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LECTURE 3

VELOCITY AVERAGING



PART 1:
VELOCITY AVERAGING



Fundamental formulas for the transport equation

•The solution to the Cauchy problem

∂tf +v ·∇xf +a(t, x)f = S(t, x) , f
∣

∣

∣

t=0
= f in(x) , t > 0 , x ∈ R

D

with initial data f in ≡ f in(x), source term S, amplification/absorption rate
a, and unknown f ≡ f(t, x) is given by

f(t, x) = f in(x − tv) exp

(

−
∫ t

0
a(t − s, x − sv)ds

)

+
∫ t

0
S(t − s, x − sv) exp

(

−
∫ s

0
a(t − σ, x − σv)dσ

)

ds

•Method of characteristics: solve as a linear ODE in the variable t

d

dt
f(t, z + tv) + a(t, z + tv)f(t, z + tv) = S(t, z + tv)

and set z = x − tv.



•Stationary case: for each p > 0, the solution to

pf + v · ∇xf + a(x)f = S(x) , x ∈ R
D

where a is the amplification/absorption rate, S the source term, and with
unknown f ≡ f(x) is given by the formula

f(x) =
∫ +∞

0
S(x − tv) exp

(

−pt −
∫ t

0
a(x − sv)ds

)

dt

•Proof: Apply the Laplace transform to the evolution problem

∂tφ + v · ∇xφ + aφ = 0 , φ
∣

∣

∣

t=0
= S

with

f(x) =
∫ +∞

0
e−ptφ(t, x)dt ⇒

∫ +∞

0
e−pt∂tφ(t, x)dt = pf(x) − S(x)



Velocity Averaging in L2

•Setting: let m be a finite, positive Radon measure on RD such that

(GC0) m(H) = 0 for any hyperplane H ∋ 0

Theorem. (G.-Perthame-Sentis, CRAS 1985) Let F be a bounded sub-
set of L2(RD

x × RD
v ; dx ⊗ dm(v)) such that

{v · ∇xf | f ∈ F} is bounded in L2(RD
x × R

D
v ; dx ⊗ dm(v))

Then the set of velocity averages
{

∫

RD
f(x, v)dm(v)

∣

∣

∣

∣

f ∈ F

}

is relatively compact in L2
loc(R

D
x ; dx)

•Earlier regularity remarks reported by Agoshkov (Dokl. AN 1984); general
and systematic regularity results in G.-Lions-Perthame-Sentis (JFA 1988)



Velocity Averaging for Evolution Problems

•Set z = (t, x) ∈ R × RD, w = (u, v) ∈ R × RD and

µ = δu=1 ⊗ m

•If f(t, x, v) = F (t, x, u, v)
∣

∣

∣

u=1
, then

w · ∇zF ∈ L2((R × R
D) × (R × R

D); dtdx ⊗ dµ)

is equivalent to

∂tf + v · ∇xf ∈ L2(R × R
D × R

D; dtdxdm(v))



•The homogeneous geometric condition (GC0) on µ is equivalent to the
following affine geometric condition on m:

(GCa) m(H) = 0 for any affine hyperplane H ⊂ R
D

Theorem. Assume that m satisfies (GCa). Let F be a bounded subset
of L2(RD

x × RD
v , dxdm(v)) and assume that G is a bounded subset of

L2(R+ × RD
x × RD

v , dtdxdm(v)).

For each f in ∈ F and each g ∈ G, let f be the solution of

∂tf + v · ∇xf = g , f
∣

∣

∣

t=0
= f in

Then, the set of velocity averages
{

∫

RD
f(t, x, v)dm(v)

∣

∣

∣

∣

f in ∈ F and g ∈ G

}

is relatively compact in L2
loc(R+ × RD

x ; dtdx)



Proof of Velocity Averaging in L2

•Rellich’s compactness lemma: let G be a bounded subset of L2(RD).
The set G is relatively compact in L2

loc(R
D) iff

∫

|ξ|>R
|ĝ(ξ)|2dξ → 0 as R → +∞ uniformly in g ∈ G

• Notation We denote by ĝ the Fourier transform of g:

ĝ(ξ) =
∫

e−iξ·xg(x)dx for each g ∈ L1 ∩ L2(RD)

•By Plancherel’s theorem, the assumptions of the theorem are translated
into

{f̂ | f ∈ F} and {(v · ξ)f̂ | f ∈ F} are bounded in L2(dξ ⊗ dm(v))

where f̂(ξ, v) is the Fourier transform of f in the x-variable:

f̂(ξ, v) =
∫

e−iξ·xf(x, v)dx



•Equivalently

{φ = (1 + iv · ξ)f̂ | f ∈ F} is bounded in L2(dξ ⊗ dm(v))

•Denote

ρ(x) =
∫

f(x, v)dm(v) , so that ρ̂(ξ) =
∫

φ̂(ξ, v)dm(v)

1 + iξ · v

By Cauchy-Schwarz,

|ρ̂(ξ)|2 ≤ Λ

(

|ξ|,
ξ

|ξ|

)

∫

|ĝ(ξ, v)|2dm(v)

where

Λ(r, ω) =
∫

dm(v)
√

1 + r2(v · ω)2



•Since m({v · ω = 0}) = 0 for each unit vector ω,

Λ(r, ω) → 0 as r → +∞ , pointwise in ω ∈ S
D−1 .

•Moreover, Λ(r, ·) is continuous on the unit sphere, and Λ(r, ω) ↓ 0 as
r → +∞; by Dini’s theorem,

Λ(r, ω) → 0 as r → +∞ , uniformly in ω ∈ S
D−1 .

•Then
∫

|ξ|>R
|ρ̂(ξ)|2dξ ≤ sup

|ω|=1
Λ(R, ω)

∫∫

|g(ξ, v)|2dξdm(v) → 0

as R → +∞ uniformly in g as f runs through F

and conclude by Rellich’s compactness lemma.



Weak compactness in L1

•A sequence of functions fn in L1(RN) converges weakly to f iff
∫

RN
fn(x)φ(x)dx →

∫

RN
f(x)φ(x)dx , for all φ ∈ L∞(RN)

•A bounded subset of L1(RN) may not be weakly relatively compact:

a) there may be concentrations (‖fn‖L1 = 1 and fn ⇀ δ0 in the sense of
Radon measures)

b) there maybe vanishing at infinity (‖fn‖L1 = 1 and f
∣

∣

∣

|x|≤R
→ 0 in L1

for each R > 0)

•Exercise: it may even happen that ‖fn‖L1 = 1, that fn ⇀ f ∈ L1 in the
sense of Radon measures but NOT in the weak L1 topology.



•Dunford-Pettis Theorem: a bounded subset F ⊂ L1(RN) is relatively
compact for the weak topology of L1 iff

• F is uniformly integrable:
∫

A
|f(z)|dz → 0 as |A| → 0 UNIFORMLY IN f ∈ F

• F is tight:
∫

|z|>R
|f(z)|dz → 0 as R → +∞ UNIFORMLY IN f ∈ F



•Equivalently, F is uniformly integrable iff
∫

|f(z)|>c
|f(z)|dz → 0 as c → +∞ UNIFORMLY IN f ∈ F

•De La Vallée-Poussin Criterion: F is uniformly integrable iff there exists a
function H : R+ → R+ satisfying

H(r)

r
→ +∞ as r → +∞

and such that

sup
f∈F

∫

H(f(z))dz < +∞

•Example: as a function H, one can choose H(r) = r(ln r)+; in the
context of the kinetic theory of gases, an entropy bound implies the uniform
integrability of the number densities.



Velocity Averaging in L1-1

Theorem. Let F ⊂ L1(RD × RD; dxdv) be weakly relatively compact
and such that {v ·∇xf | f ∈ F} is bounded in L1 and uniformly integrable.
Then the set

{
∫

f(x, v)dv
∣

∣

∣ f ∈ F

}

is relatively compact in L1(RD)

Theorem. Let F ⊂ L1([0, T ] × RD × RD; dtdxdv) be weakly relatively
compact and such that {∂tf + v · ∇xf | f ∈ F} is bounded in L1 and
uniformly integrable. Then the set

{
∫

f(t, x, v)dv
∣

∣

∣ f ∈ F

}

is relatively compact in L1([0, T ] × R
D)

•Both theorems were proved in G.-Lions-Perthame-Sentis (JFA 1988)



Proof: By Dunford-Pettis, F is tight, and therefore one can assume WLOG
that all the functions in F are supported in {|x| + |v| < r} modulo a small
error in L1 norm.

•Consider the resolvent of the transport operator: for λ > 0, we define
Rλ = (λI + v · ∇x)−1 by the formula

RλS(x, v) =
∫ +∞

0
e−λtS(x − tv, v)dt

(i.e. RλS is the solution f ≡ f(x, v) of λf + v · ∇xf = S).

•One checks that

‖RλS‖Lp ≤
∫ +∞

0
e−λt‖S(x − tv, v)‖L

p
x,v

dt

= ‖S‖Lp

∫ +∞

0
e−λtdt =

‖S‖Lp

λ



•Let E be a Banach space, and H ⊂ E. To check that H is relatively
compact in E, check that

for each ǫ > 0 , there exists Kǫ ⊂⊂ E s.t. H ⊂ Kǫ + B(0, ǫ)

•By assumption, G = {g = f + v · ∇xf | f ∈ F} is uniformly integrable;
for each c > 0, decompose

f = f<
c + f>

c , f<
c = R1

(

g1|g|≤c

)

, f>
c = R1

(

g1|g|>c

)

•First

ρ>
c (x) =

∫

|v|≤R
f>
c (x, v)dv

satisfies

‖ρ>
c ‖L1

x
≤ ‖f>

c ‖L1
x,v

≤
∥

∥

∥g1|g|>c

∥

∥

∥

L1
x,v

→ 0 as c → +∞ uniformly in g ∈ G



•Then, for each c > 0, g1|g|≤c is bounded in L2
x,v and hence, by the L2-

Velocity Averaging theorem

ρ<
c (x) =

∫

|v|≤R
f<
c (x, v)dv is relatively compact in L1(RD)

•Conclusion: therefore, for each ǫ > 0, we have found a compact Kǫ ⊂

L1(RD) such that
∫

f(x, v)dv = ρ<
c + ρ>

c ∈ Kǫ + BL1
x
(0, ǫ)



Velocity Averaging in L1-2

•In fact, one can even drop the assumption of uniform integrability on
derivatives (G.-Saint-Raymond, CRAS2002)

Theorem. Let F ⊂ L1(RD × RD; dxdv) be weakly relatively compact
and such that {v · ∇xf | f ∈ F} is bounded in L1. Then the set

{
∫

f(x, v)dv
∣

∣

∣ f ∈ F

}

is relatively compact in L1(RD)

Theorem. Let F ⊂ L1([0, T ] × RD × RD; dtdxdv) be weakly relatively
compact and such that {∂tf + v · ∇xf | f ∈ F} is bounded in L1. Then
the set

{
∫

f(t, x, v)dv
∣

∣

∣ f ∈ F

}

is relatively compact in L1([0, T ] × R
D)



•Proof: for each λ > 0, set Rλ = (λI + v · ∇x)−1. We recall that

‖Rλ‖L(L1
x,v)

≤
1

λ
.

Write

f = Rλ(λf + v · ∇xf) = λRλf + Rλ(v · ∇xf)

so that
∫

fdv = λ

∫

Rλfdv +
∫

Rλ(v · ∇xf)dv

Since {v · ∇xf | f ∈ F} is bounded in L1
x,v, the second term on the r.h.s.

can be made arbitrarily small in L1
x,v for some λ > 0 large enough.

For such a λ, the first term on the r.h.s. is relatively compact in L1
x by the

previous L1 Velocity Averaging theorem.


