The periodic Lorentz gas in the Boltzmann-Grad limit

François Golse
Université Paris 7 - Denis Diderot
Laboratoire J.-L. Lions
golse@math.jussieu.fr

ICM Madrid 2006 — August 30th

In 1905, H. Lorentz proposed to describe the motion of electrons in metals by the methods of kinetic theory

- Gas of electrons described by its phase-space density $f \equiv f(t, x, v)$ (density of electrons at the position x with velocity v at time t)
- Electron-electron collisions neglected (unlike in the kinetic theory of gases)
- Only the collisions between electrons and metallic atoms are considered

$$
\Rightarrow \text { LINEAR KINETIC EQUATION }
$$

unlike Boltzmann's equation in the kinetic theory of gases

The Lorentz kinetic model

-Equation for the phase-space density of electrons $f \equiv f(t, x, v)$:

$$
\left(\partial_{t}+v \cdot \nabla_{x}+\frac{1}{m} F(t, x) \cdot \nabla_{v}\right) f(t, x, v)=N_{a t} r_{a t}^{2}|v| \mathcal{C}(f(t, x, \cdot))(v)
$$

where \mathcal{C} is the Lorentz collision integral

$$
\mathcal{C}(\phi)(v)=\int_{\substack{|\omega|=1 \\ \omega \cdot v>0}}\left(\phi\left(\mathcal{R}_{\omega} v\right)-\phi(v)\right) \cos (v, \omega) d \omega
$$

and \mathcal{R}_{ω} is the specular reflection: $\mathcal{R}_{\omega}(v)=v-2(v \cdot \omega) \omega$
Notation: m =mass of the electron; $N_{a t}, r_{a t}$ density, radius of metallic atoms; $F \equiv F(t, x)$ electric force (given).

Santalò's formula for the mean free path (1942)

-Average length of maximal segments avoiding \mathcal{N} balls in a domain with (large) volume V :

$$
\ell=\left(\frac{\mathcal{N}}{V-V_{e}} \times \Sigma\right)^{-1}
$$

where $V_{e} \ll V$ is the total volume occuped by the balls, and Σ is the equatorial section of each ball.
-Boltzmann-Grad limit: $\mathcal{N} \gg 1, \Sigma \ll 1$ and $V_{e} \ll V=O(1)$ so that mean free path ℓ converges to a finite, positive number

Problem

-Can one derive the Lorentz kinetic equation from a microscopic model in the B.-G. limit? - say, without applied electric field: $F \equiv 0$.
-Microscopic model= billiard system (=gas of point particles moving at a constant speed in a configuration of fixed spherical obstacles, and specularly reflected at the surface of the obstacles).
-Gallavotti (1969) proved that the expected 1-particle phase-space density converges to a solution of the Lorentz kinetic equation for randomly distributed obstacles (Poisson, possibly overlapping) - improvement by Spohn (1978), a.s. convergence by Boldrighini-Bunimovich-Sinai (1983)
-Periodic configuration of obstacles? homogenization problem for the free transport equation in a perforated domain

Distribution of free path lengths

-For $r \in\left(0, \frac{1}{2}\right)$, define $Z_{r}=\left\{x \in \mathbf{R}^{D} \mid \operatorname{dist}\left(x, \mathbf{Z}^{D}\right)>r\right\}$;

| \bullet | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \bullet | |
| \bullet | |
| \bullet | |
| \bullet | i_{r} |
| \bullet | ${ }_{1}$ |

-Free path length: $\tau_{r}(x, v)=\min \left\{t>0 \mid x+t v \in \partial Z_{r}\right\}$.

-For (x, v) independent and uniformly distributed on $Z_{r} \times \mathbf{S}^{D-1}$

$$
\begin{aligned}
\phi_{r}(t, v) & =\operatorname{Prob}\left(\left\{x \left\lvert\, \tau_{r}(x, v)>\frac{t}{r^{D-1}}\right.\right\}\right), \text { a.e. in } v \in \mathbf{S}^{D-1} \\
\Phi_{r}(t) & =\operatorname{Prob}\left(\left\{(x, v) \left\lvert\, \tau_{r}(x, v)>\frac{t}{r^{D-1}}\right.\right\}\right)
\end{aligned}
$$

-Obviously

$$
\Phi_{r}(t)=\frac{1}{\left|\mathbf{S}^{D-1}\right|} \int_{\mathbf{S}^{D-1}} \phi_{r}(t, v) d v
$$

Theorem. (Bourgain-G.-Wennberg, 1998-2000) For each $D \geq 2$, there exists $0<C_{D}<C_{D}^{\prime}$ such that

$$
\frac{C_{D}}{t} \leq \Phi_{r}(t) \leq \frac{C_{D}^{\prime}}{t} \quad \text { whenever } t>1 \text { and } 0<r<\frac{1}{2}
$$

- Upper bound: method based on Fourier series, analogous to Siegel's proof (Acta Math. 1935) of Minkowski's convex body theorem
- Lower bound: based on a precise counting of infinite open strips included in Z_{r} as in Bleher (JSP 1992); free path length dominates exit time from the strip

Distribution of free path lengths: the case $D=2$

Theorem. (Caglioti-G. 2003-2006) For $t>0$, there exists $\phi(t) \geq 0$ s.t.

$$
\frac{1}{|\ln \epsilon|} \int_{\epsilon}^{1 / 4} \phi_{r}(t, v) \frac{d r}{r} \rightarrow \phi(t), \quad \text { a.e. in } v \in \mathbf{S}^{1} \text { as } \epsilon \rightarrow 0^{+} .
$$

Moreover, ϕ satisfies

$$
\phi(t)=\frac{1}{\pi^{2} t}+O\left(\frac{1}{t^{2}}\right), \quad \text { as } t \rightarrow+\infty .
$$

-Proof based on 2 ingredients: a) a 3-term partition of the flat 2-torus, and
b) the ergodic theory of continued fractions

Theorem. (Boca-Zaharescu, 2005) For each $t>0$

$$
\lim _{r \rightarrow 0^{+}} \Phi_{r}(t)=\frac{6}{\pi^{2}} \int_{t}^{\infty}(s-t) g(s) d s
$$

where

$$
g(s)=\left\{\begin{array}{cc}
1 & s \in[0,1] \\
\frac{1}{s}+2\left(1-\frac{1}{s}\right)^{2} \ln \left(1-\frac{1}{s}\right)-\frac{1}{2}\left|1-\frac{2}{s}\right|^{2} \ln \left|1-\frac{2}{s}\right| & s \in(1, \infty)
\end{array}\right.
$$

-Remark: By the Caglioti-G. thm, one has

$$
\lim _{r \rightarrow 0^{+}} \Phi_{r}(t)=\frac{1}{|\ln \epsilon|} \int_{\epsilon}^{1 / 4} \phi_{r}(t, v) \frac{d r}{r}=\phi(t)
$$

Proof uses: a) same partition of the flat 2-torus as above, and b) asymptotic estimates for sums on coprime lattice points (Kloosterman sums)

Graph of $\phi(t)$ (green curve) and $g(t)=\phi^{\prime \prime}(t)$ (blue curve)

The homogenization problem

-Write the free transport equation for the density of point particles in Z_{r} :

$$
\begin{aligned}
\partial_{t} F_{r}+v \cdot \nabla_{x} F_{r}=0, & (x, v) \in Z_{r} \times \mathbf{S}^{D-1} \\
F_{r}\left(t, x, \mathcal{R}_{x} v\right)=F_{r}(t, x, v), & (x, v) \in \partial Z_{r} \times \mathbf{S}^{D-1}
\end{aligned}
$$

(where \mathcal{R}_{x} is the specular reflection on ∂Z_{r} at the point x). Assume that

$$
\left.F_{r}\right|_{t=0}=f^{i n}\left(r^{D-1} x, v\right), \quad(x, v) \in Z_{r} \times \mathbf{S}^{D-1}
$$

- If $f^{i n}$ is bounded on $\mathbf{R}^{D} \times \mathbf{S}^{D-1}$, then

$$
\left|F_{r}(t, x, v)\right| \leq\left\|f^{i n}\right\|_{L^{\infty}} \text { for each }(t, x, v) \in \mathbf{R}_{+} \times \mathbf{R}^{D} \times \mathbf{S}^{D-1}
$$

$\bullet P b m$: to find the weak-* limit points in $L^{\infty}\left(\mathbf{R}_{+} \times \mathbf{R}^{D} \times \mathbf{S}^{D-1}\right)$ of

$$
f_{r}(t, x, v):=F_{r}\left(\frac{t}{r^{D-1}}, \frac{x}{r^{D-1}}, v\right) \text { as } r \rightarrow 0^{+}
$$

A negative result

Theorem. Assume $f^{i n} \equiv f^{i n}(x)$ periodic and $r=\frac{1}{n}$ with $n \geq 2$. Then, no weak-* limit point of f_{r} in $L^{\infty}\left(\mathbf{R}_{+} \times \mathbf{R}^{D} \times \mathbf{S}^{D-1}\right)$ as $r \rightarrow 0^{+}$satisfies the Lorentz kinetic equation - nor can it satisfy any equation of the form

$$
\begin{aligned}
\left(\partial_{t}+v \cdot \nabla_{x}\right) f(t, x, v) & =\sigma \int_{\mathbf{S}^{D-1}} p\left(v, v^{\prime}\right)\left(f\left(t, x, v^{\prime}\right)-f(t, x, v)\right) d v^{\prime} \\
\left.f\right|_{t=0} & =f^{i n}
\end{aligned}
$$

where $\sigma>0$ and p is the kernel of a compact operator on $L^{2}\left(\mathbf{S}^{D-1}\right)$ s.t.

$$
p\left(v, v^{\prime}\right)=p\left(v^{\prime}, v\right) \geq 0, \quad \int_{\mathbf{S}^{D-1}} p\left(v, v^{\prime}\right) d v^{\prime}=1
$$

-Proof: $f(t, \cdot, \cdot)$ converges exponentially fast to a constant as $t \rightarrow \infty$; but BGW lower bound implies $\|f(t, \cdot, \cdot)\|_{L_{x, v}^{2}} \geq \frac{C_{D}}{t}\left\|f^{i n}\right\|_{L_{x}^{2}}$: contradiction.

Case of absorbing obstacles, $D=2$

- In that case, the density of point particles in Z_{r} satisfies

$$
\begin{array}{ll}
\partial_{t} F_{r}+v \cdot \nabla_{x} F_{r}=0, & (x, v) \in Z_{r} \times \mathbf{S}^{1} \\
F_{r}(t, k+r \omega, v)=0, & k \in \mathbf{Z}^{2}, v, \omega \in \mathbf{S}^{1}, v \cdot \omega>0 \\
\left.F_{r}\right|_{t=0}=f^{i n}(r x, v), & (x, v) \in Z_{r} \times \mathbf{S}^{1}
\end{array}
$$

Theorem. For each $f^{i n} \in L^{\infty}\left(\mathbf{R}^{2} \times \mathbf{S}^{1}\right)$

$$
\frac{1}{|\ln \epsilon|} \int_{\epsilon}^{1 / 4} F_{r}\left(\frac{t}{r}, \frac{x}{r}, v\right) \frac{d r}{r} \rightarrow f \equiv f(t, x, v)
$$

in $L^{\infty}\left(\mathbf{R}_{+} \times \mathbf{R}^{2} \times \mathbf{S}^{1}\right)$ weak-* as $r \rightarrow 0^{+}$, where f is the solution of

$$
\begin{aligned}
\partial_{t} f+v \cdot \nabla_{x} f & =\frac{\phi^{\prime}(t)}{\phi(t)} f, \quad(x, v) \in \mathbf{R}^{2} \times \mathbf{S}^{1} \\
\left.f\right|_{t=0} & =f^{i n}
\end{aligned}
$$

Proof of the Caglioti-G. result

Idea no.1 Given a linear flow with irrational slope on a 2-torus with a disk removed, what is the longest orbit of this flow? (R. Thom in 1989)

Blank-Krikorian, IJM'93: Instead of a disk, remove a slit parallel to one of the coordinate axis; generically 3 classes of orbits with same length
-The 2-torus minus the slit is then metrically equivalent to 3 strips $Y_{A}(r, v)$, $Y_{B}(r, v)$ and $Y_{C}(r, v)$ of lengths $l_{A}(r, v), l_{B}(r, v)$ and $l_{C}(r, v)$

- For $v=(\cos \theta, \sin \theta)$, denoting $\psi_{r}(t, v)$ the analogue of $\phi_{r}(t, v)$ with the disk of radius r replaced with the slit of length $\frac{2 r}{\cos \theta}$;

- Set $\alpha=\tan \theta \in(0,1) \backslash \mathbf{Q}$ with continued fraction expansion

$$
\alpha=\left[a_{1}, a_{2}, a_{3}, \ldots\right]:=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\ldots}}} ; \quad \frac{p_{n}}{q_{n}}:=\left[a_{1}, \ldots, a_{n-1}\right]
$$

and

$$
\begin{aligned}
d_{n}(\alpha) & =(-1)^{n-1}\left(q_{n} \alpha-p_{n}\right)>0, \\
N(\alpha, r) & =\min \left\{n \in \mathbf{N} \mid d_{n}(\alpha) \leq 2 r \sqrt{1+\alpha^{2}}\right\} .
\end{aligned}
$$

Then

$$
\psi_{r}(t, v)=E\left(t,-\left[\frac{2 r \sqrt{1+\alpha^{2}}-d_{N-1}}{d_{N}}\right], \frac{d_{N}}{d_{N-1}}, \frac{d_{N-1}}{d_{N-2}}, d_{N-1} q_{N}, d_{N-2} q_{N-1}\right)
$$

where E is uniformly Lipschitz continuous in its last 2 variables.

Idea no. 2 The Gauss map $T:(0,1) \backslash \mathbf{Q} \rightarrow(0,1) \backslash \mathbf{Q}$ defined by

$$
T(\alpha)=\frac{1}{\alpha}-\left[\frac{1}{\alpha}\right] \text { is ergodic with invariant measure } \frac{1}{\ln 2} \frac{d \alpha}{1+\alpha}
$$

-Birkhoff's theorem: for each $\phi \in L^{1}\left(0,1 ; \frac{d \alpha}{1+\alpha}\right)$

$$
\frac{1}{n} \sum_{k=0}^{n-1} \phi\left(T^{k} \alpha\right) \rightarrow \frac{1}{\ln 2} \int_{0}^{1} \phi(\beta) \frac{d \beta}{1+\beta} \text { a.e. in } \alpha \text { as } n \rightarrow \infty
$$

-Two facts about continued fractions:

$$
\begin{aligned}
& d_{n}(\alpha)=\prod_{k=1}^{n-1} T^{k} \alpha \\
& \quad\left|d_{n-1} q_{n}-\sum_{j=n-m}^{n-1}(-1)^{n-1-j} \frac{d_{n} d_{n-1}}{d_{j} d_{j-1}}\right| \leq 2^{-m}
\end{aligned}
$$

Use this for fixed $m \ll n \rightarrow \infty$.
-This helps approximating q_{n} in terms of finitely many $T^{k} \alpha$ as $n \rightarrow \infty$

- Next we apply Birkhoff's ergodic theorem to the expression

$$
\psi_{r}(t, v)=E\left(t,-\left[\frac{2 r \sqrt{1+\alpha^{2}}-d_{N-1}}{d_{N}}\right], \frac{d_{N}}{d_{N-1}}, \frac{d_{N-1}}{d_{N-2}}, d_{N-1} q_{N}, d_{N-2} q_{N-1}\right)
$$

after replacing $d_{N-1} q_{N}$ and $d_{N-2} q_{N-1}$ with the finite sum involving only the $d_{n} s$ as above

- Error in $O\left(2^{-m}\right)$ since E is uniformly Lipschitz in its last two arguments
- Hence

$$
\frac{1}{|\ln \epsilon|} \int_{\epsilon}^{1 / 4} \psi_{r}(t, v) \frac{d r}{r} \text { satisfies Cauchy's convergence criterion }
$$

as $\epsilon \rightarrow 0^{+}$and, as a consequence of Birkhoff's theorem its limit $\phi(t)$ is independent of the direction v

- Same with ϕ_{r} replacing ψ_{r} since $\phi_{r}(t)=\psi_{r}\left(t+O\left(r^{2}\right)\right)+O\left(r^{2}\right)$
-For the $t \rightarrow \infty$ limit, replace the exact expression E with its approximation

$$
\psi_{r}(t, v) \simeq\left(1-\frac{2 r \sqrt{1+\alpha^{2}}}{d_{N-1}}-2 t \frac{d_{N}}{2 r \sqrt{1+\alpha^{2}}}\right)_{+}
$$

Perspectives, open problems

-Find analogues of the results above for 2-dimensional lattices other than Z^{2} : in particular find the intrinsic meaning of the constant $\frac{1}{\pi^{2}}$ in the CagliotiG. theorem
-Does the introduction of an external force field accelerating the particles between collisions modify the results above, and if yes, in which way?
-What replaces the Lorentz kinetic equation in the simplest case of the Z^{2} lattice considered in this talk?
-Does $\phi_{r}(t, v)$ - or even its angle average $\Phi_{r}(t)$ - converge as $r \rightarrow 0^{+}$ in the case of space dimension $D>2$? (might require accurate estimates on simultaneous rational approximation)

A (plausible?) conjecture

-Start from a particle located at the surface of an obstacle with initial position x_{0}^{r} and direction θ_{0}^{r}; denote by x_{n}^{r} and θ_{n}^{r} the position and directions of that particle as it leaves the n-th encountered obstacle.

-Assume that the sequence of impact parameters and free path lengths

$$
h_{n}^{r}:=\cos \left(\frac{\theta_{n-1}^{r}-\theta_{n}^{r}}{2}\right), \quad \tau_{n}^{r}:=\left|x_{n}^{r}-x_{n-1}^{r}\right|
$$

can be simulated in the small r (obstacle radius) limit by a Markov chain $\left(h_{n}, \tau_{n}\right) \in[-1,1] \times[1, \infty)$.
-Call $f(t, x, \theta, h, \tau)$ be the limiting density of particles which, at time t, are located at x with velocity $v=(\cos \theta, \sin \theta)$, and whose next collision with an obstacle will occur at time $t+\tau$ with impact parameter h
-Then

$$
\begin{aligned}
& \left(\partial_{t}+v \cdot \nabla_{x}\right) f(t, x, \theta, h, \tau) \\
& =\partial_{\tau} f(t, x, \theta, h, \tau)+\int_{-1}^{1} k\left(h, \tau \mid h^{\prime}\right) f\left(t, x, \theta^{\prime}, h^{\prime}, 0\right) d h^{\prime} \\
& \quad \text { with } \theta^{\prime}=\theta-\pi+2 \arcsin (h), \quad \tau>0
\end{aligned}
$$

while the transition kernel k satisfies

$$
k\left(h, \tau \mid h^{\prime}\right) \geq 0, \quad \iint_{[-1,1] \times \mathbf{R}_{+}} k\left(h, \tau \mid h^{\prime}\right) d h d \tau=1
$$

-Should the conjecture above be true, the Lorentz equation should be replaced with this kinetic model on an extended phase space

