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Abstract

The present paper proves that all limit points of sequences of renormalized solutions of the Boltzmann equation in the limit of
small, asymptotically equivalent Mach and Knudsen numbers are governed by Leray solutions of the Navier–Stokes equations.
This convergence result holds for hard cutoff potentials in the sense of H. Grad, and therefore completes earlier results by the same
authors [Invent. Math. 155 (2004) 81–161] for Maxwell molecules.
 2009 Elsevier Masson SAS. All rights reserved.

Résumé

On montre dans cet article qu’à extraction de sous-suites près, les suites de solutions renormalisées de l’équation de Boltzmann
convergent vers des limites décrites par les solutions de Leray des équations de Navier–Stokes dans la limite où les nombres de
Mach et de Knudsen sont petits et asymptotiquement équivalents. Cette convergence est établie ici dans le cas de potentiels durs
avec troncature angulaire au sens de H. Grad, ce qui complète les résultats antérieurs des mêmes auteurs [Invent. Math. 155 (2004)
81–161] pour le cas des molécules Maxwelliennes.
 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The subject matter of this paper is the derivation of the Navier–Stokes equations for incompressible fluids from the
Boltzmann equation, which is the governing equation in the kinetic theory of rarefied, monatomic gases.

In the kinetic theory of gases founded by Maxwell and Boltzmann, the state of a monatomic gas is described by
the molecular number density in the single-body phase space, f ≡ f (t, x, v) ! 0 that is the density with respect to the
Lebesgue measure dx dv of molecules with velocity v ∈R3 and position x ∈R3 at time t ! 0. Henceforth, we restrict
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our attention to the case where the gas fills the Euclidean space R3. For a perfect gas, the number density f satisfies
the Boltzmann equation:

∂t f + v ·∇xf = B(f,f ), x, v ∈R3, (1.1)

where B(f,f ) is the Boltzmann collision integral.
The Boltzmann collision integral acts only on the v variable in the number density f . In other words, B is a bilinear

operator defined on functions of the single variable v, and it is understood that the notation

B(f,f )(t, x, v) designates B
(
f (t, x, ·), f (t, x, ·)

)
(v). (1.2)

For each continuous f ≡ f (v) rapidly decaying at infinity, the collision integral is given by:

B(f,f )(v) =
∫ ∫

R3×S2

(
f (v′)f (v′1)− f (v)f (v1)

)
b(v− v1,ω) dv1 dω, (1.3)

where

v′ ≡ v′(v, v1,ω) = v − (v − v1) ·ωω,

v′1 ≡ v′1(v, v1,ω) = v1 + (v − v1) ·ωω. (1.4)

The collision integral is then extended by continuity to wider classes of densities f , depending on the specifics of the
function b.

The function b≡ b(v− v1,ω), called the collision kernel, is measurable, a.e. positive, and satisfies the symmetry:

b(v− v1,ω) = b(v1 − v,ω) = b(v′ − v′1,ω) a.e. in (v, v1,ω). (1.5)

Throughout the present paper, we assume that b satisfies:

0 < b(z,ω) " Cb

(
1 + |z|

)β ∣∣cos(ẑ,ω)
∣∣ a.e. on R3 × S2,

∫

S2

b(z,ω) dω! 1
Cb

|z|
1 + |z| a.e. on R3, (1.6)

for some Cb > 0 and β ∈ [0,1]. The bounds (1.6) are verified by all collision kernels coming from a repulsive, binary
intermolecular potential of the form U(r) = U0/rs with Grad’s angular cutoff (see [15]) and s ! 4. Such power-law
potentials are said to be “hard” if s ! 4 and “soft” otherwise: in other words, we shall be dealing with hard cutoff
potentials. The case of a hard-sphere interaction (binary elastic collisions between spherical particles) corresponds
with

b(z,ω) = |z ·ω|; (1.7)

it is a limiting case of hard potentials that obviously satisfies (1.6), even without Grad’s cutoff. At the time of this
writing, the Boltzmann equation has been derived from molecular dynamics — i.e. Newton’s equations of classical
mechanics applied to a large number of spherical particles — in the case of hard sphere collisions, by O.E. Lanford
[16], see also [9] for the case of compactly supported potentials. Thus the collision kernel b given by (1.7) plays an
important role in the mathematical theory of the Boltzmann equation.

The only nonnegative, measurable number densities f such that B(f,f ) = 0 are Maxwellian densities, i.e. densities
of the form:

f (v) = R

(2πΘ)3/2 e−
|v−U |2

2Θ =:MR,U,Θ(v) (1.8)

for some R ! 0, Θ > 0 and U ∈ R3. Maxwellian densities whose parameters R,U,Θ are constants are called “uni-
form Maxwellians”, whereas Maxwellian densities whose parameters R,U,Θ are functions of t and x are referred to
as “local Maxwellians”. Uniform Maxwellians are solutions of (1.1); however, local Maxwellians are not solutions of
(1.1) in general.

The incompressible Navier–Stokes limit of the Boltzmann equation can be stated as follows.
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Navier–Stokes limit of the Boltzmann equation. Let uin ≡ uin(x) ∈R3 be a divergence-free vector field on R3. For
each ε > 0, consider the initial number density:

f in
ε (x, v) =M1,εuin(εx),1(v). (1.9)

Notice that the number density f in
ε is a slowly varying perturbation of order ε of the uniform MaxwellianM1,0,1. Let

fε solve the Boltzmann equation (1.1) with initial data (1.9), and define:

uε(t, x) := 1
ε

∫

R3

vfε

(
t

ε2 ,
x

ε
, v

)
dv. (1.10)

Then, in the limit as ε→ 0+ (and possibly after extracting a converging subsequence), the velocity field uε satisfies

uε→ u in D′
(
R+ ×R3),

where u is a solution of the incompressible Navier–Stokes equations:

∂t u + divx(u⊗ u) +∇xp = ν(xu, x ∈R3, t > 0,

divx u = 0, (1.11)

with initial data

u|t=0 = uin. (1.12)

The viscosity ν is defined in terms of the collision kernel b, by some implicit formula, that will be given below.

(More general initial data than (1.9) can actually be handled with our method: see below for a precise statement of
the Navier–Stokes limit theorem.)

Hydrodynamic limits of the Boltzmann equation leading to incompressible fluid equations have been extensively
studied by many authors. See in particular [2] for formal computations, and [1,3] for a general program of deriving
global solutions of incompressible fluid models from global solutions of the Boltzmann equation. The derivation of
global weak (Leray) solutions of the Navier–Stokes equations from global weak (renormalized à la DiPerna–Lions) so-
lutions of the Boltzmann equation is presented in [3], under additional assumptions on the Boltzmann solutions which
remained unverified. In a series of later publications [20,22,4,10] some of these assumptions have been removed, ex-
cept one that involved controlling the build-up of particles with large kinetic energy and possible concentrations in the
x-variable. This last assumption was removed by the second author in the case of the model BGK equation [23,24],
by a kind of dispersion argument based on the fact that relaxation to local equilibrium improves the regularity in v of
number density fluctuations. Finally, a complete proof of the Navier–Stokes limit of the Boltzmann equation was pro-
posed in [13]. In this paper, the regularization in v was obtained by a rather different argument — specifically, by the
smoothing properties of the gain part of Boltzmann’s collision integral — since not much is known about relaxation
to local equilibrium for weak solutions of the Boltzmann equation.

While the results above holds for global solutions of the Boltzmann equation without restriction on the size (or
symmetries) of its initial data, earlier results had been obtained in the regime of smooth solutions [7,5]. Since the
regularity of Leray solutions of the Navier–Stokes equations in 3 space dimensions is not known at the time of this
writing, such results are limited to either local (in time) solutions, or to solutions with initial data that are small in
some appropriate norm.

The present paper extends the result of [13] to the case of hard cutoff potentials in the sense of Grad — i.e. assuming
that the collision kernel satisfies (1.6). Indeed, [13] only treated the case of Maxwell molecules, for which the collision
kernel is of the form:

b(z,ω) =
∣∣cos(z,ω)

∣∣b∗
(∣∣cos(z,ω)

∣∣) with
1
C∗

" b∗ " C∗.

The method used in the present paper also significantly simplifies the original proof in [13] in the case of Maxwell
molecules.

Independently, C.D. Levermore and N. Masmoudi have extended the analysis of [13] to a wider class of collision
kernels that includes soft potentials with a weak angular cutoff in the sense of DiPerna–Lions: see [17]. Their proof is
written in the case where the spatial domain is the 3-torus R3/Z3.
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In the present paper, we handle the case of the Euclidean space R3, which involves additional technical difficulties
concerning truncations at infinity and the Leray projection on divergence-free vector fields — see Appendix C below.

2. Formulation of the problem and main results

2.1. Global solutions of the Boltzmann equation

The only global existence theory for the Boltzmann equation without extra smallness assumption on the size of the
initial data known to this date is the DiPerna–Lions theory of renormalized solutions [8,18]. We shall present their
theory in the setting best adapted to the hydrodynamic limit considered in the present paper.

All incompressible hydrodynamic limits of the Boltzmann equation involve some background, uniform Maxwellian
equilibrium state — whose role from a physical viewpoint is to set the scale of the speed of sound. Without loss of
generality, we assume this uniform equilibrium state to be the centered, reduced Gaussian density:

M(v) :=M1,0,1(v) = 1
(2π)3/2 e−|v|2/2. (2.1)

Our statement of the Navier–Stokes limit of the Boltzmann equation given above suggests that one has to handle
the scaled number density:

Fε(t, x, v) = fε

(
t

ε2 ,
x

ε
, v

)
, (2.2)

where fε is a solution of the Boltzmann equation (1.1). This scaled number density is a solution of the scaled Boltz-
mann equation:

ε2∂tFε + εv ·∇xFε = B(Fε,Fε), x, v ∈R3, t > 0. (2.3)

Throughout the present section, ε is any fixed, positive number.

Definition 2.1. A renormalized solution of the scaled Boltzmann equation (2.3) relatively to the global equilibrium M

is a function,

F ∈ C
(
R+,L1

loc
(
R3 ×R3))

such that

Γ ′
(

F

M

)
B(F,F ) ∈ L1

loc
(
R+ ×R3 ×R3),

and which satisfies,

M
(
ε2∂t + εv ·∇x

)
Γ

(
F

M

)
= Γ ′

(
F

M

)
B(F,F ), (2.4)

for each normalizing nonlinearity:

Γ ∈ C1(R+)
such that

∣∣Γ ′(z)
∣∣ " C√

1 + z
, z ! 0.

The DiPerna–Lions theory is based on the only a priori estimates that have natural physical interpretation. In
particular, the distance between any number density F ≡ F(x, v) and the uniform equilibrium M is measured in
terms of the relative entropy:

H(F |M) :=
∫ ∫

R3×R3

(
F ln

(
F

M

)
− F + M

)
dx dv. (2.5)

Introducing

h(z) = (1 + z) ln(1 + z)− z ! 0, z >−1, (2.6)
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we see that

H(F |M) =
∫ ∫

R3×R3

h

(
F

M
− 1

)
M dv dx ! 0,

with equality if and only if F = M a.e. in x, v.
While the relative entropy measures the distance of a number density F to the particular equilibrium M , the local

entropy production rate “measures the distance” of F to the set of all Maxwellian densities. Its expression is as
follows:

E(F ) = 1
4

∫ ∫ ∫

R3×R3×S2

(F ′F ′1 − FF1) ln
(

F ′F ′1
FF1

)
b(v − v1,ω) dv dv1 dω. (2.7)

The DiPerna–Lions existence theorem is the following statement [8,18].

Theorem 2.2. Assume that the collision kernel b satisfies Grad’s cutoff assumption (1.6) for some β ∈ [0,1]. Let
F in ≡ F in(x, v) be any measurable, a.e. nonnegative function on R3 ×R3 such that

H
(
F in|M

)
< +∞. (2.8)

Then, for each ε > 0, there exists a renormalized solution,

Fε ∈ C
(
R+,L1

loc
(
R×R3)),

relatively to M of the scaled Boltzmann equation (2.3) such that

Fε |t=0 = F in.

Moreover, Fε satisfies:

(a) the continuity equation

ε∂t

∫

R3

Fε dv + divx

∫

R3

vFε dv = 0, (2.9)

and
(b) the entropy inequality

H(Fε |M)(t) + 1
ε2

t∫

0

∫

R3

E(Fε)(s, x) ds dx " H
(
F in|M

)
, t > 0. (2.10)

Besides the continuity equation (2.9), classical solutions of the scaled Boltzmann equation (2.3) with fast enough
decay as |v|→∞ would satisfy the local conservation of momentum,

ε∂t

∫

R3

vFε dv + divx

∫

R3

v⊗ vFε dv = 0, (2.11)

as well as the local conservation of energy,

ε∂t

∫

R3

1
2
|v|2Fε dv + divx

∫

R3

v
1
2
|v|2Fε dv = 0. (2.12)

Renormalized solutions of the Boltzmann equation (2.3) are not known to satisfy any of these conservation laws except
that of mass — i.e. the continuity equation (2.9). Since these local conservation laws are the fundamental objects in
every fluid theory, we expect to recover them somehow in the hydrodynamic limit ε→ 0+.
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2.2. The convergence theorem

It will be more convenient to replace the number density Fε by its ratio to the uniform Maxwellian equilibrium M ;
also we shall be dealing mostly with perturbations of order ε of the uniform Maxwellian state M . Thus we define:

Gε = Fε

M
, gε = Gε − 1

ε
. (2.13)

Likewise, the Lebesgue measure dv will be replaced with the unit measure M dv, and we shall systematically use the
notation:

〈φ〉=
∫

R3

φ(v)M(v)dv, for each φ ∈ L1(M dv). (2.14)

For the same reason, quantities like the local entropy production rate involve the measure:

dµ(v, v1,ω) = b(v − v1,ω)M1 dv1M dv dω,

∫ ∫ ∫

R3×R3×S2

dµ(v, v1,ω) = 1, (2.15)

whose normalization can be assumed without loss of generality, by some appropriate choice of physical units for the
collision kernel b. We shall also use the notation:

〈〈ψ〉〉=
∫ ∫ ∫

R3×R3×S2

ψ(v, v1,ω) dµ(v, v1,ω) for ψ ∈ L1(R3 ×R3 × S2, dµ
)
. (2.16)

From now on, we consider solutions of the scaled Boltzmann equation (2.3) that are perturbations of order ε about
the uniform Maxwellian M . This is conveniently expressed in terms of the relative entropy.

Proposition 2.3 (Uniform a priori estimates). Let F in
ε ≡ F in

ε (x, v) be a family of measurable, a.e. nonnegative func-
tions such that

sup
ε>0

1
ε2 H

(
F in
ε |M

)
= Cin < +∞. (2.17)

Consider a family (Fε) of renormalized solutions of the scaled Boltzmann equation (2.3) with initial data,

Fε |t=0 = F in
ε . (2.18)

Then

(a) the family of relative number density fluctuations gε satisfies

1
ε2

∫

R3

〈
h
(
εgε(t, x, ·)

)〉
dx " Cin, (2.19)

where h is the function defined in (2.6);
(b) the family 1

ε (
√

Gε − 1) is bounded in L∞(R+;L2(M dv dx)):
∫

R3

〈(√
Gε − 1
ε

)2〉
dx " Cin; (2.20)

(c) hence the family gε is relatively compact in L1
loc(dt dx;L1(M dv));

(d) the family of relative number densities Gε satisfies the entropy production — or dissipation estimate:

∞∫

0

∫

R3

〈〈(
√

G′εG
′
ε1 −

√
GεGε1

ε2

)2〉〉
dx dt " Cin. (2.21)
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Proof. The entropy inequality implies that

H(Fε |M)(t) =
∫

R3

〈
h(Gε − 1)

〉
(t, x) dx " H

(
F in
ε |M

)
" Cinε2,

which is the estimate (a).
The estimate (b) follows from (a) and the elementary identity:

h(z− 1)− (
√

z− 1)2 = z ln z− (
√

z− 1)(
√

z + 1)− (
√

z− 1)2

= 2z ln
√

z− 2(
√

z− 1)
√

z

= 2
√

z(
√

z ln
√

z−√z + 1) ! 0.

From the identity,

gε = 2
√

Gε − 1
ε

+ ε
(√

Gε − 1
ε

)2

, (2.22)

and the bound (b), we deduce the weak compactness statement (c).
Finally, the entropy inequality implies that

∞∫

0

∫

R3

E(Fε)(s, x) dx ds " Cinε4.

Observing that

E(Fε) = 1
4

∫ ∫ ∫

R3×R3×S2

(F ′εF
′
ε1 − FεFε1) ln

(
F ′εF

′
ε1

FεFε1

)
b(v− v1,ω) dv dv1 dω

= 1
4

〈〈
(G′εG

′
ε1 −GεGε1) ln

(
G′εG

′
ε1

GεGε1

)〉〉
,

and using the elementary inequality,

1
4
(X− Y) ln

X

Y
! (
√

X−
√

Y)2, X,Y > 0,

leads to the dissipation estimate (d). !

Our main result in the present paper is a description of all limit points of the family of number density fluctua-
tions gε .

Theorem 2.4. Let F in
ε be a family of measurable, a.e. nonnegative functions defined on R3×R3 satisfying the scaling

condition (2.17). Let Fε be a family of renormalized solutions relative to M of the scaled Boltzmann equation (2.3)
with initial data (2.18), for a hard cutoff collision kernel b that satisfies (1.6) with β ∈ [0,1]. Define the relative
number density Gε and the number density fluctuation gε by the formulas (2.13).

Then, any limit point g in L1
loc(dt dx;L1(M dv)) of the family of number density fluctuations gε is an infinitesimal

Maxwellian of the form,

g(t, x, v) = u(t, x) · v + θ(t, x)
1
2

(
|v|2 − 5

)
,

where the vector field u and the function θ are solutions of the Navier–Stokes–Fourier system:

∂t u + divx(u⊗ u) +∇xp = ν(xu, divx u = 0,

∂tθ + divx(uθ) = κ(xθ, (2.23)
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with initial data

uin = w− lim
ε→0

P

(
1
ε

∫
vF in
ε dv

)
,

θ in = w− lim
ε→0

1
ε

∫ (
1
5
|v|2 − 1

)(
F in
ε −M

)
dv, (2.24)

where P is the Leray orthogonal projection in L2(R3) on the space of divergence-free vector fields and the weak
limits above are taken along converging subsequences. Finally, the weak solution (u, θ) of (2.23) so obtained satisfies
the energy inequality:

∫

R3

(
1
2

∣∣u(t, x)
∣∣2 + 5

4

∣∣θ(t, x)
∣∣2

)
dx +

t∫

0

∫

R3

(
ν|∇xu|2 + 5

2
κ|∇xθ |2

)
dx

" lim
ε→0+

1
ε2 H

(
F in
ε |M

)
. (2.25)

The viscosity ν and thermal conductivity κ are defined implicitly in terms of the collision kernel b by the formulas
(2.27) below.

There are several ways of stating the formulas giving ν and κ . Perhaps the quickest route to arrive at these formulas
is as follows.

Consider the Dirichlet form associated to the Boltzmann collision integral linearized at the uniform equilibrium M :

DM(Φ) := 1
8

〈〈
|Φ ′ +Φ ′1 −Φ −Φ1|2

〉〉
. (2.26)

The notation | · |2 designates the Euclidean norm on R3 when Φ is vector-valued, or the Frobenius norm on M3(R)

(defined by |A| = trace(A∗A)1/2) whenΦ is matrix-valued. Let D∗ be the Legendre dual ofD, defined by the formula

D∗(Ψ ) := sup
Φ

(
〈Ψ ·Φ〉 −D(Φ)

)
,

where the notation Φ(v) ·Ψ (v) designates the Euclidean inner product in R3 whenever Φ,Ψ are vector valued, or the
Frobenius inner product in M3(R) whenever Φ,Ψ are matrix-valued (the Frobenius inner product being defined by
A · B = trace(A∗B)).

With these notations, one has:

ν := 1
5
D∗

(
v⊗ v − 1

3
|v|2I

)
, κ := 4

15
D∗

(
1
2
v
(
|v|2 − 5

))
. (2.27)

The weak solutions of the Navier–Stokes–Fourier system obtained in Theorem 2.4 satisfy the energy inequality
(2.25) and thus are strikingly similar to Leray solutions of the Navier–Stokes equations in 3 space dimensions — of
which they are a generalization. The reader is invited to check that, whenever the initial data F in

ε is chosen so that

1
ε2 H

(
F in
ε |M

)
→ 1

2

∫

R3

∣∣uin(x)
∣∣2

dx as ε→ 0+,

then the vector field u obtained in Theorem 2.4 is indeed a Leray solution of the Navier–Stokes equations. More
information on this kind of issues can be found in [13]. See in particular the statements of Corollary 1.8 and Theo-
rem 1.9 in [13], which hold verbatim in the case of hard cutoff potentials considered in the present paper, and which
are deduced from Theorem 2.4 as explained in [13].

2.3. Mathematical tools and notations for the hydrodynamic limit

An important feature of the Boltzmann collision integral is the following symmetry relations (the collision
symmetries). These collision symmetries are straightforward, but fundamental consequences of the identities (1.5)
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verified by the collision kernel, and can be formulated in the following manner. Let Φ ≡ Φ(v, v1) be such that
Φ ∈ L1(R3 ×R3 × S2, dµ). Then

∫ ∫ ∫

R3×R3×S2

Φ(v, v1) dµ(v, v1,ω) =
∫ ∫ ∫

R3×R3×S2

Φ(v1, v) dµ(v, v1,ω)

=
∫ ∫ ∫

R3×R3×S2

Φ
(
v′(v, v1,ω), v′1(v, v1,ω)

)
dµ(v, v1,ω), (2.28)

where v′ and v′1 are defined in terms of v, v1,ω by the formulas (1.4).
Since the Navier–Stokes limit of the Boltzmann equation is a statement on number density fluctuations about the

uniform Maxwellian M , it is fairly natural to consider the linearization at M of the collision integral.
First, the quadratic collision integral is polarized into a symmetric bilinear operator, by the formula

B(F,G) := 1
2

(
B(F + G,F + G)−B(F,F )−B(G,G)

)
.

The linearized collision integral is defined as

Lf =−2M−1B(M,Mf ). (2.29)

Assuming that the collision kernel b comes from a hard cutoff potential in the sense of Grad (1.6), one can show
(see [15] for instance) that L is a possibly unbounded, self-adjoint, nonnegative Fredholm operator on the Hilbert
space L2(R3,M dv) with domain,

D(L) = L2(R3, a
(
|v|

)2
M dv

)
,

and nullspace,

KerL= span
{
1, v1, v2, v3, |v|2

}
, (2.30)

and that L can be decomposed as

Lg(v) = a
(
|v|

)
g(v)−Kg(v),

where K is a compact integral operator on L2(M dv) and a = a(|v|) is a scalar function called the collision frequency
that satisfies, for some C > 1,

0 < a− " a
(
|v|

)
" a+

(
1 + |v|

)β
.

In particular, L has a spectral gap, meaning that there exists C > 0 such that

〈fLf 〉! C‖f −Πf ‖2
L2(Ma dv)

, (2.31)

for each f ∈D(L), where Π is the orthogonal projection on KerL in L2(R3,M dv), i.e.

Πf = 〈f 〉+〈 vf 〉 · v +
〈(

1
3
|v|2 − 1

)
f

〉
1
2

(
|v|2 − 3

)
. (2.32)

The bilinear collision integral intertwined with the multiplication by M is defined by:

Q(f, g) = M−1B(Mf,Mg). (2.33)

Under the only assumption that the collision kernel satisfies (1.5) together with the bound,
∫

S2

b(z,ω) dω" a+
(
1 + |z|

)β
, (2.34)

Q maps continuously L2(R3,M(1 + |v|)β dv) into L2(R3, a−1M dv). Indeed, by using the Cauchy–Schwarz
inequality and the collision symmetries (2.28) entailed by (1.5):
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∥∥Q(g,h)
∥∥2

L2(a−1M dv)
=

∫

R3

a
(
|v|

)−1
(

1
2

∫ ∫

R3×S2

(g′h′1 + g′1h
′ − gh1 − g1h)b(v− v1,ω)M1 dv1 dω

)2

M dv

" 1
4

∫

R3

a
(
|v|

)−1
( ∫ ∫

R3×S2

b(v− v1,ω)M1 dv1 dω

)

×
( ∫ ∫

R3×S2

(g′h′1 + g′1h
′ − gh1 − g1h)2b(v− v1,ω)M1 dv1 dω

)
M dv

" sup
v∈R3

a
(
|v|

)−1
∫ ∫

R3×S2

b(v− v1,ω)M1 dv1 dω

×
∫ ∫ ∫

R3×R3×S2

(
(g′h′1)

2 + (g′1h
′)2 + (gh1)

2 + (g1h)2)dµ(v, v1,ω)

" 2C

∫ ∫

R3×R3

(
(gh1)

2 + (g1h)2)
( ∫

S2

b(v− v1,ω) dω

)
MM1 dv dv1

" 4C2‖g‖2
L2((1+|v|)βM dv)

‖h‖2
L2((1+|v|)βM dv)

. (2.35)

Another important property of the bilinear operator Q is the following relation:

Q(f,f ) = 1
2
L

(
f 2) for each f ∈KerL, (2.36)

which follows from differentiating twice both sides of the equality,

B(MR,U,Θ ,MR,U,Θ) = 0,

with respect to R ! 0, Θ > 0 and U ∈R3 — see for instance [2], formulas (59)–(60) for a quick proof of this identity.

Young’s inequality. Since the family of number density fluctuations gε satisfies the uniform bound (a) in
Proposition 2.3 and the measure M dv has total mass 1, the fluctuation gε can be integrated against functions of
v with at most quadratic growth at infinity, by an argument analogous to the Hölder inequality. This argument will be
used in various places in the proof, and we present it here for the reader’s convenience. To the function h in (2.6), we
associate its Legendre dual h∗ defined by:

h∗(ζ ) := sup
z>−1

(
ζz− h(z)

)
= eζ − ζ − 1.

Thus, for each ζ > 0 and each z >−1, one has:

ζ |z| " h
(
|z|

)
+ h∗(ζ ) " h(z) + h∗(ζ ), (2.37)

since

h
(
|z|

)
" h(z), z >−1.

The inequality (2.37) is referred to as the Young inequality (by analogy with the classical Young inequality:

ζz " zp

p
+ ζ

q

q
, z, ζ > 0,

which holds whenever 1 < p,q <∞ satisfy 1
p + 1

q = 1).

Notations regarding functional spaces. Finally, we shall systematically use the following notations. First, Lebesgue
spaces without mention of the domain of integration always designate that Lebesgue space on the largest domain of
integration on which the measure is defined. For instance:
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Lp(M dv) designates Lp
(
R3;M dv

)
,

Lp(M dv dx) designates Lp
(
R3 ×R3;M dv dx

)
,

Lp(dµ) designates Lp
(
R3 ×R3 × S2;dµ

)
.

When the measure is the Lebesgue measure, we shall simply denote:

L
p
x := Lp

(
R3;dx

)
, L

p
t,x := Lp

(
R+ ×R3; dt dx

)
.

Whenever E is a normed space, the notations O(δ)E and o(δ)E designate a family of elements of E whose norms
are O(δ) or o(δ). (For instance O(1)E designates a bounded family in E, while o(1)E designates a sequence that
converges to 0 in E.)

Although L
p
loc spaces are not normed spaces, we designate by the notation O(δ)Lp

loc(Ω) a family fε ∈ L
p
loc(Ω) such

that, for each compact K ⊂Ω ,

‖fε‖Lp(K) = O(δ).

The notation o(δ)Lp
loc(Ω) is defined similarly.

2.4. Outline of the proof of Theorem 2.4

In terms of the fluctuation gε , the scaled Boltzmann equation (2.3) with initial condition (2.18) can be put in the
form:

ε∂t gε + v ·∇xgε =−1
ε
L(gε) +Q(gε, gε),

gε|t=0 = gin
ε . (2.38)

Step 1: We first prove that any limit point g of the family of fluctuations gε as ε→ 0+ satisfies,

g =Πg,

where Π is the orthogonal projection on the nullspace of L defined in (2.32).
Hence, the limiting fluctuation g is an infinitesimal Maxwellian, i.e. of the form:

g(t, x, v) = ρ(t, x) + u(t, x) · v + θ(t, x)
1
2

(
|v|2 − 3

)
. (2.39)

The limiting form of the continuity equation (2.9) is equivalent to the incompressibility condition on u:

divx u = 0.

Step 2: In order to obtain equations for the moments,

ρ = 〈g〉, u = 〈vg〉, and θ =
〈(

1
3
|v|2 − 1

)
g

〉
,

we pass to the limit in approximate local conservation laws deduced from the Boltzmann equation in the following
manner.

Besides the square-root renormalization, we use a renormalization of the scaled Boltzmann equation (2.3) based
on a smooth truncation γ such that

γ ∈ C∞
(
R+, [0,1]

)
, γ |[0, 3

2 ] ≡ 1, γ |[2,+∞) ≡ 0. (2.40)

Define:

γ̂ (z) = d

dz

(
(z− 1)γ (z)

)
. (2.41)

Notice that

supp(γ̂ )⊂ [0,2], γ̂ |[0, 3
2 ] ≡ 1, and ‖1− γ̂ ‖L∞ " 1 + ‖γ ′‖L∞ . (2.42)

We use below the notation γε and γ̂ε to denote respectively γ (Gε) and γ̂ (Gε).
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We also use a truncation of high velocities, defined as follows: given k > 6, we set:

Kε = k|ln ε|. (2.43)

For each continuous scalar function, or vector- or tensor-field ξ ≡ ξ(v), we denote by ξKε the following truncation
of ξ :

ξKε (v) = ξ(v)1|v|2!Kε
. (2.44)

Renormalizing the scaled Boltzmann equation (2.3) with the nonlinearity Γ (Z) = (Z − 1)γ (Z), we arrive at the
following form of (2.38):

∂t (gεγε) + 1
ε
v ·∇x(gεγε) = 1

ε3 γ̂εQ(Gε,Gε).

Multiplying each side of the equation above by ξKε , and averaging in the variable v leads to

∂t 〈ξKεgεγε〉+ divx
1
ε
〈vξKεgεγε〉=

1
ε3

〈〈
ξKε γ̂ε(G

′
εG

′
ε1 −GεGε1)

〉〉
. (2.45)

Henceforth we use the following notations for the fluxes of momentum or energy:

Fε(ζ ) = 1
ε
〈ζKεgεγε〉, (2.46)

with

ζ(v) = A(v) := v⊗2 − 1
3
|v|2I, or ζ(v) = B(v) := 1

2
v
(
|v|2 − 5

)
.

Likewise, we use the notation,

Dε(ξ) = 1
ε3

〈〈
ξKε γ̂ε(G

′
εG

′
ε1 −GεGε1)

〉〉
, (2.47)

for the conservation defect corresponding with the (truncated) quantity ξ ≡ ξ(v), where ξ ∈ span{1, v1, v2, v3, |v|2}.
The Navier–Stokes motion equation is obtained by passing to the limit as ε→ 0 modulo gradient fields in Eq. (2.45)

for ξ(v) = vj , j = 1,2,3, recast as

∂t 〈vKεgεγε〉+ divx Fε(A) +∇x

〈
1
3
|v|2Kεgεγε

〉
= Dε(v), (2.48)

while the temperature equation is obtained by passing to the limit in that same equation with ξ(v) = 1
2 (|v|2−5), i.e. in

∂t

〈
1
2

(
|v|2 − 5

)
Kε

gεγε

〉
+ divx Fε(B) = Dε

(
1
2

(
|v|2 − 5

))
. (2.49)

For the mathematical study of that limiting process, the uniform a priori estimates obtained from the scaled entropy
inequality are not sufficient. Our first task is therefore to improve these estimates using both:

(a) the properties of the collision operator (see Section 3), namely a suitable control on the relaxation based on the
coercivity estimate (2.31):

〈φLφ〉! C‖φ −Πφ‖2
L2(Ma dv)

,

(b) and the properties of the free transport operator (see Section 4), namely dispersion and velocity averaging.

With the estimates obtained in Sections 3–4, we first prove (in Section 5) that the conservation defects vanish
asymptotically:

Dε(ξ)→ 0 in L1
loc(dt dx), ξ ∈ span

{
v1, v2, v3, |v|2

}
.

Next we analyze the asymptotic behavior of the flux terms. This requires splitting these flux terms into a convection
and a diffusion part (Section 6),

Fε(ζ )− 2
〈
ζ

(
Π

√
Gε − 1
ε

)2〉
+ 2
ε2

〈
ζ̂Q(

√
Gε,

√
Gε

〉
→ 0 in L1

loc(dt dx),
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where ζ̂ is the unique solution in (KerL)⊥ of the Fredholm integral equation,

Lζ̂ = ζ.
For instance, the tensor field A and the vector field B defined by,

A(v) := v⊗ v − 1
3
|v|2I, B(v) := 1

2

(
|v|2 − 5

)
v (2.50)

satisfy

A⊥KerL, B⊥KerL (2.51)

componentwise, so that there exists a unique tensor field Â and a unique vector field B̂ such that

LÂ = A, LB̂ = B, Â and B̂⊥KerL, (2.52)

The diffusion terms are easily proved to converge towards the dissipation terms in the Navier–Stokes–Fourier
system:

2
ε2

〈
ζ̂Q(

√
Gε,

√
Gε)

〉
→

〈
ζ̂ (v ·∇xg)

〉
in L1

loc(dt dx).

The formulas (2.27) for the viscosity ν and heat conduction κ are easily shown to be equivalent to

ν = 1
10
〈Â : A〉, κ = 2

15
〈B̂ · B〉. (2.53)

The (nonlinear) convection terms require a more careful treatment, involving in particular some spatial regularity
argument and the filtering of acoustic waves (see Section 7).

3. Controls on the velocity dependence of the number density fluctuations

The goal of this section is to prove that the square number density fluctuation — or more precisely the following
variant thereof,

(√
Gε − 1
ε

)2

,

is uniformly integrable in v with the weight (1 + |v|)p for each p < 2.
In our previous work [13], we obtained this type of control for p = 0 only, by a fairly technical argument

(see Section 6 of [13]). Basically, we used the entropy production bound to estimate some notion of distance be-
tween the number density and the gain part of a fictitious collision integral. The conclusion followed from earlier
results by Grad and Caflisch on the v-regularity of the gain term in Boltzmann’s collision integral linearized at some
uniform Maxwellian state.

Unfortunately, this method seems to provide only estimates without the weight (1 + |v|)β (with β as in (1.6)) that
is crucial for treating hard potentials other than the case of Maxwell molecules. Obtaining the weighted estimates
requires some new ideas presented in this section.

The first such idea is to use the spectral gap estimate (2.31) for the linearized collision integral. Instead of comparing
the number density to (some variant of) the local Maxwellian equilibrium — as in the case of the BGK model equation,
treated in [23,24], or in the case of the Boltzmann equation with Maxwell molecules as in [13] — we directly compare
the number density fluctuation to the infinitesimal Maxwellian that is its projection on hydrodynamic modes.

The lemma below provides the basic argument for arriving at such estimates.

Lemma 3.1. Under the assumptions of Theorem 2.4, one has:
∥∥∥∥

√
Gε − 1
ε

−Π
√

Gε − 1
ε

∥∥∥∥
L2(M dv)

" O(ε)L2
t,x

+ O(ε)

∥∥∥∥

√
Gε − 1
ε

∥∥∥∥
2

L2(M dv)

. (3.1)
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Proof. In order to simplify the presentation we first define some fictitious collision integrals L̃ and Q̃,

L̃g =
∫ ∫

R3×S2

(g + g1 − g′ − g′1)M1b̃(v− v1,ω) dv1 dω,

Q̃(g,h) = 1
2

∫ ∫

R3×S2

(g′h′1 + g′1h
′ − gh1 − g1h)M1b̃(v − v1,ω) dv1 dω,

obtained from L and Q by replacing the original collision kernel b with

b̃(z,ω) = b(z,ω)

1 +
∫

S2 b(z,ω1) dω1
.

Start from the elementary formula:

L̃
(√

Gε − 1
ε2

)
= Q̃

(√
Gε − 1
ε

,

√
Gε − 1
ε

)
− 1
ε2 Q̃

(√
Gε,

√
Gε

)
. (3.2)

Multiplying both sides of this equation by (I −Π)(
√

Gε − 1) and using the spectral gap estimate (2.31) leads to
∥∥∥∥

√
Gε − 1
ε

−Π
√

Gε − 1
ε

∥∥∥∥
L2(M dv)

" ε
∥∥∥∥Q̃

(√
Gε − 1
ε

,

√
Gε − 1
ε

)∥∥∥∥
L2(M dv)

+ ε
∥∥∥∥

1
ε2 Q̃

(√
Gε,

√
Gε

)∥∥∥∥
L2(M dv)

. (3.3)

Denote

dµ̃(v, v1,ω) = MM1b̃(v− v1,ω) dω dv dv1.

By definition of b̃, one has:
∫

S2

b̃(v− v1,ω) dω" 1.

Hence Q is continuous on L2(M dv): by (2.35)
∥∥Q̃(g,h)

∥∥
L2(M dv)

" 2‖g‖L2(M dv)‖h‖L2(M dv).

(Notice that b̃ verifies (1.5) as does b.)
Plugging this estimate in (3.3) leads to

∥∥∥∥

√
Gε − 1
ε

−Π
√

Gε − 1
ε

∥∥∥∥
L2(M dv)

" Cε

∥∥∥∥

√
Gε − 1
ε

∥∥∥∥
2

L2(M dv)

+ ε
∥∥∥∥

1
ε2Q

(√
Gε,

√
Gε

)∥∥∥∥
L2(M dv)

(3.4)

Finally, applying the Cauchy–Schwarz inequality as in the proof of (2.35), one finds that
∥∥∥∥

1
ε2 Q̃

(√
Gε,

√
Gε

)∥∥∥∥
2

L2(M dv)

"
(

sup
v∈R3

∫ ∫

R3×S2

b̃(v − v1,ω)M1 dv1 dω

)
1
ε4

∫ ∫ ∫

R3×R3×S2

(√
G′εG

′
ε1 −

√
GεGε1

)2
dµ̃(v, v1,ω)

" 1
ε4

∫ ∫ ∫

R3×R3×S2

(√
G′εG

′
ε1 −

√
GεGε1

)2
dµ(v, v1,ω),

since 0 " b̃ " b. By the entropy production estimate (d) in Proposition 2.3, the inequality above implies that
∥∥∥∥

1
ε2 Q̃

(√
Gε,

√
Gε

)∥∥∥∥
L2(M dv)

= O(1)L2
t,x

.

This estimate and (3.4) entail the inequality (3.1). !
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Notice that we could have used directly L and Q instead of their truncated analogues L̃ and Q̃, obtaining bounds
in weighted L2 spaces by some loop argument, unfortunately much more technical than the proof above.

The main result in this section — and one of the key new estimate in this paper is:

Proposition 3.2. Under the assumptions of Theorem 2.4, for each T > 0, each compact K ⊂R3, and each p < 2, the
family

(
1 + |v|

)p
(√

Gε − 1
ε

)2

is uniformly integrable in v on [0, T ]×K ×R3 with respect to the measure dt dx M dv. (This means that, for each
η> 0, there exists α > 0 such that, for each measurable ϕ ≡ ϕ(x, v) verifying:

‖ϕ‖L∞x,v
" 1 and ‖ϕ‖L∞x (L1

v) " α,
one has:

T∫

0

∫

K

∫

R3

ϕ
(
1 + |v|

)p
(√

Gε − 1
ε

)2

M dv dx dt " η.)

Proof. Start from the decomposition:

J :=
(
1 + |v|

)p
(√

Gε − 1
ε

)2

=
(√

Gε − 1
ε

)(
1 + |v|

)p
Π

(√
Gε − 1
ε

)
+

(
1 + |v|

) p
2

(√
Gε − 1
ε

)(
1 + |v|

) p
2

((√
Gε − 1
ε

)
−Π

(√
Gε − 1
ε

))
.

(3.5)

We recall from the entropy bound (b) in Proposition 2.3 that
(√

Gε − 1
ε

)
= O(1)L∞t (L2(dx M dv))

so that, by definition (2.32) of the hydrodynamic projection Π

Π

(√
Gε − 1
ε

)
= O(1)L∞t (L2

x(Lq(M dv))), (3.6)

for all q < +∞. Therefore the first term in the right-hand side of (3.5) satisfies,

I =
∣∣∣∣

√
Gε − 1
ε

∣∣∣∣
(
1 + |v|

)p
∣∣∣∣Π
√

Gε − 1
ε

∣∣∣∣ = O(1)L∞t (L1
x(Lr (M dv))), (3.7)

for all 0 " p < +∞ and 1 " r < 2.
In order to estimate the second term in the right-hand side of (3.5), we first remark that, for each δ > 0, each p < 2

and each q < +∞, there exists some C = C(p,q, δ) such that

(
1 + |v|

)p/2
(√

Gε − 1
ε

)
= O(δ)L∞t (L2(dx M dv)) + O

(
C(p,q, δ)

ε

)

L∞t,x (Lq(M dv))

. (3.8)

Indeed, by Young’s inequality and Proposition 2.3(a),

(
1 + |v|

)p
(√

Gε − 1
ε

)2

" δ
2

ε2 |Gε − 1|
(

(1 + |v|)p
δ2

)

" δ
2

ε2 h(Gε − 1) + δ
2

ε2 h∗
(

(1 + |v|)p
δ2

)

= O
(
δ2)

L∞t (L1(dx M dv))
+ δ

2

ε2 exp
(

(1 + |v|)p
δ2

)
.
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We next use (3.8) with the two following observations: first, the obvious continuity statement (3.6). Also, because
of (3.1) and the entropy bound (b) in Proposition 2.3, one has:

∥∥∥∥

√
Gε − 1
ε

−Π
√

Gε − 1
ε

∥∥∥∥
L2(M dv)

= O(ε)L1
loc(dt dx). (3.9)

Hence

(
1 + |v|

) p
2

∣∣∣∣

√
Gε − 1
ε

∣∣∣∣
(
1 + |v|

) p
2

∣∣∣∣

(√
Gε − 1
ε

)
−Π

(√
Gε − 1
ε

)∣∣∣∣

" δ
ε
h(Gε − 1)1/2(1 + |v|

)p/2
∣∣∣∣

(√
Gε − 1
ε

)
−Π

(√
Gε − 1
ε

)∣∣∣∣

+ δ
ε

(
1 + |v|

)p/2 exp
(

(1 + |v|)p
2δ2

)∣∣∣∣

(√
Gε − 1
ε

)
−Π

(√
Gε − 1
ε

)∣∣∣∣
=: II + III.

Now

II " δ

2ε2 h(Gε − 1) + δ
(
1 + |v|

)p
∣∣∣∣Π
√

Gε − 1
ε

∣∣∣∣
2

+ δ
(
1 + |v|

)p
∣∣∣∣

√
Gε − 1
ε

∣∣∣∣
2

= O(δ)L∞t (L1(M dv dx)) + O(δ)L∞t (L1(M dv dx)) + δJ.

On the other hand

‖III‖L1
loc(dt dx;Lr(M dv)) " δ

∥∥∥∥
(
1 + |v|

)p/2 exp
(

(1 + |v|)p
2δ2

)∥∥∥∥
Lq(M dv)

×
∥∥∥∥

1
ε

(√
Gε − 1
ε

)
−Π

(√
Gε − 1
ε

)∥∥∥∥
L1

loc(dt dx;L2(M dv))

= O
(
δC(p,q, δ)

)
,

with r = 2q
q+2 .

Putting all these controls together shows that

J " I + II + III = O(1)L∞t (L1
x(Lr (M dv))) + O(δ)L∞t (L1(M dv dx)) + O(δ)L∞t (L1(M dv dx)) + δJ

+ O
(
δC(p,q, δ)

)
L1

loc(dt dx;Lr (M dv))
, (3.10)

i.e.

(1− δ)
(
1 + |v|

)p
(√

Gε − 1
ε

)2

" O(1)L∞t (L1
x(Lr (M dv))) + O

(
δC(p,q, δ)

)
L1

loc(dt dx;Lr(M dv))
+ O(δ)L∞t (L1(M dv dx)),

which entails the uniform integrability in v stated in Proposition 3.2. !

Remark. Replacing the estimate for II above with

II " 8δ
2ε2 h(Gε − 1) + δ

8

(
1 + |v|

)p
∣∣∣∣Π
√

Gε − 1
ε

∣∣∣∣
2

+ δ
8

(
1 + |v|

)p
∣∣∣∣

√
Gε − 1
ε

∣∣∣∣
2

= O(δ)L∞t (L1(M dv dx)) + O(δ)L∞t (L1(M dv dx)) + δ
8
J,

and choosing δ = 4 in (3.10) shows that

(
1 + |v|

)2
(√

Gε − 1
ε

)2

is bounded in L1
loc

(
dt dx;L1(M dv)

)
.
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In [3], the Navier–Stokes limit of the Boltzmann equation is established assuming the uniform integrability in
[0, T ] × K × R3 for the measure dt dx M dv of a quantity analogous to the one considered in this bound. As we
shall see, the Navier–Stokes–Fourier limit of the Boltzmann equation is derived in the present paper by using only the
weaker information in Proposition 3.2.

4. Compactness results for the number density fluctuations

The following result is the main technical step in the present paper.

Proposition 4.1. Under the assumptions in Theorem 2.4, for each T > 0, each compact K ⊂R3 and each p < 2, the
family of functions,

(√
Gε − 1
ε

)2(
1 + |v|

)p
,

is uniformly integrable on [0, T ]×K ×R3 for the measure dt dx M dv.

This proposition is based on the uniform integrability in v of that same quantity, established in Proposition 3.2,
together with a bound on the streaming operator applied to (a variant of) the number density fluctuation (stated
in Lemma 4.2). Except for some additional truncations, the basic principle of the proof is essentially the same as
explained in Lemma 3.6 of [13] (which is recalled in Appendix B). In other words, while the result of Proposition 3.2
provides some kind of regularity in v only for the number density fluctuation, the bound on the free transport part of
the Boltzmann equation gives the missing regularity (in the x-variable).

The technical difficulty comes from the fact that the square-root renormalization Γ (Z) =
√

Z is not admissible for
the Boltzmann equation due to the singularity at Z = 0. We will therefore use an approximation of the square-root,
namely z 1→√

z + εα for some α ∈ ]1,2[.

Lemma 4.2. Under the assumptions in Theorem 2.4, for each α > 0, one has:

(ε∂t + v ·∇x)

√
εα + Gε − 1

ε
= O

(
ε2−α/2)

L1(M dv dx dt)
+ O(1)L2((1+|v|)−βM dv dx dt)

+ O(ε)L1
loc(dt dx;L2((1+|v|)−βM dv)).

Proof. Start from the renormalized form of the scaled Boltzmann equation (2.3), with normalizing function:

Γε(Z) =
√
εα + Z − 1
ε

.

This equation can be written as

(ε∂t + v ·∇x)

√
εα + Gε − 1

ε
= 1
ε2

1
2
√
εα + Gε

Q(Gε,Gε) = Q1
ε + Q2

ε, (4.1)

with

Q1
ε = 1

ε2

1
2
√
εα + Gε

∫ ∫ (√
G′εG

′
ε1 −

√
GεGε1

)2
b(v − v1,ω) dωM1 dv1,

Q2
ε = 1

ε2

1√
εα + Gε

∫ ∫ √
GεGε1

(√
G′εG

′
ε1 −

√
GεGε1

)
b(v− v1,ω) dωM1 dv1. (4.2)

The entropy production estimate (d) in Proposition 2.3 and the obvious inequality
√
εα + Gε ! εα/2

imply that
∥∥Q1

ε

∥∥
L1(M dv dx dt)

" 1
2
Cinε2−α/2. (4.3)
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On the other hand

Q2
ε =

√
Gε√

εα + Gε

∫ ∫ √
Gε1

√
G′εG

′
ε1 −

√
GεGε1

ε2 b(v− v1,ω) dωM1 dv1.

Write
√

Gε1 = 1 + ε
√

Gε1 − 1
ε

.

Apply the Cauchy–Schwarz inequality as in the proof of (2.35), then

∥∥∥∥

∫ ∫ √
Gε1

√
G′εG

′
ε1 −

√
GεGε1

ε2 b(v− v1,ω)M1 dv1 dω

∥∥∥∥
L2((1+|v|)−βM dv)

" sup
v∈R3

((
1 + |v|

)−β
∫ ∫

b(v− v1,ω)M1 dv1 dω

)1/2〈〈(
√

G′εG
′
ε1 −

√
GεGε1

ε2

)2〉〉1/2

+ ε sup
v∈R3

((
1 + |v|

)−β
∫ ∫

M1

(√
Gε1 − 1
ε

)2

b(v − v1,ω) dv1 dω

)1/2〈〈(
√

G′εG
′
ε1 −

√
GεGε1

ε2

)2〉〉1/2

.

Therefore
∥∥∥∥

∫ ∫ √
Gε1

√
G′εG

′
ε1 −

√
GεGε1

ε2 b(v− v1,ω)M1 dv1

∥∥∥∥
L2((1+|v|)−βM dv)

" C

(
1 + ε

∥∥∥∥

√
Gε1 − 1
ε

∥∥∥∥
L2(M1(1+|v1|β ) dv1)

)〈〈(
√

G′εG
′
ε1 −

√
GεGε1

ε2

)2〉〉1/2

,

because of the upper bound in Grad’s cut-off assumption (1.6).
Hence, on account of Proposition 3.2 and the entropy production estimate (d) in Proposition 2.3

Q2
ε = O(1)L2((1+|v|)−βM dv dx dt) + O(ε)L1

loc(dt dx;L2((1+|v|)−βM dv)). (4.4)

Both estimates (4.3) and (4.4) together with (4.1) entail the control in Lemma 4.2. !

With Lemma 4.2 at our disposal, we next proceed to the:

Proof of Proposition 4.1. Step 1. We claim that, for α > 1,
(√
εα + Gε − 1

ε

)2

−
(√

Gε − 1
ε

)2

= O
(
εα−1)

L∞t (L2
loc(dx;L2(M dv)))

+ O
(
εα/2)

L∞t (L1(M dv dx))
. (4.5)

Indeed,
∣∣∣∣

√
εα + Gε − 1

ε
−
√

Gε − 1
ε

∣∣∣∣ " εα1Gε>1/2

ε(
√
εα + Gε +√Gε)

+ εα/2−11Gε!1/2

" O
(
εα−1)

L∞t,x,v
+ εα/2

√
2√

2− 1

∣∣∣∣

√
Gε − 1
ε

∣∣∣∣
= O

(
εα−1)

L∞t,x,v
+ O

(
εα/2)

L∞t (L2(M dv dx))
, (4.6)

and we conclude with the decomposition,
∣∣∣∣

(√
εα + Gε − 1

ε

)2

−
(√

Gε − 1
ε

)2∣∣∣∣ =
(
O

(
εα−1)

L∞t,x,v
+ O

(
εα/2)

L∞t (L2(M dv dx))

)

×
(

O
(
εα−1)

L∞t,x,v
+ O

(
εα/2)

L∞t (L2(M dv dx))
+ 2

∣∣∣∣

√
Gε − 1
ε

∣∣∣∣

)
,

together with the fluctuation control (b) in Proposition 2.3.



Author's personal copy

526 F. Golse, L. Saint-Raymond / J. Math. Pures Appl. 91 (2009) 508–552

Step 2. Let γ be a smooth truncation as in (2.40), and set

φδε =
(√
εα + Gε − 1

ε

)2

γ

(
εδ

(√
εα + Gε − 1

ε

))
.

We claim that, for each fixed δ > 0,

(ε∂t + v ·∇x)φ
δ
ε = O

(
1
δ

)

L1
loc(M dv dx dt)

. (4.7)

Indeed,

(ε∂t + v ·∇x)φ
δ
ε = γ̃

(
εδ

(√
εα + Gε − 1

ε

))(√
εα + Gε − 1

ε

)(
Q1
ε + Q2

ε

)
,

where γ̃ (Z) = 2γ (Z) + Zγ ′(Z), while Q1
ε and Q2

ε are defined in (4.2).
Clearly, γ̃ has support in [0,2], so that

γ̃

(
εδ

(√
εα + Gε − 1

ε

))(√
εα + Gε − 1

ε

)
= O

(
1
εδ

)

L∞t,x,v

.

On the other hand, the fluctuation control (b) in Proposition 2.3 and the estimate (4.6) imply that

γ̃

(
εδ

(√
εα + Gε − 1

ε

))(√
εα + Gε − 1

ε

)
= O(1)L∞t (L2

loc(dx;L2(M dv))).

Together with Lemma 4.2, these last two estimates lead to the following bound:

(ε∂t + v ·∇x)φ
δ
ε = O

(
ε1−α/2

δ

)

L1(M dv dx dt)

+ O(1)L2
t (L

1
loc(dx;L1((1+|v|)−β/2M dv)))

+ O
(

1
δ

)

L1
loc(dt dx;L2((1+|v|)−βM dv))

.

Pick then α ∈ (1,2); the last estimate implies that (4.7) holds for each δ > 0, as announced.
Step 3. On the other hand, we already know from the fluctuation control (b) in Proposition 2.3 and (4.5) that

φδε = O(1)L∞t (L1
loc(M dv dx)). (4.8)

Moreover

φδε is locally uniformly integrable in the v-variable. (4.9)

Indeed, for each ϕ ∈ L∞x,v ∩L∞x (L1
v), one has:

∣∣∣∣

∫

K

∫
φδεϕM dv dx

∣∣∣∣ "
∫ ∫ (√

Gε − 1
ε

)2

|ϕ|M dx dv

+
∫

K

∫ ∣∣∣∣

(√
εα + Gε − 1

ε

)2

−
(√

Gε − 1
ε

)2∣∣∣∣|ϕ|M dv dx.

The second term is O(εα−1)‖φ‖L∞ . Hence this term can be made smaller than any given η whenever ε < ε0(η). Since
ε denotes an extracted subsequence converging to 0, there remain only finitely many terms, say N ≡ N(η) that can
also be made smaller that η, this time by choosing ‖φ‖L∞x (L1

v) smaller than c≡ c(N(η),η). As for the first term, it can
be made less than η whenever ‖φ‖L∞x (L1

v) " c′(η), by Proposition 3.2. Therefore
∣∣∣∣

∫

K

∫
φδεϕM dv dx

∣∣∣∣ " 2η for each ε and δ > 0,

whenever ‖φ‖L∞x (L1
v) " min(c(N(η),η), c′(η)), which establishes (4.9).
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Applying Theorem B.1 (taken from [13]) in Appendix B, we conclude from (4.8), (4.9) and (4.7) that

for each δ > 0, φδε is locally uniformly integrable on R+ ×R3 ×R3, (4.10)

for the measure M dv dx dt .
Step 4. But, for each ε, δ ∈ (0,1), one has:

(√
εα + Gε − 1

ε

)2

− φδε =
(√
εα + Gε − 1

ε

)2(
1− γ

(
εδ

(√
εα + Gε − 1

ε

)))

"
(√
εα + Gε − 1

ε

)2

1Gε>1/δ2

" 1
ε2 Gε1Gε>1/δ2 " C

|ln δ|
1
ε2 h(Gε − 1)1Gε>1/δ2,

so that
(√
εα + Gε − 1

ε

)2

− φδε = O
(

1
|ln δ|

)

L∞t (L1(M dv dx))

,

by the fluctuation control (a) in Proposition 2.3. This and (4.10) imply that
(√
εα + Gε − 1

ε

)2

is also locally uniformly integrable on R+ ×R3 ×R3, (4.11)

for the measure M dv dx dt .
Because of the estimate (4.5) in Step 1, we finally conclude that

(√
Gε − 1
ε

)2

is locally uniformly integrable on R+ ×R3 ×R3, (4.12)

for the measure M dv dx dt .
Together with the control of large velocities in Proposition 3.2, the statement (4.12) entails Proposition 4.1. !

Here is a first consequence of Proposition 4.1, bearing on the relaxation to infinitesimal Maxwellians.

Proposition 4.3. Under the assumptions of Theorem 2.4, one has:
√

Gε − 1
ε

−Π
√

Gε − 1
ε

→ 0 in L2
loc

(
dt dx;L2((1 + |v|

)p
M dv

))
,

for each p < 2 as ε→ 0.

Proof. By Proposition 4.1, the family,

(
1 + |v|

)p
(√

Gε − 1
ε

−Π
√

Gε − 1
ε

)2

,

is uniformly integrable on [0, T ]×K ×R3 for the measure M dv dx dt , for each T > 0 and each compact K ⊂R3.
On the other hand, (3.1) and the fluctuation control (b) in Proposition 2.3 imply that

(√
Gε − 1
ε

−Π
√

Gε − 1
ε

)
→ 0 in L1

loc(M dv dx dt),

and therefore in M dv dx dt -measure locally on R+ ×R3 ×R3.
Therefore

(
1 + |v|

)p
(√

Gε − 1
ε

−Π
√

Gε − 1
ε

)2

→ 0 in L1
loc

(
dt dx;L1(M dv)

)
,

which implies the convergence stated above. !
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We conclude this section with the following variant of the classical velocity averaging theorem [11,12], stated as
Theorem B.2 in [13]. This result is needed in order to handle the nonlinear terms appearing in the hydrodynamic limit.

Proposition 4.4. Under the assumptions of Theorem 2.4, for each ξ ∈ L2(M dv), each T > 0 and each compact
K ⊂R3,

T∫

0

∫

K

∣∣〈ξgεγε〉(t, x + y)− 〈ξgεγε〉(t, x)
∣∣2

dx dt → 0,

as |y|→ 0+, uniformly in ε > 0.

Proof. Observe that

gεγε − 2
√

Gε − 1
ε

=
√

Gε − 1
ε

(
(
√

Gε + 1)γε − 2
)
,

since, up to extraction,

(
√

Gε + 1)γε − 2→ 0 a.e. and
∣∣(

√
Gε + 1)γε − 2

∣∣ " 3 +
√

2,

it follows from Proposition 4.1 and Theorem A.1 in Appendix A, referred to as the Product Limit Theorem, that

gεγε − 2
√

Gε − 1
ε

→ 0 in L2
loc

(
dt dx;L2(M dv)

)
, (4.13)

as ε→ 0.
This estimate, and Step 1 in the proof of Proposition 4.1 (and especially the estimate (4.5) there) shows that one

can replace gεγε with
√
εα+Gε−1
ε with α > 1 in the equicontinuity statement of Proposition 4.4.

Using (4.11) shows that, for each α ∈ (1,2), the family,
(√
εα + Gε − 1

ε

)2

is locally uniformly integrable on R+ ×R3 ×R3,

for the measure M dv dx dt . In view of the estimate (4.5) and Proposition 3.2, we also control the contribution of large
velocities in the above term, so that, for each T > 0 and each compact K ⊂R3,

(√
εα + Gε − 1

ε

)2

is uniformly integrable on [0, T ]×K ×R3,

for the measure M dv dx dt .
On the other hand, Lemma 4.2 shows that the family,

(ε∂t + v ·∇x)

√
εα + Gε − 1

ε

is bounded in L1
loc(M dv dx dt).

Applying then Theorem B.2 (taken from [13]) in Appendix B shows that, for each T > 0 and each compact
K ⊂R3, one has:

T∫

0

∫

K

∣∣∣∣

〈
ξ

√
εα + Gε − 1

ε

〉
(t, x + y)−

〈
ξ

√
εα + Gε − 1

ε

〉
(t, x)

∣∣∣∣
2

dx dt → 0,

as |y|→ 0 uniformly in ε, which concludes the proof of Proposition 4.4. !

5. Vanishing of conservation defects

Conservation defects appear in the renormalized form of the Boltzmann equation precisely because the natural
symmetries of the collision integral are broken by the renormalization procedure. However, these conservation defects
vanish in the hydrodynamic limit, as shown by the following:
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Proposition 5.1. Under the same assumptions as in Theorem 2.4, for each ξ ∈ span{1, v1, v2, v3, |v|2}, one has the
following convergence for the conservation defects Dε(ξ) defined by (2.47):

Dε(ξ)→ 0 in L1
loc(dt dx) as ε→ 0.

Proof. For ξ ∈ span{1, v1, v2, v3, |v|2}, the associated defect Dε(ξ) is split as follows:

Dε(ξ) = D1
ε(ξ) + D2

ε(ξ), (5.1)

with

D1
ε(ξ) = 1

ε3

〈〈
ξKε γ̂ε

(√
G′εG

′
ε1 −

√
GεGε1

)2〉〉
,

and

D2
ε(ξ) = 2

ε3

〈〈
ξKε γ̂ε

√
GεGε1

(√
G′εG

′
ε1 −

√
GεGε1

)〉〉
,

with the notation (2.15) and (2.16).
That the term D1

ε(ξ) vanishes for ξ(v) = O(|v|2) as |v|→+∞ is easily seen as follows:

∥∥D1
ε(ξ)

∥∥
L1

t,x
" ε‖ξKε γ̂ε‖L∞t,x,v

∥∥∥∥

√
G′εG

′
ε1 −

√
GεGε1

ε2

∥∥∥∥
2

L2
t,x,µ

" εO(Kε)O(1) = O
(
ε|ln ε|

)
, (5.2)

because of the entropy production estimate in Proposition 2.3(d) and the choice of Kε in (2.43).
We further decompose D2

ε(ξ) in the following manner:

D2
ε(ξ) = D21

ε (ξ) + D22
ε (ξ) + D23

ε (ξ), (5.3)

with

D21
ε (ξ) =−2

ε

〈〈
ξ1|v|2>Kε

γ̂ε

√
G′εG

′
ε1 −

√
GεGε1

ε2

√
GεGε1

〉〉
,

D22
ε (ξ) = 2

ε

〈〈
ξ γ̂ε(1− γ̂ε1γ̂ ′ε γ̂ ′ε1)

√
G′εG

′
ε1 −

√
GεGε1

ε2

√
GεGε1

〉〉
,

and, by symmetry in the v and v1 variables,

D23
ε (ξ) = 1

ε

〈〈
(ξ + ξ1)γ̂ε γ̂ε1γ̂ ′ε γ̂ ′ε1

√
G′εG

′
ε1 −

√
GεGε1

ε2

√
GεGε1

〉〉
.

The terms D21
ε (ξ) and D23

ε (ξ) are easily mastered by the following classical estimate on the tail of Gaussian
distributions (see for instance [13] on p. 103 for a proof).

Lemma 5.2. Let GN(z) be the centered, reduced Gaussian density in RN , i.e.

GN(z) = 1
(2π)N/2 e−

1
2 |z|2 .

Then
∫

|z|2>R

|z|pGN(z) dz∼ (2π)−N/2∣∣SN−1∣∣R
p+N

2 −1e−
1
2 R,

as R→+∞.
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Indeed, because of the upper bound on the collision cross-section in (1.6), for each T > 0 and each compact
K ⊂R3,

∥∥D21
ε (ξ)

∥∥
L1([0,T ]×K)

" 2
ε
‖ξ1|v|2>Kε

γ̂ε
√

GεGε1‖L2([0,T ]×K,L2
µ)

∥∥∥∥

√
G′εG

′
ε1 −

√
GεGε1

ε2

∥∥∥∥
L2

t,x,µ

" C
1/2
b

ε

∥∥ξ21|v|2>Kε

(
1 + |v|

)β∥∥1/2
L1(M dv)

‖γ̂ε
√

Gε‖L∞t,x,v

×
∥∥Gε1

(
1 + |v1|

)β∥∥1/2
L1([0,T ]×K,L1(M1 dv1))

∥∥∥∥

√
G′εG

′
ε1 −

√
GεGε1

ε2

∥∥∥∥
L2

t,x,µ

.

In the last right-hand side of the above chain of inequalities, one has obviously:

‖γ̂ε
√

Gε‖L∞t,x,v
= O(1).

From Young’s inequality and the entropy bound (2.19), we deduce that

Gε
(
1 + |v|

)2 "
(
1 + |v|2

)
+ 4

(
h(Gε − 1) + h∗

(
1 + |v|2

4

))
= O(1)L1([0,T ]×K,L1(M dv)).

Lemma 5.2 and the condition ξ(v) = O(|v|2) as |v|→+∞ imply that

∥∥ξ21|v|2>Kε

(
1 + |v|

)β∥∥1/2
L1(M dv)

= O
(
K
β+5

2
ε e−

1
2 Kε

)
= O

(
εk/2|ln ε| β+5

2
)
,

on account of (2.43). Thus
∥∥D21
ε (ξ)

∥∥
L1([0,T ]×K)

= O
(
εk/2−1|ln ε| β+5

2
)
→ 0, (5.4)

for all ξ(v) = O(|v|2) as |v|→+∞ as soon as k > 2.
Next we handle D23

ε (ξ). Whenever ξ is a collision invariant (i.e. whenever ξ belongs to the linear span of
{1, v1, v2, v3, |v|2}) then ξ + ξ1 = ξ ′ + ξ ′1, and using the (v, v1) − (v′, v′1) symmetry (2.28) in the integral defining
D23
ε (ξ) leads to

D23
ε (ξ) =−1

ε

〈〈
(ξ + ξ1)γ̂ε γ̂ε1γ̂ ′ε γ̂ ′ε1

(√
G′εG

′
ε1 −

√
GεGε1

)2

2ε2

〉〉
=−D231

ε (ξ)−D232
ε (ξ),

where

D231
ε (ξ) = 1

2
ε

〈〈
(ξ + ξ1)1|v|2+|v2

1 |!Kε
γ̂ε γ̂ε1γ̂

′
ε γ̂
′
ε1

(√
G′εG

′
ε1 −

√
GεGε1

)2

ε4

〉〉
,

and

D232
ε (ξ) = 1

2
ε

〈〈
(ξ + ξ1)1|v|2+|v2

1 |>Kε
γ̂ε γ̂ε1γ̂

′
ε γ̂
′
ε1

(√
G′εG

′
ε1 −

√
GεGε1

)2

ε4

〉〉
.

Then

∥∥D231
ε (ξ)

∥∥
L1

t,x
" ε

∥∥∥∥

√
G′εG

′
ε1 −

√
GεGε1

ε2

∥∥∥∥
2

L2
t,x,µ

1
2

∥∥(ξ + ξ1)1|v|2+|v1|2!Kε
γ̂ε γ̂ε1γ̂

′
ε γ̂
′
ε1

∥∥
L∞t,x,v,v1,ω

= ε · O(1) · O(Kε)‖γ̂ ‖4
L∞,

so that
∥∥D231
ε (ξ)

∥∥
L1

t,x
= O(εKε)→ 0 as ε→ 0. (5.5)
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On the other hand, since Gε ∈ [0,2] whenever γ̂ (Gε) 4= 0,

∥∥D232
ε (ξ)

∥∥
L∞t,x

" 16‖γ̂ ‖4
L∞

1
ε3

∥∥∥∥
1
2
(ξ + ξ1)1|v|2+|v1|2>Kε

∥∥∥∥
L1

µ

" O
(

1
ε3

)∥∥(
1 + |v|2 + |v1|2

)(
1 + |v − v1|

)β1|v|2+|v1|2>Kε

∥∥
L1(MM1 dv dv1)

= O
(

1
ε3

)∥∥(
1 + |v|2 + |v1|2

)1+β/21|v|2+|v1|2>Kε

∥∥
L1(MM1 dv dv1)

= O
(

1
ε3

)
O

(
e−Kε/2K

β+6
2
ε

)
,

so that
∥∥D232
ε (ξ)

∥∥
L∞t,x

= O
(
εk/2−3|ln ε| β+6

2
)
→ 0 as ε→ 0, (5.6)

for k > 6, by a direct application of Lemma 5.2 in R3
v ×R3

v1
— i.e. with N = 6.

Whereas the terms D1
ε(ξ), D21

ε (ξ), and D23
ε (ξ) are shown to vanish by means of only the entropy and entropy

production bounds in Proposition 2.3(a)–(d) and Lemma 5.2, the term D22
ε (ξ) is much less elementary to handle.

First, we split D22
ε (ξ) as

D22
ε (ξ) = 2

ε

〈〈
ξ γ̂ε(1− γ̂ε1)

√
GεGε1

√
G′εG

′
ε1 −

√
GεGε1

ε2

〉〉

+ 2
ε

〈〈
ξ
(
γ̂ε γ̂ε1(1− γ̂ ′ε) + γ̂ε γ̂ε1γ̂ ′ε(1− γ̂ ′ε1)

)
√

G′εG
′
ε1 −

√
GεGε1

ε2

√
GεGε1

〉〉

= D221
ε (ξ) + D222

ε (ξ).

For each T > 0 and each compact K ⊂R3, the first term satisfies,

∥∥D221
ε (ξ)

∥∥
L1([0,T ]×K)

" 2Cb

∥∥∥∥
1
ε
(1− γ̂ε1)

√
Gε1

(
1 + |v1|

)β/2
∥∥∥∥

L2([0,T ]×K;L2(M1 dv1))

∥∥γ̂ε
√

Gε
∥∥

L∞t,x,v

×
∥∥|ξ |

(
1 + |v|

)β/2∥∥
L2(M dv)

∥∥∥∥

√
G′εG

′
ε1 −

√
GεGε1

ε2

∥∥∥∥
L2

t,x,µ

= O(1)

∥∥∥∥
1
ε
(1− γ̂ε1)

√
Gε1

(
1 + |v1|

)β/2
∥∥∥∥

L2([0,T ]×K;L2(M1 dv1))

,

provided that ξ(v) = O(|v|m) for some m ∈N.
Since supp(1− γ̂ )⊂ [ 3

2 ,+∞), then
√

Gε√
Gε−1

"
√

3/2√
3/2−1

whenever γ̂ε 4= 1, and one has:

1
ε
|1− γ̂ε |

√
Gε "

√
3√

3−
√

2
|1− γ̂ε |

|√Gε − 1|
ε

.

Furthermore, as

|1− γ̂ε | " 1 + ‖γ ′‖L∞ and 1− γ̂ε→ 0 a.e., (5.7)

the uniform integrability stated in Proposition 4.1 and the Product Limit Theorem (see Appendix A) imply that

|1− γ̂ε |
|√Gε − 1|

ε
→ 0 in L2([0, T ]×K,L2(M

(
1 + |v|

)β
dv

))
. (5.8)

Thus
∥∥D221
ε (ξ)

∥∥
L1([0,T ]×K)

→ 0 as ε→ 0. (5.9)
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Finally, we consider the term D222
ε (ξ), one has:

∥∥D222
ε (ξ)

∥∥
L1([0,T ]×K)

" 2
ε

(∥∥(1− γ̂ ′ε)ξ
∥∥

L2([0,T ]×K;L2
µ)

+
∥∥(1− γ̂ ′ε1)ξ

∥∥
L2([0,T ]×K;L2

µ)

)

×
∥∥γ̂ε

√
Gε

∥∥2
L∞t,x,v

∥∥∥∥

√
G′εG

′
ε1 −

√
GεGε1

ε2

∥∥∥∥
L2

t,x,µ

= O(1)

∥∥∥∥
1− γ̂ε
ε

(
1 + |v|2 + |v1|2

)∥∥∥∥
L2([0,T ]×K;L2

µ)

= O(1)

∥∥∥∥
1− γ̂ε
ε

(
1 + |v|

)2+β/2
∥∥∥∥

L2([0,T ]×K;L2(M dv))

,

where the first equality uses the (vv1)− (v′v′1) symmetry in (2.28).
Since supp(1− γ̂ )⊂ [ 3

2 ,+∞), 1√
Gε−1

" 1√
3/2−1

whenever γ̂ε 4= 1, one has:

|1− γ̂ε |2
ε2 "

√
2√

3−
√

2

|1− γ̂ε |
ε

√
Gε − 1
ε

"
√

2√
3−

√
2

|1− γ̂ε |
ε

(
Π

√
Gε − 1
ε

+
(√

Gε − 1
ε

−Π
√

Gε − 1
ε

))
.

By (5.7) and (5.8),

|1− γ̂ε |
ε

" 1 + ‖γ ′‖L∞
ε

and
|1− γ̂ε |
ε

→ 0 in L2
loc

(
dt dx,L2(M dv)

)
, (5.10)

since
√

Gε − 1 >
√

3/2− 1 whenever γ̂ε 4= 1, whereas by Proposition 2.3(b) and Lemma 3.1,

Π

√
Gε − 1
ε

= O(1)L∞t (L2
x(Lq(M dv))),

√
Gε − 1
ε

−Π
√

Gε − 1
ε

= O(ε)L1
loc(dt dx,L2(M dv)),

for all q > +∞. Then,

|1− γ̂ε |2
ε2 = O(1)L1

loc(dt dx,Lq(M dv)),

for all q < 2. In particular, for each r < +∞, ( 1
ε (1− γ̂ε)(1 + |v|)r ) is uniformly bounded in L2

loc(dt dx,L2(M dv)).
By interpolation with (5.10) we conclude that

∥∥∥∥
1− γ̂ε
ε

(
1 + |v|

)r
∥∥∥∥

2

L2([0,T ]×K;L2(M dv))

→ 0 as ε→ 0, (5.11)

and consequently

D222
ε (ξ)→ 0 in L1

loc(dt dx) as ε→ 0. (5.12)

The convergences (5.2), (5.4), (5.9), (5.12), (5.5) and (5.6) eventually imply Proposition 5.1. !

Remark. The same arguments leading to (5.8) and to (5.11) imply that, for all r ∈R,
∥∥∥∥

1− γε
ε

(
1 + |v|

)r
∥∥∥∥

2

L2([0,T ]×K;L2(M dv))

→ 0 as ε→ 0. (5.13)
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6. Asymptotic behavior of the flux terms

The purpose of the present section is to establish the following:

Proposition 6.1. Under the same assumptions as in Theorem 2.4, one has:

Fε(ζ )− 2
〈
ζ

(
Π

√
Gε − 1
ε

)2〉
+ 2
ε2

〈
ζ̂Q(

√
Gε,

√
Gε)

〉
→ 0 in L1

loc(dt dx),

as ε→ 0, where ζ and ζ̂ designate respectively either A and Â or B and B̂ defined by (2.50) and (2.52).

Proof. First, we decompose the flux term Fε(ζ ) as follows:

Fε(ζ ) = 1
ε
〈ζKεgεγε〉=

〈
ζKε

Gε − 1
ε2 γε

〉

=
〈
ζKε

(√
Gε − 1
ε

)2

γε

〉
+ 2
ε

〈
ζKε

√
Gε − 1
ε

γε

〉

= F1
ε(ζ ) + F2

ε(ζ ).

We further split the term F1
ε(ζ ) as

F1
ε(ζ ) = F11

ε (ζ ) + F12
ε (ζ ) + F13

ε (ζ )

with

F11
ε (ζ ) =

〈
ζKε

(√
Gε − 1
ε

−Π
√

Gε − 1
ε

)(√
Gε − 1
ε

+Π
√

Gε − 1
ε

)
γε

〉
,

F12
ε (ζ ) =

〈
ζ(1|v|2!Kε

γε − 1)

(
Π

√
Gε − 1
ε

)2〉
,

F13
ε (ζ ) =

〈
ζ

(
Π

√
Gε − 1
ε

)2〉
. (6.1)

The term F12
ε (ζ ) is easily disposed of. Indeed, the definition (2.32) of the hydrodynamic projection Π implies

that, (Π
√

Gε−1
ε )2(1 + |v|)p is, for each p ! 0, a (finite) linear combination of functions of v of order O(|v|p+4) as

|v|→+∞, with coefficients that are quadratic in 〈ξ
√

Gε−1
ε 〉 for ξ ∈ {1, v1, v2, v3, |v|2}. Together with Proposition 4.1,

this implies that, for each T > 0 and each compact K ⊂R3,
(
Π

√
Gε − 1
ε

)2(
1 + |v|

)p is uniformly integrable on [0, T ]×K ×R3, (6.2)

for the measure M dv dx dt . On the other hand,

1|v|2!Kε
γε − 1→ 0 and |1|v|2!Kε

γε − 1| " 1 a.e.

Since ζ(v) = O(|v|3) as |v|→+∞, this and the Product Limit Theorem imply that

F12
ε (ζ )→ 0 in L1

loc(dt dx). (6.3)

The term F11
ε (ζ ) requires a slightly more involved treatment. We start with the following decomposition: for each

T > 0 and each compact K ⊂R3,

∥∥F11
ε (ζ )

∥∥
L1([0,T ]×K)

"
∥∥∥∥ζKε γε

(√
Gε − 1
ε

+Π
√

Gε − 1
ε

)∥∥∥∥
L2([0,T ]×K;L2(M dv))

×
∥∥∥∥

√
Gε − 1
ε

−Π
√

Gε − 1
ε

∥∥∥∥
L2([0,T ]×K;L2(M dv))

. (6.4)
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Since γε = γ (Gε) = 0 whenever Gε > 2, one has for each q < +∞,

γε

(√
Gε − 1
ε

)2

= γε
(√

Gε − 1
ε

)(
Π

√
Gε − 1
ε

+
(√

Gε − 1
ε

−Π
√

Gε − 1
ε

))

= O(1)L∞t (L2(dx M dv))O(1)L∞t (L2
x(Lq(M dv))) + O

(
1
ε

)
O(ε)L1

loc(dt dx,L2(M dv)).

In particular
∥∥∥∥ζKε γε

√
Gε − 1
ε

∥∥∥∥
L2([0,T ]×K;L2(M dv))

= O(1),

since ζ(v) = O(|v|3) as |v|→+∞. This and (6.2) imply that
∥∥∥∥ζKε γε

(√
Gε − 1
ε

+Π
√

Gε − 1
ε

)∥∥∥∥
L2

loc(dt dx;L2(M dv))

= O(1). (6.5)

Using (6.4), (6.5) and Proposition 4.3 show that

F11
ε (ζ )→ 0 in L1

loc(dt dx). (6.6)

This and (6.3) imply that

F1
ε(ζ )−

〈
ζ

(
Π

√
Gε − 1
ε

)2〉
→ 0 in L1

loc(dt dx), (6.7)

as ε→ 0.
Next we handle the term F2

ε(ζ ). We first decompose it as follows:

F2
ε(ζ ) =−2

ε

〈
ζ1|v|2>Kε

γε

√
Gε − 1
ε

〉
+ 2

〈
ζ
γε − 1
ε

√
Gε − 1
ε

〉
+ 2
ε

〈
ζ

√
Gε − 1
ε

〉

= F21
ε (ζ ) + F22

ε (ζ ) + F23
ε (ζ ). (6.8)

Then, by (2.20) and Lemma 5.2, one has:

∥∥F21
ε (ζ )

∥∥
L∞t (L2

x)
" 2
ε
‖γ ‖L∞‖ζ1|v|2>Kε

‖L2(M dv)

∥∥∥∥

√
Gε − 1
ε

∥∥∥∥
L∞t (L2(M dv dx))

" 2
ε

O
(
e−Kε/2K2

ε

)
= O

(
εk/2−1|ln ε|2

)
. (6.9)

On the other hand, for each T > 0 and each compact K ⊂R3,

∥∥F22
ε (ζ )

∥∥
L1([0,T ]×K)

" 2T 1/2
∥∥∥∥ζ
γε − 1
ε

∥∥∥∥
L2([0,T ]×K;L2(M dv))

∥∥∥∥

√
Gε − 1
ε

∥∥∥∥
L∞t (L2(M dv dx))

→ 0 as ε→ 0, (6.10)

because of (2.20) and of (5.13), since ζ(v) = O(|v|3) as |v|→+∞.
Finally, we transform F23

ε (ζ ) as follows:

F23
ε (ζ ) = 2

〈
ζ̂

1
ε
L

(√
Gε − 1
ε

)〉
= 2

〈
ζ̂

(
Q

(√
Gε − 1
ε

,

√
Gε − 1
ε

)
− 1
ε2Q(

√
Gε,

√
Gε)

)〉
.

Writing

Q
(√

Gε − 1
ε

,

√
Gε − 1
ε

)
=Q

(
Π

√
Gε − 1
ε

,Π

√
Gε − 1
ε

)

+Q
(√

Gε − 1
ε

−Π
√

Gε − 1
ε

,

√
Gε − 1
ε

+Π
√

Gε − 1
ε

)
,
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and using the classical relation (see [2] for instance),

Q(φ,φ) = 1
2
L

(
φ2) for each φ ∈KerL,

we arrive at

Q
(√

Gε − 1
ε

,

√
Gε − 1
ε

)
= 1

2
L

((
Π

√
Gε − 1
ε

)2)

+Q
(√

Gε − 1
ε

−Π
√

Gε − 1
ε

,

√
Gε − 1
ε

+Π
√

Gε − 1
ε

)
.

Thus

F23
ε (ζ ) =

〈
ζ

(
Π

√
Gε − 1
ε

)2〉
− 2
ε2

〈
ζ̂Q(

√
Gε,

√
Gε)

〉

+2
〈
ζ̂Q

(√
Gε − 1
ε

−Π
√

Gε − 1
ε

,

√
Gε − 1
ε

+Π
√

Gε − 1
ε

)〉
. (6.11)

By continuity of Q (see (2.35)),
∥∥∥∥

〈
ζ̂Q

(√
Gε − 1
ε

−Π
√

Gε − 1
ε

,

√
Gε − 1
ε

+Π
√

Gε − 1
ε

)〉∥∥∥∥
L1([0,T ]×K)

" C‖ζ̂‖L2(aM dv)

∥∥∥∥

√
Gε − 1
ε

−Π
√

Gε − 1
ε

∥∥∥∥
L2([0,T ]×K;L2((1+|v|)βM dv))

×
∥∥∥∥

√
Gε − 1
ε

+Π
√

Gε − 1
ε

∥∥∥∥
L2([0,T ]×K;L2((1+|v|)βM dv))

→ 0

as ε→ 0, for each T > 0 and each compact K ⊂R3, because of (6.2) and Proposition 4.3.
Thus, by (6.9), (6.10) and (6.11)

F2
ε(ζ )−

〈
ζ

(
Π

√
Gε − 1
ε

)2〉
+ 2
ε2

〈
ζ̂Q

(√
Gε,

√
Gε

)〉
→ 0 (6.12)

in L1
loc(dt dx) as ε→ 0.

The convergences (6.7) and (6.12) eventually imply Proposition 6.1. !

7. Proof of Theorem 2.4

Throughout this section U ≡ U(x) designates an arbitrary compactly supported, C∞, divergence-free vector field
on R3. Taking the inner product with U of both sides of (2.48) gives

∂t

∫
〈vKεgεγε〉 · U dx −

∫
Fε(A) :∇xU dx =

∫
Dε(v) · U dx→ 0 in L1

loc(dt), (7.1)

by Proposition 5.1. Likewise, the energy equation (2.49) and Proposition 5.1 lead to

∂t

〈
1
2

(
|v|2 − 5

)
Kε

gεγε

〉
+ divx Fε(B) = Dε

(
1
2

(
|v|2 − 5

))
→ 0 in L1

loc(dt dx). (7.2)

By Proposition 6.1, one can decompose the fluxes as

Fε(A) = Fconv
ε (A) + Fdiff

ε (A) + o(1)L1
loc(dt dx),

Fε(B) = Fconv
ε (B) + Fdiff

ε (B) + o(1)L1
loc(dt dx), (7.3)

where
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Fconv
ε (A) = 2

〈
A

(
Π

√
Gε − 1
ε

)2 〉
,

Fdiff
ε (A) =−2

〈
Â

1
ε2Q

(√
Gε,

√
Gε

)〉
, (7.4)

while

Fconv
ε (B) = 2

〈
B

(
Π

√
Gε − 1
ε

)2 〉
,

Fdiff
ε (B) =−2

〈
B̂

1
ε2Q

(√
Gε,

√
Gε

)〉
. (7.5)

Classical computations (that can be found for instance in [3]) using the fact that A is orthogonal in L2(M dv) to KerL
as well as to odd functions of v and functions of |v|2 show that

Fconv
ε (A) = 2〈A⊗A〉 :

〈
v

√
Gε − 1
ε

〉⊗2

.

In a similar way, B is orthogonal in L2(M dv) to KerL and to even functions of v, so that

Fconv
ε (B) = 2〈B ⊗B〉 ·

〈
v

√
Gε − 1
ε

〉〈(
1
3
|v|2 − 1

)√
Gε − 1
ε

〉
.

7.1. Convergence of the diffusion terms

The convergence of Fdiff
ε (A) and Fdiff

ε (B) comes only from weak compactness results, and from the following
characterization of the weak limits.

Proposition 7.1. Under the same assumptions as in Theorem 2.4, one has, up to extraction of a subsequence εn→ 0,

gεn → g, and

√
G′εnG

′
εn1 −

√
GεnGεn1

ε2
n

→ q̃, (7.6)

in w−L1
loc(dt dx;L1(M dv)) and in w−L2(dt dx dµ), respectively.

Furthermore g ∈ L∞t (L2(dx M dv)) is an infinitesimal Maxwellian of the form,

g(t, x, v) = u(t, x) · v + θ(t, x)
1
2

(
|v|2 − 5

)
, divx u = 0, (7.7)

and q̃ ∈ L2(dt dx dµ) satisfies:
∫ ∫

q̃b(v − v1,ω) dωM1 dv1 = 1
2
v ·∇xg = 1

2
(A :∇xu + B ·∇xθ). (7.8)

Proof. Proposition 2.3(c) shows that

(gε) is relatively compact in w−L1
loc

(
dt dx;L1(M dv)

)

while (2.21) implies that
√

G′εG
′
ε1 −

√
GεGε1

ε2 is relatively compact in w−L2(dt dx dµ).

Pick then any sequence εn→ 0 such that

gεn → g, and

√
G′εnG

′
εn1 −

√
GεnGεn1

ε2
n

→ q̃,

in w−L1
loc(dt dx;L1(M dv)) and in w−L2(dt dx dµ) respectively.
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Step 1: From (2.22) we deduce that

1
εn

(
√

Gεn − 1)→ g in w−L2
loc

(
dt,L2(dx M dv)

)
.

In particular, by Proposition 4.3, g is an infinitesimal Maxwellian, i.e. of the form:

g(t, x, v) = ρ(t, x) + u(t, x) · v + θ(t, x)
1
2

(
|v|2 − 3

)
.

Taking limits in the local conservation of mass leads then to

divx〈vg〉= 0,

or in other words

divx u = 0,

which is the incompressibility constraint.
Multiplying the approximate momentum equation (2.48) by ε,

ε∂t 〈vKεgεγε〉+ ε divx Fε(A) + 1
3
∇x

〈
1
3
|v|2Kεgεγε

〉
= εDε(v),

using Propositions 5.1 and 6.1 to control Dε(v) and the remainder term in Fε(A),

Fε(A)− 2
〈
A

(
Π

√
Gε − 1
ε

)2 〉
+ 2

〈〈
Â

1
ε2 (

√
G′εG

′
ε1 −

√
GεGε1)

〉〉
→ 0,

and estimating Fconv
ε (A) and Fdiff

ε (A) by the entropy and entropy production bounds (2.20)–(2.21),
〈
A

(
Π

√
Gε − 1
ε

)2 〉
= O(1) in L∞t

(
L1

x

)
,

〈〈
Â

1
ε2 (

√
G′εG

′
ε1 −

√
GεGε1)

〉〉
= O(1)L2

t,x
,

we also obtain:

∇x

〈
|v|2g

〉
= 0,

or equivalently, since 〈|v|2g〉= 3(p + θ) ∈ L∞(R+;L2(R3)),

ρ + θ = 0,

which is the Boussinesq relation. One therefore has (7.7).
Step 2: Start from (4.1) in the proof of Lemma 4.2:

(ε∂t + v ·∇x)

√
εα + Gε − 1

ε
= 1
ε2

1
2
√
εα + Gε

Q(Gε,Gε) = Q1
ε + Q2

ε .

Recall that

Q1
ε→ 0 in L1(M dv dx dt). (7.9)

Next observe that

Q2
ε =

√
Gε√

εα + Gε

∫ ∫ √
Gε1

√
G′εG

′
ε1 −

√
GεGε1

ε2 b(v− v1,ω) dωM1 dv1.

Proposition 4.1 implies that
√

Gε→ 1 in L2
loc

(
dt dx;L2((1 + |v|

)β
M dv

))
as ε→ 0;

this and the second limit in (7.6) imply that
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∫ ∫ √
Gεn1

√
G′εnG

′
εn1 −

√
GεnGεn1

ε2
n

b(v − v1,ω) dωM1 dv1 →
∫ ∫

q̃b(v − v1,ω) dωM1 dv1,

in w−L1
loc(dt dx;L1(M dv)) as n→+∞. Since on the other hand,

√
Gε√

εα + Gε
→ 1 a.e. as ε→ 0 with 0 "

√
Gε√

εα + Gε
" 1,

we conclude from the Product Limit Theorem that

Q2
εn
→

∫ ∫
q̃b(v− v1,ω) dωM1 dv1, (7.10)

in w−L1
loc(dt dx;L1(M dv)) as n→+∞.

By (4.6), (4.13) and (7.6),
√
εαn + Gε − 1

εn
→ 1

2
g,

in w−L1
loc(dt dx;L1((1 + |v|2)M dv)) whenever α ∈ ]1,2[. Using (7.9), (7.10) and the convergence above, and

passing to the limit in (4.1) as εn→ 0 leads to
∫ ∫

q̃b(v− v1,ω) dωM1 dv1 = 1
2
v ·∇xg,

which is precisely the first equality in (7.8). Finally, replacing g by its expression (7.7) in the formula above leads to
the second equality in (7.8). !

Since Â and B̂ ∈ L2(aM dv), the second limit in (7.6) and identity (7.8) show that

Fdiff
εn

(A) =−2
〈
Â

1
ε2Q(

√
Gε,

√
Gε)

〉
→−〈Â⊗A〉 :∇ xu =−ν

(
∇xu + (∇xu)T

)
,

Fdiff
εn

(B) =−2
〈
B̂

1
ε2Q(

√
Gε,

√
Gε)

〉
→−〈B̂ ⊗B〉 :∇ xθ =−κ∇xθ, (7.11)

in w−L2(dt dx) as ε→ 0, because of the divergence-free condition in (7.7).

7.2. Convergence of the convection terms

The goal of this section is to establish that
∫

Fconv
ε (A) :∇xU dx→

∫
u⊗ u :∇xU dx and divx Fconv

ε (B)→ 5
2

divx(uθ)

in the sense of distributions on R∗+ and on R∗+ ×R3 respectively.
First, we replace Fconv

ε (A) and Fconv
ε (B) by asymptotically equivalent expressions.

Indeed, because of (4.13),

〈vgεγε〉 − 2
〈
v

√
Gε − 1
ε

〉
→ 0 in L2

loc(dt dx),

and
〈(

1
3
|v|2 − 1

)
gεγε

〉
− 2

〈(
1
3
|v|2 − 1

)√
Gε − 1
ε

〉
→ 0 in L2

loc(dt dx).

On the other hand, gεγε is bounded in L∞t (L2(M dv dx)) while v1|v|2>Kε
→ 0 and ( 1

3 |v|2 − 1)1|v|2>Kε
→ 0 in

L2(M dv); therefore

〈vgεγε〉 − 〈vKεgεγε〉→ 0 and
〈(

1
3
|v|2 − 1

)
gεγε

〉
−

〈(
1
3
|v|2 − 1

)

Kε

gεγε

〉
→ 0,
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in L2
loc(dt dx). Therefore

Fconv
ε (A) = 1

2
〈A⊗A〉 :〈 vKεgεγε〉⊗2 + o(1)L1

loc(dt dx)

= 〈vKεgεγε〉⊗2 − 1
3

∣∣〈vKεgεγε〉
∣∣2

I + o(1)L1
loc(dt dx), (7.12)

while

Fconv
ε (B) = 〈B ⊗B〉 ·〈 vKεgεγε〉

〈(
1
3
|v|2 − 1

)

Kε

gεγε

〉
+ o(1)L1

loc(dt dx)

= 5
2

〈(
1
3
|v|2 − 1

)

Kε

gεγε

〉
〈vKεgεγε〉+ o(1)L1

loc(dt dx). (7.13)

Furthermore, since gεn → g weakly in L1
loc(dt dx;L1((1 + |v|2)M dv)) while

vKε γε→ v and
(

1
3
|v|2 − 1

)

Kε

γε→
(

1
3
|v|2 − 1

)
a.e., and

|vKε γε | +
∣∣∣∣

(
1
3
|v|2 − 1

)

Kε

γε

∣∣∣∣ " C
(
1 + |v|2

)

one has by the Product Limit Theorem:

〈vKεnγεngεn〉→ 〈vg〉= u,
〈(

1
3
|v|2 − 1

)

Kεn

γεngεn

〉
→

〈(
1
3
|v|2 − 1

)
g

〉
= θ, (7.14)

in w−L1
loc(dt dx). In fact, these limits also hold in w−L2

loc(dt dx) since the family gεγε is bounded in
L∞t (L2(M dv dx)).

Taking limits in (7.12) and (7.13), which are quadratic functions of the moments, requires then to establish some
strong compactness on (〈ζKεgεγε〉).

7.2.1. Strong compactness in the x-variable
Applying Proposition 4.4 with ξ = v and ξ = 1

2 (|v|2 − 5) shows that, for each T > 0 and each compact K ⊂R3,

T∫

0

∫

K

∣∣∣∣

〈
1
2

(
|v|2 − 5

)
gεnγεn

〉
(t, x + y)−

〈
1
2

(
|v|2 − 5

)
gεnγεn

〉
(t, x)

∣∣∣∣
2

dx dt

+
T∫

0

∫

K

∣∣〈vgεnγεn〉(t, x + y)− 〈vgεnγεn〉(t, x)
∣∣2

dx dt → 0,

as |y|→ 0 uniformly in n. An easy consequence of the above convergence properties is that

T∫

0

∫

K

∣∣∣∣

〈
1
2

(
|v|2 − 5

)
Kεn

gεnγεn

〉
(t, x + y)−

〈
1
2

(
|v|2 − 5

)
Kεn

gεnγεn

〉
(t, x)

∣∣∣∣
2

dx dt

+
T∫

0

∫

K

∣∣〈vKεn gεnγεn〉(t, x + y)− 〈vKεn gεnγεn〉(t, x)
∣∣2

dx dt → 0, (7.15)

as |y|→ 0 uniformly in n.
In order to study the convergence of Fε(A), we need some similar statements for the solenoidal and gradient parts

of 〈vKεn gεnγεn〉, since the first one is expected to converge strongly in L2
loc(dt dx).
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The difficulty comes then from the fact that the Leray projection is a nonlocal pseudodifferential operator, in
particular it is not continuous on L2

loc(dx).
Introducing some convenient truncation χ in x and using the properties of the commutator [χ,P ], one can nev-

ertheless prove the following equicontinuity statement (see Lemma C.1): for each compact K ⊂ R3 and each T > 0,
one has:

T∫

0

∫

K

∣∣P 〈vKεn gεnγεn〉(t, x + y)− P 〈vKεn gεnγεn〉(t, x)
∣∣2

dx dt → 0, (7.16)

as |y|→ 0, uniformly in n.

7.2.2. Strong compactness in the t-variable
As we shall see below, the temperature fluctuation 〈 1

2 (|v|2 − 5)Kεgεnγεn〉 and the solenoidal part P 〈vKεgεγε〉 of
〈vKεgεγε〉 are strongly compact in the t-variable. However the orthogonal complement of P 〈vKεgεγε〉 — which is a
gradient field — is not in general because of high frequency oscillations in t .

Proposition 7.2. Under the assumptions of Theorem 2.4, one has:

P 〈vKεn gεnγεn〉→ 〈vg〉= u,
〈

1
2

(
|v|2 − 5

)
Kεn

gεnγεn

〉
→

〈
1
2

(
|v|2 − 5

)
g

〉
= 5

2
θ,

in C(R+;w−L2
x) and in L2

loc(dt dx) as n→+∞.

Proof. The conservation law (7.1) implies that

∂t

∫

R3

〈vKεn gεnγεn〉 · U dx = O(1) in L1
loc(dt), (7.17)

for each compactly supported, solenoidal vector field U ∈ C∞(R3), since we know from Proposition 6.1 together with
the bounds (2.21) and (2.20) that Fεn(A) is bounded in L1

loc(dt dx).
In the same way, the conservation law (7.2) implies that

∂t

〈
1
2

(
|v|2 − 5

)
Kεn

gεnγεn

〉
= O(1) in L1

loc
(
dt;W−1,1

loc

(
R3)). (7.18)

Also, we recall that gεγε is bounded in B(R+;L2(M dv dx)) — where B(X,Y ) denotes the class of bounded maps
from X to Y — because of the entropy bound (2.20). Indeed, since γε = 0 whenever Gε > 2, one has:

|gεnγεn | " 1Gε!2
|Gε − 1|
ε

" (1 +
√

2)
|
√

Gεn − 1|
εn

. (7.19)

In particular, one has:

〈vKεn gεnγεn〉= O(1) in B
(
R+;L2

x

)
,

〈
1
2

(
|v|2 − 5

)
Kεn

gεnγεn

〉
= O(1) in B

(
R+;L2

x

)
. (7.20)

Since the class of C∞, compactly supported solenoidal vector fields is dense in that of all L2 solenoidal vector
fields (see Appendix A of [19]), (7.20) and (7.17) imply that

P 〈vKεn gεnγεn〉 is relatively compact in C
(
R+;w−L2(R3)), (7.21)

by a variant of Ascoli’s theorem that can be found in Appendix C of [19].
The same argument shows that

〈
1
2

(
|v|2 − 5

)
Kεn

gεnγεn

〉
is also relatively compact in C

(
R+;w−L2

x

)
. (7.22)
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As for the L2
loc(dt dx) compactness, notice (7.21)–(7.22) imply that

P 〈vKεn gεnγεn〉 ; χδ is relatively compact in L2
loc(dt dx),

〈
1
2

(
|v|2 − 5

)
Kεn

gεnγεn

〉
; χδ is relatively compact in L2

loc(dt dx),

where χδ designates any mollifying sequence and ; is the convolution in the x-variable only. Hence

P 〈vKεn gεnγεn〉 · P 〈vKεn gεnγεn〉 ; χδ→ Pu · Pu ; χδ,〈
1
2

(
|v|2 − 5

)
Kεn

gεnγεn

〉〈
1
2

(
|v|2 − 5

)
Kεn

gεnγεn

〉
; χδ→

(
5
2
θ

)(
5
2
θ ; χδ

)
,

in w−L1
loc(dt dx) as n→∞. By (7.15)–(7.16),

P 〈vKεn gεnγεn〉 ; χδ→ P 〈vKεn gεnγεn〉,〈
1
2

(
|v|2 − 5

)
Kεn

gεnγεn

〉
; χδ→

〈
1
2

(
|v|2 − 5

)
Kεn

gεnγεn

〉
, (7.23)

in L2
loc(dt dx) uniformly in n as δ→ 0. With this, we conclude that

∣∣P 〈vKεn gεnγεn〉
∣∣2 → |Pu|2 in w−L1

loc(dt dx),
∣∣∣∣

〈
1
2

(
|v|2 − 5

)
Kεn

gεnγεn

〉∣∣∣∣
2

→
(

5
2
θ

)2

in w−L1
loc(dt dx),

which implies the expected strong compactness in L2
loc(dt dx). !

7.2.3. Passing to the limit in the convection terms
As explained above, P 〈vKεn gεnγεn〉 is strongly relatively compact in L2

loc(dt dx); however, the term 〈vKεn gεnγεn〉
itself may not be strongly relatively compact in L2

loc(dt dx) — at least in general. For that reason, on account of (7.12),
it is not clear that

Fconv
ε (A)→ u⊗ u− 1

3
|u|2I.

Likewise 〈(|v|2 − 5)Kεn gεnγεn〉 is strongly relatively compact in L2
loc(dt dx), and, on account of (7.13), it is not

clear that

Fconv
ε (B)→ 5

2
uθ,

as one would expect.
What we shall prove in this section is

Proposition 7.3. Under the assumptions of Theorem 2.4, one has,
∫

R3

∇xU : Fconv
εn

(A)dx→
∫

R3

∇xU : u⊗ udx,

in the sense of distributions on R∗+ for each solenoidal vector field U ∈ C∞c (R3;R3), and

divx Fconv
εn

(B)→ 5
2

divx(uθ),

in the sense of distributions on R∗+ ×R3.

The proof of this result relies on a compensated compactness argument due to P.-L. Lions and N. Masmoudi [21]
and recalled in Appendix A (Theorem A.2), and on the following observation:
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Lemma 7.4. Let δ > 0, and ξ ∈ C∞c (R3) be a bump function such that

supp ξ ⊂ B(0,1), ξ ! 0, and
∫
ξ dx = 1;

let ξδ(x) = δ−3χ(x/δ) and λδ = ξδ ; ξδ ; ξδ . Denote by Q = I − P the orthogonal projection on gradient fields in
L2(R3;R3). Under the assumptions of Theorem 2.4, one has:

ε∂tQ
(
λδ ; 〈vKεn gεnγεn〉

)
+∇xλδ ;

〈
1
3
|v|2Kεn gεnγεn

〉
→ 0,

ε∂tλδ ;

〈
1
3
|v|2Kεn gεnγεn

〉
+ 5

3
divx Q

(
λδ ; 〈vKεn gεnγεn〉

)
→ 0,

in L1
loc(dt;Hs

loc(R
3)) for each s > 0.

Proof. The second convergence statement above is obvious: indeed, considering the truncated, renormalized energy
equation (2.45) with ξ = 1

3 |v|2, and applying the mollifier λδ leads to

ε∂tλδ ;

〈
1
3
|v|2Kεn gεnγεn

〉
+ 5

3
divx Q

(
λδ ; 〈vKεn gεnγεn〉

)

=−2
3
ε divx λδ ; Fε(B) + 1

3
ελδ ;Dε

(
|v|2

)
.

It follows from Proposition 6.1, the entropy bound (2.20) and the entropy production estimate (2.21) that Fε(B)

is bounded in L1
loc(dt dx); this and Proposition 5.1 eventually entail that the right-hand side of the above equality

vanishes in L1
loc(dt;Hs

loc(R
3)).

The first convergence statement above is much trickier. Start from the analogous truncated, renormalized momen-
tum equation (2.45) with ξ = v:

ε∂t 〈vKεn gεnγεn〉+∇ x
1
3ε

〈
|v|2Kεn gεnγεn

〉
=−ε divx Fε(A) + εDε(v). (7.24)

Applying Q to both sides of the equality above is not obvious, because we only know that the right-hand side vanishes
in L1

loc(dt;W−1,1
loc (R3)), while Q is known to be continuous on global Sobolev spaces only.

However, Q = ∇x(
−1
x divx is a singular integral operator whose integral kernel decays at infinity. More precisely,

we shall use Lemma C.2 together with the following estimates on the right-hand side of (7.24):

Lemma 7.5. One has:

εFε(A)→ 0 and εDε(v)→ 0 in L1
loc(dt dx),

as ε→ 0. Furthermore,

εFε(A) = O(1)L∞t (L2
x),

εDε(v) = O
(
ε2K1/2

ε

)
L1

t,x
+ O(

√
ε)L2

t (L
1
x) + O(1)L2

t,x
.

Note that the convergence statement in Lemma 7.5 is a simple consequence of Propositions 5.1 and 6.1 (already
used in the derivation of the Boussinesq relation in Section 7.1).

Then let us postpone the proof of the global estimates, which is based on the entropy and entropy production
bounds (2.20)–(2.21), and conclude the proof of Lemma 7.4.

Define ζδ = ξδ ; ξδ . One has then

ε∂tQ
(
ζδ ; 〈vKεgεγε〉

)
+∇xζδ ;

〈
1
3
|v|2Kεgεγε

〉
=−Q

(
ξδ ;

(
εFε(A) ;∇ξδ

))
+ Q

(
ζδ ;

(
εDε(v)

))
.

For each δ > 0 fixed,

Q
(
ξδ ;

(
εFε(A) ;∇ξδ

))
→ 0 in L1

loc(dt dx), as ε→ 0,

by the first convergence result in Lemma 7.5 and Lemma C.2.
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Next decompose

εDε(v) = D0
ε(v) + D′ε(v)

with

D0
ε(v) = O(1)L2

t,x
and D′ε(v) = O

(
ε2K1/2

ε

)
L1

t,x
+ O(

√
ε)L2

t (L
1
x).

Thus, one has:

ζδ ;D′ε(v)→ 0 in L1
loc

(
dt;L2

x

)
,

so that

Q
(
ζδ ;D′ε(v)

)
→ 0 in L1

loc
(
dt;L2

x

)
,

as ε→ 0, by the L2-continuity of pseudo-differential operators of order 0. Finally, since D0
ε(v)→ 0 in L1

loc(dt dx)

and is bounded in L2
t,x , it follows from Lemma C.2 that

Q
(
ζδ ;D0

ε(v)
)
→ 0 in L1

loc(dt dx).

Eventually, we have proved that

ε∂tQ
(
ζδ ; 〈vKεgεγε〉

)
+∇xζδ ;

〈
1
3
|v|2Kεgεγε

〉
→ 0,

in L1
loc(dt dx) as ε→ 0. Therefore, denoting λδ = ξδ ; ξδ ; ξδ , one has,

ε∂tQ
(
λδ ; 〈vKεgεγε〉

)
+∇xλδ ;

〈
1
3
|v|2Kεgεγε

〉
→ 0,

in L1
loc(dt;Hs

loc(R
3)) for each s > 0 as ε→ 0. !

Let us now turn to the:

Proof of Lemma 7.5. First, gεγε = O(1) in L∞t (L2(dx M dv)), while A ∈ L2(M dv): hence

〈AKεgεγε〉= O(1)L∞t (L2
x).

Next decompose εDε(v) as

εDε(v) = T1 + T2 + T3,

where

T1 =
〈〈
vKε γ̂ε

1
ε2 (

√
G′εG

′
ε1 −

√
GεGε1)

2
〉〉
,

T2 = 2
〈〈
vKε γ̂ε

√
Gε

1
ε2 (

√
G′εG

′
ε1 −

√
GεGε1)

〉〉
,

T3 = 2
〈〈
vKε γ̂ε

√
Gε(

√
Gε1 − 1)

1
ε2 (

√
G′εG

′
ε1 −

√
GεGε1)

〉〉
,

Since 1
ε4 (

√
G′εG

′
ε1 −

√
GεGε1)

2 is bounded in L1
t,x,µ (see (2.21)), one has:

T1 = O
(
ε2K1/2

ε

)
L1

t,x
.

Likewise, γ̂ε
√

Gε = O(1) in L∞t,x,v and v ∈ L2(dµ), so that

T2 = O(1)L2
t,x

.

The same argument is used for T3, except that one has to control the terms v(
√

Gε1 − 1) instead of v in L2
µ. By

Young’s inequality,



Author's personal copy

544 F. Golse, L. Saint-Raymond / J. Math. Pures Appl. 91 (2009) 508–552

(
1 + |v1|

)
(
√

Gε1 − 1)2 "
(
1 + |v1|

)
|Gε1 − 1|

" 1
ε

(
h(Gε1 − 1) + h∗

(
ε
(
1 + |v1|

)))

" 1
ε
h(εgε1) + εh∗

(
1 + |v1|

)

= O(ε)L∞t (L1(M1 dv1dx)) + O(ε)L∞t,x (L1(M1 dv1))
.

The 3rd inequality above comes from the superquadratic nature of h∗. Indeed

h∗(p) = ep − p− 1 =
∑

n"2

pn

n!

so that

h∗(λp) " λ2h∗(p), for each p ! 0 and λ ∈ [0,1].
With the upper bound on

∫
b(v − v1,ω) dω, this shows that

|T3| " ‖vKε‖L2((1+|v|)βM dv)‖γ̂εGε‖L∞v ‖
√

Gε1 − 1‖L2((1+|v1|)βM1 dv1)

∥∥∥∥
1
ε2 (

√
G′εG

′
ε1 −

√
GεGε1)

∥∥∥∥
L2

µ

= O(
√
ε)L2

t (L
1
x) + O(

√
ε)L2

t,x
.

Combining the previous results leads to the expected estimate for Dε(v). !

At this point, we conclude this section with the

Proof of Proposition 7.3. First, we apply the compensated compactness argument for the acoustic system in [21] —
see also Theorem A.2 — to conclude from the statement in Lemma 7.4 that

∫
∇xU : Q

(
λδ ; 〈vKεn gεnγεn〉

)⊗2
dx→ 0,

divx

(
λδ ;

〈
1
3
|v|2Kεn gεnγεn

〉
Q

(
λδ ; 〈vKεn gεnγεn〉

))
→ 0,

in the sense of distributions on R∗+ and R∗+×R3 respectively, for each divergence-free vector field U ∈ C∞c (R3;R3).
On the other hand, the compactness property in the x-variable stated in Proposition 4.4 and (7.23) implies that

Q
(
λδ ; 〈vKεn gεnγεn〉

)
−Q

(
〈vKεn gεnγεn〉

)
→ 0,

λδ ;

〈
1
3
|v|2Kεn gεnγεn

〉
−

〈
1
3
|v|2Kεn gεnγεn

〉
→ 0,

in L2
loc(dt dx) as δ→ 0, uniformly in n. Therefore, one has:

∫
∇xU : Q

(
〈vKεn gεnγεn〉

)⊗2
dx→ 0,

divx

(〈
1
3
|v|2Kεn gεnγεn

〉
Q

(
〈vKεn gεnγεn〉

))
→ 0, (7.25)

in the sense of distributions on R∗+ and R∗+×R3 respectively, for each divergence-free vector field U ∈ C∞c (R3;R3).
Also, we recall from Proposition 7.2 and (7.14) that

P 〈vKεn gεnγεn〉→ u strongly in L2
loc(dt dx),

Q〈vKεn gεnγεn〉→ 0 weakly in L2
loc(dt dx).
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Therefore, for each compactly supported, C∞ solenoidal vector field U , one has:
∫

R3

∇xU : 〈vKεn gεnγεn〉⊗2 dx =
∫

R3

∇xU :
(
P 〈vKεn gεnγεn〉

)⊗2
dx +

∫

R3

∇xU :
(
Q〈vKεn gεnγεn〉

)⊗2
dx

+
∫

R3

∇xU :
(
P 〈vKεn gεnγεn〉 ⊗Q〈vKεn gεnγεn〉

)
dx

+
∫

R3

∇xU :
(
Q〈vKεn gεnγεn〉 ⊗ P 〈vKεn gεnγεn〉

)
dx

→
∫

R3

∇xU : u⊗ udx,

in the sense of distributions on R∗+. Together with (7.12), this implies the first limit in Proposition 7.3.
On the other hand, Proposition 7.2 and (7.14) imply that

〈(
1
5
|v|2 − 1

)

Kεn

gεnγεn

〉
→ θ strongly in L2

loc(dt dx),

〈
|v|2Kεn gεnγεn

〉
→ 0 weakly in L2

loc(dt dx).

Hence

divx

(〈(
1
3
|v|2 − 1

)

Kεn

gεnγεn

〉
〈vKεn gεnγεn〉

)

= divx

(〈(
1
5
|v|2 − 1

)

Kεn

gεnγεn

〉
P 〈vKεn gεnγεn〉

)
+ 2

15
divx

(〈
|v|2Kεn gεnγεn

〉
Q〈vKεn gεnγεn〉

)

+ 2
15

divx

(〈
|v|2Kεn gεnγεn

〉
P 〈vKεn gεnγεn〉

)
+ divx

(〈(
1
5
|v|2 − 1

)

Kεn

gεnγεn

〉
Q〈vKεn gεnγεn〉

)

→ divx(uθ),

in the sense of distributions on R∗+ ×R3. With (7.13), this entails the second statement in Proposition 7.3. !

7.3. End of the proof of Theorem 2.4

At this point we return to the renormalized, truncated momentum and energy conservations in the form (7.1)
and (7.2).

Asymptotic conservation of momentum. By using the convergence properties in (7.11) and Proposition 7.3 with the
decomposition (7.3), one sees that, for each C∞, compactly supported, solenoidal vector field U ,

∫

R3

∇xU : Fεn(A)dx→
∫

R3

∇xU : u⊗ udx − ν
∫

R3

∇xU :
(
∇xu + (∇xu)T

)
dx,

in the sense of distributions on R∗+, while

divx Fεn(B)→ divx(uθ)− κ(xθ,

in the sense of distributions in R∗+ ×R3. Furthermore, since divx u = 0, one has:
∫

R3

∇xU : (∇xu)T dx =
∫

R3

∇x(divx U) · udx = 0,
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for each solenoidal test vector field U , so that
∫

R3

∇xU : Fεn(A)dx→
∫

R3

∇xU : u⊗ udx − ν
∫

R3

∇xU :∇xudx,

in the sense of distributions on R∗+.
On the other hand, by Proposition 7.2,

∫

R3

U · 〈vKεn gεnγεn〉dx→
∫

R3

U · udx,

uniformly on [0, T ] for each T > 0. In particular, for t = 0, one has:
∫

R3

U · u|t=0 dx = lim
ε→0

∫

R3

U · P
(

1
ε

∫

R3

vF in
ε dv

)
dx =

∫

R3

U · uin dx.

Therefore, u satisfies:

∂t

∫

R3

U · udx −
∫

R3

∇xU : u⊗ udx + ν
∫

R3

∇xU :∇xudx = 0, t > 0,

u|t=0 = uin.

Asymptotic conservation of energy. Likewise,
〈(

1
5
|v|2 − 1

)

Kεn

gεnγεn

〉
→ θ,

in C(R+;w−L2
x). In particular, for t = 0, one has:

θ |t=0 = w− lim
ε→0

1
ε

∫

R3

(
1
5
|v|2 − 1

)
F in
ε dv = θ in.

Therefore, θ satisfies:

∂tθ + divx(uθ)− κ(xθ = 0, x ∈R3, t > 0,

θ |t=0 = θ in.

Notice that one has also
1
εn

∫

R3

vFεn dv = 〈vgεn〉→ u,

1
εn

∫

R3

(
1
5
|v|2 − 1

)
(Fεn −M)dv =

〈(
1
5
|v|2 − 1

)
gεn

〉
→ θ,

weakly in L1
loc(dt dx), because of (7.6) and (7.7).

Asymptotic energy inequality. By Proposition 7.1 and (2.22), one has

2
εn

(
√

Gεn − 1)→ g in w−L2
loc

(
dt,L2(dx M dv)

)

and
1
ε2
n

(√
G′εn1G

′
εn
−

√
Gεn1Gεn

)
→ q̃ in w−L2(dt dx dµ).

Then, by (2.20) and (2.21),
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∫ ∫
Mg2(t, x, v) dx dv " lim

n→∞
4
∫ ∫

M

(√
Gεn − 1
εn

)2

(t, x, v) dv dx " lim
n→∞

2
ε2
n

H(Fεn |M)(t),

and

t∫

0

∫ ∫
q̃2 ds dx dµ " lim

n→∞

t∫

0

∫ (
√

G′εn1G
′
εn
−

√
Gεn1Gεn

ε2
n

)2

ds dx dµ

" lim
n→∞

1
ε4
n

t∫

0

∫
E(Fεn) ds dx.

Explicit computations based on the limiting forms (7.7) and (7.8) of

g and
∫ ∫

q̃b(v − v1,ω) dωM1 dv1,

and using the symmetries of q̃ under the dµ-symmetries imply that
∫ ∫

Mg2(t, x, v) dx dv =
∫ (

|u|2(t, x) + 5
2
|θ |2(t, x)

)
dx,

while
∫

q̃2dµ ! 1
2
ν
∣∣∇xu + (∇xu)T

∣∣2 + 5
2
κ|∇xθ |2

(see Lemma 4.7 in [3] for a detailed proof of these statements).
Taking limits in the scaled entropy inequality,

1
ε2 H(Fε |M)(t) + 1

ε4

t∫

0

∫
E(Fε)(s, x) dx ds " 1

ε2 H
(
F in
ε |M

)
,

entails the expected energy inequality:

∫

R3

(
1
2

∣∣u(t, x)
∣∣2 + 5

4

∣∣θ(t, x)
∣∣2

)
dx +

t∫

0

∫

R3

(
ν|∇xu|2 + 5

2
κ|∇xθ |2

)
dx ds " lim

1
ε2 H

(
F in
ε |M

)
.

With this last observation, the proof of Theorem 2.4 is complete.

Appendix A. Some results about the limits of products

For the sake of completeness, we recall here without proof some classical results used in the present paper to pass
to the limit in nonlinear terms.

The first one is due to DiPerna and Lions [8], and is referred to as the Product Limit Theorem in [3]:

Theorem A.1. Let µ be a finite, positive Borel measure on a Borel subset X of RN . Consider two sequences of
real-valued measurable functions defined on X denoted ϕn and ψn.

Assume that (ψn) is bounded in L∞(dµ) and such that ψn→ψ a.e. on X while ϕn→ ϕ in w−L1(dµ). Then

ϕnψn→ ϕψ in L1(dµ) weak.

The second one is due to Lions and Masmoudi [21], and can be viewed as a compensated compactness result. It
states that (fast oscillating) acoustic waves do not contribute to the macroscopic dynamics in the incompressible limit:
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Theorem A.2. Let c 4= 0. Consider two families (ϕε) and (∇xψε) bounded in L∞loc(dt,L2
loc(dx)), such that

∂tϕε + 1
ε
(xψε = 1

ε
Fε,

∂t∇ψε + c2

ε
∇xϕε = 1

ε
Gε,

for some Fε,Gε converging to 0 in L1
loc(dt,L2

loc(dx)).
Then the quadratic quantities,

P∇x ·
(
(∇xψε)

⊗2) and ∇x · (ϕε∇xψε),

converge to 0 in the sense of distributions on R∗+ ×R3.

Appendix B. Some regularity results for the free transport operator

The main new idea in our previous work on the Navier–Stokes limit of the Boltzmann equation [13] was to improve
integrability and regularity with respect to the x variables using the integrability with respect to the v variables.

This property is obtained by combining the velocity averaging lemma [11,12] with dispersive properties of the free
transport operator [6].

We state here two results of this kind used in the present paper, whose proof can be found in [14] or [13].
The first such result, based on the dispersive properties of free transport, explains how the streaming operator

transfers uniform integrability from the v variables to the x variables.

Theorem B.1. Consider a bounded family (ψε) of L∞loc(dt,L1
loc( dx dv)) such that (ε∂t + v · ∇x)ψε is bounded

in L1
loc(dt dx dv). Assume that (ψε) is locally uniformly integrable in the v-variable — see Proposition 3.2 for a

definition of this notion. Then (ψε) is locally uniformly integrable (in all variables t , x and v).

The second one, which is based on the classical velocity averaging theorem in [11,12], explains how this additional
integrability is used to prove a L1 averaging lemma.

Theorem B.2. Consider a bounded family (ϕε) of L2
loc(dt dx,L2(M dv)) such that (ε∂t + v · ∇x)ϕε is weakly rela-

tively compact in L1
loc(dt dx M dv). Assume that (|ϕε |2) is locally uniformly integrable with respect to the measure

dt dx M dv.
Then, for each function ξ ≡ ξ(v) in L2(M dv), each T > 0 and each compact K ⊂R3,∥∥∥∥

∫
ϕε(t, x + y, v)Mξ(v) dv−

∫
ϕε(t, x, v)Mξ(v) dv

∥∥∥∥
L2([0,T ]×K)

→ 0,

as |y|→ 0 uniformly in ε.

Appendix C. Some regularity results for the Leray projection

One annoying difficulty in handling incompressible or weakly compressible models is the nonlocal nature of the
Leray projection P — defined on the space L2(R3;R3) of square integrable vector fields, on the closed subspace of
divergence-free vector fields. By definition, P is continuous on L2(R3;R3), as well as on Hs(R3;R3) — since P is
a classical pseudo-differential operator of order 0. However, P is not continuous on local spaces of the type L

p
loc(dx).

Here is how we make up for this lack of continuity.
A first observation leads to a local L2-equicontinuity statement provided that some global bound is known to hold.

Lemma C.1. Consider a sequence of vector fields (ψn) uniformly bounded in L∞t (L2(dx)). Assume that, for each
T > 0 and each compact K ⊂R3,

T∫

0

∫

K

∣∣ψn(t, x + y)−ψn(t, x)
∣∣2

dx dt → 0 as |y|→ 0,

uniformly in n.
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Then, for each T > 0 and each compact K ⊂R3,

T∫

0

∫

K

∣∣Pψn(t, x + y)− Pψn(t, x)
∣∣2

dx dt → 0 as |y|→ 0,

uniformly in n.

Proof. For each δ ∈ (0,1) and R > 0, let χ ≡ χ(x) be a C∞ bump function satisfying:

χ(x) = 1 for |x| " R, χ(x) = 0 for |x| ! R + δ,
0 " χ " 1, |χ ′| " 2/δ.

Obviously, for |y| " 1, one has:

T∫

0

∫

R3

∣∣χ(x + y)ψn(t, x + y)− χ(x)ψn(t, x)
∣∣2

dx dt

" 2

T∫

0

∫

R3

χ(x + y)2∣∣ψn(t, x + y)−ψn(t, x)
∣∣2

dx dt + 2

T∫

0

∫

R3

∣∣χ(x + y)− χ(x)
∣∣2∣∣ψn(t, x)

∣∣2
dx dt

" 2

T∫

0

∫

|x|!R+2

∣∣ψn(t, x + y)−ψn(t, x)
∣∣2

dx dt + 2
(

2
δ

)2

|y|2T ‖ψn‖L∞t (L2
x)

so that

T∫

0

∫

R3

∣∣χ(x + y)ψn(t, x + y)− χ(x)ψn(t, x)
∣∣2

dx dt → 0

as |y|→ 0 uniformly in n, since ψn is bounded in L∞t (L2(M dv dx)).
Consider next the decomposition:

χP = Pχ + [χ,P ],
where χ denotes the pointwise multiplication by the function χ , which is another pseudo-differential operator of order
0 on R3. In particular, [χ,P ] is a classical pseudo-differential operator of order −1 on R3.

With this decomposition, we consider the expression:

T∫

0

∫

|x|!R

∣∣χ(x + y)Pψn(t, x + y)− χ(x)Pψn(t, x)
∣∣2

dx dt

" 2

T∫

0

∫

|x|!R

∣∣P(χψn)(t, x + y)− P(χψn)(t, x)
∣∣2

dx dt

+ 2

T∫

0

∫

|x|!R

∣∣[χ,P ]ψn(t, x + y)− [χ,P ]ψn(t, x)
∣∣2

dx dt.

Because P is an L2(dx)-orthogonal projection, the first integral on the right-hand side of the inequality above satisfies:
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T∫

0

∫

|x|!R

∣∣P(χψn)(t, x + y)− P(χψn)(t, x)
∣∣2

dx dt

"
T∫

0

∫

R3

∣∣P(χψn)(t, x + y)− P(χψn)(t, x)
∣∣2

dx dt

"
T∫

0

∫

R3

∣∣χ(x + y)ψn(t, x + y)− χ(x)ψn(t, x)
∣∣2

dx dt → 0,

as |y|→ 0, uniformly in n. On the other hand, because [χ,P ] is a classical pseudo-differential operator of order −1
on R3 (see [25], §7.16, on p. 268): therefore [χ,P ] maps L2(R3) continuously into H 1(R3). This implies in particular
that [χ,P ]ψn is bounded in L∞(R+;H 1(R3)) so that, for each R > 0,

T∫

0

∫

|x|!R

∣∣[χ,P ]ψn(t, x + y)− [χ,P ]ψn(t, x)
∣∣2

dx dt → 0,

as |y|→ 0, uniformly in n. Hence

T∫

0

∫

|x|!R

∣∣χ(x + y)Pψn(t, x + y)− χ(x)Pψn(t, x)
∣∣2

dx dt → 0,

as |y|→ 0, uniformly in n. Assuming that R > 2, that the parameter δ in the definition of χ satisfies δ ∈ (0,1) and
that |y| " 1, we conclude that

T∫

0

∫

|x|!R−2

∣∣Pψn(t, x + y)− Pψn(t, x)
∣∣2

dx dt → 0,

as |y|→ 0, uniformly in n, for each R > 0 sufficiently large. !

A second observation provides continuity of P in L1
loc under some appropriate global bounds.

Lemma C.2. Let ψε ≡ ψε(t, x) ∈ R3 be a family of vector fields such that ψε → 0 in L1
loc(dt dx) and ψε = O(1)

in L1
loc(dt;L2

x). Let ξδ be a mollifying sequence on R3 defined by ξδ(x) = δ−3ξ(x/δ) where ξ ∈ C∞c (R3) is a bump
function such that

supp ξ ⊂ B(0,1), ξ ! 0, and
∫
ξ dx = 1.

Then, for each δ > 0,

Q(ξδ ; ψε)→ 0 in L1
loc(dt dx) as ε→ 0.

Proof. Let χ ∈ C∞c (R3). Then

T∫

0

∫

R3

χ(x)
∣∣Q(ξδ ; ψε)(t, x)

∣∣dx dt =
T∫

0

∫

R3

χ(x)Ω(t, x) · Q(ξδ ; ψε)(t, x) dx dt,

where Ω is any measurable unit vector field such that

Ω(t, x) = Q(ξδ ; ψε)

|Q(ξδ ; ψε)|
(t, x) whenever Q(ξδ ; ψε)(t, x) 4= 0.
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Hence
T∫

0

∫

R3

χ(x)
∣∣Q(ξδ ; ψε)(t, x)

∣∣dx dt =−
T∫

0

∫

R3

(−1
x divx(χΩ)divx(ξδ ; ψε)(t, x) dx dt.

Let G(x) = x
4π |x|3 be the convolution kernel corresponding to −∇x(

−1
x ; for R > 0, denote GR(x) = G(x)1|x|<R and

GR(x) = G(x)1|x|"R . Thus

T∫

0

∫

R3

χ(x)
∣∣Q(ξδ ; ψε)(t, x)

∣∣dx dt

=
T∫

0

∫

R3

GR ; (χΩ)(∇ξδ) ;ψ ε(t, x) dx dt +
T∫

0

∫

R3

GR ; (χΩ)(∇ξδ) ;ψ ε(t, x) dx dt.

We have used here the following simplifying notation: if a and b are two vector fields on R3, we denote:

a ; b(x) =
∫

R3

a(x − y) · b(y)dy,

where · is the canonical inner product on R3.
Observe that GR = O(1/

√
R) in L2

x , while χΩ ∈ L∞t (L1
x) (since |Ω| = 1 and supp(χ) is compact). Hence

GR ; (χΩ) = O(1/
√

R) in L1
loc

(
dt;L2

x

)
,

and (∇ξδ) ;ψ ε = O(1) in L1
loc(dt;L2

x) for each δ > 0 since ψε = O(1) in L1
loc(dt;L2

x). Hence the second integral is
O(1/

√
R) for each δ > 0.

Next GR = O(R) in L1
x and thus GR ; (χΩ) = O(R) in L∞x since |Ω| = 1; moreover,

suppx

(
GR ; (χΩ)

)
⊂ supp(χ) + B(0,R),

is bounded for each R > 0. On the other hand ∇ξδ ; ψε → 0 in L1
loc(dt dx), so that the first integral vanishes as

ε→ 0 for each δ > 0 and each R > 0. Passing to the limsup as ε→ 0+, then letting R→ 0+ leads to the announced
result. !
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