Hydrodynamic Limits for the Boltzmann Equation

François Golse
Université Paris 7 \& Laboratoire J.-L. Lions golse@math.jussieu.fr

Academia Sinica, Taipei, December 2004

LECTURE 6
THE NAVIER-STOKES LIMIT: CONVERGENCE PROOF

Conservation defects $\rightarrow 0$

(as in FG+DL, CPAM 2002, but simpler)

Proposition. $\mathbf{D}_{\epsilon}(v) \rightarrow 0$ in $L_{l o c}^{1}\left(\mathbf{R}_{+} \times \mathbf{R}^{3}\right)$ as $\epsilon \rightarrow 0$.

- Split the conservation defect as $\mathbf{D}_{\epsilon}(v)=\mathbf{D}_{\epsilon}^{1}(v)+\mathbf{D}_{\epsilon}^{2}(v)$ with

$$
\begin{aligned}
& \mathbf{D}_{\epsilon}^{1}(v)=\frac{1}{\epsilon^{3}}\left\langle v_{K_{\epsilon}} \hat{\epsilon}_{\epsilon}\left(\sqrt{G_{\epsilon}^{\prime} G_{\epsilon *}^{\prime}}-\sqrt{G_{\epsilon} G_{\epsilon}}\right)^{2}\right\rangle \\
& \mathbf{D}_{\epsilon}^{2}(v)=\frac{2}{\epsilon^{3}}\left\langle v_{K_{\epsilon}} \hat{\gamma}_{\epsilon}\left(\sqrt{G_{\epsilon}^{\prime} G_{\epsilon *}^{\prime}}-\sqrt{G_{\epsilon} G_{\epsilon}}\right) \sqrt{G_{\epsilon} G_{\epsilon}}\right\rangle
\end{aligned}
$$

That $\mathbf{D}_{\epsilon}^{1}(v) \rightarrow 0$ comes from the entropy production estimate.
-Setting $\equiv_{\epsilon}=\frac{1}{\epsilon^{2}}\left(\sqrt{G_{\epsilon}^{\prime} G_{\epsilon *}^{\prime}}-\sqrt{G_{\epsilon} G_{\epsilon}}\right) \sqrt{G_{\epsilon} G_{\epsilon}}$, we further split $\mathbf{D}_{\epsilon}^{2}(v)$ into

$$
\begin{aligned}
\mathbf{D}_{\epsilon}^{2}(v)= & -\frac{2}{\epsilon}\left\langle\left\langle v \mathbf{1}_{|v|^{2}>K_{\epsilon}} \hat{\gamma}_{\epsilon} \Xi_{\epsilon}\right\rangle\right\rangle+\frac{2}{\epsilon}\left\langle\left\langle v \hat{\gamma}_{\epsilon}\left(1-\hat{\gamma}_{\epsilon *} \hat{\gamma}_{\epsilon}^{\prime} \hat{\gamma}_{\epsilon *}\right) \Xi_{\epsilon}\right\rangle\right\rangle \\
& +\frac{1}{\epsilon}\left\langle\left\langle\left(v+v_{1}\right) \hat{\gamma}_{\epsilon} \hat{\gamma}_{\epsilon *} \hat{\gamma}_{\epsilon}^{\prime} \hat{\gamma}_{\epsilon *} \bar{\Xi}_{\epsilon}\right\rangle\right.
\end{aligned}
$$

The first and third terms are easily mastered by the entropy production bound and classical estimates on the tail of Gaussian distributions.

- Sending the second term to 0 requires knowing that

$$
(1+|v|)\left(\frac{\sqrt{G_{\epsilon}}-1}{\epsilon}\right)^{2} \text { is uniformly integrable on }[0, T] \times K \times \mathbf{R}^{3}
$$

for the measure $d t d x M d v$, for each $T>0$ and each compact $K \subset \mathbf{R}^{3}$.

Asymptotic behavior of the momentum flux

Proposition. Denoting by Π the $L^{2}(M d v)$-orthogonal projection on $\operatorname{ker} \mathcal{L}$ $\mathbf{F}_{\epsilon}(A)=2\left\langle A\left(\Pi \frac{\sqrt{G_{\epsilon}}-1}{\epsilon}\right)^{2}\right\rangle-2\left\langle\hat{A} \frac{1}{\epsilon^{2}} \mathcal{Q}\left(\sqrt{G_{\epsilon}}, \sqrt{G_{\epsilon}}\right)\right\rangle+o(1)_{L_{l o c}^{1}(d t d x)}$

The proof is based upon splitting $\mathbf{F}_{\epsilon}(A)$ as

$$
\mathbf{F}_{\epsilon}(A)=\left\langle A_{K_{\epsilon}} \gamma_{\epsilon}\left(\frac{\sqrt{G_{\epsilon}}-1}{\epsilon}\right)^{2}\right\rangle+\frac{2}{\epsilon}\left\langle A_{K_{\epsilon}} \gamma_{\epsilon} \frac{\sqrt{G_{\epsilon}}-1}{\epsilon}\right\rangle
$$

using the uniform integrability of $(1+|v|)\left(\frac{\sqrt{G_{\epsilon}}-1}{\epsilon}\right)^{2}$ and the following consequence thereof

$$
\lim _{\epsilon \rightarrow 0}\left\|\frac{\sqrt{G_{\epsilon}}-1}{\epsilon}-\Pi \frac{\sqrt{G_{\epsilon}}-1}{\epsilon}\right\|_{L_{l o c}^{2}\left(d t d x ; L^{2}((1+|v|) M d v)\right)}=0
$$

-By the entropy production estimate, modulo extraction of a subsequence

$$
\frac{1}{\epsilon^{2}}\left(\sqrt{G_{\epsilon}^{\prime} G_{\epsilon *}^{\prime}}-\sqrt{G_{\epsilon} G_{\epsilon}}\right) \rightharpoonup q \text { in } L^{2}(d t d x d \mu)
$$

and passing to the limit in the scaled, renormalized Boltzmann equation leads to

$$
\iint_{\mathbf{R}^{3} \times \mathbf{S}^{2}} q\left|\left(v-v_{*}\right) \cdot \omega\right| M_{*} d v_{*} d \omega=\frac{1}{2} v \cdot \nabla_{x} g=\frac{1}{2} A: \nabla_{x} u+\text { odd in } v
$$

- Since $\frac{\sqrt{G_{\epsilon}}-1}{\epsilon} \simeq \frac{1}{2} g_{\epsilon} \gamma_{\epsilon}$, one gets

$$
\mathbf{F}_{\epsilon}(A)=A\left(\left\langle v_{K_{\epsilon}} g_{\epsilon} \gamma_{\epsilon}\right\rangle\right)-\nu\left(\nabla_{x} u+\left(\nabla_{x} u\right)^{T}\right)+o(1)_{w-L_{l o c}^{1}}(d t d x)
$$

(remember that $A(u)=u \otimes u-\frac{1}{3}|u|^{2} I$), while

$$
\left\langle v_{K_{\epsilon}} g_{\epsilon} \gamma_{\epsilon}\right\rangle \rightharpoonup u \text { in } L_{l o c}^{1}\left(\mathbf{R}_{+} \times \mathbf{R}^{3}\right)
$$

Strong compactness

- In order to pass to the limit in the quadratic term $A\left(\left\langle v_{K_{\epsilon}} g_{\epsilon} \gamma_{\epsilon}\right\rangle\right)$, one needs strong- L^{2} compactness of $\left\langle v_{K_{\epsilon}} g_{\epsilon} \gamma_{\epsilon}\right\rangle$.
- Velocity averaging provides strong compactness in the x-variable:

$$
\begin{aligned}
& \left(\frac{\sqrt{\epsilon^{\alpha}+G_{\epsilon}}-1}{\epsilon}\right)^{2} \text { is locally uniformly integrable on } \mathbf{R}_{+} \times \mathbf{R}^{3} \times \mathbf{R}^{3} \\
& \left(\epsilon \partial_{t}+v \cdot \nabla_{x}\right) \frac{\sqrt{\epsilon^{\alpha}+G_{\epsilon}}-1}{\epsilon} \text { is bounded in } L_{l o c}^{1}\left(\mathbf{R}_{+} \times \mathbf{R}^{3} \times \mathbf{R}^{3}\right)
\end{aligned}
$$

This implies that, for each $T>0$ and each compact $C \subset \mathbf{R}^{3}$,

$$
\begin{array}{r}
\int_{0}^{T} \int_{C}\left|\left\langle v_{K_{\epsilon}} g_{\epsilon} \gamma_{\epsilon}\right\rangle(t, x+y)-\left\langle v_{K_{\epsilon}} g_{\epsilon} \gamma_{\epsilon}\right\rangle(t, x)\right|^{2} d x d t \rightarrow 0 \\
\text { as }|y| \rightarrow 0, \text { uniformly in } \epsilon>0
\end{array}
$$

- It remains to get compactness in the time variable. Observe that $\partial_{t} P\left\langle v_{K_{\epsilon}} g_{\epsilon} \gamma_{\epsilon}\right\rangle=P\left(\mathbf{D}_{\epsilon}(v)-\operatorname{div}_{x} \mathbf{F}_{\epsilon}(A)\right)$ is bounded in $L_{l o c}^{1}\left(d t, W_{x, l o c}^{-s, 1}\right)$ (Recall that $\mathbf{D}_{\epsilon}(v) \rightarrow 0$ while $\mathbf{F}_{\epsilon}(A)$ is bounded in $L_{l o c}^{1}(d t d x)$).
-Together with the compactness in the x-variable that follows from velocity averaging, this implies that

$$
P\left\langle v_{K_{\epsilon}} g_{\epsilon} \gamma_{\epsilon}\right\rangle \rightarrow u \text { in } L_{l o c}^{2}(d t d x)
$$

-Recall that $\left\langle v_{K_{\epsilon}} g_{\epsilon} \gamma_{\epsilon}\right\rangle \rightharpoonup u$ in $L_{l o c}^{2}(d t d x)$; we DO NOT seek to prove that

$$
\left\langle v_{K_{\epsilon}} g_{\epsilon} \gamma_{\epsilon}\right\rangle \rightarrow u \text { strongly in } L_{l o c}^{2}(d t d x)
$$

Filtering acoustic waves (PLL+NM, ARMA 2002)

- Instead, we prove that

$$
P \operatorname{div}_{x}\left(\left\langle v_{K_{\epsilon}} g_{\epsilon} \gamma_{\epsilon}\right\rangle^{\otimes 2}\right) \rightarrow P \operatorname{div}_{x}\left(u^{\otimes 2}\right) \text { in } \mathcal{D}^{\prime}\left(\mathbf{R}_{+}^{*} \times \mathbf{R}^{3}\right) \text { as } \epsilon \rightarrow 0
$$

- Observe that

$$
\begin{aligned}
\left.\epsilon \partial_{t}\left\langle v_{K_{\epsilon}} g_{\epsilon} \gamma_{\epsilon}\right\rangle+\left.\nabla_{x}\left\langle\frac{1}{3}\right| v\right|_{K_{\epsilon}} ^{2} g_{\epsilon} \gamma_{\epsilon}\right\rangle & \rightarrow 0 \text { in } L_{l o c}^{1}\left(\mathbf{R}_{+} ; W_{l o c}^{-1,1}\left(\mathbf{R}^{3}\right)\right) \\
\left.\left.\epsilon \partial_{t}\left\langle\frac{1}{3}\right| v\right|_{K_{\epsilon}} ^{2} g_{\epsilon} \gamma_{\epsilon}\right\rangle+\operatorname{div}_{x}\left\langle\frac{5}{3} v_{K_{\epsilon}} g_{\epsilon} \gamma_{\epsilon}\right\rangle & \rightarrow 0 \text { in } L_{l o c}^{1}\left(\mathbf{R}_{+} ; W_{l o c}^{-1,1}\left(\mathbf{R}^{3}\right)\right)
\end{aligned}
$$

$$
\text { as } \epsilon \rightarrow 0
$$

-Setting $\nabla_{x} \pi_{\epsilon}=(I-P)\left\langle v_{K_{\epsilon}} g_{\epsilon} \gamma_{\epsilon}\right\rangle$, the system above becomes

$$
\begin{aligned}
\left.\epsilon \partial_{t} \nabla_{x} \pi_{\epsilon}+\left.\nabla_{x}\left\langle\frac{1}{3}\right| v\right|_{K_{\epsilon}} ^{2} g_{\epsilon} \gamma_{\epsilon}\right\rangle & \rightarrow 0 \text { in } L_{l o c}^{1}\left(\mathbf{R}_{+} ; W_{l o c}^{-s, 1}\left(\mathbf{R}^{3}\right)\right), \quad s>1 \\
\left.\left.\epsilon \partial_{t}\left\langle\frac{1}{3}\right| v\right|_{K_{\epsilon}} ^{2} g_{\epsilon} \gamma_{\epsilon}\right\rangle+\frac{5}{3} \Delta_{x} \pi_{\epsilon} & \rightarrow 0 \text { in } L_{l o c}^{1}\left(\mathbf{R}_{+} ; W_{l o c}^{-1,1}\left(\mathbf{R}^{3}\right)\right)
\end{aligned}
$$

-Straightforward computation shows that

$$
\left.\operatorname{div}_{x}\left(\left(\nabla_{x} \pi_{\epsilon}\right)^{\otimes 2}\right)=\frac{1}{2} \nabla_{x}\left(\left|\nabla_{x} \pi_{\epsilon}\right|^{2}-\left.\frac{3}{5}\left\langle\frac{1}{3}\right| v\right|_{K_{\epsilon}} ^{2} g_{\epsilon} \gamma_{\epsilon}\right\rangle^{2}\right)+o(1)_{L_{l o c}^{1}(d t d x)}
$$

-On the other hand, because the limiting velocity field is divergence-free, one has

$$
\nabla_{x} \pi_{\epsilon} \rightharpoonup 0 \text { in } L_{l o c}^{2}(d t d x) \text { as } \epsilon \rightarrow 0
$$

-Splitting

$$
\begin{array}{r}
P \operatorname{div}_{x}\left(\left\langle v_{K_{\epsilon}} g_{\epsilon} \gamma_{\epsilon}\right\rangle^{\otimes 2}\right)=P \operatorname{div}_{x}\left(\left(P\left\langle v_{K_{\epsilon}} g_{\epsilon} \gamma_{\epsilon}\right\rangle\right)^{\otimes 2}\right)+P \operatorname{div}_{x}\left(\left(\nabla_{x} \pi_{\epsilon}\right)^{\otimes 2}\right) \\
+2 P \operatorname{div}_{x}\left(P\left\langle v_{K_{\epsilon}} g_{\epsilon} \gamma_{\epsilon}\right\rangle \vee \nabla_{x} \pi_{\epsilon}\right)
\end{array}
$$

The last two terms vanish with ϵ while the first converges to $P \operatorname{div}_{x}\left(u^{\otimes 2}\right)$ since $P\left\langle v_{K_{\epsilon}} g_{\epsilon} \gamma_{\epsilon}\right\rangle \rightarrow u$ strongly in $L_{\text {loc }}^{2}(d t d x)$.

The key estimates (as in FG+LSR, Invent. Math. 2004)

Proposition. For each $T>0$ and each compact $K \subset \mathbf{R}^{3}$, the family $\left(\frac{\sqrt{G_{\epsilon}}-1}{\epsilon}\right)^{2}(1+|v|)$ is uniformly integrable on $[0, T] \times K \times \mathbf{R}^{3}$ for the measure $d t d x M d v$.

Idea no. 1 We first prove that $\left(\frac{\sqrt{G_{\epsilon}}-1}{\epsilon}\right)^{2}(1+|v|)$ is uniformly integrable on $[0, T] \times K \times \mathbf{R}^{3}$ for the measure $d t d x M d v$ in the v-variable .
-We say that $\phi_{\epsilon} \equiv \phi_{\epsilon}(x, y) \in L_{x, y}^{1}(d \mu(x) d \nu(y))$ is uniformly integrable in the y-variable for the measure $d \mu(x) d \nu(y)$ iff

$$
\int \sup _{\nu(A)<\alpha} \int_{A}\left|\phi_{\epsilon}(x, y)\right| d \nu(y) d \mu(x) \rightarrow 0 \text { as } \alpha \rightarrow 0 \text { uniformly in } \epsilon
$$

- Start from the formula

$$
\mathcal{L}\left(\frac{\sqrt{G_{\epsilon}}-1}{\epsilon}\right)=\epsilon \mathcal{Q}\left(\frac{\sqrt{G_{\epsilon}}-1}{\epsilon}, \frac{\sqrt{G_{\epsilon}}-1}{\epsilon}\right)-\frac{1}{\epsilon} \mathcal{Q}\left(\sqrt{G_{\epsilon}}, \sqrt{G_{\epsilon}}\right)
$$

and use the following estimate (G.-Perthame-Sulem, ARMA 1988)

$$
\|\mathcal{Q}(f, f)\|_{L^{2}\left((1+|v|)^{-1} M d v\right)} \leq C\|f\|_{L^{2}(M d v)}\|f\|_{L^{2}((1+|v|) M d v)}
$$

to arrive at

$$
\begin{aligned}
\left(1-O(\epsilon)\left\|\frac{\sqrt{G_{\epsilon}}-1}{\epsilon}\right\|_{L^{2}(M d v)}\right) & \left\|\frac{\sqrt{G_{\epsilon}}-1}{\epsilon}-\Pi \frac{\sqrt{G_{\epsilon}}-1}{\epsilon}\right\|_{L^{2}((1+|v|) M d v)} \\
& \leq O(\epsilon)_{L_{t, x}^{2}}+O(\epsilon)\left\|\frac{\sqrt{G_{\epsilon}}-1}{\epsilon}\right\|_{L^{2}(M d v)}^{2}
\end{aligned}
$$

-This estimates tells us that $\frac{\sqrt{G_{\epsilon}}-1}{\epsilon}$ stays close to its associated infinitesimal Maxwellian \Rightarrow regularity+decay in v.

Idea no. 2 Use a L^{1}-variant of velocity averaging (FG+LSR, CRAS 2002).

Lemma. Let $f_{n} \equiv f_{n}(x, v)$ be a bounded sequence in $L_{l o c}^{1}(d x d v)$ such that $v \cdot \nabla_{x} f_{n}$ is also bounded in $L_{l o c}^{1}(d x d v)$. Assume that f_{n} is locally uniformly integrable in v. Then

- f_{n} is locally uniformly integrable (in x, v), and
- for each test function $\phi \in L_{\text {comp }}^{\infty}\left(\mathbf{R}_{v}^{D}\right)$, the sequence of averages

$$
\rho_{n}^{\phi}(x)=\int f_{n}(x, v) \phi(v) d v
$$

is relatively compact in $L_{\text {loc }}^{1}(d x)$.
-Let's prove that the sequence of averages ρ_{n}^{ϕ} is locally uniformly integrable (LSR, CPDEs 2002). WLOG, assume that f_{n} and $\phi \geq 0$.
-Let $\chi \equiv \chi(t, x, v)$ be the solution to

$$
\partial_{t} \chi+v \cdot \nabla_{x} \chi=0, \quad \chi(0, x, v)=1_{A}(x)
$$

Clearly, $\chi(t, x, v)=1_{A_{x}(t)}(v)$ (χ takes the values 0 and 1 only). On the other hand,

$$
\left|A_{x}(t)\right|=\int \chi(t, x, v) d v=\int 1_{A}(x-t v) d v=\frac{|A|}{t^{D}}
$$

-Remark: this is the basic dispersion estimate for the free transport equation.

- Set

$$
\begin{aligned}
g_{n}(x, v) & :=f_{n}(x, v) \phi(v), \text { and } \\
h_{n}(x, v) & :=v \cdot \nabla_{x} g_{n}(x, v)=\phi(v)\left(v \cdot \nabla_{x} f_{n}(x, v)\right)
\end{aligned}
$$

Both g_{n} and h_{n} are bounded in $L_{x, v}^{1}$, while g_{n} is uniformly integrable in v.

- Observe that (hint: integrate by parts the 2nd integral in the r.h.s.)

$$
\int_{A} \int g_{n} d v d x=\iint_{A_{x}(t)} g_{n} d v d x-\int_{0}^{t} \iint h_{n}(x, v) \chi(s, x, v) d x d v d s
$$

The second integral on the r.h.s. is $O(t) \sup \left\|h_{n}\right\|_{L_{x, v}^{1}}<\epsilon$ by choosing $t>0$ small enough. For that value of $t,\left|A_{x}(t)\right| \rightarrow 0$ as $|A| \rightarrow 0$, hence the first integral on the r.h.s. vanishes by uniform integrability in v.

