Hydrodynamic Limits for the Boltzmann Equation

François Golse
Université Paris 7 \& Laboratoire J.-L. Lions golse@math.jussieu.fr

Academia Sinica, Taipei, December 2004

LECTURE 2

FORMAL INCOMPRESSIBLE HYDRODYNAMIC LIMITS

Dimensionless form of the Boltzmann equation

-Choose macroscopic scales of time T and length L, and a reference temperature Θ; this defines 2 velocity scales:

$$
V=\frac{L}{T} \text { (macroscopic velocity) }, \quad \text { and } c=\sqrt{\Theta} \text { (thermal speed) }
$$

Finally, set \mathcal{N} to be the total number of particles.
-Define dimensionless time, position, and velocity variables by

$$
\widehat{t}=\frac{t}{T}, \quad \widehat{x}=\frac{x}{L}, \quad \widehat{v}=\frac{v}{c}
$$

and a dimensionless number density

$$
\widehat{F}(\hat{t}, \widehat{x}, \widehat{v})=\frac{L^{3} c^{3}}{\mathcal{N}} F(t, x, v)
$$

- One finds that

$$
\frac{L}{c T} \partial_{\hat{t}} \widehat{F}+\widehat{v} \cdot \nabla_{\widehat{x}} \widehat{F}=\frac{\mathcal{N} r^{2}}{L^{2}} \iint\left(\widehat{F}^{\prime} \widehat{F}_{*}^{\prime}-\widehat{F} \widehat{F}_{*}\right)\left|\left(\widehat{v}-\widehat{v}_{*}\right) \cdot \omega\right| d \omega d \widehat{v}_{*}
$$

-The pre-factor multiplying the collision integral is

$$
L \times \frac{\mathcal{N} r^{2}}{L^{3}}=\frac{L}{\pi \times \text { mean free path }}=\frac{1}{\pi \mathrm{Kn}}
$$

-The pre-factor multiplying the time derivative is

$$
\frac{\frac{1}{T} \times L}{c}=\mathrm{St}, \quad \text { (kinetic Strouhal number) }
$$

$$
\operatorname{St}_{\hat{t}} \widehat{F}+\widehat{v} \cdot \nabla_{\widehat{x}} \widehat{F}=\frac{1}{\pi \mathrm{Kn}} \iint_{\mathbf{R}^{3} \times \mathbf{S}^{2}}\left(\widehat{F}^{\prime} \widehat{F}_{*}^{\prime}-\widehat{F} \widehat{F}_{*}\right)\left|\left(\widehat{v}-\widehat{v}_{*}\right) \cdot \omega\right| d \omega d \widehat{v}_{*}
$$

Compressible Euler scaling

-This limit corresponds to $\mathrm{St}=1$ and $\pi \mathrm{Kn}=: \epsilon \ll 1$, leading to the singular perturbation problem
$\partial_{t} F_{\epsilon}+v \cdot \nabla_{x} F_{\epsilon}=\frac{1}{\epsilon} \mathcal{B}\left(F_{\epsilon}, F_{\epsilon}\right)=\frac{1}{\epsilon} \iint\left(F_{\epsilon}^{\prime} F_{\epsilon *}^{\prime}-F_{\epsilon} F_{\epsilon *}\right)\left|\left(v-v_{*}\right) \cdot \omega\right| d \omega d v_{*}$

- One expects that, as $\epsilon \rightarrow 0, F_{\epsilon} \rightarrow F$ and $\mathcal{B}\left(F_{\epsilon}, F_{\epsilon}\right) \rightarrow \mathcal{B}(F, F)=0$; hence $F(t, x, \cdot)$ is a Maxwellian for all (t, x), i.e.

$$
F(t, x, v)=\mathcal{M}_{(\rho(t, x), u(t, x), \theta(t, x))}(v)=\frac{\rho(t, x)}{(2 \pi \theta(t, x))^{3 / 2}} e^{-\frac{|v-u(t, x)|^{2}}{2 \theta(t, x)}}
$$

In other words, F is a local Maxwellian equilibrium.
-Problem: to find the governing equations for $\rho(t, x), u(t, x)$ and $\theta(t, x)$.

Formal Euler limit by the moment method

-Let $F^{i n}=\mathcal{M}_{\left(\rho^{i n}, u^{i n}, \theta^{i n}\right)}$ be such that $H\left(F^{i n} \mid M\right)<+\infty$; let F_{ϵ} be a renormalized solution relative to $M=\mathcal{M}_{(1,0,1)}$ of the Boltzmann equation in the compressible Euler scaling

$$
\text { St }=1, \text { and } \pi \mathrm{Kn}=\epsilon
$$

-Assume that F_{ϵ} satisfies the local conservation laws of momentum and energy and the local H Theorem, and that

$$
\begin{gathered}
F_{\epsilon} \rightarrow F \text { a.e., in } L_{l o c}^{1}\left(d t d x ; L^{1}\left(\left(1+|v|^{3}\right) d v\right)\right) \text { as } \epsilon \rightarrow 0 \\
\text { and in } L \ln L_{l o c}(d t d x ; L \ln L((1+|v|) d v))
\end{gathered}
$$

Theorem. (C. Bardos-F.G. C.R. Acad. Sci. 1984) Then $F=\mathcal{M}_{(\rho, u, \theta)}$, where (ρ, u, θ) is an entropic solution to the compressible Euler system for perfect gases with $\left.(\rho, u, \theta)\right|_{t=0}=\left(\rho^{i n}, u^{i n}, \theta^{i n}\right)$

Proof:

- Step 1: The H Theorem implies that F is a local Maxwellian i.e. is of the form $F(t, x, v)=\mathcal{M}_{(\rho(t, x), u(t, x), \theta(t, x))}(v)$: indeed

$$
\int_{0}^{+\infty} \iint \mathcal{B}\left(F_{\epsilon}, F_{\epsilon}\right) \ln F_{\epsilon} d v d x d t \leq \epsilon H\left(F^{i n} \mid M\right) \rightarrow 0
$$

as $\epsilon \rightarrow 0$; hence, by Fatou's lemma

$$
\int_{0}^{+\infty} \iint \mathcal{B}(F, F) \ln F d v d x d t=0
$$

- Step 2: Passing to the limit in the local conservation laws + the entropy differential inequality leads to the system of conservation laws for (ρ, u, θ) with entropy condition

$$
\begin{aligned}
\partial_{t} \int_{\mathbf{R}^{3}} \mathcal{M}_{(\rho, u, \theta)} d v+\operatorname{div}_{x} \int_{\mathbf{R}^{3}} v \mathcal{M}_{(\rho, u, \theta)} d v & =0 \\
\partial_{t} \int_{\mathbf{R}^{3}} v \mathcal{M}_{(\rho, u, \theta)} d v+\operatorname{div}_{x} \int_{\mathbf{R}^{3}} v^{\otimes 2} \mathcal{M}_{(\rho, u, \theta)} d v & =0 \\
\partial_{t} \int_{\mathbf{R}^{3}} \frac{1}{2}|v|^{2} \mathcal{M}_{(\rho, u, \theta)} d v+\operatorname{div}_{x} \int_{\mathbf{R}^{3}} v \frac{1}{2}|v|^{2} \mathcal{M}_{(\rho, u, \theta)} d v & =0
\end{aligned}
$$

as well as the differential inequality

$$
\partial_{t} \int_{\mathbf{R}^{3}} \mathcal{M}_{(\rho, u, \theta)} \ln \mathcal{M}_{(\rho, u, \theta)} d v+\operatorname{div}_{x} \int_{\mathbf{R}^{3}} v \mathcal{M}_{(\rho, u, \theta)} \ln \mathcal{M}_{(\rho, u, \theta)} d v \leq 0
$$

-The following formulas for the moments of a Maxwellian

$$
\begin{gathered}
\int \mathcal{M}_{(\rho, u, \theta)} d v=\rho, \quad \int v \mathcal{M}_{(\rho, u, \theta)} d v=\rho u \\
\int v^{\otimes 2} \mathcal{M}_{(\rho, u, \theta)} d v=\rho\left(u^{\otimes 2}+\theta I\right), \quad \int \frac{1}{2}|v|^{2} \mathcal{M}_{(\rho, u, \theta)} d v=\frac{1}{2} \rho\left(|u|^{2}+3 \theta\right) \\
\int v \frac{1}{2}|v|^{2} \mathcal{M}_{(\rho, u, \theta)} d v=\frac{1}{2} \rho u\left(|u|^{2}+5 \theta\right)
\end{gathered}
$$

and for its entropy and entropy flux

$$
\begin{aligned}
\int \mathcal{M}_{(\rho, u, \theta)} \ln \mathcal{M}_{(\rho, u, \theta)} d v & =\rho \ln \left(\frac{\rho}{(2 \pi \theta)^{3 / 2}}\right)-\frac{3}{2} \rho \\
\int v \mathcal{M}_{(\rho, u, \theta)} \ln \mathcal{M}_{(\rho, u, \theta)} d v & =\rho u \ln \left(\frac{\rho}{(2 \pi \theta)^{3 / 2}}\right)-\frac{3}{2} \rho u
\end{aligned}
$$

show that (ρ, u, θ) is an admissible (entropic) solution of Euler's system.

The incompressible Navier-Stokes limit

-This limit holds under the scaling assumption on the Boltzmann equation

$$
\mathrm{St}=\pi \mathrm{Kn}=\epsilon \ll 1
$$

-Moreover, the number density should correspond to a flow with small Mach number

$$
\mathrm{Ma}=\epsilon
$$

Example: $F_{\epsilon}(t, x, v)=\mathcal{M}_{(1, \epsilon u(t, x), 1)}(v)$

- More generally, the number density should be a fluctuation of order ϵ about a uniform Maxwellian state

$$
F_{\epsilon}(t, x, v)=\mathcal{M}_{(1,0,1)}(v)+\epsilon f(t, x, v)
$$

Formal derivation of the incompressible Navier-Stokes equations

following a moment method due to C. Bardos-F.G.-D. Levermore (C.R. Acad. Sci. 1988)

- Introduce the relative number density fluctuation g_{ϵ} :

$$
g_{\epsilon}(t, x, v)=\frac{F_{\epsilon}(t, x, v)-M(v)}{\epsilon M(v)}, \quad \text { where } M(v)=\frac{1}{(2 \pi)^{3 / 2}} e^{-\frac{|v|^{2}}{2}}
$$

- In terms of g_{ϵ}, the Boltzmann equation becomes

$$
\epsilon \partial_{t} g_{\epsilon}+v \cdot \nabla_{x} g_{\epsilon}+\frac{1}{\epsilon} \mathcal{L} g_{\epsilon}=\mathcal{Q}\left(g_{\epsilon}, g_{\epsilon}\right)
$$

where the linearized collision operator \mathcal{L} and \mathcal{Q} are defined by

$$
\mathcal{L} g=-2 M^{-1} \mathcal{B}(M, M g), \quad \mathcal{Q}(g, g)=M^{-1} \mathcal{B}(M g, M g)
$$

Lemma. (Hilbert, Math. Ann. 1912) The operator \mathcal{L} is self-adjoint, Fredholm, unbounded on $L^{2}\left(\mathbf{R}^{3} ; M d v\right)$ with domain $L^{2}\left(\mathbf{R}^{3} ;(1+|v|) M d v\right)$ and nullspace $\operatorname{ker} \mathcal{L}=\operatorname{span}\left\{1, v_{1}, v_{2}, v_{3},|v|^{2}\right\}$

1. Asymptotic fluctuations

-Multiplying the Boltzmann equation by ϵ and letting $\epsilon \rightarrow 0$ suggests that

$$
g_{\epsilon} \rightarrow g \quad \text { with } \mathcal{L} g=0
$$

By Hilbert's lemma, g is an infinitesimal Maxwellian, i.e. is of the form

$$
g(t, x, v)=\rho(t, x)+u(t, x) \cdot v+\frac{1}{2} \theta(t, x)\left(|v|^{2}-3\right)
$$

Notice that g is parametrized by its own moments, since

$$
\rho=\langle g\rangle, \quad u=\langle v g\rangle, \quad \text { and } \theta=\left\langle\left(\frac{1}{3}|v|^{2}-1\right) g\right\rangle
$$

-NOTATION:

$$
\langle\phi\rangle=\int_{\mathbf{R}^{3}} \phi(v) M(v) d v
$$

2. Local conservation laws

-The continuity equation (local conservation of mass) reads

$$
\epsilon \partial_{t}\left\langle g_{\epsilon}\right\rangle+\operatorname{div}_{x}\left\langle v g_{\epsilon}\right\rangle=0, \quad \text { and thus } \operatorname{div}_{x}\langle v g\rangle=\operatorname{div}_{x} u=0
$$

which is the incompressibility condition in the Navier-Stokes equations.
-The local conservation of momentum takes the form

$$
\epsilon \partial_{t}\left\langle v g_{\epsilon}\right\rangle+\operatorname{div}_{x}\left\langle v \otimes v g_{\epsilon}\right\rangle=0
$$

Recall the incompressible Navier-Stokes motion equation

$$
\partial_{t} u+u \cdot \nabla_{x} u-\nu \Delta_{x} u=-\nabla_{x} p
$$

that involves the term $\nabla_{x} p$ as the Lagrange multiplier associated to the constraint $\operatorname{div}_{x} u=0$. Accordingly, split

$$
v \otimes v=\left(v \otimes v-\frac{1}{3}|v|^{2} I\right)+\frac{1}{3}|v|^{2} I
$$

so that the local conservation of momentum is recast as

$$
\left.\epsilon \partial_{t}\left\langle v g_{\epsilon}\right\rangle+\operatorname{div}_{x}\left\langle A g_{\epsilon}\right\rangle+\left.\nabla_{x}\left\langle\frac{1}{3}\right| v\right|^{2} g_{\epsilon}\right\rangle=0
$$

where

$$
A(v)=v \otimes v-\frac{1}{3}|v|^{2} I ; \text { notice that } A \perp \operatorname{ker} \mathcal{L}
$$

-Passing to the limit in the local conservation of momentum above:

$$
\left.\operatorname{div}_{x}\langle A g\rangle+\left.\nabla_{x}\left\langle\frac{1}{3}\right| v\right|^{2} g\right\rangle=0
$$

where g is a local Maxwellian:

$$
g(t, x, v)=\rho(t, x)+u(t, x) \cdot v+\theta(t, x) \frac{1}{2}\left(|v|^{2}-3\right)
$$

In other words, $g(t, x, \cdot) \in \operatorname{ker} \mathcal{L}$ so that

$$
\left.\langle A g\rangle=0, \quad \text { and thus }\left.\nabla_{x}\left\langle\frac{1}{3}\right| v\right|^{2} g\right\rangle=\nabla_{x}(\rho+\theta)=0
$$

If $g \in L^{\infty}\left(\mathbf{R}_{+} ; L^{2}\left(\mathbf{R}^{3} ; M d v d x\right)\right)$, this entails the Boussinesq relation

$$
\rho+\theta=0, \quad \text { so that } g(t, x, v)=u(t, x) \cdot v+\theta(t, x) \frac{1}{2}\left(|v|^{2}-5\right)
$$

- It remains to derive the Navier-Stokes motion equation. Start from the local conservation of momentum in the form

$$
\left.\partial_{t}\left\langle v g_{\epsilon}\right\rangle+\operatorname{div}_{x} \frac{1}{\epsilon}\left\langle A g_{\epsilon}\right\rangle+\left.\nabla_{x} \frac{1}{\epsilon}\left\langle\frac{1}{3}\right| v\right|^{2} g_{\epsilon}\right\rangle=0
$$

-Fredholm's alternative $\Rightarrow A=\mathcal{L} \widehat{A}$ for some $\widehat{A} \perp \operatorname{ker} \mathcal{L}$; thus

$$
\begin{aligned}
\frac{1}{\epsilon}\left\langle A g_{\epsilon}\right\rangle=\left\langle\hat{A} \frac{1}{\epsilon} \mathcal{L} g_{\epsilon}\right\rangle & =\left\langle\hat{A} \mathcal{Q}\left(g_{\epsilon}, g_{\epsilon}\right)\right\rangle-\left\langle\widehat{A}\left(\epsilon \partial_{t}+v \cdot \nabla_{x}\right) g_{\epsilon}\right\rangle \\
& \rightarrow\langle\widehat{A} \mathcal{Q}(g, g)\rangle-\left\langle\widehat{A} v \cdot \nabla_{x} g\right\rangle
\end{aligned}
$$

- Since g is an infinitesimal Maxwellian, using the incompressibility condition and Boussinesq's relation shows that

$$
\begin{aligned}
\left\langle\widehat{A} v \cdot \nabla_{x} g\right\rangle & =\frac{1}{2}\langle\hat{A} \otimes A\rangle: D(u)+\left\langle\hat{A} \otimes \frac{1}{2}\left(|v|^{2}-3\right) v\right\rangle \cdot \nabla_{x} \theta \\
& =\frac{1}{2}\langle\widehat{A} \otimes A\rangle: D(u) \text { since } \hat{A} \text { is even }
\end{aligned}
$$

where $D(u)=\nabla_{x} u+\left(\nabla_{x} u\right)^{T}$ is the deformation tensor of u.

Lemma. For each $g \in \operatorname{ker} \mathcal{L}$, one has $\mathcal{Q}(g, g)=\frac{1}{2} \mathcal{L}\left(g^{2}\right)$
Proof: Differentiate twice the relation $\mathcal{B}\left(\mathcal{M}_{(\rho, u, \theta)}, \mathcal{M}_{(\rho, u, \theta)}\right)=0$.

- Hence one has
$\langle\hat{A} \mathcal{Q}(g, g)\rangle=\frac{1}{2}\left\langle\hat{A} \mathcal{L}\left(g^{2}\right)\right\rangle=\frac{1}{2}\left\langle A g^{2}\right\rangle=\frac{1}{2}\langle A \otimes A\rangle:\left(u \otimes u-\frac{1}{3}|u|^{2} I\right)$
-Straightforward computations on Gaussian integrals give

$$
\begin{aligned}
& \left\langle A_{i j} A_{k l}\right\rangle=\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}-\frac{2}{3} \delta_{i j} \delta_{k l} \\
& \left\langle\widehat{A}_{i j} A_{k l}\right\rangle=\nu\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}-\frac{2}{3} \delta_{i j} \delta_{k l}\right)
\end{aligned}
$$

so that

$$
\frac{1}{\epsilon}\left\langle A g_{\epsilon}\right\rangle \rightarrow\left(u \otimes u-\frac{1}{3}|u|^{2} I\right)-\nu D(u)
$$

-Substituting this relation in the local conservation of momentum

$$
\left.\partial_{t}\left\langle v g_{\epsilon}\right\rangle+\operatorname{div}_{x} \frac{1}{\epsilon}\left\langle A g_{\epsilon}\right\rangle+\left.\nabla_{x} \frac{1}{\epsilon}\left\langle\frac{1}{3}\right| v\right|^{2} g_{\epsilon}\right\rangle=0
$$

and passing to the limit shows that

$$
\partial_{t} u+\operatorname{div}_{x}(u \otimes u)-\nu \Delta_{x} u=0 \text { modulo gradients }
$$

which is precisely the Navier-Stokes motion equation (since $\operatorname{div}_{x} u=0$, one has $\operatorname{div}_{x}(u \otimes u)=u \cdot \nabla_{x} u$ and $\left.\operatorname{div}_{x} D(u)=\Delta_{x} u\right)$.
-The relation above for $\left\langle\widehat{A}_{i j} A_{k l}\right\rangle$ shows that

$$
\nu=\frac{1}{10}\langle\widehat{A}: A\rangle=\frac{1}{10}\langle\widehat{A}: \mathcal{L} \widehat{A}\rangle>0
$$

since $\mathcal{L} \geq 0$ and $\widehat{A} \perp \operatorname{ker} \mathcal{L}$.

Other limits

-From Boltzmann to incompressible Euler: the scaling is

$$
\mathrm{St}=\mathrm{Ma}=\epsilon \ll 1, \quad \pi \mathrm{Kn}=\epsilon^{a} \text { with } a>1
$$

i.e. one seeks solutions of the scaled Boltzmann equation

$$
\epsilon \partial_{t} F_{\epsilon}+v \cdot \nabla_{x} F_{\epsilon}=\frac{1}{\epsilon^{a}} \mathcal{B}\left(F_{\epsilon}, F_{\epsilon}\right)
$$

in the form

$$
F_{\epsilon}=\mathcal{M}_{(1,0,1)}+\epsilon f_{\epsilon}
$$

-Formal argument by C. Bardos-F.G.-D. Levermore (J. Stat. Phys. 1991)
-Proof with dissipative solutions of Euler by L. Saint-Raymond (Arch. Rat. Mech. Anal. 2002)

- From Boltzmann to Stokes: the scaling is

$$
\mathrm{St}=\pi \mathrm{Kn}=\epsilon \ll 1, \quad \mathrm{Ma}=\epsilon^{a} \text { with } a>1
$$

i.e. one seeks solutions of the scaled Boltzmann equation

$$
\epsilon \partial_{t} F_{\epsilon}+v \cdot \nabla_{x} F_{\epsilon}=\frac{1}{\epsilon} \mathcal{B}\left(F_{\epsilon}, F_{\epsilon}\right)
$$

in the form

$$
F_{\epsilon}=\mathcal{M}_{(1,0,1)}+\epsilon^{a} f_{\epsilon}
$$

-Formal argument by C. Bardos-F.G.-D. Levermore (J. Stat. Phys. 1991)
-Proof by F.G.-D. Levermore (Comm. Pure Appl. Math. 2002)
-From Boltzmann to the acoustic system: the scaling is

$$
\mathrm{St}=1, \quad \pi \mathrm{Kn}=\epsilon
$$

i.e. one seeks solutions of the scaled Boltzmann equation

$$
\partial_{t} F_{\epsilon}+v \cdot \nabla_{x} F_{\epsilon}=\frac{1}{\epsilon} \mathcal{B}\left(F_{\epsilon}, F_{\epsilon}\right)
$$

in the form

$$
F_{\epsilon}=\mathcal{M}_{(1,0,1)}+\epsilon^{c} f_{\epsilon}, \text { with } c>0
$$

\bullet Proof by F.G.-D. Levermore (Comm. Pure Appl. Math. 2002) for $c>\frac{1}{2}$

