Nonresonant Velocity Averaging and the Vlasov-Maxwell System

François Golse
Université Paris 7 \& Laboratoire J.-L. Lions, golse@math.jussieu.fr

Mantova, May 15th -17th 2005

Non resonant wave + transport systems

-We consider systems of the form

$$
\square_{t, x} u=f, \quad\left(\partial_{t}+v(\xi) \cdot \nabla_{x}\right) f=D_{\xi}^{m} g, \quad x, \xi \in \mathbf{R}^{N}, t>0
$$

where $g \equiv g(t, x, \xi)$ is a data, while $(u, f) \equiv(u(t, x, \xi), f(t, x, \xi))$ is the unknown.
-We call the above system nonresonant iff $|v(\xi)|<1$ for each $\xi \in \mathbf{R}^{N}$ here 1 is the speed of propagation associated to the d'Alembert operator $\square_{t, x}=\partial_{t t}-\Delta_{x}$.
-The above system is supplemented with the initial conditions

$$
\left.u\right|_{t=0}=u_{0},\left.\quad \partial_{t} u\right|_{t=0}=u_{0}^{\prime},\left.\quad f\right|_{t=0}=f_{0}
$$

An example: the relativistic Vlasov-Maxwell system

-Consider the relativistic Vlasov equation

$$
\left.\left(\partial_{t}+v(\xi) \cdot \nabla_{x}\right) f\right)=-\operatorname{div}_{\xi}((E+v(\xi) \times B) f), \quad x, \xi \in \mathbf{R}^{3}, t>0
$$

coupled to the system of Maxwell equations

$$
\begin{array}{ll}
\partial_{t} E+\operatorname{curl}_{x} B=-j_{f}, & \operatorname{div}_{x} E=\rho_{f}, \\
\partial_{t} B-\operatorname{curl}_{x} E=0 & \operatorname{div}_{x} B=0,
\end{array}
$$

where

$$
v(\xi)=\frac{\xi}{\sqrt{1+|\xi|^{2}}}, \quad \rho_{f}(t, x)=\int_{\mathbf{R}^{3}} f d \xi, \quad j_{f}(t, x)=\int_{\mathbf{R}^{3}} v(\xi) f d \xi
$$

-Equivalently, one can represent the electromagnetic field (E, B) in terms of a distribution of gauge potentials $u \equiv u(t, x, \xi)$ (distribution of LiénardWiechert potentials) that satisfies

$$
\square_{t, x} u(t, x, \xi)=f(t, x, \xi), \quad x, \xi \in \mathbf{R}^{3}, t>0
$$

-Then (modulo fixing the initial conditions)

$$
E=-\partial_{t} \int_{\mathbf{R}^{3}} v(\xi) u d \xi-\nabla_{x} \int_{\mathbf{R}^{3}} u d \xi, \quad B=\operatorname{curl}_{x} \int_{\mathbf{R}^{3}} v(\xi) u d \xi
$$

-The electromagnetic potential satisfies the Lorentz gauge

$$
\partial_{t} \int_{\mathbf{R}^{3}} u d \xi+\operatorname{div}_{x} \int_{\mathbf{R}^{3}} v(\xi) u d \xi=0,
$$

as a consequence of the continuity equation

$$
\partial_{t} \rho_{f}+\operatorname{div}_{x} j_{f}=0
$$

-Then, the relativistic Vlasov-Maxwell system becomes

$$
\square_{t, x} u=f, \quad\left(\partial_{t}+v(\xi) \cdot \nabla_{x}\right) f=\operatorname{div}_{\xi}(F[u] f), \quad x, \xi \in \mathbf{R}^{3}, t>0
$$

$$
\begin{aligned}
F[u]= & \partial_{t}\left(A^{0}+\int_{\mathbf{R}^{3}} v\left(\xi^{\prime}\right) u d \xi^{\prime}\right)+\nabla_{x} \int_{\mathbf{R}^{3}} u d \xi^{\prime} \\
& -v(\xi) \times \operatorname{curl}_{x}\left(A^{0}+\int_{\mathbf{R}^{3}} v\left(\xi^{\prime}\right) u d \xi^{\prime}\right)
\end{aligned}
$$

-The initial conditions are

$$
\left.u\right|_{t=0}=\left.\partial_{t} u\right|_{t=0}=0,\left.\quad f\right|_{t=0}=f^{i n}
$$

while

$$
\square_{t, x} A^{0}=0,\left.A^{0}\right|_{t=0}=A_{I},\left.\partial_{t} A^{0}\right|_{t=0}=-E^{i n}
$$

with

$$
\operatorname{curl}_{x} A_{I}=B^{i n}, \quad \operatorname{div}_{x} A_{I}=0
$$

-The Vlasov-Maxwell system is nonresonant since

$$
|v(\xi)|=\frac{|\xi|}{\sqrt{1+|\xi|^{2}}}<1 \text { for each } \xi \in \mathbf{R}^{3}
$$

(the speed of massive particles is less than the speed of light).
-However, the Vlasov-Maxwell system is not UNIFORMLY nonresonant as $|\xi| \rightarrow+\infty$.
-The only a priori bounds are

$$
\begin{aligned}
&\|f(t)\|_{L_{x, \xi}^{p}}=\text { Const. } \\
& \iint_{\mathbf{R}^{3} \times \mathbf{R}^{3}} \sqrt{1+|\xi|^{2}} f(t, x, \xi) d x d \xi \\
&+\int_{\mathbf{R}^{3}}\left(|E|^{2}+|B|^{2}\right)(t, x) d x=\text { Const. }
\end{aligned}
$$

(in particular, there is no a priori bound on the support of f.)

The Glassey-Strauss theorem (ARMA, 1986)

Theorem. Let $f \in C\left([0, T) \times \mathbf{R}^{3} \times \mathbf{R}^{3}\right)$ and $E, B \in C^{1}\left([0, T) \times \mathbf{R}^{3}\right)$ be a solution of the Vlasov-Maxwell system with $f^{i n} \in C_{c}^{1}\left(\mathbf{R}^{3} \times \mathbf{R}^{3}\right)$ and $E^{i n}, B^{i n} \in C_{c}^{2}\left(\mathbf{R}^{3}\right)$ s.t.

$$
\operatorname{div}_{x} E^{i n}=\int_{\mathbf{R}^{3}} f^{i n} d \xi, \quad \operatorname{div}_{x} B^{i n}=0
$$

If

$$
\varlimsup_{t \rightarrow T^{-}}\|f(t)\|_{L i p_{x, \xi}}+\|(E, B)(t)\|_{L i p_{x}}=+\infty
$$

then

$$
\overline{\lim }_{t \rightarrow T^{-}} R_{f}(t)=+\infty
$$

where

$$
R_{f}(t)=\inf \left\{r>0 \mid f(t, x, \xi)=0 \text { for each } x \in \mathbf{R}^{3} \text { and }|\xi|>r\right\}
$$

- Need to gain 1 derivative on the fields, i.e. 2 derivatives on the gauge potential which is given in terms of momentum-averages of u.
-Assume that

$$
\square_{t, x} u=f, \quad\left(\partial_{t}+v(\xi) \cdot \nabla_{x}\right) f=\operatorname{div}_{\xi} g \quad \text { with } f, g \in L_{l o c}^{2}(d t d x d \xi)
$$

\bullet Classical velocity averaging gives, for each $\phi \in C_{c}^{1}\left(\mathbf{R}^{3}\right)$:

$$
\int_{\mathbf{R}^{3}} f(t, x, \xi) \phi(\xi) d \xi \in H_{l o c}^{1 / 4}\left(\mathbf{R}_{t} \times \mathbf{R}_{x}^{3}\right)
$$

- One gains one more derivative by the energy estimate for the wave equation, so that

$$
\int_{\mathbf{R}^{3}} u(t, x, \xi) \phi(\xi) d \xi \in H_{l o c}^{1+1 / 4}\left(\mathbf{R}_{t} \times \mathbf{R}_{x}^{3}\right)
$$

One gains $1+\frac{1}{4}$ derivatives on momentum-averages of u : NOT ENOUGH

Resonant Velocity Averaging

- In fact one can gain 2 derivatives on momentum-averages of u in the nonresonant case - without gaining more on momentum-averages of f.

Theorem. (Bouchut-G-Pallard, Revistà Mat. Iberoam. 2004) Let f, g in $L_{l o c}^{2}\left(\mathbf{R}_{t} \times \mathbf{R}_{x}^{N} \times \mathbf{R}_{\xi}^{N}\right)$ satisfy

$$
\square_{t, x} u=f, \quad\left(\partial_{t}+v(\xi) \cdot \nabla_{x}\right) f=D_{\xi}^{m} g
$$

where $v \in C^{\infty}\left(\mathbf{R}^{N} ; \mathbf{R}^{N}\right)$ is nonresonant, i.e. satisfies $|v(\xi)|<1$. Then, for each $m \in \mathbf{N}$ and each $\phi \in C_{c}^{\infty}\left(\mathbf{R}_{\xi}^{N}\right)$, one has

$$
\int_{\mathbf{R}^{3}} u(t, x, \xi) \phi(\xi) d \xi \in H_{l o c}^{2}\left(\mathbf{R} \times \mathbf{R}^{N}\right)
$$

-This generalizes the fact that $\square_{t, x}$ acts as an elliptic operator on the nullspace of the transport operator whenever $|v(\xi)|<1$.

- Sketch of proof: Set $T_{\xi}^{ \pm}=\partial_{t} \pm v(\xi) \cdot \nabla_{x}$ and consider the 2nd order differential operator

$$
Q_{\xi}=\square_{t, x}-\lambda T_{\xi}^{-} T_{\xi}^{+}
$$

- First, one checks that

$$
\begin{aligned}
Q_{\xi} u=f-\lambda T_{\xi}^{-} \square_{t, x}^{-1} D_{\xi}^{m} g= & f-\lambda D_{\xi}^{m} \square_{t, x}^{-1} T_{\xi}^{-} g-\lambda \square_{t, x}^{-1}\left[T_{\xi}^{-}, D_{\xi}^{m}\right] g \\
= & f-\lambda D_{\xi}^{m} \square_{t, x}^{-1} T_{\xi}^{-} g-\lambda \square_{t, x}^{-1} D_{\xi}^{m} v(\xi) \cdot \nabla_{x} g \\
& =a+d_{\xi}^{m} b \in L_{l o c}^{2}(d t d x d \xi)+D_{\xi}^{m} L_{l o c}^{2}(d t d x d \xi)
\end{aligned}
$$

-Then we observe that, for $\xi \in \operatorname{supp} \phi$ and λ such that

$$
\sup _{\xi \in \operatorname{supp} \phi}|v(\xi)|<\lambda<1
$$

the operator Q_{ξ} is elliptic for each $\xi \in \operatorname{supp} \phi$.
\bullet More precisely, denoting by $q_{\xi}(\omega, k)$ the symbol of Q_{ξ}, one has

$$
\sup _{\xi \in \operatorname{supp} \phi}\left|D_{\xi}^{m}\left(\frac{1}{q_{\xi}(\omega, k)}\right)\right| \leq \frac{C_{m}}{\omega^{2}+|k|^{2}}
$$

where C_{m} may depends on m but is uniform in ξ.
-Then

$$
\int \widehat{u} \phi(\xi) d \xi=\int \frac{\widehat{a}}{q_{\xi}(\omega, k)} \phi(\xi) d \xi+(-1)^{m} \int D_{\xi}^{m}\left(\frac{\phi(\xi)}{q_{\xi}(\omega, k)}\right) \widehat{b} d \xi
$$

with \hat{a} and $\hat{b} \in L_{\omega, k, \xi}^{2}$ has H^{2}-decay in ω, k. QED

Remarks:

-First, one easily checks that all the assumptions in the Theorem above cannot be dispensed with.
-That one gains 2 derivatives is special to L^{2}, because $\square_{t, x}^{-1}$ gains 1 derivative in (t, x) by the energy estimate for the wave equation.

In L^{p} with $1<p<\infty, \square_{t, x}^{-1}$ gains $1-(N-1)\left|\frac{1}{2}-\frac{1}{p}\right|$ derivatives in (t, x) (Peral, JFA 1980) whenever $\left|\frac{1}{2}-\frac{1}{p}\right| \leq \frac{1}{N-1}$. Using this result and the Mihlin-Hörmander theorem on L^{p} multipliers, the same proof as above shows that
$\int_{\mathbf{R}^{N}} u(t, x, \xi) \phi(\xi) d \xi \in W_{l o c}^{1+\gamma, p}\left(\mathbf{R} \times \mathbf{R}^{N}\right)$ with $\gamma=1-(N-1)\left|\frac{1}{2}-\frac{1}{p}\right|$
This result suggests a gain of 1 derivative in L^{∞} — and in any case does not apply in L^{∞}.

A division lemma

- Let Y be the forward fundamental solution of $\square_{t, x}$, i.e.

$$
\square_{t, x} Y=\delta_{(0,0)}, \quad \operatorname{supp} Y \subset \mathbf{R}_{+} \times \mathbf{R}^{N}
$$

- for instance, in space dimension $N=3$, one has

$$
Y(t, x)=1_{t \geq 0} \frac{\delta(t-|x|)}{4 \pi t}
$$

-Recall that the Lorentz boosts

$$
L_{j}=x_{j} \partial_{t}+t \partial_{x_{j}}, \quad j=1, \ldots, N
$$

commute with the d'Alembertian

$$
\left[\square_{t, x}, L_{j}\right]=0, \text { so that } L_{j} Y=0, \quad j=1, \ldots, N
$$

Lemma. Let $N \geq 2$. For each $\xi \in \mathbf{R}^{N}$, there exists $b_{i j}^{k} \equiv b_{i j}^{k}(t, x, \xi)$ is C^{∞} on $\mathbf{R}^{1+N} \backslash 0$ and homogeneous of degree $-k$ in (t, x) such that
(i) the homogeneous distribution $b_{i j}^{2} Y$ of degree $-1-N$ on $\mathbf{R}^{1+N} \backslash 0$ has null residue at the origin, and
(ii) there exists an extension of $b_{i j}^{2} Y$ as a homogeneous distribution of degree $-1-N$ on $\mathbf{R}^{1+N} \backslash 0$, still denoted $b_{i j}^{2} Y$, that satisfies

$$
\partial_{i j} Y=T^{2}\left(b_{i j}^{0} Y\right)+T\left(b_{i j}^{1} Y\right)+b_{i j}^{2} Y, \quad i, j=0, \ldots, N .
$$

Here T is the advection operator $T=\partial_{t}+v(\xi) \cdot \nabla_{x}$.
-The null residue condition reads

$$
\begin{aligned}
\int_{\mathbf{S}^{2}} b_{i j}^{2}(1, y) d \sigma(y)=0 & \text { if } N=3 \\
\int_{|y| \leq 1} b_{i j}^{2}(1, y) \frac{d y}{\sqrt{1-|y|^{2}}}=0 & \text { if } N=2
\end{aligned}
$$

- Next we use the above lemma to estimate the derivatives of the fields

$$
\partial_{i j} \int m(\xi) u(t, x, \xi) d \xi=\sum_{k=0}^{2} \int m(\xi)\left(b_{i j}^{k-l} Y \star T^{l}\left(1_{t \geq 0} f\right)(t, x, \xi)\right) d \xi
$$

Here, m denotes any C^{∞} function with compact support that coincides with either 1 or each component of $v(\xi)$ on the ξ-support of f.

The idea is to use the Vlasov equation to compute $T^{l}\left(\mathbf{1}_{t \geq 0} f\right)$ and integrate by parts to bring the ξ-derivatives to bear on $b_{i j}^{k-l}$ and m.
-Worst term is for $l=0$:

$$
\int m(\xi)\left(b_{i j}^{2} Y \star\left(\mathbf{1}_{t \geq 0} f\right)(t, x, \xi)\right) d \xi
$$

By using the null residue condition, write this term as

$$
\begin{array}{r}
\int m(\xi) \int_{\epsilon}^{t} \int_{\mathbf{S}^{2}} b_{i j}^{2}(1, \omega, \xi) f(t-s, x-s \omega, \xi) \frac{d \sigma(\omega)}{4 \pi s} d s d \xi \\
+\int m(\xi) \int_{0}^{\epsilon} \int_{\mathbf{S}^{2}} b_{i j}^{2}(1, \omega, \xi) \frac{f(t-s, x-s \omega, \xi)-f(t, x, \omega)}{4 \pi s} d \sigma(\omega) d s d \xi
\end{array}
$$

- If the size $R_{f}(t)$ of the ξ-support of f is bounded on $[0, T)$, i.e. if $\overline{\mathrm{lim}}_{t \rightarrow T^{-}} R_{f}(t)<+\infty$, this term is bounded by

$$
C\left(1+\ln { }_{+}\left(t\left\|\nabla_{x} f\right\|_{L^{\infty}}\right)\right)
$$

- Hence, the Lipschitz semi-norm $N(t)=\left\|\nabla_{x, \xi} f(t, \cdot \cdot \cdot)\right\|_{L^{\infty}}$ satisfies a logarithmic Gronwall inequality

$$
N(t) \leq N(0)+\int_{0}^{t}(1+\ln +N(s)) N(s) d s, \quad t \in[0, T) .
$$

Therefore N is uniformly bounded on $[0, T]$, which implies in turn that the fields $(E, B) \in L^{\infty}\left(0, T ; W^{1, \infty}\left(\mathbf{R}^{3}\right)\right)$.

