Quantitative Compactness Estimates for Conservation Laws

François Golse
Ecole Polytechnique, Paris
golse@math.polytechnique.fr
HYP2008 — Univ. of Maryland
College Park, June 12th, 2008

Motivation

-Consider a parabolic PDE of the form

$$
\left\{\begin{aligned}
\partial_{t} u+\partial_{x} f(u) & =\epsilon \partial_{x}^{2} u, \quad x \in \mathbf{R}, t>0 \\
\left.u\right|_{t=0} & =u^{i n}
\end{aligned}\right.
$$

For each $\epsilon>0$, the energy equality

$$
\int_{\mathbf{R}} \frac{1}{2} u(t, x)^{2} d x+\epsilon \int_{0}^{t} \int_{\mathbf{R}} \partial_{x} u(s, x)^{2} d x d s=\int_{\mathbf{R}} \frac{1}{2} u^{i n}(x)^{2} d x
$$

gives us a bound on u in $L_{t}^{\infty}\left(L_{x}^{2}\right) \cap L_{t}^{2}\left(\dot{H}_{x}^{1}\right)$ so that the solution map

$$
L_{x}^{2} \ni u^{i n} \mapsto u \in L_{l o c}^{2}(d t d x)
$$

is compact by Rellich's theorem.
-What remains of this compactness in the limit as $\epsilon \rightarrow 0^{+}$- that is, for entropy solutions of the inviscid equation?
-Consider the conservation law

$$
\left\{\begin{aligned}
\partial_{t} u+\partial_{x} f(u) & =0, \quad x \in \mathbf{R}, t>0 \\
\left.u\right|_{t=0} & =u^{i n}
\end{aligned}\right.
$$

with strictly convex flux $f \in C^{1}(\mathbf{R})$ such that $f^{\prime}(z) \rightarrow \pm \infty$ as $z \rightarrow \pm \infty$.

Two compactness results:

$\bullet($ P.D. Lax, 1954) For each $t>0$, the entropy solution dynamics

$$
u^{i n} \mapsto u(t, \cdot)
$$

is compact from L_{x}^{1} into $L_{l o c}^{1}(d x)$
$\bullet($ L. Tartar, 1979) Compensated compactness (entropy bound + div-curl)
\Rightarrow convergence of the vanishing viscosity method

Both arguments are based on the fact that

$$
u_{n} \rightharpoonup u \quad \text { and } \quad F\left(u_{n}\right) \rightharpoonup F(u)
$$

for some suitable class of nonlinearities F implies that

$$
u_{n} \rightarrow u \quad \text { STRONGLY }
$$

QUESTION (P.D. LAX, 2002): can one transform such arguments into quantitative compactness or regularity estimates?

Part 1: ϵ-entropy estimate for scalar conservation laws
Joint work with C. De Lellis

Let $f \in C^{2}(\mathbf{R})$ with $f^{\prime \prime} \geq a>0$, and s.t.(WLOG) $f(0)=f^{\prime}(0)=0$.

$$
\left\{\begin{aligned}
\partial_{t} u+\partial_{x} f(u) & =0, \quad x \in \mathbf{R}, t>0 \\
\left.u\right|_{t=0} & =u^{i n}
\end{aligned}\right.
$$

Entropy solution semigroup $S(t): u^{i n} \mapsto u(t, \cdot)$; it satisfies the

$$
\text { Lax-Oleinik one-sided estimate: } \quad \partial_{x}\left(S(t) u^{i n}\right) \leq \frac{1}{a t}, \quad t>0
$$

Definition (Kolmogorov-Tikhomirov, 1959) For $\epsilon>0$, the ϵ-entropy of E precompact in the metric space (X, d) is :

$$
H(E \mid X)=\log _{2} N_{\epsilon}(E)
$$

where $N_{\epsilon}(E)$ is the minimal number of sets in an ϵ-covering of E-i.e. a covering of E by sets of diameter $\leq 2 \epsilon$ in X

Example: $H_{\epsilon}\left([0,1]^{n} \mid \mathbf{R}^{n}\right) \simeq n\left|\log _{2} \epsilon\right|$

For each $R, m, t>0$, the set $\left\{\left.u\right|_{[-R, R]}\right.$ s.t. $\left.u \in S(t) \overline{B_{L^{1}(\mathbf{R})}(0, m)}\right\}$ is precompact in $L^{1}([-R, R])$ (P.D. Lax, 1954)

Theorem. (C. DeLellis, F.G. 2005) For each $\epsilon>0$, one has
$H_{\epsilon}\left(S(t) \overline{B_{L^{1}(\mathbf{R})}(0, m)} \left\lvert\, L^{1}([-R, R]) \leq \frac{C_{1}(t)}{\epsilon}+2 \log _{2}\left(\frac{C_{2}(t)}{\epsilon}+C_{3}(t)\right)\right.\right.$
where

$$
\begin{array}{r}
C_{1}(t)=\frac{32 R^{2}}{a t}+32 R M(t), \quad C_{3}(t)=3+\frac{2 t M(t) c_{M}(t)}{R+\sqrt{m a t}} \\
C_{2}(t)=\frac{8 R}{a t}\left(R+\sqrt{m a t}+2 t M(t) c_{M(t)}\right)
\end{array}
$$

and with the notations $M(t)=\sqrt{\frac{4 m}{a t}}$ and $c_{M}=\sup _{|z| \leq M} f^{\prime \prime}(z)$.
$\bullet\left(\right.$ P.D. Lax, 1957) In the limit as $t \rightarrow+\infty$, one has $S(t) u^{i n}-N_{p, q}(t) \rightarrow 0$ in $L^{1}(\mathbf{R})$ where $N_{p, q}$ is the N -wave

$$
N_{p, q}(t)=\left\{\begin{array}{cc}
x / f^{\prime \prime}(0) t & \text { if }-\sqrt{p t}<x<\sqrt{q t} \\
0 & \text { otherwise }
\end{array}\right.
$$

and where

$$
p=-2 f^{\prime \prime}(0) \inf _{y} \int_{-\infty}^{y} u^{i n}, \quad q=2 f^{\prime \prime}(0) \sup _{y} \int_{y}^{\infty} u^{i n}
$$

- Hence, in the limit as $\epsilon \rightarrow 0^{+}$, one has

$$
\overline{\lim }_{t \rightarrow+\infty}\left(\text { resp. } \underset{t \rightarrow+\infty}{\underline{\lim }) H_{\epsilon}\left(S(t) \overline{B_{L^{1}(\mathbf{R})}(0, m)} \mid L^{1}(\mathbf{R})\right) \sim 2\left|\log _{2} \epsilon\right| . . \mid}\right.
$$

-Our bound on the ϵ-entropy does not capture this behavior; yet it shows that

$$
\varlimsup_{t \rightarrow+\infty} H_{\epsilon}\left(S(t) \overline{B_{L^{1}(\mathbf{R})}(0, m)} \mid L^{1}([-R(t), R(t)])\right)=O(1)
$$

as $\epsilon \rightarrow 0^{+}$whenever $R(t)=o(\sqrt{t})$; consistent with the fact that the dependence of the N-wave in p, q can be seen only on intervals of length at least $O(\sqrt{t})$

Motivation: P.D. Lax advocated using ϵ-entropy estimates for defining a notion of resolving power of a numerical scheme for the conservation law

$$
\partial_{t} u+\partial_{x} f(u)=0
$$

> Part 2: regularity by compensated compactness

Scalar conservation laws in space dimension 1

Let $f \in C^{2}(\mathbf{R})$ with $f^{\prime \prime} \geq a>0$, and s.t.(WLOG) $f(0)=f^{\prime}(0)=0$;

$$
\left\{\begin{aligned}
\partial_{t} u+\partial_{x} f(u) & =0, \quad x \in \mathbf{R}, t>0 \\
\left.u\right|_{t=0} & =u^{i n}
\end{aligned}\right.
$$

An adaptation of Tartar's compensated compactness method leads to

Theorem. For each $u^{i n} \in L^{\infty}(\mathbf{R})$ s.t. $u^{i n}(x)=0$ a.e. in $|x| \geq R$, the entropy solution $u \in B_{\infty, l o c}^{1 / 4,4}\left(\mathbf{R}_{+}^{*} \times \mathbf{R}\right)$, i.e.

$$
\int_{0}^{\infty} \int_{\mathbf{R}} \chi(t, x)^{2}|u(t, x)-u(t+s, x+y)|^{4} d x d t=O(|s|+|y|)
$$

for each $\chi \in C_{c}^{1}\left(\mathbf{R}_{+}^{*} \times \mathbf{R}\right)$
-DEGENERATE CONVEX FLUXES: assume that $f \in C^{2}(\mathbf{R})$ satisfies

$$
\begin{aligned}
& f^{\prime \prime}(v)>0 \text { for each } v \in \mathbf{R} \backslash\left\{v_{1}, \ldots, v_{n}\right\} \\
& f^{\prime \prime}(v) \geq a_{k}\left|v-v_{k}\right|^{2 \beta_{k}} \text { for each } v \text { near } v_{k}, \text { for } k=1, \ldots, n
\end{aligned}
$$

for some $v_{1}, \ldots, v_{n} \in \mathbf{R}$ and $a_{1}, \beta_{1}, \ldots, a_{n}, \beta_{n}>0$.

Theorem. For each $u^{i n} \in L^{\infty}(\mathbf{R})$ s.t. $u^{i n}(x)=0$ a.e. in $|x| \geq R$, the entropy solution $u \in B_{\infty, l o c}^{1 / p, p}\left(\mathbf{R}_{+}^{*} \times \mathbf{R}\right)$, with $p=2 \max _{1 \leq k \leq n} \beta_{k}+4$ i.e.

$$
\int_{0}^{\infty} \int_{\mathbf{R}} \chi(t, x)^{2}|u(t, x)-u(t+s, x+y)|^{p} d x d t=O(|s|+|y|)
$$

for each $\chi \in C_{c}^{1}\left(\mathbf{R}_{+}^{*} \times \mathbf{R}\right)$

COMPARISON WITH KNOWN RESULTS

-Lax-Oleinik estimate $\Rightarrow u \in B V_{l o c}\left(\mathbf{R}_{+}^{*} \times \mathbf{R}\right)$ (specific to scalar conservation laws, space dimension 1 , and $f^{\prime \prime} \geq a>0$)
-Perthame-Jabin (2002) prove that $u \in W_{l o c}^{s, p}\left(\mathbf{R}_{+}^{*} \times \mathbf{R}\right)$ for $s<\frac{1}{3}$ and $1 \leq p<\frac{5}{2}$. Proof based on kinetic formulation + velocity averaging; generalizes to degenerate fluxes, higher space dimensions + one particular 2×2 system in space dimension 1 (isentropic Euler with $\gamma=3$.)
-DeLellis-Westdickenberg (2003) prove that one cannot obtain better regularity than $B_{\infty}^{1 / r, r}$ for $r \geq 3$ or $B_{r}^{1 / 3, r}$ for $1 \leq r<3$ by using only the fact that the entropy production is a bounded Radon measure without using that it is a positive measure - as does the Perthame-Jabin, or our proof.
\Rightarrow the compensated compactness method gives a regularity estimate in the DeLellis-Westdickenberg optimality class

Proof of regularity by compensated compactness

-Non degenerate case: $f^{\prime \prime} \geq a>0$ and (WLOG) $f(0)=f^{\prime}(0)=0$.

We shall only use the fact that the entropy solution u satisfies

$$
\begin{aligned}
\partial_{t} u+\partial_{x} f(u) & =0 \\
\partial_{t} \frac{1}{2} u^{2}+\partial_{x} g(u) & =-\mu
\end{aligned}
$$

where

$$
g(v):=\int_{0}^{v} w f^{\prime}(w) d w \text { and } \iint_{\mathbf{R}_{+} \times \mathbf{R}}|\mu| \leq \int_{\mathbf{R}} \frac{1}{2}\left|u^{i n}\right|^{2} d x<\infty
$$

Notation: henceforth, we denote

$$
\tau_{(s, y)} \phi(t, x)=\phi(t-s, x-y), \quad \text { and } J=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Step 1: the div-curl argument. Set

$$
B=\binom{u}{f(u)}, \quad E=\left(\tau_{(s, y)}-I\right)\binom{\frac{1}{2} u^{2}}{g(u)}
$$

One has

$$
E, B \in L_{t, x}^{\infty}, \quad \operatorname{div}_{t, x} B=0, \quad \operatorname{div}_{t, x} E=\mu-\tau_{(s, y)} \mu
$$

In particular, there exists

$$
\pi \in \operatorname{Lip}\left(\mathbf{R}_{+}^{*} \times \mathbf{R}\right), \quad \text { s.t. } B=J \nabla_{t, x} \pi
$$

Integrating by parts shows that

$$
\begin{aligned}
\int_{0}^{\infty} \int_{\mathbf{R}} \chi^{2} E \cdot J\left(\tau_{(s, y)} B-B\right) d t d x= & -\int_{0}^{\infty} \int_{\mathbf{R}} \chi^{2} E \cdot \nabla_{t, x}\left(\tau_{(s, y)} \pi-\pi\right) d t d x \\
& =\int_{0}^{\infty} \int_{\mathbf{R}} \nabla_{t, x} \chi^{2} \cdot E\left(\tau_{(s, y)} \pi-\pi\right) d t d x \\
& +\int_{0}^{\infty} \int_{\mathbf{R}} \chi^{2}\left(\tau_{(s, y)} \pi-\pi\right)\left(\mu-\tau_{(s, y)} \mu\right)
\end{aligned}
$$

Therefore, one has the upper bound

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{\mathbf{R}} \chi^{2} E \cdot J\left(\tau_{(s, y)} B-B\right) d t d x \\
& \leq\left(\left\|\nabla_{t, x} \chi^{2}\right\|_{L^{1}}\|E\|_{L^{\infty}}+2\left\|\chi^{2}\right\|_{L^{\infty}} \iint|\mu|\right) \operatorname{Lip}(\pi)(|s|+|y|)
\end{aligned}
$$

which leads to an estimate of the form

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{\mathbf{R}} \chi^{2}\left(\left(\tau_{(s, y)} u-u\right)\left(\tau_{(s, y)} g(u)-g(u)\right)\right. \\
& \left.\quad-\frac{1}{2}\left(\tau_{(s, y)} u^{2}-u^{2}\right)\left(\tau_{(s, y)} f(u)-f(u)\right)\right) d t d x \leq C(|s|+|y|)
\end{aligned}
$$

Next we shall give a lower bound for the integrand in the left-hand side.

Remark here the div-curl argument reduces to a simple integration by parts, since $\operatorname{div}_{t, x} B=0$.

Step 2: a pointwise inequality

Lemma. For each $v, w \in \mathbf{R}$, one has ($f^{\prime \prime} \geq a>0$)

$$
(w-v)(g(w)-g(v))-\frac{1}{2}\left(w^{2}-v^{2}\right)(f(w)-f(v)) \geq \frac{a}{12}|w-v|^{4}
$$

Proof: WLOG, assume that $v<w$, and write

$$
\begin{array}{r}
(w-v)(g(w)-g(v))-\frac{1}{2}\left(w^{2}-v^{2}\right)(f(w)-f(v))= \\
\int_{v}^{w} d \xi \int_{v}^{w} \zeta f^{\prime}(\zeta) d \zeta-\int_{v}^{w} \xi d \xi \int_{v}^{w} f^{\prime}(\zeta) d \zeta=\int_{v}^{w} \int_{v}^{w}(\zeta-\xi) f^{\prime}(\zeta) d \xi d \zeta \\
=\frac{1}{2} \int_{v}^{w} \int_{v}^{w}(\zeta-\xi)\left(f^{\prime}(\zeta)-f^{\prime}(\xi)\right) d \xi d \zeta \geq \frac{a}{2} \int_{v}^{w} \int_{v}^{w}(\zeta-\xi)^{2} d \xi d \zeta
\end{array}
$$

Remark Tartar uses the flux f as entropy, together with Cauchy-Schwarz

$$
(w-v)(h(w)-h(v)) \geq(f(w)-f(v))^{2} \quad \text { with } h(v):=\int_{0}^{v} f^{\prime}(w)^{2} d w
$$

which is OK since he is aiming at proving compactness, not regularity
Step 3: conclusion Putting together the upper bound for the integral in Step 1 and the lower bound for the integrand of the left hand side obtained in Step 2, we find that

$$
\frac{a}{12} \int_{0}^{\infty} \int_{\mathbf{R}} \chi^{2}\left|\tau_{(s, y)} u-u\right|^{4} d t d x \leq C(|s|+|y|)
$$

which is the announced $B_{\infty, l o c}^{1 / 4,4}$ estimate for the entropy solution u. \square
Remark Here we have used only one convex entropy $\frac{1}{2} u^{2}$. By using all Krushkov entropies, the compensated compactness argument above leads to the optimal regularity estimate in $B_{\infty, l o c}^{1 / 3,3}$ (B. Perthame)

1D Isentropic Euler system, $1<\gamma<3$

Unknowns: $\rho \equiv \rho(t, x)$ (density) and $u \equiv u(t, x)$ (velocity field)

$$
\begin{aligned}
\partial_{t} \rho+\partial_{x}(\rho u) & =0 \\
\partial_{t}(\rho u)+\partial_{x}\left(\rho u^{2}+\kappa \rho^{\gamma}\right) & =0
\end{aligned}
$$

-Hyperbolic system of conservation laws, with characteristic speeds

$$
\lambda_{+}:=u+\theta \rho^{\theta}>u-\theta \rho^{\theta}=: \lambda_{-}, \quad \text { with } \theta=\sqrt{\kappa \gamma}=\frac{\gamma-1}{2}
$$

-Along any C^{1} solution (ρ, u), this system can be put in diagonal form

$$
\begin{array}{r}
\partial_{t} w_{+}+\lambda_{+} \partial_{x} w_{+}=0, \\
\partial_{t} w_{-}+\lambda_{-} \partial_{x} w_{-}=0,
\end{array}
$$

where $w_{ \pm} \equiv w_{ \pm}(\rho, u)$ are the Riemann invariants

$$
w_{+}:=u+\rho^{\theta}>u-\rho^{\theta}=: w_{-}
$$

-R. DiPerna (1983) proved that, for each initial data ($\rho^{i n}, u^{i n}$) satisfying

$$
\left(\rho^{i n}-\bar{\rho}, u^{i n}\right) \in C_{c}^{2}(\mathbf{R}) \text { and } \rho^{i n}>0
$$

there exists an entropy (weak) solution (ρ, u) of the isentropic Euler system that satisfies the L^{∞} bound

$$
\begin{aligned}
& 0 \leq \rho \leq \rho^{*}=\sup _{x \in \mathbf{R}}\left(\frac{1}{2}\left(w_{+}\left(\rho^{i n}, u^{i n}\right)-w_{-}\left(\rho^{i n}, u^{i n}\right)\right)^{1 / \theta}\right. \\
& \inf _{x \in \mathbf{R}} w_{-}\left(\rho^{i n}, u^{i n}\right)=: u_{*} \leq u \leq u^{*}:=\sup _{x \in \mathbf{R}} w_{+}\left(\rho^{i n}, u^{i n}\right)
\end{aligned}
$$

-DiPerna's argument applies to $\gamma=1+\frac{2}{2 n+1}$, for each $n \geq 1$; improvements by G.Q. Chen and, more recently, by P.-L. Lions, B. Perthame, P. Souganidis and E. Tadmor, by using a kinetic formulation of Euler's system
-Problem: is there a regularizing effect for isentropic Euler? what is the regularity of entropy solutions?

Admissible solutions

-Weak entropies: an entropy ϕ for the isentropic Euler system is called a "weak entropy" if $\left.\phi\right|_{\rho=0}=0$.

Example: the energy \mathcal{E}, with energy flux \mathcal{G} :

$$
\left\{\begin{array}{l}
\mathcal{E}(U)=\frac{1}{2} \rho u^{2}+\frac{\kappa}{\gamma-1} \rho^{\gamma} \\
\mathcal{G}(U)=u\left(\mathcal{E}(U)+\kappa \rho^{\gamma}\right)
\end{array} \quad \text { where } U=\binom{\rho}{\rho u}\right.
$$

-DiPerna's solutions are obtained from solutions of the parabolic system

$$
\partial_{t} U_{\epsilon}+\partial_{x} F\left(U_{\epsilon}\right)=\epsilon \partial_{x x} U_{\epsilon}
$$

in the limit as $\epsilon \rightarrow 0^{+}$. These solutions satisfy

$$
\partial_{t} \mathcal{E}(U)+\partial_{x} \mathcal{G}(U)=-M \text { with } M=\mathrm{w}-\lim _{\epsilon \rightarrow 0} \epsilon D^{2} \mathcal{E}\left(U_{\epsilon}\right): \partial_{x} U_{\epsilon}^{\otimes 2} \geq 0
$$

-Each weak entropy ϕ has its dissipation dominated by that of E :

$$
\left|D^{2} \phi(U)\right| \leq C_{\phi, K} D^{2} \mathcal{E}(U) \text { for } U \in K \text { compact subset of } \mathbf{R}_{+} \times \mathbf{R}
$$

-Hence DiPerna solutions of Euler's system constructed as above satisfy, for each weak entropy ϕ, the entropy condition

$$
\partial_{t} \phi(U)+\partial_{x} \psi(U)=-\mu[\phi]
$$

where $\mu[\phi]$ is a bounded Radon measure verifying the bound

$$
|\langle\mu[\phi], \chi\rangle| \leq C_{\phi, K}\langle M, \chi\rangle, \quad \chi \in C_{c}^{\infty}\left(\mathbf{R}_{+} \times \mathbf{R}\right)
$$

where M is the energy dissipation.

Definition. Let $\mathcal{O} \subset \mathbf{R}_{+}^{*} \times \mathbf{R}$ open. A weak solution $U=(\rho, \rho u)$ s.t.

$$
0<\rho_{*} \leq \rho \leq \rho^{*} \quad \text { and } \quad u_{*} \leq u \leq u^{*} \text { for }(t, x) \in \mathcal{O}
$$

is called an admissible solution on \mathcal{O} iff for each entropy ϕ, weak or not,

$$
\partial_{t} \phi(U)+\partial_{x} \psi(U)=-\mu[\phi]
$$

is a Radon measure such that

$$
\|\mu[\phi]\|_{\mathcal{M}_{b}(\mathcal{O})} \leq C\left(\rho_{*}, \rho^{*}, u_{*}, u^{*}\right)\left\|D^{2} \phi\right\|_{L^{\infty}\left(\left[\rho_{*}, \rho^{*}\right] \times\left[u_{*}, u^{*}\right]\right.} \int_{\mathcal{O}} M
$$

-Example: any DiPerna solution whose viscous approximation U_{ϵ} satisfies the uniform lower bound

$$
\rho_{\epsilon} \geq \rho_{*}>0 \quad \text { on } \mathcal{O} \text { for each } \epsilon>0
$$

is admissible on \mathcal{O}.
-Existence of admissible solutions in the large?

Theorem. Assume that $\gamma \in(1,3)$ and let \mathcal{O} be any open set in $\mathbf{R}_{+}^{*} \times \mathbf{R}$. Any admissible solution of Euler's system on \mathcal{O} satisfies
$\iint_{\mathcal{O}}|(\rho, u)(t+s, x+y)-(\rho, u)(t, x)|^{2} d x d t \leq$ Const. $|\ln (|s|+|y|)|^{-2}$ whenever $|s|+|y|<\frac{1}{2}$.

- In the special case $\gamma=3$, the same method gives

Theorem. Assume that $\gamma=3$ and let \mathcal{O} be any open set in $\mathbf{R}_{+}^{*} \times \mathbf{R}$. Any admissible solution of Euler's system on $\mathcal{O} \subset \mathbf{R}_{+}^{*} \times \mathbf{R}$ satisfies

$$
(\rho, u) \in B_{\infty, l o c}^{1 / 4,4}(\mathcal{O})
$$

-For $\gamma=3$, by using the kinetic formulation and velocity averaging, one has (Lions-Perthame-Tadmor JAMS 1994, Jabin-Perthame COCV 2002)

$$
\rho, \rho u \in W_{l o c}^{s, p}\left(\mathbf{R}_{+} \times \mathbf{R}\right) \text { for all } s<\frac{1}{4}, 1 \leq p \leq \frac{8}{5}
$$

-The kinetic formulation for $\gamma \in(1,3)$ is of the form

$$
\begin{aligned}
\partial_{t} \chi+\partial_{x}[(\theta \xi+(1-\theta) u(t, x)) \chi]=\partial_{\xi \xi} m & \text { with } m \geq 0 \\
\text { and } \chi=\left[\left(w_{+}-\xi\right)\left(\xi-w_{-}\right)\right]_{+}^{\lambda} & \text { for } \lambda=\frac{3-\gamma}{2(\gamma-1)}
\end{aligned}
$$

Because of the presence of $u(t, x)$ in the advection velocity - which is just bounded, not smooth - classical velocity averaging lemmas (Agoshkov, G-Lions-Perthame-Sentis, DiPerna-Lions-Meyer, ...) do not apply in this case

Main ideas in the proof

Step 1: the div-curl bilinear estimate A variant of Murat-Tartar div-curl lemma is the following bilinear estimate

$$
\begin{aligned}
& \left|\iint \chi^{2} E \cdot J B d t d x\right| \leq \text { harmless localization terms } \\
& +\|\chi E\|_{L^{p}}\left\|\chi \operatorname{div}_{t, x} E\right\|_{W^{-1, p^{\prime}}}+\|\chi B\|_{L^{p}}\left\|\chi \operatorname{div}_{t, x} B\right\|_{W^{-1, p^{\prime}}}
\end{aligned}
$$

where J is the rotation of an angle $\frac{\pi}{2}$ and $p \in(1, \infty)$. Apply this with

$$
E=\left(\tau_{(s, y)}-I\right)\binom{\phi_{1}(\rho, u)}{\psi_{1}(\rho, u)} \quad B=\left(\tau_{(s, y)}-I\right)\binom{\phi_{2}(\rho, u)}{\psi_{2}(\rho, u)}
$$

where (ϕ_{1}, ψ_{1}) and (ϕ_{2}, ψ_{2}) are two entropy pairs, while (ρ, u) is an admissible solution of isentropic Euler on \mathcal{O}, and $\operatorname{supp}(\chi)$ is a compact subset of \mathcal{O}

The admissibility condition implies that

$$
\operatorname{div}_{t, x} E=-\left(\tau_{(s, y)}-I\right) \mu\left[\phi_{1}\right], \quad \operatorname{div}_{t, x} B=-\left(\tau_{(s, y)}-I\right) \mu\left[\phi_{2}\right]
$$

with

$$
\left\|\mu\left[\phi_{j}\right]\right\|_{\mathcal{M}_{b}(\mathcal{O})} \leq C\left\|D^{2} \phi_{j}\right\|_{L^{\infty}\left(\left[\rho_{*}, \rho^{*}\right] \times\left[u_{*}, u^{*}\right]\right)}
$$

where $0<\rho_{*} \leq \rho \leq \rho^{*}$ and $u_{*} \leq u \leq u^{*}$ on \mathcal{O}. By Sobolev embedding $W^{r, p}\left(\mathbf{R}^{2}\right) \subset C\left(\mathbf{R}^{2}\right)$ for $r>\frac{2}{p}$; by duality

$$
\left\|\chi \operatorname{div}_{t, x} E\right\|_{W^{-1, p^{\prime}}} \leq C_{r}\left\|D^{2} \phi_{j}\right\|_{L^{\infty}\left(\left[\rho_{*}, \rho^{*}\right] \times\left[u_{*}, u^{*}\right]\right)}(|s|+|y|)^{1-r}
$$

and likewise for B, so that

$$
\left|\iint \chi^{2} E \cdot J B d t d x\right| \leq C_{r}\left\|D^{2} \phi_{j}\right\|_{L^{\infty}\left(\left[\rho_{*}, \rho^{*}\right] \times\left[u_{*}, u^{*}\right]\right)}(|s|+|y|)^{1-r}
$$

Conclusion:
Div-curl \Rightarrow upper bound for integral of Tartar's equation

Step 2: the Tartar equation for Lax entropies Define

$$
\begin{aligned}
T\left[\phi_{1}, \phi_{2}\right](U, V): & =\left(\phi_{1}(V)-\phi_{1}(U)\right)\left(\psi_{2}(V)-\psi_{2}(U)\right) \\
& -\left(\psi_{1}(V)-\psi_{1}(U)\right)\left(\phi_{2}(V)-\phi_{2}(U)\right)
\end{aligned}
$$

for two entropy pairs $\left(\phi_{1}, \psi_{1}\right)$ and (ϕ_{2}, ψ_{2}), so that

$$
E \cdot J B=T\left[\phi_{1}, \phi_{2}\right]\left(\tau_{(s, y)}(\rho, u),(\rho, u)\right)
$$

Therefore, for each $\chi \in C_{c}^{1}(\mathcal{O})$, step 1 leads to an upper bound for

$$
\begin{array}{r}
\iint_{\mathbf{R}_{+}^{*} \times \mathbf{R}} \chi^{2} T\left[\phi_{1}, \phi_{2}\right]\left(\tau_{(s, y)}(\rho, u),(\rho, u)\right) d t d s=\iint_{\mathbf{R}_{+}^{*} \times \mathbf{R}} \chi^{2} E \cdot J B d t d s \\
\leq C_{r}\left\|D^{2} \phi_{j}\right\|_{L^{\infty}\left(\left[\rho_{*}, \rho^{*}\right] \times\left[u_{*}, u^{*}\right]\right)}(|s|+|y|)^{1-r}
\end{array}
$$

As in case of a scalar conservation law, we need a lower bound of that same quantity.
-Use Lax entropies in Riemann invariant coordinates

$$
\begin{array}{ll}
\phi_{ \pm}(w, k)=e^{k w_{ \pm}}\left(A_{0}^{ \pm}(w)+\frac{A_{1}^{ \pm}(w)}{k}+\ldots\right), & k \rightarrow \pm \infty \\
\psi_{ \pm}(w, k)=e^{k w_{ \pm}}\left(B_{0}^{ \pm}(w)+\frac{B_{1}^{ \pm}(w)}{k}+\ldots\right), & w=\left(w_{+}, w_{-}\right)
\end{array}
$$

-Such entropies exist for all strictly hyperbolic systems (Lax 1971): hence the need for the lower bound $\rho \geq \rho_{*}>0$
-Leading order term in Tartar's equation: as $k \rightarrow+\infty$

$$
\begin{aligned}
& T\left[\phi_{+}(\cdot, k), \phi_{+}(\cdot,-k)\right](U, V)=2 A_{0}^{+}(w(U)) A_{0}^{+}(w(V)) \\
& \times\left(\lambda_{+}(U)-\lambda_{+}(V)\right) \sinh \left(k\left(w_{+}(U)-w_{+}(V)\right)\right)+\ldots \\
& T\left[\phi_{+}(\cdot, k), \phi_{+}(\cdot,-k)\right](U, V)=2 A_{0}^{-}(w(U)) A_{0}^{-}(w(V)) \\
& \times\left(\lambda_{-}(U)-\lambda_{-}(V)\right) \sinh \left(k\left(w_{-}(U)-w_{-}(V)\right)\right)+\ldots
\end{aligned}
$$

At this point, we use two important features of Euler's isentropic system.

- Fact no.1: with $\theta=\frac{\gamma-1}{2}$,

$$
\binom{\lambda_{+}}{\lambda_{-}}=\mathcal{A}\binom{w_{+}}{w_{-}} \text {with } \mathcal{A}=\frac{1}{2}\left(\begin{array}{cc}
1+\theta & 1-\theta \\
1-\theta & 1+\theta
\end{array}\right)
$$

and for $\gamma \in(1,3)$ one has $\theta \in(0,1)$, leading to the coercivity estimate

$$
\binom{\sinh (a)}{\sinh (b)} \cdot \mathcal{A}\binom{a}{b} \geq \theta(a \sinh (a)+b \sinh (b))+(1-\theta) \times \text { positive }
$$

Suggests a lower bound on

$$
a^{2} T\left[\phi_{+}(\cdot, k), \phi_{+}(\cdot,-k)\right](U, V)+b^{2} T\left[\phi_{+}(\cdot, k), \phi_{+}(\cdot,-k)\right](U, V)
$$

provided that the leading order terms in Lax entropies are proportional:

$$
a A_{0}^{+}(w)=b A_{0}^{-}(w)
$$

-Fact no.2: Euler's isentropic system satisfies the relation

$$
\partial_{+}\left(\frac{\partial_{-} \lambda_{+}}{\lambda_{+}-\lambda_{-}}\right)=\partial_{-}\left(\frac{\partial_{+} \lambda_{-}}{\lambda_{-}-\lambda_{+}}\right)
$$

Hence there exists a function $\wedge \equiv \wedge\left(w_{+}, w_{-}\right)$such that

$$
\left(\partial_{+} \wedge, \partial_{-} \wedge\right)=\left(\frac{\partial_{+} \lambda_{-}}{\lambda_{-}-\lambda_{+}}, \frac{\partial_{-} \lambda_{+}}{\lambda_{+}-\lambda_{-}}\right)
$$

so that one can take

$$
A_{0}^{+}\left(w_{+}, w_{-}\right)=A_{0}^{-}\left(w_{+}, w_{-}\right)=e^{\wedge\left(w_{+}, w_{-}\right)}
$$

Here we choose

$$
A_{0}\left(w_{+}, w_{-}\right)=\left(w_{+}-w_{-}\right)^{\frac{1-\theta}{2 \theta}}
$$

Final Remarks

-At variance with the original DiPerna argument (1983) for genuinely nonlinear 2×2 system, the proof above is based on the leading order term in the Tartar equation - whereas DiPerna's argument uses the next to leading order term of the same equation

- Not all Lax entropies are convex, or weak entropies - i.e. vanish for $\rho=0$. In order to control the entropy production

$$
\partial_{t} \phi_{ \pm}(w, k)+\partial_{x} \psi_{ \pm}(w, k)=:-\mu_{ \pm}^{k}
$$

one needs locally admissible solutions
-Perhaps one can use only weak entropies - as in the original proof of compactness by DiPerna. This would require refining significantly the present argument.

