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I. INTRODUCTION

Full justification of most of the formal approximations of the past lectures
has proven difficult because the basic well-posedness and regularity ques-
tions remain open for both the fluid systems and the Boltzmann equation.

The problem is exacerbated by the fact that to bound the error of the
asymptotic expansions requires control of successively higher order spatial
derivatives of the fluid variables, thereby requiring restrictions to a meager
subset of all physically natural initial data and possibly to finite times.

For example, Caflisch used a method based on the Hilbert expansion to
justify the compressible Euler system from the Boltzmann equation. His
result requires smooth initial data and holds for as long as the limiting so-
lution of the compressible Euler system is smooth.



Because solutions of the compressible Euler system are known to become
singular in finite time for a very general class of initial data, such a local re-
sult is about the best one can hope for by appealing to such an expansion.

Two approaches to circumventing these difficulties have emerged recently.
First, one studies derivations of linear or weakly nonlinear fluid dynamical
systems, such as the acoustic system and the incompressible systems,
about which more is known. Second, one abandons traditional expansion-
based derivations in favor of moment-based formal derivations, which put
fewer demands on the well-posedness and regularity theory.

In this lecture we present moment-based formal derivations of the acoustic,
incompressible Stokes, incompressible Navier-Stokes, and incompressible
Euler systems from the Boltzmann equation.



II. THE GENERAL SETTING

We consider the scaled Boltzmann equation

St ∂tF + v · ∇xF =
1

Kn
B(F, F ) ,

where St is the Strouhal number, Kn is the Knudsen number.

We consider fluid dynamical regimes in which F is close to a spatially
homogeneous Maxwellian M = M(v). By an appropriate choice of a
Galilean frame and of mass and velocity units, it can be assumed that this
so-called absolute Maxwellian M has the form

M(v) ≡
1

(2π)D/2
exp(−1

2|v|
2) .



Relative Kinetic Density

It is natural to introduce the relative density, G = G(v, x, t), defined by
F = MG. The initial-value problem for G is

St ∂tG + v · ∇xG =
1

Kn
Q(G, G) , G(v, x,0) = Gin(v, x) ,

where the collision operator is now given by

Q(G, G) ≡
1

M
B(MG, MG)

=
∫∫

SD−1×RD
(G′

∗G
′ − G∗G) b(ω, v∗ − v, ) dω M∗dv∗ .

For simplicity, we consider this problem over the periodic box TD.



Normalizations

This nondimensionalization has the normalizations
∫

SD−1
dω = 1 ,

∫

RD
Mdv = 1 ,

∫

TD
dx = 1 ,

associated with the domains SD−1, RD, and TD, the normalization
∫∫∫

SD−1×RD×RD
b(ω, v∗ − v) dω M∗dv∗ Mdv = 1 .

associated with the collision kernel b, and the normalizations
∫∫

RD×TD
Gin Mdv dx = 1 ,

∫∫

RD×TD
v Gin Mdv dx = 0 ,

∫∫

RD×TD

1
2|v|

2Gin Mdv dx = D
2 .

associated with the initial data Gin.



Notation

In this lecture 〈ξ〉 will denote the average over RD of any integrable function
ξ = ξ(v) with respect to the positive unit measure Mdv:

〈ξ〉 =
∫

RD
ξ(v)Mdv .

Because dµ = b(ω, v∗ − v) dω M∗dv∗ Mdv is a positive unit measure on
SD−1× RD× RD, we denote by

〈〈
Ξ

〉〉
the average over this measure of

any integrable function Ξ = Ξ(ω, v∗, v):
〈〈
Ξ

〉〉
=

∫∫∫

SD−1×RD×RD
Ξ(ω, v∗, v) dµ .

The measure dµ is invariant under the coordinate transformations

(ω, v∗, v) 7→ (ω, v, v∗) , (ω, v∗, v) 7→ (ω, v′∗, v
′) .

These, and compositions of these, are called dµ-symmetries.



Local Conservation Laws

If G solves the scaled Boltzmann equation then G satisfies local conserva-
tion laws of mass, momentum, and energy:

St ∂t〈G〉 + ∇x· 〈v G〉 = 0 ,

St ∂t〈v G〉 + ∇x· 〈v ⊗ v G〉 = 0 ,

St ∂t〈
1
2|v|

2G〉 + ∇x· 〈v
1
2|v|

2G〉 = 0 .



Global Conservation Laws

When these are integrated over space and time while recalling the nor-
malizations associated with Gin, they yield the global conservation laws of
mass, momentum, and energy:

∫

TD
〈G(t)〉dx =

∫

TD
〈Gin〉dx = 1 ,

∫

TD
〈v G(t)〉dx =

∫

TD
〈v Gin〉dx = 0 ,

∫

TD
〈12|v|

2G(t)〉dx =
∫

TD
〈12|v|

2Gin〉dx = D
2 .



Local Entropy Dissipation Law

If G solves the scaled Boltzmann equation then G satisfies local entropy
dissipation law:

St ∂t〈(G log(G) − G + 1)〉 + ∇x· 〈v (G log(G) − G + 1)〉

= −
1

Kn

〈〈
1
4 log

(
G′
∗G

′

G∗G

)

(G′
∗G

′ − G∗G)

〉〉

≤ 0 .



Global Entropy Dissipation Law

When this is integrated over space and time, it yields the global entropy
equality

H(G(t)) +
1

ǫ

∫ t

0
R(G(s)) ds = H(Gin) ,

where the relative entropy functional H is given by

H(G) =
∫

TD
〈(G log(G) − G + 1)〉dx ,

while the entropy dissipation rate functional R is given by

R(G) =
∫

TD

1
4

〈〈

log

(
G′
∗G

′

G∗G

)

(G′
∗G

′ − G∗G)

〉〉

dx .



Fluctuations

All our derivations will employ a scaling in which the Knudsen number Kn

vanishes and the density F is close to the absolute Maxwellian M . We
therefore set Kn = ǫ and consider families of solutions parametrized by ǫ

that have the form

Gin
ǫ = 1 + δǫg

in
ǫ , Gǫ = 1 + δǫgǫ ,

where the fluctuations gin
ǫ and gǫ are bounded while δǫ > 0 satisfies

δǫ → 0 as ǫ → 0 .



Formal Convergence Assumptions

In these derivations we assume that gǫ converges formally to g, where
the limiting function is in L∞(dt;L2(Mdv dx)), and that all formally small
terms vanish.

For example, we express the global conservation laws, which are the same
for all of our derivations, in terms of gǫ and then formally let ǫ → 0 to obtain

∫

TD
〈g(t)〉dx = 0 ,

∫

TD
〈v g(t)〉dx = 0 ,

∫

TD
〈12|v|

2g(t)〉dx = 0 .

Henceforth, the derivations differ.



III. FORMAL DERIVATION OF THE ACOUSTIC SYSTEM

The acoustic system is the linearization about the homogeneous state of
the compressible Euler system. After a suitable choice of units, in this the
fluid fluctuations (ρ, u, θ) satisfy

∂tρ + ∇x· u = 0 ,

∂tu + ∇x(ρ + θ) = 0 ,
D
2 ∂tθ + ∇x· u = 0 ,

ρ(x,0) = ρin(x) ,

u(x,0) = uin(x) ,

θ(x,0) = θin(x) .

This is one of the simplest systems of fluid dynamical equations imagin-
able, being essentially the wave equation.



Acoustic Scaling

It is most natural to derive the acoustic system first because its derivation is
simpler and requires no additional assumptions regarding either the scaling
or the collision kernel. One sets St = 1 and considers a family of formal
solutions Gǫ to the scaled Boltzmann initial-value problem

∂tGǫ + v · ∇xGǫ =
1

ǫ
Q(Gǫ, Gǫ) , Gǫ(v, x,0) = Gin

ǫ (v, x) ,

with Gǫ = 1 + δǫgǫ for some δǫ that satisfies

δǫ → 0 as ǫ → 0 .

The derivation has two steps.



First Step - 1

We first determine the form of the limiting function g. Observe that the
fluctuations gǫ satisfy

ǫ
(
∂tgǫ + v · ∇xgǫ

)
+ Lgǫ = δǫ Q(gǫ, gǫ) ,

where the linearized collision operator L is defined formally by

Lg̃ = −2Q(1, g̃)

=
∫∫

SD−1×RD

(
g̃ + g̃∗ − g̃′ − g̃′∗

)
b(ω, v∗ − v) dω M∗dv∗ .

We define L to be the unique nonnegative, self-adjoint extension over
L2(Mdv) of this formal operator. By letting ǫ → 0 above one finds that
Lg = 0. Hence, g( · , x, t) takes values in Null(L), the null space of L.



First Step - 2

One can show that Null(L) = span{1, v1, · · · , vD, |v|2}. Because the
limit g( · , x, t) takes values in Null(L) and because g is assumed to be-
long to L∞(dt;L2(Mdv dx)), we conclude that g has the form

g = ρ + v ·u +
(
1
2|v|

2 − D
2

)
θ ,

for some (ρ, u, θ) in L∞(dt;L2(dx;R × RD× R)).

This form is call an infinitesimal Maxwellian because

M(1 + δρ, δu,1 + δθ) =
1 + δρ

(2π(1 + δθ))D/2
exp

(
|v − δu|2

2(1 + δθ)

)

= M
(
1 + δ g + O(δ2)

)
.



Second Step - 1

Next we show that the evolution of (ρ, u, θ) is governed by the acoustic
system. Observe that the fluctuations gǫ formally satisfy the local conser-
vation laws

∂t〈gǫ〉 + ∇x· 〈v gǫ〉 = 0 ,

∂t〈v gǫ〉 + ∇x· 〈v ⊗ v gǫ〉 = 0 ,

∂t〈
1
2|v|

2gǫ〉 + ∇x· 〈v
1
2|v|

2gǫ〉 = 0 .

By letting ǫ → 0 in these equations and using the infinitesimal Maxwellian
form of g, one then finds that (ρ, u, θ) solves the acoustic system.



Second Step - 2

By the formal continuity of the above densities in time, one finds that
(
ρin, uin, θin

)
= lim

ǫ→0

(
〈gin

ǫ 〉, 〈v gin
ǫ 〉, 〈( 1

D|v|2 − 1) gin
ǫ 〉

)
,

provided we assume that the limits on the right-hand side exist in the sense
of distributions for some (ρin, uin, θin) ∈ L2(dx;R × RD× R).



Formal Acoustic Limit Theorem

Theorem. 1 Let Gǫ be a family of distribution solutions of the scaled Boltz-
mann initial-value problem with initial data Gin

ǫ that satisfy the normaliza-
tions. Let Gin

ǫ = 1 + δǫgin
ǫ and Gǫ = 1 + δǫgǫ where δǫ → 0 as ǫ → 0,

and the fluctuations gin
ǫ and gǫ are bounded in L∞(dt;L2(Mdv dx)).

Moreover:

1. Assume that in the sense of distributions the family gin
ǫ satisfies

lim
ǫ→0

(
〈gin

ǫ 〉, 〈v gin
ǫ 〉, 〈( 1

D|v|2 − 1) gin
ǫ 〉

)
=

(
ρin, uin, θin

)

for some (ρin, uin, θin) ∈ L2(dx;R × RD× R).



2. Assume that the local conservation laws are also satisfied in the sense
of distributions for every gǫ.

3. Assume that the family gǫ converges in the sense of distributions as
ǫ → 0 to g ∈ L∞(dt;L2(Mdv dx)). Assume furthermore that Lgǫ →
Lg, that the moments

〈gǫ〉 , 〈v gǫ〉 , 〈v ⊗ v gǫ〉 , 〈v|v|2gǫ〉 ,

converge to the corresponding moments

〈g〉 , 〈v g〉 , 〈v ⊗ v g〉 , 〈v|v|2g〉 ,

and that every formally small term vanishes, all in the sense of distri-
butions as ǫ → 0.

Then g is the unique local infinitesimal Maxwellian determined by the solu-
tion (ρ, u, θ) of the acoustic system with the initial data (ρin, uin, θin).



IV. FORMAL DERIVATION OF INCOMPRESSIBLE SYSTEMS

It is easily seen that any (ρ, u, θ) ∈ L2(dx;R × RD× R) such that

∇x· u = 0 , ∇x(ρ + θ) = 0 ,

is a stationary solution of the acoustic system which will generally vary in
space. On the other hand, it can be shown that absolute Maxwellians are
the only stationary solutions of the Boltzman equation.

It is clear that the time scale at which the acoustic system was derived was
not long enough to see the evolution of these solutions. By considering the
Boltzmann equation over a longer time scale one can give formal moment
derivations of three incompressible fluid dynamical systems, depending on
the limiting behavior of the ratio δǫ/ǫ as ǫ → 0. We will show the following:



• When δǫ/ǫ → 0, one considers time scales of order 1/ǫ, and an in-
compressible Stokes system is derived.

• When δǫ/ǫ → 1 (or any other nonzero number), one considers time
scales of order 1/ǫ, and an incompressible Navier-Stokes system is
derived.

• When δǫ/ǫ → ∞, one considers time scales of order 1/δǫ, and an
incompressible Euler system is derived.

We now show how these different regimes are identified, and how the fluid
dynamical systems are derived.



Boussinesq-Balance Incompressible Fluid Systems

The incompressible Stokes, Navier-Stokes, and Euler systems that will be
derived all govern the fluctuations of mass density, bulk velocity, and tem-
perature about their spatially homogeneous equilibrim values. By suitable
choices of Galilean frame and units, one can assume that these equilibrim
values are 1, 0, and 1 respectively. We denote the fluctuations about these
values by (ρ, u, θ).

For all three systems these fluctuations satisfy the incompressibility and
Boussinesq relations:

∇x· u = 0 , ρ + θ = 0 .

The systems differ however in the equations that govern the dynamics of
these fluctuations.



Incompressible Stokes Dynamics

For the Stokes system the dynamical equations are

∂tu + ∇xp = ν∆xu ,
D+2

2 ∂tθ = κ∆xθ ,

u(x,0) = uin(x) ,

θ(x,0) = θin(x) ,

where ν > 0 is the kinematic viscosity and κ > 0 is the thermal diffusivity.
Like the acoustic system, the Stokes system is also one of the simplest
systems of fluid dynamical equations imaginable, being essentially a sys-
tem of linear heat equations.



Incompressible Navier-Stokes Dynamics

For the Navier-Stokes system the dynamical equations are

∂tu + u · ∇xu + ∇xp = ν∆xu ,
D+2

2

(
∂tθ + u · ∇xθ

)
= κ∆xθ ,

u(x,0) = uin(x) ,

θ(x,0) = θin(x) ,

where the kinematic viscosity ν and the thermal diffusivity have the same
values as in the Stokes system. Unlike the Stokes system however, the
Navier-Stokes system is nonlinear. While this fact does not complicate its
formal derivation, it makes the mathematical establishment of its validity
much harder.



Incompressible Euler Dynamics

For the Euler system the dynamical equations are

∂tu + u ·∇xu + ∇xp = 0 ,
D+2

2

(
∂tθ + u ·∇xθ

)
= 0 ,

u(x,0) = uin(x) ,

θ(x,0) = θin(x) ,

Like the Navier-Stokes system, the Euler system is nonlinear. The full
mathematical establishment of its validity is also an open problem.

As was the case for the acoustic system, the Euler system has stationary
solutions that vary in space. It is clear that the time scale at which the Euler
system was derived was not long enough to see the evolution of these
solutions. Even at a formal level it is unclear how this long-time evolution
should be governed.



Long Time Scaling

In order to identify how the different regimes arise, we reconsider the Boltz-
mann initial-value problem on a time scale 1/τǫ, where

τǫ → 0 as ǫ → 0 .

Upon setting St = τǫ, the scaled Boltzmann initial-value problem becomes

τǫ ∂tGǫ + v · ∇xGǫ =
1

ǫ
Q(Gǫ, Gǫ) , Gǫ(v, x,0) = Gin

ǫ (v, x) .

The idea is to identify possible choices for τǫ by seeking different balances
between terms as ǫ tends to zero.



Fluctuations

One considers a family of formal solutions Gǫ whose fluctuations gǫ are
given by Gǫ = 1 + δǫgǫ for some δǫ > 0 that vanishes as ǫ → 0. These
fluctuations are assumed to satisfy both the Boltzmann equation

τǫ ∂tgǫ + v ·∇xgǫ +
1

ǫ
Lgǫ =

δǫ

ǫ
Q(gǫ, gǫ) ,

and the local conservation laws

τǫ ∂t〈gǫ〉 + ∇x· 〈v gǫ〉 = 0 ,

τǫ ∂t〈v gǫ〉 + ∇x· 〈v ⊗ v gǫ〉 = 0 ,

τǫ ∂t〈
1
2|v|

2gǫ〉 + ∇x· 〈v
1
2|v|

2gǫ〉 = 0 .



First and Second Steps - 1

The first step is to show that the limiting g is an infinitesimal Maxwellian.
After multiplying above Boltzmann equation by ǫ and letting ǫ → 0, we
argue as in the first step of the acoustic system derivation to conclude g
has the form

g = ρ + v ·u +
(
1
2|v|

2 − D
2

)
θ ,

for some (ρ, u, θ) in L∞(dt;L2(dx;R × RD× R)).

The second step is to show that (ρ, u, θ) satisfy the incompressibility and
Boussinesq relations. By letting ǫ → 0 in the local conservation laws and
using the form of g, one finds that

∇x· u = 0 , ∇x(ρ + θ) = 0 .

The first equation above is the incompressibility relation, while the second
says ρ + θ is a function of time only.



First and Second Steps - 2

By the global energy conservation law one thereby concludes that

ρ + θ =
∫

TD
(ρ + θ) dx = 2

D

∫

TD
〈12|v|

2g〉dx = 0 .

Hence, (ρ, u, θ) satisfy the incompressibility and Boussinesq relations.

The Boussinesq relation implies g is an infinitesimal Maxwellian of the form

g = v ·u +
(
1
2|v|

2 − D+2
2

)
θ ,

for some (u, θ) in L∞(dt;L2(dx;RD× R)).



First Key Idea - 1

Observe that the momentum and a linear combination of the mass and
energy local conservation laws can be expressed as

∂t〈v gǫ〉 +
1

τǫ
∇x· 〈A gǫ〉 +

1

τǫ
∇x

〈
1
D|v|2gǫ

〉
= 0 ,

∂t

〈
(1
2|v|

2 − D+2
2 ) gǫ

〉
+

1

τǫ
∇x· 〈B gǫ〉 = 0 ,

where the matrix-valued function A and the vector-valued function B are
defined by

A(v) = v ⊗ v − 1
D|v|2I , B(v) = 1

2|v|
2v − D+2

2 v .

It is clear that A ∈ L2(Mdv;RD∨D) and B ∈ L2(Mdv;RD), and that
each entry of A and B is in Null(L)⊥.



First Key Idea - 2

As is common when studying incompressible fluid dynamical limits, the mo-
mentum equation will be integrated against divergence-free test functions.
The last term in its flux will thereby be eliminated.

One therefore only has to pass to the limit in the flux terms that involve A

and B — namely, in the terms

1

τǫ
〈A gǫ〉 ,

1

τǫ
〈B gǫ〉 .

There is a chance these terms will have limits because each entry of A

and B is in Null(L)⊥ while gǫ is converging to g, which is in Null(L).



Second Key Idea - 1

In fact, we will use the scaled Boltzmann equation to show that for a proper
choice of τǫ every expression of the form

1

τǫ
〈Lξ gǫ〉

where ξ ∈ Dom(L) has a limit.

We let Â ∈ L2(Mdv;RD∨D) and B̂ ∈ L2(Mdv;RD) be the unique
solutions of

LÂ = A , Â ∈ Null(L)⊥ entrywise ,

LB̂ = B , B̂ ∈ Null(L)⊥ entrywise .

We can then set ξ equal to the entries of Â and B̂ to evaluate the limit in
the flux terms that involve A and B.



Second Key Idea - 2

First, observe that because L is formally symmetric, one has

1

τǫ
〈Lξ gǫ〉 =

1

τǫ
〈ξ Lgǫ〉 ,

for every ξ ∈ Dom(L) ∩ Null(L)⊥, where Dom(L) ⊂ L2(Mdv). Upon
multiplying the Boltzmann equation by ξ and integrating, one obtains

ǫ ∂t〈ξ gǫ〉 +
ǫ

τǫ
∇x· 〈v ξ gǫ〉 +

1

τǫ
〈ξ Lgǫ〉 =

δǫ

τǫ
〈ξ Q(gǫ, gǫ)〉 .

One therefore has that

1

τǫ
〈Lξ gǫ〉 =

δǫ

τǫ
〈ξ Q(gǫ, gǫ)〉 −

ǫ

τǫ
∇x· 〈v ξ gǫ〉 − ǫ ∂t〈ξ gǫ〉 .

The right-hand side will have a limit as ǫ → 0 that depends on the limiting
behavior of the ratio δǫ/ǫ, provided one makes the correct choice of τǫ.



Third Step - 1

• When δǫ/ǫ → 0, one sets τǫ = ǫ and finds that

1

τǫ
〈Lξ gǫ〉−→ −∇x· 〈v ξ g〉 .

• When δǫ/ǫ → 1, one sets τǫ = ǫ and finds that

1

τǫ
〈Lξ gǫ〉−→ −∇x· 〈v ξ g〉 + 〈ξ Q(g, g)〉 .

• When δǫ/ǫ → ∞, one sets τǫ = δǫ and finds that

1

τǫ
〈Lξ gǫ〉−→〈ξ Q(g, g)〉 .



Third Step - 2

We now must evaluate the terms ∇x· 〈v ξ g〉 and 〈ξ Q(g, g)〉 that appear on
the right-hand sides above. Ones uses the infinitesimal Maxwellian form of
g to obtain

∇x· 〈v ξ g〉 = −〈ξ A〉 :∇xu − 〈ξ B〉 ·∇xθ ,

〈ξ Q(g, g)〉 = 1
2〈Lξ A〉 :u ⊗ u + 〈Lξ B〉 ·u θ + 1

2〈Lξ C〉 θ2

where the matrix-valued function A and the vector-valued function B were
defined earlier, while the scalar-valued function C is defined by

C(v) = 1
4|v|

4 − D+2
2 |v|2 + D(D+2)

4 .

It is clear that C ∈ L2(Mdv). One also has that C ∈ Null(L)⊥ and that
C is perpendicular to each entry of A and B.



Third Step - 3

Indeed, because g has the form of an infinitesimal Maxwellian, for suffi-
ciently small δ one has that exp(δg) is in Dom(Q) and one can show that

0 = Q
(
exp(δg), exp(δg)

)
= δ2

[
Q(g, g) + Q(1, g2)

]
+ O(δ3) .

Hence g satifies the identity Q(g, g) = 1
2L(g2). Hence,

〈ξ Q(g, g)〉 = 1
2〈ξ L(g2)〉 = 1

2〈Lξ P⊥(g2)〉 ,

where P⊥ = I − P and P is the orthogonal projection from L2(Mdv)

onto Null(L), which for every g̃ ∈ L2(Mdv) is given by

P g̃ = 〈g̃〉 + v · 〈v g̃〉 + (1
2|v|

2 − D
2 ) 〈( 1

D|v|2 − 1) g̃〉 .



Fourth Step

The fourth step determines the limit of the motion and heat flux terms.
Then by letting ξ in the Third Step be the entries of Â and B̂ and by using
that A and Â are even whereas B and B̂ are odd, one finds that

∇x· 〈v Â g〉 = −〈Â ⊗ A〉 :∇xu = −ν
(
∇xu + (∇xu)T

)
,

∇x· 〈v B̂ g〉 = −〈B̂ ⊗ B〉 ·∇xθ = −κ∇xθ ,

〈ÂQ(g, g)〉 = 1
2〈LÂ ⊗ A〉 : (u ⊗ u) = u ⊗ u − 1

D|u|2I ,

〈B̂ Q(g, g)〉 = 〈LB̂ ⊗ B〉 ·u θ = D+2
2 u θ ,

where kinematic viscosity ν and thermal conductivity κ are given by

ν = 1
(D−1)(D+2)

〈Â :LÂ〉 , κ = 1
D 〈B̂ · LB̂〉 .



Fifth Step

The Fifth Step shows how the evolution of (u, θ) is governed by the ap-
propriate motion and heat equations. We pass to the limit using the Fourth
Step to evaluate the limiting fluxes.

If we now let Π denote the orthogonal projection from L2(dx;RD) onto
the divergence-free vector fields, then by the formal continuity in time of
the densities in the dynamical equations, one sees that

(
uin, θin

)
= lim

ǫ→0

(
Π〈v gin

ǫ 〉, 〈( 1
D+2|v|

2 − 1) gin
ǫ 〉

)
, (1)

provided we assume that the limit on the right-hand side exists in the sense
of distributions for some (uin, θin) ∈ L2(dx;RD× R).



Formal Incompressible Limit Theorem

Theorem. 2 Let Gǫ be a family of distribution solutions of the scaled Boltz-
mann initial-value problem with initial data Gin

ǫ that satisfy the normaliza-
tions. Let Gin

ǫ = 1 + δǫgin
ǫ and Gǫ = 1 + δǫgǫ where δǫ → 0 as ǫ → 0,

and the fluctuations gin
ǫ and gǫ are bounded in L∞(dt;L2(Mdv dx)).

Moreover:

1. Assume that in the sense of distributions the family gin
ǫ satisfies

lim
ǫ→0

(
〈v gin

ǫ 〉, 〈( 1
D+2|v|

2 − 1) gin
ǫ 〉

)
=

(
uin, θin

)

for some (uin, θin) ∈ L2(dx;R × RD× R).



2. Assume that the local conservation laws are also satisfied in the sense
of distributions for every gǫ.

3. Assume that the family gǫ converges in the sense of distributions as
ǫ → 0 to g ∈ L∞(dt;L2(Mdv dx)). Assume furthermore that Lgǫ →

Lg, that for every ξ ∈ L2(Mdv) the moments 〈ξ gǫ〉 converge to 〈ξ g〉,
and that every formally small term vanishes, all in the sense of distri-
butions as ǫ → 0.

Then g is the unique local infinitesimal Maxwellian determined by the solu-
tion (u, θ) of the Stokes system when δǫ/ǫ → 0, the Navier-Stokes system
when δǫ/ǫ → 1 (or any finite value), or the Euler system when δǫ/ǫ → ∞

with initial data (uin, θin).



V. REMARKS

Finally, it should be pointed out that the above systems are not the only
incompressible Stokes, Navier-Stokes, and Euler systems that may be de-
rived as fluid dynamical limits of the Boltzmann equation. More refined
asymptotic balances lead to incompressible Stokes, Navier-Stokes, and
Euler systems that differ from those above in (1) the form of the heat equa-
tion and (2) the Boussinesq relation is replaced by p = ρ + θ. These
also have moment-based derivations. One should therefore be be careful
about referring to “the incompressible Stokes system” (for example) until it
is clear to which Stokes system you are referring.

In addition, there are other systems that have moment-based derivations.


