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ABSTRACT. — This paper establishes various asymptotic limits of the Vlasov—Poisson equation with
strong external magnetic field, some of which were announced in [14]. The so-called “guiding center
approximation” is proved in the 2D case with a constant magnetic field orthogonal to the plane of motion,
in various situations (noncollisional or weakly collisional). The 3D case is studied on the time scale of the
motion along the lines of the magnetic field, much shorter than that of the guiding center motion. We discuss
in particular the effect of nonconstant external magnetic fieidslsevier, Paris

1. Introduction

Consider a plasma consisting of light particles of maswith individual electric charge
and of heavy particles of mass* > m with individual electric charge-¢. For simplicity, we
assume that the heavy particles distribution is a uniform Maxwellian (even if collisions are taken
into account, the effect on heavy particles of collisions with light particles is neglected). We call
E the self-consistent electric field antl= f (¢, x, v) the number density of the light particles.
As usual,x is the position variabley the velocity variable¢ the time, and saying thaft is
the number density means that in an infinitesimal voluméwdof the phase space centered at
(x, v), one can find, at time, approximatelyf (¢, x, v) dx dv particles. We assume in this paper
that the characteristic speed of these particles is small compared to the speed gfdmttiat
the Maxwell equation for the electro-magnetic field reduces to the electrostatic approximation,
i.e., E is governed by the Poisson equation [6]. However, we assume that some external magnetic
field B is applied to this gas of particles, so that the Vlasov equation reads:

(1.1) a,f+u.vxf+1<E+3AB).vvfzo,
m c
while the Poisson equation is
(1.2) E=-V,V, —80AXV=q/fdv—q/ fdxdv,
RD TDxRD
(1.3) fO.x,v) = fMx,v),

1 E-mail: golse@dmi.ens.fr.
2 E-mail: saintray@dmi.ens.fr.

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES- 0021-7824/99/08
[ Elsevier, Paris



792 F. GOLSE, L. SAINT-RAYMOND

go denoting as usual the dielectric permittivity of the vacuum. For simplicity, we assume
periodicity in the space variablét, v) € T? x RP. Here we seT? = R?/zP, equipped with
the measure didentified with the restriction t§0, 1[? of the Lebesgue measureR?.

The subject matter of this paper is the study of the Vlasov—Poisson system (1.1)—(1.3) in the
limit as the intensity of the magnetic field| tends to infinity. Studying the effect of strong
magnetic fields on plasmas is of considerable importance for example in numerical simulations
of tokamaks. An introduction to the modelling of plasmas in strong magnetic fields can be found
in [16] and in [12]. A first picture of the effect of a strong external magnetic field in the Vlasov
equation (1.1) can be seen from the following:

Heuristic argument. If E andB are constant fields, the motion of each individual charged
particle in the electromagnetic field is given by:

E B
(1.4) x' =v, v/:q——i—qu—,
m cm

so that, after projecting on theB direction and on the plane orthogonalRgone sees that:

t?qE - B
(1.5a) xl\(t):x\|(0)+tv\|(o)+Eqm|B| ,
_ EAB mc c|E|
(1.5b) x1 () =x1(0) +ct B2 +O<q|B|)+O< |B|>

(where the subscrigit denotes the projection on thRdirection while thel subscript designates
that on the plane orthogonal #). Hence one expects that, as the intensity of the magnetic field
tends to infinity, particles should be advected:

e with acceleratiog E - B/m|B| in the direction ofB;

e with the macroscopic velocityE A B/|B|? (henceforth called the drift velocity) on the

plane orthogonal t&.

In other words, particles move on helices with axis the direction of the magnetic field and
radius the so-called Larmor radius. The motion of the axis, referred to as “guiding center”
dynamics, is slow if measured in units of time defined by the reciprocal Larmor frequency (see
below).

Also, since the drift velocity is macroscopic, one should expect that, to leading order, the
limiting model of (1.1)—(1.3) for a strong external magnetic fi@de kinetic in the direction
of the magnetic field and macroscopic (i.e., hydrodynamic) on a slower time scale in the plane
orthogonal to the magnetic field.

Scalings. Various time scales appear in the problem (1.1)—(1.3):

(a) Tc = mc/q|B|, the reciprocal cyclotron frequency (cf. [16, §52]);

(b) Tp = mu/q[E], the reciprocal plasma frequency (cf. [16, §31]), whgig is the order
of magnitude of the electric field, being given byeo[ E12 = m[p]u? where[p] is the average
macroscopic density;

(c) To, the macroscopic (observation) time scale. A first situation is the case where

T
(1.6) To >~ Tp, Lokl
Tp

In this case, the Vlasov—Poisson system can be put in dimensionless variables (which we denote
with the same letters as the original variables with a slight abuse of notations):
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1
(1.73) atfs+v‘vxfs+Es'vas‘i‘gv/\B‘vvfs:O,
(1.7b) Ee=—V,Ve, —AxVe=pc— 0,
(1.7¢) f:(0,x,v) = f"x,v),
with the notations
(1.7d) Pe :/fg dv, P :/pg dx,
R3 T3

the problem being posed far, v) € T3 x R3 andr > 0. A detailed mathematical study of
(1.7a—c) can be found in [10,11] mostly in the case of a constant magnetic field. Two cases of
nonconstant magnetic fields will be considered in the present paper; they may give rise to some
nontrivial geometric effects.

In the case of a constant magnetic field, the heuristic argument above indicates that in order to
observe the drift velocity, one should consider exclusively the motion on the plane orthogonal to
the magnetic field on a slower time scale tigni.e., the 2D problem (1.1)—(1.3). This second
situation corresponds to

1.8 e=—=—<K1
(1.8) o<

Under this scaling assumption, the Vlasov equation can be recast in dimensionless variables, as
follows:

1
(1.9) eatfs+u.vxf€+E€.vvfs+guL.vva=o, reR:, (x,v) eT?x R?,

with (v1, v2)t = (—vp, v1). The Vlasov equation is supplemented with (1.7b,c) with the
notations

(1.7d) pasza dv, ﬁs:/ps dx.
R2

T2

Finally, it may also be relevant to take into account collisions with the background gas of
heavy particles the effect of which is to slow down the lighter particles. A very crude model for
such collisions with a “thermal bath” is a Fokker—Planck linear operator

(1.10) Lf()=0Auf +Vy- (b)f),

whereos > 0 is the diffusion constant ank= b(v) a friction term the form of which will be
discussed later.

In the collisional case, two more time scales are involved:

(d) Tt = u/[b], the characteristic time scale of the friction effect, whigrgis the average
intensity of the vector fields,

(e) T¢ = u?/o, the characteristic time scale of diffusion in the velocity space.

The two following conditions should be added to (1.8) in the collisional case;

T
(1.11) To=0(Ty), < ?f =pl«1

(0]
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Later, we shall give a more precise condition @rand relate it tae. We can already say that
observing the drift velocity is possible only if the friction on the background neutral particles is
a weak effect occurring at high velocities only.

In which case, the 2D Vlasov equation reads:

1 1
(1.12) 0 fe+— (- Vafet B Vofo) + 5 Vufe=Le(fo), 1€RY, (x,0) eT?xR?,

with the notation
(1.13) Le(fe) =0eAy fo + B()Vy - (b(U)fs)-

2. Main results

We shall not dwell on the existence theory for all the models presented in Section 1. In the
noncollisional case, the theory of global weak solutions of the Vlasov—Poisson system is due to
Arsen’ev [1] and can be adapted without difficulty to (1.1)—(1.3) with a given, smooth magnetic
field. As regards the existence theory, the 2D collisional model (1.12) is very close to the Fokker—
Planck model considered by Degond in [7] and can be treated by essentially the same method.

2.A. The 2D results

This subsection is based on the scaling (1.8), exceptin the collisional case (i.e., for Theorem E
below) which uses both (1.8) and (1.11).

THEOREMA. —Let fI" € L% N L1(T2 x R?) satisfy

(2.1) fM>0ae. andé’(fin)://%|v|2fin(x,v)dxdv—i—/%’Ein(x)’zdx<+oo.

Let(f¢)e>0 be a family of weak solutions ¢£.9), (1.7b,c) Then, there exists
(a) a subsequence @f;).-o (still denoted by( f;));
(b) F e L®(Ry; L®NLYT? x Ry)) such that

(2.2) fe— F(t,x, |v|) in L°°(R+ x T2 x Rz) weak-* ase — 0,
(c) adefect measuree L® (R, ; M, (T2 x §1)) 3 such that, for any function € C°(s1)

v

v

(2.3) /[fg(t,x,v)—F(t,x,|v|)]¢< >|v|2dv—>/¢(9)dv(9) ase -0
R2 st

in the sense of distributions. Moreover, the limiting density

(2.4) p(t,x):/F(t,x,ldev
R2

satisfies?

3\We denote byM (X) the set of bounded measures Xrand by M (X) its positive cone.
49, =0/3x1 anddp = 3/dxp.
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(2.5)  %p+ V.- (pEY) = (02— 93) / 6202 dv(0) + 3132/ (63 — 62) dv(),

st st
(26) E=-V.V, —AV=p—7
(2.7) ,o(O,x):/findv, ﬁ:/,o(o,x)dx.
R2 T2

Notice that, without the right-hand side involving the defect measure, Eq. (2.5) is the vorticity
formulation of the 2D incompressible Euler equation. Indeed,p is analogous to the vorticity
field (which is scalar in 2D)E" is analogous to the velocity field whilé is the corresponding
stream function (up to a sign).

In various physical situations, the constraint that fheshould be uniformly bounded ih*°
is not relevant (for example, it might be interesting to use the guiding center approximation in
cases where the distributiofy is of the form

(2.8) Folt. x,0) = pe(t, 2)8(v — ue (1, 1)),

for some macroscopic densigg and bulk velocityu, (¢, x)). While we have not been able to
directly deal with measure solutions of the Vlasov equation, we can however treat the case
of initial data converging to the form (2.8) — or more complicated variants of it &-as0.
Specifically we have the:

THEOREMB. —Let fI" be a family of functions iL> N L1(T? x R?) satisfying
(2.9) n>0ae, Iim0+e|| M, =0andsup[|[ £ 1 +E(f")] < +o0.
e— X,v e X,v

Let(f:).>0 be a family of weak solutions ¢f.9), (1.7b)with initial data
(2.10) f:(0,x,v) = f"(x,v).

Then, conclusion&)—(c)as well ag(2.2)—(2.7)n TheoremA hold, with the only difference that
F € L®(R4; M4(T? x Ry)), that the convergence holds Irf° (R; M (T2 x R,)) weak-*,
and that the notatiolv, - (p EL) designates the second order distribution

9192(E2 — E2) + (97 — 93)(E1E2).

Although Theorem B seems to be a harmless modification of Theorem A, one should keep
in mind that it uses a highly nontrivial compactness argument which is useless in the proof of
Theorem A, namely the key theorem in Delort’s proof [8] of global existence of weak solutions
to the 2D Euler in the case of vortex sheets. We recall Delort’s theorem in Section 3 below and
refer to [8] for its proof.

The appearance of a defect measure in the right-hand side of (2.5) is a definitely unpleasant
feature of the guiding center approximation. It is fairly easy to construct sequences of stationary
solutions of (1.9), (1.7b,c) with nonzero defect measures. In fact, more is true: it is likely that
the part of the defect measure coming from velocities of orderahd higher evolves according
to the free dynamics corresponding to the electric field generated by particles slowetsthat 1
0 <« < 1. In the next proposition, we substantiate this picture by studying the case of an initial
distribution of particles with velocities of ordeyd.

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES



796 F. GOLSE, L. SAINT-RAYMOND

PROPOSITIONC. —Let (£") be any family of nonnegative functions@®(T? x R?) such
that ass — 0,

(2.11) // Ww2fMhdedo -1, | f ||L O(e®).
T2xR2
Let(f:).>0 be the family of solutions ¢1.9), (1.7b)with initial data given by(2.11) There does

not exist a subsequence @f,).-o for which the defect measurepredicted by Theorem(c)
vanishes.

Actually, in the previous example, the defect measure is always positive, but is also invariant
under all transformationg, x, 0) — (¢, x, R9) whereR runs through the group of orthogonal
transformations oR2. Therefore, both terms

/ 162dv(9) and / (67 — 62) dv(6)
1

s

vanish, as can be seen by a straightforward change of variables. Such rotation invariant defect
measures do not affect Eq. (2.5) governing the limiting macroscopic denditys therefore a
natural question to find criteria ensuring that the defect measure is rotation invariant. Theorem
D below gives one such sufficient condition. Unfortunately, this condition cannot be directly
verified on the initial data; however, the second part of Theorem D shows that this sufficient
condition is not far from being verified for general initial data.

THEOREM D. —Let /" e L N L1(T2 x R?) satisfy(2.1);let (f;)e=0 be a family of weak
solutions o0f(1.9), (1.7b,c)
(a) Assume that there exists> 2 such that

(2.12) / [v]® " dx dv < +oo.

The defect measure predicted by Theoren is invariant under all transformations
of the form (¢, x,0) — (¢,x, RO) where R runs through the group of orthogonal
transformations oR? if and only if, ass — 0,

st-/v|v|2f8dv—>0 in D'(R%. XTZ).

(In particular, v is rotation invariant if

(2.13) /T//|U|3fgdtdxdv:0(:gl>
0

forall T > 0).
(b) Assume that

// |v|3findxdv < +00.
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Then, for allT > 0,

(2.13) /T//IU|3f€dtdxdv=O<W>.
0

&

Estimate (2.13 shows that (2.13) does not fail by much if it does; more precisely it indicates
that the possible loss of energy and effective appearance of a defect measure in the right-hand
side of (2.5) depends on the behavior of the particles that have velocities of geder 1

Another situation where no defect measure appears in the limiting process is the collisional
model (1.12).

THEOREME. —Let /" € L N L1(T2 x R?) satisfying(2.1). Assume thak is given by

(2.14) b(w) =n(jv¥)v, neC®Ry),
with
(2.15) 0<n<1 nlor =0, nlrR+ttoor=1 0 llze <2

and consider the Fokker—Planck E@..12)with Fokker—Planck collision operatdqd.13) such
that

(2.16) 0<o0, =0, B(e) =log|loge|

supplemented with the Poisson equat{&rivb) and the initial condition(1.7¢) There exists a
family (f¢)e~0 of weak solutions of1.12), (1.7b,c¥or which points(a)—(c)as well as(2.2)—
(2.7)in TheoremA hold, except thaF € L*(R; M, (T? x R;)) and the convergence holds
in L°(R,; M(T? x R})) weak-*. In addition, the defect measure= 0 in (2.3)and(2.5).

Theorems A, B and E were announced in [14]. Theorems A and B are proved in Section 3
while Section 4 contains the proof of Theorem E. The class of examples shown in Proposition C
is discussed in Section 5. The proof of Theorem D is given in Section 6.

Aresult analogous to Theorems A, B or E but local in time and valid only for smooth solutions
has been proved by Grenier [15] on the pressureless Euler—Poisson system, with a slightly
different but equivalent scaling. Formally, Grenier’s result corresponds to the situation studied
in Theorems A, B and E but in the case whegteis of the form (2.8) with bulk velocity of the
formug(t, x) = U, (¢, x).

Recently, Brenier [4] proved that the bulk velocity fields of solutions of the gyrokinetic
Vlasov—Poisson system converge to dissipative solutions of the 2D Euler equation (see [17,
p. 153], where this notion is introduced). This result supersedes that in [15], for any smooth
solution of the Euler equation is a dissipative solution. Since it is unknown whether dissipative
solutions of the Euler equation are solutions in the sense of distributions, Brenier's result is
disjoint from Theorems A, B or E above for all initial data such that the solution of the limiting
2D Euler equation is not smooth.

2.B. The 3D results

In this subsection, we give two elementary results which complete the picture proposed in [10,
11]. Both results are based on the scaling assumption (1.6).

Our first result concerns the case of a magnetic field of constant direction but variable strength.
We shall use the following notations: first, as an extension of the 2D notattos, (—v2, v1, 0);
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also

(2.16) (@) (x,r,v3) = % /qj(x, rw, v3) dw.
Sl

THEOREMF. —Let /" € L N L1(T3 x R3) satisfy(2.1). Letb € C1(T?) such thatr(x) # 0
forall x € T2 and let(f;) be a family of weak solutions of

1
(2.17) O fo+v-Vifot Ee-Vy fo+ gb(xl, vtV fe =0, 1eR%, (x,v) e T3 xR5,

coupled to the Poisson equati¢h 7b)and with initial condition(1.7c) Then, the family f;) is
relatively compact i (R, x T2 x R3) weak-* and any of its limit points as— 0 is of the

form
f= f(t,x,,/v%—}—v%, vg),

where f solves

(2.18a) O f 4+ v3dxsf + E3dus f =0, 1,r>0, xeT3 vzeR;
(2.18b) E=-V,V, —AV=p—7,
(2.18c) £, x,r, vg):(fm)(x,r, v3), t,r>0, xeT3 v3eR.

Our second and last 3D result concerns the case of a magnetic field of constant strength but
variable direction. To be consistent with Maxwell's equation, the magneticBieldould also be
divergence-free. However, there exist many divergence-free fields of constant length: pick any
2D divergence-free field, = B, (x1, x2) € L®(T?) and letB3 = \/4||BL||%OO —|B.|?: one
easily check that the vector fieRl= (B, , B3) has constant length 2, | and is divergence free.

DefineR(B(x), 0) the rotation of an angle around the oriented axis of directid@ix). Define
then:

(2.19) ge(t, x, w) = fe(r,x, R(x, —t/e)w).

To simplify notations, we shall also denote, forak= ¢ (x, w) and all vector field/ on T§ X Rﬁ,

(2.20) Vygp ="V V.

THEOREMG. —Let /i e L N L1(T3 x R3) satisfy(2.1). Let B € C1(T?) satisfyV, - B=0
and |B| = 1; and let (f,) be a family of weak solutions @¢1.7a—c) Then, the familyg,) is
relatively compact irL.®° (R, x T3 x R3) and any of its limit pointg, ase — 0, satisfies

9%g+ (w-B)B-Vig+ (E-B)B-Vyg
=JwA[3(w-B)(BAVEB)— BAVyB— VB Vug,

E:VxAxl</gdw—/ / f‘”dxdv),

R3 T3xR3
g0, x,w)=f"x,w), (x w)eT>xR:

Theorems F and G are proved in Section 8.
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3. Proofs of Theorems A and B

Throughout this paper, we shall need the following elementary interpolation result, which we

record in the form of a lemma.

LEMMA 3.1.-Let f = f(x,v) be an a.e. nonnegative measurable functionTdnx R<.
Then, for all0 < k < m,

S
~

+

<CW, k)||f||m+d<//flv|mdvdx> " ,
L(m+d)/(d+k)

whereC(d, k) is a positive constant depending only on the dimengiand onk.

Y

(3.1) H/f|v|kdv

Proof. —One has, for a.ec € T4

/f|v|kdv= / flol*dv + / flol*fdv

lv|<R [v|>R

1SN kva
2 o——R
(3:2) e k/flvl

ChooseR = (f fv|™ dv/|| f L)Y "F4); (3.2) gives

d—1 m—k d_-H;
(3.3) /f|v|kdv< 14 /flvl’"dv
k+d ’

raising each side of (3.3) to tf@%—th power and integrating im gives the announced result

with
1§41
Cd, k=11 .
(d, k) ( + T d

Let (fIM) e L N LY(T? x R?) satisfy

(3.4) fM>0ae. and £(fM) < +oo.

For anye > 0, there exists a weak solutiofy to the Cauchy problem (1.9), (1.7b,c), which
satisfies (1.9), (1.7b,c) in the sense of distributions as well as

35) f.>0ae., Vt>0//fs(t,x,v)dxdv=/ Fdedo, 1 fullze = I s
and the energy inequality:

(3.6) E(fe(t,-, ) <E(f™) forallz>0.

In particular, (3.5) implies thap, (tr) = p.(0) for all + > 0. All the statements above can be
proved easily by the same methods as in [1,9].

The first step in the proof of Theorems A and B is to cast the local conservation laws in a form

that is convenient to take limits as— 0. This is done in:

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES



800 F. GOLSE, L. SAINT-RAYMOND

LEMMA 3.2.—Let(f") be a family of functions in> N L1(T? x R?) satisfying(3.4)for all
e >0.Then

0P + Vx - (psEgl)
38.7) = (812 - 822) / v1v2 fe dv + 8182/ (v% — v%)fs dv + €9,V - /vlfs dv.
R2 R2 R2
Proof. —For eache > 0, f. solves (1.9) in the sense of distributions and belongs to
L®(Ry; LY(T? x R?; dx(1 + |v|?) dv)) by the energy inequality (3.6). By the same token,
E. € L®(R,; L%(T?)). Next we test (1.9) on functions of the forgu(r, x)xz(Jv]) and
do(t, x)xr(lv)v with ¢g € C (R4 x T2) and xz € C®°(R,) such thatxz = 1 on [0, R],

xr =0 on [2R,+oo[, 0< xr <1 and|xrllL> < 2/R. Letting R — +o00, one gets, by
dominated convergence, the relations

1
(38) 8;,08 + gvx . / Ufg dv= 0,

1 1 1
(3.9) 8t/vfgdv+gvxo/v®vf€dv—g,ogEg—8—2/vj‘fgdv=0

which hold in the distribution sense &1 x T2 and are respectively the continuity equation and
the momentum equation. Applying the rotatior> v to (3.9) after multiplying it bys, and
eliminating% [ v dv between the resulting equation and (3.8) leads to (3.7).

The following formula will be fundamental in the proof of Theorem B: the vector figld;-
can be recast as

(3.10) (0 — P)EF = (202(EZ, — E3,) — 01(E1. E2e); 301(E2, — E3,) + 92(E1. E20)),

by using the formulas
(3.11) Vi Ee=pe—De, Vi Ef=0.

(The second equality above holds becafsés the gradient of the electrostatic potential).
The second step is to establish the asymptotic form of the number dgnsisg — 0.

LEmMMA 3.3.—Let (f") be a family of functions iL>® N L(T? x R?) satisfying(2.9), and
let (f;) be a family of weak solutions ¢f.9), (1.7b)with initial data (2.10) Then(f:) is
relatively compact irL>® (R ; M (T2 x R?)) weak-* and any of its limit point is invariant under
all transformations of the form

(3.12) (,x,v)— (t,x,Rv),
whereR runs through the group of orthogonal transformsR.
In other words, any weak-* limit point off,) is radial in the velocity variable.
Proof. —Multiplying (1.9) by £? leads to
(3.13) vt Vo fe= _8t(82f€) — Vi - (evfe) — V(e Eg f).
By the energy inequality (3.6), the familyf,) is bounded inL>°(R; L1(dx(1 + |v|?) dv)) so
that the first two terms in the right-hand side of (3.13) converge to zero in the distribution sense.

The Maximum Principle (3.5) and the*> estimate in (2.9) imply that, as— 0, ef, — 0 in
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L®(Ry x T2 x R?) while the family (E,) is uniformly bounded inL>® (R, ; L2(T2)) by the
energy estimate (3.6). Therefore (3.13) implies that

(3.14) vV fe >0 inD'(RY x T2 x R?).

Next, the family (f.) is bounded inL>®(R,; L(dx(1 + |v|?) dv) and is therefore relatively
compact inL®(R,; M(T? x R?)) weak-*; let f € L™®(R4; M(T? x R?)) be any of its limit
point. It follows from (3.14) that

(3.15) vt -V, f=0.

Since the operatos - V, generates the group of transformations (3.12), any element of the
nullspace of this operator must be invariant under this group, which establishes our ctaim.

A last but important preparation is the following lemma, which controls the oscillations of the
macroscopic density in terms of the time variable only.

LEMMA 3.4.—Let(f") be a family of functions i.> N L1(T? x R?) satisfying(2.9), and
let ( f;) be a family of weak solutions ¢.9), (1.7b)with initial data(2.10) Then, the associated
family (p,) is bounded iCY2(R,; W—21(T2)).

Proof. —Define
(3.16) e = pg — &V - /vlfs dv;
by Lemma 3.2,
(3.17) 0Tg = —Vy - (psESl) + (812 - 822) / v1v2 fe dv + 8182/ (v% - v%)fs dv.
R2 R2

By the energy estimate (3.6), the famil{;) is bounded inL>® (R, ; L2(T?)); hence, using
formula (3.10) shows that there exigts> 0 such that, for alt > 0,

(3.18) H Vi (ngj_)”LOO(R+;W*2»1(T2)) < C”E€“§°°(R+;L2(T2)) < ngpg(fsi”).

Applying again the energy estimate (3.6) to the last two terms in the right-hand side of (3.17)
shows that

(3.19) 3,7 is bounded iInL> (Ry; W—21(T?)).
The formulas (3.9), (3.10) shows that there ex@ts 0 such that, foralt > 0and all 0< ¢ < ¢/

&

/UJ'fa(f/,X,v)dv—/vlfg(t,x,v)dv

W—l,l(TZ)

/<1+ w12 £, dv

1
/ 2 +
S C(f — t)|:||E€||L°°(R+;L2(T2)) <l g)' LR 'Ll(Tz))i|
+5

(3.20)  <Csup(z|£"] 0+ E(£T) =0 (2+ g)
Set

A=§gg(%||f£”||u+5( ).
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Here we assume thatf¢ < 1; indeed, it is only the limit as — 0 which is of interest to us. If
' —t > £2, we estimate

/Ulfs(l/,X,U)dv—/vag(t,x,v)dv

&

W—l,l(TZ)

<e¢ /vj‘fg(t/,x,v)dv +¢ /vj‘fg(t,x,v)dv
L1(T?) LY(T?)
(3.22) <248 < 2AVH — 1,
if on the other hand’ — r < 2, one has, by (3.20)
€ /vlfs(t’x, v) dv — / vt fu(t, x, v)dv
W—l.l(TZ)

2
3.22 <CAGW -2+ )<4CA t —t.
©22 -2+ =) <eas

Combining (3.21) and (3.22) shows that, foralt 10, 1[ and¢’ > ¢ > 0 we have:

(3.23) ¢ <(2+40)AVE —1t

W—l.l(TZ)

/UJ—fs(I/LU)dv—/vj‘fg(t,x,v)dv

which, coupled to (3.19) and the decomposition (3.16) establishes our claim.
Equipped with the lemmas above, we can now proceed to prove Theorems A and B.

Proof of Theorem A. €onsider a subsequence @f), still denoted by( f;) for simplicity,
converging tof in L®(R;; M(T? x R?)) weak-* as in Lemma 3.3 above. By the energy
inequality (3.6), the sequenc|? f.) is bounded inL>° (R ; M(T? x R?)). Thus the sequence

o
(3.24) MS:/rzfg(t,x,rG)rdr
0

of push-forwards of f, under the map (t,x,v) — (¢, x,v/lv]) is bounded in
L®(Ry; M(T? x §1)). Hence, there exists a subsequencé 5§ denoted by( f./) such that
e converges tqu in L (Ry; M(T2 x §1)) weak-*. We next define the defect measure associ-
ated to the subsequencg) by:

v

(3.25) (v;y) = / W, x,0)du(r, x,0) — / 1/f<t,x,—>|v|2df(t,x,v)

|v|2
RixT2xst R4 xT2xR?2

for everyy € CO(Ry x T? x §1).

Let R > 0, x € C2(Ry) be such thaj|j0.1 = 1, x|[2.+00f = 0 and 0< x < 1; definexx by
xr(v) = x(Jv|/R). For every nonnegative functiah € C2(R; x T2 x §%), and alle’ > 0,

(2 fes W (2, x, v/10]) xg (W)) < (012 fo3 ¥ (£, x, v/10])) = (s ¥);
taking limits ase” — 0 gives
(3.26) (£ v, x, v/lvDxr(W)) < (15 D).
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Letting R — 400 in (3.26) proves that is a positive measure.
Specializing formula (3.7) to the subsequeri¢e) and lettinge’ — 0 shows that the right-
hand side of (3.7) converges to

(97 — 82) / viva f + (87 — 95) / 0102 dv(0) + 132 / (v3—vd)f

R2 st R2
(3.27) + 0102 / (67 — 62) dv(6)
Sl
in the sense of distributions. By Lemma 33is radial in the velocity variable; therefore
(3.28) /vlvzf = / (v% — v%)f =0.
R? R?

It remains to find the limit ofo, E,, ase’ — 0. By the energy inequality (3.6)E,) is
bounded inL>®(R,; L2(T2)). By the Maximum Principle (3.5), the energy inequality (3.6) and
Lemma 3.1 withk = 0 andm = 2, we obtain:

(3.29) 1pell e, 12012y < V2C(2,0)] [ 2 € (£M) Y2,

SinceE; = V, A7 (p. — p,), we conclude thatE,) is bounded inL>®(R; H(T?)). Lety €

CX (R4 x T?); by Lemma 3.4(yrp,) is bounded in, say¢¥/?(R; H~4(T?)) (by the Sobolev
embedding) as well a6 (R..; L2(T?)) by (3.29); thus it is bounded i6Y/16(R . ; H~1/2(T2))

by a standard interpolation argument. Sitig®. ) has support included in the (compact) support
of ¥, one sees that)p,) is relatively compact i, (R,.; H1(T?)), so that

(3.30) Ype Ee — YypE  in L®(Ry; M(T?)) weak-*

where

(3.312) p(t,x):/f(t,x,v)dv, E:VXA;lp.
RZ

The convergences (3.27) and (3.30), together with formula (3.31) establish Theorem A.

In the proof of Theorem B, we use the following compactness argument due to Delort; we
recall that it is the key argument in the proof of global existence of weak solutions to the 2D
incompressible Euler equation in the case of vortex sheets: see [8].

THEOREM(see Delort[8], Theorem 1.2.1).l-.etT > 0 and(w; )<< <1 be a family of functions
in L®°([—T, T1, C*°(T?)) which can be decomposedas= w], + o and satisfies the following
assumptions

(a) the family (w;) is equicontinuous if—7, T] with values inD’(T2)) and such that

Jr2o(r, x)dx =0;
(b) the family (w}) is bounded inL>®([—T, T, L* N H~(T?)) and, for each0 < ¢ < 1,
we 2 0;

(c) the family(w!) is bounded in.>([—T, T1, L* N L?(T?)) for somep > 1;

(d) setting v, = V)}Aglws, the family (v;) converges tov as ¢ — 0T in the sense of

distributions on]—7, T[ x T2.
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Thenv € L®([—T, T]; L%(T%)) and
v%s — v%s — vf - v% and vievpe — viv2

in the sense of distributions da-T, T[ x T2.

Proof of Theorem B. Fhe part of the proof of Theorem A leading to the existence of the defect
measurey applies verbatim in the present case. The only difference lies in the convergence of
the nonlinear term¥, - (,ogESi) in (3.7). This is where Delort’s result is needed. We first extend
pe and E, respectively by[ fs‘” dv and E‘sn for + < 0 and abuse the notatigp and E, for the
resulting extensions. We must regularize the families) and(p.) in thex-variable in order to
comply with the first assumption in Delort’s theorem. Forsadl 10, 1] there exists$(¢) > 0 such
that

S(e)Ax
(3.32) |€©%E, — E,| LT T 12T S E-
Set
(3.33) ve =OME,
Then the family(w,) defined byw, = V= - v, can, for alle, be decomposed as
(3.34) we =, + ),
with
(3.35) wl, =8,
and
(3.36) W =—p, = / 7N dx d.
T2xR2

By Lemma 3.4, the familiegw,) and(w]) satisfy assumption (a) in Delort's theorem; by (3.5)
and (3.6), the family(p,) satisfies assumption (b) and so dée$), by the positivity of the heat
semigroup. By (2.9), the familyw) satisfies assumption (c). Finally, modulo extraction of a
subsequence, the familff, ) convergestd in L®([—T, T]; L(T?)) weak-* ase — 0; thus the
family (ve) converges tE+ in the sense of distributions as— 0 and satisfies assumption (d).
Therefore,

(3.37) v%s — v%s — E% - E% and vivp. — —E1E>
in the sense of distributions da-T, T[ x T2 ase — 0. By (3.32), one also has

(3.38) E? —E5 — E5—E? and Ei.Ez — —E1E>

in the sense of distributions dr-T', T[ x T? ase — 0. Using the obvious formula

(3.39) Vi (0:E;) = Vi [(0: = o) E; ]

together with (3.10), (3.37) shows that, after extracting a subsequence if necessary, we have:
(3.40) Vi (o) = Vi (0EY),

in the sense of distributions o—7,7T[x T2 as ¢ — 0. This completes the proof of
Theorem B. O
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4. Proof of Theorem E

We first address briefly the question of global existence of a weak solution of the collisional
model (1.12), (1.7b,c) for fixed > 0. The method is essentially the same as in [7]: the only
difference between (1.12) and the Vlasov—Fokker—Planck equation treated in [7] is that [7] deals
with the case without external magnetic field and where the friction teesD in the Fokker—
Planck operator (1.13). Also, [7] focuses on smooth solutions.

Here we first regularize and truncate the initial data for (1.12).1ket C§°(R2) such that
Yx)=1for|x|<1,¢¥(x)=0for|x| >2and 0K ¢ < 1. Foralls > 0, letys(v) = ¢ (dv). In
the problem (1.12), (1.7b), we replace the initial data (1.7¢) by

(4.) A= e

By the trivial amplification of Degond’s results in [7] recalled above, (1.12), (1.7b), (4.1) has a
unique global smooth solutiofy’.
These smooth solutions satisfy the following estimates:

//ff(h)ﬁv)dxdv=//f5i“dxdv:m5,

@2) o< fitx,v)< M), eP®,

1
g(fj(t,.,.))+ﬂ(g)///r)(|v|2)|v|2f8‘3(s,x,v)dsdxdv<8(fin)+2mgogt.
0

We then remove the regularization and the truncations of the initial data and pass to the limit after
extracting subsequences in (1.12) keepirfixed, based on the a priori estimates (4.2) only.
The only nontrivial term is the nonlinear one, i.@”j,Eﬁ. As in the proof of Theorem A, we
use theL.* estimate and the energy inequality in (4.2), together with Lemma 3. Lt and
m = 2 to show that the familyE?) is bounded inL%S.(R4; H1(T?)) for ¢ > 0 fixed, as§ — 0.
On the other hand, the continuity equation

(4.3) a,p§+vx./uf§ dv=0

implies that the family(o?) is bounded ianl)’Coo(RJr; w—11(T2)) for ¢ > O fixed, ass§ — 0,
and also inng'f(RJr; H~3(T?)) by Sobolev embedding and duality. Thus, the fanti#) is
bounded inWhl)’Coo(RJr; H~2(R?)) for ¢ > 0 fixed, as§ — 0. It is therefore relatively compact
in L2 (Ry; L2(T?)). This shows that, iff’ — f. and E} — E, in the sense of distributions

loc
onR; x T2 x R? as§ — 0 while ¢ > 0 is kept fixed, a situation to which the general case

reduces after extraction of subsequences, tfgéﬂf — feE. in the sense of distributions on
R, x T? x R?
By this procedure, we have constructed weak solutions of (1.12), (1.7b,c) which satisfy

(4.4) //fg(t,x,v)dxdvsz N dx dv = m,

45)  0< folt.x,v) < | 7] &P,

t
(4.6)  E(felt.-.)+B(e) / // n(1v1?) 1012 fe (s, x, v) ds dv dv < E(f™) + 2mot,
0
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since the estimates (4.2) are obviously uniform.in

The proof of Theorem E follows then the same lines as that of Theorem B. Notice, that one
does not have a uniform bound df. || .~, which explains why the proof of Theorem B (and
not simply that of Theorem A) is needed.

The Maximum Principle applied to the Fokker—Planck equation (1.12), together with
condition (2.16) orB(¢g), shows that, for all" > 0,

1
(4.7) 1 fell o qo,r1x2xR2) < | ™| oo roxre | 10gEl” = o(g).

Henceef, — 0 in L°°([0, T] x T2 x R?), which is crucial in the proof of Lemma 3.3 (more
specifically in that of (3.14)). In any case, Theorem B applies to this case fbrald.

The only remaining task is to prove that the defect measupredicted by Theorem B
vanishes. By (4.6), again for some fix&d> 0, we have:

in
(4.8) /// [v] fg(sx v) ds dx dv < 8(f ) +2mo:T -0

B(e)
0 |v|[>R

ase — 0. We keep the notations of the part of the proof of Theorem A before formula (3.25).
Letx C?(R+) be suchthat& x <1, x =1o0n[0, R]andyx =0 on[2R, +o0o[, then

o o
(4.9) e — / X(r)rzfg(t, x,rO)rdr < /rzfg(t,x, r@)rdr — 0
0 R

in L1([0, T]; LY(T? x $1)). Restricting (4.9) to subsequendg’) and(u,/) as in the proof of
Theorem A, gives, in the limitas — 0

(4.10) uzfx(|v|)|v|2f<r,x,v)|v|d|v|.
Ry

By (4.8), f is supported iR, x T2 x B(0, R); thus (4.10) implies that

(4.11) = / 2 x, vlvldvl.

By the rotation invariance off (see Lemma 3.3) and the definition (3.25) of the defect
measure, (4.11) impliesv = 0. This concludes the proof.00

5. Proof of Proposition C

To begin with, for eacls > 0, fI" € C>°(T? x R?). Therefore, the problem (1.9), (1.7b,c) has

a unique classical solutiofi onR.. x T2 x R?, as can be seen from a trivial modification of the
arguments in [20] (adapted to treat the case of a constant external magnetic field). In particular,
the energy inequality (3.6) becomes the equality:

(5.1) E(fe(t, ) =E(fM), Vi=0, e>0.
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This remark is essential in the sequel.

LEMMA 5.1. -Under the assumptions of Proposition C, there exists C’ > 0 such that

(52) C'<E(fM<C(l+6%,  lpellpaz <C¥%  NEeleqs < Ce¥2,

&

Proof. —By the interpolation inequality in Lemma 3.1 and the inequalities (2.11), one has the
estimatel| o ol .2 = O(£%2). Hence

(5.3) |Ecli=o]l 2 = | Ve AT (0eli=0 = 7) | 2 = O(¥2).

With the first statementin (2.11), this gives the estimate on the total energy atirién (5.2).
The next step is to propagate the various estimates>td@d. The Maximum Principle (3.5)
shows that

(5.4) Il fellzee

tx,v

= 0(83).

Using the interpolation inequality in Lemma 3.1, the estimate (5.4), the energy conservation (5.1)
and the first estimate in (5.2) shows that

1/2
(5.5) ||ps||L;>C(L;)<Csr||fs||i§.§_v( // Ivlzfsdxdv) =0(*/2).

T2xR2

This proves the second estimate in (5.2); proceeding as in (5.3) gives the last estimate
in(5.2). O

With these estimates, it is easy to prove that the defect measure associated to any subsequence
can not vanish. Indeed, the energy conservation (5.1) and the estimates (5.2) show that for all
e>0

(5.6) // |v|2f8(t,x,v)dxdv:2€(f8i”)—/‘Eg(t,x)lzdx>c’—0(83).
T2xR2 T2

Let (f.) be any subsequence d@ff.) such thatu, (defined in (3.24)) converges in
L®(Ry; M(T2 x S1)) weak-* to some limitw; by (5.6)

(5.7) / du(t,x,0) = I/im0 // lv[? f. (2, x, v)dx dv > C'.
T2x 81 o T2xR2
On the other hand, (5.4) shows that the weak-* limit of any subsequenc¢g pis f = 0.
Therefore, the definition (3.25) shows thagz 0. O
6. Proof of Theorem D
Proof of (a). —-Multiplying (1.9) by £2|v|? leads to:
(6.1) vh V(v fe) = =0 (%012 fe) = Vi - (ev|vl* f) = Vi - (e Ec|v]? f2) + 26 (Ee - v) fe.

It is convenient to use polar coordinates in the velocity spaca: sefr coso, r sind); in these
coordinates, as noticed in the proof of Lemma 3:3; V,, = 9.
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Going back to the proof of Lemma 3.3, we see that
+00
dov(t, x,0) = Iim0 / 3 for (. x, r(cOS9, sin) ) > dr
&'—

0
+00

(6.2) = IimO/ vL-VU(|U|2fS/(t,x,v))|v|d|v|
0

for subsequencdy, ) as considered in the proof of Theorem A before formula (3.25).
By the energy inequality (3.6), the first term in the right-hand side of (6.1) converges to O:

+o0
(6.3) s/|v|2f8/(t,x,|v|(COS9,sin9))|v|d|v|—>O in L (Ry; LY(T2 x S3)).
0

By the L*° bound (3.5), the energy inequality (3.6) and Lemma 3.1,

(6.4) Pe = / f= dv is uniformly bounded irL>® (R, L?(T?))
and
(6.5) / vf. dv is uniformly bounded irL> (R, L¥3(T?)).

By (6.4), the energy inequality (3.6) and Sobolev embedding
(6.6) Vp e[2,+ool, E. is uniformly bounded irL.™® (R, L?(T?)).

Settingp = 4, we see that:
o0

(6.7) cE, ./|v|(cose, sing) fz|vldlv] - 0 in L® (R4, L*(T2 x 57)),
0

so that the last term in the right-hand side of (6.1) also converges to 0.

The equivalence annouced in Theorem D(a) is established if we prove that the third term in the
right-hand side of (6.1) also converges to 0. The same method as above does not apply. Indeed
the second mometft|v|2f8 dv is only bounded irL}, which would require &%° bound onE;.
Unfortunately, we only have blxl bound onE; by (6.4), and since we are in the limiting case
of Sobolev injection, we cannot conclude by this method. Instead, we consider moments of the
solution of the Vlasov equation of order slightly higher than 2:

LEMMA 6.1.—Let /" e L° N L1(T2 x R?) satisfy(2.1)and(2.12) and let( /) be a family
of weak solutions dfL.9), (1.7b,c)Then, for allg € [0, «] N [0, 3[, the family

8/ feIvl? dx dv is uniformly bounded i {5 (R, L*(T?)).
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Proof. —The equation governing the propagation of moments can be written

(6.8) %//fg(t,x,v)lvvsdxdv:g//Eg(t,x)-v|v|’3_2fg(t,x,v)dxdv.

As B — 1< 2, applying Lemma 3.1, the* bound (3.5) and the energy inequality (3.6) leads to

a+p /4
3-B)/4
4/(B+D) ||f'”||( ﬁ)/ (// fg|v|2dde> <C
L&(Ly )

(denoting byC the various constants involved). By Sobolev embedding, the fatdily is
uniformly bounded inL>® (R,., LY 3-#)(T2)) so that

d
E//h}lﬁfgdxdv

where the constar® (8) — +oc aspf — 3. Integrating (6.10) with respect to the time variable
gives the expected resultO

(6.9) H/felvlﬂ Ldv

C(ﬂ)

(6.10) <=

We now proceed estimate the third term of (6.1). Using Lemmas 3.1 and 6.1, we get the
following estimate on the second moment of the solution of (1.9), (1.7b,c):

in || (B=2)/(+2) 4/ @th)
H/fmz <cl s sup (// fot,x, v>|v|ﬂdxdv)
L®([0,T],LZ+P/4(R?)) 1€[0,T]

CB.T)

for somep €12, inf(3, «)[ . By (6.6), the family(E,) is bounded inL.*>°(R,., L*#=2(T2)) and
thus

(6.12) sEg(t,x)/ [I2 fe (2, x, vl (cosd, sing)) [v| djv| — O in L (R4, LY(T2 x S3)).
It follows from (6.3), (6.7) and (6.12) that
o
dgv(t,x,0)= |im0Vx -8/v|v|2fs(t,x, v)|v| djv],
e—
0

thereby proving (a).

Proof of (b). -The key point is to obtain an estimate of hawg) varies in (6.10). First, by
Sobolev embedding

(6.13) I Ee ||L°°(L") K(p)llpe ||L°°(L2),

where the constari (p) satisfies the asymptotic estimate

(6.14) K(p)=0({/p) asp— +oc;
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(we refer to the Appendix for a quick proof of (6.14) based on Fourier series). We use this
inequality in (6.8) together with (6.4), to obtain

d CUlf™Mipee, ECFM) [ 4
- B
(6.15) ‘dt // fe(t, x,v)|v] dxdv‘ < - 3 g

We enhance (6.15) by Holder’s inequality

2p—4

= 1
// fg(t,x,v)|v|ﬂ dxdv < (/ fg(t,x,v)|v|2dxdv) <// fg(t,x,v)|v|ﬂ;2r3 dxdv)
(6.16) < CUS e 0P EG™) |1 <t+l)2ﬂﬂ_l4
' = g 3-8\ ¢ '

We finally estimate the 3rd moment as follows, using again the interpolation inequality in
Lemma 3.1: with the usual notatigin = p/(p — 1)

d 3
a/ fe(t, x,v)|v]°dx dv

/fg(t,x,v)|v|2dv

3

< =
S e ”ESHL?"(Lf) L
4

LTI i . B2 2
(6.17) < C(Ilf'nlng ’S(fm))«/ﬁ”fmﬂfjoz(// fo(t, x,0) v dXdU>ﬁ i

whereg = 4p’ — 2. Inequalities (6.16) and (6.17) give

d 3
E//fs(t,x,v)h)l dx dv

3 4in P = pt2
1,5 = (B—_2)(3— B)
I 2 ECFT))e F-2G—p)

whereg is any element of2, 3[ . Setting8 = 2+ | loge| ! establishes (b). O

6.1 <C( ]

7. The 3D results
7.A. Magnetic field of constant direction but variable intensity
In this subsection, we prove Theorem F. We shall adopt the following notations:
x=0"x3), X' =(x1,x2), v=@,v3), v =(v1.v2), v =(-v2v1,0).

The magnetic field is of the form(x) = (0, 0, b(x")) with b € C1(T?) such thab # 0 onT2.
We begin with the following lemma, which is the 3D analogue of Lemma 3.3.

LEMMA 7.1.—Let fi" e L N LY(T3 x R3) satisfy(2.1). Letb € C1(T?) such thath # 0
everywhere o2, and let(f,) be a family of weak solutions ¢1.7a—c) The family(f,) is
relatively compact inv*-L> (R, x T3 x R®) and any of its limit pointg is of the form
(7.1) f(t,x,v)=F(t,x, V'], v3)

for someF € L°(R, x T3 x Ry x R).
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Proof. —As in dimension 2, for any > 0, f. satisfies the following estimates:

(7.2) f >0a.e,; Vt>0//fs(t,x,v)dxdv://fin(x,v)dxdv, ||fa||L°°§HfinHLoo

and the energy inequality
(7.3) Vi >0,E(f: () <E(FM).

The family( f,) is therefore relatively compact in-L>® (R x T2 x R3); let f be one of its limit
points, the limit of a subsequence ©f;) (still abusively denotedf;)) ase — 0. Multiplying
(2.17) bye leads to

&€ & &
(7.4) UL‘vasZ_Eatfs_EU'fos_EEs‘vas-

By our assumption oh, 1/b is bounded inL>(T?2). By the energy inequality (7.3), the family
((1+ |v|®) f.) is bounded inL>® (R, L1(T3 x R3)), so that the first two terms of the right-hand
side of (7.4) converge to 0 in the sense of distributions. The energy inequality implies moreover
that the family(E,) is bounded inL*> (R, L2(T?3)). Combining this with the.> bound (7.2)

on f. shows that the last term in the right-hand side of (7.4) also converges to 0 in the sense of
distributions. Thus

(7.5) vt .V, f=0.

Since the operatart - V, generates the group of rotations of akisn the velocity space, (7.5)
implies that the limiting density’ depends only on the length of. O

Integrating (2.17) with respect to the polar angleof reo with r = [v'| leads to
(0r + v30x5 + E¢3005) / fet,x, rw, v3) dw + 9, /(Es cw) fe(t,x, rw, v3) do

(7.6) =—0y / felt, x, rw, va)rw1 do — 9y, / fe(t, x,rw, v3)rwz dw.

First of all, it is easy to see that the right-hand side of (7.6) converges to 0 in the sense
of distributions. By the energy inequality (7.3) the familyl + |v|?) f;) is bounded in
L®(R4: LY(T3 x R®)) so that

(7.7) /‘fs(t,x,rw,vg)ra)dwﬁ /f(t,x,ra), v3)rodw = F(t, x,r, vg)r/a)da)zo

by Lemma 7.1.
Next we use the Poisson equation to show some compactness on the electric fields.

LEMMA 7.2.—Let fi" e L N LY(T3 x R3) satisfy(2.1). Letb € C1(T?) such thath # 0
everywhere o2, and let( ;) be a family of weak solutions ¢2.17), (1.7b,c)There exists a
positive constan€ such that
(7-8) ||Ea||LOC(R+;W1,5/3(T3)) <C, ||8IE€||L°0(R+;L5/4(T3)) <C.

In particular, the family(E;) is relatively compact inL> ([0, T]; L?(T3)) for all 7 > 0 and
pell 2.
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Proof. —Lemma 3.1 coupled with the estimates (7.2), (7.3) gives the following bound:

e
(7.9) lpell Lo 15373y < C | F M| 2R ECHMS.

By the Poisson equation (1.7b),

(7.10) E€=VxAxl<pg—// fi”dxdv).

The first estimate in (7.8) follows directly from (7.9), (7.10). By the continuity equation (i.e., the
relation obtained after integrating (2.17)ihand (7.10)

(7.11) HE. =V, A7V, ./fgu dv.

Applying again Lemma 3.1 to control the momentum dengity.vdv leads to the second
estimate in (7.8). The announced compactness property follows from (7.8) and the energy
inequality (7.3) by an easy interpolation argument (see [2]).

Proof of Theorem F. Let f be a limit point of(f,) in w-L® (R4 x T3 x R3), the limit of a
subsequence dff,) (still abusively denotedf.)) ase — 0. By the compactness of the electric
fields proved in Lemma 7.2, we have:

(7.12) JfeEe > fE

in w-L®([0, T] x R3; LP(T3)) forall T > 0 and allp € [1, 2[, with

(7.13) E= vax1<p - // N dx dv).

In particular, the following convergences hold in the sense of distributioi®,0or T3 x RS as
e —0:

(7.14) 8v3(E83/fs(t,x,rw,vg) da)) — 8v3(E3/f(t,x,rw, v3) da)) :8v3(E3f)/ dw

because of the rotational invariance in Lemma 7.1, and

(7.15) 0 /(Eg cw) fe(t,x, rw, v3) dw — 0, /(an))f(t,x, rw, v3) dw =0,

again because of the rotational invariance in Lemma 7.1.
Taking limits ase — 0 in (7.6) leads, on account of (7.7), (7.14) and (7.15) to the limiting
system (2.18) announced in Theorem ]

7.B. Case of a magnetic field of constant modulus

In this last case, we conjugate the Vlasov equation by the local rotation generated by the
magnetic field. This technigue is standard in the theory of averaging of perturbations of ODEs
(see for example [18]); for its application to PDEs, we refer for example to [19].
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In this last subsection, we use the following notation.etR3\ {0} ands € R; we designate
by R(u, s) the rotation of anglers in R3 around the axi&ku oriented byx. With this notation,
the local rotation generated by the operatdgm A B-V,in(1.7a) is therefor® (B, —t /). We
therefore change variables in (1.7a) and consider a new unknown fuggtiaa follows:

(7.16) w:R(B, £)v, ge(t, x,w) = fe(t, x,v).
&
A straightforward computation shows thatsolves (1.7a—d) if and only g, satisfies:

t t
0r 8¢ —i—R(B, —g)wovxgs —i—R(B, E>ES'ng€

I P P P L O P
(7.17b) Es:VxA;l(/gg dw—// fi“dxdv),

(7.17¢) gg(O,x,w):fin(x,w).

(Notice that the local densitigsg, dw and [ f; dv are equal sinc& (B(x), —1/¢) is an isometry
for all x, which entails that the change of variables (7.16) leaves the Lebesgue measure d
invariant.)

The physical a priori estimates (7.2) and (7.3) (conservation of mass and energy, and
Maximum Principle) are still satisfied by any family;) of weak solutions of (1.7a—d), and
therefore byg., again because the change of variables (7.16) leaves the Lebesgue measure d
invariant. The family(g,) is therefore relatively compact n-L>° (R, x T2 x R3); let g be one
of its limit points, the limit of a subsequence@t ) still abusively denoted big. ). In the sequel,
we shall restrict our attention to such a subsequence.

First, we control the fast time oscillations of the locally rotated number degsitys follows:

LEMMA 7.3.-Let /" e L® N LY(T3 x R3) satisfy (2.1). Let (f;) be a family of weak
solutions of1.7a—dwith B a C1(T?) divergence-free magnetic field of constant stren@th=
1. Then, the familyg, defined by7.16)satisfies the following boundfr all ¢ € C(T3 x R3):

or / Pge dx dw‘

(7-18) < C(fin) (1+ ||VxB||LOO(T3))[“ (1+ |w|2)¢” WLL(T3xR3) + ||VU)¢”L1(R3;L2(T3))]3

9 // PEcge dx dw‘ SC(™) (L4 1Ve Bl poogrs) [ L+ 1w L1 gswrsers))

(719) + H (1 + |w|2)vw¢ || Ll(R3;L°°(T3)) + ||¢||L1(R3;LOC(T3))]-
Proof. —Multiplying (7.17a) by¢ and integrating in(x, v) leads to:

at//¢g€dxdw=//g€1e(3,—é>w.vxqsdxdw
+//ggqsvx.R(B,_é>wdxdw+//gSR<B,—é)Es.qusdxdw
+ [ [ gtV (| (R(B.~)w)-ver(B. -1} |[R(B.~1)w)dxduw
[ e ([((5:=)o) -won(m =) |o(5.~1))
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az o [fe](x(n- o) w(-) (5o S

By the Maximum Principle (7.2), the first term in the right-hand side of (7.20) is bounded by
a constant, depending off" only, times theL1-norm of |jw||V,¢|. .

By the energy inequality (7.3), the third term is bounded by a constant dependifig only
times theLl (L2)-norm of v, ¢.

The other terms are controlled in terms of the spatial derivatives of the local rorstR /¢).
We start with the formula

(7.21) R(B, £>u =(B-u)B+ (u— (u-B)B) cos(é) +un Bsin(é).

o [(s.4)]

Therefore, the second and fourth terms in the right-hand side of (7.20) are bounded by a constant
depending onf™" times || Vi B||L=|[|lw|¢] 1. By the same token, the last term is bounded by a
constant depending ofi" times||V, B|| . | |w|?Vyo| ;1. This proves (7.18).

In order to prove (7.19), we apply estimate (7.18) with, in the place of¢. The same
argument as in Lemma 7.2 shows that the fanifly) is bounded inL>(R,; W%/3(T3)), so
that

It shows that, for alk € R3,

(7.22) < C|VyBllul.

‘//(pEgatgs dx dw‘ SC(f™ L+ VBl oo s [ (X + 1w 1 pawrsers,

(7.23) +[l(1+ |w|2)Vw¢HL1(R3;LOO(T3)) + 1ol 2R3, Lo (T3]
As in Lemma 7.2, the familyd; E,) is bounded inL.®(R.; W1-5/4(T3)), so that

(7.24) ‘ / / # (3, E.)ge dx dw‘ < (™Il 13 L4T3))-

Both inequalities (7.23) and (7.24) entail (7.19)1

An immediate consequence of Lemma 7.3 is

COROLLARY 7.4.-With the same assumptions and notations as in Lerr8afor any
smooth, zero mean, periodic functieron R and anyy € C1(T2 x R®),

(7.25)  a(t/e)y(x, w)ge:(t, x, w) — 0O, a(t/e)Es(t,x)¥(x, w)g:(t, x,w) — 0

ase — 0, in the sense of distributions @& x T3 x R3.

Proof. —This is an instance of “nonstationary phase”: to prove it, integrate by partaurial
apply (7.18) and (7.19). O

After these lengthy but necessary preparations, we are ready to give the:

Proof of Theorem G. As explained before the statement of Lemma 7.3, we restrict our
attention to a subsequengg) converging tog in L (R, x T2 x R3) weak-*. DefineE by:

(7.26) E:VXA;l(/gdw—// fi"dxdv) = lim E,.
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Notice that, as in Lemma 7.%, — E in L>([0, T']; L?(T3)) forall p € [1,2[ andT > 0. This
and Corollary 7.4 show, in view of formula (7.21) giving the expression of the local rotation, that

(7.27) R(B,—£>w'vxgs—> (B-w)(B-V,g),
€

while

(7.28) R(B, é)Ee Vuge — (B-E)(B - Vyg).

It remains to compute the limit of the term in the right-hand side of (7.17a). We recast it in the

form
[( ( t) ) ( tﬂ < t)
R(B,——)w -V |R(B,— ) |R|B,—— |w- Vyg
& & &
= [(B -w)Vp + cos(é)(vw —(B-w)Vp) +sin<t>VBAw}

&

(7.29) [(1 - cos(é))(B.Ug)B + sin(é)(Ug A B)} -Vuge

with

(7.30) U, = [(B . w)B + cos(é) (w— (B-w)B) + sin(é)B A w:|.
The general term in (7.29), (7.30) is of the form

(7.31) oz of (coé" <é> sin <é>w(x, w)g8>,

wherew, 8, m andn are integers whiley € C1(T3 x R3). A straightforward application of
Corollary 7.4 shows that

(7.32) ag, afj <co§" (é) Si <£>¢g5) — 0% ajfj((cos‘f1 sin")yg)

in the sense of distributions d®. x T3 x R3 ase — 0, where

1
(7.33) (cog” sirﬂ):/coé”(an)sirW(an)dx.
0

Thus the right-hand side of (7.17a) converges in the sense of distributid®s enT3 x R3 to
—{[(B-w)*(VsB - B)B + (B - w)*V5B]
+3[(B-w)VsBAwAB)—(B-w)(VsB-(w—(B-w)B))B]
+3[((Vw — (B-w)Vs)B - (w—2(B-w)B))B — (w - B)(Vyy — (B - w)V5)B]
(7.34) +3[— (B-w)(VeauB) A B+ (VpawB - (B Aw))B]} - Vysg.

SinceB has constant length, (7.34) can be rewritten as:
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[-3[(B-w)?VgB — (B-w)(V5B-w)B] — i[(VuB - w)B — (w- B)V, B]
— 3[(B-w)B AVpruwB — ((B AVprwB) - w)B]} - Vg
(735) =|+3B-w)wA(BAVEB)—3wA (BAVyB) — 3w A VgauB) - Vusg.
Combining (7.27), (7.28) and (7.35) leads to the announced result.

Appendix

We recall the behavior of the Sobolev constant for the embeddih@?) c L?(T?) as p
tends to its critical value which, in dimension 2,jis= +0co. Leta > 0 and letu € H11%(T?);
then
AL u) = ater,  with Y (L4 k) |aw)]? = full? . < +oo.

kez? kez?

Thus, for allx € T2

(A.2) u)| < D Jatk)| < Callull? .
kez?
with
1 12 dz 12
A_ a = _— = —_— = l .
A3 q (kzz ) O<[(l+|z|>2+2a) Ot/
€ R

asa — 0. By interpolation H1(T2) embeds intd.? (T2) with

2(1+ )
(A.4) lullr < C/ O Null 2, for p==—
In (6.14), it suffices to take
2(1+a)
1/(1
K(p)=Cy/M forp= -
or, in other words,
(p—2)/p
(p—2)/ p
(A.5) K(p)=Cy, 5 = O[(E - 1) } =0(y/p)-
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