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I. INTRODUCTION

We now consider a general class of kinetic theories that includes the clas-
sical Boltzmann equation. The goal is to show how concepts introduced in
the first lecture apply in other settings.

We consider a gas of identical molecules where the state of each molecule
is given by its position x ∈ Ω ⊂ RD (where D = 3 is of greatest interest)
and its local state s in a state space S endowed with a measure dσ(s).

There is a function v that to each local state s ∈ S assigns a velocity
v(s) ∈ RD. This allows the same velocity to be assigned to different local
states, thus enabling the introduction of internal degrees of freedom or
other such devices that can extend the range of modeled phenomena.



More General Kinetic Equations

The kinetic density F = F (s, x, t) represents the mass density over the
single-molecule phase space S × Ω at time t. If A is any measurable
subset of S × Ω then

∫∫

A
F (s, x, t) dσ(s)dx

gives the mass of fluid molecules in A at time t.

The evolution of F is assumed to be governed by

∂tF + v · ∇xF = C(F ) .

The so-called collision operator C acts only on s and is generally nonlinear.
It is assumed to be defined over a domain Dom(C) ⊂ L1(dσ) that is
contained within the cone of non-negative functions.



II. PROPERTIES OF COLLISION OPERATORS

The form of the associated fluid dynamical equations depends on structural
properties of C relating to concepts of equilibria, conservation, dissipation,
and entropy. These properties, which are shared by a wide variety of col-
lision operators, are given below and are subsequently applied to deriving
the analog of the classical compressible Euler system.

We will denote the integral of any scalar-, vector-, or matrix-valued function
φ = φ(s) over the variable s by 〈φ〉:

〈φ〉 =
∫

S
φ(s) dσ(s) .



Conservation Properties - 1

A function e = e(s) is said to be a locally conserved quantity for C when-
ever ef ∈ L1(dσ), e C(f) ∈ L1(dσ), and

〈e C(f)〉 = 0 for every f ∈ Dom(C) .

These form a linear subspace E. We assume that E is nontrivial.

Often E is spanned by quantities associated with classical conservation
laws. For the Boltzmann equation

E = span
{

1, v1, v2, · · · , vD, |v|2
}

.



Conservation Properties - 2

More generally, let N be the dimension of E, and let {ei : 1 ≤ i ≤ N} be
a basis for E ⊂ RS. Then

E = span
{

ei : 1 ≤ i ≤ N
}

.

Let e denote the column vector whose components are these basis func-
tions.

These locally conserved quantities lead to the local conservation laws

∂t〈eF 〉 + ∇x· 〈v eF 〉 = 0 .

They are satisfied (formally) by every solution F of the kinetic equation.
The components of 〈eF 〉 and 〈v eF 〉 are the densities and fluxes corre-
sponding to the components of e.



Entropy Dissipation Properties - 1

A function η = η(f) is said to be an entropy for C whenever: it is strictly
convex with ηff(f) > 0; it satifies η(f) ∈ L1(dσ), ηf(f) C(f) ∈ L1(dσ),
and

〈ηf(f) C(f)〉 ≤ 0 , for every f ∈ Dom(C) ;

and for every f ∈ Dom(C) the following are equivalent:

(i) 〈ηf(f) C(f)〉 = 0 ,

(ii) C(f) = 0 ,

(iii) ηf(f) ∈ E .

This abstracts some aspects of Boltzmann’s celebrated H-theorem.



Entropy Dissipation Properties - 2

We assume that C has a distinguished entropy η. For the Boltzmann
equation and many other classical kinetic theories this entropy is η(f) =

f log(f) − f .

This entropy leads to the local entropy dissipation law

∂t〈η(F )〉 + ∇x· 〈v η(F )〉 = 〈ηf(F ) C(F )〉 ≤ 0 .

It is satisfied (formally) by every solution F of the kinetic equation. Here
〈η(F )〉 and 〈v η(F )〉 are the entropy density and entropy flux, while 〈ηf(F ) C(F )〉

is the entropy dissipation rate.



Existence of Equilibria Property

The H-theorem properties do not guarantee that for every f there exists
an equilibrium that shares the same values of the conserved densities with
f . Let R denote those points in RN that are realizable as the conserved
densities of some f :

R ≡

{

ρ ∈ R
N : ρ = 〈e f〉 for some f ∈ Dom(C)

}

.

We assume that for every ρ ∈ R there exists a unique E(ρ) ∈ Dom(C)

that satisfies

〈e E(ρ)〉 = ρ , C(E(ρ)) = 0 .

In other words, for every f ∈ Dom(C) there is a local equilibrium E(ρ) that
is uniquely determined by the densities ρ = 〈e f〉.



III. CONSEQUENCES OF THE PROPERTIES

We will adopt the following notational conventions. Products are matrix
multiplication with the understanding that vectors in RN are column vec-
tors, while those from RN∗ are row vectors. Gradients of scalars with re-
spect to column vectors are row vectors, and vice versa.

The first consequence of the properties assumed for C is that one can find
a formula for the family of equilibria E(ρ).

Because the components of e are a basis for E, one has that e ∈ E if and
only if e = βe for a unique β ∈ RN∗. Hence, charactization (iii) becomes

ηf(f) = βe , for some β ∈ RN∗ .

This can be solved for f in terms of the Legendre transform of η, denoted
by η∗ = η∗(z).



The Legendre Transform of η

The Legendre transform of y 7→ η(y) is defined implicitly for every z in the
range of ηy by the relations

η(y) + η∗(z) = yz , z = ηy(y) .

The strict convexity of η insures that the second equation above can be
solved for y in terms of z, thus allowing the elimination of y from the first
equation.

It is easy to verify the dual nature of this transformation by using implicit
differentiation to check that y = η∗z(z); it is then clear that the Legendre
transform of η∗ is again η.



Characterization of Equilibria

Hence, characterization (iii) is equivalent to

f = η∗z(βe) , for some β ∈ RN∗ .

This formula will yield an equilibrium for every β in the set R∗ defined by

R
∗ =

{

β ∈ R
N∗ : η∗z(βe) ∈ Dom(C)

}

.

The family of equilibria clearly depends only on E, η, and Dom(C), and is
completely independent of all other details of the collision operator.



Example: Maxwellians

For kinetic theories where the entropy is η(f) = f log(f) − f , the corre-
sponding Legendre transform is η∗(z) = exp(z), and the equilibria given
by f = exp(βe). When

e =
(

1, v1, v2, · · · , vD, 1
2|v|

2
)T

,

then exp(βe) = M(ρ, u, θ) where

β =

(

log

(

ρ

(2πθ)D/2

)

−
|u|2

2θ
,

u1

θ
,

u2

θ
, · · · ,

uD

θ
, −

1

θ

)

,

M(ρ, u, θ) =
ρ

(2πθ)D/2
exp

(

−
|v − u|2

2θ

)

.

Hence, the classical Maxwellians are recovered.



The Density Potential

The formula for E(ρ) can best be expressed through the introduction of the
function h∗(β) defined over R∗ by

h∗(β) ≡ 〈η∗(βe)〉 .

The function h∗ is strictly convex with Hessian

h∗
ββT (β) =

〈

η∗zz(βe) e e
T

〉

.

It is called the density potential because when it is differentiated with re-
spect to β one finds that

β 7→ ρ ≡ 〈e η∗z(βe)〉 = h∗
β(β) .

The range of this mapping is the set R. The function h∗ is therefore strictly
convex, so this mapping is one-to-one from R∗ onto R.



Formula for Equilibria

The inverse mapping is then given by

ρ 7→ β = hρ(ρ) .

where h is the Legendre transform of h∗, which is defined implicitly for
every ρ ∈ R by

h(ρ) + h∗(β) = βρ .

One thereby has that

E(ρ) = η∗z
(

hρ(ρ)e
)

for every ρ ∈ R .



Entropy Relations

The function h is the kinetic entropy density 〈η(f)〉 restricted to the family
of local equilibria, f = E(ρ), so that

h(ρ) = 〈η(E(ρ))〉 .

Moreover, for every ρ ∈ R one can show that

h(ρ) = min

{

〈η(f)〉 : f ∈ Dom(C) , 〈e f〉 = ρ

}

.

In other words, the kinetic entropy density 〈η(f)〉 attains this constrained
minimum at f = E(ρ).



IV. GENERAL COMPRESSIBLE EULER SYSTEMS

A fluid description of the gas is valid when the Knudsen number is small.
Set St = 1 and Kn = ǫ. The kinetic equation becomes

∂tF + v · ∇xF =
1

ǫ
C(F ) .

The compressible Euler system is obtained by formally restricting F to the
family of local equilibria. If we set F = η∗z(βe) then the unknowns β =

β(x, t) are governed by

∂t〈e η∗z(βe)〉 + ∇x· 〈v e η∗z(βe)〉 = 0 .

Notice that the form of these equations depends only on the locally con-
served quantities spanned by e and the velocities v.



Potential Formulation

The Euler system can be recast in terms of the density potential h∗ and
the flux potential j∗ defined by

h∗(β) = 〈η∗(βe)〉 , j∗(β) ≡ 〈v η∗(βe)〉 .

Differentiating h∗ and j∗ with respect to β yields

h∗
β(β) = 〈e η∗z(βe)〉 , j∗β(β) = 〈v e η∗z(βe)〉 ,

where the right-hand sides are just the density and flux of the Euler sys-
tem . The Euler system can therefore be put into the so-called Godunov
potential form as

∂th
∗
β(β) + ∇x· j

∗
β(β) = 0 .



Consequences of the Potential Formulation

First, the hyperbolicity of the Euler system is seen by rewriting it as

h∗
ββT (β)∂tβ

T + j∗
ββT (β) · ∇xβT = 0 .

Because h∗
ββT is positive definite while j∗

ββT is symmetric, this has the

form of a symmetric hyperbolic system.

Second, upon multiplying the above on the left by β and integrating, the
Euler system is seen to possess the additional local conservation law

∂t

(

βh∗
β(β) − h∗(β)

)

+ ∇x·

(

βj∗β(β) − j∗(β)

)

= 0 .

This what one obtains by setting F = η∗z(βe) directly into the local entropy
dissipation law.



Density Formulation

The Euler system can be reformulated in terms of ρ = ρ(x, t) as

∂tρ + ∇x· j
∗
β

(

hρ(ρ)
)

= 0 .

Reformulated in terms of ρ the entropy equation becomes

∂th(ρ) + ∇x· j(ρ) = 0 ,

where the entropy flux j = j(ρ) is given by

j(ρ) = hρ(ρ)j∗β

(

hρ(ρ)
)

− j∗(hρ(ρ)) .

These can be obtained either by expressing β in terms of ρ in the potential
formulation, or by setting F = E(ρ) in the conservation and dissipation
laws.

The Euler system is therefore symmetrizable in the sense of Friedrichs
and Lax. This was shown to be equivalent to the existence of a Godunov
potential form by Mock.



Characteristic Velocities

The characteristic velocities of the Euler system associated with any wave
vector k ∈ RD are the eigenvalues of the matrix k · j∗

ββT (β) with respect

to the matrix h∗
ββT (β). They may be ordered as

λ1 ≤ · · · ≤ λn ≤ λn+1 ≤ · · · ≤ λN ,

where λn is given by the classical min-max characterization

λn = min

{

max
γ∈B

{

〈(γe)2(k · v) η∗zz(βe)〉

〈(γe)2η∗zz(βe)〉

}

: B ∈ Linn
(

R
N∗

)

}

.

Here Linn(V ) denotes the set of all n-dimensional linear subspaces of a
linear space V .



V. EXAMPLES

Of course, the Boltzmann equation described in the first lecture is in this
general class of kinetic theories. More generally, its collision operator has
the form

B(f, f) =
∫∫

(f ′
∗f

′ − f∗f) b(ω, v∗ − v) dω dv∗ ,

the collision kernel b has the classical form

b(ω, v∗ − v) = |v∗ − v|Σ(|ω ·n|, |v∗ − v|) , n =
v∗ − v

|v∗ − v|
,

where Σ ≥ 0 is the specific differential cross-section, which has units of
area (lengthD−1) over mass. The Boltzmann equation is in this general
class of kinetic theories provided b satisfies certain mild technical condi-
tions.



Boltzmann Collision Kernels -1

In the case when the molecules are classical point particles of mass m

that interact through a repulsive power-law potential of the form c/rk then
b has the factored form

b(ω, v∗ − v) = b̂(|ω ·n|) |v∗ − v|β , with β = 1 − 2
D − 1

k
.

This will be locally integrable with respect to dv∗ provided β > −D, which
leads to the constraint

k > 2
D − 1

D + 1
.

When D = 3 this becomes k > 1, which means the marginal case is the
Coulomb potential c/r.



Boltzmann Collision Kernels - 2

We will not give the function b̂ here. We will however remark that b̂ is well-
behaved except for a singularity at ω ·n = 0 of the form

b̂(|ω ·n|) ∼ |ω ·n|−β̂ as ω ·n → 0 , with β̂ = 1 +
D − 1

k
.

This singularity arises due to the infinite range of the c/rk potential. It re-
flects the fact that there are many collisions in which the colliding molecules
do not pass very close to each other and are therefore deflected only
slightly. This singularity has proved difficult to analyze. For example, the
fact that this singularity is not integrable with respect to dω means that
B+(f, f) and B−(f, f) do not make sense. So-called cut-off collision ker-
nels have therefore been introduced. These replace the exact b̂ above with
a more benign one.



Boltzmann-Like Kinetic Theories

Much of the structure developed in the first lecture for the Boltzmann equa-
tion is shared by many so-called Boltzmann-like kinetic theories. For this
class of kinetic theories S = RD and dσ(v) = dv, so that the kinetic
density is F (v, x, t) and the governing kinetic equation takes the form

∂tF + v · ∇xF = C(F ) .

The basis for conserved quantities is

E = span
{

1, v1, v2, · · · , vD, |v|2
}

,

and η(f) = f log(f) − f .



The BGK Operator

The simplest example of a classical collision operator is the so-called BGK
collision operator introduced by Bhatnagar, Gross, and Krook. It is a simple
relaxation model given by

CBGK(f) =
1

τ(ρ, θ)

(

M(ρ, u, θ) − f
)

,

where M(ρ, u, θ) is the local Maxwellian determined by the mass density
ρ, bulk velocity u, and temperature θ. The relaxation time τ is a function
such that τ(ρ, θ) > 0 when ρ > 0 and θ > 0.



The Fokker-Planck-Landau Operator

Another example of a classical collision operator is the Fokker-Planck-
Landau operator, which is representative of the larger class of Fokker-
Planck operators. It models the effect of collisions as a diffusion in velocity.
This kind of approximation is appropriate when most collisions produce
small defections in the velocities of the molecules involved. The Fokker-
Planck-Landau operator has the form

CFPL(f) = ∇v ·

[

ς(ρ, θ)
∫

|w|2I − w ⊗ w

|w|3

(

f∗∇vf − f∇v∗f∗
)

dv∗

]

.

where w = v∗ − v and the coefficient ς is a function such that ς(ρ, θ) > 0

when ρ > 0 and θ > 0.



Generalized BGK Operators

Given any strictly convex η and any space E there exist a collision operator
C which has E as the locally conserved quantities, and which satisfies the
entropy dissipation properties:

C(f) =
1

τ(ρ)

(

E(ρ) − f

)

, where ρ = 〈e f〉 .

This model generalizes the classical BGK relaxation model for the col-
lision operator, which corresponds to η(f) = f log(f) − f and E =

span{1, v1, v2, · · · , vD, |v|2}. Here τ(ρ) > 0 is understood as a relax-
ation time.



Kinetic Theories from Quantum Mechanics - 1

Classical particles obey Maxwell-Boltzmann statistics, which lies behind
the classical entropy function, η(f) = f log(f) − f . Quantum particles
obey either Fermi-Dirac or Bose-Einstein statistics. The corresponding en-
tropies are respectively

ηFD(f) = f log(f) + (1 − f) log(1 − f) ,

ηBE(f) = f log(f) − (1 + f) log(1 + f) .

The associated Legendre duals are

η∗
FD

(z) = log(1 + ez) , η∗
BE

(z) = − log(1 − ez) ,

whereby the associated equilibria have the form

f = ∂zη
∗
FD

(βe) =
1

1 + exp(−βe)
, f = ∂zη

∗
BE

(βe) =
1

exp(−βe) − 1
.



Kinetic Theories from Quantum Mechanics - 2

When one considers only the contribution of binary collisions, the classical
Boltzmann collision operator can be modified to be consistent with either
Fermi-Dirac or Bose-Einstein statistics as

CFD(f) =
∫∫

(

f ′
∗f

′(1 − f∗)(1 − f) − f∗f (1 − f ′
∗)(1 − f ′)

)

b dω dσ(v∗) ,

CBE(f) =
∫∫

(

f ′
∗f

′(1 + f∗)(1 + f) − f∗f (1 + f ′
∗)(1 + f ′)

)

b dω dσ(v∗) .

Motivated by the Uncertainty Principle, microscopic quantum states are
counted by the non-dimensional phase-space measure mDdvdx/~D, where
~ is Planck’s constant divided by 2π. The kinetic densities are defined with
respect to this measure, whereby dσ(v) = mDdv/~D



Polyatomic Kinetic Theories - 1

Here we present a class of such models with s = (e, v) ∈ S = R+× RD

and dσ(e, v) = J(e)dedv. Here v is the velocity of the center of mass of a
molecule, me is the energy in all the internal modes of a molecule of mass
m, and J(e) is a nonnegative density of states that will be specified below.
The total energy of a molecule in the state (e, v, x) is thereby 1

2m|v|2+me.
The kinetic density is F (e, v, x, t) and the governing kinetic equation takes
the form

∂tF + v · ∇xF = C(F ) .

Here a basis for the conserved quantities is

E = span
{

1, v1, v2, · · · , vD, 1
2|v|

2 + e
}

,

and the entropy is again η(f) = f log(f) − f .



Polyatomic Kinetic Theories - 2

Suppose the dynamics of an individual molecule that is free from interac-
tions with other molecules is governed by the classical Hamiltonian system

dp

dt
= −Hq(p, q) ,

dq

dt
= Hp(p, q) ,

where H(p, q) is the single-molecule Hamiltonian. The variable q specifies
the configuration of the atoms in the molecule while the variable p specifies
the associated momentum.

When (p, q) satisfies this system the evolution of any quantity G(p, q) is
given by

dG

dt
= Hp ·Gq − Hq ·Gp ≡ {G, H} ,

where { · , · } defined above is called the Poisson bracket.



Polyatomic Kinetic Theories - 3

Let the center of mass of the molecule be given by R(q). The velocity
of the center of mass is then given by V (p, q) = {R, H}(p, q). This is
conserved by the dynamics, so that {V, H} = 0. The Hamiltonian then
has the form

H(p, q) = 1
2m|V (p, q)|2 + mI(p, q) ,

where mI(p, q) is the energy in all the internal modes of the molecule. The
density of states J(e) can then be expressed as

J(e) =
∫∫

δ(e − I) δ(v − V ) δ(x − R) dpdq ,

where δ( · ) denotes the Dirac delta function. We assume that the molec-
ular dynamics respects Galilean symmetry. The fact that J is independent
of x and v follows from this Galilean symmetry.



Polyatomic Kinetic Theories - 4

The local equilibria for the polyatomic kinetic equation have the form f =

MJ(ρ, u, θ) where

MJ(ρ, u, θ)(e, v) =
ρ

(2πθ)D/2Z(θ)
exp

(

−
1
2|v − u|2 + e

θ

)

,

for some ρ ≥ 0, u ∈ RD, and θ > 0. Here Z(θ) is defined by

Z(θ) =
∫ ∞

0
exp

(

−
e

θ

)

J(e) de ,

while (ρ, u, θ) are determined from f through the relations

〈f〉 = ρ , 〈v f〉 = ρu , 〈(1
2|v|

2 + e) f〉 = 1
2ρ|u|2 + ρε(θ) ,

where ε(θ) is the specific internal energy which is given by

ε(θ) = D
2 θ + θ2∂θ log(Z(θ)) .



Polyatomic Kinetic Theories - 5

We remark that the last term in

ε(θ) = D
2 θ + θ2∂θ log(Z(θ))

gives the average specific energy in all the internal modes of molecules. It
is an increasing function of θ.

The corresponding compressible Euler system has the form

∂tρ + ∇x· (ρu) = 0 ,

∂t(ρu) + ∇x· (ρu ⊗ u) + ∇x(ρθ) = 0 ,

∂t

(

ρ
(

1
2|u|

2 + ε(θ)
))

+ ∇x·
(

ρu
(

1
2|u|

2 + ε(θ) + θ
))

= 0 .

This system of D+2 equations for the D+2 unknowns {ρ, u1, u2, · · · , uD, θ}
is therefore closed. This is the compressible Euler system for a ideal gas.



Polyatomic Kinetic Theories - 6

Perhaps you recall from thermodynamics that the pressure p of an ideal
is given by the famous ideal gas law, p = ρθ, while the specific internal
energy is an increasing function of θ that is independent of ρ. The special
case of a γ-law polytropic gas is recovered when

J(e) =
k eα−1

Γ(α)
for some α > 0 and k > 0 ,

where Γ( · ) is the classical Gamma function. One then finds that

Z(θ) = k θα , ε(θ) = (D
2 + α)θ ,

from which one sees the “γ” of this gas is given by

γ = 1 +
2

D + 2α
.

The “dumbbell” model of a diatomic molecule yields α = D−1
2 .


