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•Formal derivation by N.N. Bogolyubov (1947)— see for instance Landau-
Lifshitz vol. 9, §25

•More recently, there have been rigorous derivations of nonlinear PDEs in
the single particle phase-space from the linear, N -body problem. See for
instance the derivation of the Boltzmann equation for a hard sphere gas by
Lanford (1975) and then Illner-Pulvirenti (1986).

•Derivation of the Schrödinger-Poisson equation from the quantum N -
body problem with Coulomb potential: Bardos-G-Mauser (2000), Erdös-
Yau (2001)

•Work in collaboration with Riccardo Adami et Sandro Teta (preprint June
2005); space dimension 1, global in time.

•More recent preprint by L. Erdös and H.-T. Yau (preprint August 2005);
space dimension 3, global in time.



The N -body Schrödinger equation

•Unknown: the N -particle wave function

ΨN ≡ ΨN(t,XN) ∈ C , XN = (x1, . . . , xN) ∈ RN∫
RN

|ΨN(t,XN)|2dXN = 1

•Hamiltonian

HN := −1
2∆N + UN =

N∑
k=1

−1
2∂

2
xj

+
∑

1≤k<l≤N
U(xk − xl)

where the potential U(z) = U(−z) is real-valued, compactly supported
(hence short-range), smooth and nonnegative.



•Hence the wave function ΨN satisfies

i∂tΨN = HNΨN , soit

i∂tΨN =
N∑
k=1

−1
2∂

2
xj

ΨN +
∑

1≤k<l≤N
U(xk − xl)ΨN

•In the sequel, all particles considered are bosons, meaning that the wave
function ΨN is symmetrical in the variables xk (Bose statistics):

ΨN(t, x1, . . . , xN) = ΨN(t, xσ(1), . . . , xσ(N)) pour tout σ ∈ SN .

One easily checks the following: if ΨN

∣∣∣
t=0

is symmetrical in the xks and
ΨN solves the N -body Schrödinger equation, then ΨN(t, ·) also is sym-
metrical in the xks for each t ∈ R.



Scaling

•We shall be using two different scaling assumptions, as follows:

a) a collective scaling of mean-field type:

U(xk − xl) :=
1

N
VN(xk − xl)

so that the interaction potential per particle is

1
2

∑
k 6=l

1

N
VN(xk − xl)|ΨN(XN)|2 = O(1)

b) and an ultra-short range scaling

VN(z) := NγV (Nγz) with 0 < γ < 1
2 ,

and V nonnegative, even and smooth



•The total energy of the system of particles considered is

〈HNΨN |ΨN〉 =
N∑
k=1

1
2‖∂xkΨN‖2L2

+
∑

1≤k<l≤N
Nγ−1

∫
V (Nγ(xk − xl))|ΨN(XN)|2dXN

We shall be using only wave functions for which

〈HNΨN |ΨN〉 = O(N)

Example: an important example of such wave functions is the case of a
tensor product

ΨN(XN) :=
N∏
k=1

ψ(xk) avec ψ ∈ H1(R)



Density matrix, marginals

•The density matrix is the integral operator on L2(RN) whose kernel is

ρN(t,XN , YN) := ΨN(t,XN)ΨN(t, YN)

a standard notation for this operator is ρN(t) = |ΨN(t, ·)〉〈ΨN(t, ·)|; it is
a rank-one orthogonal projection.

•For each 1 ≤ k < N , defined the k-particle marginal of ρN to be

ρN :k(t,Xk, Yk) :=
∫
RN−k

ρN(t,Xk, Z
N
k+1, Yk, Z

N
k+1)dZ

N
k+1

where ZNk+1 := (zk+1, . . . , zN). We denote by ρN :k(t) the associated
integral operator; it is a nonnegative, trace-class operator with trace equal
to 1.



Theorem. Let 0 ≤ V ∈ C∞(R) and γ ∈ (0, 12); assume there exists
M > 0 such that

ΨN

∣∣∣
t=0

≡
N∏
k=1

ψin(xk) , with

〈
(−∆N)nΨN

∣∣∣
t=0

∣∣∣ΨN

∣∣∣
t=0

〉
≤MnNn

for n = 1, . . . , N . Then, for all t ≥ 0, the sequence of single-particle
marginals

ρN :1(t, x, y) → ψ(t, x)ψ(t, y) as N →∞

in Hilbert-Schmidt norm, where ψ solves

i∂tψ+ 1
2∂

2
xψ − α|ψ|2ψ = 0 , with α :=

∫
R
V (x)dx

ψ
∣∣∣
t=0

= ψin



BBGKY hierarchy

•We shall be writing a sequence of equations satisfied by the sequence
of marginals ρN :j, where j = 1, . . . , N . Start from the von Neumann
equation satisfied by ρN :

i∂tρN = [HN , ρN ]

•In that equation, set x2 = y2 = z2 , . . . , xN = yN = zN , and integrate
in z2, . . . , zN :

i∂tρN :1 + 1
2(∂

2
x1
− ∂2

y1
)ρN :1

= (N − 1)
∫

[U(x1 − z)− U(y1 − z)]ρN :2(t, x1, z, y1, z)dz

We recall that U(z) = Nγ−1V (Nγz) avec 0 < γ < 1
2.



•For j = 2, . . . , N − 1, the analogous equation is

i∂tρN :j + 1
2

j∑
k=1

(∂2
xk
− ∂2

yk
)ρN :j

= (N − j)
j∑

k=1

∫
[U(xk − z)− U(yk − z)]ρN :j+1(t,Xk, z, Yk, z)dz

+
∑

1≤k<l≤j
[U(xk − xl)− U(yk − yl)]ρN :j(t,Xk, Yk)

•For j = N , this equation is nothing but the von Neumann equation for the
N -body density matrix ρN .

•Conceptually, it is advantageous to deal with infinite hierarchies of equa-
tions: in the sequel, we set ρN :j = 0 whenever j > N .



•By passing to the limit (at the formal level) in the BBGKY hierarchy as
N →∞ and for j fixed; remember that

U(z) =
1

N
VN(z) and that VN → αδz=0 with α =

∫
V (x)dx

•Assuming that ρN :j → ρj for N →∞, we find that

i∂tρj + 1
2

j∑
k=1

(∂2
xk
− ∂2

yk
)ρj

= α
j∑

k=1

∫
[δ(xk − z)− δ(yk − z)]ρj+1(t,Xk, z, Yk, z)dz

Unlike in the case of the BBGKY hierarchy, j ≥ 1 is unlimited, so that this
new hierarchy has infinitely many equations.



•Let ψ be a smooth solution of the cubic NLS equation

i∂tψ+ 1
2∂

2
xψ = α|ψ|2ψ

Define then

ρj(t,Xj, Yj) :=
j∏

k=1

ψ(t, xk)ψ(t, yk)

We find that

i∂tρ1 + 1
2(∂

2
x − ∂2

y )ρ1 = α(ρ1(t, x, x)− ρ1(t, y, y))ρ1

•More generally, a straightforward computation shows that

the sequence ρj soves the inifinite hierarchy



•This suggests the following strategy, inspired from the derivation by Lan-
ford of the Boltzmann equation from the classical N -body problem:

a) for the N -body Schrödinger equation, pick the initial data

ΨN

∣∣∣
t=0

:=
N∏
k=1

ψ
∣∣∣
t=0

(xk) ;

b) show that the sequence of marginals ρN :j → ρj as N → ∞ and for
each fixed j in some suitable sense; next show that ρj solves the infinite
hierarchy by passing to the limit in the BBGKY hierarchy;

c) prove that the infinite hierarchy has a unique solution which implies that

ρj(t,Xj, Yj) =
j∏

k=1

ψ(t, xk)ψ(t, yk)

where ψ is the solution of cubic NLS.



An abstract uniqueness argument

•Consider the infinite hierarchy of equations

u′n +Anun = Ln,n+1un+1 , un(0) = 0 , n ≥ 1

where un takes its values in a Banach space En; here the linear opera-
tor Ln,n+1 belongs to L(En+1, En) while An is the generator of a one-
parameter group of isometries Un(t) on En.

•Defining vn(t) := Un(−t)un(t), one sees that

v′n(t) = Un(−t)Ln,n+1Un+1(t)vn+1(t) ,

un(0) = 0 .



Lemma. Assume there exists C > 0 and R > 0 s.t.

‖Ln,n+1‖L(En+1,En)
≤ Cn and ‖un(t)‖En ≤ Rn

for each n ≥ 1 and each t ∈ [0, T ].

Then un ≡ 0 on [0, T ] for each n ≥ 1.

Proof: Consider the decreasing scale of Banach spaces

Br :=

v = (vn)n≥0 ∈
∏
n≥1

En | ‖v‖r =
∑
n≥1

rn‖vn‖En < +∞


and set

F (v) := (Un(−t)Ln,n+1Un+1(t)vn+1)n≥1 .



•A straightforward computation shows that

‖F (v)‖r1 ≤ C
∑
n≥1

nrn1‖vn‖En ≤ C
∑
n≥1

rn+1−rn+1
1

r−r1 ‖vn‖En ≤
C‖v‖r
r − r1

We conclude by applying the abstract variant of the Cauchy-Kowalewski
theorem proved by Nirenberg and Ovsyanikov.

The key idea is to view Br as the analogue of the class of functions with
holomorphic extension to a strip of width r. The estimate above is similar
to Cauchy’s inequality bearing on the derivative of a holomorphic function.
Hence F behaves like a differential operator of order 1.



Interaction estimate

•The first difficulty is to find Banach spaces En such that the interaction
term Ln,n+1 is bounded by O(n).

•Set Sj := (1− ∂xj)
1/2; define

En := {ρn ∈ L(L2(Rn)) |S1 . . . SnρnS1 . . . Sn is Hilbert-Schmidt}

which is a Hilbert space for the norm

‖ρn‖En := ‖S1 . . . SnρnS1 . . . Sn‖L2

=

∫∫ ∣∣∣∣∣∣
n∏

j=1

(1− ∂xj)
1/2(1− ∂yj)

1/2ρn(Xn, Yn)

∣∣∣∣∣∣
2

dXndYn


1/2



Proposition. Let ρ ∈ En+1 and U be a tempered distribution whose
Fourier transform is bounded on R. Let σ be the integral operator with
kernel

σ(Xn, Yn) :=
∫
U(x1 − z)ρ(Xn, z, Yn, z)dz

Then

‖σ‖En ≤ C‖Û‖L∞‖ρ‖En+1

•In the BBGKY hierarchy, the operator Ln,n+1 is the sum of 2n terms
analogous to the one treated in the proposition above. Hence

‖Ln,n+1‖L(En+1,En)
≤ Cn‖V ‖L1



Sketch of the proof: Do it for the limiting interaction U = δ0. Then

σ(Xn, Yn) = ρn+1(Xn, Yn, x1, x1)

If ρn+1 was the n+1st fold tensor product of functions of a single variable,
the inequality that we want to prove reduces to the fact that H1(R) is an
algebra.

The same proof (in Fourier space variables) works for the restriction of
functions of arbitrarily many variables to a subspace of arbitrary codimen-
sion, provided that cross-derivatives of these functions are bounded in L2

— this is different from the trace problem for functions in H1(Rn).

This proof extends to the case where Û is an arbitrary function in L∞



An elementary computation shows that

σ̂(Ξn, Hn) =
∫∫

ρ̂n+1(ξ1 − k,Ξn
2, k − l;Hn, l)

dkdl
4π2

•Set

Γn(Ξn) :=
n∏

k=1

√
1 + ξ2k

we seek to estimate

‖σ‖2En =
∫∫

Γn(Ξn)
2Γn(Hn)

2|σ̂(Ξn, Hn)|2dΞndHn
(2π)2n



•Since

Γ1(ξ1) ≤ (Γ1(ξ1 − k) + Γ1(k − l) + Γ1(l)))

it follows that

1
3Γ1(ξ1)

2
∣∣∣∣∫∫

ρ̂n+1(ξ1 − k,Ξn
2, k − l;Hn, l)

dkdl
4π2

∣∣∣∣2
≤

∣∣∣∣∫∫
Γ1(ξ1 − k)ρ̂n+1(ξ1 − k,Ξn

2, k − l;Hn, l)
dkdl
4π2

∣∣∣∣2
+

∣∣∣∣∫∫
Γ1(k − l)ρ̂n+1(ξ1 − k,Ξn

2, k − l;Hn, l)
dkdl
4π2

∣∣∣∣2
+

∣∣∣∣∫∫
Γ1(l)ρ̂n+1(ξ1 − k,Ξn

2, k − l;Hn, l)
dkdl
4π2

∣∣∣∣2



•By the Cauchy-Schwarz inequality∣∣∣∣∫∫
Γ1(ξ1 − k)ρ̂n+1(ξ1 − k,Ξn

2, k − l, Hn, l)
dkdl
4π2

∣∣∣∣2
≤ C

∫∫
|ρ̂n+1(ξ1 − k,Ξn

2, k − l;Hn, l)|2Γ1(ξ1−k)2Γ1(k−l)2Γ1(l)
2dkdl

4π2

where

C :=
∫∫

dkdl
Γ1(k−l)2Γ1(l)2

<∞ .

•The two other terms are treated in the same manner. Therefore∫∫
Γn(Ξn)

2Γn(Hn)
2|σ̂(Ξn, Hn)|2 dΞndHn

(2π)2n
≤ C′

∫∫
Γn−1(Ξ

n
2)

2Γ(Hn)
2

×
∫∫

|ρ̂n+1(ξ1−k,Ξn
2, k−l;Hn, l)|

2 Γ1(ξ1−k)2Γ1(k−l)2Γ1(l)
2dkdl

4π2
dΞndHn
(2π)2n

with C′ := 3C. We conclude after changing variables:

(ξ1 − k, k − l, l) → (ξ1, ξn+1, ηn+1)



Growth estimate for ‖ρn‖En

Proposition. Let 0 ≤ V ∈ C2
c (R) and γ ∈ (0,1); define

HN = −1
2∆XN +

∑
1≤k<l≤N

Nγ−1V (Nγ(xk − xl))

Assume that, for each n ≥ 1 and each N ≥ N0(n),

〈Hn
NΨin

N |Ψ
in
N 〉 ≤MnNn with Ψin

N (Xn) =
N∏
k=1

ψin(xk) .

Then, for each M1 > M , there exists N1 = N1(M1, n) such that

trace(S1 . . . SnρN,n(t)S1 . . . Sn) ≤Mn
1

for each t ≥ 0 and each N ≥ N1.



Sketch of the proof: This is a variant of an argument by Erdös et Yau for
the existence of a solution to the infinite hierarchy in space dimension 3.

•The only estimate involving derivatives that is propagated by the N -body
equation bears on

〈Hn
NΨN |ΨN〉

In this quantity, the typical term is

∫ ∣∣∣∣∣∣
∏

j1<...<jn

∂xj1
. . . ∂xj1

ΨN

∣∣∣∣∣∣
2

dXN

In all the other terms, either one derivative bears on V , leading to a lesser
order term, or there is a multiple derivative in one of the xjs, and there are
less many of such terms.



•Set n and C ∈]0,1[; one shows the existence of N0(C, n) st. for each
N ≥ N0 and each Ψ ∈ D(HN)

〈(N +HN)nΨ|Ψ〉 ≥ CnNn〈Ψ|S2
1 . . . S

2
nΨ〉

This result is trivial for n = 0,1 (since V ≥ 0 and ΨN(t,XN) is symmet-
rical in the xjs).

The general case follows by induction on n: assuming the inequality proved
for k = 0, . . . , n we prove it for n+ 2.

•Write

HN +N =
N∑
k=1

S2
k +

∑
1≤k<l≤N

Nγ−1V (Nγ(xk − xl))



•Define

Hn+1,N := HN +N −
N∑

k=n+1

S2
k ≥ 0 .

•Then

〈Ψ|(N +HN)S2
1 . . . S

2
n(N +HN)Ψ〉 =∑

n<j1,j2≤N
〈Ψ|S2

j1
S2
1 . . . S

2
nS

2
j2

Ψ〉+
∑

n<j1≤N
2<〈Ψ|S2

j1
S2
1 . . . S

2
nHn+1,NΨ〉

+〈Ψ|Hn+1,NS
2
1 . . . S

2
nHn+1,NΨ〉

•Since

Hn+1,NS
2
1 . . . S

2
nHn+1,N ≥ 0

the last term in the r.h.s. is disposed of.



•Recall that ΨN is symmetrical in the space variables, i.e.

ΨN(t, xσ(1), . . . , xσ(N)) = ΨN(t, x1, . . . , xN) for each σ ∈ SN

•Hence, denoting by Wkl the multiplication by NγV (Nγ(xk − xl)) acting
on L2(RN), one has

〈Ψ|(N +HN)S2
1 . . . S

2
n(N +HN)Ψ〉

≥ (N − n)(N − n− 1)〈Ψ|S2
1 . . . S

2
nS

2
n+1S

2
n+2Ψ〉

+(2n+ 1)(N − n)〈Ψ|S4
1S

2
2 . . . S

2
n+1Ψ〉

+
n(n+ 1)(N − n)

N
<〈Ψ|W12S

2
1 . . . S

2
nS

2
n+1Ψ〉

+
(n+ 1)(N − n)(N − n− 1)

N
<〈Ψ|W1,n+2S

2
1 . . . S

2
nS

2
n+1Ψ〉



•By Sobolev embedding, one has the following obvious inequality

W (x− y) ≤ ‖W‖L1(1− ∂xx)

•Hence all the terms involving V are of a lesser order:

2<〈Ψ|W12S
2
1 . . . S

2
nS

2
n+1Ψ〉 ≥

−‖V ′′‖L1∩L∞(N2γ〈Ψ|S2
1 . . . S

2
n+1Ψ〉

+Nγ〈Ψ|S4
1S

2
2 . . . S

2
n+1Ψ〉)

and similarly

2<〈Ψ|W1,n+2S
2
1 . . . S

2
nS

2
n+1Ψ〉 ≥

−‖V ′‖L1N
γ〈Ψ|S2

1 . . . S
2
nS

2
n+1S

2
n+2Ψ〉



Growth estimate for initial data

•We start from an initial data of the form

Ψin
N (XN) =

N∏
j=1

ψin(xj)

that satisfies

〈Ψin
N |(−∆N)nΨin

N 〉 ≤MnNn .

•We prove by induction that, if V ∈ C∞c (R) and γ ∈ (0, 12), one has

(−1
2∆N + UN)n ≤ Cn(N −∆N)n

for each n ≥ 1 and N ≥ N∗(n).



•Hence

〈Ψin
N |(−

1
2∆N + UN)nΨin

N 〉 ≤ 2n−1Cn−1MnNn

for each n ≥ 1 and N ≥ N∗(n).

•To compare powers of the Hamiltonian with powers of the kinetic energy,
it suffices to show that

UN(N −∆N)2nUN ≤ (C′ + C′′(n)N(4γ−2)n)(N −∆N)2n+2

which is done by induction. One has to be careful only with the case n = 0

that sets the constant C′ uniformly in n.

•The above computation where the condition γ ∈ (0, 12) comes from.



Passing to the limit

•Let ΨN be the solution of the N -body Schrödinger equation with factor-
ized initial data; let ρN be the density matrix and ρN :n its n-th marginal.

•The sequence ((ρN :n)n≥0)N≥0 is bounded in the product space∏
n≥1

L∞(R, En)

(each factor being endowed with the weak-* toplogy)

•On the other hand, if (ρNj:n)n≥0 converges to (ρn)n≥0 in that topology,
the limit soves the infinite hierarchy in the sense of distributions. Notice in
particular that

|ρn(t,Xn, Yn)| ≤ C trace(S1 . . . Snρn(t)S1 . . . Sn)

so that ρn ∈ L∞t,Xn,Yn.



•The recollision term is estimated as follows

Nγ−1
∫
V (Nγ(x1 − x2))ρN :n(t,Xn, Yn)φ(t,Xn, Yn)dXndYndt

≤ CNγ−1‖V ‖L∞‖ρN :n‖L∞(En)‖φ‖L1 → 0

as N → ∞ and there are 2n(n − 1) such terms in the n-th equation of
the infinite hierarchy.

•As for the interaction term, remember that En is a Hilbert space, so that
the convergence is weak and not only weak-* in the space variables. Since
the linear interaction operator Ln,n+1 is norm-continuous from En+1 to
En, it is weakly continuous from En+1 to En.



NB. The convergence to a solution of the infinite hierarchy follows from
a careful analysis involving the conservation of energy. The interaction
operator Ln,n+1 essentially reduces to taking the restriction of ρN :n+1 to
a (linear) subspace of codimension 2. But

•ρN :n+1 is a trace-class operator, which allows taking the restriction to
xn+1 = yn+1, with a H1 estimate that follows from the conservation of
energy;

•this bound allows in turn taking the further restriction xn+1 = x1 because
H1 functions have H1/2 ⊂ L2 restrictions to hypersurfaces.

See Adami-Bardos-G.-Teta, Asympt. Anal. (2004).

•Analogous result in space dimension 3 (preprint by Erdös-Yau, 2004).


