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Abstract

We introduce the notion of relative pseudo-coefficient for relative discrete series
representations of real spherical homogeneous spaces of reductive groups. We prove
that K-finite relative pseudo-coefficient does not exist for semisimple symmetric spaces
of type G¢/Gr, where K is a maximal compact subgroup of G¢, and construct strong
relative pseudo-coefficients for some hyperbolic spaces. We establish a toy model for
the relative trace formula of H. Jacquet for compact discrete quotient I'\G. This allows
us to prove that a relative discrete series representation, which admits strong pseudo-
coefficients with sufficiently small support, occurs in the spectral decomposition of
L?(I'\G) with a nonzero period.
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1 Introduction

The notion of pseudo-coefficient for a discrete series representation was first introduced in
the group case, i.e X = G x G/diag(G) ~ G, where G is the group of real points of any
connected reductive algebraic group defined over R. It is defined as follows: let u be the
Plancherel measure of G. Given a discrete series representation 7 of G, a test function
¢ € CP(Q) is said to be a pseudo-coefficient of 7 if for p-almost irreducible tempered
representation p, then tr p(¢) # 0 if and only if p is equivalent to m. Here tr p(¢) is the
trace of the trace operator p(¢). In (7] Proposition 1), it is shown that every discrete
series representation of G admits pseudo-coefficients.

In this article, we consider real spherical homogeneous spaces, that is homogeneous
spaces for a real reductive group G, with an open orbit for any minimal parabolic subgroup.
On such spaces, we define the notion of relative pseudo-coefficient for relative discrete series
representation (see Definition 3.1).

*The first author was supported by a grant of Agence Nationale de la Recherche with reference ANR-
13-BS01-0012 FERPLAY.



In the case of semisimple symmetric spaces of type G¢/Gr, we show, using properties
of orbital integrals (see [6] and [17]), that no relative discrete series representation admits
K-finite relative pseudo-coefficient, where K is a maximal compact subgroup of G¢ (see
Theorem 6.2).

We look also at hyperbolic spaces over C and over the quaternions H, i.e X = G/H,
where G = U(p,q¢,K) and H = U(1,K) x U(p — 1,¢,K) for K= C or H.

For the rest of this introduction we fix such a G and H. Using results of J. Faraut,
M. Flensted-Jensen and K. Okamoto and results of [10], we show that some relative dis-
crete series representations of these spaces do not have relative pseudo-coefficients (see
Proposition 4.1), but there exists a countable family of relative discrete series represen-
tations having what we call strong relative pseudo-coefficients i.e. which isolate a single
relative discrete series representation among the irreducible unitary representations of the
group G having a nonzero H-fixed distribution vector (see Theorem 4.8).

We give an application of the existence of these strong relative pseudo-coefficients,
whose support are arbitrary small, to existence of some representations occurring in the
spectral decomposition of L?(I'\G) where T is a torsion free cocompact discrete subgroup
of G, stable by the involution ¢ whose fixed point group is H (see Theorem 5.7). Existence
of such cocompact discrete subgroups is shown using adelic methods (see Proposition 5.6).

For this application, we establish a toy model for the more sophisticated relative trace
formula of H. Jacquet ([18]).

Let &r be the distribution vector for the right regular representation of G in L?(I\G)
given by integration over I' n H\H, which is compact in our case. We denote by c¢. ¢ the
corresponding generalized matrix coefficient.

Then it is easy to give two expressions of cg. ¢.(f) for f e CP(X). One expression,
which is called spectral, involves periods of representations, i.e. H-fixed distribution vec-
tors of irreducible subrepresentations of L?(T'\G), the other, called geometric, involving
relative orbital integrals, i.e. the average of f on orbits of elements of I' under the action
of H x H. We call the equality of these 2 expressions a relative trace formula.

When one plugs a strong relative pseudo-coefficient into the spectral side of the relative
trace formula, it singles out the contribution of the relative discrete series representation.
On the geometric side, as we can find strong relative pseudo-coefficient with sufficiently
small support, we get only the contribution of the neutral element and this contribution
is equal to f(1).

Altogether, it shows that the relative discrete series representation with strong relative
pseudo-coefficients occurs in L2(I\G).

This paper is organized as follows: In section 2 we prove a relative trace formula for
"G when H is a unimodular closed subgroup of G, T is a cocompact discrete subgroup of
G such that the volume of I' n H\ H is finite and the centralizers of elements of I in H x H
are unimodular. In section 3, we introduce the notion of relative pseudo-coefficient and
prove our application of existence of strong relative pseudo-coefficient when H is the fixed
point group of an involution of G. In section 4, we explain our results (existence or non
existence of strong relative pseudo-coefficient for relative discrete series representations)
for hyperbolic spaces. In section 5, we construct cocompact discrete subgroups of unitary
groups on C and H satisfying our assumptions and section 6 is devoted to prove that no
relative discrete series representation of G¢/Gr admits K-finite relative pseudo-coefficient.



2 A relative trace formula for I'\G.

If M is a differentiable manifold, then C'(M) and C* (M) will denote the space of contin-
uous functions and smooth functions on M respectively. Let C.(M) and CF (M) be the
subspaces of compactly supported functions in C' (M) and C*(M) respectively.

Let G be a real reductive group. We consider a discrete cocompact subgroup I' of G
and a closed subgroup H. We assume that

1. H is unimodular,
2. the volume vol((H nT)\H) of (H nT)\H is finite, (2.1)

3. for each v € I, the subgroup (H x H), = {(h,h’) € Hx H; h='yh/ = ~}
is unimodular.

We set 'y := H nI'. We fix Haar measures on these groups, discrete groups being
equipped with the counting measure.

If V is a topological vector space then V' will denote its topological dual.

Let (m,V') a continuous representation of G in a Hilbert space V. We denote by V* < V/
the space of C® vectors of m endowed with its natural topology (For the topology of V|
see [4] section 2.4.3 and Lemma 2.15 where two equivalent definitions are given). We
define the space of distribution vectors V~% as the topological dual of V®. Let 7, be the
representation of G in V*, and m_4 be the dual representation of 7w, in V=%,

If feCP(G)and £ € V-, we have m_(f)€ € (V). Hence, if & € (V')~%, we can
define the distribution mg¢ ¢ by

mee(f) = (m-w(f)E,€), feCF(G).

If (m,V) is unitary for a scalar product (-,-), then the map j : v — (-, v), intertwines
the conjugate representation (7, V) of (7, V) and its dual representation (7/,V’). Let &
and & be two elements of V=, We define & € V. © by &(w) = &(w). By the above
identification, we can consider &3 as an element of (V’)~®. Thus we can define

¢t 6 (f) = myg, & (f)-

Let us explain what happens if ¢, and & are elements of V’. Notice that V' inherits
of a natural scalar product from the one of V. Then (£1,&) is just the scalar product
(&1,&2). This leads to cg ¢,(f) = (7'(f)&1,&2). In other words, cg, ¢, (f) is an ordinary
matrix coefficient.

We will call in general c¢, ¢, the generalized matrix coefficient of £;,& € V™% and
write :

(-0 (f)81,62) = g6 (f) = (oo (f)81, &2)- (2.2)

We consider the right regular representation R of G in L?(I'\G).
Then, for f € C.(G), the corresponding operator R(f) maps any function v € L?(I'\G) to
the function

[R(f)6](x) = Lf(gwﬂ:g)dg - L Fa )b (y)dy
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= YY) Ky(z,y)dy
NG

where

Kp(z,y):= Y, fla "), =yeq, (2.3)
~el’

and this sum has only a finite number of nonzero terms for x,y contained in a compact
subset of GG since f is compactly supported and I' is discrete.
Therefore, R(f) is an operator with continuous kernel K.

We define the H-invariant linear form &r on C(I'\G), which contains L?*(I'\G)® =
C*®(T'\G) (see [25] Theorem 5.1), by

Then, the generalized matrix coefficient

Cfrvfr(f) = (R_w(f)ér,ér), fe C’go(G)

associated to & according to (2.2) is an H-biinvariant distribution on G.

The relative trace formula in this context gives two expressions of the distribution c¢p ¢,
the first one, called the spectral side, in terms of irreducible representations of GG, and the
second one, called the geometric side, in terms of orbital integrals.

We first deal with the spectral part. For this purpose, we consider the spectral decom-
position of L2(T\G):
L*(I\G) = @, _sHr ® Mx,

where G is the set of equivalent classes of irreducible unitary representations (mw, H,) of G
and M, is a finite dimensional vector space whose dimension is the multiplicity of 7 in
L*(T\G) (For finite multiplicities, see [13] §2. 3 Theorem).

Then the space Vy := H, ® M, is the 7- isotypic component of L?(I'\G). We denote by
&r, the restriction of & to V. Therefore, we obtain

Cerer(f) = Y, Cepnirn (f), [ ECP(Q). (2.4)

meQ
For v € I', we define the groups
(H x H)y = {(h1,hg) € H x H; hi'yha =~}, and (Ty xTp), = (H x H), n (T xT).
2.1 Proposition. 1. ForyeT, the quotient (I'y x '), \(H x H), is of finite volume
and for f € CL(QG), the orbital integral of f at

I(f, ’Y) = f f(h;lvhz)dhl dhg
(Hx H),\(H x H)

1s absolutely convergent.



2. We have the following relative trace formula

Z UOl((FH X FH)'Y\(H x H Z cél" 7r7£F 7r (25)
’YEFH\F/FH TI'GG

where the left hand side is absolutely convergent.

Proof. The right hand side of (2.5) is just the expression of c¢. ¢.(f) given in (2.4).
For the geometric side, we will express cg. ¢.(f) in terms of the kernel K.

Let f € Cc(G). We first compute R_o(f)&r. For this, we use the bilinear duality
bracket (-,-) between V= and V* where V = L?(I'\G). We define f by f(z) = f(z™1).
Then, for ¢ € C*(T'\G), we have

(R_w(f)ér, ¥y = o, R(F)Y) = ( Y(y)K §(h,y)dy)dh.

ry\H Jn\a@

The kernel K is continuous and |K | < K g Applying the above equality to |[¢)| and | f],
one sees that the double integral on the right side is absolutely convergent and we can
apply Fubini’s Theorem. Thus we obtain

Rea Ny = [ v Ky)ai)di
NG Tu\H
We deduce that R_q(f)&r is the continuous function on I'\G given by

(R-oPr) ) = | Tt

Therefore, we can extend the map ¢ € C(G) — cep e (@) = (R—w(@)ér, ér) to Ce(G).
Since K j(z,y) = Kf(y, z), we obtain for f € Cc(G)

= T T)dy = -1 . .
e (f) ‘LH\H(LH\HKJ”( )y = | H\H(LH\HZﬂhl Aho)dhy) dhs. (26)

~yel’

For (hy,h2) € H x H, we have

Z f(hi'yhg) = 2 Z F(hy 'y Tyaha), (2.7)

ver (VIETu\L/TH (v1,72)e(Ca xT ) \(Ca xTH)

where the sum has only a finite number of nonzero terms.
Applying (2.6) and (2.7) to | f| and using first Fubini’s Theorem for positive functions and
then for integrable functions, we obtain

Cerr(f) = f f > F(hT yv2ha)dhy dhy
EFH\F/F FH\H FH\H ’)/1 ’yg FHXFH),Y\(FHXFH)



- >

[V]eLa\l/T'

| F (W7 ko) d(ha, h), (2.8)
(T xTa)\HxH

the integral and the sum being absolutely convergent.
As by assumption the group (H x H), is unimodular , using the transitivity property
of invariant measures on homogeneous spaces (see [3] Chap. II, §3), we have

j f(h yho)d(hy, ho)
(FHXFH)V\HXH

J‘(H H)\H x H (J;F P )4\ x H) f(h;lu;17U2h2)d(ul,u2)>d(h17h2) (2‘9)
XA )y \ X HXT ) \(HxH)y

= vol((Ty x Ty ) \(H x H),) J f(hytvha)dhy dha.
(HxH),\HxH

We deduce from this that the volume vol((I'y x I'rg),\(H x H),) is finite. Applying the
above equality to |f|, we deduce that the orbital integral I(v, f) of f € C.(G) at v is
absolutely converging. Thus we obtain the first assertion of the Proposition.

Therefore (2.8) and (2.9) give

erer() = 3, vol(Tu x D) \(H x H),) | F(g R, ).
(VL s\l T (> H)y\HH
Then the relative trace formula follows from (2.4). O

3 Relative pseudo-coefficients with small support.

To define relative pseudo-coefficients for relative discrete series representation, we need to
review the abstract Plancherel formula. Here, we assume that G is a real reductive group
and H is a spherical subgroup, ie. G/H admits an open orbit for any minimal parabolic
subgroups, which ensures finite multiplicities in the Plancherel formula (see [21]Theorem
3.2 and [19] Theorem A).

We denote by G the unitary dual of G and pick for every equivalence class [7] a
representative (7, H,). We keep the notations of section 2.
The abstract Plancherel formula Theorem for the spherical variety Z := G/H asserts the

following. For every [r] € G, there exists a Hilbert space Mz < (H, )" (note that as Mx
is finite dimensional, this induces a Hilbert space structure on Hom(Mz, Hy) ~ MEQH

and M, = MZ c (H;®)H), such that the Fourier transform

L CEG) - S@Hom(Mﬁ,Hw)du(ﬂ),
F'{ Fooo FF) = (F(F)) gy FF)a@ —m(PEenz Y

extends to a unitary isomorphism. Here y is a certain Radon measure on G whose measure
class is uniquely determined. The precise form of the measure depends on the chosen scalar



products on the various stalks Hom(Mz, Hr). We have

IFl 2z = fé Ha(F)dpa(r)

where H, are Hermitian forms which are defined as
My B
Ho(F)* = ) [7(F)E;|3,, FeCr(2),
j=1

for &,...,&,, an orthonomal basis of M.

3.1 Definition. Let (mg, Hr,) € G be a relative discrete series representation for Z =
G/H, ie. which admits an embedding in L*(G/H).

1. A function f € CP(G/H) is a relative pseudo-coefficient for mqy if

(a) there exists &y € My, such that cey ¢ (f) # 0,
(b) for p-almost all w € G distinct from o and for all € € My, then cee(f) =0.

2. Let & € My,. A function f € CP(G/H) is a strong relative pseudo-coefficient for
(70, o) if

(a) ceeo(f) # 0 and cagyreaco+e(f) = aa e g (f), for a € C and & in the orthogo-
nal subspace of C&y in My,

(b) for any unitary irreducible representation (w,Hr) of G, non equivalent to m,

and for all € € (H;®)H, then cee(f) = 0.

The relative trace formula for I'\G allows to determine, in some cases, if a relative
discrete series representation 7 for G/H occurs in the spectral decomposition of L?(T'\G)
and has a nonzero period (ie. &r, # 0).

3.2 Definition. We say that f € C(G/H) has small support relative to I if I(f,~v) # 0
for v € I" implies that v € I'gy.

Let us assume that G/H has a relative discrete series representation (mp, Hp). Then
Ho can be realized as a subspace of L*(G/H) and the map & : ¢ € HF — (1) is an
H-invariant distribution vector.

3.3 Proposition. If there exists a strong relative pseudo-coefficient f for (mo,&) with
small support relative to T' then my occurs in L*(T\G) with a nonzero period.

Proof. By definition, if f is a strong relative pseudo-coefficient for (mg,&y) with small
support relative to I', then the geometric side of the relative trace formula (2.5) is reduced
to the term f(1) and the spectral side to the term cg. ¢ . (f) = (70(f)&r,m0: &r,my ), hence
we obtain the Proposition. O



We will precise the notion of small support relative to I' in the case of symmetric
spaces. We assume that H is the fixed point group of an involution o of G.
Most of the results of harmonic analysis on real reductive symmetric spaces are available
only when G is in the Harish-Chandra class (see [9] and [2]). From now, we will make this
assumption on G.

3.4 Lemma. If T is a o-stable cocompact discrete subgroup of G then 'y =T'n H is a
cocompact subgroup of H.

Proof. Let (hy,) be a sequence of H. As I'\G is compact, extracting possibly a subsequence
of (hy), we can find a sequence (7,) in I' such that (y,hy,) converges in G. Since I' is o-
stable, the sequence of 7,0(v,) ™' = Yuhno(Yuhy) ™! is a converging sequence in I'. As T’
is discrete, there exists ng € N such that for n > ng, we have v,0(v,) ™! = vo(7)~! where
Y := Yno € I'. This implies that v~ 17, € ' n H for n > ng, and the sequence (y~!v,h,)
converges. This proves that I' n H\H is compact. O

Let 0 be a Cartan involution of G which commutes with 0. Then K := G? is a maximal
compact subgroup of G.

Let g=t®p = h @ q be the decomposition of the Lie algebra g of G in eigenspaces
for 6 and o respectively.

We fix a maximal abelian subspace a in pnq and we denote by A the analytic subgroup
of G with Lie algebra a. Then, we have the Cartan decompositions

G =Kexpp=KAH.
We fix a K-invariant norm || - | on p and we define a K-invariant function 7 on G by
T(kexpX) = |X|, keK Xep.

For R > 0, let Ag := {a € A;7(a) < R} be the ball of radius R in A.
We set

o= inf “1yg).
ri= o Tm9)

3.5 Proposition. Let G and o be as above. Let I' be a o-stable cocompact discrete
subgroup of G. Moreover, we assume that 1" is torsion-free. Then

1. rr > 0.

2. Let f e CP(G/H) be compactly supported in KA, ,H. Then f has small support
relative to I

Proof. 1. This property is asserted in [8]. We give a proof for sake of completeness.
If rr = 0 then there would exist two sequences (g,) of G and (7;,) of I with ,, # 1 for all
n € N, such that 7(g,, 1v,gn) converges to 0. Then

9 Y gn = knexp X, with k, € K and X, € p with lirf | X[ = 0. (3.2)
n——+00



As I'\G is compact, possibly changing (g,) and (7,) and extracting subsequences, we can
assume that (g,) converges to g € G and (k;,) converges to k € K. Thus using (3.2), we
see that the sequence (7,) converges, hence, as I' is discrete, there exists ng such that
Y is constant and equal to v := 7y, for n = ng. Going to the limit in (3.2), we obtain
g 'vg = k. Therefore v belongs to the discrete compact, so finite, group K¢~ ' nT". This
implies that ~ is a torsion element, thus v = 1. This contradicts the hypothesis that all
v, are distinct from 1. This proves the first assertion.

2. Let hy,ho in H and ~ € I" such that f(hl_l’yhg) # 0. Then, the point g := hl_lvhg
belongs to KA, ,H. Therefore, we have go(g)~! € KA, K, thus 7(go(g)~!) =
7(h'yo(7)"'h1) < rr. By definition of 7, this implies that yo(y)~! = 1, hence v € I'g.

1

4 Strong relative pseudo-coefficient for some hyperbolic
spaces.

The aim of this part is to construct strong relative pseudo-coefficients associated to some
relative discrete series representations of some hyperbolic spaces.

4.1 Preliminaries.

Let K = R, C or H be the classical field of real, complex numbers or quaternions respec-
tively. Let x — T denotes the standard (anti-)involution of K. Let p > 2,q > 1 be two
integers. We consider the hermitian form [-, -] on KP*4 given by

[xay] =T1Y1 + - TplYp — Tp+1Yp+1 — - — Tp+1Yp+qs (xa y) e KPT.

Let G = U(p, ¢, K) denote the group of (p + ¢) x (p + ¢) matrices preserving [-,-]. Let
H =U(1,K) x U(p — 1,¢,K) be the stabilizer of zg = (1,0,...,0) € KP*? in G. Then
H is the fixed-point group of the involution o of G given by o(g) = JgJ, where J is the
diagonal matrix with entries (—1,1,...,,1). The reductive symmetric space G/H (of rank
1) can be identified with the projective hyperbolic space X = X(p, ¢, K) (see [1] §2.) :

X = {2 e K% [z,2] = 1}/ ~,

where ~ is the equivalence relation z ~ zu, u e K* |u| = 1.

The group K = K1 x Ky = U(p,K) x U(q,K) c G is the maximal compact subgroup
of G consisting of elements fixed by the classical Cartan involution 6 of G, (g) = (¢*)~!,
which commutes with o. Here ¢* denotes the conjugate transpose of g.

Recall that g = ¢®p = hPq are the decompositions of the Lie algebra g of G in eigenspaces
for 6 and o respectively.
We define the one parameter abelian subgroup A = {a;; t € R} by

cosht 0 sinh ¢
ay = 0 Ip+q_2 0
sinh ¢ 0 cosht



where I; denotes the identity matrix of size j. Then, the Lie algebra a of A is a maximal
abelian subspace of p N q. Let W be the Weyl group of A in G. The nontrivial element of
W acts on A by a; — a_;.

The Cartan decomposition G = K AH holds and gives rise to the use of polar coordi-
nates on X (see [1] §2):
(k,t) e K x R" v kayH, (4.1)

and the map (k,t) € K/K n M x]0, +o0[— ka:H is a diffeomorphism on its image.

The centralizer M of A in H is the subgroup of matrices

o o8
o O
g © o

where u e K*, Ju| =1and ve U(p —1,¢ — 1,K).

Hence, the homogeneous space K/K n M can be identified with the projective image
Y of the product of unit spheres SP(K) x S?(K):

K/KaM=~Y={yeK |y >+ ...+ |5|° = lypr1> + -+ [yprg = 1}/ ~ . (4.2)

Let P be the subgroup of G which stabilizes the K-line generated by 7° = (1,0,...0,1).
Then P is a maximal parabolic subgroup of G whose unipotent radical will be denoted by
N, and we have P = M AN ([11] V.1).

1
Let d := dimgK. We set p := i(dq +dp) — 1.

We recall some results about spherical distributions of positive type on X given in [11].
As X is a symmetric space of rank 1, the algebra of left G-invariant differential operators on
X is generated by the Laplace-Beltrami operator A corresponding to the natural pseudo-
Riemannian structure. The Laplace-Beltrami operator comes, up to a scalar, from the
action of the Casimir of g on C(X).

We denote by D, ;(X) the space of spherical distributions © such that A© = (s2 — pH)e.

We keep notation of §1 for representations.

For s € C, we define the character &5 of P by ds(mawn) = e*t,m € M,a; € A,n e N
and we denote by (7 := indg(SS,p, ‘Hs) the normalized induced representation.
For s € C, we denote by & € (H-X)H the H-invariant distribution vector denoted by
us € &1(2) in ([11] page 395). By (loc. cit. Proposition 5.3), the map s — &(¢)(¢ € HE,)
is holomorphic on C. Moreover, by (loc. cit. page 396), we have (7_s)_o(f)&s € HE for
f e CP(G/H). Thus, we can define the spherical distribution Us by (see [11] Définition
5.4.)

Us(f) = A(m=s)-(f)és:6-s);, [ € CL(X). (4.3)

Notice that for s € iR, we have U = c¢_ ¢, .

10



According to ([11] Proposition 5.4 and Théoréme 7.3), the spherical distribution Us
satisfies the following properties:

1. for f e CFX(X), the map s — Us(f) is holomorphic on C,
2. AU, = (s2 — p?)Us, (4.4)

3. Us =U_; for s e C,

According to ([11] IX, (2 a), Proposition 9.1, Théoréme 9.2 and Proposition 9.3), there
exists up to a scalar at most one positive type in D;’ 1 (X) for s € C, except when dq is
even and s = 0.

If dq is odd, these distributions are the U for s € iR, and the ;U with ¢, = +1 for a
set of real s.

If dqg is even and s # 0, these distributions are the Uy for s in the union of iR and
some set of real s, and the distributions denoted (—1)"16, e D) o y(X) for r e N.

When dgq is even and s = 0, denoting by 1 the constant function equals to 1, the
distributions of positive type in D ;(X) are given by A(—6p) + B with A, B > 0.

Let (m,V) be an irreducible unitary representation of G' and ¢ € (V~°)H. Then the
generalized matrix coefficient ¢ ¢ is a distribution of positive type. Moreover, as 7 has
infinitesimal character and as the Laplace-Beltrami operator comes from the Casimir of g,
the distribution c¢ ¢ is an eigendistribution for the Laplace-Beltrami operator, hence, up
to a positive scalar, it is one of the distributions above.

Let us assume moreover that (7, V) is a relative discrete series representation of X,
that is a subrepresentation of L?(X). Let &, be the evaluation at 1 of the elements of
V* < C*(X). We say that the distribution T := c¢, ¢, is associated to the relative
discrete series representation (m, V') of X.

By ([11] Théoréme 10 and §X. (3) page 432), up to a positive scalar, the distributions
associated to relative discrete series representations of X are

1. if K = R and ¢ is odd:

erUpt2r41 for r€Z such that p+2r+1>0,
where ¢, = (—=1)"lifr >0and e, =1if0 < p+2r +1 < 2p.

2. if dq is even:

Upror for re —N* and 0 < p+2r <p,
and the (—1)"0, for 7 € N, which belong to D] 5 (X) with s, = p + 2r. (4.5)

4.1 Proposition. Let (m,V') be a relative discrete series representation of X whose asso-
ciated distribution of positive type is of the form Uy, for some sy € R and ¢ = +1. Then
(m,&v) admits no strong relative pseudo-coefficient.

Proof. Let f € CP(X) such that eUs, (f) # 0. By the holomorphy of s — Us(f) (see
(4.4)), the complex numbers Us(f) for s € iR are not identically equal to 0. This implies
the Proposition. O
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4.2  K-types of relative discrete series representation

In this section, we assume that K = C or H. Hence, in particular dq is even.

We want to use the results of [10] where the groups are connected and semisimple. For
K = C, we have G = ZG' where Z := {zI,,4; 2z € C*,|z| = 1} is central and contained in
H n K and G’ is equal to SU(p, q) which is semisimple and connected. For K = H, we
have G ~ Sp(p, q) which is semisimple and connected (see [20] Chap. I §1).

For r € N, we will denote by (p,, V;.) the relative discrete series representation
whose associated distribution is (—1)"6,, and by 7, the element of (V,~®)#
such that ¢, ,. = (—1)"0,. Note that 7, is equal to a positive multiple of
the evaluation at 1 of the elements of V,* < C*(X).

(4.6)

We will review the structure of K-module of V,.. For this, we introduce some notations.
By (4.2), the space C*(K/K n M) can be identified with the subspace of functions f €
C*(SP(K) x S1(K)) such that f(u¢) = f(¢),¢ € SP(K) x S¢(K),u € K* such that |u| = 1.
According to ([11] page 399), for [,m € N, we set

Yim =A{f € CY(K/K 0 M); Arf = =I(l +dp—2)f, Azf = —m(m+dg—2)f},

where A; and Ay are the Laplace-Beltrami operators in the spheres SP(K) and S%(K)
respectively.

Let E be the set of elements (I,m) € N x N such that Y, ,,, # {0}. By ([11] page 399),
(1,0) € E if and only if [ is even.

Let r € N. We set
E.:={(,m)e E;l —m = dq + 2r}. (4.7)

Then by ([11] top of page 421), the decomposition of V, as K-module is given by
Vi= D Vim (4.8)

(IL,m)eE,

Let [ € 2N be even. We consider the function w; defined in ([11] bottom of page 406)
for K= C or H. Let ¢ = ((1,-..,{p+q) be the coordinates on SP(K) x S4(K). Then wy is
given by:

ao€) = | Fludu, (49)
U(1K)
for some function F'.
Let us prove that
wy is biinvariant by K n H. (4.10)

By definition, wj o is right invariant by K n M. Recall that K = K x Ky with K1 = U(p, K)
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and Ky = U(q,K). By loc. cit. top of page 407, we have w; g € ), ¢, thus it is right invariant
by Ko. But we have

uw 0 0 0
0 vy 0 0 .
KnM= , ueK* |lul=1,veU(p—1,K),veeU(q—1,K)
0 0 w2 O
0 0 0 w
and
v 0 0
KnH= 0 vy 0 |, wueK*|u=10veU(p—1,K),wseU(q,K) ¢,
0 0 w9

hence K n H = (K n M)K3. Then wy is right invariant by K n H.

As K* = R™*U(1,K) where R is central in the multiplicative group K*, we deduce
from (4.9) that wy ¢ is left invariant by K n H. Hence (4.10) follows.

We will determine the K-type of wjg.

Let K' = K n SU(p,q) for K = C, or K’ = K for K = H. We denote by ¥ the
Lie algebra of K’. Then K-types with K n H-fixed vectors coincide with K’-types with
K’ n H-fixed vectors since, for K = C, we have K = ZK' where Z ¢ K n H is central in
K.

We fix a maximal abelian subspace t of i(¢ nq). As K'/K' n H is of rank 1, the
dimension of t is equal to 1. We choose a short positive root v of t¢ in €. Then the roots
of tc in € are of the form ++, +2y. We identify C to % by the map A — \7.

By the Cartan - Helgason Theorem,

if p is a unitary irreducible representation of K then p admits a nonzero
K n H-invariant vector if and only if its highest weight is an even integer.  (4.11)
In that case, u admits a unique, up to a scalar, nonzero K n H-fixed vector.

Let K denotes the set of equivalence classes of unitary irreducible representations of K
and (K) g ~p the subset of those representations having a non-trivial (K n H)-fixed vector.
For pn € K, let x,, denotes its character and d,, its dimension. We set

X (k) = L{ Hxﬂ(kh)dh,

where Haar measures on compact groups are normalized so that their volume are equal to
1. Then,

the function X,Ij is, up to a scalar, the only function on K of type p which is

4.12
biinvariant by K n H. ( )

A~

4.2 Lemma. Let p e (K)gn~pg be the representation with highest weight | € 2N. Then

1. p is the unique K-type of Vo having a nonzero K n H-invariant vector.
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2. The multiplicity of p in Vo is equal to 1 and wy o is contained in this K -type.
3. w0 = CZX{;I with Cl # 0.

Proof. Let pi be a representation of K contained in Y o and having a nonzero fixed vector
by K nH. Then by (4.11), it has a highest weight of the form kv where k € N is even. The
formula for the value of the Casimir operator acting on a highest weight representation
implies that k& = [, hence p/ = p.

As wy o is K n H-biinvariant by (4.10), we deduce easily 2. and 3. from (4.12). O

We come back to the structure of K-module of the relative discrete series representa-
tions (pr, V;.),r € N.

~

For r € N, we denote by p, € (K)g~p the representation with highest weight (4.13)
l, = dgq + 2r and we set w,,, = w, 0. ’

By (4.8), we have w,, € M, 0 < Vi

4.3 Lemma. Let r € N. There exists a unique K n H- invariant function ¢, in V. of type
Wy such that o.(1) = 1.
Moreover, there exists a constant C|. # 0 such that ¢, (k) = C’;XII;IT(I{) forke K.

Proof. If ¢, satisfies the first assertion of the Lemma then the restriction of ¢, to K is
a nonzero K n H- biinvariant function of type p,. Hence by (4.12), this restriction is
proportional to xﬁ{n and the second assertion follows.

Let us prove the first assertion. We first treat the case K = H. By ([12] Table 2), there
is at most one relative discrete series representation for L?(X) with a given eigenvalue of
the Laplace-Beltrami operator. As pu, satisfies (2.6) of loc. cit. (where (A, A) has to be
replaced by {(«, a)), Theorem 2.2 in loc. cit. implies that V, contains a unique, up to a
scalar, K n H invariant function of type p, denoted there by ¢, with A = p + 2r. By
definition, it satisfies 1\(1) = 19(1) where 99 is given in loc. cit. (2.5). The formula
defining ¢ shows that ¢(1) # 0. Thus the function ¢, = t,/1x(1) satisfies the first
assertion of the proposition.

For K = C, we proceed similarly by first going through the quotient by the center
ZcKnH. O

~

Let p € (K)k~nm with highest weight [ € 2N. For s € C, the vector (7_s)_oo(xpu)és =
(m—s)—o0(x/1)&s is an analytic vector for 7. Thus, using Lemma 4.2 3., we can define

7l(8> = <(7T—s)—oo(wl,0)fs,§—s> = Us(wl,O)' (4'14)

An explicit expression of Us(®) for a K-finite function ® in C°(X) is obtained in ([11]
page 407). This expression allows us to calculate the function +;(s) in the next Lemma,
which is given for granted in [10].
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4.4 Lemma. Let p € (K)g~p be the representation with highest weight | € 2N. Let s € C.
According to ([11] page 405), we define the function

(s=p)s=p—2)...(s=p—1r+2)
I'((s—p+1+dp)/2) ’

Bro(s) = by

where by is a nonzero constant.

Then, we have
Y(s) = Us(wio) = ¢iB1.0(5)Bro(—s)

for some nonzero constant cg.

Proof. We consider the function A(t) = (¢! +e7 )%~ 1(e! —e~*)94~1 according to ([11] page

1 1

403). We can find a sequence (Fy,)nen of C(]0, +00[) such that supp(F,,) c]%, ﬁ[ and

+a0

f Fo(t)A(t)dt — 1.

0

Therefore, we have
+00
hrfoo F.(t)A(t)g(t)dt = g(0), for ge C*(R). (4.15)
n— 0

Using the Cartan decomposition (4.1), we define the function ®,, on X by ®,(ka;z?) =
wio(k)Fy(t), k € K,t € [0,+00[. Hence, each ®,, is of type p and belongs to C(X). By
([11] page 407), we have

+00

Us(®y) = Czﬁl,o(s)ﬁz,o(—s)f

wm@gmﬁmwﬁxf wio(k)2dk,
0

K/KnM
where ¢; is a nonzero constant and ¥,  is given in term of the hypergeometric function by

p—s+l p—s—dp+2—1 dq
2 7 2 127

Wy o(t,s) = (cosht)* 7 o Fy ( tanh?t).

Since ¥; (0, s) = 1, we deduce from (4.15) that

with ¢ = ¢ SK/KQM w0 (k)?dk.

It remains to prove that lirf Us(®y,) = Us(wrp). For v e H®,, one has
0

—8

+o0
( j Fo(6) A (s ) oo (k) s, 0}t

0

() (@) ) = [ Bu(g)(ms) oo (9)Es, 0Dy = f

G/H K/KaM

The map g : (k,t) — {(m—s)—w(ka)&s,v) belongs to CP(K/K n M x R). Since F, €
C*([0,1]) for all n € N, the function (k,t) — F,(t)A(t)g(k,t) is integrable on K/K n M x
R. Hence by Fubini’s Theorem, we obtain

(@6 = [T ROAO([ ) alba o

J/KnM
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As the map t — SK/KQM<(7T—S)—OO(kat)€S7v>dk belongs to C*(R), we deduce by (4.15)
that

lim (7)o (@6, v) = (=)= (R)Ess no ()l = (7)o (w10)s, 0.
n—+0 K/KnM
(4.16)
Let d,, denote the dimension of p. Then P, := (7_)_co(duxu) is well defined as the

projector of HZ_ onto the p-isotypic component (H_s), in H*,. Hence we deduce that

((7=s5) =0 (Pn)és,§—s) = <P/L(7778)700((I)n)§sa §—s) = {(T—5) =0 (Pn)s, P,u578>'

Applying (4.16) to v = P,&_,, we deduce that lirf Us(®y,) = Us(wi o). Thus, we obtain
n——+0o0
the Lemma. O

4.3 Existence of strong relative pseudo-coefficients for certain relative
discrete series representations.

In this section, we assume that dq is even and K = C or H.

Existence of strong relative pseudo-coefficients for relative discrete series representa-
tions (p,, V,.),r € N is an easy consequence of Proposition 4.7 below. This Proposition
corresponds to ([10] Lemma 9), but the proof given in loc. cit. is slightly incomplete. We
will give here a more precise and modified proof.

We first recall some results of [10] on the Paley-Wiener space of X. Notice that for
K = C, we have to go through the quotient by the center Z ¢ K n H to apply these
results.

Let (7, V') a unitary irreducible representation of G in a Hilbert space V. If y € K then
its contragredient is equivalent to p and P, := m_s(d,x,) is well defined as the projection
of V=% onto the p-isotypic component V,, < V*. If £ is an H-invariant distribution
vector, then

P& = dym_op(xE e VENT, (4.17)

hence P,§ = 0if pu ¢ (I/(\')KQH.

Let af be the complexification of the dual a* of a. Recall that W denotes the Weyl group
of A in G, hence we can consider the action of W on a.

Let R > 0. Let PW (a)g denotes the space of entire functions ¥ on af which satisfy

YN eN, sup(1+ |A)Ne BN w (N < 400,

*
Agag

Then the classical Paley-Wiener space PW (a) is the union of PW (a)g for R €]0, +o0].

Restricting to the W-invariant functions, the classical Fourier transform is a bijection
of CX ()" to PW ().

Recall that A = {a;;t € R} is the abelian subgroup of G corresponding to the maximal
abelian subspace a of p n q. We fix R > 0 and we denote by Ag := {at; [t| < R} the ball
of radius R in A.

We have the following Paley-Wiener Theorem.
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4.5 Theorem. ([10] Theorem 1 and its remark) Let @ € PW (a)¥ . Let y € Kiw. Then,
there exists a unique function f € CP(G/H) of type u, supported in K ArH such that the
following holds:

For all unitary irreducible representations (w,V') of G and for all H-invariant distri-
bution vectors £ € V= such that m_u(A)E = (A2 — p?)&, we have

T ()€ = W(IN) Py,

4.6 Proposition. Let r € N and p, be the K-type of highest weight I, = dq + 2r (see
(4.13)). We set s, := p+2r. Let G PW(a)¥ such that G(is,) # 0. Then, there exists
f1€ CP(G/H) of type p, supported in KArH such that

1. GT(fl) = 1;
2. 0.(f1) =0 forr' € N such that ' > r,
3. Us(f1) = C,.(s)G(is), s € C, for some nonzero constant C'.

Proof. As ¢, = (=1)"710, € D, y(X) (see (4.5) and (4.6)), we have p.(A)n, = (s2 —
p*)n,. We apply Theorem 4.5 to u = p,. Then there exists g1 € CX(X) of type u,
supported in K AgrH such that

(pT)*OO(.gl)nr = G(isr)P,urnra (418)

and
(m—s)—0(g1)&s = G(is) Py, &s, for s € C. (4.19)
By Lemma 4.2 and (4.17), we have P, n, = d,, (pr),oo(xfi‘)m and the analytic vector
(Pr)—oo(X,Ijr)Ur is a K n H-invariant function of type u, in V,.. By Lemma 4.3, we obtain
that (pr)_oo(xfr)n,« = (', for some constant C".
Let us prove that C' # 0. By Lemma 4.3 again, the function ¢, coincides with C;X,Ijr
on K. Since pr(xﬁlr) is, up to a scalar, the projection on the K n H-fixed vectors in V.,

we have p, (xffr )er = Cip, for some nonzero constant Cj. Recall that there is a nonzero
constant Cy such that 7, is defined by n,(¢) = Ca¢(1) for ¢ € VX (see (4.6)). Thus we
deduce

C'liprior = pr)—n O s 00 = (s pr (i )ior) = CaCa(pr (L )er ) (1) = CrCappr(1) = C1Ca # 0,

hence C’ # 0. Then 0,(g1) = C'G(is,) # 0. We set

o g1
Ji: C'Gisy)’

Then f; satisfies
0,(f1) = 1.

and we obtain the first assertion of the Proposition.

Let ' € N such that ' > r. As fy is of type pu, and pu, is not a K-type of V,» by (4.8),
we have 0,/(f1) = 0.
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To prove the last assertion of the Proposition, we consider the property (4.19) for s € C.

By (4.17), we have P, & = dy, (7)o (X, )&s = dy, (7—s) 0 (X} )€s. Using Lemma 4.2
and Lemma 4.4, this leads to

dy, d

Us(f1) = mmram 5 Glis)Us(wp,)

= C.0'Glisy) o) 1) (5):

e
C,C'G(isy)

This finishes the proof of the Proposition. O

4.7 Proposition. Let r € N and u, be the K-type of highest weight I, = dq + 2r. Then,
there ezists a function f € CP(X) with support in KArH, sum of a K-invariant function
and of a function of type w., such that

1. 0.(f) =1,
2. 0.(f) =0 for v € N such that ' > r,
3. Us(f) =0 for seC.

Proof. We set s, = p+ 2r. Let G € PW(a)¥ such that G(is,) # 0. Let f; € CX(G)
be a function satisfying the properties of Proposition 4.6. Then for s € C*, we have
Us(f1) = C,.(s)G(is) where C is a nonzero constant.

By definition (see Lemma 4.4), we have

Y, (8) = ¢}, Bi,.0(5)B1,0(—5),

and
(s=p)s—p=2)...(s=p—1l +2)

Bi.0(s) = bi, T((s —p+ 1l +dp)/2) ’

where [, = dq + 2r.
1
Recall that p = §(dp + dq) — 1, then we have —p + [, +dp = p + 2r + 2 = s, + 2 with

sy = p + 2r. Thus, we can write
D((s—p+1+dp)/2) =27 (s +5.)(s+ 5 —2)...(s— p+dp)I((s — p + dp)/2).

Hence we obtain Pls)
W) = T s+ aae 0w

where

P(s) = 2, 12 (5= p)(5—p—2) .. (s p— (ln—2)) (=5 — ) (—5—p—2) .. (=5~ p— (- —2))
and
Q(s)=(s+sr—2)(s+s,—4)...(s—p+dp)(—s+s—2)(=s+ 8 —4)...(—s— p+dp).

By assumption we have dq > 2, hence 2r < dq + 2r — 2 = [, — 2. Then, Pi(s) :=
P(s)
(s + sp)(—s + sy)

and Q(s) are even polynomials such that Q(s,) # 0 and Pi(s;) # 0.
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By Proposition 4.6 3., we obtain

Us(fl) = CG(’Ls) gl((j)) 70(5)7 with ’yo(s) = C6F(sp+dp)1£(sp+dp) .
2 2

Since @ is even and Q(s;) # 0, we may choose an invariant differential operator D € D(X)
such that
Q(s)

s D = s ) )
U( fl) Q(ST)U(fl) seC
and Qs
S/
/ D = r / / .
97‘( fl) Q(Sr) 07“ (fl)a reN
Therefore the function fo := D f; satisfies the assertions 1. and 2. of the Proposition and
B G(is)Pi(s)
Us(f2) = Cw’m(s)-

Since PW(a)IéV is stable by multiplication by an even polynomial function, apply-
ing Theorem 4.5 to the trivial K-type, we can find a K-invariant function f3 € C(X)
supported in K AgrH such that

G(is)Pyi(s)
Q(sr)

By (4.8), the trivial representation is not a K-type of V,. for v’ > 0, thus we have 0,.(f3) = 0
for v’ > 0. Therefore, the function f = fo — f3 satisfies the properties of the Proposition. [J

Us(fs) = C 0(s) = Us(f2)-

4.8 Theorem. Let R > 0 and A := {a; € A;|t|] < R} be the ball of radius R in A.
Then, for all r € N, there exists a strong relative pseudo-coefficient f € CF(X) supported
in KAgH for (pr,my). This means that the function f satisfies

0.(f) =1, 0.(f)=0forr" eN, v’ #r,

and
Us(f) =0, forseC

Proof. Proposition 4.7 gives the result for » = 0. Let r > 0 and assume we have a strong
relative pseudo-coefficient f, for (p,/,n,+) (' < r) supported in KArH. We denote by U,

r—1

the function obtained in Proposition 4.7. Then, the function f, = ¥, — 2 0,/ (V) fr is a
r’'=0

strong relative pseudo-coefficient for (p,,n,) with support in K ApH. O
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5 Existence of o-stable torsion free cocompact discrete sub-
groups of U(p, q,K).

This section is entirely due to the kind help of R. Beuzart-Plessis and J. P. Labesse.

Let F be a totally real number field of degree [F : Q] =7 > 1 and let Vo, = {v : F — R}
denote the finite set of real places of F.

We consider the group G’ defined in ([26] page 372), which depends on K = R, C or
H. By loc. cit., there exists a unique archimedean place vy € V, such that

SO(p,q) for K=R
G'(F,,) =< SU(p,q) forK=C (5.1)
Sp(p,q) for K=H

and for v € Vi, v # vy,

SO(p+q) forK=R
G'(F,) =% SU(p+q) forK=C (5.2)
Sp(p+gq) for K=H

Let G = ResF/QG’ be the group obtained by restriction of scalars. For v € Vy,v # vy,
we have G(Q) = G/(F) c¢ G/(F,) and G/(F,) is compact, hence each element of G(Q) is
semisimple. Thus the group G(Q) is anisotropic.

Let Ar and Ag be the rings of adeles of ' and Q respectively. We denote by Ap ; and
Ag s the subrings of finite adeles in Ap and Ag respectively.

Then, G(Q) is diagonally embedded in G(Ag,¢) and by ([24] Theorem 5.5 (1)), the
quotient G(Q)\G(Ag) is compact.

Let 7 be the rational involution of G’ denoted 7 o in ([26] §2.2). The involution of G'(F,, )
induced by 7, again denoted by 7, is simply the restriction to G'(F,,) of the involution o
of U(p, q,K) defined in section 3. The involution 7 defines a continuous automorphism of
G(Ag) = G'(Ar) preserving G(Ag,f) = G'(Ap ).

We have the following classical result.

5.1 Lemma. Let K; be an open compact subgroup of G(Aq.f). Then the subgroup
IN(Ky) := G(R) n (G(Q)Ky) is a cocompact discrete subgroup of G(R).

Proof. Let us give a proof for sake of completeness. Since G(Q) is discrete in G(Ag), the
subgroup I'(Ky) is discrete. As G(Q) is diagonally embedded in G(Ag,r), we have also
I'(Ky) = G(Q) n K.

We consider the map v from G(R)K to I'(K;)\G(R) given by ¢ (gk) = I'(Ky)g. If
gk = vg'K' with g,¢' € G(R), k, k' € K and v € G(Q), we have g = v¢'k'k~!. As G(Aq,f)
and G(R) commute, we obtain g = vk'k~!¢/, hence gg'~! = 7K'k~ € I'(K). Therefore v
goes through the quotient G(Q)\G(R)K /K and the induced map is a surjection from
G(Q\G(R)Ky/Ky to I'(Kf)\G(R).

Thus it remains to prove that G(Q)\G(R)K /K is compact.

The group G(R)K is an open subgroup of G(Ag). As G(Q)\G(Ag) is compact, the
number of (G(Q), K¢) double cosets, which are open, is finite. Then each of them is also

20



closed, hence compact. We deduce that G(Q)\G(R)K /K is compact O

5.2 Lemma. Let K¢ be a compact open subgroup of G(Aq,f). Then there exists a compact
open subgroup K} c Ky of G(Aq,¢) such that I‘(K}) is a torsion free subgroup of I'(Ky)
of finite index.

Proof. We fix an embedding of G in GL(n) defined over Q. We have

GL(n,Z) = GL(n, Q)] [] GL(n.Z,).

pprime

By the proof of ([5] Proposition 2.2), the group G'L(n,Z) contains a torsion free sub-
group I' of finite index of the form I' = GL(n,Q) n Ky, where K is a compact open
subgroup of H GL(n,Zp).

ppri~me _

Let K := Ky n Ky = G(Ag). Then I'(K}) = G(Q) n K} < I is without torsion.

As K’ is a compact open subgroup of Ky, it is of finite index. It follows that I'(K",) is of
f f f
finite index in I'(Ky). O

5.3 Corollary. For each open compact subgroup Ky of G(Aq,f), there exists a T-stable
open compact subgroup KJQ < Ky such that I‘(KJQ) is a T-stable torsion free cocompact
discrete subgroup of G(R).

Proof. Let K } be the subgroup obtained in the previous Lemma. As 7 is a continuous
involution of G(Ag) which preserves G(Ag,s), the subgroup K(; = T7(K}) n K} is a1-
stable compact open subgroup of K. It is clear that I"(K ]9) is 7-stable since K }9 is T-stable.
The properties of K } imply that I‘(KJQ) is a torsion free cocompact discrete subgroup of
G(R). Hence we obtain the Corollary. O

5.4 Lemma. Let G = G1 x Go be the product of two locally compact groups with Go
compact. Let T' be a torsion free cocompact discrete subgroup of G. Then the projection
'y of T to Gy is a torsion free cocompact discrete subgroup of G1.

Proof. If I'1 was not discrete, there would exists a sequence (7;,,) of distinct elements of
I’y converging to a limit . There exists a sequence (72,,) in G such that v, = (Y11, V2,n)
belongs to I'. Since G2 is compact, extracting a subsequence, we can assume that (v2,)
converges. Then the sequence (7,) convergences. As I' is discrete, there is ng such that
Yn = Yno for m = ng. This implies that (vy1,) is constant for n > ng, which contradicts
the fact that the ~q,’s are distinct. Thus I'y is discrete.

Let us show that I'y is a cocompact subgroup of G;. Let (g,) be a sequence in Gj.
Since I' is cocompact in G, there exist a subsequence (g,) of (g,,) and a sequence (7,) in
I' such that (v,g;,) converges. Writing v, = (V1,n,72,n) With v, € G;, we deduce that
(71,n9,,) converges, hence I'y is cocompact in Gj.

Let v; € I'; and r € N* such that 7] = 1. Let 2 € G2 such that (y1,72) € I'. Then
the sequence ((y1,72)") = (7{",7%) remains in a compact set, thus it admits a converging
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subsequence ((71,72)*™). AsT is discrete, this subsequence is constant for n large enough.
Hence ('y§ (")) is constant for n large enough. This implies that there exists s € N* such
that v5 = 1. For m a multiple of r and s, we have (vy1,72)™ = 1. As I is torsion free, this
leads to 71 = 2 = 1, hence I'; is torsion free. O

5.5 Lemma. IfT" is cocompact in SO(p,q) (resp., in SU(p,q)) then T' is cocompact in
O(p,q) (resp. in U(p,q)).

Proof. This follows from the fact that SO(p, q) (resp., SU(p,q)) is cocompact in O(p,q)
(resp., U(p, q)). O

By (5.1) and (5.2), there is a compact group {2k, depending on K, such that

SO(p,q) x Qr  for K=R
G[R) =< SU(p,q) xQc for K=C . (5.3)
Sp(p,q) x Qu  for K=H

We denote by Gk the first factor of this decomposition.

5.6 Proposition. For sufficiently small T-stable open compact subgroup Ky of G(Aq.f),
the projection I'1 (K¢) of I'(Kf) = G(Q) n K onto G1 k according the decomposition (5.3)
is a o-stable torsion free cocompact discrete subgroup of U(p, q,K).

Proof. By Corollary 5.3, we can choose K sufficiently small so that I'(Ky) is a 7-stable
torsion free cocompact discrete subgroup of G(R). By Lemma 5.4, the subgroup I'i (K)
is a 7-stable torsion free cocompact discrete subgroup of Gy k. Since the involution 7
coincides with o on G k, the Proposition follows from Lemma 5.5. O

5.7 Theorem. Let K = C or H. Let K; and I'1(Ky) be as in Proposition 5.6. Then the
relative discrete series representation (pr, Vy) of U(p, ¢, K) occurs with a nonzero period in

Proof. To apply the relative trace formula (2.5), we have to verify that I'i(Ky) and H
satisfy assumptions (2.1). The group H = U(1,K) x U(p — 1, ¢,K) is unimodular. By
(5.1) and (5.2), each element of G(Q) is semisimple, hence each element v of I'y(Ky)
is semisimple. By ([27] Part II, chap. 2 Proposition 13) , the centralizer of yo(y)~! in
G = U(p,q,K) is reductive since yo(y)~! is semisimple. Moreover, this centralizer is o-
stable, hence the centralizer Zg(yo(y)™!) of yo(y)~! in H is reductive. As the identity
map induces an isomorphism from (H x H)., to Zg (yo(y)™1) x H, we deduce that (H x H).,
is reductive, hence unimodular. The quotient (I'1 (Kr) n H)\H is compact by Lemma 3.4.
Therefore the assumptions (2.1) are all satisfied. By Theorem 4.8 there exists a strong
relative pseudo-coefficient for (p,, V;), with arbitrary small support. As I'{(K) is torsion

free, Proposition 3.5 and Proposition 3.3 give the result. O
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6 Non existence of K-finite relative pseudo-coefficients for

G(C)/G(R).

Let G be a connected, simply connected complex semisimple Lie group. Let H be a real
form of G and o be the conjugation of G relative to H. We denote by g and b the Lie
algebras of G and H respectively. Let g = h @ q be the decomposition of g relative to o.
Hence we have q = ih. Recall that a Cartan subspace of q is a maximal abelian subspace
made of semsimple elements. Then the map a — ia is an isomorphism from the set of
Cartan subalgebras of h to the set of Cartan subspaces of q which preserves H-conjugacy
classes.

We fix a Cartan involution 8 of h commuting with ¢ and we denote by K the maximal
compact subgroup of G of fixed points under 6.

By (23] Theorems 1 and 2), the symmetric space G/H has relative discrete series
representations if and only if q has a compact Cartan subspace, or equivalently, if b is
a split real form of g. The goal of this section is to establish that no discrete relative
series representation of G/H admits K-finite relative pseudo-coefficient. (see Theorem 6.2
below). These results will follow from the inversion formula of orbital integrals (see [17]
Théoreme 6.15).

We assume that H is split and we fix a split Cartan subalgebra ag of h. Let I'q, be the
lattice of elements X € ag satisfying exp2iX = 1 and let I'j  be its dual lattice so that
u(X) e 2nZ for pe Ty and X € I'y,.

Let Py = LoNy be a o-stable Borel subgroup of G with Levi subgroup Ly = exp(ag +
iag). For pu e I'; , we define the character d, of Py by d,(exp(X +iY)n) = eY) for
X,Y € ag and n € Ny. We denote by (m,,H,) the normalized induced representation

(ind$ Xy, Hy)-
By ([15] Corollaire 2.6), the linear form &, defined by the integration over H/H n P,

A W(h)dh, ¢ eHT, (6.1)
H/HNPy

where dh is a semi-invariant measure on H/H n Py, is an H-invariant distribution vector
of m,.

Then by (eg. [9] Proposition 5 and [15] §3. Application 1.), the relative discrete series
representations of G/H are given by the representations (7, H,) where y € I'y is regular.
Moreover, these representations occur with multiplicity one in the Plancherel formula and
the space M, (defined in (3.1)) is equal to C§,. We denote by I'; the set of regular

ap,reg
3 * * 3 3 *
elements in I'y and by I'y ;. its complementary in I'y .

We recall some facts about regular elements in G/H and orbital integrals (see [22] and
[17] §1 and §2).

Let ¢ be the map from G/H to G defined by ¢(gH) = go(g)~'. A semisimple element
x € G/H is regular if ¢(z) is semisimple and regular in G in the usual sense. Let (G/H )y eq
be the open dense subset of semisimple regular elements of G/H. To a Cartan subalgebra
a of b, we associate the Cartan subset A of G/H consisting of elements x such that p(x)
centralizes a. If z € (G/H ey then the centralizer a := Zy(¢(x)) of ¢(z) in b is a Cartan
subalgebra of h and x belongs to the Cartan subset A associated to a.
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If Y € b, we denote by ExpY the class of expiY in G/H.
If V is a subset of G/H (respectively, a subset of  or of its dual space h*), then V;.., will
denote the set of regular elements in V.

For x € G/H, we consider the polynomial function
detc(l —t — Ad @(z)) = t" + gu_1(2)t" ' + ... + g ()t (6.2)

where [ is the rank of G and n is its dimension as a complex group. We set Dg/p(7) =
q(x).

The orbital integral M(f) of f € CF(G) is the function M(f) € C*((G/H )yeq) defined
by

M(f)(@) = |Deyn(@)["? f(h-z)dh,
H/ZH(CI)

where a = Zy(p(x)) and Zg(a) is the centralizer of a in H. As in the group case (see[27]
Part 11, 10.2. Proposition 2), orbital integrals satisfy the following property.

6.1 Lemma. (/6] §8) Let f € CP(G/H). Let A be a Cartan subset of G/H. Then
there exists a compact subset U < A, depending on the support of f, such that for all
z € (A —U)yeg, we have M(f)(z) = 0.

Proof. For sake of completeness we give a complete proof of this Lemma. Let w be the
support of f. We consider the set w4 of elements a in A which are in the closure of Hw.
For z € G/H, as in (6.2) we consider the polynomial function detc(1 — ¢ — Ad ¢(x)) =
t" + gn_1(2)t" L + ... + g (z)t'. Each g; is an H-invariant regular function on G/H and
thus is bounded on wy. Therefore, the roots of det(1 — ¢t — Ad ¢(z)) are bounded on wy.

Let ® be the root system of (g, ac). Since p(A) = exp(ac) N ¢(G/H), we can define
the functions &4, a € ®, on A by &,(a) = e*X) for p(a) = exp X with X € ac.

Then the roots of det(1 —t — Ad ¢(a)) are the numbers 1 —¢,(a) for a € ®. Since these
roots are bounded on w4, we obtain that the maps a — £,(a), a € ®, are bounded on wy.
This implies that w4 is bounded, and hence the closure U of w4 satisfies the Lemma. O

We say that a closed H-invariant subset U of G/H is a compact modulo H if U n A is
compact for all Cartan subset A of G/H. Let Cg,,,(G/H) be the subspace of functions
f € C*(G/H) such that the intersection of the support of f with a compact subset modulo
H is compact. Then the orbital integral M(f) for f € CZ,,,(G/H) is well-defined.

According to ([17] Proposition 2.3), we define the space Z®(G/H) of orbital functions
on G/H as the image of Cg,, ,(G/H) by M. By ([6] §8 and [17] §2), the space of orbital

integrals, that is the image of C(G/H) by M, is the subspace of Z*(G/H) made of
functions which satisfy the support property of Lemma 6.1.

6.2 Theorem. No relative discrete series representation of G/H admits K -finite relative
pseudo-coefficient.

Proof. We first recall the Plancherel formula for G/H.

We fix a system [Car(h)] of f-stable representatives of H-conjugacy classes of Cartan
subalgebras of h. We may and will assume that ag € [Car(h)].
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Let a € [Car(h)]. Let a = ar@®ag be its decomposition with respect to . We denote by
Iy the lattice made of elements X € ar such that exp2iX = 1 and by I'} its dual lattice.
Let a;mg be the set of X € a} such that (X, &) # 0 for all imaginary roots « of ac in g. We
choose a positive system A of the root system of (g, ac) such that for all non imaginary
roots o € A, one has o(a) € A. Let P = exp(ac)N be the Borel subgroup corresponding
to A. For A € I'f +aj ..., we define the character & of exp(ac) by dx(exp(X +1Y)) = eMY)
for X,Y € a. Let (my, H)) denotes the normalized induced representation indIGD(S A\

For M = G or H, we denote by Wjs(a) the quotient of the normalizer of a in M by
the centralizer of a in M and we set W, := Wg(a)/Wg(a). Then, by ([17] Théoreme
7.4 and [9] §4.2) for allmost A € I'y + aj .., there exist linearly independent H-invariant
—OO)H

distribution vectors (&Y)wew, in (H;,°)", such that the Dirac measure has the following

spectral decomposition:

fetm) = 31 de 3 [ cep, e, (Dldet ad(h + )y jor 212, f € C2(G/H),
ae[Car(h)]  pel* Vo
(6.3)

where dr ) is a Haar measure on a} and the d,’s are constants depending only on the choice
of measures.

For a = ag, the space ag; is reduced to zero, and W;, is reduced to the trivial element
which we denote by 1. Then 5,11 coincides with the vector &, defined in (6.1).

Let po € TG, 1eg- We assume that there exists a K-finite relative pseudo-coefficient fo €
CX(G/H) for (myu,, Hyo), hence cg, ¢, (fo) # 0, and we want to obtain a contradiction.
Let us first prove that, in that case, there exists a relative pseudo-coefficient f €
CF(G/H) for (mp,, Hy,) such that
e, (f) =0 forall pely (6.4)

ap,sing*

Let S be the finite set of K-types occurring in L(K)f, where L is the left regular
representation. Let p € 'y such that cg, ¢, (fo) # 0. We consider the projection Ps of

H,* onto @res(Hy)r, where (H,,)r is the 7-isotypic component of H,,. Therefore we have

ce6u (fo) = (M) —oo (f0)€p €u) = (Ps () —oo (f0)€ps €) = (M) —o0(f0)Epu, Ps&pu) # 0.

Thus, the space Homg (®resT,m,) is non trivial. As m, = ind%&u = indan(Su/LmK,
we deduce from Frobenius reciprocity that Hom g~ (®res(7/nk), 0,/L~K) is non trivial.
Thus, we deduce that there exists a finite set F'in I'y ;- such that for p e I'y . \F,
we have cg, ¢, (fo) = 0.

By ([14] (2.1)), the algebra of G-invariant differential operators on G/H is isomorphic
to the center Z(g) of the universal enveloping algebra of g. We identify these two alge-
bras. Let S(agc) be the symmetric algebra of agc and W(g, apc) be the Weyl group of
(g,a0,c). We denote by 74, the isomorphism of Harish-Chandra from Z(g) to the subal-
gebra S(ag )V (@%0.0) of W (g, ag,c)-invariant elements in S(agc) -

By ([15] Application 1.), each element z € Z(g) acts by vq, (i1) on cg, ¢, (+). Since pg is
regular, we have va,(it0) # Yoo (ip) for all pe I'y . As F'is finite, we can find z € Z(g)
such that g, (i10) # 0 and ~yq,(2)(ip) = 0 for all p e F.
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Since c¢, ¢, (2-fo) = Yao(irt)ce, e, (fo) for p € Ty, and Z(g) acts by a scalar on the
generalized matrix coefficients associated to the principal series representations (7w, H))
for a € Car[(h)] and A € I'y + af ., we deduce that the function f := z.fy is a relative
pseudo-coefficient for (m,,,&,,) which satisfies (6.4).

From now, we assume that f € C(G/H) is a relative pseudo-coefficient for (m,,, H,,)
which satisfies (6.4).

To prove the Theorem, we recall the inversion formula of orbital integrals (see [17]
Théoreme 6.15).
For a € [Car(h)], we fix a positive system 1) of imaginary roots of ac in g.

By ([16] Théoreme 6.1) and ([17] Théoréme 5.3), to each a € [Car(h)] and (\,y) €
(I's + 0] g) X Wa, We can associate an H-invariant eigendistribution ©(A, y, ), which is
a generalized matrix coefficient c¢ ¢ for two H-invariant distribution vectors &,&" of the
principal series representation (my,#H)), and an orbital function F'(\,y, ) such that, for
feCP(G/H) and z € (G/H)req, we have

= 3 @B [ DB R v Oulnt N iy

e[Carh] uel¥ aI weWy 1y€Wu
(6.5)
where the ¢,’s are constants depending only on the choices of measures.

Let a = ap and p € I'; . We have Wy, = {1} and ¢ = J. We set O, := O(u, 1, D)
and F, := F(p,1,). By ([15] Corollaire 2.6 and Corollaire 3.1), the distribution ©, is
equal, up to a scalar, to the generalized matrix coefficient c¢, ¢, associated to (7,§,) and
O, = O, for s € Wy (ag). By ([17] Théoreme 4.1), we have also Fy, = F), for s € Wy (ap).

Recall that f e CF(G/H) is assumed to be a relative pseudo-coefficient for (., H,,)
which satisfies (6.4).
We will consider M (f)(ExpX) for ExpX € (G/H)yeg.

Let a € [Car(h)] with a # ag. Let (y,w) € Wa x W' and A€ T; + af .
By ([17] Théoreme 5.8), if y # 1 then F(wA,y,v)(ExpX) = 0 for all ExpX € (Exp §)eq-
By ([16] Proposition 6.4), for allmost A € 'y + a7 .., and for all w € W, the distribution
O(—w™IA 1,%) is equal, up to a scalar, to the generalized matrix coefficient cew gw where
(£¥)wew, is the family of (Hy ) which occurs in Plancherel formula (6.3). Hence, since
[ is a relative pseudo-coefficient for (m,,,H,,), we have (O(—wA,1,9), f) = 0 for all
we WL
Moreover, since f satisfies (6.4), we have ©,(f) = 0 for p € I'; with p # sug for all
s € Wg(ag).

Therefore, by the above properties of F(w™!\,y,v) for y,w € W,, and the inversion
formula (6.5), we obtain

M(f)(ExpX) = CoFluy (ExpX)(Opy, f),  ExpX € (Exp b)reg- (6.6)
where Cp := ¢q | W (ag)|.

To obtain our contradiction about the existence of the pseudo-coefficient f, we need
to come back to the definition of F},; on a open subset of (Exp h)yeq-
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For € > 0, we denote by V. the open subset of elements X € h such that the real part
Re(A) of each eigenvalue A of adX satisfies | Re(\)| < €. For € small enough, the map
Exp is a diffeomorphism from V. to ExpV. (see ([17] Lemma 4.4). Thus, X € V. ,¢, if and
only if ExpX € (ExpV:)req-

Then by construction of Fj,; (see [17] §4, page 76), we have

FHO (EXPX) = BH~X(M0) | det(ad MO)b*/ag‘ ’1/27 X e Vz—:,rega (67)

where BH x 1s the Fourier transform of the Liouville measure on the orbit H.X.

Classical results of Harish-Chandra on B 1.x implies that F),; does not satisfy the sup-
port property of Lemma 6.1. We give below a proof of this result for sake of completeness.

Let a be a (real) root of ap in h. Let X1, € h be root vectors in h such that H, :=
[X_a, Xa] is the coroot of @. Then a, := R(X, — X_,) @®Ker «a is a Cartan subalgebra of
b and cq.09c = aqc Where ¢ := Ad(exp —i%(Xo + X _4)) is the usual Cayley transform.
Then the imaginary roots of a, in b are 8 = ¢, () and —f and we have a, = RiHg+Ker 8
with Ker 8 = Ker . We choose a basis A of the root system of (g, a,,c). Each v € A can
be written v = 77 + g according to the decomposition a* = aj + aj,. We denote by C
the connected component of a4,y made of elements X such that (iy; + vyg)(X) > 0 for
Y=7+7REA.

Then, by the properties of the Fourier transform of orbits (see [27] Theorem 1.7.7),
there exist constants c¢(w), w € Wx(ag), such that, for all X € C, we have

Bi x (po) | det(ad po)yeses [2= > c(w)elerroX),
weWp (ap)
with ¢(w) # 0 if and only if Im{cqwpg, X) = 0.
We set C. = C n V.. By (6.7) we deduce that for all X € C., we have

Fup(ExpX) = > c(w)elcomroX), (6.8)

weWp (ag)

Each element of C. can be written X = —itHg +Y with ¢t > 0 and Y € Kerg n C. .
Since e2#(X) — €2t the subset of elements ExpX, for X € C. is not included in a compact
subset of the Cartan subset A, associated to a,.

Then (6.6) and the support property of Lemma 6.1 would imply that there is an open
subset U c C. such that F),,(ExpX) = 0 for all X € U. This would imply that the right
hand side of (6.8), which is an analytic function of X, is equal to 0 for all X € C. Since
o is regular, the linear forms X — i{cqwpg, X) for w € Wg(ap) are distinct elements.
Thus we would deduce that c(w) = 0 for all w € Wgy(ap), which is impossible. This
contradiction achieves the proof of the Theorem. O
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