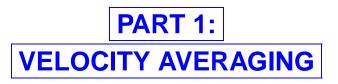
Hydrodynamic Limits for the Boltzmann Equation

François Golse Université Paris 7 & Laboratoire J.-L. Lions golse@math.jussieu.fr

Academia Sinica, Taipei, December 2004



Fundamental formulas for the transport equation

•The solution to the Cauchy problem

 $\partial_t f + v \cdot \nabla_x f + a(t, x) f = S(t, x), \quad f\Big|_{t=0} = f^{in}(x), \quad t > 0, \ x \in \mathbf{R}^D$ with initial data $f^{in} \equiv f^{in}(x)$, source term *S*, amplification/absorption rate *a*, and unknown $f \equiv f(t, x)$ is given by

$$f(t,x) = f^{in}(x-tv) \exp\left(-\int_0^t a(t-s,x-sv)ds\right) + \int_0^t S(t-s,x-sv) \exp\left(-\int_0^s a(t-\sigma,x-\sigma v)d\sigma\right)ds$$

• Method of characteristics: solve as a linear ODE in the variable t

$$\frac{d}{dt}f(t,z+tv) + a(t,z+tv)f(t,z+tv) = S(t,z+tv)$$

and set z = x - tv.

•Stationary case: for each p > 0, the solution to

$$pf + v \cdot \nabla_x f + a(x)f = S(x), \quad x \in \mathbf{R}^D$$

where *a* is the amplification/absorption rate, *S* the source term, and with unknown $f \equiv f(x)$ is given by the formula

$$f(x) = \int_0^{+\infty} S(x - tv) \exp\left(-pt - \int_0^t a(x - sv)ds\right) dt$$

• Proof: Apply the Laplace transform to the evolution problem

$$\partial_t \phi + v \cdot \nabla_x \phi + a\phi = 0, \quad \phi \Big|_{t=0} = S$$

with

$$f(x) = \int_0^{+\infty} e^{-pt} \phi(t, x) dt \Rightarrow \int_0^{+\infty} e^{-pt} \partial_t \phi(t, x) dt = pf(x) - S(x)$$

Velocity Averaging in L^2

•<u>Setting</u>: let *m* be a finite, positive Radon measure on \mathbb{R}^D such that (*GC*₀) m(H) = 0 for any hyperplane $H \ni 0$

Theorem. (G.-Perthame-Sentis, CRAS 1985) Let \mathcal{F} be a bounded subset of $L^2(\mathbf{R}^D_x \times \mathbf{R}^D_v; dx \otimes dm(v))$ such that

 $\{v \cdot
abla_x f \,|\, f \in \mathcal{F}\}$ is bounded in $L^2(\mathbf{R}^D_x imes \mathbf{R}^D_v; dx \otimes dm(v))$

Then the set of velocity averages

$$\left\{\int_{\mathbf{R}^D} f(x,v) dm(v) \,\middle|\, f \in \mathcal{F}\right\}$$
 is relatively compact in $L^2_{loc}(\mathbf{R}^D_x; dx)$

•Earlier regularity remarks reported by Agoshkov (Dokl. AN 1984); general and systematic regularity results in G.-Lions-Perthame-Sentis (JFA 1988)

Velocity Averaging for Evolution Problems

•Set
$$z = (t, x) \in \mathbf{R} imes \mathbf{R}^D$$
, $w = (u, v) \in \mathbf{R} imes \mathbf{R}^D$ and $\mu = \delta_{u=1} \otimes m$

•If
$$f(t, x, v) = F(t, x, u, v)\Big|_{u=1}$$
, then
 $w \cdot \nabla_z F \in L^2((\mathbf{R} \times \mathbf{R}^D) \times (\mathbf{R} \times \mathbf{R}^D); dt dx \otimes d\mu)$

is equivalent to

$$\partial_t f + v \cdot \nabla_x f \in L^2(\mathbf{R} \times \mathbf{R}^D \times \mathbf{R}^D; dt dx dm(v))$$

•The homogeneous geometric condition (GC_0) on μ is equivalent to the following <u>affine</u> geometric condition on m:

 (GC_a) m(H) = 0 for any affine hyperplane $H \subset \mathbf{R}^D$

Theorem. Assume that m satisfies (GC_a) . Let \mathcal{F} be a bounded subset of $L^2(\mathbf{R}^D_x \times \mathbf{R}^D_v, dxdm(v))$ and assume that \mathcal{G} is a bounded subset of $L^2(\mathbf{R}_+ \times \mathbf{R}^D_x \times \mathbf{R}^D_v, dtdxdm(v))$.

For each $f^{in} \in \mathcal{F}$ and each $g \in \mathcal{G}$, let f be the solution of

$$\partial_t f + v \cdot \nabla_x f = g, \quad f\Big|_{t=0} = f^{in}$$

Then, the set of velocity averages

$$\left\{\int_{\mathbf{R}^D} f(t,x,v) dm(v) \,\middle|\, f^{in} \in \mathcal{F} \text{ and } g \in \mathcal{G}
ight\}$$

is relatively compact in $L^2_{loc}(\mathbf{R}_+ \times \mathbf{R}^D_x; dtdx)$

Proof of Velocity Averaging in L^2

•Rellich's compactness lemma: let \mathcal{G} be a bounded subset of $L^2(\mathbb{R}^D)$. The set \mathcal{G} is relatively compact in $L^2_{loc}(\mathbb{R}^D)$ iff

$$\int_{|\xi|>R} |\widehat{g}(\xi)|^2 d\xi \to 0$$
 as $R \to +\infty$ uniformly in $g \in \mathcal{G}$

• Notation We denote by \hat{g} the Fourier transform of g:

$$\hat{g}(\xi) = \int e^{-i\xi \cdot x} g(x) dx$$
 for each $g \in L^1 \cap L^2(\mathbf{R}^D)$

•By Plancherel's theorem, the assumptions of the theorem are translated into

 $\{\hat{f} | f \in \mathcal{F}\}\$ and $\{(v \cdot \xi)\hat{f} | f \in \mathcal{F}\}\$ are bounded in $L^2(d\xi \otimes dm(v))$ where $\hat{f}(\xi, v)$ is the Fourier transform of f in the x-variable:

$$\widehat{f}(\xi, v) = \int e^{-i\xi \cdot x} f(x, v) dx$$

Equivalently

$$\{\phi = (1 + iv \cdot \xi)\hat{f} \mid f \in \mathcal{F}\}\$$
 is bounded in $L^2(d\xi \otimes dm(v))$

•Denote

$$\rho(x) = \int f(x,v) dm(v), \quad \text{so that} \quad \widehat{\rho}(\xi) = \int \frac{\widehat{\phi}(\xi,v) dm(v)}{1 + i\xi \cdot v}$$

By Cauchy-Schwarz,

$$|\hat{\rho}(\xi)|^2 \leq \Lambda\left(|\xi|, \frac{\xi}{|\xi|}\right) \int |\hat{g}(\xi, v)|^2 dm(v)$$

where

$$\Lambda(r,\omega) = \int \frac{dm(v)}{\sqrt{1 + r^2(v \cdot \omega)^2}}$$

•Since $m(\{v \cdot \omega = 0\}) = 0$ for each unit vector ω ,

$$\Lambda(r,\omega) o 0$$
 as $r \to +\infty$, pointwise in $\omega \in \mathbf{S}^{D-1}$.

•Moreover, $\Lambda(r, \cdot)$ is continuous on the unit sphere, and $\Lambda(r, \omega) \downarrow 0$ as $r \to +\infty$; by Dini's theorem,

$$\Lambda(r,\omega) \to 0 \text{ as } r \to +\infty, \quad \text{uniformly in } \omega \in \mathbf{S}^{D-1}$$

•Then $\int_{|\xi|>R} |\hat{\rho}(\xi)|^2 d\xi \leq \sup_{|\omega|=1} \Lambda(R,\omega) \iint |g(\xi,v)|^2 d\xi dm(v) \to 0$ as $R \to +\infty$ uniformly in g as f runs through \mathcal{F}

and conclude by Rellich's compactness lemma.

Weak compactness in L^1

•A sequence of functions f_n in $L^1(\mathbf{R}^N)$ converges weakly to f iff

$$\int_{\mathbf{R}^N} f_n(x)\phi(x)dx o \int_{\mathbf{R}^N} f(x)\phi(x)dx$$
, for all $\phi \in L^\infty(\mathbf{R}^N)$

•A bounded subset of $L^1(\mathbb{R}^N)$ may not be weakly relatively compact:

a) there may be concentrations ($||f_n||_{L^1} = 1$ and $f_n \rightharpoonup \delta_0$ in the sense of Radon measures)

b) there maybe vanishing at infinity $(||f_n||_{L^1} = 1 \text{ and } f|_{|x| \le R} \to 0 \text{ in } L^1$ for each R > 0)

•<u>Exercise</u>: it may even happen that $||f_n||_{L^1} = 1$, that $f_n \rightharpoonup f \in L^1$ in the sense of Radon measures but NOT in the weak L^1 topology.

•<u>Dunford-Pettis Theorem</u>: a bounded subset $\mathcal{F} \subset L^1(\mathbb{R}^N)$ is relatively compact for the weak topology of L^1 iff

• \mathcal{F} is uniformly integrable:

$$\int_{A} |f(z)| dz \to 0 \text{ as } |A| \to 0 \text{ UNIFORMLY IN } f \in \mathcal{F}$$

• \mathcal{F} is tight:

$$\int_{|z|>R} |f(z)|dz \to 0 \text{ as } R \to +\infty \text{ UNIFORMLY IN } f \in \mathcal{F}$$

 $\bullet Equivalently, \ensuremath{\mathcal{F}}$ is uniformly integrable iff

$$\int_{|f(z)|>c} |f(z)| dz o 0$$
 as $c o +\infty$ UNIFORMLY IN $f \in \mathcal{F}$

•<u>De La Vallée-Poussin Criterion</u>: \mathcal{F} is uniformly integrable iff there exists a function $H : \mathbf{R}_+ \to \mathbf{R}_+$ satisfying

$$\frac{H(r)}{r} \to +\infty \text{ as } r \to +\infty$$

and such that

$$\sup_{f\in\mathcal{F}}\int H(f(z))dz<+\infty$$

•Example: as a function H, one can choose $H(r) = r(\ln r)_+$; in the context of the kinetic theory of gases, an entropy bound implies the uniform integrability of the number densities.

Velocity Averaging in L^1 -1

Theorem. Let $\mathcal{F} \subset L^1(\mathbb{R}^D \times \mathbb{R}^D; dxdv)$ be weakly relatively compact and such that $\{v \cdot \nabla_x f \mid f \in \mathcal{F}\}$ is bounded in L^1 and uniformly integrable. Then the set

$$\left\{ \int f(x,v) dv \, \Big| \, f \in \mathcal{F} \right\}$$
 is relatively compact in $L^1(\mathbf{R}^D)$

Theorem. Let $\mathcal{F} \subset L^1([0,T] \times \mathbb{R}^D \times \mathbb{R}^D; dtdxdv)$ be weakly relatively compact and such that $\{\partial_t f + v \cdot \nabla_x f \mid f \in \mathcal{F}\}$ is bounded in L^1 and uniformly integrable. Then the set

$$\left\{ \int f(t, x, v) dv \, \middle| \, f \in \mathcal{F} \right\}$$
 is relatively compact in $L^1([0, T] \times \mathbf{R}^D)$

•Both theorems were proved in G.-Lions-Perthame-Sentis (JFA 1988)

<u>Proof</u>: By Dunford-Pettis, \mathcal{F} is tight, and therefore one can assume WLOG that all the functions in \mathcal{F} are supported in $\{|x| + |v| < r\}$ modulo a small error in L^1 norm.

•Consider the resolvent of the transport operator: for $\lambda > 0$, we define $R_{\lambda} = (\lambda I + v \cdot \nabla_x)^{-1}$ by the formula

$$R_{\lambda}S(x,v) = \int_{0}^{+\infty} e^{-\lambda t} S(x-tv,v) dt$$

(i.e. $R_{\lambda}S$ is the solution $f \equiv f(x, v)$ of $\lambda f + v \cdot \nabla_x f = S$).

One checks that

$$\|R_{\lambda}S\|_{L^{p}} \leq \int_{0}^{+\infty} e^{-\lambda t} \|S(x-tv,v)\|_{L^{p}_{x,v}} dt$$

= $\|S\|_{L^{p}} \int_{0}^{+\infty} e^{-\lambda t} dt = \frac{\|S\|_{L^{p}}}{\lambda}$

•Let *E* be a Banach space, and $H \subset E$. To check that *H* is relatively compact in *E*, check that

for each $\epsilon > 0$, there exists $K_{\epsilon} \subset \mathbb{C} E$ s.t. $H \subset K_{\epsilon} + B(0, \epsilon)$

•By assumption, $\mathcal{G} = \{g = f + v \cdot \nabla_x f \mid f \in \mathcal{F}\}$ is uniformly integrable; for each c > 0, decompose

$$f = f_c^{<} + f_c^{>}, \quad f_c^{<} = R_1 \left(g \mathbf{1}_{|g| \le c} \right), \quad f_c^{>} = R_1 \left(g \mathbf{1}_{|g| > c} \right)$$

First

$$\rho_c^{>}(x) = \int_{|v| \le R} f_c^{>}(x, v) dv$$

satisfies

$$\|\rho_c^>\|_{L^1_x} \le \|f_c^>\|_{L^1_{x,v}} \le \left\|g\mathbf{1}_{|g|>c}\right\|_{L^1_{x,v}} \to 0 \text{ as } c \to +\infty \text{ uniformly in } g \in \mathcal{G}$$

•Then, for each c > 0, $g1_{|g| \le c}$ is bounded in $L^2_{x,v}$ and hence, by the L^2 -Velocity Averaging theorem

$$\rho_c^{<}(x) = \int_{|v| \le R} f_c^{<}(x, v) dv \text{ is relatively compact in } L^1(\mathbf{R}^D)$$

•<u>Conclusion</u>: therefore, for each $\epsilon > 0$, we have found a compact $K_{\epsilon} \subset L^1(\mathbf{R}^D)$ such that

$$\int f(x,v)dv = \rho_c^{<} + \rho_c^{>} \in K_{\epsilon} + B_{L_x^1}(0,\epsilon)$$

Velocity Averaging in L^1 -2

•In fact, one can even drop the assumption of uniform integrability on derivatives (G.-Saint-Raymond, CRAS2002)

Theorem. Let $\mathcal{F} \subset L^1(\mathbb{R}^D \times \mathbb{R}^D; dxdv)$ be weakly relatively compact and such that $\{v \cdot \nabla_x f \mid f \in \mathcal{F}\}$ is bounded in L^1 . Then the set

$$\left\{ \int f(x,v) dv \, \Big| \, f \in \mathcal{F} \right\}$$
 is relatively compact in $L^1(\mathbf{R}^D)$

Theorem. Let $\mathcal{F} \subset L^1([0,T] \times \mathbb{R}^D \times \mathbb{R}^D; dtdxdv)$ be weakly relatively compact and such that $\{\partial_t f + v \cdot \nabla_x f \mid f \in \mathcal{F}\}$ is bounded in L^1 . Then the set

$$\left\{ \int f(t, x, v) dv \, \middle| \, f \in \mathcal{F} \right\}$$
 is relatively compact in $L^1([0, T] \times \mathbf{R}^D)$

•<u>Proof</u>: for each $\lambda > 0$, set $R_{\lambda} = (\lambda I + v \cdot \nabla_x)^{-1}$. We recall that

$$\|R_{\lambda}\|_{\mathcal{L}(L^1_{x,v})} \leq \frac{1}{\lambda}.$$

Write

$$f = R_{\lambda}(\lambda f + v \cdot \nabla_x f) = \lambda R_{\lambda} f + R_{\lambda}(v \cdot \nabla_x f)$$

so that

$$\int f dv = \lambda \int R_{\lambda} f dv + \int R_{\lambda} (v \cdot \nabla_x f) dv$$

Since $\{v \cdot \nabla_x f \mid f \in \mathcal{F}\}$ is bounded in $L^1_{x,v}$, the second term on the r.h.s. can be made arbitrarily small in $L^1_{x,v}$ for some $\lambda > 0$ large enough.

For such a λ , the first term on the r.h.s. is relatively compact in L_x^1 by the previous L^1 Velocity Averaging theorem.