided that the fluid moments of
their initial fluctuations converge to appropriateL2 initial data of the Stokes-
Fourier equations. Both the motion and heat equations are recovered in the limit
by controlling the fluxes and the local conservation defects of the DiPerna-Lions
solutions with dissipation rate estimates. The scaling of the fluctuations with
respect to Knudsen number is essentially optimal. The assumptions on the colli-
sion kernel are little more than those required for the DiPerna-Lions theory and
that the viscosity and heat conduction are finite. For the acoustic limit, these
techniques also remove restrictions to bounded collision kernels and improve
the scaling of the fluctuations. Both weak limits become strong when the initial
fluctuations converge entropically to appropriateL2 initial data. c© 2002 John
Wiley & Sons, Inc.
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1 Introduction

The endeavor to understand how fluid dynamical equations can be derived from
kinetic theory goes back to the founding works of Maxwell [23] and Boltzmann [9].
Most of these derivations are well understood at several formal levels by now, and
yet their full mathematical justifications are still missing. Here we establish a so-
called Stokes-Fourier fluid dynamical limit for the classical Boltzmann equation
considered over any periodic spatial domain of dimension 2 or more. In the same
setting, we also significantly extend our previous result that established the so-
called acoustic limit [5].

The Stokes-Fourier system is the linearization about the zero state of an in-
compressible Navier-Stokes-Fourier system. It governs(ρ,u, θ), the fluctuations
of mass density, bulk velocity, and temperature about their spatially homogeneous
equilibrium values. After a suitable choice of units, these fluctuations satisfy the
incompressibility and Boussinesq relations

(1.1) ∇x · u = 0 , ρ + θ = 0 ,

while their evolution is given by the motion and heat equations

(1.2)
∂tu + ∇x p = ν1xu , u(x,0) = uin(x) ,

D + 2

2
∂tθ = κ1xθ , θ(x,0) = θ in(x) ,

whereν > 0 is the kinematic viscosity andκ > 0 is the thermal conductivity.
This is one of the simplest systems of fluid dynamical equations imaginable, being
essentially a system of heat equations. It may be derived directly from the Boltz-
mann equation as the formal limit of moment equations for an appropriately scaled
family of Boltzmann solutions as the Knudsen number tends to zero.

Here we establish the Stokes-Fourier limit, henceforth referred to as simply
the Stokes limit, in the physical setting of DiPerna-Lions renormalized solutions
of the Boltzmann equation [15]. Whether such solutions always satisfy the local
conservation laws of momentum and energy that one would formally expect to be
satisfied has been an outstanding open problem since that work appeared. In our
earlier work with Bardos on the Stokes limit [3], the local momentum conserva-
tion law was therefore assumed. The present work both removes this rather large
assumption and enlarges the class of collision kernels from that considered in [3].
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The present work also improves upon the result given in our later work with
Bardos [4]. Without assuming local momentum conservation, that work recov-
ered the Stokes motion equation by using energy and relative entropy estimates to
remove the local momentum conservation law defect in the limit, but at the cost
of being restricted to bounded collision kernels (such as is the case for Maxwell
molecules). It required, moreover, that the fluctuations be scaled to be an order
smaller than the square of the Knudsen number. This is far smaller than what one
expects to be optimal from formal derivations of the Stokes equations, namely, that
the fluctuations should only be required to be of an order smaller than the Knudsen
number [2]. (One formally derives the incompressible Navier-Stokes system when
the fluctuations are of the same order as the Knudsen number.) Here we recover
both the motion and the heat equation of the Stokes limit by controlling the local
conservation defects of the DiPerna-Lions solutions with dissipation rate estimates.
Our scaling of the fluctuations with respect to Knudsen number is now essentially
optimal.

Recently Lions and Masmoudi [22] elegantly recovered the Stokes motion
equation. They showed that DiPerna-Lions renormalized solutions satisfy the for-
mally expected local momentum conservation up to the divergence of a nonnega-
tive definite, matrix-valued defect measure. They control this measure by an en-
tropy bound which shows that the measure vanishes in the Stokes limit. Their scal-
ing of the fluctuations with respect to Knudsen number is also essentially optimal.
(They also use this defect measure and entropy bound to get an improved partial
result for the incompressible Euler limit.) However, as in all the other results men-
tioned above, they do not recover the heat equation. There are two reasons for this.
First, it is unknown whether DiPerna-Lions solutions satisfy local energy conser-
vation up to the divergence of a defect measure or how to control such a measure
in the Stokes scaling should it exist. Second, even if local energy conservation
were assumed, the techniques they used to control the momentum flux would fail
to control the heat flux. We therefore do not use their approach here. Rather, the
dissipation rate estimates that we develop here to control the heat flux and remove
the local energy conservation defects of DiPerna-Lions solutions do the same for
the motion equation.

The acoustic system is the linearization about the homogeneous state of the
compressible Euler system. After a suitable choice of units, in this model the fluid
fluctuations(ρ,u, θ) satisfy

(1.3)

∂tρ + ∇x · u = 0 , ρ(x,0) = ρ in(x) ,

∂tu + ∇x(ρ + θ) = 0 , u(x,0) = uin(x) ,

D

2
∂tθ + ∇x · u = 0 , θ(x,0) = θ in(x) .



STOKES-FOURIER AND ACOUSTIC LIMITS 339

This is also one of the simplest systems of fluid dynamical equations imaginable,
being essentially the wave equation. Like the Stokes system, it may be derived
directly from the Boltzmann equation as the formal limit of moment equations
for an appropriately scaled family of Boltzmann solutions as the Knudsen number
tends to zero.

In earlier work with Bardos [4, 5] we established the acoustic limit in the setting
of DiPerna-Lions renormalized solutions. That work removed the local momentum
and energy conservation law defects with energy and relative entropy estimates, but
at the cost of being restricted to bounded collision kernels, and with a scaling of
the fluctuations with respect to Knudsen number that was far from optimal. The
dissipation rate estimates developed here to remove the local conservation defects
of DiPerna-Lions solutions both allow the restriction to bounded collision kernels
to be dropped and improve the scaling of the fluctuations from being of an order
smaller than the Knudsen number to being of an order smaller than the square root
of the Knudsen number. While this scaling is a considerable improvement, it is
still far from what one formally expects to be optimal, namely, that the fluctuations
merely vanish with the Knudsen number. This gap must be bridged before one can
hope to fully establish the compressible Euler limit.

For both the Stokes and acoustic limits we show that appropriately scaled fami-
lies of DiPerna-Lions solutions have fluctuations whose weak limit points are gov-
erned for all time by solutions of the corresponding fluid equations withL2 initial
data. Conversely, we show that everyL2 initial data for the fluid equations have
scaled families of DiPerna-Lions initial data whose fluctuations converge entropi-
cally (and hence strongly inL1) to an appropriate limit associated to theL2 fluid
initial data. Moreover, every corresponding scaled family of DiPerna-Lions solu-
tions has fluctuations that converge entropically to a unique limit governed for all
time by the solution of the fluid equations. In this sense we obtain a uniqueness
result for DiPerna-Lions solutions in both the Stokes and acoustic limits.

The next section contains preliminary material regarding the Boltzmann equa-
tion. Section 3 gives the formal scalings that lead from the Boltzmann equation
to the acoustic and Stokes limits. Section 4 reviews the DiPerna-Lions theory of
global solutions [15] and the theory of fluctuations [3]. Propositions that are essen-
tially found in these works are fully stated for completeness, but their proofs are
omitted. Section 5 presents precise statements of our main results. Section 6 rein-
troduces the notion of entropic convergence and uses it to strengthen the limits in
our main results. Section 7 gives the proof of the acoustic limit modulo an estimate
that removes the local conservation defects. Section 8 gives the proof of the Stokes
limit modulo two estimates: one that shows convergence of the fluxes, and one that
removes the local conservation defects. Section 9 establishes the estimates that
control the local momentum and energy conservation defects for both the Stokes
and acoustic limits. There are three new estimates given here—all derived using
Young’s inequality techniques. Section 10 establishes the estimates that control
the momentum and heat fluxes for the Stokes limit. The key estimate is new. It
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controls the fluxes with the dissipation rate rather as well as the relative entropy. In
fact, it controls moments with respect to every power of the velocity for the Stokes
limit. Section 11 makes some concluding remarks.

2 Boltzmann Equation Preliminaries

Our starting point is the Boltzmann equation. In this section we collect the
basic facts we need. These will include its nondimensionalization and its formal
conservation and dissipation laws.

2.1 The Boltzmann Equation
Here we will introduce the Boltzmann equation only so far as to set our notation

and to make precise some of our assumptions regarding the collision kernel. While
our notation is essentially that of [3], our assumptions on the collision kernel are
weaker and more natural than those of [3]. More complete introductions to the
Boltzmann equation can be found in [10, 12, 13, 17].

The state of a fluid composed of identical point particles confined to a spa-
tial domain� ⊂ R

D is described at the kinetic level by a mass densityF over
the single-particle phase spaceR

D × �. At any instant of timet ≥ 0 and point
(v, x) ∈ R

D × �, F(v, x, t)dv dx is understood to give the mass of the parti-
cles that occupy any infinitesimal volumedv dx centered at the point(v, x). To
remove complications due to boundaries, we take� to be the periodic domain
T

D = R
D/LD, whereL

D ⊂ R
D is anyD-dimensional lattice.

If the particles interact only through a conservative interparticle force with a
finite range, then at low densities this range will be much smaller than the interpar-
ticle spacing. In that regime all but binary collisions can be neglected whenD ≥ 2,
and the evolution ofF = F(v, x, t) is governed by the classical Boltzmann equa-
tion [13]:

(2.1) ∂t F + v · ∇x F = B(F, F) , F(v, x,0) = F in(v, x) ≥ 0 .

The Boltzmann collision operatorB acts only on thev argument ofF . It is formally
given by

(2.2) B(F, F) =
∫∫

SD−1×RD

(F ′
1F ′ − F1F)b(ω, v1 − v)dω dv1 ,

wherev1 ranges overRD endowed with its Lebesgue measuredv1, whileω ranges
over the unit sphereSD−1 = {ω ∈ R

D : |ω| = 1} endowed with its rotationally
invariant unit measuredω. The F ′

1, F ′, F1, andF appearing in the integrand des-
ignateF(·, x, t) evaluated at the velocitiesv′

1, v
′, v1, andv, respectively, where the

primed velocities are defined by

(2.3) v′
1 = v1 − ωω · (v1 − v) , v′ = v + ωω · (v1 − v) ,

for any given(ω, v1, v) ∈ S
D−1 × R

D × R
D. Notice that whenD = 1 these reduce

to v′
1 = v andv′ = v1, wherebyB vanishes identically. This reflects the restriction
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to D ≥ 2. Quadratic operators likeB are extended by polarization to be bilinear
and symmetric.

The unprimed and primed velocities are possible velocities for a pair of par-
ticles either before and after, or after and before, they interact through an elastic
binary collision. Conservation of momentum and energy for particle pairs during
collisions is expressed as

(2.4) v + v1 = v′ + v′
1 , |v|2 + |v1|2 = |v′|2 + |v′

1|2 .
These equations have the trivial solutionv′

1 = v1 and v′ = v. Equation (2.3)
represents the general nontrivial solution of theseD + 1 equations for the 4D
unknownsv′

1, v
′, v1, andv in terms of the 3D − 1 parameters(ω, v1, v).

The collision kernelb is a positive, locally integrable function. The Galilean
invariance of the collisional physics implies thatb has the classical form

b(ω, v) = |v|6(|ω · v̂|, |v|) ,
wherev̂ = v/|v| and6 is the specific differential cross section. This symmetry
implies that the quantity

∫
b(ω, v) dω will be a function of|v| only. The DiPerna-

Lions theory requires thatb satisfies

(2.5) lim|v|→∞
1

1 + |v|2
∫∫

SD−1×K

b(ω, v1 − v)dω dv1 = 0

for every compact setK ⊂ R
D. In addition, we assume that there exist constants

Cb ∈ (0,∞) andβ ∈ [0,1] such thatb satisfies

(2.6)
∫

SD−1

b(ω, v)dω ≤ Cb

(
1 + 1

2
|v|2

)β
almost everywhere.

This condition implies (2.5) wheneverβ < 1. It holds for someβ ≤ 1
2 for those

b that are classically derived from a so-called hard interparticle potential with a
small deflection cutoff; see [13, chap. II.4,5]. In particular, condition (2.6) holds
with β = 0 for Maxwell molecules andβ = 1

2 for hard spheres. Some of our results
impose additional conditions onb. These conditions also hold for thoseb that are
classically derived from a hard interparticle potential with a small deflection cutoff.

2.2 Nondimensionalized Form

We will work with the nondimensionalized form of the Boltzmann equation
that was used in [3]. The form is motivated by the fact that the Stokes (1.1)–
(1.2) and acoustic (1.3) systems can be formally derived from the Boltzmann equa-
tion through a scaling in which the densityF is close to a spatially homogeneous
Maxwellian M = M(v) that has the same total mass, momentum, and energy as
the initial dataF in. By an appropriate choice of a Galilean frame and of mass and
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velocity units, it can be assumed that this so-called absolute MaxwellianM has the
form

(2.7) M(v) ≡ 1

(2π)D/2
exp

(
−1

2
|v|2

)
.

This corresponds to the spatially homogeneous fluid state with density and tem-
perature equal to 1 and bulk velocity equal to 0, and is consistent with the form of
both the Stokes system given by (1.1–1.2) and the acoustic system given by (1.3).

It is natural to introduce the relative density,G = G(v, x, t), defined byF =
MG. Recasting the initial-value problem (2.1) forG yields

(2.8) ∂t G + v · ∇xG = 1

ε
Q(G,G) , G(v, x,0) = Gin(v, x) ,

where the collision operator is now given by

(2.9) Q(G,G) =
∫∫

SD−1×RD

(G′
1G′ − G1G)b(ω, v1 − v)dω M1 dv1 ,

with the nondimensional collision kernelb being normalized so that

(2.10)
∫∫∫

SD−1×RD×RD

b(ω, v1 − v)dω M1 dv1 M dv = 1 .

The positive, nondimensional parameterε is the Knudsen number, which is the
ratio of the mean-free-path to the macroscopic length scale determined by setting
the volume ofTD to unity [3].

This nondimensionalization has the normalizations

(2.11)
∫

SD−1

dω = 1 ,
∫

RD

M dv = 1 ,
∫

TD

dx = 1 ,

associated with the domainsSD−1, R
D, andT

D, respectively, (2.10) associated
with the collision kernelb, and

(2.12)

∫∫
RD×TD

GinM dv dx = 1 ,
∫∫

RD×TD

vGinM dv dx = 0 ,

∫∫
RD×TD

1

2
|v|2GinM dv dx = D

2
,

associated with the initial dataGin.
BecauseM dv is a positive unit measure onRD, we denote by〈ξ〉 the average

over this measure of any integrable functionξ = ξ(v),

(2.13) 〈ξ〉 =
∫

RD

ξ(v)M dv .
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Because
dµ = b(ω, v1 − v)dω M1 dv1 M dv

is a positive unit measure onSD−1 × R
D × R

D, we denote by〈〈4〉〉 the average
over this measure of any integrable function4 = 4(ω, v1, v),

(2.14) 〈〈4〉〉 =
∫∫∫

SD−1×RD×RD

4(ω, v1, v)dµ .

The measuredµ is invariant under the coordinate transformations

(2.15) (ω, v1, v) 7→ (ω, v, v1) , (ω, v1, v) 7→ (ω, v′
1, v

′) .
These, and compositions of these, are calleddµ-symmetries.

2.3 Formal Conservation and Dissipation Laws
We now list for later reference the basic conservation and entropy dissipation

laws that are formally satisfied by solutions to the Boltzmann equation. Derivations
of these laws in this nondimensional setting are outlined in [3] and can, up to
notational differences, be found in [12, sec. II.6-7)], [17, sec. 1.4], or [10].

First, if G solves the Boltzmann equation (2.8), thenG satisfies local conserva-
tion laws of mass, momentum, and energy:

(2.16)

∂t〈G〉 + ∇x · 〈vG〉 = 0 ,

∂t〈vG〉 + ∇x · 〈v ⊗ vG〉 = 0 ,

∂t

〈
1

2
|v|2G

〉
+ ∇x ·

〈
v

1

2
|v|2G

〉
= 0 .

Integrating these over space and time while recalling the normalizations (2.12) of
Gin yields the global conservation laws of mass, momentum, and energy:

(2.17)

∫
TD

〈G(t)〉dx =
∫

TD

〈Gin〉dx = 1 ,

∫
TD

〈vG(t)〉dx =
∫

TD

〈vGin〉dx = 0 ,

∫
TD

〈
1

2
|v|2G(t)

〉
dx =

∫
TD

〈
1

2
|v|2Gin

〉
dx = D

2
.

Second, ifG solves the Boltzmann equation (2.8), thenG satisfies the local
entropy dissipation law

(2.18) ∂t〈(G log(G)− G + 1)〉 + ∇x · 〈v(G log(G)− G + 1)〉 =
− 1

ε

〈〈
1

4
log

(
G′

1G′

G1G

)
(G′

1G′ − G1G)

〉〉
≤ 0 .
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Integrating this over space and time gives the global entropy equality

(2.19) H(G(t))+ 1

ε

∫ t

0
R(G(s))ds = H(Gin) ,

whereH(G) is the relative entropy functional

(2.20) H(G) =
∫

TD

〈(G log(G)− G + 1)〉dx ,

andR(G) is the entropy dissipation rate functional

(2.21) R(G) =
∫

TD

〈〈
1

4
log

(
G′

1G′

G1G

)
(G′

1G′ − G1G)

〉〉
dx .

3 Formal Scalings and Derivations

Fluid dynamical regimes are those where the mean free path is small compared
to the macroscopic length scales, i.e., where the Knudsen numberε is small. For-
mal derivations of the compressible Euler system are rather direct. Formal deriva-
tions of other fluid dynamical systems, such as the compressible Navier-Stokes
system, are more subtle. (Indeed, some situations cannot be described by directly
using the compressible Navier-Stokes system: These are referred to as “ghost ef-
fects” in [26] and are somehow related to the discussion in [6]). Hilbert [19] pro-
posed that at the formal level all derivations of fluid dynamics should be based
on a systematic asymptotic expansion inε. A somewhat different asymptotic ex-
pansion inε, now called theChapman-Enskog expansion, was proposed a bit later
by Enskog [16]. The Chapman-Enskog expansion yields at successive orders the
compressible Euler system and the compressible Navier-Stokes system; see [18].

Justification of these formal approximations has proven difficult in part because
many basic well-posedness and regularity questions remain open for both these
fluid systems and the Boltzmann equation. The problem is exacerbated by the fact
that to bound the error of the asymptotic expansions requires the control of suc-
cessively higher-order spatial derivatives of the fluid variables, thereby requiring
unphysical restrictions to a meager subset of all physically natural initial data and
possibly to finite periods of time. For example, Caflisch used a method based on
the Hilbert expansion to justify the compressible Euler system from the Boltzmann
equation [11]. His result requires smooth initial data and holds for as long as the
limiting solution of the compressible Euler system is smooth. Because solutions
of the compressible Euler system are known to become singular in finite time for a
very general class of initial data (see [24]), such a result is about the best one can
hope for by appealing to such an expansion.

Two approaches to circumvent these difficulties have emerged recently. First,
some authors have studied direct derivations of linear or weakly nonlinear fluid
dynamical systems, such as incompressible Stokes, Navier-Stokes, and Euler sys-
tems [1, 2, 3, 6, 7, 8, 10, 14, 21, 22, 25, 27], about which more is known. Second,
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some authors have abandoned the traditional expansion-based derivations in favor
of moment-based formal derivations [2, 3, 6, 7, 10, 21, 22], which put fewer de-
mands on the well-posedness and regularity theory. In [5] we embraced both of
these approaches when first establishing the acoustic limit in a far more restrictive
setting. We do so again here when establishing the Stokes limit and extending the
acoustic limit.

Both the Stokes (1.1)–(1.2) and the acoustic (1.3) systems can be formally de-
rived from the Boltzmann equation through a scaling in which the densityF is
close to the absolute MaxwellianM . More precisely, we consider families of solu-
tions parametrized by the Knudsen numberε that have the form

(3.1) Gin
ε = 1 + δεg

in
ε , Gε = 1 + δεgε ,

where the fluctuationsgin
ε andgε are bounded whileδε > 0 satisfies

(3.2) δε → 0 asε → 0 .

The common practice of past works was to setδε = εm for somem > 0, but
we will not do so here in order to clarify how close the scalings in our analytical
results are to those that are formally optimal. Toward this end, we outline moment-
based formal derivations of both the Stokes and acoustic limits in this more general
setting. They go further than the derivations given in [2] and [5], respectively.

In these derivations we assume thatgε converges formally tog, where the limit-
ing function is inL∞(dt; L2(M dv dx)), and that all formally small terms vanish.
For example, we express the global conservation laws (2.17), which are the same
for both derivations, in terms ofgε and then formally letε → 0 to obtain

(3.3)
∫

TD

〈g(t)〉dx = 0 ,
∫

TD

〈vg(t)〉dx = 0 ,
∫

TD

〈
1

2
|v|2g(t)

〉
dx = 0 .

Henceforth, the two derivations differ.

3.1 Acoustic Formal Derivation

It is most natural to derive the acoustic limit first because its derivation is sim-
pler and requires no additional assumptions regarding either the scaling or the colli-
sion kernel. One considers a family of formal solutionsGε to the scaled Boltzmann
initial-value problem

(3.4) ∂t Gε + v · ∇xGε = 1

ε
Q(Gε,Gε) , Gε(v, x,0) = Gin

ε (v, x) ,

whose fluctuationsgε are given by (3.1) for someδε > 0 that vanishes withε as in
(3.2). The derivation has two steps.

The first step determines the form of the limiting functiong. Observe that by
(3.4) the fluctuationsgε satisfy

(3.5) ε(∂t gε + v · ∇xgε)+ Lgε = δεQ(gε, gε) ,
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where the linearized collision operatorL is formally defined by

(3.6) Lg̃ = −2Q(1, g̃) .
We defineL to be the unique nonnegative, self-adjoint extension overL2(M dv)
of this formal operator. By lettingε → 0 in (3.5), one finds thatLg = 0. It
is known (see, for example, [12, chap. IV.1]) that the null space ofL is given by
Null(L) = Span{1, v1, . . . , vD , |v|2}. Because the limitg is assumed to belong to
L∞(dt; L2(M dv dx)), we conclude thatg has the form of a so-called infinitesimal
Maxwellian, namely,

(3.7) g = ρ + u · v + θ

(
1

2
|v|2 − D

2

)

for some(ρ,u, θ) in L∞(dt; L2(dx; R × R
D × R)).

The second step shows that the evolution of(ρ,u, θ) is governed by the acoustic
system (1.3). Observe that the fluctuationsgε formally satisfy the local conserva-
tion laws

(3.8)

∂t〈gε〉 + ∇x · 〈vgε〉 = 0 ,

∂t〈vgε〉 + ∇x · 〈v ⊗ vgε〉 = 0 ,

∂t

〈
1

2
|v|2gε

〉
+ ∇x ·

〈
v

1

2
|v|2gε

〉
= 0 .

By letting ε → 0 in these equations and using the infinitesimal Maxwellian form
of g given by (3.7), one then finds that(ρ,u, θ) solves the local conservation laws
of the acoustic system (1.3). By the formal continuity in time of the densities in
(3.8), one finds that

(3.9) (ρ in,uin, θ in) = lim
ε→0

(
〈gin
ε 〉, 〈vgin

ε 〉,
〈(

1

D
|v|2 − 1

)
gin
ε

〉)
,

provided we assume that the limits on the right-hand side exist in the sense of
distributions for some(ρ in,uin, θ in) ∈ L2(dx; R × R

D × R).
The above formal derivation can be stated more precisely as follows:

THEOREM3.1 (Formal Acoustic Limit Theorem)Let Gε be a family of distribution
solutions of the scaled Boltzmann initial-value problem(3.4)with initial data Gin

ε

that satisfy the normalizations(2.12). Let Gin
ε and Gε have fluctuations ginε and gε

given by(3.1) that are bounded families for someδε > 0 that vanishes withε as in
(3.2). Also:

(i) Assume that the local conservation laws(3.8)are also satisfied in the sense
of distributions for every gε .
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(ii) Assume that the family gε converges in the sense of distributions asε → 0
to g ∈ L∞(dt; L2(M dv dx)). Assume furthermore thatLgε → Lg, that
the moments

〈gε〉 , 〈vgε〉 , 〈v ⊗ vgε〉 , 〈v|v|2gε〉 ,
converge to the corresponding moments

〈g〉 , 〈vg〉 , 〈v ⊗ vg〉 , 〈v|v|2g〉 ,
and that every formally small term vanishes, all in the sense of distributions
asε → 0.

(iii) Assume that for some(ρ in,uin, θ in) ∈ L2(dx; R × R
D × R) the family ginε

satisfies(3.9) in the sense of distributions.

Then g is the unique local infinitesimal Maxwellian(3.7) determined by the so-
lution (ρ,u, θ) of the acoustic system(1.3) with the initial data(ρ in,uin, θ in) ob-
tained from(3.9).

3.2 Stokes Formal Derivation

The acoustic system differs from the Boltzmann equation in one very important
respect. Stationary solutions of the acoustic system (1.3) are exactly those that
formally satisfy the incompressibility and Boussinesq relations (1.1). The acoustic
system overTD therefore has stationary solutions that vary in space, while the
Boltzmann equation overTD does not. It is clear that the time scale at which the
acoustic system was derived was not long enough to see the evolution of these
solutions.

It was shown in [2] that by considering the Boltzmann equation with a longer
time scale, one can give formal moment derivations of three fluid dynamical sys-
tems, depending on the limiting behavior of the ratioδε/ε asε → 0.

• Whenδε/ε → 0, one considers time scales of order 1/ε, and an incom-
pressible Stokes system is derived.

• Whenδε/ε → 1 (or any other nonzero number), one considers time scales
of order 1/ε, and an incompressible Navier-Stokes system is derived.

• Whenδε/ε → ∞, one considers time scales of order 1/δε , and an incom-
pressible Euler system is derived.

The common practice of past works was to setδε = εm, in which casem> 1 leads
to Stokes,m = 1 to Navier-Stokes, and 0< m< 1 to Euler. Each derivation yields
motion and temperature equations that, when supplemented by the incompressibil-
ity and Boussinesq relations, govern the evolution of(ρ,u, θ).

In particular, to derive the Stokes system one considers a family of formal so-
lutionsGε to the scaled Boltzmann initial-value problem

(3.10) ε∂t Gε + v · ∇xGε = 1

ε
Q(Gε,Gε) , Gε(v, x,0) = Gin

ε (v, x) ,
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whose fluctuationsgε are given by (3.1) for someδε > 0 that satisfies

(3.11)
δε

ε
→ 0 asε → 0 .

The derivation has six steps.
The first step shows that the limitingg is an infinitesimal Maxwellian. Observe

that by (3.10) the fluctuationsgε satisfy

(3.12) ε∂t gε + v · ∇xgε + 1

ε
Lgε = δε

ε
Q(gε, gε) .

After multiplying this equation byε and lettingε → 0, we argue as in the first step
of the acoustic limit derivation to concludeg has the form (3.7) for some(ρ,u, θ)
in L∞(dt; L2(dx; R × R

D × R)).
The second step shows that(ρ,u, θ) satisfy the incompressibility and Boussi-

nesq relations. Observe that the fluctuationsgε formally satisfy the local conserva-
tion laws

(3.13)

ε∂t〈gε〉 + ∇x · 〈vgε〉 = 0 ,

ε∂t〈vgε〉 + ∇x · 〈v ⊗ vgε〉 = 0 ,

ε∂t

〈
1

2
|v|2gε

〉
+ ∇x ·

〈
v

1

2
|v|2gε

〉
= 0 .

By letting ε → 0 in these equations and using the infinitesimal Maxwellian form
of g given by (3.7), one then finds that

∇x · u = 0 , ∇x(ρ + θ) = 0 .

The first equation is the incompressibility relation, while the second saysρ + θ is
a function of time only. By global energy conservation laws of (3.3) one thereby
concludes that

ρ + θ =
∫

TD

(ρ + θ)dx = 2

D

∫
TD

〈
1

2
|v|2g

〉
dx = 0 .

Hence,(ρ,u, θ) satisfy the incompressibility and Boussinesq relations (1.1).
Notice that the Boussinesq relation impliesg is an infinitesimal Maxwellian of the
form

(3.14) g = u · v + θ

(
1

2
|v|2 − D + 2

2

)

for some(u, θ) in L∞(dt; L2(dx; R
D × R)).

The next three steps show that the evolution of(u, θ) is governed by the motion
and heat equations. The difficulty here is that when the local conservation laws are
written so that the time derivatives are order 1, the fluxes become order 1/ε. This
difficulty is overcome by the following strategy [2]. Observe that the momentum
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and a linear combination of the mass and energy local conservation laws from
(3.13) can be expressed as

(3.15)
∂t〈vgε〉 + 1

ε
∇x · 〈Agε〉 + 1

ε
∇x

〈
1

D
|v|2gε

〉
= 0 ,

∂t

〈(
1

2
|v|2 − D + 2

2

)
gε

〉
+ 1

ε
∇x · 〈Bgε〉 = 0 ,

where the matrix-valued functionA and the vector-valued functionB are defined by

(3.16) A(v) = v ⊗ v − 1

D
|v|2I , B(v) = 1

2
|v|2v − D + 2

2
v .

It is clear thatA ∈ L2(M dv; R
D×D) and B ∈ L2(M dv; R

D). As is common
when studying incompressible fluid dynamical limits, the momentum equation will
be integrated against divergence-free test functions. The last term in its flux will
thereby be eliminated, and one only has to pass to the limit in the flux terms of
(3.15) that involveA andB, namely, in the terms

(3.17)
1

ε
〈Agε〉 , 1

ε
〈Bgε〉 .

There is a chance that these terms have a limit because each entry ofA andB is in
Null(L)⊥ while gε converges tog, which is in Null(L). The next two steps show
that these terms indeed have a limit.

The third step evaluates the limit for moments of the form〈Lξgε〉/ε for every
ξ ∈ Dom(L)∩Null(L)⊥, where Dom(L) ⊂ L2(M dv) is the domain ofL. Because
L is formally symmetric, one has

(3.18) 〈Lξgε〉 = 〈ξLgε〉 .
Upon multiplying (3.12) byξ and integrating, one obtains

(3.19) ε∂t〈ξgε〉 + ∇x · 〈vξgε〉 + 1

ε
〈ξLgε〉 = δε

ε
〈ξQ(gε, gε)〉 .

By letting ε → 0 in this equation and using the infinitesimal Maxwellian form of
g given by (3.14), one finds that, in the sense of distributions,

(3.20)
1

ε
〈Lξgε〉 → −〈ξv · ∇xg〉 = −〈ξ A〉 : ∇xu − 〈ξB〉 · ∇xθ ,

where the matrix-valued functionA and the vector-valued functionB are defined
by (3.16).

The fourth step determines the limit of the flux terms (3.17). At this point we
assume that for somè> 0 the operatorL satisfies the coercivity estimate

(3.21) `〈ξ2〉 ≤ 〈ξLξ〉 for everyξ ∈ Dom(L) ∩ Null(L)⊥ .
This estimate holds for every linearized collision operator that arises from a clas-
sical hard potential with a small deflection cutoff. This assumption is equivalent
to assuming that the Fredholm alternative holds forL, namely, that Range(L) =
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Null(L)⊥. In particular, it implies that uniqueφ ∈ L2(M dv; R
D×D) andψ ∈

L2(M dv; R
D) exist which solve

(3.22)
Lφ = A , φ ∈ Null(L)⊥ entrywise,

Lψ = B , ψ ∈ Null(L)⊥ entrywise.

Then by lettingξ in (3.20) be the entries ofφ andψ , one finds that

(3.23)

1

ε
〈Agε〉 → −〈φ ⊗ A〉 : ∇xu = −ν(∇xu + (∇xu)T

)
,

1

ε
〈Bgε〉 → −〈ψ ⊗ B〉 · ∇xθ = −κ∇xθ ,

where kinematic viscosityν and thermal conductivityκ are given by

(3.24) ν = 1

(D − 1)(D + 2)
〈φ : Lφ〉 , κ = 1

D
〈ψ · Lψ〉 .

In this step the coercivity assumed in (3.21) has been used only to assert the exis-
tence ofφ andψ , something that could have been asserted by assuming much less.
The full power of coercivity will be used in the sixth step.

The fifth step shows that the evolution of(u, θ) is governed by the Stokes mo-
tion and heat equations (1.2). The fluctuationsgε formally satisfy the local con-
servation laws (3.15). Hence, when lettingε → 0 in these equations, we use
the infinitesimal Maxwellian form ofg given by (3.14) to evaluate the limiting
densities while we use (3.23) to evaluate the limiting fluxes. We find that(u, θ)
satisfies (1.2). If we let5 denote the orthogonal projection fromL2(dx; R

D) onto
divergence-free vector fields, then by the formal continuity in time of the densities
in (3.15), one finds that

(3.25) (uin, θ in) = lim
ε→0

(
5〈vgin

ε 〉,
〈(

1

D + 2
|v|2 − 1

)
gin
ε

〉)
,

provided we assume that the limit on the right-hand side exists in the sense of
distributions for some(uin, θ in) ∈ L2(dx; R

D × R).
The sixth step determines the limit of the difference ofgε from its infinitesi-

mal Maxwellian,Pgε , whereP is the orthogonal projection fromL2(M dv) onto
Null(L), which for everyg̃ ∈ L2(M dv) is given by

(3.26) P g̃ = 〈g̃〉 + 〈vg̃〉 · v +
〈(

1

D
|v|2 − 1

)
g̃

〉(
1

2
|v|2 − D

2

)
.

The Fredholm alternative implies that for everyξ̃ ∈ L2(M dv) there is a unique
ξ ∈ Dom(L) that solvesLξ = P⊥ξ̃ with Pξ = 0, whereP⊥ = I −P. Hence, for
everyξ̃ ∈ L2(M dv) one has

〈ξ̃P⊥gε〉 = 〈gεP⊥ξ̃ 〉 = 〈gεLξ〉 .
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One thereby sees that asε → 0, (3.20) yields

(3.27)

1

ε
〈ξ̃P⊥gε〉 → − 〈ξ A〉 : ∇xu − 〈ξB〉 · ∇xθ

= − 〈ξ̃φ〉 : ∇xu − 〈ξ̃ψ〉 · ∇xθ .

Hence, asε → 0 we have the distribution limit

(3.28)
1

ε
P⊥gε → −φ : ∇xu − ψ · ∇xθ .

The right-hand side is exactly the first correction to the infinitesimal Maxwellian
that one obtains from the Chapman-Enskog expansion with the Stokes scaling.

The above formal derivation can be stated more precisely as follows:

THEOREM 3.2 (Formal Stokes Limit Theorem)Let b be a collision kernel for
whichL satisfies the coercivity estimate(3.21). Let Gε be a family of distribution
solutions of the scaled Boltzmann initial-value problem(3.10)with initial data Gin

ε

that satisfy the normalizations(2.12). Let Gin
ε and Gε have fluctuations ginε and

gε given by(3.1) that are bounded families for someδε > 0 that scales withε as
(3.11). Also:

(i) Assume that the local conservation laws(3.13)and the moment equation
(3.19) for everyξ ∈ L2(M dv) are also satisfied in the sense of distribu-
tions for every gε .

(ii) Assume that gε converges in the sense of distributions asε → 0 to g ∈
L∞(dt; L2(M dv dx)). Assume furthermore thatLgε → Lg, that for ev-
ery ξ ∈ L2(M dv) the moments〈ξgε〉 converge to〈ξg〉, and that every
formally small term vanishes, all in the sense of distributions asε → 0.

(iii) Assume that for some(uin, θ in) ∈ L2(dx; R
D × R) the family ginε satisfies

(3.25)in the sense of distributions.

Then g is the unique local infinitesimal Maxwellian(3.14)determined by the solu-
tion (u, θ) of the Stokes system(1.1)–(1.2)with ν andκ given by(3.24)and initial
data (uin, θ in) obtained from(3.25). Moreover, the familyP⊥gε of the deviations
of gε from the infinitesimal Maxwellians satisfies the limit(3.28) in the sense of
distributions.

4 Analytic Setting

In order to mathematically justify the fluid dynamical limits that were derived
formally in the last section, two things must be made precise: (1) the notion of
solution for the Boltzmann equation and (2) the sense in which the solutions fluc-
tuate about the absolute Maxwellian. Ideally, the solutions should be global while
the bounds and scalings should be physically natural. We therefore work in the
setting of the DiPerna-Lions theory of renormalized solutions. The theory has the
virtues of considering the physically natural class of initial data, and consequently,
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of yielding global solutions. These solutions have been used to study the incom-
pressible Navier-Stokes limit [3, 21] and the incompressible Euler limit [10, 22]
with only partial success, the acoustic limit [4, 5] and the Stokes limit [4, 22] with
considerable success, and the linearized Boltzmann limit [20] with complete suc-
cess. These works have developed the theory introduced in [3], which uses the
relative entropy and the entropy dissipation rate to control the fluctuations about
the absolute Maxwellian.

We present the basic facts we need about these theories in the following general
setting that allows a unified analysis of many aspects of both the acoustic and
Stokes limits. The scaled Boltzmann initial-value problems for both the acoustic
(3.4) and Stokes (3.10) limits can be put into the general form

(4.1) τε∂t Gε + v · ∇xGε = 1

ε
Q(Gε,Gε) , Gε(v, x,0) = Gin

ε (v, x) ,

where 1/τε is the time scale being considered. One setsτε = 1 for the acoustic
limit and τε = ε for the Stokes limit.

4.1 Global Solutions

DiPerna and Lions [15] proved the global existence of a type of weak solution
to the Boltzmann equation over the whole spaceR

D for any initial data satisfying
natural physical bounds. As they pointed out, with only slight modifications their
theory can be extended to the periodic boxT

D.

The DiPerna-Lions theory does not yield solutions that are known to solve the
Boltzmann in the usual weak sense. Rather, it gives the existence of a global
weak solution to a class of formally equivalent initial-value problems that are
obtained by dividing the Boltzmann equation in (4.1) by normalizing functions
N = N(G) > 0:

(4.2) (τε∂t + v · ∇x)0(G) = 1

ε

Q(G,G)
N(G)

, G(v, x,0) = Gin(v, x) ≥ 0 ,

where0′(Z) = 1
N (Z). Here each normalizing functionN is a positive-valued,

continuous function over[0,∞) that for some constantCN < ∞ satisfies the
bound

(4.3)
1

N(Z)
≤ CN

1 + Z
for everyZ ≥ 0 .

Their solutions lie inC([0,∞);w-L1(M dv dx)), where the prefix “w-” on a space
indicates that the space is endowed with its weak topology. They say thatG ≥ 0 is
a weak solution of (4.2) provided that it is initially equal toGin, and that it satisfies
(4.2) in the sense that for everyY ∈ L∞(dv; C1(TD)) and every[t1, t2] ⊂ [0,∞)
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it satisfies

(4.4) τε

∫
TD

〈0(G(t2))Y〉dx − τε

∫
TD

〈0(G(t1))Y〉dx −
∫ t2

t1

∫
TD

〈0(G)v · ∇xY〉dx dt

= 1

ε

∫ t2

t1

∫
TD

〈Q(G,G)
N(G)

Y

〉
dx dt .

They show that ifG is a weak solution of (4.2) for one suchN, and if G satisfies
certain bounds, then it is a weak solution of (4.2) for every suchN. They call such
solutionsrenormalized solutionsof the Boltzmann equation (2.8).

Specifically, cast in our setting, their theory yields the following:

PROPOSITION4.1 (DiPerna-Lions Renormalized Solutions)Let b satisfy condition
(2.5). Given any initial data Gin in the entropy class

(4.5) E(M dv dx) = {Gin ≥ 0 : H(Gin) < ∞} ,
there exists at least one G≥ 0 in C([0,∞);w-L1(M dv dx)) that is a weak so-
lution of (4.2) for every normalizing function N. Moreover, G satisfies the global
entropy inequality

(4.6) H(G(t))+ 1

ετε

∫ t

0
R(G(s))ds ≤ H(Gin) ,

a weak form of the local conservation law of mass

(4.7) τε∂t〈G〉 + ∇x · 〈vG〉 = 0 ,

the global conservation law of momentum

(4.8)
∫

TD

〈vG(t)〉dx =
∫

TD

〈vGin〉dx ,

and, finally, the global energy inequality

(4.9)
∫

TD

〈
1

2
|v|2G(t)

〉
dx ≤

∫
TD

〈
1

2
|v|2Gin

〉
dx .

DiPerna-Lions renormalized solutions are not known to satisfy many proper-
ties that one would formally expect to be satisfied by solutions of the Boltzmann
equation. In particular, the theory does not assert either the local conservation
of momentum in (2.16), the global conservation of energy in (2.17), the global
entropy equality (2.19), or even a local entropy inequality; nor does it assert the
uniqueness of the solution. Nevertheless, as stated here, it provides enough control
to establish the Stokes limit. Specifically, we do not need the strengthening of the
theory recently given by Lions and Masmoudi in [22].
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4.2 Fluctuations

In order to derive fluid dynamical equations from the Boltzmann equation for
regimes near an absolute Maxwellian, be they the acoustic, Stokes, or incompress-
ible Navier-Stokes equations, one needs a proper setting in which these limits hold.
While L2-based spaces are natural for these fluid equations, natural settings for the
Boltzmann equation areL log(L) spaces. These different types of spaces were
reconciled in the limit of small fluctuations about an absolute Maxwellian in [3].

We will consider familiesGε of DiPerna-Lions renormalized solutions to (4.1)
such thatGin

ε ≥ 0 satisfies the entropy bound

(4.10) H(Gin
ε ) ≤ Cinδ2

ε

for someCin < ∞ andδε > 0 that satisfies the scaling (3.2). For this scaling the
DiPerna-Lions entropy inequality (4.6) becomes

(4.11) H(Gε(t))+ 1

η2
ε

∫ t

0
R(Gε(s))ds ≤ H(Gin

ε ) ≤ Cinδ2
ε ,

whereη2
ε = ετε. One hasηε = ε1/2 for the acoustic limit andηε = ε for the Stokes

limit. We will therefore assume thatηε satisfiesε ≤ ηε ≤ ε1/2.
The relative entropy functionalH given by (2.20) has an integrand that is a

nonnegative strictly convex function ofG with a minimum value of 0 atG = 1.
Thus for anyG,

(4.12) H(G) ≥ 0 and H(G) = 0 if and only if G = 1 .

It thereby provides a natural measure of the proximity ofG to that equilibrium. We
therefore consider the familiesgin

ε andgε of fluctuations aboutG = 1 defined by
the relations

(4.13) Gin
ε = 1 + δεg

in
ε , Gε = 1 + δεgε .

One easily sees thatH asymptotically behaves like half the square of theL2-norm
of these fluctuations asε → 0. Hence, (4.11) is consistent with these fluctuations
being of order 1. Just as the relative entropyH controls the fluctuationsgε , the dis-
sipation rateR given by (2.21) controls the scaled collision integrands defined by

(4.14) qε = 1

ηεδε

(
G′
ε1G′

ε − Gε1Gε

)
.

Once again, (4.11) is consistent with these scaled integrands being of order 1. The
following shows more.

LEMMA 4.2 (Fluctuations Lemma)Let δε > 0 vanish withε as(3.2). Let Gε ≥ 0
be a family of functions in C([0,∞);w-L1(M dv dx)) that satisfies the entropy
bound (4.11) with Gin

ε = Gε(0). Let gin
ε , gε , and qε be given by(4.13)–(4.14).

Define

(4.15) Nε = 2

3
+ 1

3
Gε = 1 + 1

3
δεgε .
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Then, adopting the notationσ = 1 + |v|2, we have the following:

(i) The family gε is bounded in L∞(dt; L1(σM dv dx)), relatively compact in
w-L1

loc(dt;w-L1(σM dv dx)), and relatively compact inw-L1(σM dv dx) point-
wise in t for each t≥ 0.

(ii) The family qε/Nε is relatively compact inw-L1
loc(dt;w-L1(σdµ dx)).

(iii) If gin is aw-L1(σM dv dx) limit point of the family ginε as ε → 0, then
gin ∈ L2(M dv dx), and one has

(4.16)
1

2

∫
TD

〈gin 2〉dx ≤ lim inf
ε→0

1

δ2
ε

H(Gin
ε ) ≤ Cin .

(iv) If g is aw-L1
loc(dt;w-L1(σM dv dx)) limit point of the family gε and q

is jointly aw-L1
loc(dt;w-L1(σdµ dx)) limit point of the family qε/Nε asε → 0,

then g∈ L∞(dt; L2(M dv dx)), q ∈ L2(dµ dx dt), and q inherits the symmetries
of qε . Moreover, for almost every t≥ 0 one has

(4.17)
1

2

∫
TD

〈g(t)2〉dx ≤ lim inf
ε→0

1

δ2
ε

H(Gε(t)) ,

while for every t≥ 0 one has

(4.18)
1

4

∫ t

0

∫
TD

〈〈q(s)2〉〉dx ds≤ lim inf
ε→0

1

η2
εδ

2
ε

∫ t

0
R(Gε(s)) ds.

(v) The family gε satisfies the nonlinear estimates

(4.19)
∫

TD

〈
g2
ε

Nε

〉
(t)dx ≤ 2Cin for every t≥ 0 ,

(4.20) σ
g2
ε

Nε

= O(|log(δε)|) in L∞(dt; L1(M dv dx)) asε → 0 .

(vi) Let g be as in(iv); then g has the form of an infinitesimal Maxwellian,

(4.21) g = ρ + u · v + θ

(
1

2
|v|2 − D

2

)

for some(ρ,u, θ) ∈ L∞(dt; L2(dx; R × R
D × R).

Assertion (i) is essentially proposition 3.1(1) of [3]. Assertion (ii) is proposi-
tion 3.4(1) of [3]. Assertion (iii) is essentially contained in proposition 3.1(2) of
[3]. Assertion (iv) consolidates proposition 3.1(2) and proposition 3.4(2) of [3].
Assertion (v) consolidates proposition 3.2(3) and proposition 3.3 of [3]. Estimate
(4.20) is the key nonlinear estimate from [3]. Assertion (vi) is proposition 3.8 of
[3]. It is a consequence of assertions (i), (ii), and (v).

It should be noted that in this propositionGε is only required to satisfy the
entropy bound (4.11), whileδε is only required to satisfy (3.2),δε → 0 asε → 0,
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which is minimal. In particular,Gε is not required to solve the Boltzmann equation
in any sense.

This result shows that the initial entropy bound (4.10) onGin
ε provides a no-

tion of smallness that insures the family of fluctuationsgε will have limit pointsg,
and that these limit points will be inL∞(dt; L2(M dv dx)), both of which were as-
sumed in the formal theorems. It shows moreover that the entropy inequality (4.11)
is enough to conclude that every limit point must be an infinitesimal Maxwellian,
which was the conclusion of the first step in the proof of each formal theorem. We
therefore employ this notion of smallness in the results below.

5 The Weak Limit Theorems

In striving to mathematically justify any fluid dynamical limit, the goal should
be to obtain results that reflect the best physical understanding of the problem. In
the context of justifying the Stokes and acoustic limits, we take the formal theorems
of Section 3 as our best physical understanding of the problem. Their proofs simply
make more precise the traditional balance arguments of kinetic theory, which date
to Maxwell [23]. Our goal is therefore to remove as many assumptions as possible
from these formal theorems while leaving their conclusions unchanged for as large
a class of solutions as physics allows. More specifically, our goals are to

• work within the class of DiPerna-Lions renormalized solutions,
• use only global bounds on fluctuations in terms of the relative entropyH

andδε ,
• make the requirements on howδε scales withε as close as possible to those

required by the formal theorems,
• eliminate all the assumptions labeled (i) and (ii) in the formal theorems,

and
• minimize any assumptions on the collision kernelb beyond those required

for the DiPerna-Lions theory and those required by the formal theorems.

With these goals in mind, we now state our main results precisely.

5.1 Weak Stokes Limit Theorem

We state our main result for the Stokes limit first, because it comes closest to
what is expected from the corresponding formal result, Proposition 3.2. Its proof
will be given in Section 8.2.

THEOREM 5.1 (Weak Stokes Limit Theorem)Let b be a collision kernel that sat-
isfies conditions(2.5)–(2.6)and for whichL satisfies the coercivity estimate(3.21)
and the domain condition

(5.1) Dom(L) ⊂ {
ξ ∈ L2(M dv) : 〈〈ξ2〉〉 < ∞}

.

Let Gin
ε be a family in the entropy class E(M dv dx) that satisfies the normal-

izations(2.12)and the entropy bound(4.10) for some Cin < ∞ and δε > 0 that
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scales withε as

(5.2) δε → 0 and
δε

ε
|log(δε)|β → 0 asε → 0

for theβ that arises in condition(2.6).
Assume, moreover, that for some(uin, θ in) ∈ L2(dx; R

D × R) the family of
initial fluctuations ginε given by(4.13)satisfies

(5.3) (uin, θ in) = lim
ε→0

(
5〈vgin

ε 〉,
〈(

1

D + 2
|v|2 − 1

)
gin
ε

〉)

in the sense of distributions, where5 is the orthogonal projection from L2(dx; R
D)

onto divergence-free vector fields.
Let Gε be any family of DiPerna-Lions renormalized solutions of the Boltzmann

equation(3.10) that have Gin
ε as initial values. Then, asε → 0, the family of

fluctuations gε given by(4.13)satisfies

gε → u · v + θ

(
1

2
|v|2 − D + 2

2

)
in w-L1

loc(dt;w-L1(σM dv dx)) ,(5.4)

1

ε
P⊥gε → −∇xu : φ − ∇xθ · ψ in w-L1

loc(dt;w-L1(σM dv dx)) ,(5.5)

where(u, θ) ∈ C([0,∞); L2(dx; R
D × R)) is the unique solution of the Stokes

system(1.1)–(1.2) with ν and κ given by(3.24) and with initial data (uin, θ in)

obtained from(5.3). In addition, one has that

5〈vgε〉 → u in C([0,∞);D′(TD; R
D)) ,〈(

1

D + 2
|v|2 − 1

)
gε

〉
→ θ in C([0,∞);w-L1(dx; R)) ,

(5.6)

and that(u, θ) satisfies

(5.7)
∫

TD

u dx = 0 ,
∫

TD

θ dx = 0 .

This result improves upon earlier Stokes limit results in three ways. First, it
establishes the heat equation. No earlier work had done this because of difficulties
that arise in controlling the heat flux and in proving that local energy conservation
holds in the limit. Only the results in [5] and [21] established the motion equation
without assuming the local momentum conservation law is satisfied by DiPerna-
Lions solutions.

Second, its scaling assumption (5.2) is better. The scaling assumption in [5] is
essentially

δε → 0 and
δε

ε2
|log(δε)| → 0 as ε → 0 ,

which differs from (5.2) by at least a factor ofε. The assumption in [21] is essen-
tially (5.2) but withβ = 1.



358 F. GOLSE AND C. D. LEVERMORE

Third, this result places conditions onb that are both weaker and more natu-
ral than those in [5] and [21]. The result in [5] assumedb was bounded, which
excludes all the classical collision kernels except the one for Maxwell molecules.
The result in [21] assumed the conditions introduced in [3]. These are extremely
complicated and are not easy to verify for any classical collision kernel save the
one for Maxwell molecules.

The assumptions made by this result differ from those made by the formal result
(Proposition 3.2) in a number of ways. Here we make three additional assumptions
regarding the collision kernelb, namely, that it satisfies the DiPerna-Lions condi-
tion (2.5), that it satisfies the bound (2.6), and that Dom(L) satisfies (5.1). These
are all natural assumptions in that they are satisfied for classical hard potentials
with a small deflection cutoff. The assumed bound (2.6) and the assumed coerciv-
ity estimate (3.21) are technical in nature and can be weakened at the expense of
giving up some of the theorem’s conclusions.

A more significant difference is that here the scaling assumption (5.2) onδε is
generally more restrictive than the one in the formal result (3.11). However, it is
not much more restrictive. Indeed, whenδε = εm they both require the same thing,
namely, thatm > 1. In this sense, assumption (5.2) is essentially optimal. Of
course, assumptions (3.11) and (5.2) become identical whenβ = 0, which is the
case for Maxwell molecules. The difference between the two assumptions when
β > 0 is important, however, because it reflects technical difficulties that likely
must be overcome in any complete result for the incompressible Navier-Stokes
scaling.

Of course, the biggest difference between this result and the formal result is
the absence of any assumptions here regarding either the convergence or the com-
pactness of the family of fluctuationsgε . The only convergence assumption made
here is that the family of initial fluctuationsgin

ε satisfies (5.3) in the sense of dis-
tributions. By assertions (i) and (iii) of the fluctuations lemma (Proposition 4.2),
we may always pass to a subfamily ofgin

ε that satisfies this assumption. The ques-
tion of exactly what(uin, θ in) can be realized as a limit (5.3) will be addressed in
Section 6.

Finally, we remark that the limits asserted in (5.4)–(5.5) capture the first and
second nontrivial terms in the Chapman-Enskog expansion. What makes it re-
markable is the fact that the first limit need not be strong before obtaining the
second. Conditions under which both these become strong limits will be given in
Section 6.1.

5.2 Weak Acoustic Limit Theorem

We now state our main result for the acoustic limit. It does not come as close to
what one expects from its corresponding formal result, Theorem 3.1, as our main
result for the Stokes limit did. But it is far better in this regard than our previous
result [5]. Its proof will be given in Section 7.1.
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THEOREM 5.2 (Weak Acoustic Limit Theorem)Let b be a collision kernel that
satisfies the conditions(2.5)–(2.6).

Let Gin
ε be a family in the entropy class E(M dv dx) that satisfies the normal-

izations(2.12)and the entropy bound(4.10) for some Cin < ∞ and δε > 0 that
satisfies

(5.8) δε → 0 and
δε

ε1/2
|log(δε)|β/2 → 0 asε → 0

for theβ that arises in condition(2.6).
Assume, moreover, that for some(ρ in,uin, θ in) ∈ L2(dx; R × R

D × R) the
family of fluctuations ginε given by(4.13)satisfies

(5.9) (ρ in,uin, θ in) = lim
ε→0

(
〈gin
ε 〉, 〈vgin

ε 〉,
〈(

1

D
|v|2 − 1

)
gin
ε

〉)

in the sense of distributions.
Let Gε be any family of DiPerna-Lions renormalized solutions of the Boltzmann

equation(3.4) that have Gin
ε as initial values.

Then, asε → 0, the family of fluctuations gε given by(4.13)satisfies

(5.10) gε → ρ + u · v + θ

(
1

2
|v|2 − D

2

)
in w-L1

loc(dt;w-L1(σM dv dx)) ,

where(ρ,u, θ) ∈ C([0,∞); L2(dx; R × R
D × R)) is the unique solution of the

acoustic system(1.3) with initial data (ρ in,uin, θ in) obtained from(5.9). In addi-
tion, one has that

(5.11)

(
〈gε〉, 〈vgε〉,

〈(
1

D
|v|2 − 1

)
gε

〉)
→ (ρ,u, θ)

in C([0,∞);w-L1(dx; R × R
D × R)) and that(ρ,u, θ) satisfies

(5.12)
∫

TD

ρ dx = 0 ,
∫

TD

u dx = 0 ,
∫

TD

θ dx = 0 .

This result improves upon the acoustic limit result in [5] in two ways. First, its
scaling assumption (5.8) is much better. The scaling assumption in [5] is essentially

δε → 0 and
δε

ε
|log(δε)| → 0 asε → 0 ,

which differs from (5.8) by at least a factor ofε1/2. Second, it places conditions on
b that are far weaker. The result in [5] assumedb was bounded, which excludes all
the classical collision kernels except the one for Maxwell molecules.

The assumptions made by this result differ from those made by the formal re-
sult (Proposition 3.1) in several ways. Here we assume that the collision kernelb
satisfies conditions (2.5)–(2.6). These assumptions are satisfied for classical hard
potentials with a small deflection cutoff. The assumed bound (2.6) is technical in
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nature and can be weakened to embrace the classical soft potentials without giving
up any of the theorem’s conclusions.

One very big difference is that here the scaling assumption (5.8) onδε is far
from the one in the formal result (3.2). Whenδε = εm, it requires thatm >
1
2, whereas the formal one requiresm > 0. This more restrictive requirement
arises from the way in which we remove the local conservation law defects of
the DiPerna-Lions solutions. This rather significant gap must be bridged before
one can hope to fully establish the compressible Euler limit and may have to be
bridged before the incompressible Euler limit is fully established.

Another big difference between this result and the formal result is the absence
of any assumptions here regarding either the convergence or the compactness of
the family of fluctuationsgε . The only convergence assumption made here is that
the family of initial fluctuationsgin

ε satisfies (5.9) in the sense of distributions. By
assertions (i) and (iii) of the fluctuations lemma (Proposition 4.2), we may always
pass to a subfamily ofgin

ε that satisfies this assumption. The question of exactly
what(ρ in,uin, θ in) can be realized as a limit (5.9) will be addressed in Section 6.

6 The Strong Limit Theorems

In earlier studies the notion ofentropic convergence, first introduced in [3],
was used as a natural tool for obtaining strong convergence results for fluctuations
about an absolute Maxwellian [4, 5, 10, 20, 21, 22]. With it, the entropy inequality
can be used not only to produce bounds on the fluctuations but also to measure the
distance of the fluctuations from their asymptotic state. It plays a similar role here
for the Stokes and acoustic limits.

DEFINITION 6.1 LetGε ≥ 0 be a family inL1(M dv dx) and letgε be the corre-
sponding fluctuations as in (3.1). The familygε is said toconverge entropically of
order δε to g ∈ L2(M dv dx) if and only if

(6.1) gε → g in w-L1(M dv dx) and lim
ε→0

1

δ2
ε

H(Gε) =
∫

TD

1

2
〈g2〉dx .

It is clear that ifgε converges entropically of orderδε , thenGε satisfies the en-
tropy boundH(Gε) = O(δ2

ε ). This definition requires that the bound asserted by
Proposition 4.2 on theL2-norm ofg by a lim inf be sharpened to an equality with a
limit. It was shown in proposition 4.11 of [3] that entropic convergence is stronger
than norm convergence inL1(σM dv dx). It was shown in proposition 3.4 of [5]
that given anyδε > 0 that satisfies (3.2) and any(ρ,u, θ) ∈ L2(dx; R × R

D × R)

that satisfies the normalizations (5.12), the associated infinitesimal Maxwellian
(3.7) has families of fluctuationsgε that converge to it entropically of orderδε .
In particular, everyL2 initial data for either the Stokes or acoustic system can be
realized as a limit (even a strong limit) as in (5.3) or (5.9), respectively.



STOKES-FOURIER AND ACOUSTIC LIMITS 361

Loosely stated, the results of this section are the following: Given anyL2 ini-
tial data for either the Stokes or acoustic system and any sequence of DiPerna-
Lions solutions whose initial fluctuations converge entropically to the infinitesimal
Maxwellian associated with theL2 fluid initial data, we prove that at every positive
time the fluctuations of the DiPerna-Lions solutions converge entropically to the
infinitesimal Maxwellian associated with the uniqueL2 solution of the fluid sys-
tem. The key points are that the limit of the DiPerna-Lions Boltzmann dynamics
mapsontotheL2 fluid dynamics and that the limit is strong.

6.1 Strong Stokes Limit Theorem
In parallel with the last section, we state our result for the Stokes limit first. It

turns the weak limits asserted by Theorem 5.1 into strong limits by simply assum-
ing that the initial fluctuations converge entropically to an appropriate infinitesimal
Maxwellian. Its proof will be given in Section 8.3.

THEOREM 6.2 (Strong Stokes Limit Theorem)Let b andδε be as in Theorem5.1.
Given any(uin, θ in) in L2(dx; R

D × R) that satisfies

∇x · uin = 0 ,
∫

TD

uin dx = 0 ,
∫

TD

θ in dx = 0 .

Let Gin
ε be any family in the entropy class E(M dv dx) that satisfies the normal-

izations(2.12)and whose family of fluctuations gin
ε converge entropically of order

δε asε → 0 to the infinitesimal Maxwellian

gin = uin · v + θ in

(
1

2
|v|2 − D + 2

2

)
.

Let Gε be any family of DiPerna-Lions renormalized solutions of the Boltzmann
equation(3.10) that have Gin

ε as initial values. Then, asε → 0, the family of
fluctuations gε given by(4.13)satisfies

gε(t) → u(t) · v + θ(t)

(
1

2
|v|2 − D + 2

2

)
entropically of orderδε(6.2)

for every t≥ 0 ,

gε → u · v + θ

(
1

2
|v|2 − D + 2

2

)
in L1

loc(dt; L1(σM dv dx)) ,(6.3)

qε
Nε

→ 1

2

(∇xu + (∇xu)T
) : 8+ ∇xθ ·9 in L1

loc(dt; L1(σ dµ dx)) ,(6.4)

where(u, θ) ∈ C([0,∞); L2(dx; R
D × R)) is the unique solution of the Stokes

system(1.1)–(1.2)with ν andκ given by(3.24)and initial data(uin, θ in).

This result shows that every physically natural solution of the Stokes system
is a strong limit of renormalized solutions of the Boltzmann equation. In contrast
with earlier results [3, 4, 22], it asserts entropic convergence everywhere in time
rather than almost everywhere.
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6.2 Strong Acoustic Limit Theorem
We now state the corresponding result for the acoustic limit. It turns the weak

limits asserted by the weak acoustic limit theorem, Proposition 5.2, into strong
limits by simply assuming that the initial fluctuations converge entropically to an
appropriate infinitesimal Maxwellian. Its proof will be given in Section 7.2.

THEOREM 6.3 (Strong Acoustic Limit Theorem)Let b andδε be as in Theo-
rem5.2. Given any(ρ in,uin, θ in) ∈ L2(dx; R × R

D × R) that satisfies∫
TD

ρ in dx = 0 ,
∫

TD

uin dx = 0 ,
∫

TD

θ in dx = 0 .

Let Gin
ε be any family in the entropy class E(M dv dx) that satisfies the normal-

izations(2.12)and whose family of fluctuations gin
ε converge entropically of order

δε asε → 0 to the infinitesimal Maxwellian

gin = ρ in + uin · v + θ in

(
1

2
|v|2 − D

2

)
.

Let Gε be any family of DiPerna-Lions renormalized solutions of the Boltzmann
equation(3.4) that have Gin

ε as initial values. Then, asε → 0, the family of
fluctuations gε given by(4.13)satisfies

gε(t) → ρ(t)+ u(t) · v + θ(t)

(
1

2
|v|2 − D

2

)
entropically of orderδε(6.5)

for every t≥ 0 ,

gε → ρ + u · v + θ

(
1

2
|v|2 − D

2

)
in L1

loc(dt; L1(σM dv dx)) ,(6.6)

where(ρ,u, θ) ∈ C([0,∞); L2(dx; R × R
D × R)) is the solution of the acoustic

system with initial data(ρ in,uin, θ in).

Analogous to the corresponding Stokes result, this result shows that every phys-
ically natural solution of the acoustic system is a strong limit of renormalized
solutions of the Boltzmann equation. This fact is perhaps more striking in this
setting because physically natural solutions of the acoustic system are generally
quite weak, being an orbit of a strongly continuous unitary group overL2(dx; R ×
R

D × R). Also like the Stokes result, one way it improves upon the earlier result
in [4, 5] is by asserting entropic convergence everywhere in time rather than just
almost everywhere.

7 Establishing the Acoustic Limit

Here we give proofs of both the weak and strong theorems for the acoustic limit
that were stated in the previous two sections. We give these proofs first because
they are more straightforward than those of any theorem leading to an incompress-
ible model such as the Stokes system.
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7.1 Proof of the Weak Acoustic Limit Theorem

Our proof of the weak acoustic limit Theorem 5.2 closely follows that of the
formal acoustic limit Theorem 3.1. That proof has two steps: (1) showing that
limiting fluctuations are infinitesimal Maxwellians and (2) passing to the limit in
the local conservation laws. The analogue of the first step has essentially already
been realized by assertion (vi) of the fluctuations lemma, Lemma 4.2.

The analogue of the second step is not as easy to realize because DiPerna-Lions
solutions are not known to satisfy the momentum and energy local conservation
laws. We therefore have to recover these local conservation laws in the limit. This
is done by taking the velocity moments of the renormalized Boltzmann equation
with respect tov and|v|2 and showing that the resulting conservation defects vanish
asε → 0. This is the same basic strategy that we used in our previous work [5],
except that the means by which we assert that the conservation defects vanish are
based on the entropy dissipation rate control in the present paper, while only the
energy and entropy control were used in [5].

Framework for the Proof

For the acoustic limit one considers the Boltzmann equation (4.1) withτε = 1.
One then has thatηε = ε1/2, whereby the fluctuationsgε andqε given by (4.13)–
(4.14) are

(7.1) gε = Gε − 1

δε
and qε = G′

ε1G′
ε − Gε1Gε

ε1/2δε
.

By assertion (i) of the fluctuations lemma, the familygε is relatively compact in
w-L1

loc(dt;w-L1(σM dv dx)). We will show that the familygε is convergent by
showing that all of its subsequences converge to the same limit point.

Consider any subsequence of the familygε , still abusively denotedgε . It will
also be relatively compact inw-L1

loc(dt;w-L1(σM dv dx)). We will show that this
sequence is convergent by showing that it has a unique limit point. Indeed, letg be
anyw-L1

loc(dt;w-L1(σM dv dx)) limit point of the sequencegε . Assertion (vi) of
the fluctuations lemma states thatg is an infinitesimal Maxwellian given by (4.21)
for some(ρ,u, θ) that belongs toL∞(dt; L2(dx; R × R

D × R)). By passing to
the limit in the renormalized Boltzmann equation, we will show that(ρ,u, θ)must
be a weak solution of the acoustic system (1.3) with initial data(ρ in,uin, θ in) that
is uniquely obtained from (5.9). Such weak solutions of the acoustic system are
in C([0,∞); L2(dx; R × R

D × R)). Moreover, they are uniquely determined by
their initial data. The limiting infinitesimal Maxwelliang is thereby uniquely de-
termined. However,g was an arbitraryw-L1

loc(dt;w-L1(σM dv dx)) limit point
of an arbitrary subsequence of the original familygε . We can then conclude that
the original familygε converges tog in w-L1

loc(dt;w-L1(σM dv dx)) asε → 0,
which would establish (5.10).
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Approximate Local Conservation Laws

All that remains to be done to establish (5.10) is to show that(ρ,u, θ) is the
aforementioned weak solution of the acoustic system by passing to the limit in ap-
proximate local conservation laws built from the renormalized Boltzmann equation
(4.2). We choose to use the normalization of that equation given by

(7.2) 0(Z) = 3 log

(
2

3
+ 1

3
Z

)
, N(Z) = 2

3
+ 1

3
Z .

After settingτε = 1 and dividing byδε , equation (4.2) becomes

(7.3) ∂tγε + v · ∇xγε = 1

ε1/2

∫∫
qε
Nε

b(ω, v1 − v)dω M1 dv1

where

(7.4) γε = 3

δε
log

(
1 + 1

3
δεgε

)
, Nε = 1 + 1

3
δεgε .

When the moment of the renormalized Boltzmann equation (7.3) is formally taken
with respect to anyζ ∈ Span{1, v1, . . . , vD , |v|2}, one obtains

(7.5) ∂t〈ζγε〉 + ∇x · 〈vζγε〉 = 1

ε1/2

〈〈
ζ

qε
Nε

〉〉
.

This fails to be a local conservation law because the so-called conservation
defect on the right-hand side is generally nonzero. The idea of the proof is to show
that asε → 0 this conservation defect vanishes, while the left-hand side converges
to the left-hand side of the local conservation law corresponding toζ .

It can be shown from (4.4) that every DiPerna-Lions solution of (7.3) satisfies
(7.5) in the sense that for everyχ ∈ C1(TD) and every[t1, t2] ⊂ [0,∞) it satisfies

(7.6)
∫
χ〈ζγε(t2)〉dx −

∫
χ〈ζγε(t1)〉dx =

∫ t2

t1

∫
∇xχ · 〈vζγε〉dx dt+

∫ t2

t1

∫
χ

1

ε1/2

〈〈
ζ

qε
Nε

〉〉
dx dt .

We analyze this equation term-by-term before passing to the limit.

Removal of the Conservation Defect

The fact that the conservation defect term on the right-hand side of (7.6) van-
ishes asε → 0 follows from the scaling assumption (5.8), the factχ is bounded,
the factζ is a collision invariant, and the key new estimate

(7.7)
1

ε1/2

〈〈
ζ

qε
Nε

〉〉
= O

(
δε|log(δε)|β/2

ε1/2

)
+ O(δε|log(δε)|)

in L1
loc(dt; L1(dx)) asε → 0. Given this estimate, the argument is as follows: The

scaling assumption (5.8) directly implies that the first term on the right-hand side
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of (7.7) vanishes asε → 0. The second term also manifestly vanishes asε → 0.
Therefore, becauseχ is bounded inL∞, one sees that

(7.8)

∣∣∣∣
∫ t2

t1

∫
χ

1

ε1/2

〈〈
ζ

qε
Nε

〉〉
dx dt

∣∣∣∣ ≤ ‖χ‖L∞

∫ t2

t1

∫ ∣∣∣∣ 1

ε1/2

〈〈
ζ

qε
Nε

〉〉∣∣∣∣dx dt → 0

asε → 0. All that remains is to establish estimate (7.7); but this follows from the
conservation defect Theorem 9.1.

Control of the Flux Term

The flux term on the right-hand side of (7.6) contains the sequence〈vζγε〉. To
control this term, first observe that when one setsz = 1

3δεgε in the elementary
inequality

(log(1 + z))2 ≤ z2

1 + z
for everyz> −1 ,

one obtainsγ 2
ε ≤ g2

ε /Nε . The nonlinear bound (4.19) of Proposition 4.2 then
shows that the sequenceγε is bounded inL∞(dt; L2(M dv dx)) with∫

〈γ 2
ε (t)〉dx ≤ 2Cin for everyt ≥ 0 .

Because the sequenceγε is bounded inL∞(dt; L2(M dv dx)) andvζ ∈ L2(M dv),
the sequence

(7.9) 〈vζγε〉 is relatively compact inw-L1
loc(dt;w-L2(dx)) .

Control of the Density Terms

The density terms on the left-hand side of (7.6) contain the sequence〈ζγε〉. We
use the Arzela-Ascoli theorem to establish that this sequence is relatively compact
in C([0,∞);w-L2(dx)).

First, because the weak form of (7.3) implies that the time-dependent function

t 7→
∫

〈Yγε(t)〉dx is continuous for everyY ∈ L∞(M dv; C1(TD)) ,

the above bound and a standard density argument then imply that the sequenceγε is
bounded inC([0,∞);w-L2(M dv dx)). The sequence〈ζγε〉 is therefore bounded
in C([0,∞);w-L2(dx)) because the sequenceγε is bounded in

C([0,∞);w-L2(M dv dx)) and ζ ∈ L2(M dv) .

In particular, this implies that the sequence〈ζγε〉 is equibounded.
Next, observe that the sequence〈ζγε〉 is also equicontinuous because the first

term on the right-hand side of (7.6) can be bounded as∣∣∣∣
∫ t2

t1

∫
∇xχ · 〈vζγε〉dx dt

∣∣∣∣ ≤ ‖∇xχ‖L∞
(〈|v|2ζ 2〉2Cin

)1/2|t2 − t1| ,



366 F. GOLSE AND C. D. LEVERMORE

while the second term vanishes by (7.8). The Arzela-Ascoli theorem then implies
the sequence

(7.10) 〈ζγε〉 is relatively compact inC([0,∞);w-L2(dx)).

Passing to the Limit

Lemma 4.2(i) allows us to pass to a subsequence of the sequencegε , still abu-
sively denotedgε , such that asε → 0

(7.11) gε → g in w-L1
loc(dt;w-L1(σM dv dx)) .

Now consider the associated subsequenceγε . Observe that when one setsz =
1
3δεgε in the elementary inequalities

0 ≤ z − log(1 + z) ≤ z2

1 + z
for everyz> −1 ,

one obtains

0 ≤ gε − γε ≤ 1

3
δε

g2
ε

Nε

.

The nonlinear estimate (4.20) of Lemma 4.2 then shows that

(7.12) gε − γε → 0 in L∞(dt; L1(σM dv dx)) asε → 0 .

This limit and assertion (iv) of Lemma 4.2 imply that asε → 0

(7.13) γε → g in w-L1
loc(dt;w-L2(M dv dx)) .

Then (7.9) and (7.10) imply that asε → 0

(7.14)
〈vζγε〉 → 〈vζg〉 in w-L1

loc(dt;w-L2(dx)) ,

〈ζγε〉 → 〈ζg〉 in C([0,∞);w-L2(dx)) .

Moreover, because the initial fluctuationsgin
ε satisfy (5.9), one sees from (7.12)

that

(7.15)

(
〈γ in
ε 〉, 〈vγ in

ε 〉,
〈(

1

D
|v|2 − 1

)
γ in
ε

〉)
→ (ρ in,uin, θ in)

in w-L2(dx) asε → 0, where we defineγ in
ε = γε(0).

Now taking limits in (7.6) asε → 0 leads to

(7.16)
∫
χ〈ζg(t2)〉dx −

∫
χ〈ζg(t1)〉dx =

∫ t2

t1

∫
∇xχ · 〈vζg〉dx dt,

which is the weak form of the local conservation law

∂t〈ζg〉 + ∇x · 〈vζg〉 = 0 .

When one setsζ = 1, v1, . . . , vD and (1
2|v|2 − D

2 ) into this equation and uses
the infinitesimal Maxwellian form ofg given by (4.21), the resulting system for
(ρ,u, θ) coincides with the acoustic system (1.3) with initial data(ρ in,uin, θ in)

given by (5.9). This establishes (5.10).
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When one then setsζ = 1, v1, . . . , vD and( 1
D |v|2 − 1) into the second line of

(7.13) and combines it with (7.12), the limits (5.11) follow.

Finally, by settingχ ≡ 1 andt1 = 0 in (7.16) withζ = 1, v1, . . . , vD , and
( 1

D |v|2 − 1), one sees that for everyt ≥ 0

∫
〈ζg(t)〉dx =

∫
〈ζg(0)〉dx = 0 ,

because of the normalizations (2.12). This establishes (5.12) and concludes the
proof.

7.2 Proof of the Strong Acoustic Limit Theorem

The fact thatgin
ε → gin entropically of orderδε as ε → 0 implies thatgin

ε

satisfies (5.9). The weak acoustic limit theorem therefore implies that the family
gε , which is contained inC([0,∞);w-L1(M dv dx)), converges in the topology
ofw-L1

loc(dt;w-L1(σM dv dx)) to the infinitesimal Maxwelliang given by (5.10),
which belongs toC([0,∞); L2(M dv dx)). The definition of entropic convergence
(6.1) requires us to show that for everyt > 0 one has

(7.17) gε(t) → g(t) in w-L1(M dv dx) asε → 0

and

(7.18) lim
ε→0

1

δ2
ε

H(Gε(t)) =
∫

TD

1

2
〈g(t)2〉 dx .

This is done by a squeezing argument.

First, because(ρ,u, θ) is the weak solution of the Cauchy problem for the
acoustic system (1.3) with initial data(ρ in,uin, θ in), it satisfies the energy equality

∫
TD

(
ρ(t)2 + |u(t)|2 + D

2
θ(t)2

)
dx =

∫
TD

(
ρ in 2 + |uin|2 + D

2
θ in 2

)
dx .

Upon taking limits in the entropy inequality (4.11), using the assumed entropic
convergence of the initial data, and employing the above energy equality, for every
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t > 0 one is led to

(7.19)

lim sup
ε→0

1

δ2
ε

H(Gε(t)) ≤ lim
ε→0

1

δ2
ε

H(Gin
ε )

= 1

2

∫
TD

〈gin 2〉dx

= 1

2

∫
TD

(
ρ in 2 + |uin|2 + D

2
θ in 2

)
dx

= 1

2

∫
TD

(
ρ(t)2 + |u(t)|2 + D

2
θ(t)2

)
dx

= 1

2

∫
TD

〈g(t)2〉dx .

This inequality gives one direction of the equality (7.18).
Next, observe that (5.11) of the weak acoustic Theorem 5.2 states that for every

ζ ∈ Span{1, v1, . . . , vD , |v|2} one has

〈ζγε〉 → 〈ζg〉 in C([0,∞);w-L2(dx)) asε → 0 .

Let P be the orthogonal projection fromL2(M dv) onto Null(L); the above con-
vergence statement actually says that

(7.20) Pγε → g in C([0,∞);w-L2(M dv dx)) asε → 0 .

Now let t > 0 be arbitrary but fixed. The elementary inequality

1

2

(
3 log

(
1 + 1

3
z

))2

≤ (1 + z)log(1 + z)− z for everyz> −1

implies that for everyε > 0 one has

(7.21)
1

2

∫
〈γε(t)2〉dx ≤ 1

δ2
ε

H(Gε(t)) ≤ Cin .

The family γε(t) is thereby relatively compact inw-L2(M dv dx). Let g̃ be any
w-L2(M dv dx) limit point of the familyγε(t). By Fatou’s lemma and (7.21), one
sees that

(7.22)
1

2

∫
〈g̃2〉dx ≤ lim inf

ε→0

∫
〈γε(t)2〉dx ≤ lim inf

ε→0

1

δ2
ε

H(Gε(t)) .

On the other hand, becausePγε(t) → g(t) by (7.20), we have

(7.23) P g̃ = lim
ε→0

Pγε(t) = g(t) in w-L2(M dv dx) .
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Hence, by employing the orthogonal decompositiong̃ = P g̃+P⊥g̃ = g(t)+P⊥g̃
in combination with the bounds (7.19) and (7.22), we arrive at

1

2

∫
〈g(t)2〉dx + 1

2

∫
〈(P⊥g̃)2〉dx ≤ lim inf

ε→0

1

δ2
ε

H(Gε(t))

≤ lim sup
ε→0

1

δ2
ε

H(Gε(t))

≤ 1

2

∫
〈g(t)2〉dx .

This chain of inequalities immediately implies thatP⊥g̃ = 0 and that the equality
(7.18) is satisfied.

The fact thatP⊥g̃ = 0 combines with (7.23) to show thatg̃ = g(t). The
uniqueness of the limit point̃g thereby implies that

γε(t) → g(t) in w-L1(σM dv dx) asε → 0 .

Becausegε − γε → 0 in L∞(dt; L1(σM dv dx)) asε → 0, the above limit shows
that (7.17) is also satisfied. Therefore we conclude thatgε(t) → g(t) entropically
of orderδε for everyt ≥ 0.

Finally, by proposition 4.11 of [3] and dominated convergence, this also implies
thatgε → g strongly inL1

loc(dt; L1(σM dv dx)) as announced.

8 Establishing the Stokes Limit

Here we give proofs of both the weak and strong theorems for the Stokes limit.
There are three main ingredients:

• control of the fluctuations of both the phase-space densities and the colli-
sion integrands,

• removal of the local conservation law defects, and
• convergence of the momentum and heat fluxes.

The fluctuation controls needed here were developed in [3]. Some of these
controls are of the same nature as those used for the acoustic limit and have already
been recalled in Lemma 4.2. The additional fluctuation controls from [3] needed
for the Stokes limit are gathered below in Lemma 8.1. Conservation law defects are
handled in the same way as for the acoustic limit, by appealing to the conservation
defect theorem, Theorem 9.1, which is stated and proved in the next section. The
last item on the list above is particular to the Stokes limit and, along with the
method to handle conservation defects, rests upon another new estimate on the
collision integrand, whose proof is deferred until Section 10.
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8.1 Control of the Stokes Fluctuations

For the Stokes limit one considers the Boltzmann equation (4.1) withτε = ε.
One then has thatηε = ε whereby the fluctuationsgε andqε given by (4.13)–(4.14)
are

(8.1) gε = Gε − 1

δε
, qε = G′

ε1G′
ε − Gε1Gε

εδε
.

The a priori estimates below are natural amplifications of Proposition 4.2 that result
becauseGε are renormalized solutions of the Boltzmann equation withτε = ε.

LEMMA 8.1 (Stokes Fluctuations Lemma)Let b be a collision kernel that satisfies
conditions(2.5)–(2.6)and for whichL satisfies the domain condition(5.1).

Let Gε ≥ 0 be a family of renormalized solutions of the scaled initial-value
problem(3.10)with initial data Gin

ε that satisfy the entropy bound(4.10)for some
Cin < ∞ and δε > 0 that satisfies(3.2). Let gε and qε be the corresponding
fluctuations and scaled collision integrands(8.1).

Let g be aw-L1
loc(dt;w-L1(M dv dx)) limit point of the family gε and q be

jointly aw-L1
loc(dt;w-L1(dµ dx)) limit point of the family qε/Nε asε → 0. Then

(i) g ∈ L∞(dt; L2(M dv dx)) and q∈ L2(dµ dx dt) satisfy

(8.2) v · ∇xg =
∫∫

SD−1×RD

qb(ω, v1 − v)dω M1 dv1 .

(ii) g has the form of an infinitesimal Maxwellian

(8.3) g = ρ + u · v + θ

(
1

2
|v|2 − D

2

)
,

where(ρ,u, θ) ∈ L∞(dt; L2(dx)) ∩ L2(dt; H1(dx)) satisfy

(8.4) ∇x · u = 0 , ∇x(ρ + θ) = 0 ,

while q satisfies the relations

(8.5) 〈〈φq〉〉 = ν(∇xu + (∇xu)T) , 〈〈ψq〉〉 = κ∇xθ ,

and the inequality

(8.6)
∫ t

0

∫
TD

1

2
ν|∇xu + (∇xu)T|2 + κ|∇xθ |2dx ds≤ 1

4

∫ t

0

∫
TD

〈〈q2〉〉dx ds

for every t≥ 0, whereφ andψ are given by(3.22)whileν andκ are given
by (3.24).

Assertion (i) is essentially proposition 4.1 of [3], while assertion (ii) strengthens
assertion (vi) of Lemma 4.2. It consolidates propositions 4.2, 4.3, and 4.6 of [3].
The proof of each of these assertions rests on the key nonlinear estimate (4.20).
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8.2 Proof of the Weak Stokes Limit Theorem 5.1

Our proof of the weak Stokes limit theorem, Theorem 5.1, closely follows that
of the formal Stokes limit theorem, Theorem 3.2. That proof has six steps:

(1) showing that limiting fluctuations are infinitesimal Maxwellians,
(2) establishing the incompressibility and Boussinesq relations,
(3) evaluating the limit for moments of the form〈Lξgε〉/ε for every ξ ∈

Dom(L) ∩ Null(L)⊥,
(4) finding the limit of the flux terms in (3.15) that involveA andB,
(5) showing that the limiting dynamics is governed by the Stokes motion and

heat equations (1.2), and
(6) finding the limit of the difference ofgε from its infinitesimal Maxwellian.

The analogue of the first step has already been realized by Lemma 4.2(vi).
The analogues of the remaining steps are not as easy to realize because DiPerna-
Lions solutions are not known to satisfy most of the convervation laws that were
used extensively in the proof of Theorem 3.2. We therefore have to recover these
conservation laws in the limit. As we did for the acoustic limit, this is done by
taking the velocity moments of the renormalized Boltzmann equation with respect
to v and|v|2 and showing that the resulting conservation defects vanish asε → 0.

Framework for the Proof

The familygε is relatively compact inw-L1
loc(dt;w-L1(σM dv dx)) by asser-

tion (i) of the fluctuations lemma. We will show that the familygε is convergent
by showing that all of its subsequences converge to the same limit point.

Consider any subsequence of the familygε , still abusively denotedgε . It will
also be relatively compact inw-L1

loc(dt;w-L1(σM dv dx)). We will show that
this sequence is convergent by showing that it has a unique limit point. Indeed,
let g be anyw-L1

loc(dt;w-L1(σM dv dx)) limit point of the sequencegε . As-
sertion (vi) of the fluctuations lemma states thatg is an infinitesimal Maxwellian
given by (4.21) for some(ρ,u, θ) that belongs toL∞(dt; L2(dx; R × R

D × R)).
By the analogues of steps 2 through 5 above, we will show that(ρ,u, θ) is a
weak solution of the Stokes system (1.1)–(1.2) with initial data(uin, θ in) that is
uniquely obtained from (5.3). Because such weak solutions of the Stokes system
are uniquely determined by their initial data, the limiting infinitesimal Maxwellian
g is thereby uniquely determined. However, becauseg was an arbitraryw-L1

loc(dt;
w-L1(σM dv dx)) limit point of an arbitrary subsequence of the original fam-
ily gε , we can conclude that the original familygε converges tog in w-L1

loc(dt;
w-L1(σM dv dx)) asε → 0, which would establish (5.4).

Approximate Local Conservation Laws

All that remains to be done is to show that(ρ,u, θ) is a weak solution of the
Stokes system by passing to the limit in approximate local conservation laws built
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from the renormalized Boltzmann equation (4.2). We choose to use the normaliza-
tion of that equation given by

(8.7) 0(Z) = Z − 1
2
3 + 1

3 Z
, N(Z) =

(
2

3
+ 1

3
Z

)2

.

After settingτε = ε and dividing byδε , equation (4.2) becomes

(8.8) ε∂t
gε
Nε

+ v · ∇x
gε
Nε

=
∫∫

qε
N2
ε

b(ω, v1 − v)dω M1 dv1

whereNε = 1 + 1
3δεgε .

When the moment of the renormalized Boltzmann equation (8.8) is formally
taken with respect to anyζ ∈ Span{1, v1, . . . , vD , |v|2}, one obtains

(8.9) ∂t

〈
ζ

gε
Nε

〉
+ 1

ε
∇x ·

〈
vζ

gε
Nε

〉
= 1

ε

〈〈
ζ

qε
N2
ε

〉〉
.

This fails to be a local conservation law because the so-called conservation de-
fect on the right-hand side is generally nonzero. In this section we show that this
conservation defect vanishes asε → 0.

It can be shown from (4.4) that every DiPerna-Lions solution of (8.8) satisfies
(8.9) in the sense that for everyχ ∈ C1(TD) and every[t1, t2] ⊂ [0,∞) it satisfies

(8.10)
∫
χ

〈
ζ

gε
Nε

(t2)

〉
dx −

∫
χ

〈
ζ

gε
Nε

(t1)

〉
dx =

∫ t2

t1

∫
1

ε
∇xχ ·

〈
vζ

gε
Nε

〉
dx dt+

∫ t2

t1

∫
χ

1

ε

〈〈
ζ

qε
N2
ε

〉〉
dx dt .

We analyze this equation term by term before passing to the limit.

Removal of the Conservation Defect

The fact that the conservation defect term on the right-hand side of (8.10) van-
ishes asε → 0 follows from the scaling assumption (5.2), the factχ is bounded,
the factζ is a collision invariant, and the key new estimate

(8.11)
1

ε

〈〈
ζ

qε
N2
ε

〉〉
= O

(
δε|log(δε)|β/2

ε

)
+ O(δε|log(δε)|)

in L1
loc(dt; L1(dx)) asε → 0. Given this estimate, the argument is as follows: The

scaling assumption (5.2) directly implies that the first term on the right-hand side
of (8.11) vanishes asε → 0. The second term manifestly also vanishes asε → 0.
Therefore becauseχ is bounded inL∞, one sees that

(8.12)

∣∣∣∣
∫ t2

t1

∫
χ

1

ε

〈〈
ζ

qε
N2
ε

〉〉
dx dt

∣∣∣∣ ≤ ‖χ‖L∞

∫ t2

t1

∫ ∣∣∣∣1

ε

〈〈
ζ

qε
N2
ε

〉〉∣∣∣∣dx dt → 0

asε → 0. All that remains is to establish the estimate (8.11), but this follows from
Theorem 9.1.
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Control of the Flux Term

In what follows, we seek to take limits in (8.10) whenζ = vi for i = 1,2,
. . . , D or ζ = (1

2|v|2 − D+2
2 ). With the latter choice, the flux term on right-hand

side of (8.10) involves

1

ε

〈
B

gε
Nε

〉
.

Because there existsψ ∈ Dom(L) such thatB = Lψ , this sequence is relatively
compact inw-L1

loc(dt;w-L1(dx)). Furthermore, for any subsequence ofgε such
that the same subsequence ofqε/Nε converges to a limit pointq in w-L1

loc(dt;
w-L1(σdµ dx)), one has

(8.13)
1

ε

〈
B

gε
Nε

〉
→ −〈〈ψq〉〉

in w-L1
loc(dt;w-L1(dx)). Both this statement and the compactness stated before

will be established later in Theorem 10.1.

With the former choice, i.e., if one choosesζ = vi for i = 1,2, . . . , D, one
consolidates the resulting equations (8.10) by taking successively as test function
χ the components of a divergence-free vector fieldU ∈ C1(TD; R

D). Adding the
resulting equalities gives

(8.14)
∫

U ·
〈
v

gε
Nε

(t2)

〉
dx −

∫
U ·

〈
v

gε
Nε

(t1)

〉
dx =

∫ t2

t1

∫
1

ε
∇xU ·

〈
A

gε
Nε

〉
dx dt+

∫ t2

t1

∫
U · 1

ε

〈〈
v

qε
N2
ε

〉〉
dx dt,

because

∇xU ·
〈
A

gε
Nε

〉
= ∇xU ·

〈
v ⊗ v

gε
Nε

〉

since∇x · U = 0. Again, by Theorem 10.1, the sequence

1

ε

〈
A

gε
Nε

〉

is relatively compact inw-L1
loc(dt;w-L1(dx)), and for any subsequence ofgε such

that the same subsequence ofqε/Nε converges to a limit pointq in w-L1
loc(dt;

w-L1(σdµ dx)), one has

(8.15)
1

ε

〈
A

gε
Nε

〉
→ −〈〈φq〉〉 .
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Control of the Density Terms

In what follows, we seek to take limits in (8.10) whenζ = vi for i = 1,2,
. . . , D or ζ = (1

2|v|2 − D+2
2 ). The corresponding density terms on the left-hand

side of (8.10) are

(8.16) 5

〈
v

gε
Nε

〉
and

〈(
1

2
|v|2 − D + 2

2

)
gε
Nε

〉
.

We use the Arzela-Ascoli theorem to establish that these sequences are relatively
compact inC([0,∞);w-L2(dx)).

First, becauseNε = 2
3 + 1

3Gε ≥ 2
3,

g2
ε

N2
ε

≤ 3

2

g2
ε

Nε

,

so that, by the nonlinear estimate (4.19), the sequencegε/Nε is bounded inL∞(dt;
L2(M dv dx)) with ∫ 〈

g2
ε

N2
ε

(t)

〉
dx ≤ 3Cin for everyt ≥ 0 .

On the other hand, the weak form of (8.9) implies that the time-dependent function

t 7→
∫ 〈

Y
gε
Nε

(t)

〉
dx

is continuous for eachY ∈ L∞(M dv; C1(TD)). Therefore, the bound above and
a standard density argument imply that the sequencegε/Nε is also bounded in
C([0,∞);w-L2(M dv dx)). In particular, this implies the sequences (8.16) are
equibounded.

That the sequences (8.16) are equicontinuous is less obvious than in the case
of the acoustic limit. For the first sequence, this is seen from (8.14), because the
second term in the right-hand side vanishes by (8.12) while the first term∫ t2

t1

∫
1

ε
∇xU :

〈
A

gε
Nε

〉
dx dt → 0

as|t2 − t1| → 0 uniformly in ε, by the relative compactness of the sequence

1

ε
5

〈
A

gε
Nε

〉
in w-L1

loc(dt;w-L1(dx)) .

For the second sequence, i.e.,〈(
1

2
|v|2 − D + 2

2

)
gε
Nε

〉
,

this is seen by an analogous argument bearing on (8.10) and based instead on the
relative compactness of the sequence

1

ε

〈
B

gε
Nε

〉
in w-L1

loc(dt;w-L1(dx)) .
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Passing to a Converging Subsequence

By assertions (i) and (ii) of Lemma 4.2, one can find a sequenceεn → 0 such
that

(8.17)
gεn → g in w-L1

loc(dt;w-L1(σM dv dx)) ,
qεn
Nεn

→ q in w-L1
loc(dt;w-L1(σdµ dx)) ,

Observe that because

0 ≤ gε − gε
Nε

= 1

3
δε

g2
ε

Nε

,

the nonlinear estimate (4.20) implies that

(8.18) gε − gε
Nε

→ 0 in L∞(dt; L1(σM dv dx)) asε → 0 .

This limit together with assertion (iv) of Lemma 4.2 imply that

gεn
Nεn

→ g in w-L1
loc(dt;w-L2(M dv dx)) .

The analogous statement forgin
εn

also holds.

The arguments in the last two subsections then imply that
(8.19)

5

〈
v

gεn
Nεn

〉
→ 〈vg〉 in C([0,∞);w-L2(dx)),

〈(
1

2
|v|2 − D + 2

2

)
gεn
Nεn

〉
→

〈(
1

2
|v|2 − D + 2

2

)
g

〉
in C([0,∞);w-L2(dx)),

as well as

(8.20)

1

εn

〈
A

gεn
Nεn

〉
→ −〈〈φq〉〉 in w-L1

loc(dt;w-L1(dx)),

1

εn

〈
B

gεn
Nεn

〉
→ −〈〈ψq〉〉 in w-L1

loc(dt;w-L1(dx)).

Moreover, becausegin
ε satisfies (5.3), one sees from (8.18) that

(8.21) 5

〈
v

gin
εn

N in
εn

〉
→ uin ,

〈(
1

D + 2
|v|2 − 1

)
gin
εn

N in
εn

〉
→ θ in ,

in w-L2(dx). In the rest of the proof, we abuse the notationgε andqε to designate
the subsequencesgεn andqεn .
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Recovering the Strong Boussinesq Relation

By assertion (ii) of the Stokes fluctuations lemma, Lemma 8.1,g is of the form
of a local infinitesimal Maxwellian (8.3) parametrized by its associated (fluctuation
of) velocity fieldu, macroscopic densityρ, and temperatureθ . Choosingt1 = 0,
ζ = |v|2, andχ = 1 in (8.10) shows that∫ 〈

|v|2 gε
Nε

(t2)

〉
dx −

∫ 〈
|v|2 gin

ε

N in
ε

〉
dx =

∫ t2

0

∫
1

ε

〈〈
|v|2 qε

Nε

〉〉
dx dt .

By the conservation defect theorem, Theorem 9.1, the right-hand side of this equal-
ity vanishes withε uniformly ast2 runs through any bounded interval of time. Fur-
ther, the arguments in the last three paragraphs show that the second term in the
left-hand side of this equality converges to∫

〈|v|2gin〉dx = 0

because of (2.17); hence, the sequence∫ 〈
|v|2 gε

Nε

〉
dx → 0 in L∞

loc(dt) .

Becausegε/Nε → g in w-L1
loc(dt;w-L1(dx)),∫ 〈

|v|2 gε
Nε

〉
dx →

∫
〈|v|2g〉dx in L∞

loc(dt) .

Hence, ∫ 〈
1

D
|v|2g(t)

〉
dx =

∫
(ρ + θ)(t)dx = 0

for almost everyt ≥ 0. Thus, for almost everyt ≥ 0, the functionx 7→ (ρ +
θ)(x, t) defines an element ofL2(dx) that is orthogonal to the constants; on the
other hand, by (8.4), it satisfies

∇x(ρ + θ) = 0 .

Then, a classical argument based on Fourier series shows that

(8.22) ρ + θ = 0 for almost every(x, t) ∈ T
D × [0,∞) .

By assertion (vi) of Lemma 4.2, this implies thatg is in fact of the form (5.4) as
predicted by the weak Stokes limit Theorem 5.1.

Recovering the Stokes Dynamics

Let ξ ∈ Dom(L); because of the convergences in (8.17),

(8.23)
1

ε

〈
Lξ gε

Nε

〉
→ −〈〈ξq〉〉 = −〈ξv · ∇xg〉

in w-L1
loc(dt;w-L1(dx)) by the moment Theorem 10.1 and assertion (i) of the

Stokes fluctuations lemma. Sinceg is a local infinitesimal Maxwellian of the form
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(5.4), the right-hand side of the convergence above can be evaluated explicitly.
Doing so leads to reformulating the convergence above as

(8.24)
1

ε

〈
Lξ gε

Nε

〉
→ −〈ξ A〉 : ∇xu − 〈ξB〉 · ∇xθ

in w-L1
loc(dt;w-L1(dx)).

In particular, letξ in (8.24) designate one of the entries of eitherφ orψ defined
in (3.22). This gives the limit of the fluxes of momentum and energy as follows:

(8.25)

1

ε

〈
A

gε
Nε

〉
→ −〈φ ⊗ A〉 : ∇xu = −ν(∇xu + (∇xu)T) ,

1

ε

〈
B

gε
Nε

〉
→ −〈ψ ⊗ B〉 · ∇xθ = −κ∇xθ ,

in w-L1
loc(dt;w-L1(dx)), where the viscosityν and the thermal conductivityκ are

given by (3.24).
Let t > 0 be arbitrary, and consider the equality (8.14) fort1 = 0 andt2 = t ,

whereU ∈ C1(TD) designates an arbitrary divergence-free vector field. Taking
limits in this equation gives, on account of (8.19), (8.21), and (8.25), that∫

U · 〈vg(t)〉dx −
∫

U · uin dx = −ν
∫ t

0

∫
∇xU : ∇xu dx ds.

Likewise, consider equality (8.10) fort1 = 0 andt2 = t , with

ζ =
(

1

2
|v|2 − D + 2

2

)
.

Taking limits in this equation gives, by using again (8.19), (8.21), and (8.25), that

∫
χ

〈(
1

2
|v|2 − D + 2

2

)
g(t)

〉
dx − D + 2

2

∫
χθ in dx =

− κ

∫ t

0

∫
∇xχ · ∇xθ dx ds.

This and the explicit form ofg provided by (5.4) show that(u, θ) ∈ C([0,∞);
w-L2(dx; R

D × R)) is the unique solution of the Cauchy problem (1.2) with initial
data(uin, θ in) ∈ L2(dx; R

D × R).

Recovering the Deviation from Maxwellians

Finally, sinceL is self-adjoint onL2(M dv), using the tensorφ and the vector
ψ defined in (3.22) puts the convergence (8.24) in the form〈

(Lξ)
(

1

ε

gε
Nε

+ ∇xu : φ + ∇xθ · ψ
)〉

→ 0
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in w-L1
loc(dt;w-L1(dx)). By the definition (3.22), bothφ andψ are entrywise

orthogonal to Null(L). Hence, the convergence above means that

1

ε
P⊥ gε

Nε

→ −∇xu : φ − ∇xθ · ψ

in w-L1
loc(dt;w-L1(dx;w-L2(M dv))). Since, as recalled at the beginning of this

proof,gε − gε/Nε → 0 in L∞(dt; L1(σM dv dx)), the convergence above implies
in turn that (5.5) holds, which concludes the proof.

8.3 Proof of the Strong Stokes Limit Theorem 6.2

The fact thatgin
ε → gin entropically of orderδε as ε → 0 implies thatgin

ε

satisfies (5.3). The weak Stokes limit theorem, Theorem 5.1, therefore implies that
the familygε , which is contained inC([0,∞);w-L1(M dv dx)), converges in the
topology ofw-L1

loc(dt;w-L1(σM dv dx)) to the infinitesimal Maxwelliang given
by (5.4), which belongs toC([0,∞); L2(M dv dx)). The definition of entropic
convergence (6.1) requires us to show that (7.17) and (7.18) are satisfied for every
t > 0. In addition, we will show that for everyt > 0 one has

(8.26) lim
ε→0

1

ε2δ2
ε

∫ t

0
R(Gε)ds = 1

4

∫ t

0

∫
TD

〈〈q2〉〉dx ds.

First, because(u, θ) is the weak solution of the Cauchy problem for the Stokes
system (1.1)–(1.2) with initial data(uin, θ in), it satisfies the energy equality

1

2

∫
TD

(
|u(t)|2 + D + 2

2
θ(t)2

)
dx

+
∫ t

0

∫
TD

[
1

2
ν|∇xu + (∇xu)T|2 + κ|∇xθ |2

]
dx ds

= 1

2

∫
TD

(
|uin|2 + D + 2

2
θ in 2

)
dx .

(8.27)

Upon taking limits in the entropy inequality (4.11), using the assumed entropic
convergence of the initial data, and employing the above energy equality, for every
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t > 0 one is led to

(8.28)

lim sup
ε→0

(
1

δ2
ε

H(Gε(t))+ 1

ε2δ2
ε

∫ t

0
R(Gε)ds

)

≤ lim
ε→0

1

δ2
ε

H(Gin
ε )

= 1

2

∫
TD

〈gin 2〉dx

= 1

2

∫
TD

(
|uin|2 + D + 2

2
θ in 2

)
dx

= 1

2

∫
TD

(
|u(t)|2 + D + 2

2
θ(t)2

)
dx

+
∫ t

0

∫
TD

[
1

2
ν|∇xu + (∇xu)T|2 + κ|∇xθ |2

]
dx ds

≤ 1

2

∫
TD

〈g(t)2〉dx + 1

4

∫ t

0

∫
TD

〈〈q2〉〉dx ds.

Next, observe that (5.6) of Theorem 5.1 states that asε → 0 one has

5〈vgε〉 → 〈vg〉 in C([0,∞);D′(TD; R
D)) ,〈(

1

D + 2
|v|2 − 1

)
gε

〉
→

〈(
1

D + 2
|v|2 − 1

)
g

〉
in C([0,∞);w-L1(dx; R)) .

On the other hand, by (7.12) and (8.18), asε → 0 one then has

5〈vγε〉 → 〈vg〉 in C([0,∞);w-L2(dx)) ,〈(
1

D + 2
|v|2 − 1

)
γε

〉
→

〈(
1

D + 2
|v|2 − 1

)
g

〉
in C([0,∞);w-L2(dx)) .

Now letPI denote the projection ofL2(M dv dx) onto the incompressible fluid
modes that for each̃g ∈ L2(M dv dx) is defined by

PI g̃ = 5〈vg̃〉 · v +
〈(

1

D + 2
|v|2 − 1

)
g̃

〉(
1

2
|v|2 − D + 2

2

)
,

where5 is the orthogonal projection ofL2(dx; R
D) onto divergence-free vector

fields. By construction,PI is an orthogonal projection over the spaceL2(M dv dx).
The last convergence actually says that

(8.29) PI γε → g in C([0,∞);w-L2(M dv dx)) asε → 0 .
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Now let t > 0 be arbitrary but fixed; the bound (7.21) then shows that the family
γε(t) is relatively compact inw-L2(M dv dx). Let g̃ be anyw-L2(M dv dx) limit
point of the familyγε(t). By Fatou’s lemma and (7.21), one sees that

(8.30)
1

2

∫
〈g̃2〉dx ≤ lim inf

ε→0

∫
〈γε(t)2〉dx ≤ lim inf

ε→0

1

δ2
ε

H(Gε(t)) .

On the other hand, becausePI γε(t) → g(t) by (8.29), we have

(8.31) PI g̃ = lim
ε→0

PI γε(t) = g(t) in w-L2(M dv dx) .

Hence, by employing the orthogonal decompositiong̃ = PI g̃+P⊥
I g̃ = g(t)+P⊥

I g̃
in combination with the bound (8.30), we arrive at

(8.32)
1

2

∫
〈g(t)2〉dx + 1

2

∫
〈(P⊥

I g̃)2〉dx ≤ lim inf
ε→0

1

δ2
ε

H(Gε(t)) .

By combining inequalities (8.28) and (8.32) with inequality (4.18) of Lemma 4.2,
one can conclude thatP⊥

I g̃ = 0 and that equalities (7.18) and (8.26) are satisfied.
The fact thatP⊥

I g̃ = 0 combines with (8.31) to show thatg̃ = g(t). The
uniqueness of the limit point̃g thereby implies that

γε(t) → g(t) in w-L1(σM dv dx) asε → 0 .

Becausegε − γε → 0 in L∞(dt; L1(σM dv dx)) asε → 0, the above limit shows
that (7.17) is also satisfied. Therefore we conclude thatgε(t) → g(t) entropically
of orderδε for everyt ≥ 0.

Finally, by Proposition 4.11 of [3] and dominated convergence, this also im-
plies thatgε → g strongly in L1

loc(dt; L1(σM dv dx)) as announced. Moreover,
equality (8.26) and the relations (8.5) imply that

(8.33) q = 1

2
(∇xu + (∇xu)T) : 8+ ∇xθ ·9 .

A further consequence of equation (8.26) is that the convergence (6.4) is strong in
L1

loc(dt; L1(σdµ dx)). The proof of this statement is given [3, pp. 738–739] and is
similar to that of proposition 4.11 of [3]; namely, the fact that entropic convergence
implies strong convergence inL1(σM dv dx).

9 Control of the Conservation Defects

In this section we derive the conservation defect bounds (7.7) and (8.11) that
were used in the acoustic and Stokes scalings, respectively, to establish momentum
and energy conservation laws from the scaled Boltzmann equation in the limit as
ε → 0. These bounds are obtained as special cases of a more general result that
can be viewed as an extension of the theory of fluctuations [3]. Just as for the
fluctuations lemma (Lemma 4.2), here we work in a setting in whichδε is only
required to satisfy (3.2),δε → 0 asε → 0, whileGε is only required to satisfy the
entropy inequality (4.11). In particular,Gε is not required to solve the Boltzmann
equation in any sense. We prove the following:
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THEOREM 9.1 (Conservation Defect Theorem)Let the collision kernel b satisfy
the bound(2.6) for someβ ∈ [0,1]. Let δε > 0 vanish asε → 0. Let τε >
0 be bounded asε → 0 and setηε = (ετε)

1/2. Let Gε ≥ 0 be a family of
functions in C([0,∞);w-L1(M dv dx)) that satisfies the entropy bound(4.11).
Let gε , qε , and Nε be given by(4.13), (4.14), and (4.15), respectively. Letζ ∈
Span{1, v1, . . . , vD , |v|2}. Then for n= 1 and n= 2 one has the estimate

(9.1)

〈〈
ζ

qε
Nn
ε

〉〉
= O(δε|log(δε)|β/2)+ O(ηεδε|log(δε)|)

in L1
loc(dt; L1(dx)) asε → 0.

Remark.Given this result, the acoustic defect bound (7.7) is obtained from (9.1)
by settingηε = ε1/2, n = 1, and dividing the result byε1/2, while the Stokes defect
bound (8.11) is obtained by settingηε = ε, n = 2, and dividing byε.

9.1 Proof of the Conservation Defect Theorem 9.1

The casen = 1 is treated first. The proof simply exploits thedµ-symmetries
(2.15) and the fact thatζ is a collision invariant to decompose the defect into three
parts, each of which is then shown to vanish asε → 0. The casen = 2 proceeds
similarly, with each part being dominated by the same function that dominates
the corresponding part from then = 1 case. The estimates on these dominating
functions are obtained from the entropy inequality (4.11) through the bound on
the dissipation rate and the use of Young’s inequality in the style of [3]. They are
proven in the next subsection.

For the casen = 1, begin with the elementary decomposition

(9.2)

〈〈
ζ

qε
Nε

〉〉
=

〈〈
ζ

(
1 − 1

Nε1

)
qε
Nε

〉〉
+

〈〈
ζ

qε
Nε1Nε

〉〉
.

By using thedµ-symmetries and the fact thatζ is a collision invariant, the second
term on the right-hand side of (9.2) can be recast as

(9.3)

〈〈
ζ

qε
Nε1Nε

〉〉
= 1

2

〈〈
(ζ1 + ζ )

qε
Nε1Nε

〉〉

= 1

4

〈〈
(ζ1 + ζ )

(
1

Nε1Nε

− 1

N ′
ε1N ′

ε

)
qε

〉〉

= 1

4

〈〈
(ζ1 + ζ )

N ′
ε1N ′

ε − Nε1Nε

N ′
ε1N ′

εNε1Nε

qε

〉〉
.

Now observe that

N ′
ε1N ′

ε − Nε1Nε = 2

9
δε

(
g′
ε1 + g′

ε − gε1 − gε
) + 1

9

(
G′
ε1G′

ε − Gε1Gε

)

= −2

9
δ2
ε

(
g′
ε1g′

ε − gε1gε
) + 1

3
ηεδεqε ,
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whereby (9.3) decomposes as

(9.4)

〈〈
ζ

qε
Nε1Nε

〉〉
= − 1

18
δ2
ε

〈〈
(ζ1 + ζ )

g′
ε1g′

ε − gε1gε
N ′
ε1N ′

εNε1Nε

qε

〉〉

+ 1

12
ηεδε

〈〈
(ζ1 + ζ )

q2
ε

N ′
ε1N ′

εNε1Nε

〉〉
.

By again using thedµ-symmetries and the fact thatζ is a collision invariant, the
integrals in the terms on the right-hand side of (9.4) can be brought into the forms

(9.5)

〈〈
(ζ1 + ζ )

g′
ε1g′

ε − gε1gε
N ′
ε1N ′

εNε1Nε

qε

〉〉
= 2

〈〈
(ζ ′

1 + ζ ′)
g′
ε1g′

ε

N ′
ε1N ′

εNε1Nε

qε

〉〉

= 4

〈〈
ζ ′g′

ε1g′
ε

N ′
ε1N ′

εNε1Nε

qε

〉〉
,

〈〈
(ζ1 + ζ )

q2
ε

N ′
ε1N ′

εNε1Nε

〉〉
= 2

〈〈
ζq2

ε

N ′
ε1N ′

εNε1Nε

〉〉
.

Upon combining (9.2), (9.4), and (9.5), we arrive at the decomposition〈〈
ζ

qε
Nε

〉〉
= 1

3

〈〈
ζ
δεgε1
Nε1Nε

qε

〉〉
− 2

9

〈〈
ζ ′ δ2

εg
′
ε1g′

ε

N ′
ε1N ′

εNε1Nε

qε

〉〉

+ 1

6

〈〈
ζ

ηεδεq2
ε

N ′
ε1N ′

εNε1Nε

〉〉
.

(9.6)

Because for everyζ ∈ Span{1, v1, . . . , vD , |v|2} there exists a constantC < ∞
such that|ζ | ≤ Cσ whereσ(v) ≡ 1+|v|2, the result for the casen = 1 will follow
upon first establishing the bounds

σ
δεgε1
Nε1Nε

qε = O
(
δε|log(δε)|β/2

)
,(9.7)

σ ′ δ2
εg

′
ε1g′

ε

N ′
ε1N ′

εNε1Nε

qε = O
(
δε|log(δε)|β/2

)
,(9.8)

σ
ηεδεq2

ε

N ′
ε1N ′

εNε1Nε

= O
(
ηεδε|log(ηεδε)|

)
,(9.9)

in L1
loc(dt; L1(dµ dx)) asε → 0 and then observing that

ηεδε|log(ηεδε)| ≤ ηεδε|log(ηε)| + ηεδε|log(δε)|
= O

(
δε|log(δε)|β/2

) + O
(
ηεδε|log(δε)|

)
.

But the bounds (9.7)–(9.9) follow directly from Lemmas 9.2, 9.3, and 9.4, respec-
tively, which are stated and proved in the next subsection.

The casen = 2 follows similarly. Begin with the elementary decomposition

(9.10)

〈〈
ζ

qε
N2
ε

〉〉
=

〈〈
ζ

(
1 − 1

N2
ε1

)
qε
N2
ε

〉〉
+

〈〈
ζ

qε
N2
ε1N2

ε

〉〉
.
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By using thedµ-symmetries and the fact thatζ is a collision invariant as we did in
(9.3), the second term on the right-hand side of (9.10) can be recast as

(9.11)

〈〈
ζ

qε
N2
ε1N2

ε

〉〉
= 1

4

〈〈
(ζ1 + ζ )

N ′
ε1N ′

ε − Nε1Nε

N ′
ε1N ′

εNε1Nε

(
1

Nε1Nε

+ 1

N ′
ε1N ′

ε

)
qε

〉〉
.

Because the second factor in parentheses is invariant under thedµ-symmetries,
this factor is just carried along when we proceed as we did in going from (9.3) to
(9.5). Upon combining the result with (9.10), we arrive at the analogue of (9.6),
the decomposition

(9.12)

〈〈
ζ

qε
N2
ε

〉〉
= 1

3

〈〈
ζ
δεgε1
Nε1Nε

qε

(
1

Nε

+ 1

Nε1Nε

)〉〉

− 2

9

〈〈
ζ ′ δ2

εg
′
ε1g′

ε

N ′
ε1N ′

εNε1Nε

qε

(
1

Nε1Nε

+ 1

N ′
ε1N ′

ε

)〉〉

+ 1

6

〈〈
ζ

ηεδεq2
ε

N ′
ε1N ′

εNε1Nε

(
1

Nε1Nε

+ 1

N ′
ε1N ′

ε

)〉〉
.

Because the factors in parentheses are bounded functions, by arguing as was done
for the casen = 1, the result for the casen = 2 will also follow upon establishing
(9.7)–(9.9). The proof of Proposition 9.1 will therefore be complete upon proving
Lemmas 9.2, 9.3, and 9.4.

9.2 Dissipation Rate Control Lemmas

The proofs of Lemmas 9.2, 9.3, and 9.4 all crucially use the fact that the entropy
inequality (4.11) implies that the dissipation rateR satisfies the bound

1

η2
εδ

2
ε

∫ ∞

0
R(Gε)dt ≤ Cin .

More specifically, following [3], these proofs use the definition ofR (2.21) and of
qε (4.14) to re-express this bound as

(9.13)
1

η2
εδ

2
ε

∫ ∞

0

∫ 〈〈
1

4
r

(
ηεδεqε
Gε1Gε

)
Gε1Gε

〉〉
dx dt ≤ Cin ,

where the functionr is defined overz> −1 by

(9.14) r (z) = z log(1 + z) .

The functionr is strictly convex overz> −1.
The proofs of Lemmas 9.2 and 9.3 are each based on a delicate use of the

classical Young inequality satisfied byr and its Legendre dual,r ∗, namely, the
inequality

pz ≤ r ∗(p)+ r (z) for every p ∈ R andz> −1 .

Upon choosing

p = ηεδεy

α
and z = ηεδε|qε|

Gε1Gε
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and noticing thatr (|z|) ≤ r (z) for everyz > −1, for every positiveα andy one
obtains

(9.15) y|qε| ≤ α

η2
εδ

2
ε

r ∗
(
ηεδεy

α

)
Gε1Gε + α

η2
εδ

2
ε

r

(
ηεδεqε
Gε1Gε

)
Gε1Gε .

This inequality will be the starting point for the proofs of Lemmas 9.2 and 9.3.

These proofs also use the fact, recalled from [3], thatr ∗ is superquadratic in the
sense

(9.16) r ∗(λp) ≤ λ2r ∗(p) for every p > 0 andλ ∈ [0,1] .
LEMMA 9.2 Letβ, δε , ηε , gε , qε , and Nε be as in Proposition9.1. Then

σ
δεgε1
Nε1Nε

qε = O
(
δε|log(δε)|β/2

)
in L1

loc(dt; L1(dµ dx)) asε → 0 .

PROOF: For the proof of this lemma we first set

(9.17) y = 1

δε

σ

Nε

∣∣∣∣1 − 1

Nε1

∣∣∣∣ = 1

3

σ |gε1|
Nε1Nε

.

in (9.15) and then apply the superquadratic property (9.16) with

λ = ηεδε|gε1|
αNε1Nε

and p = σ

3
,

where we note thatλ ≤ 1 wheneverηε ≤ 2
9α. This leads to

(9.18)

1

δε

σ

Nε

∣∣∣∣1 − 1

Nε1

∣∣∣∣|qε|
≤ 1

α

g2
ε1

N2
ε1N2

ε

r ∗
(
σ

3

)
Gε1Gε + α

η2
εδ

2
ε

r

(
ηεδεqε
Gε1Gε

)
Gε1Gε

≤ 33

23α

g2
ε1

Nε1
r ∗

(
σ

3

)
+ 4α

η2
εδ

2
ε

1

4
r

(
ηεδεqε
Gε1Gε

)
Gε1Gε .

By the elementary inequality
(

1 + 1

2
|v1 − v|2

)
≤ (1 + |v1|2)(1 + |v|2) = σ1σ ,

the bound (2.6) on the collision kernelb implies

(9.19)
∫

b(ω, v1 − v)dω ≤ Cbσ
β

1 σ
β .
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Let T ∈ [0,∞) and integrate both sides of (9.18) with respect todµ dx dt over the
setSD−1 × R

D × R
D × T

D × [0, T]. By using (9.19) one then obtains

(9.20)
1

δε

∫ T

0

∫ 〈〈
σ

Nε

∣∣∣∣1 − 1

Nε1

∣∣∣∣|qε|
〉〉

dx dt ≤
33

23α
Cb

∫ T

0

∫ 〈
σ
β

1 g2
ε1

Nε1

〉
dx dt

〈
σβr ∗

(
σ

3

)〉
+ 4αCin .

Interpolation between the nonlinear entropy estimates (4.19) and (4.20) shows that

(9.21)
∫ 〈

σ
β

1 g2
ε1

Nε1

〉
dx =

∫ 〈
σβg2

ε

Nε

〉
dx = O(|log(δε)|β)

in L∞(dt), while 〈σβr ∗(1
3σ)〉 < ∞ becauser ∗(p) = O(ep) as p → ∞; therefore

Lemma 9.2 follows from (9.20) by optimizing overα and multiplying the result
by δε . �

LEMMA 9.3 Letβ, δε , ηε , gε , qε , and Nε be as in Theorem9.1. Then

σ ′ δ2
εg

′
ε1g′

ε

N ′
ε1N ′

εNε1Nε

qε = O
(
δε|log(δε)|β/2

)
in L1

loc(dt; L1(dµ dx)) asε → 0 .

PROOF: For the proof of this lemma, we first set

(9.22) y = 1

9

δεσ
′|g′

ε1||g′
ε|

N ′
ε1N ′

εNε1Nε

in (9.15) and then apply the superquadratic property (9.16) with

λ = 1

3

ηεδ
2
ε |g′

ε1||g′
ε|

αN ′
ε1N ′

εNε1Nε

and p = σ ′

3
,

where we note thatλ ≤ 1 wheneverηε ≤ 4
27α. This leads to

1

9

δεσ
′|g′

ε1||g′
ε|

N ′
ε1N ′

εNε1Nε

|qε|

≤ 1

32α

δ2
εg

′ 2
ε1g′ 2

ε

N ′ 2
ε1 N ′ 2

ε N2
ε1N2

ε

r ∗
(
σ ′

3

)
Gε1Gε + α

η2
εδ

2
ε

r

(
ηεδεqε
Gε1Gε

)
Gε1Gε

≤ 92

82α

g′ 2
ε1

N ′ 2
ε1

r ∗
(
σ ′

3

)
+ 4α

η2
εδ

2
ε

1

4
r

(
ηεδεqε
Gε1Gε

)
Gε1Gε .

Let T ∈ [0,∞) and integrate both sides of the above inequality over the set
S

D−1 × R
D × R

D × T
D × [0, T] with respect todµ dx dt. By using (9.19) with



386 F. GOLSE AND C. D. LEVERMORE

primed velocities, one then obtains

(9.23)
1

9

∫ T

0

∫ 〈〈
δεσ

′|g′
ε1||g′

ε|
N ′
ε1N ′

εNε1Nε

|qε|
〉〉

dx dt ≤

35

27α
Cb

∫ T

0

∫ 〈
σ ′

1
βg′ 2

ε1

N ′
ε1

〉
dx dt

〈
σ ′βr ∗

(
σ ′

3

)〉
+ 4αCin .

Because (9.21) holds inL∞(dt) while 〈σβr ∗(1
3σ)〉 < ∞, Lemma 9.3 therefore

follows from (9.23) by optimizing overα and multiplying the result byδε . �
Finally, Lemma 9.4 is an analogue for the scaled collision integrandsqε of the

nonlinear entropy estimate (4.20) for the fluctuationsgε . It arises from the dissi-
pation rate bound (9.13) exactly as (4.20) arises from the relative entropy bound
(4.11).

LEMMA 9.4 Letβ, δε , ηε , gε , qε , and Nε be as in Proposition9.1. Then

(σ + σ1)
q2
ε

N ′
ε1N ′

εNε1Nε

= O(|log(ηεδε)|) in L1
loc(dt; L1(dµ dx)) asε → 0 .

PROOF: The idea will be to exploit estimates that were used in the proof of
proposition 3.4 of [3] to establish the nonlinear estimate (4.20) from the relative
entropy bound. Specifically, that proof uses a Young-type inequality for the convex
functionh defined by

h(z) = (1 + z)log(1 + z)− z for everyz> −1 .

Becauseh andr satisfy the elementary inequality

(9.24) h(z) ≤ r (z) for everyz> −1 ,

the dissipation control (9.13) implies that

(9.25)
1

η2
εδ

2
ε

∫ ∞

0

∫ 〈〈
h

(
ηεδεqε
Gε1Gε

)
Gε1Gε

〉〉
dx dt ≤ 4Cin .

Upon applying the argument in the proof of Proposition 3.3 of [3], one obtains the
Young-type inequality

(9.26) 3(ηεδε)
1

8
(σ + σ1)

1

η2
εδ

2
ε

s

(
ηεδεqε
Gε1Gε

)
≤

1

η2
εδ

2
ε

h

(
ηεδεqε
Gε1Gε

)
+ C exp

(
7

16
(σ + σ1)

)
,

whereC is a positive constant,s(z) is defined by

s(z) =
1
2z2

1 + 1
3z
,

and 0< 3(y) < 1 is defined implicitly for everyy ∈ (0,1) by

1 −3 log(3)− (1 −3)log(1 −3)+3 log(y) = 0 .
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It follows from this definition that

(9.27)
1

3(y)
= O(|log(y)|) asy → 0 .

Let T ∈ [0,∞) and integrate both sides of the inequality (9.26) over the set
S

D−1 × R
D × R

D × T
D × [0, T] with respect to the measure

Gε1

Nε1

Gε

Nε

dµ dx dt .

By using the bound (9.19), the fact〈σβ exp( 7
16σ)〉 < ∞, and the asymptotics

(9.27), one then obtains

(9.28)
∫ T

0

∫ 〈〈
(σ + σ1)

q2
ε

Gε1Gε + G′
ε1G′

ε

1

Nε1Nε

〉〉
dx dt = O(|log(ηεδε)|)

asε → 0. Upon using thedµ-symmetries of the collision integrand and the ele-
mentary inequality

Gε1Gε + G′
ε1G′

ε ≤ 32(Nε1Nε + N ′
ε1N ′

ε) ,

we see that the left-hand side of (9.28) satisfies

2
∫ T

0

∫ 〈〈
(σ + σ1)

q2
ε

Gε1Gε + G′
ε1G′

ε

1

Nε1Nε

〉〉
dx dt

=
∫ T

0

∫ 〈〈
(σ + σ1)

q2
ε

Gε1Gε + G′
ε1G′

ε

(
1

Nε1Nε

+ 1

N ′
ε1N ′

ε

)〉〉
dx dt

=
∫ T

0

∫ 〈〈
(σ + σ1)

q2
ε

Gε1Gε + G′
ε1G′

ε

N ′
ε1N ′

ε + Nε1Nε

Nε1NεN ′
ε1N ′

ε

〉〉
dx dt

≥ 1

32

∫ T

0

∫ 〈〈
(σ + σ1)

q2
ε

Nε1NεN ′
ε1N ′

ε

〉〉
dx dt .

The announced estimate therefore follows from (9.28). �

10 Control of the Stokes Fluxes

In order to control the renormalized momentum and heat fluxes, the proof of
the weak Stokes limit given in Section 8.2 asserted the limits (8.15) and (8.13).
Moreover, it asserted we can control every moment of the form

1

ε

〈
(Lξ) gε

Nε

〉

for anyξ ∈ Dom(L). This assertion was crucial in the proof of (5.5). The proof of
these assertions was deferred to this section. They follow from the following:

THEOREM 10.1 (Moment Theorem)Let the collision kernel b satisfy the bound
(2.6) for someβ ∈ [0,1] and letDom(L) satisfy condition(5.1). Consider the
Stokes scalingτε = ε, ηε = ε, andδε > 0 satisfying(5.2)asε → 0.
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Let Gε ≥ 0 be a family of functions in C([0,∞);w-L1(M dv dx)) that satisfies
the entropy bound(4.11). Let gε , qε , and Nε be given by(4.13), (4.14), and(4.15).
Then for everyξ ∈ Dom(L) one has that

(10.1)
1

ε

〈
(Lξ) gε

Nε

〉
is relatively compact inw-L1

loc(dt;w-L1(dx)) .

If in addition there exists q∈ L2(dµ dx dt) such that

(10.2)
qε
Nε

→ q inw-L1
loc(dt;w-L1(σdµ dx)) asε → 0 ,

then for everyξ ∈ Dom(L) one has the limit

(10.3)
1

ε

〈
(Lξ) gε

Nε

〉
→ −〈〈ξq〉〉 in w-L1

loc(dt; L1(dx)) asε → 0 .

The proof of this theorem is given in Section 10.2 after establishing two pre-
liminary lemmas.

10.1 More Fluctuation Lemmas
The proof of Proposition 10.1 rests on two lemmas. The first gives an elemen-

tary L2-like bound on the scaled collision integrandsqε . The second is the key
estimate. It enables one to control the linear part of the scaled collision integrands.
Both these lemmas can be viewed as extensions of the theory of fluctuations de-
veloped in [3]. We again work in the general setting of Proposition 9.1; namely,δε
is only required to satisfy (3.2),δε → 0 asε → 0, while Gε is only required to
satisfy the entropy inequality (4.11).

We first give the analogue for the scaled collision integrandsqε of the nonlinear
bound (4.19) for the fluctuationsgε .

LEMMA 10.2 Letβ, δε , ηε , gε , qε , and Nε be as in Proposition9.1. Then

(10.4)
∫ ∞

0

∫ 〈〈
q2
ε

NεNε1N ′
εN

′
ε1

〉〉
dx dt ≤ 34

2
Cin .

PROOF: Start from the dissipation rate bound (9.13) and use the elementary
inequality

(10.5)
z2

1 + 1
2z

≤ r (z) for everyz ∈ (−1,∞)

to obtain the bound
1

2

∫ ∞

0

∫ 〈〈
q2
ε

G′
ε1G′

ε + Gε1Gε

〉〉
dx dt ≤ Cin .

When this is combined with the elementary arithmetic inequality

G′
ε1G′

ε + Gε1Gε ≤ 34

22
NεNε1N ′

εN
′
ε1 ,

it leads to the announced bound. �
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We now give the key new estimate. It gives anL2 control that is much better
than theL1 control of estimates in earlier works. It is essential in controlling the
heat flux in the Stokes limit. Indeed, it supplants all the Stokes limit estimates in
section 5 of [3]. It can also be used to give a much more elegant proof of assertion
(vi) of the fluctuation lemma (Lemma 4.2) than is found in [3].

LEMMA 10.3 Let β, δε , ηε , gε , qε , and Nε be as in Theorem9.1. One has the
bound

qε
N ′
ε1N ′

εNε1Nε

− 1

ηε

(
g′
ε1

N ′
ε1

+ g′
ε

N ′
ε

− gε1
Nε1

− gε
Nε

)
= O

(
δε|log(δε)|β

ηε

)

in L∞(dt; L1(dx; L2(dµ))) asε → 0.

PROOF: The key to the argument is the computation

1

ηεδε

G′
ε1G′

ε − Gε1Gε

N ′
ε1N ′

εNε1Nε

− 1

ηε

(
g′
ε1

N ′
ε1

+ g′
ε

N ′
ε

− gε1
Nε1

− gε
Nε

)

= 1

ηε

(
g′
ε1 + g′

ε − gε1 − gε
N ′
ε1N ′

εNε1Nε

− g′
ε1 + g′

ε

N ′
ε1N ′

ε

+ gε1 + gε
Nε1Nε

)

+ 1

ηε

(
g′
ε1 + g′

ε

N ′
ε1N ′

ε

− g′
ε1

N ′
ε1

− g′
ε

N ′
ε

)
− 1

ηε

(
gε1 + gε
Nε1Nε

− gε1
Nε1

− gε
Nε

)

+ δε

ηε

g′
ε1g′

ε − gε1gε
N ′
ε1N ′

εNε1Nε

=
(

1

9

δε(gε1 + gε)

Nε1Nε

δε

ηε

g′
ε1g′

ε

N ′
ε1N ′

ε

− 1

9

δε(g′
ε1 + g′

ε)

N ′
ε1N ′

ε

δε

ηε

gε1gε
Nε1Nε

)

− 2

3

δε

ηε

g′
ε1g′

ε

N ′
ε1N ′

ε

+ 2

3

δε

ηε
+ 1

Nε1Nε

δε

ηε

g′
ε1g′

ε

N ′
ε1N ′

ε

− 1

N ′
ε1N ′

ε

δε

ηε

gε1gε
Nε1Nε

,

which results in the identity

qε
N ′
ε1N ′

εNε1Nε

− 1

ηε

(
g′
ε1

N ′
ε1

+ g′
ε

N ′
ε

− gε1
Nε1

− gε
Nε

)

= 1

3

(
1

Nε1Nε

+ 1

Nε1
+ 1

Nε

− 2

)
δε

ηε

g′
ε1g′

ε

N ′
ε1N ′

ε

− 1

3

(
1

N ′
ε1N ′

ε

+ 1

N ′
ε1

+ 1

N ′
ε

− 2

)
δε

ηε

gε1gε
Nε1Nε

.

(10.6)

However, the bound (9.19) on the collision kernelb yields
∫ 〈〈(

g′
ε1g′

ε

N ′
ε1N ′

ε

)2〉〉 1
2

dx =
∫ 〈〈(

gε1gε
Nε1Nε

)2〉〉 1
2

dx ≤ Cb

∫ 〈
σβg2

ε

N2
ε

〉
dx .

This and (9.21) imply that

g′
ε1g′

ε

N ′
ε1N ′

ε

= O
(|log(δε)|β

)
,

gε1gε
Nε1Nε

= O
(|log(δε)|β

)
,
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in L∞(dt; L1(dx; L2(dµ))) asε → 0. On the other hand,∣∣∣∣ 1

Nε1Nε

+ 1

Nε1
+ 1

Nε

− 2

∣∣∣∣ ≤ 13

4
,

∣∣∣∣ 1

N ′
ε1N ′

ε

+ 1

N ′
ε1

+ 1

N ′
ε

− 2

∣∣∣∣ ≤ 13

4
.

Bringing these last two estimates in (10.6) concludes the proof of Lemma 10.3.�

10.2 Proof of the Moment Theorem

With the above preliminary results at our disposal, we give the proof of Theo-
rem 10.1.

PROOF OF THEOREM10.1: Letξ ∈ Dom(L). The domain condition (5.1) then
implies ξ ∈ L2(dµ). One also hasgε/Nε ∈ L∞(dµ dx dt) for everyε because
|gε/Nε| < 3/ε. Thus, by applying thedµ-symmetries (2.15), one obtains the
identity〈〈

ξ

(
g′
ε1

N ′
ε1

+ g′
ε

N ′
ε

− gε1
Nε1

− gε
Nε

)〉〉
=

〈〈
(ξ ′

1 + ξ ′ − ξ1 − ξ)
gε
Nε

〉〉
= −

〈
(Lξ) gε

Nε

〉
.

This identity and Lemma 10.3 applied with the Stokes scaling (i.e., withηε = ε

andδε satisfying (5.2)) imply that

(10.7)
1

ε

〈
(Lξ) gε

Nε

〉
+

〈〈
ξ

qε
N ′
ε1N ′

εNε1Nε

〉〉
→ 0

in L∞(dt; L1(dx)) asε → 0. On the other hand, Lemma 10.2 implies that the
family

(10.8)
qε

N ′
ε1N ′

εNε1Nε

is relatively compact inw-L2(dµ dx dt) ,

whereby the family

(10.9)

〈〈
ξ

qε
N ′
ε1N ′

εNε1Nε

〉〉
is relatively compact inw-L2(dx dt) .

This fact combined with (10.7) yields (10.1).
Finally, to prove (10.3), first observe that

0 ≤ 1

N ′
ε1N ′

εNε1
≤ 33

23
and

1

N ′
ε1N ′

εNε1
→ 1 dµ-almost everywhere.

With the weakL1 convergence (10.2) ofqε/Nε , these last two properties and the
product limit theorem of [3] imply that

(10.10)
qε

N ′
ε1N ′

εNε1Nε

→ q in w-L1
loc(dt;w-L1(σdµ dx)) .

By (10.8), the convergence (10.10) holds inw-L2(dµ dx dt). In particular, this
implies that〈〈

ξ
qε

N ′
ε1N ′

εNε1Nε

〉〉
→ 〈〈ξq〉〉 in w-L2(dx dt) asε → 0 .
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When this limit is combined with (10.7), it proves (10.3). �

11 Concluding Remarks

Perhaps the hardest problem left open in this paper is the mathematical justifi-
cation for the acoustic limit for all scalings for which its formal derivation holds,
that is to say, whenever the size of the fluctuations of number densityδε vanish in
the limit asε → 0. Although the role of the entropy dissipation is by now fairly
well understood in the derivation of hydrodynamic equations of parabolic type (as
shown by the essentially complete derivation of the Stokes limit), this role remains
to be fully assessed in hydrodynamic limits leading to hyperbolic equations. The
acoustic limit might be a possible starting point in this direction.

A somewhat less difficult open problem is the full mathematical justification for
the incompressible Navier-Stokes limit. This is the major goal of the program pro-
posed in [3] to tie the global theory of DiPerna-Lions for the Boltzmann equation
to the global theory of Leray for the Navier-Stokes system. One step in that di-
rection would be to remove the logarithmic term that appears in the Stokes scaling
condition (5.2), thereby justifying the Stokes limit for all scalings for which its for-
mal derivation holds, namely, wheneverδε satisfies (3.11). Of course, this gap will
certainly be bridged by any full justification of the incompressible Navier-Stokes
limit.

Otherwise, it would be interesting to know how the acoustic and Stokes limits
can be unified in the domain in which they are both known to be valid, that is,
whenδε satisfies the Stokes scaling condition (5.2). Based on formal arguments,
one expects the fluid fluctuations to be governed by what might be called thecom-
pressible Stokes system, which is the linearization about a homogeneous state of
the compressible Navier-Stokes system. After a suitable choice of units, in this
model the fluid fluctuations(ρε,uε, θε) satisfy

(11.1)

∂tρε + ∇x · uε = 0 ,

∂tuε + ∇x(ρε + θε) = εν∇x ·
[
∇xuε + (∇xuε)

T − 2

D
∇x · uε I

]
,

D

2
∂tθε + ∇x · uε = εκ1xθε ,

with initial data (ρ in,uin, θ in) ∈ L2(dx; R × R
D × R). Notice that unlike the

Stokes and acoustic systems, in this system the Knudsen numberε appears ex-
plicitly, whereby the solutions also depend onε even though the initial data does
not. It is a relatively easy exercise to show that solutions of this system converge
to those of the acoustic system (1.3) with the same initial data asε → 0. It is
only a bit harder to show that on time scales of order 1/ε, solutions of this system
converge (generally weakly) to those of the Stokes system (1.1)–(1.2) with initial
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data (
5uin,

D

D + 2
θ in − 2

D + 2
ρ in

)
asε → 0 .

It is therefore natural to ask whether this system governs the asymptotics of so-
lutions of the Boltzmann equation (3.4) uniformly over time scales ofo(ε−2) or
longer.
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