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ABSTRACT. – This paper establishes various asymptotic limits of the Vlasov–Poisson equation with
strong external magnetic field, some of which were announced in [14]. The so-called “guiding center
approximation” is proved in the 2D case with a constant magnetic field orthogonal to the plane of motion,
in various situations (noncollisional or weakly collisional). The 3D case is studied on the time scale of the
motion along the lines of the magnetic field, much shorter than that of the guiding center motion. We discuss
in particular the effect of nonconstant external magnetic fields. Elsevier, Paris

1. Introduction

Consider a plasma consisting of light particles of massm with individual electric chargeq
and of heavy particles of massm∗ � m with individual electric charge−q . For simplicity, we
assume that the heavy particles distribution is a uniform Maxwellian (even if collisions are taken
into account, the effect on heavy particles of collisions with light particles is neglected). We call
E the self-consistent electric field andf ≡ f (t, x, v) the number density of the light particles.
As usual,x is the position variable,v the velocity variable,t the time, and saying thatf is
the number density means that in an infinitesimal volume dx dv of the phase space centered at
(x, v), one can find, at timet , approximatelyf (t, x, v)dx dv particles. We assume in this paper
that the characteristic speed of these particles is small compared to the speed of lightc, so that
the Maxwell equation for the electro-magnetic field reduces to the electrostatic approximation,
i.e.,E is governed by the Poisson equation [6]. However, we assume that some external magnetic
fieldB is applied to this gas of particles, so that the Vlasov equation reads:

∂tf + v · ∇xf + q

m

(
E + v

c
∧B

)
· ∇vf = 0,(1.1)

while the Poisson equation is

E =−∇xV, −ε01xV = q
∫

RD

f dv − q
∫ ∫

TD×RD

f dx dv,(1.2)

f (0, x, v)= f in(x, v),(1.3)
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ε0 denoting as usual the dielectric permittivity of the vacuum. For simplicity, we assume
periodicity in the space variable:(x, v) ∈ TD ×RD . Here we setTD = RD/ZD , equipped with
the measure dx identified with the restriction to[0,1[D of the Lebesgue measure ofRD .

The subject matter of this paper is the study of the Vlasov–Poisson system (1.1)–(1.3) in the
limit as the intensity of the magnetic field|B| tends to infinity. Studying the effect of strong
magnetic fields on plasmas is of considerable importance for example in numerical simulations
of tokamaks. An introduction to the modelling of plasmas in strong magnetic fields can be found
in [16] and in [12]. A first picture of the effect of a strong external magnetic field in the Vlasov
equation (1.1) can be seen from the following:

Heuristic argument. If E andB are constant fields, the motion of each individual charged
particle in the electromagnetic field is given by:

x ′ = v, v′ = qE
m
+ v ∧ qB

cm
,(1.4)

so that, after projectingv on theB direction and on the plane orthogonal toB, one sees that:

x‖(t)= x‖(0)+ tv‖(0)+ t
2

2

qE ·B
m|B| ,(1.5a)

x⊥(t)= x⊥(0)+ ct E ∧B|B|2 +O

(
mc

q|B|
)
+O

(
c|E|
|B|

)
(1.5b)

(where the subscript‖ denotes the projection on theB direction while the⊥ subscript designates
that on the plane orthogonal toB). Hence one expects that, as the intensity of the magnetic field
tends to infinity, particles should be advected:
• with accelerationqE ·B/m|B| in the direction ofB;
• with the macroscopic velocitycE ∧B/|B|2 (henceforth called the drift velocity) on the

plane orthogonal toB.
In other words, particles move on helices with axis the direction of the magnetic field and

radius the so-called Larmor radius. The motion of the axis, referred to as “guiding center”
dynamics, is slow if measured in units of time defined by the reciprocal Larmor frequency (see
below).

Also, since the drift velocity is macroscopic, one should expect that, to leading order, the
limiting model of (1.1)–(1.3) for a strong external magnetic fieldB be kinetic in the direction
of the magnetic field and macroscopic (i.e., hydrodynamic) on a slower time scale in the plane
orthogonal to the magnetic field.

Scalings. Various time scales appear in the problem (1.1)–(1.3):
(a)Tc=mc/q|B|, the reciprocal cyclotron frequency (cf. [16, §52]);
(b) Tp = mu/q[E], the reciprocal plasma frequency (cf. [16, §31]), where[E] is the order

of magnitude of the electric field,u being given byε0[E]2= m[ρ]u2 where[ρ] is the average
macroscopic density;

(c) To, the macroscopic (observation) time scale. A first situation is the case where

To' Tp,
Tc

Tp
= ε� 1.(1.6)

In this case, the Vlasov–Poisson system can be put in dimensionless variables (which we denote
with the same letters as the original variables with a slight abuse of notations):
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∂tfε + v · ∇xfε +Eε · ∇vfε + 1

ε
v ∧B · ∇vfε = 0,(1.7a)

Eε =−∇xVε, −1xVε = ρε − ρε,(1.7b)

fε(0, x, v)= f in
ε (x, v),(1.7c)

with the notations

ρε =
∫
R3

fε dv, ρε =
∫
T3

ρε dx,(1.7d)

the problem being posed for(x, v) ∈ T3 × R3 and t > 0. A detailed mathematical study of
(1.7a–c) can be found in [10,11] mostly in the case of a constant magnetic field. Two cases of
nonconstant magnetic fields will be considered in the present paper; they may give rise to some
nontrivial geometric effects.

In the case of a constant magnetic field, the heuristic argument above indicates that in order to
observe the drift velocity, one should consider exclusively the motion on the plane orthogonal to
the magnetic field on a slower time scale thanTp, i.e., the 2D problem (1.1)–(1.3). This second
situation corresponds to

ε = Tc

Tp
= Tp

To
� 1.(1.8)

Under this scaling assumption, the Vlasov equation can be recast in dimensionless variables, as
follows:

ε∂tfε + v · ∇xfε +Eε · ∇vfε + 1

ε
v⊥ · ∇vfε = 0, t ∈R∗+, (x, v) ∈ T2×R2,(1.9)

with (v1, v2)
⊥ = (−v2, v1). The Vlasov equation is supplemented with (1.7b,c) with the

notations

ρε =
∫
R2

fε dv, ρε =
∫
T2

ρε dx.(1.7d′)

Finally, it may also be relevant to take into account collisions with the background gas of
heavy particles the effect of which is to slow down the lighter particles. A very crude model for
such collisions with a “thermal bath” is a Fokker–Planck linear operator

Lf (v)= σ1vf +∇v ·
(
b(v)f

)
,(1.10)

whereσ > 0 is the diffusion constant andb ≡ b(v) a friction term the form of which will be
discussed later.

In the collisional case, two more time scales are involved:
(d) Tf = u/[b], the characteristic time scale of the friction effect, where[b] is the average

intensity of the vector fieldsb,
(e)Td= u2/σ , the characteristic time scale of diffusion in the velocity space.
The two following conditions should be added to (1.8) in the collisional case;

To=O(Td), ε� Tf

To
= β−1� 1.(1.11)
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794 F. GOLSE, L. SAINT-RAYMOND

Later, we shall give a more precise condition onβ and relate it toε. We can already say that
observing the drift velocity is possible only if the friction on the background neutral particles is
a weak effect occurring at high velocities only.

In which case, the 2D Vlasov equation reads:

∂tfε + 1

ε
(v · ∇xfε +Eε · ∇vfε)+ 1

ε2v
⊥ · ∇vfε = Lε(fε), t ∈R∗+, (x, v) ∈ T2×R2,(1.12)

with the notation

Lε(fε)= σε1vfε + β(ε)∇v ·
(
b(v)fε

)
.(1.13)

2. Main results

We shall not dwell on the existence theory for all the models presented in Section 1. In the
noncollisional case, the theory of global weak solutions of the Vlasov–Poisson system is due to
Arsen’ev [1] and can be adapted without difficulty to (1.1)–(1.3) with a given, smooth magnetic
field. As regards the existence theory, the 2D collisional model (1.12) is very close to the Fokker–
Planck model considered by Degond in [7] and can be treated by essentially the same method.

2.A. The 2D results

This subsection is based on the scaling (1.8), except in the collisional case (i.e., for Theorem E
below) which uses both (1.8) and (1.11).

THEOREM A. – Letf in ∈L∞ ∩L1(T2×R2) satisfy

f in > 0 a.e. andE
(
f in)= ∫ ∫ 1

2|v|2f in(x, v)dx dv +
∫

1
2

∣∣E in(x)
∣∣2 dx <+∞.(2.1)

Let (fε)ε>0 be a family of weak solutions of(1.9), (1.7b,c). Then, there exists:
(a) a subsequence of(fε)ε>0 (still denoted by(fε));
(b) F ∈ L∞(R+;L∞ ∩L1(T2×R+)) such that

fε→ F
(
t, x, |v|) in L∞

(
R+ × T2×R2

)
weak-* asε→ 0;(2.2)

(c) a defect measureν ∈L∞(R+;M+(T2× S1)) 3 such that, for any functionφ ∈C0(S1)∫
R2

[
fε(t, x, v)− F

(
t, x, |v|)]φ( v

|v|
)
|v|2 dv→

∫
S1

φ(θ)dν(θ) asε→ 0(2.3)

in the sense of distributions. Moreover, the limiting density

ρ(t, x)=
∫
R2

F
(
t, x, |v|)dv(2.4)

satisfies: 4

3 We denote byM(X) the set of bounded measures onX and byM+(X) its positive cone.
4 ∂1 = ∂/∂x1 and∂2= ∂/∂x2.
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THE VLASOV–POISSON SYSTEM WITH STRONG MAGNETIC FIELD 795

∂tρ +∇x ·
(
ρE⊥

)= (∂2
1 − ∂2

2

)∫
S1

θ1θ2 dν(θ)+ ∂1∂2

∫
S1

(
θ2

2 − θ2
1

)
dν(θ),(2.5)

E =−∇xV, −1xV = ρ − ρ,(2.6)

ρ(0, x)=
∫
R2

f in dv, ρ =
∫
T2

ρ(0, x)dx.(2.7)

Notice that, without the right-hand side involving the defect measure, Eq. (2.5) is the vorticity
formulation of the 2D incompressible Euler equation. Indeed,ρ − ρ is analogous to the vorticity
field (which is scalar in 2D),E⊥ is analogous to the velocity field whileV is the corresponding
stream function (up to a sign).

In various physical situations, the constraint that thefε should be uniformly bounded inL∞
is not relevant (for example, it might be interesting to use the guiding center approximation in
cases where the distributionfε is of the form

fε(t, x, v)= ρε(t, x)δ
(
v − uε(t, x)

)
,(2.8)

for some macroscopic densityρε and bulk velocityuε(t, x)). While we have not been able to
directly deal with measure solutions of the Vlasov equation, we can however treat the case
of initial data converging to the form (2.8) – or more complicated variants of it – asε→ 0.
Specifically we have the:

THEOREM B. – Letf in
ε be a family of functions inL∞ ∩L1(T2×R2) satisfying

f in
ε > 0 a.e., lim

ε→0+
ε
∥∥f in
ε

∥∥
L∞x,v
= 0 and sup

ε

[∥∥f in
ε

∥∥
L1
x,v
+ E(f in

ε

)]
<+∞.(2.9)

Let (fε)ε>0 be a family of weak solutions of(1.9), (1.7b)with initial data

fε(0, x, v)= f in
ε (x, v).(2.10)

Then, conclusions(a)–(c)as well as(2.2)–(2.7)in TheoremA hold, with the only difference that
F ∈ L∞(R+;M+(T2×R+)), that the convergence holds inL∞(R+;M+(T2×R+)) weak-*,
and that the notation∇x · (ρE⊥) designates the second order distribution:

∂1∂2
(
E2

1 −E2
2

)+ (∂2
1 − ∂2

2

)
(E1E2).

Although Theorem B seems to be a harmless modification of Theorem A, one should keep
in mind that it uses a highly nontrivial compactness argument which is useless in the proof of
Theorem A, namely the key theorem in Delort’s proof [8] of global existence of weak solutions
to the 2D Euler in the case of vortex sheets. We recall Delort’s theorem in Section 3 below and
refer to [8] for its proof.

The appearance of a defect measure in the right-hand side of (2.5) is a definitely unpleasant
feature of the guiding center approximation. It is fairly easy to construct sequences of stationary
solutions of (1.9), (1.7b,c) with nonzero defect measures. In fact, more is true: it is likely that
the part of the defect measure coming from velocities of order 1/ε and higher evolves according
to the free dynamics corresponding to the electric field generated by particles slower that 1/εα ,
06 α < 1. In the next proposition, we substantiate this picture by studying the case of an initial
distribution of particles with velocities of order 1/ε.
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PROPOSITIONC. –Let (f in
ε ) be any family of nonnegative functions inC∞c (T2 × R2) such

that asε→ 0, ∫∫
T2×R2

|v|2f in
ε dx dv→ 1,

∥∥f in
ε

∥∥
L∞x,v
=O

(
ε3).(2.11)

Let (fε)ε>0 be the family of solutions of(1.9), (1.7b)with initial data given by(2.11). There does
not exist a subsequence of(fε)ε>0 for which the defect measureν predicted by TheoremA(c)
vanishes.

Actually, in the previous example, the defect measure is always positive, but is also invariant
under all transformations(t, x, θ) 7→ (t, x,Rθ) whereR runs through the group of orthogonal
transformations ofR2. Therefore, both terms∫

S1

θ1θ2 dν(θ) and
∫
S1

(
θ2

1 − θ2
2

)
dν(θ)

vanish, as can be seen by a straightforward change of variables. Such rotation invariant defect
measures do not affect Eq. (2.5) governing the limiting macroscopic densityρ. It is therefore a
natural question to find criteria ensuring that the defect measure is rotation invariant. Theorem
D below gives one such sufficient condition. Unfortunately, this condition cannot be directly
verified on the initial data; however, the second part of Theorem D shows that this sufficient
condition is not far from being verified for general initial data.

THEOREM D. – Let f in ∈ L∞ ∩ L1(T2 × R2) satisfy(2.1); let (fε)ε>0 be a family of weak
solutions of(1.9), (1.7b,c).

(a) Assume that there existsα > 2 such that:∫ ∫
|v|αf in dx dv <+∞.(2.12)

The defect measureν predicted by TheoremA is invariant under all transformations
of the form (t, x, θ) 7→ (t, x,Rθ) where R runs through the group of orthogonal
transformations ofR2 if and only if, asε→ 0,

ε∇x ·
∫
v|v|2fε dv→ 0 in D′

(
R∗+ × T2).

(In particular, ν is rotation invariant if

T∫
0

∫ ∫
|v|3fε dt dx dv = o

(
1

ε

)
(2.13)

for all T > 0).
(b) Assume that ∫ ∫

|v|3f in dx dv <+∞.

TOME 78 – 1999 –N◦ 8



THE VLASOV–POISSON SYSTEM WITH STRONG MAGNETIC FIELD 797

Then, for allT > 0,

T∫
0

∫ ∫
|v|3fε dt dx dv =O

(√| logε|
ε

)
.(2.13′)

Estimate (2.13′) shows that (2.13) does not fail by much if it does; more precisely it indicates
that the possible loss of energy and effective appearance of a defect measure in the right-hand
side of (2.5) depends on the behavior of the particles that have velocities of order 1/ε.

Another situation where no defect measure appears in the limiting process is the collisional
model (1.12).

THEOREM E. –Letf in ∈L∞ ∩L1(T2×R2) satisfying(2.1). Assume thatb is given by

b(v)= η(|v|2)v, η ∈ C∞(R+),(2.14)

with

06 η 6 1, η|[0,R] = 0, η|[R+1,+∞[ = 1, ‖η′‖L∞ 6 2.(2.15)

and consider the Fokker–Planck Eq.(1.12)with Fokker–Planck collision operator(1.13)such
that

06 σε =O(1), β(ε)= log| logε|(2.16)

supplemented with the Poisson equation(1.7b)and the initial condition(1.7c). There exists a
family (fε)ε>0 of weak solutions of(1.12), (1.7b,c)for which points(a)–(c)as well as(2.2)–
(2.7) in TheoremA hold, except thatF ∈ L∞(R+;M+(T2×R+)) and the convergence holds
in L∞(R+;M(T2×R+)) weak-*. In addition, the defect measureν = 0 in (2.3)and(2.5).

Theorems A, B and E were announced in [14]. Theorems A and B are proved in Section 3
while Section 4 contains the proof of Theorem E. The class of examples shown in Proposition C
is discussed in Section 5. The proof of Theorem D is given in Section 6.

A result analogous to Theorems A, B or E but local in time and valid only for smooth solutions
has been proved by Grenier [15] on the pressureless Euler–Poisson system, with a slightly
different but equivalent scaling. Formally, Grenier’s result corresponds to the situation studied
in Theorems A, B and E but in the case wherefε is of the form (2.8) with bulk velocity of the
form uε(t, x)= εUε(t, x).

Recently, Brenier [4] proved that the bulk velocity fields of solutions of the gyrokinetic
Vlasov–Poisson system converge to dissipative solutions of the 2D Euler equation (see [17,
p. 153], where this notion is introduced). This result supersedes that in [15], for any smooth
solution of the Euler equation is a dissipative solution. Since it is unknown whether dissipative
solutions of the Euler equation are solutions in the sense of distributions, Brenier’s result is
disjoint from Theorems A, B or E above for all initial data such that the solution of the limiting
2D Euler equation is not smooth.

2.B. The 3D results

In this subsection, we give two elementary results which complete the picture proposed in [10,
11]. Both results are based on the scaling assumption (1.6).

Our first result concerns the case of a magnetic field of constant direction but variable strength.
We shall use the following notations: first, as an extension of the 2D notation,v⊥ = (−v2, v1,0);
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798 F. GOLSE, L. SAINT-RAYMOND

also

〈φ〉(x, r, v3)= 1

2π

∫
S1

φ(x, rω, v3)dω.(2.16)

THEOREM F. –Letf in ∈ L∞ ∩L1(T3×R3) satisfy(2.1). Letb ∈ C1(T2) such thatb(x) 6= 0
for all x ∈ T2 and let(fε) be a family of weak solutions of

∂tfε + v · ∇xfε +Eε · ∇vfε + 1

ε
b(x1, x2)v

⊥ · ∇vfε = 0, t ∈R∗+, (x, v) ∈ T3×R3,(2.17)

coupled to the Poisson equation(1.7b)and with initial condition(1.7c). Then, the family(fε) is
relatively compact inL∞(R+ × T3×R3) weak-* and any of its limit points asε→ 0 is of the
form

f ≡ f (t, x,√v2
1 + v2

2, v3
)
,

wheref solves

∂tf + v3∂x3f +E3∂v3f = 0, t, r > 0, x ∈ T3, v3 ∈R;(2.18a)

E =−∇xV, −1xV = ρ − ρ,(2.18b)

f (0, x, r, v3)=
〈
f in〉(x, r, v3), t, r > 0, x ∈ T3, v3 ∈R.(2.18c)

Our second and last 3D result concerns the case of a magnetic field of constant strength but
variable direction. To be consistent with Maxwell’s equation, the magnetic fieldB should also be
divergence-free. However, there exist many divergence-free fields of constant length: pick any

2D divergence-free fieldB⊥ ≡ B⊥(x1, x2) ∈ L∞(T2) and letB3 =
√

4‖B⊥‖2L∞ − |B⊥|2: one
easily check that the vector fieldB = (B⊥,B3) has constant length 2|B⊥| and is divergence free.

DefineR(B(x), θ) the rotation of an angleθ around the oriented axis of directionB(x). Define
then:

gε(t, x,w)= fε
(
t, x,R(x,−t/ε)w).(2.19)

To simplify notations, we shall also denote, for allφ ≡ φ(x,w) and all vector fieldV onT3
x×R3

w

∇V φ = V · ∇xφ.(2.20)

THEOREM G. –Letf in ∈ L∞ ∩L1(T3×R3) satisfy(2.1). LetB ∈C1(T3) satisfy∇x ·B = 0
and |B| ≡ 1; and let (fε) be a family of weak solutions of(1.7a–c). Then, the family(gε) is
relatively compact inL∞(R+ × T3×R3) and any of its limit pointsg, asε→ 0, satisfies:

∂tg + (w ·B)B · ∇xg + (E ·B)B · ∇wg
= 1

2w ∧
[
3(w ·B)(B ∧∇BB)−B ∧∇wB −∇B∧wB

] · ∇wg,
E =∇x1−1

x

(∫
R3

g dw−
∫ ∫

T3×R3

f in dx dv

)
,

g(0, x,w)= f in(x,w), (x,w) ∈ T3×R3.

Theorems F and G are proved in Section 8.
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3. Proofs of Theorems A and B

Throughout this paper, we shall need the following elementary interpolation result, which we
record in the form of a lemma.

LEMMA 3.1. –Let f ≡ f (x, v) be an a.e. nonnegative measurable function onTd × Rd .
Then, for all06 k 6m,

∥∥∥∥∫ f |v|k dv

∥∥∥∥
L(m+d)/(d+k)

6 C(d, k)‖f ‖
m−k
m+d
L∞

(∫ ∫
f |v|m dv dx

) d+k
m+d

,(3.1)

whereC(d, k) is a positive constant depending only on the dimensiond and onk.

Proof. –One has, for a.e.x ∈ Td∫
f |v|k dv =

∫
|v|6R

f |v|k dv+
∫
|v|>R

f |v|k dv

6 ‖f ‖L∞ |S
d−1|
k + d R

k+d + 1

Rm−k

∫
f |v|m dv.(3.2)

ChooseR = (∫ f |v|m dv/‖f ‖L∞)1/(m+d); (3.2) gives

∫
f |v|k dv 6

(
1+ |S

d−1|
k + d

)
‖f ‖

m−k
m+d
L∞

(∫
f |v|m dv

) d+k
m+d ;(3.3)

raising each side of (3.3) to them+d
k+d -th power and integrating inx gives the announced result

with

C(d, k)=
(

1+ |S
d−1|
k + d

)
. 2

Let (f in) ∈L∞ ∩L1(T2×R2) satisfy

f in > 0 a.e. and E
(
f in)<+∞.(3.4)

For anyε > 0, there exists a weak solutionfε to the Cauchy problem (1.9), (1.7b,c), which
satisfies (1.9), (1.7b,c) in the sense of distributions as well as

fε > 0 a.e., ∀t > 0
∫ ∫

fε(t, x, v)dx dv =
∫ ∫

f in dx dv, ‖fε‖L∞ = ‖f in‖L∞,(3.5)

and the energy inequality:

E
(
fε(t, ·, ·)

)
6 E

(
f in) for all t > 0.(3.6)

In particular, (3.5) implies thatρε(t) = ρε(0) for all t > 0. All the statements above can be
proved easily by the same methods as in [1,9].

The first step in the proof of Theorems A and B is to cast the local conservation laws in a form
that is convenient to take limits asε→ 0. This is done in:
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LEMMA 3.2. –Let (f in
ε ) be a family of functions inL∞∩L1(T2×R2) satisfying(3.4)for all

ε > 0. Then

∂tρε +∇x ·
(
ρεE

⊥
ε

)
= (∂2

1 − ∂2
2

)∫
R2

v1v2fε dv+ ∂1∂2

∫
R2

(
v2

2 − v2
1

)
fε dv+ ε∂t∇x ·

∫
R2

v⊥fε dv.(3.7)

Proof. –For eachε > 0, fε solves (1.9) in the sense of distributions and belongs to
L∞(R+;L1(T2 × R2; dx(1+ |v|2)dv)) by the energy inequality (3.6). By the same token,
Eε ∈ L∞(R+;L2(T2)). Next we test (1.9) on functions of the formφ0(t, x)χR(|v|) and
φ0(t, x)χR(|v|)v with φ0 ∈ C∞c (R+ × T2) and χR ∈ C∞(R+) such thatχR ≡ 1 on [0,R],
χR ≡ 0 on [2R,+∞[, 0 6 χR 6 1 and ‖χR‖L∞ 6 2/R. Letting R → +∞, one gets, by
dominated convergence, the relations

∂tρε + 1

ε
∇x ·

∫
vfε dv = 0,(3.8)

∂t

∫
vfε dv + 1

ε
∇x ·

∫
v⊗ vfε dv − 1

ε
ρεEε − 1

ε2

∫
v⊥fε dv = 0(3.9)

which hold in the distribution sense onR∗+ ×T2 and are respectively the continuity equation and
the momentum equation. Applying the rotationv 7→ v⊥ to (3.9) after multiplying it byε, and
eliminating 1

ε

∫
vfε dv between the resulting equation and (3.8) leads to (3.7).2

The following formula will be fundamental in the proof of Theorem B: the vector fieldρεE
⊥
ε

can be recast as

(ρε − ρε)E⊥ε =
(1

2∂2
(
E2

1ε −E2
2ε

)− ∂1(E1εE2ε); 1
2∂1
(
E2

1ε −E2
2ε

)+ ∂2(E1εE2ε)
)
,(3.10)

by using the formulas

∇x ·Eε = ρε − ρε, ∇x ·E⊥ε = 0.(3.11)

(The second equality above holds becauseEε is the gradient of the electrostatic potential).
The second step is to establish the asymptotic form of the number densityfε asε→ 0.

LEMMA 3.3. –Let (f in
ε ) be a family of functions inL∞ ∩L1(T2×R2) satisfying(2.9), and

let (fε) be a family of weak solutions of(1.9), (1.7b)with initial data (2.10). Then(fε) is
relatively compact inL∞(R+;M(T2×R2)) weak-* and any of its limit point is invariant under
all transformations of the form

(t, x, v) 7→ (t, x,Rv),(3.12)

whereR runs through the group of orthogonal transforms ofR2.

In other words, any weak-* limit point of(fε) is radial in the velocity variable.

Proof. –Multiplying (1.9) byε2 leads to

v⊥ · ∇vfε =−∂t
(
ε2fε

)−∇x · (εvfε)−∇v(εEεfε).(3.13)

By the energy inequality (3.6), the family(fε) is bounded inL∞(R+;L1(dx(1+ |v|2)dv)) so
that the first two terms in the right-hand side of (3.13) converge to zero in the distribution sense.
The Maximum Principle (3.5) and theL∞ estimate in (2.9) imply that, asε→ 0, εfε→ 0 in
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L∞(R+ × T2 × R2) while the family (Eε) is uniformly bounded inL∞(R+;L2(T2)) by the
energy estimate (3.6). Therefore (3.13) implies that

v⊥ · ∇vfε→ 0 inD′
(
R∗+ × T2×R2).(3.14)

Next, the family(fε) is bounded inL∞(R+;L1(dx(1+ |v|2)dv) and is therefore relatively
compact inL∞(R+;M(T2× R2)) weak-*; letf ∈ L∞(R+;M(T2×R2)) be any of its limit
point. It follows from (3.14) that

v⊥ · ∇vf = 0.(3.15)

Since the operatorv⊥ · ∇v generates the group of transformations (3.12), any element of the
nullspace of this operator must be invariant under this group, which establishes our claim.2

A last but important preparation is the following lemma, which controls the oscillations of the
macroscopic density in terms of the time variable only.

LEMMA 3.4. –Let (f in
ε ) be a family of functions inL∞ ∩L1(T2×R2) satisfying(2.9), and

let (fε) be a family of weak solutions of(1.9), (1.7b)with initial data(2.10). Then, the associated
family (ρε) is bounded inC1/2(R+;W−2,1(T2)).

Proof. –Define

πε = ρε − ε∇x ·
∫
v⊥fε dv;(3.16)

by Lemma 3.2,

∂tπε =−∇x ·
(
ρεE

⊥
ε

)+ (∂2
1 − ∂2

2

)∫
R2

v1v2fε dv+ ∂1∂2

∫
R2

(
v2

2 − v2
1

)
fε dv.(3.17)

By the energy estimate (3.6), the family(Eε) is bounded inL∞(R+;L2(T2)); hence, using
formula (3.10) shows that there existsC > 0 such that, for allε > 0,∥∥∇x · (ρεE⊥ε )∥∥L∞(R+;W−2,1(T2))

6C‖Eε‖2L∞(R+;L2(T2))
6 C sup

ε
E
(
f in
ε

)
.(3.18)

Applying again the energy estimate (3.6) to the last two terms in the right-hand side of (3.17)
shows that

∂tπε is bounded inL∞
(
R+;W−2,1(T2)).(3.19)

The formulas (3.9), (3.10) shows that there existsC > 0 such that, for allε > 0 and all 06 t 6 t ′

ε

∥∥∥∥∫ v⊥fε(t ′, x, v)dv−
∫
v⊥fε(t, x, v)dv

∥∥∥∥
W−1,1(T2)

6 C(t ′ − t)
[
‖Eε‖2L∞(R+;L2(T2))

+
(

1+ 1

ε

)∥∥∥∥∫ (1+ |v|2)fε dv

∥∥∥∥
L∞(R+;L1(T2))

]
6 C sup

ε>0

(1
2

∥∥f in
ε

∥∥
L1 + E

(
f in
ε

))
(t ′ − t)

(
2+ 2

ε

)
.(3.20)

Set

A= sup
ε>0

( 1
2

∥∥f in
ε

∥∥
L1 + E

(
f in
ε

))
.
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Here we assume that 0< ε < 1; indeed, it is only the limit asε→ 0 which is of interest to us. If
t ′ − t > ε2, we estimate

ε

∥∥∥∥∫ v⊥fε(t ′, x, v)dv−
∫
v⊥fε(t, x, v)dv

∥∥∥∥
W−1,1(T2)

6 ε
∥∥∥∥∫ v⊥fε(t ′, x, v)dv

∥∥∥∥
L1(T2)

+ ε
∥∥∥∥∫ v⊥fε(t, x, v)dv

∥∥∥∥
L1(T2)

6 2Aε6 2A
√
t ′ − t;(3.21)

if on the other handt ′ − t < ε2, one has, by (3.20)

ε

∥∥∥∥∫ v⊥fε(t ′x, v)dv−
∫
v⊥fε(t, x, v)dv

∥∥∥∥
W−1,1(T2)

6 CA(t ′ − t)
(

2+ 2√
t ′ − t

)
6 4CA

√
t ′ − t .(3.22)

Combining (3.21) and (3.22) shows that, for allε ∈]0,1[ andt ′ > t > 0 we have:

ε

∥∥∥∥∫ v⊥fε(t ′x, v)dv−
∫
v⊥fε(t, x, v)dv

∥∥∥∥
W−1,1(T2)

6 (2+ 4C)A
√
t ′ − t(3.23)

which, coupled to (3.19) and the decomposition (3.16) establishes our claim.2
Equipped with the lemmas above, we can now proceed to prove Theorems A and B.

Proof of Theorem A. –Consider a subsequence of(fε), still denoted by(fε) for simplicity,
converging tof in L∞(R+;M(T2 × R2)) weak-* as in Lemma 3.3 above. By the energy
inequality (3.6), the sequence(|v|2fε) is bounded inL∞(R+;M(T2×R2)). Thus the sequence

µε =
∞∫

0

r2fε(t, x, rθ)r dr(3.24)

of push-forwards of fε under the map (t, x, v) 7→ (t, x, v/|v|) is bounded in
L∞(R+;M(T2× S1)). Hence, there exists a subsequence of(fε) denoted by(fε′) such that
µε′ converges toµ in L∞(R+;M(T2× S1)) weak-*. We next define the defect measure associ-
ated to the subsequence(fε′) by:

〈ν;ψ〉 =
∫

R+×T2×S1

ψ(t, x, θ)dµ(t, x, θ)−
∫

R+×T2×R2

ψ

(
t, x,

v

|v|2
)
|v|2 df (t, x, v)(3.25)

for everyψ ∈ C0
c (R+ × T2× S1).

Let R > 0, χ ∈ C0
c (R+) be such thatχ |[0,1] ≡ 1, χ |[2,+∞[ ≡ 0 and 06 χ 6 1; defineχR by

χR(v)= χ(|v|/R). For every nonnegative functionψ ∈ C0
c (R+ × T2× S1), and allε′ > 0,〈|v|2fε;ψ(t, x, v/|v|)χR(v)〉6 〈|v|2fε;ψ(t, x, v/|v|)〉= 〈µε;ψ〉;

taking limits asε′ → 0 gives〈|v|2f ;ψ(t, x, v/|v|)χR(v)〉6 〈µ;φ〉.(3.26)
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LettingR→+∞ in (3.26) proves thatν is a positive measure.
Specializing formula (3.7) to the subsequence(fε′) and lettingε′ → 0 shows that the right-

hand side of (3.7) converges to(
∂2

1 − ∂2
2

)∫
R2

v1v2f +
(
∂2

1 − ∂2
2

)∫
S1

θ1θ2 dν(θ)+ ∂1∂2

∫
R2

(
v2

2 − v2
1

)
f

+ ∂1∂2

∫
S1

(
θ2

2 − θ2
1

)
dν(θ)(3.27)

in the sense of distributions. By Lemma 3.3,f is radial in the velocity variable; therefore∫
R2

v1v2f =
∫
R2

(
v2

2 − v2
1

)
f = 0.(3.28)

It remains to find the limit ofρε′Eε′ as ε′ → 0. By the energy inequality (3.6),(Eε) is
bounded inL∞(R+;L2(T2)). By the Maximum Principle (3.5), the energy inequality (3.6) and
Lemma 3.1 withk = 0 andm= 2, we obtain:

‖ρε‖L∞(R+;L2(T2)) 6
√

2C(2,0)
∥∥f in

∥∥1/2
L∞E

(
f in)1/2.(3.29)

SinceEε =∇x1−1
x (ρε − ρε), we conclude that(Eε) is bounded inL∞(R+;H 1(T2)). Letψ ∈

C∞c (R+ × T2); by Lemma 3.4,(ψρε) is bounded in, say,C1/2(R+;H−4(T2)) (by the Sobolev
embedding) as well asL∞(R+;L2(T2)) by (3.29); thus it is bounded inC1/16(R+;H−1/2(T 2))

by a standard interpolation argument. Since(ψρε) has support included in the (compact) support
of ψ , one sees that(ψρε) is relatively compact inL∞(R+;H−1(T2)), so that

ψρε′Eε′ →ψρE in L∞
(
R+;M

(
T2)) weak-*,(3.30)

where

ρ(t, x)=
∫
R2
v

f (t, x, v)dv, E =∇x1−1
x ρ.(3.31)

The convergences (3.27) and (3.30), together with formula (3.31) establish Theorem A.2
In the proof of Theorem B, we use the following compactness argument due to Delort; we

recall that it is the key argument in the proof of global existence of weak solutions to the 2D
incompressible Euler equation in the case of vortex sheets: see [8].

THEOREM(see Delort [8], Theorem 1.2.1). –LetT > 0 and(ωε)0<ε<1 be a family of functions
in L∞([−T ,T ],C∞(T2)) which can be decomposed asωε = ω′ε+ω′′ε and satisfies the following
assumptions:

(a) the family (ωε) is equicontinuous in[−T ,T ] with values inD′(T2)) and such that∫
T2 ω(t, x)dx = 0;

(b) the family(ω′ε) is bounded inL∞([−T ,T ],L1 ∩ H−1(T2)) and, for each0< ε < 1,
ωε > 0;

(c) the family(ω′′ε ) is bounded inL∞([−T ,T ],L1 ∩Lp(T2)) for somep > 1;
(d) setting vε = ∇⊥x 1−1

x ωε , the family (vε) converges tov as ε → 0+ in the sense of
distributions on]−T ,T [×T2.
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Thenv ∈L∞([−T ,T ];L2(T2)) and

v2
1ε − v2

2ε→ v2
1 − v2

2 and v1εv2ε→ v1v2

in the sense of distributions on]−T ,T [×T2.

Proof of Theorem B. –The part of the proof of Theorem A leading to the existence of the defect
measureν applies verbatim in the present case. The only difference lies in the convergence of
the nonlinear terms∇x · (ρεE⊥ε ) in (3.7). This is where Delort’s result is needed. We first extend
ρε andEε respectively by

∫
f in
ε dv andE in

ε for t 6 0 and abuse the notationρε andEε for the
resulting extensions. We must regularize the families(Eε) and(ρε) in thex-variable in order to
comply with the first assumption in Delort’s theorem. For allε ∈]0,1[ there existsδ(ε) > 0 such
that ∥∥eδ(ε)1xEε −Eε

∥∥
L∞([−T ,T ];L2(T2))

6 ε.(3.32)

Set

vε = eδ(ε)1xEε.(3.33)

Then the family(ωε) defined byωε =∇⊥ · vε can, for allε, be decomposed as

ωε = ω′ε +ω′′ε ,(3.34)

with

ω′ε = eδ(ε)1xρε(3.35)

and

ω′′ε =−ρε =
∫∫

T2×R2

f in
ε dx dv.(3.36)

By Lemma 3.4, the families(ω′ε) and(ω′′ε ) satisfy assumption (a) in Delort’s theorem; by (3.5)
and (3.6), the family(ρε) satisfies assumption (b) and so does(ω′ε), by the positivity of the heat
semigroup. By (2.9), the family(ω′′ε ) satisfies assumption (c). Finally, modulo extraction of a
subsequence, the family(Eε) converges toE inL∞([−T ,T ];L2(T2))weak-* asε→ 0; thus the
family (vε) converges toE⊥ in the sense of distributions asε→ 0 and satisfies assumption (d).
Therefore,

v2
1ε − v2

2ε→E2
2 −E2

1 and v1εv2ε→−E1E2(3.37)

in the sense of distributions on]−T ,T [×T2 asε→ 0. By (3.32), one also has

E2
1ε −E2

2ε→E2
2 −E2

1 and E1εE2ε→−E1E2(3.38)

in the sense of distributions on]−T ,T [×T2 asε→ 0. Using the obvious formula

∇x ·
(
ρεE

⊥
ε

)=∇x · [(ρε − ρε)E⊥ε ](3.39)

together with (3.10), (3.37) shows that, after extracting a subsequence if necessary, we have:

∇x ·
(
ρεE

⊥
ε

)→∇x · (ρE⊥),(3.40)

in the sense of distributions on]−T ,T [×T2 as ε → 0. This completes the proof of
Theorem B. 2
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4. Proof of Theorem E

We first address briefly the question of global existence of a weak solution of the collisional
model (1.12), (1.7b,c) for fixedε > 0. The method is essentially the same as in [7]: the only
difference between (1.12) and the Vlasov–Fokker–Planck equation treated in [7] is that [7] deals
with the case without external magnetic field and where the friction termb ≡ 0 in the Fokker–
Planck operator (1.13). Also, [7] focuses on smooth solutions.

Here we first regularize and truncate the initial data for (1.12). Letψ ∈ C∞c (R2) such that
ψ(x)= 1 for |x|6 1,ψ(x)= 0 for |x|> 2 and 06 ψ 6 1. For allδ > 0, letψδ(v)=ψ(δv). In
the problem (1.12), (1.7b), we replace the initial data (1.7c) by

f in
δ =ψδeδ1xf in.(4.1)

By the trivial amplification of Degond’s results in [7] recalled above, (1.12), (1.7b), (4.1) has a
unique global smooth solutionf δε .

These smooth solutions satisfy the following estimates:∫ ∫
f δε (t, x, v)dx dv =

∫ ∫
f in
δ dx dv =mδ,

06 f δε (t, x, v)6
∥∥f in

∥∥
L∞etβ(ε),(4.2)

E
(
f δε (t, ·, ·)

)+ β(ε) t∫
0

∫ ∫
η
(|v|2)|v|2f δε (s, x, v)ds dx dv 6 E

(
f in)+ 2mδσεt.

We then remove the regularization and the truncations of the initial data and pass to the limit after
extracting subsequences in (1.12) keepingε fixed, based on the a priori estimates (4.2) only.

The only nontrivial term is the nonlinear one, i.e.,f δε E
δ
ε . As in the proof of Theorem A, we

use theL∞ estimate and the energy inequality in (4.2), together with Lemma 3.1 withk = 0 and
m= 2 to show that the family(Eδε) is bounded inL∞loc(R+;H 1(T2)) for ε > 0 fixed, asδ→ 0.
On the other hand, the continuity equation

∂tρ
δ
ε +∇x ·

∫
vf δε dv = 0(4.3)

implies that the family(ρδε ) is bounded inW1,∞
loc (R+;W−1,1(T2)) for ε > 0 fixed, asδ→ 0,

and also inW1,∞
loc (R+;H−3(T2)) by Sobolev embedding and duality. Thus, the family(Eδε) is

bounded inW1,∞
loc (R+;H−2(R2)) for ε > 0 fixed, asδ→ 0. It is therefore relatively compact

in L∞loc(R+;L2(T2)). This shows that, iff δε → fε andEδε → Eε in the sense of distributions
on R+ × T2 × R2 as δ→ 0 while ε > 0 is kept fixed, a situation to which the general case
reduces after extraction of subsequences, thenf δε E

δ
ε → fεEε in the sense of distributions on

R+ × T2×R2.
By this procedure, we have constructed weak solutions of (1.12), (1.7b,c) which satisfy∫ ∫

fε(t, x, v)dx dv =
∫ ∫

f in dx dv =m,(4.4)

06 fε(t, x, v)6
∥∥f in

∥∥
L∞etβ(ε),(4.5)

E
(
fε(t, ·, ·)

)+ β(ε) t∫
0

∫ ∫
η
(|v|2)|v|2fε(s, x, v)ds dx dv 6 E

(
f in)+ 2mσεt,(4.6)
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since the estimates (4.2) are obviously uniform inδ.
The proof of Theorem E follows then the same lines as that of Theorem B. Notice, that one

does not have a uniform bound on‖fε‖L∞ , which explains why the proof of Theorem B (and
not simply that of Theorem A) is needed.

The Maximum Principle applied to the Fokker–Planck equation (1.12), together with
condition (2.16) onβ(ε), shows that, for allT > 0,

‖fε‖L∞([0,T ]×T2×R2) 6
∥∥f in

∥∥
L∞(T2×R2)

| logε|T = o

(
1

ε

)
.(4.7)

Henceεfε→ 0 in L∞([0, T ] × T2 × R2), which is crucial in the proof of Lemma 3.3 (more
specifically in that of (3.14)). In any case, Theorem B applies to this case for allT > 0.

The only remaining task is to prove that the defect measureν predicted by Theorem B
vanishes. By (4.6), again for some fixedT > 0, we have:

T∫
0

∫ ∫
|v|>R

|v|2fε(s, x, v)ds dx dv 6 E(f
in)+ 2mσεT

β(ε)
→ 0(4.8)

asε→ 0. We keep the notations of the part of the proof of Theorem A before formula (3.25).
Let χ ∈ C0

c (R+) be such that 06 χ 6 1,χ ≡ 1 on[0,R] andχ ≡ 0 on[2R,+∞[ , then

µε −
∞∫

0

χ(r)r2fε(t, x, rθ)r dr 6
∞∫
R

r2fε(t, x, rθ)r dr→ 0(4.9)

in L1([0, T ];L1(T2× S1)). Restricting (4.9) to subsequences(fε′) and(µε′) as in the proof of
Theorem A, gives, in the limit asε′ → 0

µ=
∫

R+

χ
(|v|)|v|2f (t, x, v)|v|d|v|.(4.10)

By (4.8),f is supported inR+ × T2×B(0,R); thus (4.10) implies that

µ=
∫

R+

|v|2f (t, x, v)|v|d|v|.(4.11)

By the rotation invariance off (see Lemma 3.3) and the definition (3.25) of the defect
measureν, (4.11) impliesν = 0. This concludes the proof.2

5. Proof of Proposition C

To begin with, for eachε > 0,f in
ε ∈ C∞c (T2×R2). Therefore, the problem (1.9), (1.7b,c) has

a unique classical solutionfε onR+ ×T2×R2, as can be seen from a trivial modification of the
arguments in [20] (adapted to treat the case of a constant external magnetic field). In particular,
the energy inequality (3.6) becomes the equality:

E
(
fε(t, ·, ·)

)= E(f in
ε

)
, ∀t > 0, ε > 0.(5.1)
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This remark is essential in the sequel.

LEMMA 5.1. –Under the assumptions of Proposition C, there existsC >C′ > 0 such that

C′ 6 E
(
f in
ε

)
6 C

(
1+ ε3), ‖ρε‖L∞t (L2

x)
6Cε3/2, ‖Eε‖L∞t (L2

x)
6 Cε3/2.(5.2)

Proof. –By the interpolation inequality in Lemma 3.1 and the inequalities (2.11), one has the
estimate‖ρε|t=0‖L2

x
=O(ε3/2). Hence∥∥Eε|t=0

∥∥
L2
x
= ∥∥∇x1−1

x (ρε|t=0− ρε)
∥∥
L2
x
=O

(
ε3/2).(5.3)

With the first statement in (2.11), this gives the estimate on the total energy at timet = 0 in (5.2).
The next step is to propagate the various estimates tot > 0. The Maximum Principle (3.5)

shows that

‖fε‖L∞t,x,v =O
(
ε3).(5.4)

Using the interpolation inequality in Lemma 3.1, the estimate (5.4), the energy conservation (5.1)
and the first estimate in (5.2) shows that

‖ρε‖L∞t (L2
x)
6Cst ‖fε‖1/2L∞t,x,v

( ∫∫
T2×R2

|v|2fε dx dv

)1/2

=O
(
ε3/2).(5.5)

This proves the second estimate in (5.2); proceeding as in (5.3) gives the last estimate
in (5.2). 2

With these estimates, it is easy to prove that the defect measure associated to any subsequence
can not vanish. Indeed, the energy conservation (5.1) and the estimates (5.2) show that for all
ε > 0 ∫∫

T2×R2

|v|2fε(t, x, v)dx dv = 2E
(
f in
ε

)− ∫
T2

∣∣Eε(t, x)∣∣2 dx > C′ −O
(
ε3).(5.6)

Let (fε′) be any subsequence of(fε) such thatµε′ (defined in (3.24)) converges in
L∞(R+;M(T2× S1)) weak-* to some limitµ; by (5.6)∫

T2×S1

dµ(t, x, θ)= lim
ε′→0

∫∫
T2×R2

|v|2fε(t, x, v)dx dv > C′.(5.7)

On the other hand, (5.4) shows that the weak-* limit of any subsequence of(fε) is f ≡ 0.
Therefore, the definition (3.25) shows thatν 6= 0. 2

6. Proof of Theorem D

Proof of (a). –Multiplying (1.9) byε2|v|2 leads to:

v⊥ · ∇v
(|v|2fε)=−∂t (ε2|v|2fε

)−∇x · (εv|v|2fε)−∇v · (εEε|v|2fε)+ 2ε(Eε · v)fε.(6.1)

It is convenient to use polar coordinates in the velocity space: setv = (r cosθ, r sinθ); in these
coordinates, as noticed in the proof of Lemma 3.3,v⊥ · ∇v = ∂θ .
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Going back to the proof of Lemma 3.3, we see that

∂θν(t, x, θ)= lim
ε′→0

+∞∫
0

∂θfε′
(
t, x, r(cosθ,sinθ)

)
r3 dr

= lim
ε→0

+∞∫
0

v⊥ · ∇v
(|v|2fε′(t, x, v))|v|d|v|(6.2)

for subsequences(fε′) as considered in the proof of Theorem A before formula (3.25).
By the energy inequality (3.6), the first term in the right-hand side of (6.1) converges to 0:

ε

+∞∫
0

|v|2fε′
(
t, x, |v|(cosθ,sinθ)

)|v|d|v| → 0 inL∞
(
R+;L1(T2

x × S1
θ

))
.(6.3)

By theL∞ bound (3.5), the energy inequality (3.6) and Lemma 3.1,

ρε =
∫
fε dv is uniformly bounded inL∞

(
R+,L2(T2))(6.4)

and ∫
vfε dv is uniformly bounded inL∞

(
R+,L4/3(T2)).(6.5)

By (6.4), the energy inequality (3.6) and Sobolev embedding

∀p ∈ [2,+∞[ , Eε is uniformly bounded inL∞
(
R+,Lp

(
T2)).(6.6)

Settingp = 4, we see that:

εEε ·
∞∫

0

|v|(cosθ,sinθ)fε|v|d|v| → 0 inL∞
(
R+,L1(T2

x × S1
θ

))
,(6.7)

so that the last term in the right-hand side of (6.1) also converges to 0.
The equivalence annouced in Theorem D(a) is established if we prove that the third term in the

right-hand side of (6.1) also converges to 0. The same method as above does not apply. Indeed
the second moment

∫ |v|2fε dv is only bounded inL1
x , which would require aL∞x bound onEε.

Unfortunately, we only have aH 1
x bound onEε by (6.4), and since we are in the limiting case

of Sobolev injection, we cannot conclude by this method. Instead, we consider moments of the
solution of the Vlasov equation of order slightly higher than 2:

LEMMA 6.1. –Letf in ∈ L∞ ∩L1(T2×R2) satisfy(2.1)and(2.12), and let(fε) be a family
of weak solutions of(1.9), (1.7b,c). Then, for allβ ∈ [0, α] ∩ [0,3[ , the family

ε

∫ ∫
fε|v|β dx dv is uniformly bounded inL∞loc

(
R+,L1(T2)).
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Proof. –The equation governing the propagation of moments can be written

d

dt

∫ ∫
fε(t, x, v)|v|β dx dv = β

ε

∫ ∫
Eε(t, x) · v|v|β−2fε(t, x, v)dx dv.(6.8)

As β − 1< 2, applying Lemma 3.1, theL∞ bound (3.5) and the energy inequality (3.6) leads to∥∥∥∥∫ fε|v|β−1 dv

∥∥∥∥
L∞t (L

4/(β+1)
x )

6 C‖f in‖(3−β)/4L∞x,v

(∫ ∫
fε|v|2 dx dv

)(1+β)/4
6 C(6.9)

(denoting byC the various constants involved). By Sobolev embedding, the family(Eε) is
uniformly bounded inL∞(R+,L4/(3−β)(T2)) so that∣∣∣∣ d

dt

∫ ∫
|v|βfε dx dv

∣∣∣∣6 C(β)ε ,(6.10)

where the constantC(β)→+∞ asβ→ 3. Integrating (6.10) with respect to the time variable
gives the expected result.2

We now proceed estimate the third term of (6.1). Using Lemmas 3.1 and 6.1, we get the
following estimate on the second moment of the solution of (1.9), (1.7b,c):∥∥∥∥∫ fε|v|2

∥∥∥∥
L∞([0,T ],L(2+β)/4(R2))

6C
∥∥f in

∥∥(β−2)/(β+2)
L∞ sup

t∈[0,T ]

(∫ ∫
fε(t, x, v)|v|β dx dv

)4/(2+β)

6 C(β,T )
ε4/(2+β)(6.11)

for someβ ∈]2, inf(3, α)[ . By (6.6), the family(Eε) is bounded inL∞(R+,L4/(β−2)(T2)) and
thus

εEε(t, x)

∞∫
0

|v|2fε
(
t, x, |v|(cosθ,sinθ)

)|v|d|v|→ 0 inL∞loc

(
R+,L1(T2

x × S1
θ

))
.(6.12)

It follows from (6.3), (6.7) and (6.12) that

∂θ ν(t, x, θ)= lim
ε→0
∇x · ε

∞∫
0

v|v|2fε(t, x, v)|v|d|v|,

thereby proving (a).

Proof of (b). –The key point is to obtain an estimate of howC(β) varies in (6.10). First, by
Sobolev embedding

‖Eε‖L∞t (Lpx ) 6K(p)‖ρε‖L∞t (L2
x)
,(6.13)

where the constantK(p) satisfies the asymptotic estimate

K(p)=O
(√
p
)

asp→+∞;(6.14)
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(we refer to the Appendix for a quick proof of (6.14) based on Fourier series). We use this
inequality in (6.8) together with (6.4), to obtain∣∣∣∣ d

dt

∫ ∫
fε(t, x, v)|v|β dx dv

∣∣∣∣6 C(‖f in‖L∞ ,E(f in))

ε

√
4

3− β .(6.15)

We enhance (6.15) by Hölder’s inequality∫ ∫
fε(t, x, v)|v|β dx dv 6

(∫ ∫
fε(t, x, v)|v|2 dx dv

) 3−β
β−1
(∫ ∫

fε(t, x, v)|v| β+3
2 dx dv

) 2β−4
β−1

6 C(‖f
in‖L∞,‖|v|3f in‖L1,E(f in))

ε

√
1

3− β
(
t + 1

ε

) 2β−4
β−1

.(6.16)

We finally estimate the 3rd moment as follows, using again the interpolation inequality in
Lemma 3.1: with the usual notationp′ = p/(p− 1)∣∣∣∣ d

dt

∫ ∫
fε(t, x, v)|v|3 dx dv

∣∣∣∣
6 3

ε
‖Eε‖L∞t (Lpx )

∥∥∥∥∫ fε(t, x, v)|v|2 dv

∥∥∥∥
L
p′
x

6 C(‖f
in‖L∞,E(f in))

ε

√
p‖f in‖

β−2
β+2
L∞

(∫ ∫
fε(t, x, v)|v|β dx dv

) 4
β+2

(6.17)

whereβ = 4p′ − 2. Inequalities (6.16) and (6.17) give∣∣∣∣ d

dt

∫ ∫
fε(t, x, v)|v|3 dx dv

∣∣∣∣
6 C

(
t,
∥∥f in

∥∥
L∞,

∥∥|v|3f in
∥∥
L1,E

(
f in))ε− 3β−5

β−1

√
β + 2

(β − 2)(3− β)(6.18)

whereβ is any element of]2,3[ . Settingβ = 2+ | logε|−1 establishes (b). 2
7. The 3D results

7.A. Magnetic field of constant direction but variable intensity

In this subsection, we prove Theorem F. We shall adopt the following notations:

x = (x ′, x3), x
′ = (x1, x2), v = (v′, v3), v

′ = (v1, v2), v⊥ = (−v2, v1,0).

The magnetic field is of the formB(x)= (0,0, b(x ′)) with b ∈C1(T2) such thatb 6= 0 onT2.
We begin with the following lemma, which is the 3D analogue of Lemma 3.3.

LEMMA 7.1. –Let f in ∈ L∞ ∩ L1(T3 × R3) satisfy(2.1). Let b ∈ C1(T2) such thatb 6= 0
everywhere onT2, and let (fε) be a family of weak solutions of(1.7a–c). The family(fε) is
relatively compact inw∗-L∞(R+ × T3×R3) and any of its limit pointsf is of the form

f (t, x, v)= F (t, x, |v′|, v3
)

(7.1)

for someF ∈L∞(R+ × T3×R+ ×R).
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Proof. –As in dimension 2, for anyε > 0, fε satisfies the following estimates:

fε > 0 a.e.; ∀t > 0
∫ ∫

fε(t, x, v)dx dv =
∫ ∫

f in(x, v)dx dv, ‖fε‖L∞ 6
∥∥f in

∥∥
L∞(7.2)

and the energy inequality

∀t > 0,E
(
fε(t)

)
6 E

(
f in).(7.3)

The family(fε) is therefore relatively compact inw-L∞(R+×T3×R3); let f be one of its limit
points, the limit of a subsequence of(fε) (still abusively denoted(fε)) asε→ 0. Multiplying
(2.17) byε leads to

v⊥ · ∇vfε =− ε
b
∂tfε − ε

b
v · ∇xfε − ε

b
Eε · ∇vfε.(7.4)

By our assumption onb, 1/b is bounded inL∞(T2). By the energy inequality (7.3), the family
((1+ |v|2)fε) is bounded inL∞(R+,L1(T3×R3)), so that the first two terms of the right-hand
side of (7.4) converge to 0 in the sense of distributions. The energy inequality implies moreover
that the family(Eε) is bounded inL∞(R+,L2(T3)). Combining this with theL∞ bound (7.2)
on fε shows that the last term in the right-hand side of (7.4) also converges to 0 in the sense of
distributions. Thus

v⊥ · ∇vf = 0.(7.5)

Since the operatorv⊥ · ∇v generates the group of rotations of axisB in the velocity space, (7.5)
implies that the limiting densityf depends only on the length ofv′. 2

Integrating (2.17) with respect to the polar angle ofv′ = rω with r = |v′| leads to

(∂t + v3∂x3 +Eε3∂v3)

∫
fε(t, x, rω, v3)dω+ ∂r

∫
(Eε · ω)fε(t, x, rω, v3)dω

=−∂x1

∫
fε(t, x, rω, v3)rω1 dω− ∂x2

∫
fε(t, x, rω, v3)rω2 dω.(7.6)

First of all, it is easy to see that the right-hand side of (7.6) converges to 0 in the sense
of distributions. By the energy inequality (7.3) the family((1 + |v|2)fε) is bounded in
L∞(R+;L1(T3×R3)) so that∫

fε(t, x, rω, v3)rωdω→
∫
f (t, x, rω, v3)rωdω= F(t, x, r, v3)r

∫
ωdω= 0(7.7)

by Lemma 7.1.
Next we use the Poisson equation to show some compactness on the electric fields.

LEMMA 7.2. –Let f in ∈ L∞ ∩ L1(T3 × R3) satisfy(2.1). Let b ∈ C1(T2) such thatb 6= 0
everywhere onT2, and let(fε) be a family of weak solutions of(2.17), (1.7b,c). There exists a
positive constantC such that

‖Eε‖L∞(R+;W1,5/3(T3)) 6 C, ‖∂tEε‖L∞(R+;L5/4(T3)) 6 C.(7.8)

In particular, the family(Eε) is relatively compact inL∞([0, T ];Lp(T3)) for all T > 0 and
p ∈ [1,2[ .
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Proof. –Lemma 3.1 coupled with the estimates (7.2), (7.3) gives the following bound:

‖ρε‖L∞(R+,L5/3(T3)) 6 C
∥∥f in

∥∥2/5
L∞E(f

in)3/5.(7.9)

By the Poisson equation (1.7b),

Eε =∇x1−1
x

(
ρε −

∫ ∫
f in dx dv

)
.(7.10)

The first estimate in (7.8) follows directly from (7.9), (7.10). By the continuity equation (i.e., the
relation obtained after integrating (2.17) inv) and (7.10)

∂tEε =∇x1−1
x ∇x ·

∫
fεv dv.(7.11)

Applying again Lemma 3.1 to control the momentum density
∫
fεv dv leads to the second

estimate in (7.8). The announced compactness property follows from (7.8) and the energy
inequality (7.3) by an easy interpolation argument (see [2]).2

Proof of Theorem F. –Let f be a limit point of(fε) in w-L∞(R+ × T3×R3), the limit of a
subsequence of(fε) (still abusively denoted(fε)) asε→ 0. By the compactness of the electric
fields proved in Lemma 7.2, we have:

fεEε→ fE(7.12)

in w-L∞([0, T ] ×R3;Lp(T3)) for all T > 0 and allp ∈ [1,2[ , with

E =∇x1−1
x

(
ρ −

∫ ∫
f in dx dv

)
.(7.13)

In particular, the following convergences hold in the sense of distributions onR+ × T3×R3 as
ε→ 0:

∂v3

(
Eε3

∫
fε(t, x, rω, v3)dω

)
→ ∂v3

(
E3

∫
f (t, x, rω, v3)dω

)
= ∂v3(E3f )

∫
dw(7.14)

because of the rotational invariance in Lemma 7.1, and

∂r

∫
(Eε ·ω)fε(t, x, rω, v3)dω→ ∂r

∫
(E ·ω)f (t, x, rω, v3)dω= 0,(7.15)

again because of the rotational invariance in Lemma 7.1.
Taking limits asε→ 0 in (7.6) leads, on account of (7.7), (7.14) and (7.15) to the limiting

system (2.18) announced in Theorem F.2
7.B. Case of a magnetic field of constant modulus

In this last case, we conjugate the Vlasov equation by the local rotation generated by the
magnetic field. This technique is standard in the theory of averaging of perturbations of ODEs
(see for example [18]); for its application to PDEs, we refer for example to [19].
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In this last subsection, we use the following notation. Letu ∈R3\ {0} ands ∈R; we designate
by R(u, s) the rotation of angle+s in R3 around the axisRu oriented byu. With this notation,
the local rotation generated by the operator−1

ε
v ∧B · ∇v in (1.7a) is thereforeR(B,−t/ε). We

therefore change variables in (1.7a) and consider a new unknown functiongε, as follows:

w=R
(
B,
t

ε

)
v, gε(t, x,w)= fε(t, x, v).(7.16)

A straightforward computation shows thatfε solves (1.7a–d) if and only ifgε satisfies:

∂tgε +R
(
B,− t

ε

)
w · ∇xgε +R

(
B,
t

ε

)
Eε · ∇wgε

=−
[(
R

(
B,− t

ε

)
w · ∇x

)
R

(
B,
t

ε

)]
R

(
B,− t

ε

)
w · ∇wgε,(7.17a)

Eε =∇x1−1
x

(∫
gε dw−

∫ ∫
f in dx dv

)
,(7.17b)

gε(0, x,w)= f in(x,w).(7.17c)

(Notice that the local densities
∫
gε dw and

∫
fε dv are equal sinceR(B(x),−t/ε) is an isometry

for all x, which entails that the change of variables (7.16) leaves the Lebesgue measure dv

invariant.)
The physical a priori estimates (7.2) and (7.3) (conservation of mass and energy, and

Maximum Principle) are still satisfied by any family(fε) of weak solutions of (1.7a–d), and
therefore bygε, again because the change of variables (7.16) leaves the Lebesgue measure dv

invariant. The family(gε) is therefore relatively compact inw-L∞(R+ ×T3×R3); let g be one
of its limit points, the limit of a subsequence of(gε) still abusively denoted by(gε). In the sequel,
we shall restrict our attention to such a subsequence.

First, we control the fast time oscillations of the locally rotated number densitygε , as follows:

LEMMA 7.3. –Let f in ∈ L∞ ∩ L1(T3 × R3) satisfy (2.1). Let (fε) be a family of weak
solutions of(1.7a–d)with B aC1(T3) divergence-free magnetic field of constant strength|B| ≡
1. Then, the familygε defined by(7.16)satisfies the following bounds: for all φ ∈C1

c (T
3×R3):∣∣∣∣∂t ∫ ∫ φgε dx dw

∣∣∣∣
6 C

(
f in)(1+ ‖∇xB‖L∞(T3)

)[∥∥(1+ |w|2)φ∥∥
W1,1(T3×R3)

+ ‖∇wφ‖L1(R3;L2(T3))

];(7.18) ∣∣∣∣∂t ∫ ∫ φEεgε dx dw

∣∣∣∣6 C(f in)(1+ ‖∇xB‖L∞(T3)

)[∥∥(1+ |w|2)φ∥∥
L1(R3;W1,5/2(T3))

+ ∥∥(1+ |w|2)∇wφ∥∥L1(R3;L∞(T3))
+ ‖φ‖L1(R3;L∞(T3))

]
.(7.19)

Proof. –Multiplying (7.17a) byφ and integrating in(x, v) leads to:

∂t

∫ ∫
φgε dx dw=

∫ ∫
gεR

(
B,− t

ε

)
w · ∇xφ dx dw

+
∫ ∫

gεφ∇x ·R
(
B,− t

ε

)
w dx dw+

∫ ∫
gεR

(
B,− t

ε

)
Eε · ∇wφ dx dw

+
∫ ∫

gεφ∇w ·
([(

R

(
B,− t

ε

)
w

)
· ∇xR

(
B,− t

ε

)]
R

(
B,− t

ε

)
w

)
dx dw
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+
∫ ∫

gε

[(
R

(
B,− t

ε

)
w

)
· ∇xR

(
B,− t

ε

)]
R

(
B,− t

ε

)
w · ∇wφ dx dw.(7.20)

By the Maximum Principle (7.2), the first term in the right-hand side of (7.20) is bounded by
a constant, depending onf in only, times theL1-norm of |w||∇xφ|.

By the energy inequality (7.3), the third term is bounded by a constant depending onf in only
times theL1

w(L
2
x)-norm of∇wφ.

The other terms are controlled in terms of the spatial derivatives of the local rotationR(B, t/ε).
We start with the formula

R

(
B,
t

ε

)
u= (B · u)B + (u− (u ·B)B) cos

(
t

ε

)
+ u∧B sin

(
t

ε

)
.(7.21)

It shows that, for allu ∈R3, ∣∣∣∣∇x[R(B, tε
)
u

]∣∣∣∣6 C|∇xB||u|.(7.22)

Therefore, the second and fourth terms in the right-hand side of (7.20) are bounded by a constant
depending onf in times‖∇xB‖L∞‖|w|φ‖L1. By the same token, the last term is bounded by a
constant depending onf in times‖∇xB‖L∞‖|w|2∇wφ‖L1. This proves (7.18).

In order to prove (7.19), we apply estimate (7.18) withφEε in the place ofφ. The same
argument as in Lemma 7.2 shows that the family(Eε) is bounded inL∞(R+;W1,5/3(T3)), so
that ∣∣∣∣ ∫ ∫ φEε∂tgε dx dw

∣∣∣∣6C(f in)(1+ ‖∇xB‖L∞(T3)

)[∥∥(1+ |w|2)φ∥∥
L1(R3;W1,5/2(T3))

+ ∥∥(1+ |w|2)∇wφ∥∥L1(R3;L∞(T3))
+ ‖φ‖L1(R3;L∞(T3))

]
.(7.23)

As in Lemma 7.2, the family(∂tEε) is bounded inL∞(R+;W1,5/4(T3)), so that∣∣∣∣ ∫ ∫ φ(∂tEε)gε dx dw

∣∣∣∣6 C(f in)‖φ‖L1(R3;L4(T3)).(7.24)

Both inequalities (7.23) and (7.24) entail (7.19).2
An immediate consequence of Lemma 7.3 is

COROLLARY 7.4. –With the same assumptions and notations as in Lemma7.3, for any
smooth, zero mean, periodic functiona on R and anyψ ∈ C1

c (T
3×R3),

a(t/ε)ψ(x,w)gε(t, x,w)→ 0, a(t/ε)Eε(t, x)ψ(x,w)gε(t, x,w)→ 0(7.25)

asε→ 0, in the sense of distributions onR∗+ × T3×R3.

Proof. –This is an instance of “nonstationary phase”: to prove it, integrate by parts int and
apply (7.18) and (7.19).2

After these lengthy but necessary preparations, we are ready to give the:

Proof of Theorem G. –As explained before the statement of Lemma 7.3, we restrict our
attention to a subsequence(gε) converging tog in L∞(R+ × T3×R3) weak-*. DefineE by:

E =∇x1−1
x

(∫
g dw−

∫ ∫
f in dx dv

)
= lim
ε→0

Eε.(7.26)
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Notice that, as in Lemma 7.2,Eε→E in L∞([0, T ];Lp(T3)) for all p ∈ [1,2[ andT > 0. This
and Corollary 7.4 show, in view of formula (7.21) giving the expression of the local rotation, that

R

(
B,− t

ε

)
w · ∇xgε→ (B ·w)(B · ∇xg),(7.27)

while

R

(
B,
t

ε

)
Eε · ∇wgε→ (B ·E)(B · ∇wg).(7.28)

It remains to compute the limit of the term in the right-hand side of (7.17a). We recast it in the
form [(

R

(
B,− t

ε

)
w · ∇x

)
R

(
B,
t

ε

)]
R

(
B,− t

ε

)
w · ∇wgε

=
[
(B ·w)∇B + cos

(
t

ε

)(∇w − (B ·w)∇B)+ sin

(
t

ε

)
∇B∧w

]
[(

1− cos

(
t

ε

))
(B.Uε)B + sin

(
t

ε

)
(Uε ∧B)

]
· ∇wgε(7.29)

with

Uε =
[
(B ·w)B + cos

(
t

ε

)(
w− (B ·w)B)+ sin

(
t

ε

)
B ∧w

]
.(7.30)

The general term in (7.29), (7.30) is of the form

∂αwi ∂
β
xj

(
cosm

(
t

ε

)
sinn

(
t

ε

)
ψ(x,w)gε

)
,(7.31)

whereα, β , m andn are integers whileψ ∈ C1(T3 × R3). A straightforward application of
Corollary 7.4 shows that

∂αwi ∂
β
xj

(
cosm

(
t

ε

)
sinn

(
t

ε

)
ψgε

)
→ ∂αwi ∂

β
xj

(〈cosm sinn〉ψg)(7.32)

in the sense of distributions onR∗+ × T3×R3 asε→ 0, where

〈
cosm sinn

〉= 1∫
0

cosm(2πx)sinn(2πx)dx.(7.33)

Thus the right-hand side of (7.17a) converges in the sense of distributions onR∗+ × T3×R3 to

−{[(B ·w)2(∇BB ·B)B + (B ·w)2∇BB]
+ 1

2

[
(B ·w)∇BB ∧ (w ∧B)− (B ·w)

(∇BB · (w− (B ·w)B))B]
+ 1

2

[((∇w − (B ·w)∇B)B · (w− 2(B ·w)B))B − (w ·B)(∇w − (B ·w)∇B)B]
+ 1

2

[− (B ·w)(∇B∧wB)∧B + (∇B∧wB · (B ∧w))B]} · ∇wg.(7.34)

SinceB has constant length, (7.34) can be rewritten as:
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2

[
(B ·w)2∇BB − (B ·w)(∇BB ·w)B

]− 1
2

[
(∇wB ·w)B − (w ·B)∇wB

]
− 1

2

[
(B ·w)B ∧∇B∧wB −

(
(B ∧∇B∧wB) ·w

)
B
]} · ∇wg

= {+3
2(B ·w)w ∧ (B ∧∇BB)− 1

2w ∧ (B ∧∇wB)− 1
2w ∧∇B∧wB

} · ∇wg.(7.35)

Combining (7.27), (7.28) and (7.35) leads to the announced result.2
Appendix

We recall the behavior of the Sobolev constant for the embeddingH 1(T2) ⊂ Lp(T2) asp
tends to its critical value which, in dimension 2, isp =+∞. Let α > 0 and letu ∈H 1+α(T2);
then

u(x)=
∑
k∈Z2

û(k)eik·x, with
∑
k∈Z2

(
1+ |k|)2+2α∣∣û(k)∣∣2= ‖u‖2

H1+α <+∞.(A.1)

Thus, for allx ∈ T2 ∣∣u(x)∣∣6∑
k∈Z2

∣∣û(k)∣∣6 Cα‖u‖2H1+α ,(A.2)

with

Cα =
(∑
k∈Z2

1

(1+ |k|)2+2α

)1/2

=O

(∫
R2

dz

(1+ |z|)2+2α

)1/2

=O
(√

1/α
)
,(A.3)

asα→ 0. By interpolation,H 1(T2) embeds intoLp(T2) with

‖u‖Lp 6 C1/(1+α)
α ‖u‖H1, for p = 2(1+ α)

α
.(A.4)

In (6.14), it suffices to take

K(p)= C1/(1+α)
α for p = 2(1+ α)

α

or, in other words,

K(p)= C(p−2)/p
2/(p−2) =O

[(
p

2
− 1

)(p−2)/p]
=O

(√
p
)
.(A.5)
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