The periodic Lorentz gas in the Boltzmann-Grad limit

François Golse
Université Paris 7 - Denis Diderot
Laboratoire J.-L. Lions
golse@math.jussieu.fr

ICM Madrid 2006 — August 30th

In 1905, H. Lorentz proposed to describe the motion of electrons in metals by the methods of kinetic theory

- •Gas of electrons described by its phase-space density $f \equiv f(t, x, v)$ (density of electrons at the position x with velocity v at time t)
- •Electron-electron collisions neglected (unlike in the kinetic theory of gases)
- •Only the collisions between electrons and metallic atoms are considered

⇒ LINEAR KINETIC EQUATION

unlike Boltzmann's equation in the kinetic theory of gases

The Lorentz kinetic model

• Equation for the phase-space density of electrons $f \equiv f(t, x, v)$:

$$(\partial_t + v \cdot \nabla_x + \frac{1}{m} F(t, x) \cdot \nabla_v) f(t, x, v) = N_{at} r_{at}^2 |v| \mathcal{C}(f(t, x, \cdot))(v)$$

where C is the Lorentz collision integral

$$C(\phi)(v) = \int_{\substack{|\omega|=1\\\omega \cdot v > 0}} \left(\phi(\mathcal{R}_{\omega}v) - \phi(v) \right) \cos(v, \omega) d\omega$$

and \mathcal{R}_{ω} is the specular reflection: $\mathcal{R}_{\omega}(v) = v - 2(v \cdot \omega)\omega$

Notation: m =mass of the electron; N_{at} , r_{at} density, radius of metallic atoms; $F \equiv F(t,x)$ electric force (given).

Santalò's formula for the mean free path (1942)

•Average length of maximal segments avoiding $\mathcal N$ balls in a domain with (large) volume V:

$$\ell = \left(\frac{\mathcal{N}}{V - V_e} \times \Sigma\right)^{-1}$$

where $V_e \ll V$ is the total volume occuped by the balls, and Σ is the equatorial section of each ball.

•Boltzmann-Grad limit: $\mathcal{N} \gg 1$, $\Sigma \ll 1$ and $V_e \ll V = O(1)$ so that mean free path ℓ converges to a finite, positive number

Problem

- •Can one derive the Lorentz kinetic equation from a microscopic model in the B.-G. limit? say, without applied electric field: $F \equiv 0$.
- •Microscopic model= billiard system (=gas of point particles moving at a constant speed in a configuration of fixed spherical obstacles, and specularly reflected at the surface of the obstacles).
- •Gallavotti (1969) proved that the expected 1-particle phase-space density converges to a solution of the Lorentz kinetic equation for randomly distributed obstacles (Poisson, possibly overlapping) improvement by Spohn (1978), a.s. convergence by Boldrighini-Bunimovich-Sinai (1983)
- •Periodic configuration of obstacles? homogenization problem for the free transport equation in a perforated domain

Distribution of free path lengths

•For $r \in (0, \frac{1}{2})$, define $Z_r = \{x \in \mathbf{R}^D \mid \operatorname{dist}(x, \mathbf{Z}^D) > r\}$;

				$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

•Free path length: $\tau_r(x,v) = \min\{t > 0 \mid x + tv \in \partial Z_r\}$.

•For (x,v) independent and uniformly distributed on $Z_r imes \mathbf{S}^{D-1}$

$$\phi_r(t,v) = \operatorname{Prob}\left(\left\{x \left| \tau_r(x,v) > \frac{t}{r^{D-1}}\right\}\right), \text{ a.e. in } v \in \mathbf{S}^{D-1}\right.$$

$$\Phi_r(t) = \operatorname{Prob}\left(\left\{(x,v) \left| \tau_r(x,v) > \frac{t}{r^{D-1}}\right\}\right)\right).$$

Obviously

$$\Phi_r(t) = \frac{1}{|\mathbf{S}^{D-1}|} \int_{\mathbf{S}^{D-1}} \phi_r(t, v) dv$$

Theorem. (Bourgain-G.-Wennberg, 1998-2000) For each $D \ge 2$, there exists $0 < C_D < C_D'$ such that

$$rac{C_D}{t} \leq \Phi_r(t) \leq rac{C_D'}{t}$$
 whenever $t>1$ and $0 < r < rac{1}{2}$

- •Upper bound: method based on Fourier series, analogous to Siegel's proof (Acta Math. 1935) of Minkowski's convex body theorem
- •<u>Lower bound:</u> based on a precise counting of infinite open strips included in Z_r as in Bleher (JSP 1992); free path length dominates exit time from the strip

Distribution of free path lengths: the case D = 2

Theorem. (Caglioti-G. 2003-2006) For t > 0, there exists $\phi(t) \geq 0$ s.t.

$$\frac{1}{|\ln \epsilon|} \int_{\epsilon}^{1/4} \phi_r(t,v) \frac{dr}{r} o \phi(t)$$
, a.e. in $v \in \mathbf{S}^1$ as $\epsilon \to 0^+$.

Moreover, ϕ satisfies

$$\phi(t) = \frac{1}{\pi^2 t} + O\left(\frac{1}{t^2}\right), \quad \text{as } t \to +\infty.$$

Proof based on 2 ingredients: a) a 3-term partition of the flat 2-torus, and
 b) the ergodic theory of continued fractions

Theorem. (Boca-Zaharescu, 2005) For each t>0

$$\lim_{r\to 0^+} \Phi_r(t) = \frac{6}{\pi^2} \int_t^\infty (s-t)g(s)ds$$

where

$$g(s) = \begin{cases} 1 & s \in [0, 1] \\ \frac{1}{s} + 2\left(1 - \frac{1}{s}\right)^2 \ln(1 - \frac{1}{s}) - \frac{1}{2}\left|1 - \frac{2}{s}\right|^2 \ln|1 - \frac{2}{s}| & s \in (1, \infty) \end{cases}$$

•Remark: By the Caglioti-G. thm, one has

$$\lim_{r \to 0^+} \Phi_r(t) = \frac{1}{|\ln \epsilon|} \int_{\epsilon}^{1/4} \phi_r(t, v) \frac{dr}{r} = \phi(t)$$

<u>Proof uses:</u> a) same partition of the flat 2-torus as above, and b) asymptotic estimates for sums on coprime lattice points (Kloosterman sums)

Graph of $\phi(t)$ (green curve) and $g(t) = \phi''(t)$ (blue curve)

The homogenization problem

•Write the free transport equation for the density of point particles in Z_r :

$$\partial_t F_r + v \cdot \nabla_x F_r = 0, \qquad (x, v) \in Z_r \times \mathbf{S}^{D-1}$$
$$F_r(t, x, \mathcal{R}_x v) = F_r(t, x, v), \qquad (x, v) \in \partial Z_r \times \mathbf{S}^{D-1}$$

(where \mathcal{R}_x is the specular reflection on ∂Z_r at the point x). Assume that

$$F_r\Big|_{t=0} = f^{in}(r^{D-1}x, v), \qquad (x, v) \in Z_r \times S^{D-1}$$

•If f^{in} is bounded on $\mathbf{R}^D \times \mathbf{S}^{D-1}$, then

$$|F_r(t,x,v)| \leq ||f^{in}||_{L^{\infty}}$$
 for each $(t,x,v) \in \mathbf{R}_+ \times \mathbf{R}^D \times \mathbf{S}^{D-1}$

•Pbm: to find the weak-* limit points in $L^{\infty}(\mathbf{R}_{+} \times \mathbf{R}^{D} \times \mathbf{S}^{D-1})$ of

$$f_r(t,x,v) := F_r\left(\frac{t}{r^{D-1}},\frac{x}{r^{D-1}},v\right) \text{ as } r \to 0^+$$

A negative result

Theorem. Assume $f^{in} \equiv f^{in}(x)$ periodic and $r = \frac{1}{n}$ with $n \geq 2$. Then, no weak-* limit point of f_r in $L^{\infty}(\mathbf{R}_+ \times \mathbf{R}^D \times \mathbf{S}^{D-1})$ as $r \to 0^+$ satisfies the Lorentz kinetic equation — nor can it satisfy any equation of the form

$$(\partial_t + v \cdot \nabla_x) f(t, x, v) = \sigma \int_{\mathbf{S}^{D-1}} p(v, v') (f(t, x, v') - f(t, x, v)) dv'$$
$$f\Big|_{t=0} = f^{in}$$

where $\sigma > 0$ and p is the kernel of a compact operator on $L^2(\mathbf{S}^{D-1})$ s.t.

$$p(v, v') = p(v', v) \ge 0, \quad \int_{\mathbf{S}^{D-1}} p(v, v') dv' = 1$$

• Proof: $f(t,\cdot,\cdot)$ converges exponentially fast to a constant as $t\to\infty$; but

BGW lower bound implies $\|f(t,\cdot,\cdot)\|_{L^2_{x,v}} \geq \frac{C_D}{t} \|f^{in}\|_{L^2_x}$: contradiction.

Case of absorbing obstacles, D = 2

•In that case, the density of point particles in Z_r satisfies

$$\partial_t F_r + v \cdot \nabla_x F_r = 0, \qquad (x, v) \in Z_r \times \mathbf{S}^1$$

$$F_r(t, k + r\omega, v) = 0, \qquad k \in \mathbf{Z}^2, \ v, \omega \in \mathbf{S}^1, \ v \cdot \omega > 0$$

$$F_r\Big|_{t=0} = f^{in}(rx, v), \qquad (x, v) \in Z_r \times \mathbf{S}^1$$

Theorem. For each $f^{in} \in L^{\infty}(\mathbf{R}^2 \times \mathbf{S}^1)$

$$\frac{1}{|\ln \epsilon|} \int_{\epsilon}^{1/4} F_r\left(\frac{t}{r}, \frac{x}{r}, v\right) \frac{dr}{r} o f \equiv f(t, x, v)$$

in $L^{\infty}(\mathbf{R}_{+} \times \mathbf{R}^{2} \times \mathbf{S}^{1})$ weak-* as $r \to 0^{+}$, where f is the solution of

$$\partial_t f + v \cdot \nabla_x f = \frac{\phi'(t)}{\phi(t)} f, \quad (x, v) \in \mathbf{R}^2 \times \mathbf{S}^1$$

$$f\Big|_{t=0} = f^{in}$$

Proof of the Caglioti-G. result

Idea no.1 Given a linear flow with irrational slope on a 2-torus with a disk removed, what is the longest orbit of this flow? (R. Thom in 1989)

Blank-Krikorian, IJM'93: Instead of a disk, remove a slit parallel to one of the coordinate axis; generically 3 classes of orbits with same length

•The 2-torus minus the slit is then metrically equivalent to 3 strips $Y_A(r, v)$, $Y_B(r, v)$ and $Y_C(r, v)$ of lengths $l_A(r, v)$, $l_B(r, v)$ and $l_C(r, v)$

•For $v = (\cos \theta, \sin \theta)$, denoting $\psi_r(t, v)$ the analogue of $\phi_r(t, v)$ with the disk of radius r replaced with the slit of length $\frac{2r}{\cos \theta}$;

•Set $\alpha = \tan \theta \in (0,1) \setminus \mathbf{Q}$ with continued fraction expansion

$$\alpha = [a_1, a_2, a_3, \dots] := \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}; \quad \frac{p_n}{q_n} := [a_1, \dots, a_{n-1}]$$

and

$$d_n(\alpha) = (-1)^{n-1} (q_n \alpha - p_n) > 0,$$

$$N(\alpha, r) = \min \left\{ n \in \mathbb{N} \left| d_n(\alpha) \le 2r \sqrt{1 + \alpha^2} \right\} \right\}.$$

Then

$$\psi_r(t,v) = E\left(t, -\left[\frac{2r\sqrt{1+\alpha^2}-d_{N-1}}{d_N}\right], \frac{d_N}{d_{N-1}}, \frac{d_{N-1}}{d_{N-2}}, d_{N-1}q_N, d_{N-2}q_{N-1}\right)$$

where E is uniformly Lipschitz continuous in its last 2 variables.

Idea no. 2 The Gauss map $T: (0,1) \setminus \mathbf{Q} \rightarrow (0,1) \setminus \mathbf{Q}$ defined by

$$T(\alpha) = \frac{1}{\alpha} - \left[\frac{1}{\alpha}\right]$$
 is ergodic with invariant measure $\frac{1}{\ln 2} \frac{d\alpha}{1+\alpha}$

•Birkhoff's theorem: for each $\phi \in L^1(0,1; \frac{d\alpha}{1+\alpha})$

$$\frac{1}{n}\sum_{k=0}^{n-1}\phi(T^k\alpha)\to \frac{1}{\ln 2}\int_0^1\phi(\beta)\frac{d\beta}{1+\beta} \text{ a.e. in }\alpha \text{ as }n\to\infty$$

•Two facts about continued fractions:

$$d_n(\alpha) = \prod_{k=1}^{n-1} T^k \alpha$$

$$\left| d_{n-1}q_n - \sum_{j=n-m}^{n-1} (-1)^{n-1-j} \frac{d_n d_{n-1}}{d_j d_{j-1}} \right| \le 2^{-m}$$

Use this for fixed $m \ll n \to \infty$.

- •This helps approximating q_n in terms of finitely many $T^k \alpha$ as $n \to \infty$
- Next we apply Birkhoff's ergodic theorem to the expression

$$\psi_r(t,v) = E\left(t, -\left[\frac{2r\sqrt{1+\alpha^2}-d_{N-1}}{d_N}\right], \frac{d_N}{d_{N-1}}, \frac{d_{N-1}}{d_{N-2}}, d_{N-1}q_N, d_{N-2}q_{N-1}\right)$$

after replacing $d_{N-1}q_N$ and $d_{N-2}q_{N-1}$ with the finite sum involving only the d_n s as above

•Error in $O(2^{-m})$ since E is uniformly Lipschitz in its last two arguments

Hence

$$\frac{1}{|\ln \epsilon|} \int_{\epsilon}^{1/4} \psi_r(t,v) \frac{dr}{r}$$
 satisfies Cauchy's convergence criterion

as $\epsilon \to 0^+$ and, as a consequence of Birkhoff's theorem

its limit $\phi(t)$ is independent of the direction v

- •Same with ϕ_r replacing ψ_r since $\phi_r(t) = \psi_r(t + O(r^2)) + O(r^2)$
- \bullet For the $t \to \infty$ limit, replace the exact expression E with its approximation

$$\psi_r(t,v) \simeq \left(1 - \frac{2r\sqrt{1+\alpha^2}}{d_{N-1}} - 2t\frac{d_N}{2r\sqrt{1+\alpha^2}}\right)_+$$

Perspectives, open problems

- •Find analogues of the results above for 2-dimensional lattices other than \mathbb{Z}^2 : in particular find the intrinsic meaning of the constant $\frac{1}{\pi^2}$ in the Caglioti-G. theorem
- •Does the introduction of an external force field accelerating the particles between collisions modify the results above, and if yes, in which way?
- •What replaces the Lorentz kinetic equation in the simplest case of the \mathbb{Z}^2 lattice considered in this talk?
- •Does $\phi_r(t,v)$ or even its angle average $\Phi_r(t)$ converge as $r \to 0^+$ in the case of space dimension D > 2? (might require accurate estimates on simultaneous rational approximation)

A (plausible?) conjecture

•Start from a particle located at the surface of an obstacle with initial position x_0^r and direction θ_0^r ; denote by x_n^r and θ_n^r the position and directions of that particle as it leaves the n-th encountered obstacle.

Assume that the sequence of impact parameters and free path lengths

$$h_n^r := \cos\left(\frac{\theta_{n-1}^r - \theta_n^r}{2}\right), \quad \tau_n^r := |x_n^r - x_{n-1}^r|$$

can be simulated in the small r (obstacle radius) limit by a Markov chain $(h_n, \tau_n) \in [-1, 1] \times [1, \infty)$.

•Call $f(t, x, \theta, h, \tau)$ be the limiting density of particles which, at time t, are located at x with velocity $v = (\cos \theta, \sin \theta)$, and whose next collision with an obstacle will occur at time $t + \tau$ with impact parameter h

Then

$$\begin{split} (\partial_t + v \cdot \nabla_x) f(t,x,\theta,h,\tau) \\ &= \partial_\tau f(t,x,\theta,h,\tau) + \int_{-1}^1 k(h,\tau|h') f(t,x,\theta',h',0) dh'\,, \\ \text{with } \theta' = \theta - \pi + 2\arcsin(h)\,, \quad \tau > 0 \end{split}$$

while the transition kernel *k* satisfies

$$k(h, \tau | h') \ge 0$$
, $\iint_{[-1,1] \times \mathbf{R}_{+}} k(h, \tau | h') dh d\tau = 1$

•Should the conjecture above be true, the Lorentz equation should be replaced with this kinetic model on an extended phase space