From the N-body problem to the cubic NLS equation

François Golse
Université Paris 7 \& Laboratoire J.-L. Lions golse@math.jussieu.fr

Los Alamos CNLS, January 26th, 2005
-Formal derivation by N.N. Bogolyubov (1947)— see for instance LandauLifshitz vol. 9, §25
-More recently, there have been rigorous derivations of nonlinear PDEs in the single particle phase-space from the linear, N-body problem. See for instance the derivation of the Boltzmann equation for a hard sphere gas by Lanford (1975) and then Illner-Pulvirenti (1986).
-Derivation of the Schrödinger-Poisson equation from the quantum N body problem with Coulomb potential: Bardos-G-Mauser (2000), ErdösYau (2001)
-Work in collaboration with Riccardo Adami et Sandro Teta (preprint June 2005); space dimension 1 , global in time.

- More recent preprint by L. Erdös and H.-T. Yau (preprint August 2005); space dimension 3, global in time.

The N-body Schrödinger equation

-Unknown: the N-particle wave function

$$
\begin{array}{r}
\Psi_{N} \equiv \Psi_{N}\left(t, X_{N}\right) \in \mathbf{C}, \quad X_{N}=\left(x_{1}, \ldots, x_{N}\right) \in \mathbf{R}^{N} \\
\int_{\mathbf{R}^{N}}\left|\Psi_{N}\left(t, X_{N}\right)\right|^{2} d X_{N}=1
\end{array}
$$

-Hamiltonian

$$
\mathcal{H}_{N}:=-\frac{1}{2} \Delta_{N}+U_{N}=\sum_{k=1}^{N}-\frac{1}{2} \partial_{x_{j}}^{2}+\sum_{1 \leq k<l \leq N} U\left(x_{k}-x_{l}\right)
$$

where the potential $U(z)=U(-z)$ is real-valued, compactly supported (hence short-range), smooth and nonnegative.

- Hence the wave function Ψ_{N} satisfies

$$
\begin{array}{r}
i \partial_{t} \Psi_{N}=\mathcal{H}_{N} \Psi_{N}, \quad \text { soit } \\
i \partial_{t} \Psi_{N}=\sum_{k=1}^{N}-\frac{1}{2} \partial_{x_{j}}^{2} \Psi_{N}+\sum_{1 \leq k<l \leq N} U\left(x_{k}-x_{l}\right) \Psi_{N}
\end{array}
$$

- In the sequel, all particles considered are bosons, meaning that the wave function Ψ_{N} is symmetrical in the variables x_{k} (Bose statistics):

$$
\Psi_{N}\left(t, x_{1}, \ldots, x_{N}\right)=\Psi_{N}\left(t, x_{\sigma(1)}, \ldots, x_{\sigma(N)}\right) \text { pour tout } \sigma \in \mathfrak{S}_{N} .
$$

One easily checks the following: if $\left.\Psi_{N}\right|_{t=0}$ is symmetrical in the $x_{k} \mathrm{~s}$ and Ψ_{N} solves the N-body Schrödinger equation, then $\Psi_{N}(t, \cdot)$ also is symmetrical in the $x_{k} \mathbf{s}$ for each $t \in \mathbf{R}$.

Scaling

-We shall be using two different scaling assumptions, as follows:
a) a collective scaling of mean-field type:

$$
U\left(x_{k}-x_{l}\right):=\frac{1}{N} V_{N}\left(x_{k}-x_{l}\right)
$$

so that the interaction potential per particle is

$$
\frac{1}{2} \sum_{k \neq l} \frac{1}{N} V_{N}\left(x_{k}-x_{l}\right)\left|\Psi_{N}\left(X_{N}\right)\right|^{2}=O(1)
$$

b) and an ultra-short range scaling

$$
\begin{array}{r}
V_{N}(z):=N^{\gamma} V\left(N^{\gamma} z\right) \text { with } 0<\gamma<\frac{1}{2}, \\
\text { and } V \text { nonnegative, even and smooth }
\end{array}
$$

-The total energy of the system of particles considered is

$$
\begin{array}{r}
\left\langle H_{N} \Psi_{N} \mid \Psi_{N}\right\rangle=\sum_{k=1}^{N} \frac{1}{2}\left\|\partial_{x_{k}} \Psi_{N}\right\|_{L^{2}}^{2} \\
+\sum_{1 \leq k<l \leq N} N^{\gamma-1} \int V\left(N^{\gamma}\left(x_{k}-x_{l}\right)\right)\left|\Psi_{N}\left(X_{N}\right)\right|^{2} d X_{N}
\end{array}
$$

We shall be using only wave functions for which

$$
\left\langle H_{N} \Psi_{N} \mid \Psi_{N}\right\rangle=O(N)
$$

Example: an important example of such wave functions is the case of a tensor product

$$
\Psi_{N}\left(X_{N}\right):=\prod_{k=1}^{N} \psi\left(x_{k}\right) \text { avec } \psi \in H^{1}(\mathbf{R})
$$

Density matrix, marginals

-The density matrix is the integral operator on $L^{2}\left(\mathbf{R}^{N}\right)$ whose kernel is

$$
\rho_{N}\left(t, X_{N}, Y_{N}\right):=\Psi_{N}\left(t, X_{N}\right) \overline{\Psi_{N}\left(t, Y_{N}\right)}
$$

a standard notation for this operator is $\rho_{N}(t)=\left|\Psi_{N}(t, \cdot)\right\rangle\left\langle\Psi_{N}(t, \cdot)\right|$; it is a rank-one orthogonal projection.
-For each $1 \leq k<N$, defined the k-particle marginal of ρ_{N} to be

$$
\rho_{N: k}\left(t, X_{k}, Y_{k}\right):=\int_{\mathbf{R}^{N-k}} \rho_{N}\left(t, X_{k}, Z_{k+1}^{N}, Y_{k}, Z_{k+1}^{N}\right) d Z_{k+1}^{N}
$$

where $Z_{k+1}^{N}:=\left(z_{k+1}, \ldots, z_{N}\right)$. We denote by $\rho_{N: k}(t)$ the associated integral operator; it is a nonnegative, trace-class operator with trace equal to 1 .

Theorem. Let $0 \leq V \in C^{\infty}(\mathbf{R})$ and $\gamma \in\left(0, \frac{1}{2}\right)$; assume there exists $M>0$ such that
$\left.\Psi_{N}\right|_{t=0} \equiv \prod_{k=1}^{N} \psi^{i n}\left(x_{k}\right), \quad$ with $\left.\left.\left\langle\left.\left(-\Delta_{N}\right)^{n} \Psi_{N}\right|_{t=0}\right| \Psi_{N}\right|_{t=0}\right\rangle \leq M^{n} N^{n}$ for $n=1, \ldots, N$. Then, for all $t \geq 0$, the sequence of single-particle marginals

$$
\rho_{N: 1}(t, x, y) \rightarrow \psi(t, x) \overline{\psi(t, y)} \text { as } N \rightarrow \infty
$$

in Hilbert-Schmidt norm, where ψ solves

$$
\begin{aligned}
i \partial_{t} \psi+\frac{1}{2} \partial_{x}^{2} \psi-\alpha|\psi|^{2} \psi & =0, \quad \text { with } \alpha:=\int_{\mathbf{R}} V(x) d x \\
\left.\psi\right|_{t=0} & =\psi^{i n}
\end{aligned}
$$

BBGKY hierarchy

-We shall be writing a sequence of equations satisfied by the sequence of marginals $\rho_{N: j}$, where $j=1, \ldots, N$. Start from the von Neumann equation satisfied by ρ_{N} :

$$
i \partial_{t} \rho_{N}=\left[\mathcal{H}_{N}, \rho_{N}\right]
$$

- In that equation, set $x_{2}=y_{2}=z_{2}, \ldots, x_{N}=y_{N}=z_{N}$, and integrate in z_{2}, \ldots, z_{N} :

$$
\begin{array}{r}
i \partial_{t} \rho_{N: 1}+\frac{1}{2}\left(\partial_{x_{1}}^{2}-\partial_{y_{1}}^{2}\right) \rho_{N: 1} \\
=(N-1) \int\left[U\left(x_{1}-z\right)-U\left(y_{1}-z\right)\right] \rho_{N: 2}\left(t, x_{1}, z, y_{1}, z\right) d z
\end{array}
$$

We recall that $U(z)=N^{\gamma-1} V\left(N^{\gamma} z\right)$ avec $0<\gamma<\frac{1}{2}$.
\bullet For $j=2, \ldots, N-1$, the analogous equation is

$$
\begin{array}{r}
i \partial_{t} \rho_{N: j}+\frac{1}{2} \sum_{k=1}^{j}\left(\partial_{x_{k}}^{2}-\partial_{y_{k}}^{2}\right) \rho_{N: j} \\
=(N-j) \sum_{k=1}^{j} \int\left[U\left(x_{k}-z\right)-U\left(y_{k}-z\right)\right] \rho_{N: j+1}\left(t, X_{k}, z, Y_{k}, z\right) d z \\
+\sum_{1 \leq k<l \leq j}\left[U\left(x_{k}-x_{l}\right)-U\left(y_{k}-y_{l}\right)\right] \rho_{N: j}\left(t, X_{k}, Y_{k}\right)
\end{array}
$$

\bullet For $j=N$, this equation is nothing but the von Neumann equation for the N-body density matrix ρ_{N}.
-Conceptually, it is advantageous to deal with infinite hierarchies of equations: in the sequel, we set $\rho_{N: j}=0$ whenever $j>N$.
-By passing to the limit (at the formal level) in the BBGKY hierarchy as $N \rightarrow \infty$ and for j fixed; remember that

$$
U(z)=\frac{1}{N} V_{N}(z) \text { and that } V_{N} \rightarrow \alpha \delta_{z=0} \text { with } \alpha=\int V(x) d x
$$

-Assuming that $\rho_{N: j} \rightarrow \rho_{j}$ for $N \rightarrow \infty$, we find that

$$
\begin{array}{r}
i \partial_{t} \rho_{j}+\frac{1}{2} \sum_{k=1}^{j}\left(\partial_{x_{k}}^{2}-\partial_{y_{k}}^{2}\right) \rho_{j} \\
=\alpha \sum_{k=1}^{j} \int\left[\delta\left(x_{k}-z\right)-\delta\left(y_{k}-z\right)\right] \rho_{j+1}\left(t, X_{k}, z, Y_{k}, z\right) d z
\end{array}
$$

Unlike in the case of the BBGKY hierarchy, $j \geq 1$ is unlimited, so that this new hierarchy has infinitely many equations.
-Let ψ be a smooth solution of the cubic NLS equation

$$
i \partial_{t} \psi+\frac{1}{2} \partial_{x}^{2} \psi=\alpha|\psi|^{2} \psi
$$

Define then

$$
\rho_{j}\left(t, X_{j}, Y_{j}\right):=\prod_{k=1}^{j} \psi\left(t, x_{k}\right) \overline{\psi\left(t, y_{k}\right)}
$$

We find that

$$
i \partial_{t} \rho_{1}+\frac{1}{2}\left(\partial_{x}^{2}-\partial_{y}^{2}\right) \rho_{1}=\alpha\left(\rho_{1}(t, x, x)-\rho_{1}(t, y, y)\right) \rho_{1}
$$

- More generally, a straightforward computation shows that the sequence ρ_{j} soves the inifinite hierarchy
-This suggests the following strategy, inspired from the derivation by Lanford of the Boltzmann equation from the classical N-body problem:
a) for the N-body Schrödinger equation, pick the initial data

$$
\left.\Psi_{N}\right|_{t=0}:=\left.\prod_{k=1}^{N} \psi\right|_{t=0}\left(x_{k}\right) ;
$$

b) show that the sequence of marginals $\rho_{N: j} \rightarrow \rho_{j}$ as $N \rightarrow \infty$ and for each fixed j in some suitable sense; next show that ρ_{j} solves the infinite hierarchy by passing to the limit in the BBGKY hierarchy;
c) prove that the infinite hierarchy has a unique solution which implies that

$$
\rho_{j}\left(t, X_{j}, Y_{j}\right)=\prod_{k=1}^{j} \psi\left(t, x_{k}\right) \overline{\psi\left(t, y_{k}\right)}
$$

where ψ is the solution of cubic NLS.

An abstract uniqueness argument

-Consider the infinite hierarchy of equations

$$
u_{n}^{\prime}+A_{n} u_{n}=L_{n, n+1} u_{n+1}, \quad u_{n}(0)=0, \quad n \geq 1
$$

where u_{n} takes its values in a Banach space E_{n}; here the linear operator $L_{n, n+1}$ belongs to $\mathcal{L}\left(E_{n+1}, E_{n}\right)$ while A_{n} is the generator of a oneparameter group of isometries $U_{n}(t)$ on E_{n}.
-Defining $v_{n}(t):=U_{n}(-t) u_{n}(t)$, one sees that

$$
\begin{aligned}
v_{n}^{\prime}(t) & =U_{n}(-t) L_{n, n+1} U_{n+1}(t) v_{n+1}(t), \\
u_{n}(0) & =0 .
\end{aligned}
$$

Lemma. Assume there exists $C>0$ and $R>0$ s.t.

$$
\left\|L_{n, n+1}\right\|_{\mathcal{L}\left(E_{n+1}, E_{n}\right)} \leq C n \text { and }\left\|u_{n}(t)\right\|_{E_{n}} \leq R^{n}
$$

for each $n \geq 1$ and each $t \in[0, T]$.

Then $u_{n} \equiv 0$ on $[0, T]$ for each $n \geq 1$.

Proof: Consider the decreasing scale of Banach spaces

$$
B_{r}:=\left\{v=\left(v_{n}\right)_{n \geq 0} \in \prod_{n \geq 1} E_{n} \mid\|v\|_{r}=\sum_{n \geq 1} r^{n}\left\|v_{n}\right\|_{E_{n}}<+\infty\right\}
$$

and set

$$
F(v):=\left(U_{n}(-t) L_{n, n+1} U_{n+1}(t) v_{n+1}\right)_{n \geq 1}
$$

- A straightforward computation shows that

$$
\|F(v)\|_{r_{1}} \leq C \sum_{n \geq 1} n r_{1}^{n}\left\|v_{n}\right\|_{E_{n}} \leq C \sum_{n \geq 1} \frac{r^{n+1}-r_{1}^{n+1}}{r-r_{1}}\left\|v_{n}\right\|_{E_{n}} \leq \frac{C\|v\|_{r}}{r-r_{1}}
$$

We conclude by applying the abstract variant of the Cauchy-Kowalewski theorem proved by Nirenberg and Ovsyanikov.

The key idea is to view B_{r} as the analogue of the class of functions with holomorphic extension to a strip of width r. The estimate above is similar to Cauchy's inequality bearing on the derivative of a holomorphic function. Hence F behaves like a differential operator of order 1.

Interaction estimate

-The first difficulty is to find Banach spaces E_{n} such that the interaction term $L_{n, n+1}$ is bounded by $O(n)$.
-Set $S_{j}:=\left(1-\partial_{x_{j}}\right)^{1 / 2}$; define

$$
E_{n}:=\left\{\rho_{n} \in \mathcal{L}\left(L^{2}\left(\mathbf{R}^{n}\right)\right) \mid S_{1} \ldots S_{n} \rho_{n} S_{1} \ldots S_{n} \text { is Hilbert-Schmidt }\right\}
$$

which is a Hilbert space for the norm

$$
\begin{aligned}
\left\|\rho_{n}\right\|_{E_{n}} & :=\left\|S_{1} \ldots S_{n} \rho_{n} S_{1} \ldots S_{n}\right\|_{\mathcal{L}^{2}} \\
& =\left(\iint\left|\prod_{j=1}^{n}\left(1-\partial_{x_{j}}\right)^{1 / 2}\left(1-\partial_{y_{j}}\right)^{1 / 2} \rho_{n}\left(X_{n}, Y_{n}\right)\right|^{2} d X_{n} d Y_{n}\right)^{1 / 2}
\end{aligned}
$$

Proposition. Let $\rho \in E_{n+1}$ and U be a tempered distribution whose Fourier transform is bounded on \mathbf{R}. Let σ be the integral operator with kernel

$$
\sigma\left(X_{n}, Y_{n}\right):=\int U\left(x_{1}-z\right) \rho\left(X_{n}, z, Y_{n}, z\right) d z
$$

Then

$$
\|\sigma\|_{E_{n}} \leq C\|\hat{U}\|_{L^{\infty}}\|\rho\|_{E_{n+1}}
$$

- In the BBGKY hierarchy, the operator $L_{n, n+1}$ is the sum of $2 n$ terms analogous to the one treated in the proposition above. Hence

$$
\left\|L_{n, n+1}\right\|_{\mathcal{L}\left(E_{n+1}, E_{n}\right)} \leq C n\|V\|_{L^{1}}
$$

Sketch of the proof: Do it for the limiting interaction $U=\delta_{0}$. Then

$$
\sigma\left(X_{n}, Y_{n}\right)=\rho_{n+1}\left(X_{n}, Y_{n}, x_{1}, x_{1}\right)
$$

If ρ_{n+1} was the $n+1$ st fold tensor product of functions of a single variable, the inequality that we want to prove reduces to the fact that $H^{1}(\mathbf{R})$ is an algebra.

The same proof (in Fourier space variables) works for the restriction of functions of arbitrarily many variables to a subspace of arbitrary codimension, provided that cross-derivatives of these functions are bounded in L^{2} - this is different from the trace problem for functions in $H^{1}\left(\mathbf{R}^{n}\right)$.

This proof extends to the case where \hat{U} is an arbitrary function in L^{∞}

An elementary computation shows that

$$
\widehat{\sigma}\left(\equiv_{n}, H_{n}\right)=\iint \widehat{\rho}_{n+1}\left(\xi_{1}-k, \Xi_{2}^{n}, k-l ; H_{n}, l\right) \frac{d k d l}{4 \pi^{2}}
$$

-Set

$$
\Gamma_{n}\left(\bar{\Xi}_{n}\right):=\prod_{k=1}^{n} \sqrt{1+\xi_{k}^{2}}
$$

we seek to estimate

$$
\|\sigma\|_{E_{n}}^{2}=\iint \Gamma_{n}\left(\Xi_{n}\right)^{2} \Gamma_{n}\left(H_{n}\right)^{2}\left|\widehat{\sigma}\left(\equiv_{n}, H_{n}\right)\right|^{2} \frac{d \bar{E}_{n} d H_{n}}{(2 \pi)^{2 n}}
$$

－Since

$$
\left.\Gamma_{1}\left(\xi_{1}\right) \leq\left(\Gamma_{1}\left(\xi_{1}-k\right)+\Gamma_{1}(k-l)+\Gamma_{1}(l)\right)\right)
$$

it follows that

$$
\begin{array}{r}
\quad \frac{1}{3} \Gamma_{1}\left(\xi_{1}\right)^{2} \left\lvert\,\left.\iint \hat{\rho}_{n+1}\left(\xi_{1}-k, \text { 三n }_{2}^{n}, k-l ; H_{n}, l\right) \frac{d k d l}{4 \pi^{2}}\right|^{2}\right. \\
\leq \left\lvert\,\left.\iint \Gamma_{1}\left(\xi_{1}-k\right) \hat{\rho}_{n+1}\left(\xi_{1}-k, \text { 三n }_{2}^{n}, k-l ; H_{n}, l\right) \frac{d k d l}{4 \pi^{2}}\right|^{2}\right. \\
+\left\lvert\,\left.\iint \Gamma_{1}(k-l) \hat{\rho}_{n+1}\left(\xi_{1}-k, \text { 三n }_{2}^{n}, k-l ; H_{n}, l\right) \frac{d k d l}{4 \pi^{2}}\right|^{2}\right. \\
\quad+\left\lvert\,\left.\iint \Gamma_{1}(l) \hat{\rho}_{n+1}\left(\xi_{1}-k, \text { 三n }_{2}^{n}, k-l ; H_{n}, l\right) \frac{d k d l}{4 \pi^{2}}\right|^{2}\right.
\end{array}
$$

-By the Cauchy-Schwarz inequality

$$
\begin{array}{r}
\left|\iint \Gamma_{1}\left(\xi_{1}-k\right) \hat{\rho}_{n+1}\left(\xi_{1}-k, \equiv_{2}^{n}, k-l, H_{n}, l\right) \frac{d k d l}{4 \pi^{2}}\right|^{2} \\
\leq C \iint\left|\hat{\rho}_{n+1}\left(\xi_{1}-k, \equiv_{2}^{n}, k-l ; H_{n}, l\right)\right|^{2} \frac{\Gamma_{1}\left(\xi_{1}-k\right)^{2} \Gamma_{1}(k-l)^{2} \Gamma_{1}(l)^{2} d k d l}{4 \pi^{2}}
\end{array}
$$

where

$$
C:=\iint \frac{d k d l}{\Gamma_{1}(k-l)^{2} \Gamma_{1}(l)^{2}}<\infty .
$$

-The two other terms are treated in the same manner. Therefore

$$
\begin{aligned}
& \iint \Gamma_{n}\left(\Xi_{n}\right)^{2} \Gamma_{n}\left(H_{n}\right)^{2}\left|\hat{\sigma}\left(\Xi_{n}, H_{n}\right)\right|^{2} \frac{d \Xi_{n} d H_{n}}{(2 \pi)^{2 n} \leq C^{\prime} \iint \Gamma_{n-1}\left(\Xi_{2}^{n}\right)^{2} \Gamma\left(H_{n}\right)^{2}} \\
& \quad \times \iint\left|\hat{\rho}_{n+1}\left(\xi_{1}-k, \equiv_{2}^{n}, k-l ; H_{n}, l\right)\right|^{2} \frac{\Gamma_{1}\left(\xi_{1}-k\right)^{2} \Gamma_{1}(k-l)^{2} \Gamma_{1}(l)^{2} d k d l}{4 \pi^{2}} \frac{d \Xi_{n} d H_{n}}{(2 \pi)^{2 n}}
\end{aligned}
$$

with $C^{\prime}:=3 C$. We conclude after changing variables:

$$
\left(\xi_{1}-k, k-l, l\right) \rightarrow\left(\xi_{1}, \xi_{n+1}, \eta_{n+1}\right)
$$

Growth estimate for $\left\|\rho_{n}\right\|_{E_{n}}$

Proposition. Let $0 \leq V \in C_{c}^{2}(\mathbf{R})$ and $\gamma \in(0,1)$; define

$$
H_{N}=-\frac{1}{2} \Delta_{X_{N}}+\sum_{1 \leq k<l \leq N} N^{\gamma-1} V\left(N^{\gamma}\left(x_{k}-x_{l}\right)\right)
$$

Assume that, for each $n \geq 1$ and each $N \geq N_{0}(n)$,

$$
\left\langle H_{N}^{n} \Psi_{N}^{i n} \mid \Psi_{N}^{i n}\right\rangle \leq M^{n} N^{n} \text { with } \Psi_{N}^{i n}\left(X_{n}\right)=\prod_{k=1}^{N} \psi^{i n}\left(x_{k}\right)
$$

Then, for each $M_{1}>M$, there exists $N_{1}=N_{1}\left(M_{1}, n\right)$ such that

$$
\operatorname{trace}\left(S_{1} \ldots S_{n} \rho_{N, n}(t) S_{1} \ldots S_{n}\right) \leq M_{1}^{n}
$$

for each $t \geq 0$ and each $N \geq N_{1}$.

Sketch of the proof: This is a variant of an argument by Erdös et Yau for the existence of a solution to the infinite hierarchy in space dimension 3.
-The only estimate involving derivatives that is propagated by the N-body equation bears on

$$
\left\langle H_{N}^{n} \Psi_{N} \mid \Psi_{N}\right\rangle
$$

In this quantity, the typical term is

$$
\int\left|\prod_{j_{1}<\ldots<j_{n}} \partial_{x_{j_{1}}} \ldots \partial_{x_{j_{1}}} \Psi_{N}\right|^{2} d X_{N}
$$

In all the other terms, either one derivative bears on V, leading to a lesser order term, or there is a multiple derivative in one of the $x_{j} \mathrm{~s}$, and there are less many of such terms.

- Set n and $C \in] 0,1\left[\right.$; one shows the existence of $N_{0}(C, n)$ st. for each $N \geq N_{0}$ and each $\psi \in D\left(H_{N}\right)$

$$
\left\langle\left(N+H_{N}\right)^{n} \Psi \mid \Psi\right\rangle \geq C^{n} N^{n}\left\langle\Psi \mid S_{1}^{2} \ldots S_{n}^{2} \Psi\right\rangle
$$

This result is trivial for $n=0,1$ (since $V \geq 0$ and $\Psi_{N}\left(t, X_{N}\right)$ is symmetrical in the $x_{j} \mathrm{~s}$).

The general case follows by induction on n : assuming the inequality proved for $k=0, \ldots, n$ we prove it for $n+2$.
-Write

$$
H_{N}+N=\sum_{k=1}^{N} S_{k}^{2}+\sum_{1 \leq k<l \leq N} N^{\gamma-1} V\left(N^{\gamma}\left(x_{k}-x_{l}\right)\right)
$$

-Define

$$
H_{n+1, N}:=H_{N}+N-\sum_{k=n+1}^{N} S_{k}^{2} \geq 0 .
$$

-Then

$$
\begin{array}{r}
\left\langle\Psi \mid\left(N+H_{N}\right) S_{1}^{2} \ldots S_{n}^{2}\left(N+H_{N}\right) \Psi\right\rangle= \\
\sum_{n<j_{1}, j_{2} \leq N}\left\langle\Psi \mid S_{j_{1}}^{2} S_{1}^{2} \ldots S_{n}^{2} S_{j_{2}}^{2} \Psi\right\rangle+\sum_{n<j_{1} \leq N} 2 \Re\left\langle\psi \mid S_{j_{1}}^{2} S_{1}^{2} \ldots S_{n}^{2} H_{n+1, N} \Psi\right\rangle \\
+\left\langle\Psi \mid H_{n+1, N} S_{1}^{2} \ldots S_{n}^{2} H_{n+1, N} \Psi\right\rangle
\end{array}
$$

- Since

$$
H_{n+1, N} S_{1}^{2} \ldots S_{n}^{2} H_{n+1, N} \geq 0
$$

the last term in the r.h.s. is disposed of.
-Recall that Ψ_{N} is symmetrical in the space variables, i.e.

$$
\Psi_{N}\left(t, x_{\sigma(1)}, \ldots, x_{\sigma(N)}\right)=\Psi_{N}\left(t, x_{1}, \ldots, x_{N}\right) \text { for each } \sigma \in \mathfrak{S}_{N}
$$

-Hence, denoting by $W_{k l}$ the multiplication by $N^{\gamma} V\left(N^{\gamma}\left(x_{k}-x_{l}\right)\right)$ acting on $L^{2}\left(\mathbf{R}^{N}\right)$, one has

$$
\begin{array}{r}
\left\langle\Psi \mid\left(N+H_{N}\right) S_{1}^{2} \ldots S_{n}^{2}\left(N+H_{N}\right) \Psi\right\rangle \\
\geq(N-n)(N-n-1)\left\langle\Psi \mid S_{1}^{2} \ldots S_{n}^{2} S_{n+1}^{2} S_{n+2}^{2} \Psi\right\rangle \\
+(2 n+1)(N-n)\left\langle\Psi \mid S_{1}^{4} S_{2}^{2} \ldots S_{n+1}^{2} \Psi\right\rangle \\
+\frac{n(n+1)(N-n)}{N} \Re\left\langle\Psi \mid W_{12} S_{1}^{2} \ldots S_{n}^{2} S_{n+1}^{2} \Psi\right\rangle \\
+\frac{(n+1)(N-n)(N-n-1)}{N} \Re\left\langle\Psi \mid W_{1, n+2} S_{1}^{2} \ldots S_{n}^{2} S_{n+1}^{2} \Psi\right\rangle
\end{array}
$$

- By Sobolev embedding, one has the following obvious inequality

$$
W(x-y) \leq\|W\|_{L^{1}}\left(1-\partial_{x x}\right)
$$

- Hence all the terms involving V are of a lesser order:

$$
\begin{array}{r}
2 \Re\left\langle\Psi \mid W_{12} S_{1}^{2} \ldots S_{n}^{2} S_{n+1}^{2} \Psi\right\rangle \geq \\
-\left\|V^{\prime \prime}\right\|_{L^{1} \cap L^{\infty}}\left(N^{2 \gamma}\left\langle\Psi \mid S_{1}^{2} \ldots S_{n+1}^{2} \Psi\right\rangle\right. \\
\left.+N^{\gamma}\left\langle\Psi \mid S_{1}^{4} S_{2}^{2} \ldots S_{n+1}^{2} \Psi\right\rangle\right)
\end{array}
$$

and similarly

$$
\begin{array}{r}
2 \Re\left\langle\Psi \mid W_{1, n+2} S_{1}^{2} \ldots S_{n}^{2} S_{n+1}^{2} \Psi\right\rangle \geq \\
-\left\|V^{\prime}\right\|_{L^{1}} N^{\gamma}\left\langle\Psi \mid S_{1}^{2} \ldots S_{n}^{2} S_{n+1}^{2} S_{n+2}^{2} \Psi\right\rangle
\end{array}
$$

Growth estimate for initial data

-We start from an initial data of the form

$$
\Psi_{N}^{i n}\left(X_{N}\right)=\prod_{j=1}^{N} \psi^{i n}\left(x_{j}\right)
$$

that satisfies

$$
\left\langle\Psi_{N}^{i n} \mid\left(-\Delta_{N}\right)^{n} \Psi_{N}^{i n}\right\rangle \leq M^{n} N^{n} .
$$

-We prove by induction that, if $V \in C_{c}^{\infty}(\mathbf{R})$ and $\gamma \in\left(0, \frac{1}{2}\right)$, one has

$$
\left(-\frac{1}{2} \Delta_{N}+U_{N}\right)^{n} \leq C^{n}\left(N-\Delta_{N}\right)^{n}
$$

for each $n \geq 1$ and $N \geq N_{*}(n)$.
-Hence

$$
\left\langle\Psi_{N}^{i n} \left\lvert\,\left(-\frac{1}{2} \Delta_{N}+U_{N}\right)^{n} \Psi_{N}^{i n}\right.\right\rangle \leq 2^{n-1} C^{n-1} M^{n} N^{n}
$$

for each $n \geq 1$ and $N \geq N_{*}(n)$.

- To compare powers of the Hamiltonian with powers of the kinetic energy, it suffices to show that

$$
U_{N}\left(N-\Delta_{N}\right)^{2 n} U_{N} \leq\left(C^{\prime}+C^{\prime \prime}(n) N^{(4 \gamma-2) n}\right)\left(N-\Delta_{N}\right)^{2 n+2}
$$

which is done by induction. One has to be careful only with the case $n=0$ that sets the constant C^{\prime} uniformly in n.
-The above computation where the condition $\gamma \in\left(0, \frac{1}{2}\right)$ comes from.

Passing to the limit

-Let Ψ_{N} be the solution of the N-body Schrödinger equation with factorized initial data; let ρ_{N} be the density matrix and $\rho_{N: n}$ its n-th marginal.
-The sequence $\left(\left(\rho_{N: n}\right)_{n \geq 0}\right)_{N \geq 0}$ is bounded in the product space

$$
\prod_{n \geq 1} L^{\infty}\left(\mathbf{R}, E_{n}\right)
$$

(each factor being endowed with the weak-* toplogy)

- On the other hand, if $\left(\rho_{N_{j}}: n\right)_{n \geq 0}$ converges to $\left(\rho_{n}\right)_{n \geq 0}$ in that topology, the limit soves the infinite hierarchy in the sense of distributions. Notice in particular that

$$
\left|\rho_{n}\left(t, X_{n}, Y_{n}\right)\right| \leq C \operatorname{trace}\left(S_{1} \ldots S_{n} \rho_{n}(t) S_{1} \ldots S_{n}\right)
$$

so that $\rho_{n} \in L_{t, X_{n}, Y_{n}}^{\infty}$.
-The recollision term is estimated as follows

$$
\begin{array}{r}
N^{\gamma-1} \int V\left(N^{\gamma}\left(x_{1}-x_{2}\right)\right) \rho_{N: n}\left(t, X_{n}, Y_{n}\right) \phi\left(t, X_{n}, Y_{n}\right) d X_{n} d Y_{n} d t \\
\leq C N^{\gamma-1}\|V\|_{L^{\infty}}\left\|\rho_{N: n}\right\|_{L^{\infty}\left(E_{n}\right)}\|\phi\|_{L^{1}} \rightarrow 0
\end{array}
$$

as $N \rightarrow \infty$ and there are $2 n(n-1)$ such terms in the n-th equation of the infinite hierarchy.
-As for the interaction term, remember that E_{n} is a Hilbert space, so that the convergence is weak and not only weak-* in the space variables. Since the linear interaction operator $L_{n, n+1}$ is norm-continuous from E_{n+1} to E_{n}, it is weakly continuous from E_{n+1} to E_{n}.

NB. The convergence to a solution of the infinite hierarchy follows from a careful analysis involving the conservation of energy. The interaction operator $L_{n, n+1}$ essentially reduces to taking the restriction of $\rho_{N: n+1}$ to a (linear) subspace of codimension 2. But

- $\rho_{N: n+1}$ is a trace-class operator, which allows taking the restriction to $x_{n+1}=y_{n+1}$, with a H^{1} estimate that follows from the conservation of energy;
-this bound allows in turn taking the further restriction $x_{n+1}=x_{1}$ because H^{1} functions have $H^{1 / 2} \subset L^{2}$ restrictions to hypersurfaces.

See Adami-Bardos-G.-Teta, Asympt. Anal. (2004).
-Analogous result in space dimension 3 (preprint by Erdös-Yau, 2004).

