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Lecture 4

•Computation of the transition probability P (s, h|h′)

•A kinetic equation in an extended phase space for the BG limit of the
periodic Lorentz gas



Computation of the probability density P (s, h|h′)

•Using (a consequence of) Birkhoff’s ergodic theorem for the Gauss map,
we have proved the existence of a transition probability density P (s, h|h′)
independent of v such that

1

| ln η|

∫ 1/4

η
f(Tr(h

′, v))
dr

r
→
∫ ∞

0

∫ 1

−1
Φ(s, h)P (s, h|h′)dsdh

a.e. in v ∈ S1 as η → 0+, for each f ∈ Cc(R∗+ × [−1,1]) and each
h′ ∈ [−1,1].

•Applying Birkhoff’s ergodic theorem to a function of εqN(α,ε)(α) requires
replacing qN(α,ε)(α) by a truncated series involving only the quantities
dn(α)s. This shows that the limit exists, but without computing it explicitly.



Theorem. (E. Caglioti, F.G. 2007) The transition probability density P (s, h|h′)
is given in terms of a = 1

2|h−h
′| and b = 1

2|h+h′| by the explicit formula

P (s, h|h′) =
3

π2sa

[ (
(s− 1

2sa)∧(1 + 1
2sa)−(1∨(1

2s+ 1
2sb)

)
+

+
(
(s− 1

2sa)∧1−((1
2s+ 1

2sb)∨
(
1−1

2sa
))

+

+sa∧|1− s|1s<1 + (sa−|1− s|)+

]

with the notations x ∧ y = min(x, y) and x ∨ y = max(x, y).

Moreover, the function

(s, h, h′) 7→ (1 + s)P (s, h|h′) belongs to L2(R+ × [−1,1]2)



•In fact, the key result bears on the asymptotic distribution of 3-obstacle
collision patterns:

Theorem. (E. Caglioti, F.G. 2007) Define K = [0,1]3 × {±1}; then, for
each F ∈ C(K)

1

| ln η|

∫ 1/4

η
F ((A,B,Q,Σ)(v, r))

dr

r
→ L(F )

=
∫
K
F (A,B,Q,Σ)dµ(A,B,Q,Σ) a.e. in v ∈ S1

as η → 0+, where

dµ(A,B,Q,Σ) = dν(A,B,Q)⊗ 1
2(δΣ=1 + δΣ=−1)

dν(A,B,Q) = 12
π210<A<110<B<1−A1

0<Q< 1
2−A−B

dAdBdQ

1−A



•Maybe it is worth explaining why this measure is natural(!)

a) the constraints 0 < A < 1 and 0 < B < 1−A have obvious geometric
meaning (see figure);

b) likewise, the total area of the 2-torus is the sum of the areas of the strips
consisting of all orbits with the 3 possible lengths:

1 = QA+Q′B + (Q+Q′)(1−A−B) = Q(1−B) +Q′(1−A)

≥ Q(2−A−B)

as Q′ ≥ Q (see figure again);

c) the volume element dAdBdQ1−A means that the parameters A, B
1−A (or

equivalently B mod. 1−A) and Q are INDEPENDENT AND UNIFORMLY
DISTRIBUTED in the largest subdomain of [0,1]3 that is compatible with
the geometric constraints
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The generic 3-obstacle pattern



•Thm2 ⇒ the explicit formula for the transition probability P (s, h|h′) in
Thm1

Indeed, P (s, h|h′)dsdh is the image measure of dµ(A,B,Q,Σ) under the
map

K 3 (A,B,Q,Σ) 7→ T(A,B,Q,Σ)(h′, v)

That (1 + s)P (s, h|h′) is square integrable is proved by inspection — by
using the explicit formula for P (s, h|h′).



METHOD OF PROOF FOR THM 1:

Since we know a priori that the transition probability P (s, h|, h′) is inde-
pendent of v, we only have to compute

lim
r→0+

1
2π

∫
S1
f(Tr(h

′, v))dv

(
=
∫ ∞

0

∫ 1

−1
Φ(s, h)P (s, h|h′)dsdh

)
The method for computing this type of expression is based on

•Farey fractions (a.k.a. slow continued fractions)

•estimates for Kloosterman’s sums, due to Boca-Zaharescu (2007)



Farey fractions

•Put a filtration on the set of rationals in [0,1] as follows

FQ = {pq |0 ≤ p ≤ q ≤ Q , q.c.d.(p, q) = 1}

indexed in increasing order:

0 =
0

1
< γ1 < . . . < γj =

pj

qj
< . . . < γϕ(Q) =

1

1
= 1

(ϕ being Euler’s totient function)

•MEDIANT: given γ = p
q and γ̂ = p̂

q̂ with 0 ≤ p ≤ q, 0 ≤ p̂ ≤ q̂, and
g.c.d.(p, q) = g.c.d.(p̂, q̂) = 1

mediant = γ ⊕ γ̂ =
p+ p̂

q + q̂
∈ (γ, γ̂)





•Hence, if γ = p
q < γ̂ = p̂

q̂ adjacent in FQ, then

âq − aq̂ = 1 and q + q̂ > Q

Conversely, q, q̂ are denominators of adjacent fractions in FQ iff

0 ≤ q, q̂ ≤ Q , q + q̂ > Q , g.c.d.(q, q′) = 1

•Given α ∈ (0,1) \Q and Q ≥ 1, there exists a unique pair of adjacent
Farey fractions in FQ, say, γ and γ′ such that

γ(α,Q) =
p(α,Q)

q(α,Q)
< α < γ̂(α,Q) =

p̂(α,Q)

q̂(α,Q)



RELATION WITH CONTINUED FRACTIONS:

Pick 0 < ε < 1; we recall that, for each α ∈ (0,1) \Q

N(α, ε) = min{n ∈ N | dn(α) ≤ ε} , dn(α) = dist(qn(α)α,Z)

Set Q = [1/ε], and let γ(α,Q) < γ̂(α,Q) be the two adjacent Farey
fractions in FQ surrounding α. Then

•one of the two integers q(α,Q) and q̂(α,Q) is qN(α,ε)(α)

•the other is of the form

mqN(α,ε) + qN(α,ε)−1 with 0 ≤ m ≤ aN(α,ε)(α)

where we recall that

α = [0; a1, a2, . . .] =
1

a0 +
1

a1 + . . .



Setting α = v2/v1 and ε = 2r/v1, we recall that definition

Q(v, r) = εqN(α,ε)(α) ∈ {εq(α,Q), εq̂(α,Q)} with Q = [1/ε]

and further define

D(v, r) = dN(α,ε)/ε = dist(1
εQ(v, r)α,Z)/ε

and
Q̃(v, r) = εq̂(α,Q) if qN(α,ε)(α) = q(α,Q)

Q̃(v, r) = εq(α,Q) if qN(α,ε)(α) = q̂(α,Q)

Now, we recall that A(v, r) = 1−D(v, r); moreover, we see that

B(v, r) = 1−
dN(α,ε)−1(α)

ε
−
[

1− dN(α,ε)−1(α)/ε

D(v, r)

]
D(v, r)

= 1− dN(α,ε)−1(α)/ε mod. D(v, r)

= 1− dist(1
ε Q̃(v, r)α,Z)/ε mod. D(v, r)



To cut a long story short:

F (A(v, r), B(v, r), Q(v, r)) = G(Q(v, r), Q̂(v, r), D(v, r))

and we are left with the task of computing

lim
r→0+

∫
S1

+

G(Q(v, r), Q̂(v, r), D(v, r))dv

where S1
+ is the first octant in the unit circle

The other octants in the unit circle give the same contribution by obvious
symmetry arguments.



More specifically:

Lemma. Let α ∈ (0,1) \Q, and let pq < α < p̂
q̂ be the two adjacent Farey

fractions in FQ surrounding α, with Q = [1/ε]. Then

if pq < α ≤ p̂−ε
q̂ then

Q(v, r) = εq , Q̃(v, r) = εq̂ , D(v, r) = 1
ε(αq − p)

if p+ε
q < α < p̂

q̂ then

Q(v, r) = εq̂ , Q̃(v, r) = εq , D(v, r) = 1
ε(p̂− αq̂)

if p+ε
q < α ≤ p̂−ε

q̂ then

Q(v, r) = εq ∧ q̂ , Q̃(v, r) = εq ∨ q̂ , D(v, r) = dist(1
εQ(v, r)α,Z)



Therefore, assuming for simplicity

G(x, y, z) = g(x, y)H ′(z) and ε = 1/Q

one has ∫
S1

+

G(Q(v, r), Q̂(v, r), D(v, r))dv

=
∑

0<q,q̂≤Q<q+q̂
g.c.d.(q,q̂)=1

∫ (p̂−ε)/q̂

p/q
g

(
q

Q
,
q̂

Q

)
H ′(Q(qα− p))dα

+ three other similar terms

=
∑

0<q,q̂≤Q<q+q̂
g.c.d.(q,q̂)=1

g

(
q

Q
,
q̂

Q

)
1

qQ

(
H

(
1− q/Q
q̂/Q

)
−H(0)

)

+ three other similar terms



Therefore, everything reduces to computing

1

Q2

∑
0<q,q̂≤Q<q+q̂
g.c.d.(q,q̂)=1

ψ

(
q

Q
,
q̂

Q

)

Lemma. (Boca-Zaharescu) For ψ ∈ Cc(R2), one has

1

Q2

∑
0<q,q̂≤Q<q+q̂
g.c.d.(q,q̂)=1

ψ

(
q

Q
,
q̂

Q

)
→ 6

π2

∫∫
0<x,y<1<x+y

ψ(x, y)dxdy

in the limit as Q →∞.



With the method outlined above, Boca and Zaharescu were able to com-
pute the limiting distribution of free path length: remember that, in space
dimension 2, we proved that

1

| ln η|

∫ 1/4

η
Prob({x | rτr(x, v) > t})

dr

r
→ Φ(t)

a.e. in v ∈ S1 as η → 0+.

Theorem. (Boca-Zaharescu, 2007) For each t > 0

Prob({(x, v) | rτr(x, v) > t)→ Φ(t) = 6
π2

∫ ∞
t

(s− t)g(s)ds

where

g(s) =

 1 s ∈ [0,1]
1
s + 2

(
1− 1

s

)2
ln(1− 1

s)− 1
2

∣∣∣1− 2
s

∣∣∣2 ln |1− 2
s | s ∈ (1,∞)



Graph of Φ(t) (blue curve) and g(t) = Φ′′(t) (green curve)



A (plausible?) conjecture for the dynamics in the BG limit

For each r ∈]0, 1
2[, denote

Γ+
r = {(x, v) ∈ ∂Ω× S1 | v · nx ≥ 0} , dγ+

r (x, v) =
v · nxdxdv∫

Γ+
r

v · nxdxdv

Consider the billiard map:

Br : Γ+
r 3 (x, v) 7→ Br(x, v) = (x+τr(x, v)v,R[x+τr(x, v)v]v) ∈ Γ+

r

For (x0, v0) ∈ Γ+
r , set

(xn, vn) = Bn
r (x0, v0) and αn = min(|v2/v1|, |v1/v2|)

and define

bnr = (A,B,Q,N mod. 2)(αn, r) , n ∈ N∗



Notation: Qn := R2 × S1 ×R+ × [−1,1]×Kn.

•We make the following asymptotic independence hypothesis: there exists
a probability measure Π on R+ × [−1,1] such that , for each n ≥ 1 and
each Ψ ∈ C(Qn) with compact support

(H)
lim
r→0+

∫
Zr×S1

Ψ(x, v, rτr(
x
r , v), hr(

x1
r , v1), b1r , . . . , b

n
r )dxdv

=
∫
Qn

Ψ(x, v, τ, h, β1, . . . , βn)dxdvdΠ(τ, h)dµ(β1) . . . dµ(βn)

where

(x0, v0) = (x− τr(x,−v)v, v) , and hr(x1
r , v1) = sin(nx1, v1)



If this holds, the iterates of the transfer map Tr are described by the Markov
chain with transition probability P (s, h|h′). This leads to a kinetic equation
on an extended phase space for the Boltzmann-Grad limit of the periodic
2D Lorentz gas:

F (t, x, v, s, h) =

density of particles with velocity v and position x at time t

that will hit an obstacle after time s, with impact parameter h



Theorem. (E. Caglioti, F.G. 2007) Assume (H), and let f in ≥ 0 belong
to Cc(R2 × S1). Then one has

fr →
∫ ∞

0

∫ 1

−1
F (·, ·, ·, s, h)dsdh in L∞(R+ ×R2 × S1) weak-∗,

in the limit as r → 0+, where F ≡ F (t, x, v, s, h) is the solution of

(∂t+v · ∇x − ∂s)F (t, x, v, s, h)

=
∫ 1

−1
P (s, h|h′)F (t, x,R[π − 2 arcsin(h′)]v,0, h′)dh′

F (0, x, v, s, h) = f in(x, v)
∫ ∞
s

∫ 1

−1
P (τ, h|h′)dh′dτ

with (x, v, s, h) running through R2 × S1 ×R∗+×] − 1,1[. The notation
R[θ] designates the rotation of an angle θ.



CONCLUSION:

Classical kinetic theory (Boltzmann theory for elastic, hard sphere colli-
sions) is based on two fundamental principles

a) deflections in velocity at each collision are mutually independent and
identically distributed

b) time intervals between collisions are mutually independent, independent
of velocities, and exponentially distributed.



The BG limit of the periodic Lorentz gas provides an example of a non
classical kinetic theory where

a’) velocity deflections at each collision jointly form a Markov chain;

b’) the time intervals between collisions are not independent of the velocity
deflections

In both cases, collisions are purely local and instantaneous events (BG
limit⇒ point particles)



In a recent preprint (arxiv0801.0612), J. Marklof and A. Strombergsson
have proved the Markov property of the limiting process in extended phase
space — in other words, assumption (H) — and extended it in higher di-
mensions


