Hydrodynamic Limits for the Boltzmann Equation

François Golse
Université Paris 7 \& Laboratoire J.-L. Lions golse@math.jussieu.fr

Academia Sinica, Taipei, December 2004

LECTURE 4
EXISTENCE THEORY FOR THE BOLTZMANN EQUATION

Notion of renormalized solution

-A nonnegative function $F \in C\left(\mathbf{R}_{+} ; L^{1}\left(\mathbf{R}^{3} \times \mathbf{R}^{3}\right)\right)$ is a renormalized solution of the Boltzmann equation iff $\frac{\mathcal{B}(F, F)}{\sqrt{1+F}} \in L_{l o c}^{1}(d t d x d v)$ and for each $\beta \in C^{1}\left(\mathbf{R}_{+}\right)$s.t. $\beta^{\prime}(Z) \leq \frac{C}{\sqrt{1+Z}}$ for all $Z \geq 0$, one has

$$
\left(\partial_{t}+v \cdot \nabla_{x}\right) \beta(F)=\beta^{\prime}(F) \mathcal{B}(F, F)
$$

in the sense of distributions on $\mathbf{R}_{+}^{*} \times \mathbf{R}^{3} \times \mathbf{R}^{3}$.
Theorem. (DiPerna-Lions, Ann. Math. 1990) Let $F^{i n} \geq 0$ a.e. satisfy

$$
\iint\left(1+|x|^{2}+|v|^{2}+\left|\ln F^{i n}\right|\right) F^{i n} d x d v<+\infty
$$

Then, there exists a renormalized solution of the Boltzmann equation such that $\left.F\right|_{t=0}=F^{i n}$.

Remark: For $F \in C\left(\mathbf{R}_{+} ; L^{1}\left(\mathbf{R}^{3} \times \mathbf{R}^{3}\right)\right)$ such that $\frac{\mathcal{B}_{ \pm}(F, F)}{1+F} \in L_{l o c}^{1}(d t d x d v)$ the following conditions are equivalent

- F is a renormalized solution of the Boltzmann equation; and
$\bullet F$ is a mild solution of the Boltzmann equation, i.e. for a.e. $x, v \in \mathbf{R}^{3}$, $\mathcal{B}(F, F)^{\sharp}(t, x, v) \in L_{l o c}^{1}(d t)$ and, denoting $f^{\sharp}(t, x, v)=f(t, x+t v, v)$

$$
F^{\sharp}(t)=F^{\sharp}(0)+\int_{0}^{t} \mathcal{B}(F, F)^{\sharp}(s) d s \text { for all } t>0
$$

\bullet likewise, for a.e. $x, v \in \mathbf{R}^{3}$
$F^{\sharp}(t)=e^{-A^{\sharp}(t)} F^{\sharp}(0)+\int_{0}^{t} e^{-\left(A^{\sharp}(t)-A^{\sharp}(s)\right)} \mathcal{B}_{+}(F, F)^{\sharp}(s) d s$ for all $t>0$
where $A^{\sharp}(t, x, v)=\int_{0}^{t}\left(\frac{\mathcal{B}_{-}(F, F)}{F}\right)^{\sharp}(s, x, v) d s$

Properties of renormalized solutions

-Continuity equation + global conservation of momentum

$$
\partial_{t} \int F d v+\operatorname{div}_{x} \int v F d v=0, \quad \iint v F(t) d x d v=C s t
$$

- Energy inequality

$$
\iint \frac{1}{2}|v|^{2} F(t, x, v) d x d v \leq \iint \frac{1}{2}|v|^{2} F^{i n} d x d v
$$

-Entropy inequality

$$
\begin{array}{r}
\iint F \ln F(t) d x d v+\frac{1}{4} \int_{0}^{t} d s \int d x \iiint\left(F^{\prime} F_{*}^{\prime}-F F_{*}\right) \ln \left(\frac{F^{\prime} F_{*}^{\prime}}{F F_{*}}\right) b d \omega d v d v_{*} \\
\leq \iint F^{i n} \ln F^{i n} d x d v
\end{array}
$$

The approximation scheme

- Bounded collision kernel: $0 \leq b \in L^{\infty}, b \geq 0$ a.e. and $\mathcal{B}=\mathcal{B}_{+}-\mathcal{B}_{-}$

$$
\text { where } \begin{aligned}
\mathcal{B}_{+}(F, F) & =\iint F^{\prime} F_{*}^{\prime} b\left(v-v_{*}, \omega\right) d v_{*} d \omega \\
\mathcal{B}_{-}(F, F) & =\iint F F_{*} b\left(v-v_{*}, \omega\right) d v_{*} d \omega
\end{aligned}
$$

-Let F_{n} be the solution to the truncated Boltzmann equation on $\mathbf{R}^{3} \times \mathbf{R}^{3}$:

$$
\partial_{t} F_{n}+v \cdot \nabla_{x} F_{n}=\frac{\mathcal{B}\left(F_{n}, F_{n}\right)}{1+\frac{1}{n} \int F_{n} d v}=: \mathcal{B}^{n}\left(F_{n}, F_{n}\right) ;\left.\quad F_{n}\right|_{t=0}=F^{i n}
$$

under the condition $\iint\left(1+|x|^{2}+|v|^{2}+\left|\ln F^{i n}\right|\right) F^{i n} d x d v<+\infty$.

- Exercise: Prove existence+uniqueness of the solution to the TBE

A priori bounds and weak L^{1} compactness

-The truncation by the macroscopic density does not affect (i) the symmetries of the Boltzmann collision integral leading to the local conservation laws, and (ii) the H Theorem:

$$
\iint\left(1+|x|^{2}+|v|^{2}+\left|\ln F_{n}(t)\right|\right) F_{n}(t) d x d v \leq C\left(1+t^{2}\right)
$$

where C is independent of n.

Proposition. For each $\delta>0$, the sequences

$$
\frac{\mathcal{B}_{-}^{n}\left(F_{n}, F_{n}\right)}{1+\delta F_{n}} \quad \text { and } \quad \frac{\mathcal{B}_{+}^{n}\left(F_{n}, F_{n}\right)}{1+\delta F_{n}}
$$

are both bounded in $L_{l o c}^{1}\left(\mathbf{R}_{+} ; L^{1}\left(\mathbf{R}^{3} \times \mathbf{R}^{3}\right)\right)$ and relatively compact in $L_{l o c}^{1}\left(\mathbf{R}_{+} \times \mathbf{R}^{3} \times \mathbf{R}^{3}\right)$ weak.

Proof: L^{1} bound and uniform integrability obvious for \mathcal{B}^{n}, since

$$
\frac{\mathcal{B}_{-}^{n}\left(F_{n}, F_{n}\right)}{1+\delta F_{n}}=L_{n}\left(F_{n}\right) \frac{F_{n}}{1+\delta F_{n}}
$$

where

$$
L_{n}(F)=\frac{\bar{b} \star_{v} F}{1+\frac{1}{n} \int F d v}, \quad \bar{b}(z)=\int b(z, \omega) d \omega
$$

- in other words

$$
L_{n}(F)=\frac{\iint F_{*} b\left(v-v_{*}, \omega\right) d \omega d v_{*}}{1+\frac{1}{n} \int F d v}=\frac{\int F_{*} \bar{b}\left(v-v_{*}\right) d v_{*}}{1+\frac{1}{n} \int F d v}
$$

so that

$$
0 \leq L_{n}(F) \leq\|b\|_{L^{\infty}} \int F d v
$$

As for \mathcal{B}_{+}^{n}, pick $R \gg 1$ and write

$$
\begin{aligned}
\frac{\mathcal{B}^{n}\left(F_{n}, F_{n}\right)}{1+\delta F_{n}} & =\frac{1}{1+\delta F_{n}} \iint \frac{F_{n}^{\prime} F_{n *}^{\prime}-F_{n} F_{n *}}{1+\frac{1}{n} \int F_{n} d v} \mathbf{1}_{F_{n}^{\prime} F_{n *}^{\prime} \leq R F_{n} F_{n *}} b d v_{*} d \omega \\
& +\frac{1}{1+\delta F_{n}} \iint \frac{F_{n}^{\prime} F_{n *}^{\prime}-F_{n} F_{n *}}{1+\frac{1}{n} \int F_{n} d v} \mathbf{1}_{F_{n}^{\prime} F_{n *}^{\prime}>R F_{n} F_{n *}} b d v_{*} d \omega
\end{aligned}
$$

The first term is bounded pointwise by

$$
(R-1) \frac{\mathcal{B}_{-}^{n}\left(F_{n}, F_{n}\right)}{1+\delta F_{n}}
$$

while the $L^{1}\left([0, t] \times \mathbf{R}^{3} \times \mathbf{R}^{3}\right)$ norm of the second is bounded by the entropy production

$$
\frac{1}{\ln R} \int_{0}^{t} \int d x \iiint \frac{F_{n}^{\prime} F_{n *}^{\prime}-F_{n} F_{n *}}{1+\frac{1}{n} \int F_{n} d v} \ln \left(\frac{F_{n}^{\prime} F_{n *}^{\prime}}{F_{n} F_{n *}}\right) b d v d v_{*} d \omega=O\left(\frac{1}{\ln R}\right)
$$

CONCLUSION: hence, for each $R \gg 1$,

$$
\frac{\mathcal{B}^{n}\left(F_{n}, F_{n}\right)}{1+\delta F_{n}} \in B\left(0, \frac{1}{\ln R}\right)_{L^{1}}+K_{R}
$$

where K_{R} is locally uniformly integrable on $\mathbf{R}_{+} \times \mathbf{R}^{3} \times \mathbf{R}^{3}$ for each R.
Therefore

$$
\frac{\mathcal{B}^{n}\left(F_{n}, F_{n}\right)}{1+\delta F_{n}} \text { is locally uniformly integrable on } \mathbf{R}_{+} \times \mathbf{R}^{3} \times \mathbf{R}^{3}
$$

Finally

$$
\frac{\mathcal{B}_{+}^{n}\left(F_{n}, F_{n}\right)}{1+\delta F_{n}}=\frac{\mathcal{B}_{-}^{n}\left(F_{n}, F_{n}\right)}{1+\delta F_{n}}+\frac{\mathcal{B}^{n}\left(F_{n}, F_{n}\right)}{1+\delta F_{n}}
$$

is the sum of two locally uniformly integrable sequences.

Applying Velocity Averaging

-We know that

$$
\begin{array}{r}
\left(\partial_{t}+v \cdot \nabla_{x}\right) \frac{1}{\delta} \ln \left(1+\delta F_{n}\right)=\frac{\mathcal{B}^{n}\left(F_{n}, F_{n}\right)}{1+\delta F_{n}}=O(1)_{L^{1}\left([0, T] \times \mathbf{R}^{3} \times \mathbf{R}^{3}\right)} \\
\iint\left(1+|x|^{2}+|v|^{2}+\left|\ln F_{n}(t)\right|\right) F_{n}(t) d x d v \leq C\left(1+t^{2}\right)
\end{array}
$$

The 2nd bound implies F_{n} is uniformly integrable on $[0, T] \times \mathbf{R}^{3} \times \mathbf{R}^{3}$ and tight; for each $\delta>0$, this is also true of $\frac{1}{\delta} \ln \left(1+\delta F_{n}\right)$, since

$$
0 \leq \frac{1}{\delta} \ln \left(1+\delta F_{n}\right) \leq F_{n}
$$

hence, by Velocity Averaging in L^{1}

$$
\int \frac{1}{\delta} \ln \left(1+\delta F_{n}\right) d v \text { is strongly relatively compact in } L^{1}\left([0, T] \times \mathbf{R}^{3}\right)
$$

- In fact

$$
0 \leq F_{n}-\frac{1}{\delta} \ln \left(1+\delta F_{n}\right) \leq \delta F_{n}^{2} \mathbf{1}_{F_{n} \leq R}+F_{n} \mathbf{1}_{F_{n}>R}
$$

so that

$$
\left\|F_{n}-\frac{1}{\delta} \ln \left(1+\delta F_{n}\right)\right\|_{L_{x, v}^{1}} \leq R \delta\left\|F_{n}\right\|_{L_{x, v}^{1}}+\frac{1}{\ln R} \iint F_{n} \ln F_{n} d x d v
$$

Hence

$$
F_{n}-\frac{1}{\delta} \ln \left(1+\delta F_{n}\right) \rightarrow 0 \text { in } L^{\infty}\left([0, T] ; L_{x, v}^{1}\right) \text { as } \delta \rightarrow 0 \text { uniformly in } n
$$

-Therefore, one can remove the nonlinear normalizing function, so that

$$
\int F_{n} d v \text { is strongly relatively compact in } L^{1}\left([0, T] \times \mathbf{R}^{3}\right)
$$

-Therefore, modulo extracting subsequences, for each $T>0$:

$$
\begin{array}{r}
F_{n} \rightharpoonup F \text { in } L^{1}\left([0, T] \times \mathbf{R}^{3} \times \mathbf{R}^{3}\right), \quad \text { while } \\
\int F_{n} \phi d v \rightarrow \int F \phi d v \text { in } L_{l o c}^{1}\left(\mathbf{R}_{+} \times \mathbf{R}^{3}\right) \text { and a.e. }
\end{array}
$$

for each $\phi \in L^{\infty}\left(\mathbf{R}_{+} \times \mathbf{R}^{3} \times \mathbf{R}^{3}\right)$; likewise

$$
L_{n}\left(F_{n}\right) \rightarrow L(F)=\bar{b} \star_{v} F=\iint F_{*} b\left(v-v_{*}, \omega\right) d \omega d v_{*}
$$

in $L_{l o c}^{1}\left(\mathbf{R}_{+} \times \mathbf{R}^{3}\right)$ and a.e..

Proposition. For each $\phi \in L^{\infty}\left(\mathbf{R}_{+} \times \mathbf{R}^{3} \times \mathbf{R}^{3}\right)$

$$
\int \frac{\mathcal{B}_{ \pm}^{n}\left(F_{n}, F_{n}\right)}{1+\int F_{n} d v} \phi d v \rightarrow \int \frac{\mathcal{B}_{ \pm}(F, F)}{1+\int F d v} \phi d v \text { in } L_{l o c}^{1}\left(\mathbf{R}_{+} \times \mathbf{R}^{3}\right)
$$

Product Limit Theorems

We recall Egorov's Theorem: Assume that $v_{n} \rightarrow v$ a.e. on $K \subset \subset \mathbf{R}^{N}$. Then, for each $\epsilon>0$, there exists a measurable $E \subset K$ such that

$$
|K \backslash E|<\epsilon, \quad \text { and } v_{n} \rightarrow v \text { UNIFORMLY on } E
$$

Lemma. Assume that $u_{n} \rightharpoonup_{u}$ in L^{1}, that $\sup \left\|v_{n}\right\|_{L^{\infty}}<+\infty$, and that $v_{n} \rightarrow v$ a.e.. Then $u_{n} v_{n} \rightharpoonup u v$ in L^{1}. (If $v=0, u_{n} v_{n} \rightarrow 0$ in L^{1}).

Lemma. Assume that, for each $\phi \in L^{\infty}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)$

$$
u_{n} \rightharpoonup u \text { in } L^{1}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right), \quad \int u_{n} \phi d v \rightarrow \int u \phi d v \text { in } L_{l o c}^{1}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)
$$

that sup $\left\|v_{n}\right\|_{L^{\infty}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)}<+\infty$, and that $v_{n} \rightarrow v$ a.e.. Then

$$
\int u_{n} v_{n} \phi d v \rightarrow \int u v \phi d v \text { in } L_{l o c}^{1}\left(\mathbf{R}^{N}\right) \text { for each } \phi \in L^{\infty}\left(\mathbf{R}^{N} \times \mathbf{R}^{N}\right)
$$

- Proof of the first lemma: Write $u_{n} v_{n}-u v=u_{n}\left(v_{n}-v\right)+v\left(u_{n}-u\right)$; since $v \in L^{\infty}$ and $u_{n} \rightharpoonup u$ in L^{1}, the second term $\rightharpoonup 0$ in L^{1}.

WLOG, one can assume that $\operatorname{supp}\left(u_{n}\right) \subset K$ compact; indeed, since $u_{n} \rightharpoonup u$ in L^{1}, the sequence u_{n} is tight. By Egorov's Theorem

$$
u_{n}\left(v_{n}-v\right)=u_{n} \mathbf{1}_{K \backslash E}\left(v_{n}-v\right)+u_{n} \mathbf{1}_{E}\left(v_{n}-v\right)
$$

the second term $\rightarrow 0$ in L^{1}, while the first term can be made arbitrarily small with ϵ, since u_{n} is uniformly integrable.

Proof of the second lemma: left as an exercise, following the same pattern.

Proof: One has

$F_{n} \rightharpoonup F$ in $L_{l o c}^{1}\left(d t ; L_{x, v}^{1}\right), \quad \int F_{n} \phi d v \rightarrow \int F \phi d v$ in $L_{l o c}^{1}(d t d x)$ and a.e.
on the other hand

$$
\frac{L_{n}\left(F_{n}\right)}{1+\int F_{n} d v} \rightarrow \frac{L(F)}{1+\int F d v} \text { a.e. }
$$

where

$$
L(F)=\iint F_{*} b\left(v-v_{*}, \omega\right) d \omega d v_{*}, \quad \text { and } L_{n}(F)=\frac{L(F)}{1+\frac{1}{n} \int F d v}
$$

while

$$
\left\|\frac{L_{n}\left(F_{n}\right)}{1+\int F_{n} d v}\right\|_{L^{\infty}} \leq\|b\|_{L^{\infty}}
$$

-Applying the second lemma above shows that

$$
\int \frac{F_{n} L_{n}\left(F_{n}\right)}{1+\int F_{n} d v} \phi d v \rightarrow \int \frac{F L(F)}{1+\int F d v} \phi d v \text { in } L_{l o c}^{1}\left(\mathbf{R}_{+} \times \mathbf{R}^{3}\right)
$$

- In other words

$$
\int \frac{\mathcal{B}_{-}^{n}\left(F_{n}, F_{n}\right)}{1+\int F_{n} d v} \phi d v \rightarrow \int \frac{\mathcal{B}_{-}(F, F)}{1+\int F d v} \phi d v \text { in } L_{l o c}^{1}\left(\mathbf{R}_{+} \times \mathbf{R}^{3}\right)
$$

-The case of $\mathcal{B}_{+}^{n}\left(F_{n}, F_{n}\right)$ is easily reduced to the case of $\mathcal{B}_{-}^{n}\left(F_{n}, F_{n}\right)$ by exchanging (v, v_{*}) and ($v^{\prime}, v_{*}^{\prime}$).

Supersolution

-Write the truncated Boltzmann equation along characteristics:

$$
\frac{d}{d t} F_{n}^{\sharp}+\left(\frac{L\left(F_{n}\right)}{1+\frac{1}{n} \int F_{n} d v}\right)^{\sharp} F_{n}^{\sharp}=\left(\frac{\mathcal{B}_{+}\left(F_{n}, F_{n}\right)}{1+\frac{1}{n} \int F_{n} d v}\right)^{\sharp}
$$

with the notation $f^{\sharp}(t, x, v)=f(t, x+t v, v)$. Setting

$$
A_{n}^{\sharp}(t, x, v)=\int_{0}^{t}\left(\frac{L\left(F_{n}\right)}{1+\frac{1}{n} \int F_{n} d v}\right)^{\sharp}(s, x, v) d s
$$

we see that (modulo extraction of a subsequence)

$$
A_{n}^{\sharp} \rightarrow A^{\sharp} \equiv \int_{0}^{t} L(F)^{\sharp}(s, x, v) d s \text { in } C\left([0, T], L_{l o c}^{1}(d x d v)\right) \text { and a.e. }
$$

Pick β_{R} to be a mollified version of $z \mapsto \sup (z, R)$; then

$$
\begin{aligned}
F_{n}^{\sharp}(t) & \geq F^{\sharp}(0) e^{-A_{n}^{\sharp}(t)} \\
& +\int_{0}^{t} e^{-\left(A_{n}^{\sharp}(t)-A_{n}^{\sharp}(s)\right)}\left(\frac{\mathcal{B}_{+}\left(\beta_{R}\left(F_{n}\right), \beta_{R}\left(F_{n}\right)\right)}{1+\frac{1}{n} \int F_{n} d v}\right)^{\sharp}(s) d s
\end{aligned}
$$

By Velocity Averaging applied to $\beta_{R}\left(F_{n}\right)$, one sees that
$\beta_{R}\left(F_{n}\right) \rightharpoonup F^{R}, \quad \mathcal{B}_{+}\left(\beta_{R}\left(F_{n}\right), \beta_{R}\left(F_{n}\right)\right) \rightharpoonup \mathcal{B}_{+}\left(F^{R}, F^{R}\right)$ in $L_{l o c}^{1}\left(d t d x ; L_{v}^{1}\right)$
Passing to the limit in the inequality above leads to

$$
F^{\sharp}(t) \geq F^{\sharp}(0) e^{-A^{\sharp}(t)}+\int_{0}^{t} e^{-\left(A^{\sharp}(t)-A^{\sharp}(s)\right)} \mathcal{B}_{+}\left(F^{R}, F^{R}\right)^{\sharp}(s) d s
$$

It follows from the entropy bound that

$$
F^{R} \uparrow F \text { in } L_{l o c}^{1}\left(d t ; L_{x, v}^{1}\right) \text { as } R \rightarrow+\infty
$$

-Therefore, by monotone convergence, one eventually finds that

$$
F^{\sharp}(t) \geq F^{\sharp}(0) e^{-A^{\sharp}(t)}+\int_{0}^{t} e^{-\left(A^{\sharp}(t)-A^{\sharp}(s)\right)} \mathcal{B}_{+}(F, F)^{\sharp}(s) d s
$$

-Remark: This implies in particular that, for each $t>0$, the function

$$
(s, x, v) \mapsto e^{-\left(A^{\sharp}(t, x, v)-A^{\sharp}(s, x, v)\right)} \mathcal{B}_{+}(F, F)^{\sharp}(s, x, v)
$$

belongs to $L^{1}\left([0, t] \times \mathbf{R}^{3} \times \mathbf{R}^{3}\right)$. Because of the inequality

$$
\mathcal{B}_{-}(F, F) \leq R \mathcal{B}_{+}(F, F)+\frac{1}{\ln R} \iint\left(F^{\prime} F_{*}^{\prime}-F F_{*}\right) \ln \left(\frac{F^{\prime} F_{*}^{\prime}}{F F_{*}}\right) b d \omega d v_{*}
$$

the function

$$
(s, x, v) \mapsto e^{-\left(A^{\sharp}(t, x, v)-A^{\sharp}(s, x, v)\right)} \mathcal{B}_{-}(F, F)^{\sharp}(s, x, v)
$$

also belongs to $L^{1}\left([0, t] \times \mathbf{R}^{3} \times \mathbf{R}^{3}\right)$.

Subsolution

-Write the truncated Boltzmann equation for $\beta_{\delta}\left(F_{n}\right)=\frac{1}{\delta} \ln \left(1+\delta F_{n}\right)$:

$$
\begin{array}{r}
\left(\partial_{t}+v \cdot \nabla_{x}\right) \beta_{\delta}\left(F_{n}\right)+\frac{L\left(F_{n}\right)}{1+\frac{1}{n} \int F_{n} d v} \beta_{\delta}\left(F_{n}\right)=\frac{\mathcal{B}_{+}\left(F_{n}, F_{n}\right)}{\left(1+\delta F_{n}\right)\left(1+\frac{1}{n} \int F_{n} d v\right)} \\
+\frac{L\left(F_{n}\right)}{1+\frac{1}{n} \int F_{n} d v}\left(\beta_{\delta}\left(F_{n}\right)-\frac{F_{n}}{1+\delta F_{n}}\right)
\end{array}
$$

and integrate along characteristics:

$$
\begin{aligned}
& \beta_{\delta}\left(F_{n}\right)^{\sharp}(t)=e^{-A_{n}^{\sharp}(t)} \beta_{\delta}(F(0)) \\
& +\int_{0}^{t} e^{-\left(A_{n}^{\sharp}(t)-A_{n}^{\sharp}(s)\right)}\left(\frac{\mathcal{B}_{+}\left(F_{n}, F_{n}\right)}{\left(1+\delta F_{n}\right)\left(1+\frac{1}{n} \int F_{n} d v\right)}\right)^{\sharp}(s) d s \\
& +\int_{0}^{t} e^{-\left(A_{n}^{\sharp}(t)-A_{n}^{\sharp}(s)\right)}\left(\frac{L\left(F_{n}\right)}{1+\frac{1}{n} \int F_{n} d v}\right)^{\sharp}(s)\left(\beta_{\delta}\left(F_{n}\right)^{\sharp}(s)-\frac{F_{n}^{\sharp}(s)}{1+\delta F_{n}^{\sharp}(s)}\right) d s
\end{aligned}
$$

Next, we let $n \rightarrow+\infty$, keeping $\delta>0$ fixed, and recall that

$$
\beta_{\delta}\left(F_{n}\right) \rightharpoonup F_{\delta} \text { in } L_{l o c}^{1}\left(d t ; L_{x, v}^{1}\right), \quad A_{n}^{\sharp} \rightarrow A^{\sharp} \text { in } C\left([0, T] ; L_{l o c}^{1}(d x d v)\right)
$$

while

$$
\int F_{n} d v \rightarrow \int F d v \text { a.e. and } \frac{\mathcal{B}_{+}\left(F_{n}, F_{n}\right)}{1+\delta F_{n}} \rightharpoonup \mathcal{B}_{\delta}^{+} \text {in } L_{l o c}^{1}(d t d x d v)
$$

Hence, by the product limit theorem, the second integral above satisfies

$$
\begin{array}{r}
\int_{0}^{t} e^{-\left(A_{n}^{\sharp}(t)-A_{n}^{\sharp}(s)\right)}\left(\frac{\mathcal{B}_{+}\left(F_{n}, F_{n}\right)}{\left(1+\delta F_{n}\right)\left(1+\frac{1}{n} \int F_{n} d v\right)}\right)^{\sharp}(s) d s \\
\quad \rightharpoonup \int_{0}^{t} e^{-\left(A^{\sharp}(t)-A^{\sharp}(s)\right)} \mathcal{B}_{\delta}^{+\sharp}(s) d s
\end{array}
$$

Notice the inequality

$$
\frac{\mathcal{B}_{+}\left(F_{n}, F_{n}\right)}{\left(1+\delta F_{n}\right)\left(1+\int F_{n} d v\right)} \leq \frac{\mathcal{B}_{+}\left(F_{n}, F_{n}\right)}{1+\int F_{n} d v}
$$

passing to the limit as $n \rightarrow+\infty$ in weak $L_{l o c}^{1}$ leads to

$$
\frac{\mathcal{B}_{\delta}^{+}}{1+\int F d v} \leq \frac{\mathcal{B}_{+}(F, F)}{1+\int F d v}, \quad \text { and hence } \mathcal{B}_{\delta}^{+} \leq \mathcal{B}_{+}(F, F)
$$

Hence

$$
\begin{array}{r}
F_{\delta}^{\sharp}(t) \leq e^{-A^{\sharp}(t)} \beta_{\delta}(F(0))+\int_{0}^{t} e^{-\left(A^{\sharp}(t)-A^{\sharp}(s)\right)} \mathcal{B}^{+}(F, F)^{\sharp}(s) d s \\
\text { +REMAINDER }
\end{array}
$$

In the limit as $\delta \rightarrow 0, F_{\delta} \uparrow F$ in $L_{l o c}^{1}\left(d t, L_{x, v}^{1}\right)$, while the remainder term is disposed of by a combination of arguments that involve the entropy bound, monotone convergence, and the fact that

$$
\int_{0}^{t} e^{-\left(A^{\sharp}(t)-A^{\sharp}(s)\right)} L(F)^{\sharp}(s) F^{\sharp}(s) d s<+\infty
$$

Finally, we arrive at the inequality

$$
F^{\sharp}(t) \leq F^{\sharp}(0) e^{-A^{\sharp}(t)}+\int_{0}^{t} e^{-\left(A^{\sharp}(t)-A^{\sharp}(s)\right)} \mathcal{B}_{+}(F, F)^{\sharp}(s) d s
$$

