On compatible stuctures on Lie algebroids

Yvette Kosmann-Schwarzbach

Centre de Mathématiques Laurent Schwartz, École Polytechnique, Palaiseau Séminaire des crochets, Université du Luxembourg 29 January 2010

- Prehistory of cohomological theory of Lie bialgebras. The big bracket.
- The big bracket for Lie algebroids.
- Compatible structures on Lie algebroids.
- Cmpatibble structures associated with MONGE-AMPÈRE operators.

Bertram Kostant and Shlomo Sternberg,

Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras, *Ann. Physics* 176, 1987, 49–113.

Voir aussi Marc Henneaux, Physics Rep. 126, 1985.

Let *E* be a vector space and ϕ a symmetric bilinear form over *E*. Define $\{u, v\}_{\phi} = \phi(u, v)$, for $u, v \in E$. Extend $\{, \}_{\phi}$ to $\wedge^{\bullet}E = \bigoplus_{j} \wedge^{j}E$ as a biderivation.

Then $\{,\}_{\phi}$ is a Poisson bracket of degree -2 on $\wedge^{\bullet} E$.

Pierre Lecomte, Claude Roger

Modules et cohomologies des bigèbres de Lie, C. R. Acad. Sci. Paris Sér. I Math. 310, 1990, 405–410.

Let V be a vector space. Let $E = V^* \oplus V$. Let ϕ be the canonical symmetric bilinear form. For $x, y \in V, \xi, \eta \in V^*$, $\phi(x, y) = 0, \quad \phi(\xi, \eta) = 0, \quad \phi(\xi, x) = \langle \xi, x \rangle,$ where \langle , \rangle is the duality between V and V^{*}. Then $\{ , \}_{\phi} = \{ , \}$ is a Poisson bracket of bidegree (-1, -1)on $\wedge^{\bullet}(V^* \oplus V) = \bigoplus_{k \ge 0, \ell \ge 0} \wedge^{\ell} V^* \otimes \wedge^k V$, called the big bracket. $V^* \oplus V$ is the cotangent bundle T^*V of V.

Consider the supermanifold $\Pi V = V[1]$ and its cotangent bundle $T^*V[1]$. The algebra of functions on $T^*V[1]$ is $\wedge^{\bullet}(V^* \oplus V)$.

The Poisson bracket $\{ \ , \ \}$ is the Poisson bracket of the canonical symplectic structure of this cotangent bundle.

In restriction to $\wedge^{\bullet}V^* \otimes V$, the even Poisson bracket $\{ , \}$ is the Nijenhuis-Richardson bracket of vector-valued forms on V, and similarly for vector-valued forms on V^* (up to a sign). Example 1: A Lie algebra structure on V is an element $\mu \in \wedge^2 V^* \otimes V$ such that

$$\{\mu,\mu\}=\mathsf{0}.$$

Example 2:

A Lie coalgebra structure on V is an element $\gamma \in V^* \otimes \wedge^2 V$ such that

$$\{\gamma,\gamma\}=\mathsf{0}.$$

A Lie bialgebra structure on (V, V) is an element $\mu + \gamma \in (\wedge^2 V^* \otimes V) \oplus (V^* \otimes \wedge^2 V)$ such that $[\{\mu + \gamma, \mu + \gamma\} = 0.]$

$$\{ \begin{array}{l} \{ \mu, \mu \} = 0 \ , \\ \{ \mu, \gamma \} = 0 \ , \\ \{ \gamma, \gamma \} = 0 \ . \end{array}$$

The compatibility conditon,

 γ is a cocycle of ($V,\mu)$ $\;$ or $\;$ μ is a cocycle of (V^*,γ), is simply expressed as

$$\{\mu,\gamma\}=\mathsf{0}.$$

The Lie algebra cohomology operators of (V, μ) and (V^*, γ) are $d_{\mu} = \{\mu, .\}$ and $d_{\gamma} = \{\gamma, .\}$: bicomplex of the Lie bialgebra.

 Algebraic: Quasi-Lie-bialgebras
 See Drinfeld, Quasi-Hopf algebras, *Leningrad Math. J.* 1, 1990.
 Proto-Lie-bialgebras
 See yks, *Contemp. Math.* 132, 1992.

• Geometric:

Lie bialgebroids

See MACKENZIE and XU, *Duke* 73, 1994: infinitesimal of a Poisson groupoid. See also YKS, 1995.

• Geometric version of quasi-Lie-bialgebras, proto-Lie- bialgebras: Quasi-Lie-bialgebroids, proto-Lie- bialgebroids See DMITRY ROYTENBERG, *LMP* 61, 2002. See also YKS, Prog. Math., 2010... arXiv 0711.2043. (V,μ) is a Lie algebra, μ is the Lie algebra structure. Then $\wedge^{\bullet}V$ is equipped with the Schouten bracket, $[,]^{\mu}$. Let $X, Y \in \wedge^{\bullet}V$. Then

$$[X, Y]^{\mu} = \{\{X, \mu\}, Y\}.$$

This result shows that the Schouten bracket is a derived bracket. (yks, *Ann. Fourier* 46, 1996 and LMP 69, 2004) (Ted Voronov, *Contemp. Math.* 315, 2002)

Lie algebroids

 $A \rightarrow M$ vector bundle,

- Lie algebra bracket, [,], on ΓA ,
- anchor, $\rho: A \rightarrow TM$, vector bundle morphism,
- Leibniz rule, $[X, fY] = f[X, Y] + (\rho(X) \cdot f)Y$, X, $Y \in \Gamma A$, $f \in C^{\infty}(M)$.

Then ρ induces a Lie algebra homomorphism from ΓA to $\Gamma(TM)$.

Examples

- Lie algebra,
- TM for M any manifold,
- ► *T*^{*}*M* when *M* is a Poisson manifold,
- action Lie algebroids,

etc.

The big bracket for vector bundles Roytenberg, 2002

When $V \rightarrow M$ is a vector bundle,

let V[1] be the graded manifold obtained from V by assigning

- degree 0 to the coordinates on the base,
- degree 1 to the coordinates on the fibers.

Let \mathcal{F} be the bigraded commutative algebra of smooth functions on $\mathcal{T}^*V[1]$.

Remark: When M is a point, V is just a vector space. Then $\mathcal{F} = \wedge^{\bullet}(V^* \oplus V)$. See above.

Local coordinates on $T^*V[1]$, and their bidegrees:

$$x^i \quad \xi^a \quad p_i \quad \theta_a \\ (0,0) \quad (0,1) \quad (1,1) \quad (1,0)$$

The bigraded Poisson algebra ${\cal F}$

As the cotangent bundle of a graded manifold, $T^*V[1]$ is canonically equipped with an even Poisson structure.

Denote the even Poisson bracket on \mathcal{F} by $\{ \ , \ \}$.

We call it the big bracket because it generalizes the big bracket on $\wedge^{\bullet}(V^* \oplus V)$.

- It is of bidegree (-1, -1).
- It is skew-symmetric, $\{u, v\} = -(-1)^{|u| |v|} \{v, u\}$, $u, v \in \mathcal{F}$,
- It satisfies the Jacobi identity,

$$\{u, \{v, w\}\} = \{\{u, v\}, w\} + (-1)^{|u||v|} \{v, \{u, w\}\},\$$

 $u, v, w \in \mathcal{F}.$ In local coordinates,

$$\{x^i, p_j\} = \delta^i_j \quad \text{and} \quad \{\xi^a, \theta_b\} = \delta^a_b.$$

Consequence: $\{f, p_j\} = \frac{\partial f}{\partial x^j}$, for $f \in C^{\infty}(M)$.

Lie algebroids

A Lie algebroid structure on $A \rightarrow M$ is an element μ of \mathcal{F} of bidegree (1,2) such that

 $\{\mu,\mu\}=\mathsf{0}$.

Schouten bracket of multivectors (sections of $\wedge^{\bullet}A$) X and Y:

$$[X,Y]_{\mu} = \{\{X,\mu\},Y\}, X,Y \in \Gamma \wedge^{\bullet} A.$$

In particular,

• the Lie bracket of X, $Y \in \Gamma A$,

$$[X, Y] = [X, Y]_{\mu} = \{\{X, \mu\}, Y\}$$

• the anchor of A, $\rho: A \rightarrow TM$,

$$\rho(X)f = [X, f]_{\mu} = \{\{X, \mu\}, f\}$$

for $X \in \Gamma A$, $f \in C^{\infty}(M)$.

The operator $d_{\mu} = \{\mu, .\}$ is a differential on $\Gamma(\wedge^{\bullet}A^*)$ which defines the Lie algebroid cohomology of A.

Lie algebroid cohomology generalizes

- Chevalley–Eilenberg cohomology (when M is a point, A is a Lie algebra), and
- de Rham cohomology (when A = TM).

The Lichnerowicz–Poisson cohomology of a Poisson manifold is another example.

Lie bialgebroids

A Lie bialgebroid is defined by μ of bidegree (1,2) and γ of bidegree (2,1) such that $\{\mu + \gamma, \mu + \gamma\} = 0$.

 (A, μ, γ) is a Lie bialgebroid iff $(\Gamma(\wedge^{\bullet} A), [,]_{\mu}, d_{\gamma})$ is a differential Gerstenhaber algebra.

A Lie-quasi bialgebroid is defined by μ of bidegree (1, 2), γ of bidegree (2, 1), and $\phi \in \Gamma(\wedge^3 A)$ of bidegree (3, 0) such that $\{\phi + \mu + \gamma, \phi + \mu + \gamma\} = 0$.

A quasi-Lie bialgebroid is defined by μ of bidegree (1, 2), γ of bidegree (2, 1), and $\psi \in \Gamma(\wedge^3 A^*)$ of bidegree (0, 3) such that $\{\mu + \gamma + \psi, \mu + \gamma + \psi\} = 0.$

A proto-Lie bialgebroid is defined by μ of bidegree (1, 2), γ of bidegree (2, 1), $\phi \in \Gamma(\wedge^3 A)$ of bidegree (3, 0), and $\psi \in \Gamma(\wedge^3 A^*)$ of bidegree (0, 3) such that $\{\phi + \mu + \gamma + \psi, \phi + \mu + \gamma + \psi\} = 0$.

Examples: twist of a Lie bialgebra, twisted Poisson structures (with a 3-form background).

Cf. yks and Vladimir Rubtsov,

Compatible structures on Lie algebroids and Monge–Ampère operators,

Acta Appl. Math. 2010.

PN, P Ω , ΩN , Hitchin pairs, complementary 2-forms

Magri–Morosi 1984, yks–Magri 1990, Vaisman 1996, Crainic 2004.

Nijenhuis structures

Let (A, μ) be a Lie algebroid (μ of bidegree (1, 2) denotes the Lie algebroid structure of the vector bundle A). Let $N \in \Gamma(A^* \otimes A)$ be a (1, 1)-tensor on A, an element of bidegree (1, 1). Then the deformed structure,

$$\mu_{N} = \{N, \mu\} ,$$

defines an anchor, $\rho \circ N$, and a skew-symmetric bracket on A. Denote it by $[,]_N^{\mu}$, Explicitly,

$$[X, Y]_N^{\mu} = \{\{X, \{N, \mu\}\}, Y\} ,$$

for X and $Y \in \Gamma A$. Proposition. For X, $Y \in \Gamma A$,

$$[X, Y]^{\mu}_{N} = [NX, Y]_{\mu} + [X, NY]_{\mu} - N[X, Y]_{\mu}$$
.

The Nijenhuis torsion of N is defined by

 $(\mathcal{T}_{\mu}N)(X,Y) = [NX,NY]_{\mu} - N([NX,Y]_{\mu} + [X,NY]_{\mu}) + N^{2}[X,Y]_{\mu},$

for all X and $Y \in \Gamma A$.

It is clear that $(\mathcal{T}_{\mu}N)(X,Y) = [NX,NY]_{\mu} - N([X,Y]_{N}^{\mu}).$

Proposition. In terms of the big bracket,

$$\mathcal{T}_{\mu} \mathcal{N} = rac{1}{2} \left(\{ \mathcal{N}, \{ \mathcal{N}, \mu \} \} - \{ \mathcal{N}^2, \mu \} \right) \; .$$

(yks 1996, Grabowski 2006, Antunes 2008)

Corollary 1.

• A necessary and sufficient condition for the deformed structure $\mu_N = \{N, \mu\}$ to be a Lie algebroid structure on A is $\{\mu, \mathcal{T}_{\mu}N\} = 0$. • A sufficient condition for the deformed structure $\mu_N = \{N, \mu\}$ to be a Lie algebroid structure on A is $\overline{\mathcal{T}_{\mu}N} = 0$.

Proof. In fact, $\frac{1}{2}$ { $\{N, \mu\}, \{N, \mu\}\} = \{\mu, \mathcal{T}_{\mu}N\}.$

Corollary 2. An almost complex structure N on A is a complex structure if and only if

$$\{\{\mathsf{N},\mu\},\mathsf{N}\}=\mu \ .$$

Complementary 2-forms for Poisson structures

Let (A, μ) be a Lie algebroid. If $\pi \in \Gamma(\wedge^2 A)$, then

$$\gamma_{\pi} = \{\pi, \mu\}$$

is of bidegree (2, 1). γ_{π} is a Lie algebroid structure on A^* if and only if $\left\{\mu, [\pi, \pi]_{\mu}\right\} = 0.$

We now dualize this construction. Let (A^*, γ) be a Lie algebroid. If $\omega \in \Gamma(\wedge^2 A^*)$, then

$$\widetilde{\mu}=\{\gamma,\omega\}$$

is of bidegree (1,2). $\tilde{\mu}$ is a Lie algebroid structure on A if and only if $\boxed{\{[\omega, \omega]_{\gamma}, \gamma\} = 0.}$ Combine the two preceding constructions:

$$(\boldsymbol{A},\mu)\overset{(\pi)}{\leadsto}(\boldsymbol{A}^*,\gamma_{\pi})\overset{(\omega)}{\leadsto}(\boldsymbol{A},\widetilde{\mu})\;,$$

with
$$\gamma_{\pi} = \{\pi, \mu\}$$
, and $\widetilde{\mu} = \{\gamma_{\pi}, \omega\} = \{\{\pi, \mu\}, \omega\}.$

Definition (Vaisman). A 2-form satisfying $[\omega, \omega]_{\gamma} = 0$ where $\gamma = \gamma_{\pi} = \{\pi, \mu\}$ is called a complementary 2-form for π .

Proposition. A sufficient condition for $\tilde{\mu} = \{\gamma_{\pi}, \omega\} = \{\{\pi, \mu\}, \omega\}$ to be a Lie algebroid structure on A is

$$\begin{cases} [\pi, \pi]_{\mu} = 0 & (\pi \text{ is Poisson}) \\ [\omega, \omega]_{\pi} = 0 & (\omega \text{ is a complementary 2-form for } \pi) \end{cases}.$$

Let π be a bivector, and ω a 2-form on (A, μ) . Let $N: TM \xrightarrow{\omega^{\flat}} T^*M \xrightarrow{\pi^{\sharp}} TM.$

Proposition.

• If π is a Poisson bivector and ω is a complementary 2-form for π , then $[X, Y]_{\widetilde{\mu}} = [X, Y]_N^{\mu} - \pi^{\sharp}(i_{X \wedge Y} d_{\mu} \omega)$, for all $X, Y \in \Gamma A$, defines a Lie bracket on the space of sections of A. • If, in addition, ω is closed, the bracket $[,]_N^{\mu}$ is a Lie bracket.

Definitions

$$PN (N \circ \pi^{\sharp} = \pi^{\sharp} \circ N^{*})$$

$$\{\{\pi, \mu\}, \pi\} = 0, \{\{\pi, \mu\}, N\} + \{\{N, \mu\}, \pi\} = 0, \{N, \{N, \mu\}\} - \{N^{2}, \mu\} = 0$$

$$P\Omega$$

$$\{\{\pi,\mu\},\pi\}=0, \quad \{\mu,\omega\}=0, \quad \{\{\{\pi,\omega\},\mu\},\omega\}=0$$

 $\Omega N \; (\omega^{\flat} \circ N = N^* \circ \omega^{\flat})$

$$\{\mu,\omega\} = 0, \quad \{N,\{N,\mu\}\} - \{N^2,\mu\} = 0, \quad \{\mu,\{N,\omega\}\} = 0$$

Hitchin pair $(\omega^{\flat} \circ N = N^* \circ \omega^{\flat})$

$$\{\mu, \omega\} = 0, \quad \{\mu, \{N, \omega\}\} = 0$$

Complementary 2-form

$$\{\{\pi,\mu\},\pi\}=0, \quad \{\{\omega,\{\pi,\mu\}\},\omega\}=0$$

$$P\Omega \Longrightarrow PN \quad (N = \pi \circ \omega)$$

 $\begin{array}{c|cccc} PN & and & \pi & non-degenerate \Longrightarrow P\Omega & (\omega = \pi^{-1} \circ N) \\ \hline \Omega N & and & \omega & non-degenerate \Longrightarrow PN & (\pi = N \circ \omega^{-1}) \\ \hline PN & and & \pi & non-degenerate \Longrightarrow \Omega N & (\omega = \pi^{-1} \circ N) \\ \hline P\Omega \Longrightarrow \Omega N & (N = \pi \circ \omega) \end{array}$

 ΩN and ω non-degenerate $\Longrightarrow P\Omega$ $(\pi = N \circ \omega^{-1})$

Hitchin pair and N Nijenhuis $\iff \Omega N$ and ω non-degenerate

 ω closed complementary 2–form for $\pi \Longleftrightarrow {\cal P}\Omega$

The implications can be summarized in a diagram.

The dotted arrows represent implications under a non-degeneracy assumption.

Poisson guasi-Nijenhuis structures in the sense of Mathieu Stiénon and Ping Xu (Comm. Math. Phys. 270 (2007), no. 3, 709–725) can be treated by the same method. More generally, Poisson quasi-Nijenhuis structures with background in the sense of Paulo Antunes (Lett. Math. Phys. 86 (2008), no. 1, 33–45) are defined by a quadruple $(\pi, N, \psi, H), \psi, H \in \Gamma(\wedge^3 A^*)$, satisfying $\{\{\pi, \mu\}, \pi\} = 0,$ $\{\{\pi, \mu\}, N\} + \{\{N, \mu\}, \pi\} = \{\{H, \pi\}, \pi\},\$ $\{N, \{N, \mu\}\} - \{N^2, \mu\} = -2\{\pi, \psi\} + \{\{\pi, H\}, N\} + \{\{N, H\}, \pi\},$ $\{\{N, \{N, H\}\} - \{N^2, H\}, \mu\} = 2\{\{N, \mu\}, \psi\}.$

PN implies (A_{π}^*, A_N) is a Lie bialgebroid.

PqN implies (A_{π}^*, A_N, ψ) is a Lie quasi-bialgebroid.

PqN with background implies $(A_{\pi}^*, A_N^H, \psi + i_N H)$ is a Lie quasi-bialgebroid, where $d_N^H(\alpha) = d_N \alpha - i_{\pi^{\sharp} \alpha} H$, for $\alpha \in \Gamma(A^*)$.

Let $S = \{\pi + N, \mu + H\} + \psi$. If (π, N, ψ, H) is a PqN structure with background on A, then $\{S, S\} = 0$, i.e., S is a Courant algebroid structure on $A + A^*$.

Example of PqN with background (Antunes).

Let π be a Poisson bivector, and ω a 2-form. Set $N = \pi^{\sharp} \circ \omega^{\flat}$ and $\omega_N = \frac{1}{2} \{N, \omega\}$. Then (π, N, ψ, H) with $\psi = d\omega_N$ and $H = -d\omega$ is a PqN structure with background.

A. Kushner, V. Lychagin, V. Rubtsov

Contact Geometry and Non-Linear Differential Equations, CUP, 2007.

Let M be a smooth manifold of dimension n and let T^*M be its cotangent bundle.

Denote the canonical symplectic 2-form on T^*M by Ω .

A Monge–Ampère structure on M is defined by an *n*-form ω on T^*M such that $\omega \wedge \Omega = 0$.

Denote the canonical bivector on T^*M (the inverse of the canonical symplectic 2-form Ω) by π_{Ω} . An effective form on T^*M of degree $k, 2 \le k \le n$, is a k-form ω such that $i_{\pi_{\Omega}}\omega = 0$. An *n*-form ω defines a Monge–Ampère structure on M iff it is effective.

Define the Monge–Ampère equation associated with ω by

$$\Delta_{\omega}(f) = 0 , \qquad (1)$$

where

$$\Delta_{\omega}(f) = (df)^*(\omega) , \qquad (2)$$

for $f \in C^{\infty}(M)$.

Question: What is the relation between classical Monge–Ampère equation $rt - s^2 = F$ and Monge–Ampère structures on manifolds? $f, F: \mathbb{R}^2 \to \mathbb{R}$ and $r = \frac{\partial^2 f}{\partial x^2}, t = \frac{\partial^2 f}{\partial x^2}, s = \frac{\partial^2 f}{\partial x \partial y},$ $rt - s^2 = \frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - (\frac{\partial^2 f}{\partial x \partial y})^2.$ Answer: Let $M = \mathbb{R}^2$ with coordinates (x, y). Let T^*M have coordinates (x, y, p, q). Then $df: (x, y) \mapsto (x, y, p, q)$, where $p = \frac{\partial f}{\partial x}$, $q = \frac{\partial f}{\partial y}$. The 2-form $\omega = dp \wedge dq$ is effective. In fact $\Omega = dx \wedge dp + dy \wedge dq$, and therefore $\omega \wedge \Omega = 0$. Compute $(df)^* \omega = \left(\frac{\partial^2 f}{\partial x^2} dx + \frac{\partial}{\partial y} \frac{\partial f}{\partial x} dy\right) \wedge \left(\frac{\partial}{\partial x} \frac{\partial f}{\partial y} dx + \frac{\partial^2 f}{\partial y^2} dy\right)$ $= \left(\frac{\partial^2 f}{\partial x^2} \frac{\partial^2 f}{\partial y^2} - \left(\frac{\partial^2 f}{\partial x \partial y}\right)^2\right) dx \wedge dy.$ Conclusion: the Monge–Ampère equations on manifolds are a vast class of generalizations of the classical Monge-Ampère equation $rt - s^2 = 0$

Monge-Ampère structures in dimension 2

• Define the Pfaffian $Pf(\omega)$ of the 2-form ω by

 $Pf(\omega)\Omega \wedge \Omega = \omega \wedge \omega$,

 \bullet Define the (1,1)-tensor N_{ω} on $\mathit{T}^{*}\mathit{M}$ by

$$\omega(X,Y) = \Omega(N_{\omega}X,Y) ,$$

 $X, Y \in \mathcal{X}(T^*M).$ • Then

$$N_{\omega}^2 + Pf(\omega)$$
Id = 0.

A Monge–Ampère structure $T^*(M)$ defined by a 2-form ω is called non-degenerate if $Pf(\omega)$ is nowhere-vanishing.

If the Monge–Ampère structure defined by ω on $T^*(M)$ is non-degenerate, consider

 \bullet the normalized 2-form $\widetilde{\omega}$ defined by

$$\widetilde{\omega} = \frac{\omega}{\sqrt{|Pf(\omega)|}},$$

 \bullet the normalized (1,1)-tensor $\widetilde{\textit{N}}_{\omega}$ defined by

$$\widetilde{N}_{\omega} = rac{N_{\omega}}{\sqrt{|Pf(\omega)|}}$$

Then \widetilde{N}_{ω} has square $-\mathrm{Id}$ (elliptic case) or Id (hyperbolic case), an almost complex or an almost product structure on \mathcal{T}^*M .

Proposition. The following properties are equivalent:

- \tilde{N}_{ω} is integrable (the Nijenhuis torsion of \tilde{N}_{ω} vanishes),
- $\widetilde{\omega}$ is closed,
- \bullet the differential operator Δ_ω is equivalent to an operator with constant coefficients.

(See Kushner-Lychagin-Rubtsov.)

If α is a non-degenerate 2-form, let π_{α} be its inverse bivector.

Assume ω defines a non-degenerate Monge–Ampère structure on M such that the 2-form $\tilde{\omega}$ is closed. Then

- The pair $(\pi_{\Omega}, \widetilde{N}_{\omega})$ is a *PN*-structure on T^*M .
- The pair $(\pi_{\widetilde{\omega}}, \widetilde{N}_{\omega})$ is a *PN*-structure on T^*M .
- The pair $(\pi_{\Omega}, \widetilde{\omega})$ is a $P\Omega$ -structure on T^*M .
- The pair $(\widetilde{\omega}, \widetilde{N}_{\omega})$ is an ΩN -structure on T^*M .

The modular class of a Lie algebroid is a class in the degree 1 Lie algebroid cohomology that generalizes the modular class of a Poisson manifold (the class of the divergence of the Poisson bivector).

(See Evens, Lu, Weinstein, Quart. J. Math 50, 1999.)

The modular class of a Lie algebroid structure obtained by deformation by a Nijenhuis tensor N is the class of the 1-form $d_{\mu}(TrN)$.

Proposition. Assume ω defines a non-degenerate Monge–Ampère structure on M such that the 2-form $\tilde{\omega}$ is closed. Then, the Lie algebroid structure of $T(T^*M)$ obtained by deformation by \tilde{N}_{ω} is unimodular.

Proof. Since ω is effective, $0 = i_{\pi_{\Omega}}\omega = 4 Tr N_{\omega}$.

Assume ω defines a non-degenerate Monge–Ampère structure on M such that $d\omega = 0$. Then

- the pair (Ω, N_{ω}) is a Hitchin pair on T^*M ,
- If, in addition, ω is equivalent to a 2-form with constant coefficients, the pair (Ω, Nω) is an ΩN-structure on T^{*}M.

Let (A, μ, γ) be a Lie bialgebroid. Consider the Dorfman bracket on $A \oplus A^*$ defined by

$$[u,v]_D = \{\{u,\mu+\gamma\},v\} ,$$

for u and $v \in \Gamma(A \oplus A^*)$.

The skew-symmetrized Dorfman bracket is called the Courant bracket.

In particular, if A is a tangent bundle, A = TQ, and if $\gamma = 0$, the Dorfman bracket on $TQ \oplus T^*Q$ is explicitly,

$$[X + \alpha, Y + \beta]_D = [X, Y] + \mathcal{L}_X \beta - i_Y(d\alpha),$$

for all vector fields, X and Y, and all 1-forms, α and β , on Q. The original Courant bracket (1990) is recovered as the skew-symmetrized Dorfman bracket. A generalized almost complex structure on Q is a vector bundle endomorphism J of $TQ \oplus T^*Q$ of square -Id.

A generalized complex structure on Q is a generalized almost complex structure with vanishing Nijenhuis torsion (defined in terms of the Dorfman bracket).

Replace $-\mathrm{Id}$ by Id to define generalized almost product structures and generalized product structures.

Generalized complex structures and generalized product structures on T^*M appear in the case of Monge–Ampère structures "of divergence type" (such that $\omega + \varphi \Omega$ is closed for a funcion φ) on 2-dimensional manifolds, and in the case of Monge–Ampère structures on 3-dimensional manifolds.