Fluid Dynamics from Kinetic Equations

François Golse
Université Paris 7 \& IUF, Laboratoire J.-L. Lions
golse@math.jussieu.fr
\&
C. David Levermore
University of Maryland, Dept. of Mathematics \& IPST
Ivrmr@math.umd.edu

Fields Institute, March 2004

LECTURE 3

HILBERT AND CHAPMAN-ENSKOG EXPANSIONS

Hilbert's asymptotic solution

-Start from the dimensionless Boltzmann equation in the compressible Euler scaling $\mathrm{St}=1$ and $\pi \mathrm{Kn}=\epsilon$:

$$
\partial_{t} F_{\epsilon}+v \cdot \nabla_{x} F_{\epsilon}=\frac{1}{\epsilon} \mathcal{B}\left(F_{\epsilon}, F_{\epsilon}\right)
$$

-Hilbert's expansion is a method for constructing solutions of the scaled Boltzmann equation above in $C^{\infty}\left(\mathbf{R}_{+} \times \mathbf{R}_{x}^{3} \times \mathbf{R}_{v}^{3}\right)[[\epsilon]]$ (i.e. formal power series in ϵ with coefficients that are smooth in (t, x, v) :

$$
F_{\epsilon}(t, x, v)=\sum_{n \geq 0} \epsilon^{n} F_{n}(t, x, v)
$$

- The convergence radius of the above power series may very well be 0 .

The linearized collision operator

-The leading order of Hilbert's expansion should be a local Maxwellian (see lecture 1) whose parameters are governed by Euler's system.
-This suggests to study the linearization at a Maxwellian M of Boltzmann's collision integral

$$
\begin{aligned}
\mathcal{L}_{M} \phi & =-2 M^{-1} \mathcal{B}(M, M \phi) \\
& =\iint_{\mathbf{R}^{3} \times \mathbf{S}^{2}}\left(\phi+\phi_{*}-\phi^{\prime}-\phi_{*}^{\prime}\right)\left|\left(v-v_{*}\right) \cdot \omega\right| d \omega M_{*} d v_{*}
\end{aligned}
$$

WLOG, assume that $M=M_{1,0,1}$ (the centered, reduced Gaussian)

- Translation/Scaling invariance of \mathcal{B} Denote by τ the action of \mathbf{R}^{3} on functions by translations, and by m that of \mathbf{R}_{+}^{*} by scaling:

$$
\tau_{w} \phi(v):=\phi(v-w), \quad m_{a} \phi(v)=\frac{1}{a^{3}} \phi\left(\frac{1}{a} v\right)
$$

Then

$$
\mathcal{B}\left(\tau_{w} F, \tau_{w} F\right)=\tau_{w} \mathcal{B}(F, F) ; \quad \mathcal{B}\left(m_{a} F, m_{a} F\right)=a m_{a} \mathcal{B}(F, F)
$$

- In particular, since $M_{\rho, u, \theta}=\rho \tau_{u} m_{\sqrt{\theta}} M_{1,0,1}$, one has

$$
\mathcal{L}_{M_{\rho, u, \theta}}\left(\tau_{u} m_{\sqrt{\theta}} \phi\right)=\rho \sqrt{\theta} \tau_{u} m_{\sqrt{\theta}} \mathcal{L}_{M_{1,0,1}} \phi
$$

- Notice that the operator \mathcal{L}_{M} takes the form

$$
\left(\mathcal{L}_{M} \phi\right)(v)=\lambda_{M}(|v|) \phi(v)-\left(\mathcal{K}_{M} \phi\right)(v)
$$

where $\lambda(|v|)$ is the collision frequency, while \mathcal{K}_{M} is an integral operator

$$
\lambda(|v|)=2 \pi \int_{\mathbf{R}^{3}}\left|v-v_{*}\right| M_{*} d v_{*}, \quad \mathcal{K}_{M} \phi=\mathcal{K}_{1, M}-\mathcal{K}_{2, M}
$$

and where the operators $\mathcal{K}_{1, M}$ and $\mathcal{K}_{2, M}$ are defined by

$$
\begin{aligned}
& \mathcal{K}_{1, M} \phi=2 \iint_{\mathbf{R}^{3} \times \mathbf{S}^{2}} \phi^{\prime}\left|\left(v-v_{*}\right) \cdot \omega\right| d \omega M_{*} d v_{*} \\
& \mathcal{K}_{2, M} \phi=2 \pi \int_{\mathbf{R}^{3}} \phi_{*}\left|v-v_{*}\right| M_{*} d v_{*}
\end{aligned}
$$

Lemma. (Hilbert 1912) The operator $\mathcal{K}_{1, M}$ is compact on $L^{2}(M d v)$.

- Since $\mathcal{K}_{2, M}$ is also compact on $L^{2}(M d v)$, Hilbert's lemma implies that

Theorem. The operator \mathcal{L}_{M} is a nonnegative, unbounded self-adjoint Fredholm operator on $L^{2}(M d v)$ with domain $L^{2}\left(\lambda(|v|)^{2} M d v\right)$. Further, its nullspace is the set of collision invariants, i.e.

$$
\operatorname{ker} \mathcal{L}_{M}=\operatorname{span}\left\{1, v_{1}, v_{2}, v_{3},|v|^{2}\right\}
$$

Moreover, there exists $c_{0}>0$ such that, for each $\phi \in L^{2}(\lambda(|v|) M d v)$:

$$
\phi \perp \operatorname{ker} \mathcal{L}_{M} \Rightarrow \int_{\mathbf{R}^{3}} \phi \mathcal{L}_{M} \phi M d v \geq c_{0} \int_{\mathbf{R}^{3}} \phi^{2} \lambda(|v|) M d v
$$

Finally, there exists $c_{1}>1$ such that

$$
\frac{1}{c_{1}}(1+|v|) \leq \lambda(|v|) \leq c_{1}(1+|v|)
$$

A nonlinear variant of Hilbert's lemma

Theorem. (P.-L. Lions 1993) The gain term in Boltzmann's integral

$$
\mathcal{B}_{+}(F, F)=\iint F^{\prime} F_{*}^{\prime}\left|\left(v-v_{*}\right) \cdot \omega\right| d \omega d v_{*}
$$

maps $L_{\text {comp }}^{2}\left(\mathbf{R}^{3}\right)$ continuously into $H^{1}\left(\mathbf{R}^{3}\right)$.

- Here is the very elegant proof found by Bouchut-Desvillettes: parametrize the solutions to the collision relations

$$
v^{\prime}+v_{*}^{\prime}=v+v_{*}, \quad\left|v^{\prime}\right|^{2}+\left|v_{*}^{\prime}\right|^{2}=|v|^{2}+\left|v_{*}\right|^{2}
$$

as follows:

$$
v^{\prime}=\frac{1}{2}\left(v+v_{*}\right)+\frac{1}{2}\left|v-v_{*}\right| \sigma, \quad v_{*}^{\prime}=\frac{1}{2}\left(v+v_{*}\right)+\frac{1}{2}\left|v-v_{*}\right| \sigma
$$

where σ runs through \mathbf{S}^{2}.

The two parametrizations of the collision relations
-A straightforward change of variables shows that

$$
\mathcal{B}_{+}(F, F)(v)=2 \iint F\left(\frac{v+v_{*}}{2}+\frac{\left|v-v_{*}\right|}{2} \sigma\right) F\left(\frac{v+v_{*}}{2}-\frac{\left|v-v_{*}\right|}{2} \sigma\right)\left|v-v_{*}\right| d \sigma d v_{*}
$$

-Compute the Fourier transform of $\mathcal{B}_{+}(F, F)$ by the pre- to post-collision change of variables:

$$
\begin{array}{r}
\left.\widehat{\mathcal{B}(F, F)}(\xi)=2 \iiint F F_{*} e^{-i \xi \cdot\left(\frac{v+v_{*}}{2}+\frac{\left|v-v_{*}\right|}{2} \sigma\right.}\right)\left|v-v_{*}\right| d \sigma d v_{*} d v \\
=2 \iint F(v) F\left(v_{*}\right) e^{-i \frac{v+v_{*}}{2} \xi \cdot v}\left(\int e^{-i \xi \cdot \frac{\left|v-v_{*}\right|}{2} \sigma}\left|v-v_{*}\right| d \sigma\right)\left|v-v_{*}\right| d v_{*} d v
\end{array}
$$

-Compute the inner integral in spherical coordinates with polar axis $\mathbf{R} \xi$:

$$
\begin{array}{r}
\int e^{-i \xi \cdot \frac{\left|v-v_{*}\right|}{2} \sigma}\left|v-v_{*}\right| d \sigma=2 \pi \int_{0}^{\pi} e^{-i \frac{|\xi|\left|v-v_{*}\right|}{2} \cos \theta} \sin \theta d \theta \\
=\frac{8 \pi}{|\xi|\left|v-v_{*}\right|} \sin \frac{|\xi|\left|v-v_{*}\right|}{2}
\end{array}
$$

- Setting $z=\frac{v+v_{*}}{2}$ and $w=\frac{v-v *}{2}$

$$
\left|\xi \| \widehat{\mathcal{B}(F, F)}(\xi)=64 \pi \iint\right| F(\cdot+\widehat{w) F}(\cdot-w)(\xi) \sin (|\xi \| w|) d w
$$

By Cauchy-Schwarz and the Plancherel identity,

$$
\begin{aligned}
\|\xi\| \widehat{\mathcal{B}(F, F)} \|_{L_{\xi}^{2}}^{2} & \leq 64 \pi \int \frac{d w}{(1+|w|)^{3+0}} \\
& \times(2 \pi)^{3} \iint F(z+w)^{2} F(z-w)^{2}(1+|w|)^{3+0} d z d w \\
& \leq C \iint F(v)^{2} F\left(v_{*}\right)^{2}\left(1+\left|v-v_{*}\right|\right)^{3+0} d v d v_{*}
\end{aligned}
$$

Hence

$$
\|\mathcal{B}(F, F)\|_{\dot{H}^{1}} \leq C\left\|F(1+|v|)^{\frac{3+0}{2}}\right\|_{L^{2}}^{2}
$$

-Fredholm's alternative: Consider the (integral) equation $\mathcal{L}_{M} \phi=\psi$. Either

- $\psi \perp \operatorname{ker} \mathcal{L}_{M} \Rightarrow$ there exists a unique solution $\phi_{0} \perp \operatorname{ker} \mathcal{L}_{M}$ (denoted by $\left.\phi_{0}=c L_{M}^{-1} \psi\right)$; all solutions are of the form $\phi_{0}+n$ with $n \in \operatorname{ker} \mathcal{L}_{M}$;
- otherwise, there exists no solution ϕ to the above equation.
- Example: For $M=M_{1,0,1}$, consider the vector field B and the tensor field A defined by

$$
A(v)=v^{\otimes 2}-\frac{1}{3}|v|^{2} I, \quad B(v)=\frac{1}{2} v\left(|v|^{2}-5\right)
$$

Notice that $A \perp \operatorname{ker} \mathcal{L}_{M}, B \perp \operatorname{ker} \mathcal{L}_{M}$ and $A \perp B$; there exist $\mathcal{L}_{M}^{-1} A \perp \operatorname{ker} \mathcal{L}_{M}$ and $\mathcal{L}_{M}^{-1} B \perp \operatorname{ker} \mathcal{L}_{M}$

- Rotational invariance of \mathcal{B} Let $R \in O_{3}(\mathbf{R})$; it acts on functions f on \mathbf{R}^{3}, on vector fields U on \mathbf{R}^{3}, and on 2-contravariant tensors fields S on \mathbf{R}^{3} as follows:

$$
f_{R}(v)=f\left(R^{T} v\right), \quad U_{R}(v)=R U\left(R^{T} v\right), \quad S_{R}(v)=R S\left(R^{T} v\right) R^{T}
$$

-The Boltzmann collision integral is rotationally invariant:

$$
\mathcal{B}\left(F_{R}, F_{R}\right)=\mathcal{B}(F, F)_{R}, \text { therefore } \mathcal{L}_{M_{1,0,1}} \phi_{R}=\left(\mathcal{L}_{M_{1,0,1}} \phi\right)_{R}
$$

since $M_{1,0,1}$ is a radial function.

- One has $A_{R}=A$ and $B_{R}=B$; hence $\left(\mathcal{L}_{M}^{-1} A\right)_{R}=\mathcal{L}_{M}^{-1} A$ and $\left(\mathcal{L}_{M}^{-1} B\right)_{R}=$ $\mathcal{L}_{M}^{-1} B$. Therefore, there exist $\alpha \equiv \alpha(|v|)$ and $\beta \equiv \beta(|v|)$ s.t.

$$
\mathcal{L}_{M}^{-1} A(v)=\alpha(|v|) A(v), \quad \mathcal{L}_{M}^{-1} B(v)=\beta(|v|) B(v)
$$

The Hilbert expansion

- Seek a solution of

$$
\partial_{t} F_{\epsilon}+v \cdot \nabla_{x} F_{\epsilon}=\frac{1}{\epsilon} \mathcal{B}\left(F_{\epsilon}, F_{\epsilon}\right)
$$

in the form

$$
F_{\epsilon}(t, x, v)=\sum_{n \geq 0} \epsilon^{n} F_{n}(t, x, v) \in C_{t, x, v}^{\infty}[[\epsilon]]
$$

- Order $0: \mathcal{B}\left(F_{0}, F_{0}\right) \equiv 0$, which implies that F_{0} is a local Maxwellian

$$
F_{0}(t, x, v)=M_{\rho_{0}(t, x), u_{0}(t, x), \theta_{0}(t, x)}(v)
$$

- Order 1: one finds that

$$
\partial_{t} F_{0}+v \cdot \nabla_{x} F_{0}=2 \mathcal{B}\left(F_{0}, F_{1}\right)=-M_{\rho_{0}, u_{0}, \theta_{0}} \mathcal{L}_{M_{\rho_{0}, u_{0}, \theta_{0}}}\left(\frac{F_{1}}{M_{\rho_{0}, u_{0}, \theta_{0}}}\right)
$$

Once F_{0} is known, one finds F_{1} by solving the Fredholm integral equation above.
-Compatibility condition at order 1: in order for this Fredholm integral equation to have a solution, one must verify the compatibility condition

$$
M_{\rho_{0}, u_{0}, \theta_{0}}^{-1}\left(\partial_{t}+v \cdot \nabla_{x}\right) F_{0} \perp \operatorname{ker} \mathcal{L}_{M_{\rho_{0}, u_{0}, \theta_{0}}}
$$

i.e.

$$
\partial_{t} \int\left(\begin{array}{c}
1 \\
v \\
\frac{1}{2}|v|^{2}
\end{array}\right) M_{\rho_{0}, u_{0}, \theta_{0}} d v+\operatorname{div}_{x} \int v \otimes\left(\begin{array}{c}
1 \\
v \\
\frac{1}{2}|v|^{2}
\end{array}\right) M_{\rho_{0}, u_{0}, \theta_{0}} d v=0
$$

This compatibility condition means that ($\rho_{0}, u_{0}, \theta_{0}$) solves the compressible Euler system.
-Assuming that ($\rho_{0}, u_{0}, \theta_{0}$) solves the compressible Euler system, there exists a unique solution F_{1}^{0} to the Fredholm equation

$$
\partial_{t} F_{0}+v \cdot \nabla_{x} F_{0}=2 \mathcal{B}\left(F_{0}, F_{1}^{0}\right) \quad \text { s.t. } \int\left(\begin{array}{c}
1 \\
v \\
\frac{1}{2}|v|^{2}
\end{array}\right) F_{1}^{0} d v \equiv 0
$$

-Therefore F_{1} (the first order term in Hilbert's expansion) is of the form
$F_{1}(t, x, v)=F_{1}^{0}(t, x, v)+M_{\left(\rho_{0}, u_{0}, \theta_{0}\right)(t, x)}\left(a(t, x)+b(t, x) \cdot v+c(t, x)|v|^{2}\right)$
with

$$
F_{1}^{0}=-M_{1, u_{0}, \theta_{0}}\left(\alpha(\theta,|V|) A(V): D\left(u_{0}\right)+2 \beta(\theta,|V|) B(V) \cdot \nabla_{x} \sqrt{\theta_{0}}\right)
$$

(see Chapman-Enskog expansion below) where

$$
V=\frac{v-u_{0}}{\sqrt{\theta_{0}}}, \quad D(u)=\nabla_{x} u+\left(\nabla_{x} u\right)^{T}-\frac{2}{3}\left(\operatorname{div}_{x} u\right) I
$$

but a, b and c remain undetermined so far.

- Order 2: one finds

$$
\partial_{t} F_{1}+v \cdot \nabla_{x} F_{1}-\mathcal{B}\left(F_{1}, F_{1}\right)=2 \mathcal{B}\left(F_{0}, F_{2}\right)
$$

which is another Fredholm integral equation for the unknown F_{2}. For this equation to have a solution, one must verify the compatibility conditions

$$
\partial_{t} \int\left(\begin{array}{c}
1 \\
v \\
\frac{1}{2}|v|^{2}
\end{array}\right) F_{1} d v+\operatorname{div}_{x} \int v \otimes\left(\begin{array}{c}
1 \\
v \\
\frac{1}{2}|v|^{2}
\end{array}\right) F_{1} d v=0
$$

These 5 compatibility conditions are 5 PDEs for the five unknown functions a, b and c.

- Order n: one finds

$$
\partial_{t} F_{n}+v \cdot \nabla_{x} F_{n}-\sum_{\substack{k+l=n \\ 1 \leq k, l, \leq n}} \mathcal{B}\left(F_{k}, F_{l}\right)=2 \mathcal{B}\left(F_{0}, F_{k+1}\right)
$$

which is the same Fredholm equation as above.
-Here again, the compatibility condition reduces to

$$
\partial_{t} \int\left(\begin{array}{c}
1 \\
v \\
\frac{1}{2}|v|^{2}
\end{array}\right) F_{n} d v+\operatorname{div}_{x} \int v \otimes\left(\begin{array}{c}
1 \\
v \\
\frac{1}{2}|v|^{2}
\end{array}\right) F_{n} d v=0
$$

-More generally, the compatibility condition at order $n+1$ (to guarantee the existence of F_{n+1}) provides the equations satisfied by that part of F_{n} which belongs to the nullspace of $\mathcal{L}_{M_{\rho_{0}, u_{0}, \theta_{0}}}$.

The Chapman-Enskog expansion

-Seek a solution of

$$
\partial_{t} F_{\epsilon}+v \cdot \nabla_{x} F_{\epsilon}=\frac{1}{\epsilon} \mathcal{B}\left(F_{\epsilon}, F_{\epsilon}\right)
$$

in the form of a formal power series

$$
F_{\epsilon}(t, x, v)=\sum_{n \geq 0} \epsilon^{n} F^{(n)}[\vec{P}(t, x)](v)
$$

parametrized by the vector \vec{P} of conserved densities of F_{ϵ}.

- Notation: $F^{n}[\vec{P}(t, x)](v)$ designates any quantity that depends smoothly on \vec{P} and any finite number of its derivatives with respect to the x-variable at the same point (t, x), and on the v-variable.
- $F^{n}[\vec{P}(t, x)](v)$ doesn't contain time-derivatives of \vec{P} : the game is to eliminate $\partial_{t} \vec{P}$ in favor of x-derivatives via conservation laws satisfied by \vec{P}.
-That \vec{P} is the vector of conserved densities of F_{ϵ} means that

$$
\int F^{(0)}[\vec{P}](v)\left(\begin{array}{c}
1 \\
v \\
\frac{1}{2}|v|^{2}
\end{array}\right) d v=\vec{P}, \quad \int F^{(n)}[\vec{P}](v)\left(\begin{array}{c}
1 \\
v \\
\frac{1}{2}|v|^{2}
\end{array}\right) d v=\overrightarrow{0}, n \geq 1
$$

-These conserved densities satisfy a formal system of conservation laws

$$
\partial_{t} \vec{P}=\sum_{n \geq 0} \epsilon^{n} \operatorname{div}_{x} \Phi^{(n)}[\vec{P}]
$$

where the formal fluxes are obtained from the local conservation laws:

$$
\Phi^{(n)}[\vec{P}]=-\int v \otimes\left(\begin{array}{c}
1 \\
v \\
\frac{1}{2}|v|^{2}
\end{array}\right) F^{(n)}[\vec{P}](v) d v
$$

- Order 0: one has

$$
\mathcal{B}\left(F^{(0)}[\vec{P}], F^{(0)}[\vec{P}]\right)=0, \text { and thus } F^{(0)}[\vec{P}]=M_{\rho, u, \theta}
$$

here

$$
\vec{P}=\left(\begin{array}{c}
\rho \\
\rho u \\
\rho\left(\frac{1}{2}|u|^{2}+\frac{3}{2} \theta\right)
\end{array}\right), \quad \Phi^{(0)}[\vec{P}]=-\left(\begin{array}{c}
\rho u \\
\rho u^{\otimes 2}+\rho \theta I \\
\rho u\left(\frac{1}{2}|u|^{2}+\frac{5}{2} \theta\right)
\end{array}\right)
$$

Hence the formal conservation law at order 0 is

$$
\partial_{t} \vec{P}^{0}=\operatorname{div}_{x} \Phi^{(0)}\left[\vec{P}^{0}\right] \text { mod. } O(\epsilon) \Leftrightarrow \text { Euler system }
$$

-Euler's system can be recast as

$$
\begin{aligned}
\partial_{t} \rho^{0}+u^{0} \cdot \nabla_{x} \rho^{0}+\rho^{0} \operatorname{div}_{x} u^{0} & =0 \\
\partial_{t} u^{0}+\left(u^{0} \cdot \nabla_{x}\right) u^{0}+\frac{1}{\rho^{0}} \nabla_{x}\left(\rho^{0} \theta^{0}\right) & =0 \\
\partial_{t} \theta^{0}+u^{0} \cdot \nabla_{x} \theta^{0}+\frac{2}{3} \theta^{0} \operatorname{div}_{x} u^{0} & =0
\end{aligned}
$$

- Order 1: one has

$$
\left(\partial_{t}+v \cdot \nabla_{x}\right) F^{(0)}\left[\vec{P}^{1}\right]=2 \mathcal{B}\left(F^{(0)}\left[\vec{P}^{1}\right], F^{(1)}\left[\vec{P}^{1}\right]\right)
$$

using the formal conservation at order 0 , eliminate $\partial_{t} F^{(0)}\left[\vec{P}^{1}\right]$ and replace it with x-derivatives of $F^{(0)}\left[\vec{P}^{1}\right]$:

$$
\begin{array}{r}
\left(\partial_{t}+v \cdot \nabla_{x}\right) M_{\rho^{1}, u^{1}, \theta^{1}}=M_{\rho^{1}, u^{1}, \theta^{1}}\left(A(V): D\left(u^{1}\right)+2 B(V) \cdot \nabla_{x} \sqrt{\theta^{1}}\right) \\
+O(\epsilon)
\end{array}
$$

with the notations

$$
V=\frac{v-u^{1}}{\sqrt{\theta^{1}}}, \quad A(V)=V^{\otimes 2}-\frac{1}{3}|v|^{2} I, \quad B(V)=\frac{1}{2} V\left(|V|^{2}-5\right)
$$

and where $D(u)$ is the traceless part of the deformation tensor of u :

$$
D(u)=\frac{1}{2}\left(\nabla_{x} u+\left(\nabla_{x} u\right)^{T}-\frac{2}{3} \operatorname{div}_{x} u I\right)
$$

-Therefore, $F^{(1)}\left[\vec{P}^{1}\right]$ is determined by the conditions

$$
\begin{aligned}
A(V): D\left(u^{1}\right)+2 B(V) \cdot \nabla_{x} \sqrt{\theta^{1}} & =-\mathcal{L}_{M_{\rho^{1}, u^{1}, \theta^{1}}}\left(\frac{F^{(1)}\left[\vec{P}^{1}\right]}{M_{\rho^{1}, u^{1}, \theta^{1}}}\right) \\
\int F^{(1)}\left[\vec{P}^{1}\right](v)\left(\begin{array}{c}
1 \\
v \\
\frac{1}{2}|v|^{2}
\end{array}\right) d v & =0
\end{aligned}
$$

-By Hilbert's theorem, \mathcal{L}_{M} is a Fredholm operator on $L^{2}(M d v)$; therefore

$$
\begin{aligned}
F^{(1)}\left[\vec{P}^{1}\right](v)=-M_{1, u^{1}, \theta^{1}} & \left(\alpha\left(\theta^{1},|V|\right) A(V): D\left(u^{1}\right)\right. \\
& \left.+2 \beta\left(\theta^{1},|V|\right) B(V) \cdot \nabla_{x} \sqrt{\theta^{1}}\right)
\end{aligned}
$$

- Hence the first order flux in the formal conservation law is

$$
\Phi^{(1)}\left[\vec{P}^{1}\right]=\left(\begin{array}{c}
0 \\
\mu\left(\theta^{1}\right) D\left(u^{1}\right) \\
\mu\left(\theta^{1}\right) D\left(u^{1}\right) \cdot u^{1}+\kappa\left(\theta^{1}\right) \nabla_{x} \theta^{1}
\end{array}\right)
$$

-Therefore, the formal conservation law at first order is

$$
\partial_{t} \vec{P}^{1}=\operatorname{div}_{x} \Phi^{(0)}\left[\vec{P}^{1}\right]+\epsilon \operatorname{div}_{x} \Phi^{(1)}\left[\vec{P}^{1}\right]
$$

i.e. the compressible Navier-Stokes system with $O(\epsilon)$ dissipation terms

$$
\begin{aligned}
& \partial_{t} \rho^{1}+\operatorname{div}_{x}\left(\rho^{1} u^{1}\right)=0 \\
& \partial_{t}\left(\rho^{1} u^{1}\right)+\operatorname{div}_{x}\left(\rho^{1}\left(u^{1}\right)^{\otimes 2}\right)+\nabla_{x}\left(\rho^{1} \theta^{1}\right)=\epsilon \operatorname{div}_{x}\left(\mu D\left(u^{1}\right)\right) \\
& \partial_{t}\left(\rho\left(\frac{1}{2}\left|u^{1}\right|^{2}+\frac{3}{2} \theta^{1}\right)\right)+\operatorname{div}_{x}\left(\rho^{1} u^{1}\left(\frac{1}{2}\left|u^{1}\right|^{2}+\frac{5}{2} \theta^{1}\right)\right)=\epsilon \operatorname{div}_{x}\left(\kappa \nabla_{x} \theta^{1}\right) \\
&+\epsilon \operatorname{div}_{x}\left(\mu D\left(u^{1}\right) \cdot u^{1}\right)
\end{aligned}
$$

-The viscosity and heat conduction coefficients are computed as follows:

$$
\begin{aligned}
\theta \int \alpha(\theta, V) A_{i j}(V) A_{k l}(V) M_{1, u, \theta} d v & =\mu(\theta)\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}-\frac{2}{3} \delta_{i j} \delta_{k l}\right) \\
\theta \int \beta(\theta, V) B_{i}(V) B_{j}(V) M_{1, u, \theta} d v & =\kappa(\theta) \delta_{i j}
\end{aligned}
$$

or, in other words

$$
\begin{aligned}
& \mu(\theta)=\frac{2}{15} \theta \int_{0}^{+\infty} \alpha(\theta, r) r^{6} \frac{e^{-r^{2} / 2} d r}{\sqrt{2 \pi}} \\
& \kappa(\theta)=\frac{1}{6} \theta \int_{0}^{+\infty} \beta(\theta, r) r^{4}\left(r^{2}-5\right)^{2} \frac{e^{-r^{2} / 2} d r}{\sqrt{2 \pi}}
\end{aligned}
$$

- In the hard sphere case, one finds that

$$
\mu(\theta)=\mu_{0} \sqrt{\theta}, \quad \kappa(\theta)=\kappa_{0} \sqrt{\theta}
$$

Hilbert vs. Chapman-Enskog

-Hilbert's expansion more systematic? Chapman-Enskog expansion requires knowing in advance that one gets a system of local conservation laws at any order in ϵ.
-Chapman-Enskog expansion=reshuffling terms in Hilbert expansion? Not really: in the case of a boundary-value problem, Hilbert's expansion leads to a set of boundary conditions for ($\rho_{0}, u_{0}, \theta_{0}$) that is adapted to the compressible Euler system, i.e. to a hyperbolic system.
-This is in general not consistent with the boundary conditions adapted to the compressible Navier-Stokes system, which is (degenerate) parabolic. (For instance: there may be a viscous boundary layer of thickness $O(\sqrt{\epsilon})$).

Deficiencies in both expansions

-Truncated Hilbert or Chapman-Enskog expansions are polynomials in v, and thus may not be nonnegative for all t, x and v. See a proof by Caflisch (CPAM 1980) of the compressible Euler limit; lack of positivity may be cured by suitable initial layers, as constructed by Lachowicz (M2AS 1987).
-Hydrodynamic equations may develop singularities in finite time (as in the case of the compressible Euler system) - or it may be unknown whether the solution remains smooth for all times (as in the case of 3D incompressible Navier-Stokes). Truncated expansions cannot provide a justification of the hydrodynamic limit past the time of appearance of a singularity in the limiting solution.

