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LECTURE 5

THE NAVIER-STOKES LIMIT: SETUP AND A PRIORI ESTIMATES



The incompressible Navier-Stokes scaling

•Consider the dimensionless Boltzmann equation in the incompressible
Navier-Stokes scaling, i.e. with St = πKn = ǫ ≪ 1 :

ǫ∂tFǫ + v · ∇xFǫ =
1

ǫ
B(Fǫ, Fǫ)

•Start with an initial data that is a perturbation of some uniform Maxwellian
(say, the centered reduced Gaussian M = M1,0,1) with Mach number

Ma = O(ǫ) :

F in
ǫ = M1,0,1 + ǫf in

ǫ

•Example 1: pick uin ∈ L2(R3) a divergence-free vector field; then the
distribution function

F in
ǫ (x, v) = M1,ǫuin(x),1(v)

is of the type above.



•Example 2: If in addition θin ∈ L2 ∩ L∞(R3), the distribution function

F in
ǫ (x, v) = M

1−ǫθin(x), ǫuin(x)

1−ǫθin(x)
, 1
1−ǫθin(x)

(v)

is also of the type above. (Pick 0 < ǫ < 1
‖θin‖L∞ , then 1 − ǫθin > 0 a.e.).

• Problem : to prove that

1

ǫ

∫

R3
vFǫ(t, x, v)dv → u(t, x) as ǫ → 0

where u solves the incompressible Navier-Stokes equations

∂tu + u · ∇xu + ∇xp = ν∆xu , divx u = 0

u
∣

∣

∣

t=0
= uin

The viscosity ν is given by the same formula as in the Chapman-Enskog
expansion.



Renormalized solutions relatively to M

•The DiPerna-Lions theory of renormalized solutions considered initial data
vanishing at infinity. In the context of the Navier-Stokes limit, we shall need
solutions that approach a uniform Maxwellian state at infinity.

Definition. A renormalized solution relatively to M of the scaled Boltz-
mann equation is a nonnegative F ∈ C(R+;L1

loc(R
3 × R3)) such that

H(Fǫ(t)|M) < +∞ for all t ≥ 0 and Γ′
(

Fǫ
M

)

B(Fǫ, Fǫ) ∈ L1
loc(dtdxdv),

as well as

M(ǫ∂t + v · ∇x)Γ

(

Fǫ

M

)

=
1

ǫ
Γ′

(

Fǫ

M

)

B(Fǫ, Fǫ)

in the sense of distributions on R∗
+ × R3 × R3, for all Γ ∈ C1(R+) such

that Γ(0) = 0 and |Γ′(Z)| ≤ C√
1+Z

.



•In a later paper (CPDEs 1994), P.-L. Lions studied the existence of renor-
malized solutions to the Boltzmann equation with various limiting condi-
tions at infinity. His results imply the following

Theorem. Let F in ≥ 0 a.e. satisfy H(Fǫ|M) < +∞. Then there exists
a renormalized solution relatively to M of the scaled Boltzmann equation
such that Fǫ

∣

∣

∣

t=0
= F in. Moreover, this solution satisfies

• the continuity equation (local conservation of mass), and

• the DiPerna-Lions relative entropy inequality



A priori estimates

•The only a priori estimate satisfied by renormalized solutions to the Boltz-
mann equation is the DiPerna-Lions entropy inequality:

H(Fǫ|M)(t) +
1

ǫ2

∫ t

0

∫

R3

∫∫∫

R3×R3×S2
d(Fǫ)|(v − v∗) · ω|dvdv∗dωdxds

≤ H(F in
ǫ |M)

•Notation:

H(f |g) =
∫∫

R3×R3

(

f ln

(

f

g

)

− f + g

)

dxdv (relative entropy)

d(f) = 1
4(f

′f ′
∗ − ff∗) ln

(

f ′f ′∗
ff∗

)

(dissipation integrand)



•Introduce the relative number density, and the relative number density
fluctuation:

Gǫ =
Fǫ

M
, gǫ =

Fǫ − M

ǫM

•Pointwise inequalities: one easily checks that

(
√

Gǫ − 1)2 ≤ C(Gǫ lnGǫ − Gǫ + 1)
(

√

G′
ǫG

′
ǫ∗ −

√
GǫGǫ∗

)2
≤ 1

4(G
′
ǫG

′
ǫ∗ − GǫGǫ∗) ln

(

G′
ǫG

′
ǫ∗

GǫGǫ∗

)

= d(Gǫ)

•Notice that Z lnZ − Z + 1 ∼ 1
2(Z − 1)2 near Z = 1.



•Express that the initial data is a perturbation of the uniform Maxwellian M

with Mach number Ma = O(ǫ):

H(F in
ǫ ) ≤ Cinǫ2

•With the DiPerna-Lions entropy inequality, and the pointwise inequalities
above, one gets the following uniform in ǫ bounds

∫∫

R3×R3
(
√

Gǫ − 1)2Mdvdx ≤ Cǫ2

∫ +∞

0

∫

R3

∫∫∫

R3×R3×S2

(

√

G′
ǫG

′
ǫ∗ −

√
GǫGǫ∗

)2
dµdxdt ≤ Cǫ4

where µ is the collision measure:

dµ(v, v∗, ω) = |(v − v∗) · ω|dωM∗dv∗Mdv
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The BGL Program (CPAM 1993)

•Let F in
ǫ ≥ 0 be any sequence of measurable functions satisfying the

entropy bound H(F in
ǫ |M) ≤ Cinǫ2, and let Fǫ be a renormalized solution

relative to M of the scaled Boltzmann equation

ǫ∂tFǫ + v · ∇xFǫ =
1

ǫ
B(Fǫ, Fǫ) , Fǫ

∣

∣

∣

t=0
= F in

ǫ

•Let gǫ ≡ gǫ(x, v) be such that Gǫ := 1 + ǫgǫ ≥ 0 a.e.. We say that
gǫ → g entropically at rate ǫ as ǫ → 0 iff

gǫ ⇀ g in L1
loc(Mdvdx) , and

1

ǫ2
H(MGǫ|M) → 1

2

∫∫

g2Mdvdx



Theorem. Assume that

F in
ǫ (x, v) − M(v)

ǫM(v)
→ uin(x) · v

entropically at rate ǫ. Then the family of bulk velocity fluctuations

1

ǫ

∫

R3
vFǫdv

is relatively compact in w−L1
loc(dtdx) and each of its limit points as ǫ → 0

is a Leray solution of

∂tu + divx(u ⊗ u) + ∇xp = ν∆xu , divx u = 0 , u
∣

∣

∣

t=0
= uin

with viscosity given by the formula

ν = 1
10

∫

A : ÂMdv , where Â = L−1A



Method of proof

•Renormalization: pick γ ∈ C∞(R+) a nonincreasing function such that

γ
∣

∣

∣

[0,3/2]
≡ 1 , γ

∣

∣

∣

[2,+∞)
≡ 0 ; set γ̂(z) =

d

dz
((z − 1)γ(z))

•The Boltzmann equation is renormalized (relatively to M ) as follows:

∂t(gǫγǫ) +
1

ǫ
v · ∇x(gǫγǫ) =

1

ǫ3
γ̂ǫQ(Gǫ, Gǫ)

where γǫ := γ(Gǫ), γ̂ǫ = γ̂(Gǫ) and Q(G, G) = M−1B(MG, MG)



• Continuity equation Renormalized solutions of the Boltzmann equation
satisfy the local conservation of mass:

ǫ∂t〈gǫ〉 + divx〈vgǫ〉 = 0

•The entropy bound and Young’s inequality imply that

(1 + |v|2)gǫ is relatively compact in w − L1
loc(dtdx;L1(Mdv))

Modulo extraction of a subsequence

gǫ ⇀ g in L1
loc(dtdx;L1(Mdv))

and hence 〈vgǫ〉 ⇀ 〈vg〉 =: u in L1
loc(dtdx); passing to the limit in the

continuity equation leads to the incompressibility condition

divx u = 0



•High velocity truncation: pick K > 6 and set Kǫ = K| ln ǫ|; for each
function ξ ≡ ξ(v), define ξKǫ(v) = ξ(v)1|v|2≤Kǫ

•Multiply both sides of the scaled, renormalized Boltzmann equation by
each component of vKǫ:

∂t〈vKǫgǫγǫ〉 + divx Fǫ(A) + ∇x
1

ǫ
〈13|v|

2
Kǫ

gǫγǫ〉 = Dǫ(v)

where

Fǫ(A) = 1
ǫ 〈AKǫgǫγǫ〉 , Dǫ(v) =

1

ǫ3

〈〈

vKǫγ̂ǫ(G
′
ǫG

′
ǫ∗ − GǫGǫ∗)

〉〉

•Notation: with dµ = |(v − v∗) · ω|MdvM∗dv∗dω (collision measure)

〈φ〉 =
∫

R3
φ(v)Mdv ,

〈〈

ψ
〉〉

=
∫∫∫

R3×R3×S2
ψ(v, v∗, ω)dµ



•The plan is to prove that, modulo extraction of a subsequence

〈vKǫgǫγǫ〉 ⇀ 〈vg〉 =: u in L1
loc(R+ × R

3)

Dǫ(v) → 0 in L1
loc(R+ × R

3) and

P (divx Fǫ(A)) ⇀ P divx(u
⊗2) − ν∆xu in L1

loc(dt,W
−s,1
x,loc )

for s > 1 as ǫ → 0, where P is the Leray projection (i.e. the L2 orthogonal
projection on divergence-free vector fields).


