Hydrodynamic Limits for the Boltzmann Equation

François Golse Université Paris 7 & Laboratoire J.-L. Lions golse@math.jussieu.fr

Academia Sinica, Taipei, December 2004

EXISTENCE THEORY FOR THE BOLTZMANN EQUATION

Notion of renormalized solution

•A nonnegative function $F \in C(\mathbf{R}_+; L^1(\mathbf{R}^3 \times \mathbf{R}^3))$ is a renormalized solution of the Boltzmann equation iff $\frac{\mathcal{B}(F,F)}{\sqrt{1+F}} \in L^1_{loc}(dtdxdv)$ and for each $\beta \in C^1(\mathbf{R}_+)$ s.t. $\beta'(Z) \leq \frac{C}{\sqrt{1+Z}}$ for all $Z \geq 0$, one has

$$(\partial_t + v \cdot \nabla_x)\beta(F) = \beta'(F)\mathcal{B}(F,F)$$

in the sense of distributions on $\mathbf{R}^*_+ \times \mathbf{R}^3 \times \mathbf{R}^3$.

Theorem. (DiPerna-Lions, Ann. Math. 1990) Let $F^{in} \ge 0$ a.e. satisfy

$$\iint (1+|x|^2+|v|^2+|\ln F^{in}|)F^{in}dxdv < +\infty$$

Then, there exists a renormalized solution of the Boltzmann equation such that $F\Big|_{t=0} = F^{in}$.

<u>Remark</u>: For $F \in C(\mathbf{R}_+; L^1(\mathbf{R}^3 \times \mathbf{R}^3))$ such that $\frac{\mathcal{B}_{\pm}(F,F)}{1+F} \in L^1_{loc}(dtdxdv)$ the following conditions are equivalent

$\bullet F$ is a renormalized solution of the Boltzmann equation; and

•*F* is a mild solution of the Boltzmann equation, i.e. for a.e. $x, v \in \mathbb{R}^3$, $\mathcal{B}(F,F)^{\sharp}(t,x,v) \in L^1_{loc}(dt)$ and, denoting $f^{\sharp}(t,x,v) = f(t,x+tv,v)$

$$F^{\sharp}(t) = F^{\sharp}(0) + \int_0^t \mathcal{B}(F, F)^{\sharp}(s) ds$$
 for all $t > 0$

•likewise, for a.e. $x, v \in \mathbb{R}^3$

$$F^{\sharp}(t) = e^{-A^{\sharp}(t)}F^{\sharp}(0) + \int_{0}^{t} e^{-(A^{\sharp}(t) - A^{\sharp}(s))} \mathcal{B}_{+}(F, F)^{\sharp}(s) ds \text{ for all } t > 0$$

where $A^{\sharp}(t, x, v) = \int_{0}^{t} \left(\frac{\mathcal{B}_{-}(F, F)}{F}\right)^{\sharp}(s, x, v) ds$

Properties of renormalized solutions

Continuity equation + global conservation of momentum

$$\partial_t \int F dv + \operatorname{div}_x \int v F dv = 0, \quad \iint v F(t) dx dv = Cst$$

•Energy inequality

$$\iint \frac{1}{2} |v|^2 F(t, x, v) dx dv \le \iint \frac{1}{2} |v|^2 F^{in} dx dv$$

•Entropy inequality

$$\iint F \ln F(t) dx dv + \frac{1}{4} \int_0^t ds \int dx \iiint (F'F'_* - FF_*) \ln \left(\frac{F'F'_*}{FF_*}\right) b d\omega dv dv_*$$
$$\leq \iint F^{in} \ln F^{in} dx dv$$

The approximation scheme

•Bounded collision kernel: $0 \le b \in L^{\infty}$, $b \ge 0$ a.e. and $\mathcal{B} = \mathcal{B}_{+} - \mathcal{B}_{-}$

where
$$\mathcal{B}_+(F,F) = \iint F'F'_*b(v-v_*,\omega)dv_*d\omega$$
,
 $\mathcal{B}_-(F,F) = \iint FF_*b(v-v_*,\omega)dv_*d\omega$

•Let F_n be the solution to the truncated Boltzmann equation on $\mathbb{R}^3 \times \mathbb{R}^3$:

$$\partial_t F_n + v \cdot \nabla_x F_n = \frac{\mathcal{B}(F_n, F_n)}{1 + \frac{1}{n} \int F_n dv} =: \mathcal{B}^n(F_n, F_n); \qquad F_n\Big|_{t=0} = F^{in}$$

under the condition $\iint (1 + |x|^2 + |v|^2 + |\ln F^{in}|)F^{in}dxdv < +\infty.$

• Exercise: Prove existence+uniqueness of the solution to the TBE

A priori bounds and weak L^1 compactness

•The truncation by the macroscopic density does not affect (i) the symmetries of the Boltzmann collision integral leading to the local conservation laws, and (ii) the H Theorem:

$$\iint (1+|x|^2+|v|^2+|\ln F_n(t)|)F_n(t)dxdv \le C(1+t^2)$$

where C is independent of n.

Proposition. For each $\delta > 0$, the sequences

$$rac{\mathcal{B}_{-}^{n}(F_{n},F_{n})}{1+\delta F_{n}}$$
 and $rac{\mathcal{B}_{+}^{n}(F_{n},F_{n})}{1+\delta F_{n}}$

are both bounded in $L^1_{loc}(\mathbf{R}_+; L^1(\mathbf{R}^3 \times \mathbf{R}^3))$ and relatively compact in $L^1_{loc}(\mathbf{R}_+ \times \mathbf{R}^3 \times \mathbf{R}^3)$ weak.

<u>Proof:</u> L^1 bound and uniform integrability obvious for \mathcal{B}^n_- , since

$$\frac{\mathcal{B}_{-}^{n}(F_{n},F_{n})}{1+\delta F_{n}} = L_{n}(F_{n})\frac{F_{n}}{1+\delta F_{n}}$$

where

$$L_n(F) = \frac{\overline{b} \star_v F}{1 + \frac{1}{n} \int F dv}, \qquad \overline{b}(z) = \int b(z, \omega) d\omega$$

— in other words

$$L_n(F) = \frac{\iint F_* b(v - v_*, \omega) d\omega dv_*}{1 + \frac{1}{n} \int F dv} = \frac{\int F_* \overline{b}(v - v_*) dv_*}{1 + \frac{1}{n} \int F dv}$$

so that

$$0 \le L_n(F) \le \|b\|_{L^{\infty}} \int F dv$$

As for \mathcal{B}^n_+ , pick R >> 1 and write

$$\frac{\mathcal{B}^{n}(F_{n},F_{n})}{1+\delta F_{n}} = \frac{1}{1+\delta F_{n}} \iint \frac{F_{n}'F_{n*}' - F_{n}F_{n*}}{1+\frac{1}{n}\int F_{n}dv} \mathbf{1}_{F_{n}'F_{n*}' \leq RF_{n}F_{n*}} bdv_{*}d\omega$$
$$+ \frac{1}{1+\delta F_{n}} \iint \frac{F_{n}'F_{n*}' - F_{n}F_{n*}}{1+\frac{1}{n}\int F_{n}dv} \mathbf{1}_{F_{n}'F_{n*}' > RF_{n}F_{n*}} bdv_{*}d\omega$$

The first term is bounded pointwise by

$$(R-1)rac{\mathcal{B}_{-}^n(F_n,F_n)}{1+\delta F_n}$$

while the $L^1([0,t] \times \mathbf{R}^3 \times \mathbf{R}^3)$ norm of the second is bounded by the entropy production

$$\frac{1}{\ln R} \int_0^t \int dx \iiint \frac{F'_n F'_{n*} - F_n F_{n*}}{1 + \frac{1}{n} \int F_n dv} \ln \left(\frac{F'_n F'_{n*}}{F_n F_{n*}}\right) b dv dv_* d\omega = O\left(\frac{1}{\ln R}\right)$$

<u>CONCLUSION:</u> hence, for each R >> 1,

$$\frac{\mathcal{B}^n(F_n, F_n)}{1 + \delta F_n} \in B\left(0, \frac{1}{\ln R}\right)_{L^1} + K_R$$

where K_R is locally uniformly integrable on $\mathbf{R}_+ \times \mathbf{R}^3 \times \mathbf{R}^3$ for each R.

Therefore

$$\frac{\mathcal{B}^n(F_n, F_n)}{1 + \delta F_n}$$
 is locally uniformly integrable on $\mathbf{R}_+ \times \mathbf{R}^3 \times \mathbf{R}^3$

Finally

$$\frac{\mathcal{B}^n_+(F_n,F_n)}{1+\delta F_n} = \frac{\mathcal{B}^n_-(F_n,F_n)}{1+\delta F_n} + \frac{\mathcal{B}^n(F_n,F_n)}{1+\delta F_n}$$

is the sum of two locally uniformly integrable sequences.

Applying Velocity Averaging

•We know that

$$(\partial_t + v \cdot \nabla_x) \frac{1}{\delta} \ln(1 + \delta F_n) = \frac{\mathcal{B}^n(F_n, F_n)}{1 + \delta F_n} = O(1)_{L^1([0,T] \times \mathbb{R}^3 \times \mathbb{R}^3)}$$
$$\iint (1 + |x|^2 + |v|^2 + |\ln F_n(t)|) F_n(t) dx dv \le C(1 + t^2)$$

The 2nd bound implies F_n is uniformly integrable on $[0, T] \times \mathbb{R}^3 \times \mathbb{R}^3$ and tight; for each $\delta > 0$, this is also true of $\frac{1}{\delta} \ln(1 + \delta F_n)$, since

$$0 \leq \frac{1}{\delta} \ln(1 + \delta F_n) \leq F_n$$

hence, by Velocity Averaging in L^1

 $\int \frac{1}{\delta} \ln(1 + \delta F_n) dv$ is strongly relatively compact in $L^1([0, T] \times \mathbf{R}^3)$

In fact

$$0 \le F_n - \frac{1}{\delta} \ln(1 + \delta F_n) \le \delta F_n^2 \mathbf{1}_{F_n \le R} + F_n \mathbf{1}_{F_n > R}$$

so that

$$\|F_n - \frac{1}{\delta}\ln(1 + \delta F_n)\|_{L^1_{x,v}} \le R\delta\|F_n\|_{L^1_{x,v}} + \frac{1}{\ln R}\iint F_n\ln F_n dxdv$$

<u>Hence</u>

$$F_n - \frac{1}{\delta} \ln(1 + \delta F_n) \to 0$$
 in $L^{\infty}([0, T]; L^1_{x,v})$ as $\delta \to 0$ uniformly in n

•Therefore, one can remove the nonlinear normalizing function, so that

 $\int F_n dv$ is strongly relatively compact in $L^1([0,T] \times \mathbb{R}^3)$

•Therefore, modulo extracting subsequences, for each T > 0:

$$F_n \rightarrow F \text{ in } L^1([0,T] \times \mathbf{R}^3 \times \mathbf{R}^3), \text{ while}$$

 $\int F_n \phi dv \rightarrow \int F \phi dv \text{ in } L^1_{loc}(\mathbf{R}_+ \times \mathbf{R}^3) \text{ and a.e.}$

for each $\phi \in L^{\infty}(\mathbf{R}_{+} \times \mathbf{R}^{3} \times \mathbf{R}^{3})$; likewise

$$L_n(F_n) \to L(F) = \overline{b} \star_v F = \iint F_* b(v - v_*, \omega) d\omega dv_*$$

in $L^1_{loc}(\mathbf{R_+} \times \mathbf{R^3})$ and a.e..

Proposition. For each $\phi \in L^{\infty}(\mathbf{R}_{+} \times \mathbf{R}^{3} \times \mathbf{R}^{3})$

$$\int \frac{\mathcal{B}_{\pm}^{n}(F_{n},F_{n})}{1+\int F_{n}dv}\phi dv \to \int \frac{\mathcal{B}_{\pm}(F,F)}{1+\int Fdv}\phi dv \text{ in } L_{loc}^{1}(\mathbf{R}_{+}\times\mathbf{R}^{3})$$

Product Limit Theorems

We recall Egorov's Theorem: Assume that $v_n \to v$ a.e. on $K \subset \mathbb{R}^N$. Then, for each $\epsilon > 0$, there exists a measurable $E \subset K$ such that

 $|K \setminus E| < \epsilon$, and $v_n \to v$ UNIFORMLY on E

Lemma. Assume that $u_n \rightharpoonup u$ in L^1 , that $\sup ||v_n||_{L^{\infty}} < +\infty$, and that $v_n \rightarrow v$ a.e.. Then $u_n v_n \rightharpoonup uv$ in L^1 . (If v = 0, $u_n v_n \rightarrow 0$ in L^1).

Lemma. Assume that, for each $\phi \in L^{\infty}(\mathbb{R}^N \times \mathbb{R}^N)$

 $u_n \rightharpoonup u \text{ in } L^1(\mathbf{R}^N \times \mathbf{R}^N), \quad \int u_n \phi dv \rightarrow \int u \phi dv \text{ in } L^1_{loc}(\mathbf{R}^N \times \mathbf{R}^N)$ that $\sup \|v_n\|_{L^\infty(\mathbf{R}^N \times \mathbf{R}^N)} < +\infty$, and that $v_n \rightarrow v$ a.e.. Then

$$\int u_n v_n \phi dv \to \int uv \phi dv \text{ in } L^1_{loc}(\mathbf{R}^N) \text{ for each } \phi \in L^\infty(\mathbf{R}^N \times \mathbf{R}^N)$$

•<u>Proof of the first lemma</u>: Write $u_n v_n - uv = u_n(v_n - v) + v(u_n - u)$; since $v \in L^{\infty}$ and $u_n \rightarrow u$ in L^1 , the second term $\rightarrow 0$ in L^1 .

WLOG, one can assume that $supp(u_n) \subset K$ compact; indeed, since $u_n \rightharpoonup u$ in L^1 , the sequence u_n is tight. By Egorov's Theorem

$$u_n(v_n - v) = u_n \mathbf{1}_{K \setminus E}(v_n - v) + u_n \mathbf{1}_E(v_n - v)$$

the second term $\rightarrow 0$ in L^1 , while the first term can be made arbitrarily small with ϵ , since u_n is uniformly integrable.

Proof of the second lemma: left as an exercise, following the same pattern.

Proof: One has

$$F_n \rightarrow F$$
 in $L^1_{loc}(dt; L^1_{x,v})$, $\int F_n \phi dv \rightarrow \int F \phi dv$ in $L^1_{loc}(dtdx)$ and a.e.

on the other hand

$$\frac{L_n(F_n)}{1+\int F_n dv} \to \frac{L(F)}{1+\int F dv} \text{ a.e.}$$

where

$$L(F) = \iint F_* b(v - v_*, \omega) d\omega dv_*, \quad \text{and } L_n(F) = \frac{L(F)}{1 + \frac{1}{n} \int F dv}$$

while

$$\left\|\frac{L_n(F_n)}{1+\int F_n dv}\right\|_{L^{\infty}} \le \|b\|_{L^{\infty}}$$

•Applying the second lemma above shows that

$$\int \frac{F_n L_n(F_n)}{1 + \int F_n dv} \phi dv \to \int \frac{FL(F)}{1 + \int F dv} \phi dv \text{ in } L^1_{loc}(\mathbf{R}_+ \times \mathbf{R}^3)$$

•In other words

$$\int \frac{\mathcal{B}_{-}^{n}(F_{n},F_{n})}{1+\int F_{n}dv}\phi dv \to \int \frac{\mathcal{B}_{-}(F,F)}{1+\int Fdv}\phi dv \text{ in } L_{loc}^{1}(\mathbf{R}_{+}\times\mathbf{R}^{3})$$

•The case of $\mathcal{B}^n_+(F_n, F_n)$ is easily reduced to the case of $\mathcal{B}^n_-(F_n, F_n)$ by exchanging (v, v_*) and (v', v'_*) .

Supersolution

•Write the truncated Boltzmann equation along characteristics:

$$\frac{d}{dt}F_n^{\sharp} + \left(\frac{L(F_n)}{1 + \frac{1}{n}\int F_n dv}\right)^{\sharp}F_n^{\sharp} = \left(\frac{\mathcal{B}_+(F_n, F_n)}{1 + \frac{1}{n}\int F_n dv}\right)^{\sharp}$$

with the notation $f^{\sharp}(t, x, v) = f(t, x + tv, v)$. Setting

$$A_n^{\sharp}(t,x,v) = \int_0^t \left(\frac{L(F_n)}{1 + \frac{1}{n}\int F_n dv}\right)^{\sharp} (s,x,v) ds$$

we see that (modulo extraction of a subsequence)

$$A_n^{\sharp} \to A^{\sharp} \equiv \int_0^t L(F)^{\sharp}(s, x, v) ds$$
 in $C([0, T], L_{loc}^1(dxdv))$ and a.e.

Pick β_R to be a mollified version of $z \mapsto \sup(z, R)$; then

$$F_n^{\sharp}(t) \ge F^{\sharp}(0)e^{-A_n^{\sharp}(t)} + \int_0^t e^{-(A_n^{\sharp}(t) - A_n^{\sharp}(s))} \left(\frac{\mathcal{B}_+(\beta_R(F_n), \beta_R(F_n))}{1 + \frac{1}{n}\int F_n dv}\right)^{\sharp}(s)ds$$

By Velocity Averaging applied to $\beta_R(F_n)$, one sees that

 $\beta_R(F_n) \rightarrow F^R$, $\mathcal{B}_+(\beta_R(F_n), \beta_R(F_n)) \rightarrow \mathcal{B}_+(F^R, F^R)$ in $L^1_{loc}(dtdx; L^1_v)$ Passing to the limit in the inequality above leads to

$$F^{\sharp}(t) \ge F^{\sharp}(0)e^{-A^{\sharp}(t)} + \int_{0}^{t} e^{-(A^{\sharp}(t) - A^{\sharp}(s))} \mathcal{B}_{+}(F^{R}, F^{R})^{\sharp}(s) ds$$

It follows from the entropy bound that

$$F^R \uparrow F$$
 in $L^1_{loc}(dt; L^1_{x,v})$ as $R o +\infty$

•Therefore, by monotone convergence, one eventually finds that

$$F^{\sharp}(t) \ge F^{\sharp}(0)e^{-A^{\sharp}(t)} + \int_{0}^{t} e^{-(A^{\sharp}(t) - A^{\sharp}(s))} \mathcal{B}_{+}(F,F)^{\sharp}(s) ds$$

•<u>Remark</u>: This implies in particular that, for each t > 0, the function

$$(s, x, v) \mapsto e^{-(A^{\sharp}(t, x, v) - A^{\sharp}(s, x, v))} \mathcal{B}_{+}(F, F)^{\sharp}(s, x, v)$$

belongs to $L^1([0,t] \times \mathbb{R}^3 \times \mathbb{R}^3)$. Because of the inequality

$$\mathcal{B}_{-}(F,F) \leq R\mathcal{B}_{+}(F,F) + \frac{1}{\ln R} \iint (F'F'_{*} - FF_{*}) \ln \left(\frac{F'F'_{*}}{FF_{*}}\right) bd\omega dv_{*}$$

the function

$$(s,x,v) \mapsto e^{-(A^{\sharp}(t,x,v)-A^{\sharp}(s,x,v))} \mathcal{B}_{-}(F,F)^{\sharp}(s,x,v)$$

also belongs to $L^1([0,t] \times \mathbb{R}^3 \times \mathbb{R}^3)$.

Subsolution

•Write the truncated Boltzmann equation for $\beta_{\delta}(F_n) = \frac{1}{\delta} \ln(1 + \delta F_n)$:

$$(\partial_t + v \cdot \nabla_x)\beta_{\delta}(F_n) + \frac{L(F_n)}{1 + \frac{1}{n}\int F_n dv}\beta_{\delta}(F_n) = \frac{\mathcal{B}_+(F_n, F_n)}{(1 + \delta F_n)(1 + \frac{1}{n}\int F_n dv)} + \frac{L(F_n)}{1 + \frac{1}{n}\int F_n dv} \left(\beta_{\delta}(F_n) - \frac{F_n}{1 + \delta F_n}\right)$$

and integrate along characteristics:

$$\begin{aligned} \beta_{\delta}(F_n)^{\sharp}(t) &= e^{-A_n^{\sharp}(t)} \beta_{\delta}(F(0)) \\ &+ \int_0^t e^{-(A_n^{\sharp}(t) - A_n^{\sharp}(s))} \left(\frac{\mathcal{B}_+(F_n, F_n)}{(1 + \delta F_n)(1 + \frac{1}{n} \int F_n dv)} \right)^{\sharp}(s) ds \\ &+ \int_0^t e^{-(A_n^{\sharp}(t) - A_n^{\sharp}(s))} \left(\frac{L(F_n)}{1 + \frac{1}{n} \int F_n dv} \right)^{\sharp}(s) \left(\beta_{\delta}(F_n)^{\sharp}(s) - \frac{F_n^{\sharp}(s)}{1 + \delta F_n^{\sharp}(s)} \right) ds \end{aligned}$$

Next, we let $n \to +\infty$, keeping $\delta > 0$ fixed, and recall that

$$\beta_{\delta}(F_n) \rightarrow F_{\delta} \text{ in } L^1_{loc}(dt; L^1_{x,v}), \quad A_n^{\sharp} \rightarrow A^{\sharp} \text{ in } C([0,T]; L^1_{loc}(dxdv))$$

while

$$\int F_n dv \to \int F dv \text{ a.e. and } \frac{\mathcal{B}_+(F_n, F_n)}{1 + \delta F_n} \rightharpoonup \mathcal{B}_{\delta}^+ \text{ in } L^1_{loc}(dt dx dv)$$

Hence, by the product limit theorem, the second integral above satisfies

$$\int_{0}^{t} e^{-(A_{n}^{\sharp}(t) - A_{n}^{\sharp}(s))} \left(\frac{\mathcal{B}_{+}(F_{n}, F_{n})}{(1 + \delta F_{n})(1 + \frac{1}{n} \int F_{n} dv)} \right)^{\sharp}(s) ds$$
$$\rightarrow \int_{0}^{t} e^{-(A^{\sharp}(t) - A^{\sharp}(s))} \mathcal{B}_{\delta}^{+\sharp}(s) ds$$

Notice the inequality

$$\frac{\mathcal{B}_{+}(F_n, F_n)}{(1+\delta F_n)(1+\int F_n dv)} \leq \frac{\mathcal{B}_{+}(F_n, F_n)}{1+\int F_n dv}$$

passing to the limit as $n \to +\infty$ in weak L^1_{loc} leads to

$$\frac{\mathcal{B}_{\delta}^{+}}{1+\int Fdv} \leq \frac{\mathcal{B}_{+}(F,F)}{1+\int Fdv}, \quad \text{and hence } \mathcal{B}_{\delta}^{+} \leq \mathcal{B}_{+}(F,F)$$

Hence

$$F_{\delta}^{\sharp}(t) \leq e^{-A^{\sharp}(t)}\beta_{\delta}(F(0)) + \int_{0}^{t} e^{-(A^{\sharp}(t) - A^{\sharp}(s))}\mathcal{B}^{+}(F,F)^{\sharp}(s)ds + \mathsf{REMAINDER}$$

In the limit as $\delta \to 0$, $F_{\delta} \uparrow F$ in $L^{1}_{loc}(dt, L^{1}_{x,v})$, while the remainder term is disposed of by a combination of arguments that involve the entropy bound, monotone convergence, and the fact that

$$\int_0^t e^{-(A^{\sharp}(t) - A^{\sharp}(s))} L(F)^{\sharp}(s) F^{\sharp}(s) ds < +\infty$$

Finally, we arrive at the inequality

$$F^{\sharp}(t) \le F^{\sharp}(0)e^{-A^{\sharp}(t)} + \int_{0}^{t} e^{-(A^{\sharp}(t) - A^{\sharp}(s))} \mathcal{B}_{+}(F, F)^{\sharp}(s) ds$$