p-dimension of henselian fields
 An application of Ofer Gabber's algebraization technique

Fabrice Orgogozo
CNRS, École polytechnique (France)

El Escorial, 2006-9-4

Definition (p-cohomological dimension)

1. Let X be a scheme and p a prime number. We say that $\operatorname{cd}_{p}(X) \leq N$ iff for all p-torsion étale sheaf \mathscr{F} and all integer $i>N$, we have:

$$
\mathrm{H}^{i}\left(X_{e ́ t}, \mathscr{F}\right)=0 .
$$

R Alexandre Grothendieck et al., SGA 4, exposé X by Michael Artin
2. Let G be a profinite group. We say that $\operatorname{cd}_{p}(G) \leq N$ iff for all discrete p-torsion G-module M (with continuous action) we have, for all $i>N$, we have:

$$
\mathrm{H}^{i}(G, M)=0 .
$$

R
Jean-Pierre Serre, Cohomologie galoisienne.

- If k is a field, $(\operatorname{Spec}(k))_{e ́ t}=\mathrm{B} G_{k}\left(\right.$ where $\left.G_{k}=\operatorname{Gal}\left(k^{\operatorname{sep}} / k\right)\right)$, so

$$
\operatorname{cd}_{p}(\operatorname{Spec} k)=\operatorname{cd}_{p}\left(G_{k}\right)
$$

- Si X is an affine scheme of characteristic $p>0$,

$$
\operatorname{cd}_{p}(X) \leq 1
$$

It comes from the Artin-Schreier exact sequence

$$
0 \rightarrow \mathbf{Z} / p \rightarrow \mathbf{G}_{\mathbf{a}} \xrightarrow{\wp} \mathbf{G}_{\mathbf{a}} \rightarrow 0 .
$$

Examples

Reminder: a C_{1}-field has p-cohomological dimension (for all prime number p) ≤ 1. Theorem

1. A finite field is $C_{1}, \widehat{\mathbf{Z}} \xrightarrow{\mathrm{Frob}_{p}} G_{\mathbf{F}_{p}}$ so $\operatorname{cd}_{\ell} \mathbf{F}_{p}$ is exactly 1 , for all prime number ℓ.
2. If k is algebraically closed, $k(t)$ is C_{1} (Tsen).
3. Let A be an henselian, excellent dvr with algebraically closed residue field. Then $\operatorname{Frac}(A)$ is C_{1} (Lang).

Excellent: the extension $\operatorname{Frac}(\widehat{A}) / \operatorname{Frac}(A)$ is separable.

Corollary (of Tsen's result)

Let K / k a field extension of transcendence degree N and p a prime number. Then,

$$
\operatorname{cd}_{p}(K) \leq N+\operatorname{cd}_{p}(k)
$$

This is an equality if K / k is of finite type, $\operatorname{cd}_{p}(k)<+\infty$ and $p \cdot 1 \in k^{\times}$.
Corollary (of Lang's result)
Let K be a complete discrete valuation field with perfect residue field k and p a prime number. Then, we have:

$$
\operatorname{cd}_{p}(K) \leq 1+\operatorname{cd}_{p}(k)
$$

This is an equality if $p \cdot 1 \in K^{\times}$.

Application: $\operatorname{cd}_{p}\left(\mathbf{Q}_{p}\right)=2$.

If the residue field k is not perfect, Ω_{k}^{1} should be taken into account.

$$
\mathrm{H}^{\star}(K, \mathbf{Z} / p(\star)) \stackrel{\text { Bloch-Katō }}{\longleftrightarrow} K_{\star}^{M}(K) / p,
$$

via the cohomological symbol (\leftarrow).

$$
K_{\star}^{M}(K) \longleftrightarrow \Omega_{K}^{\star}
$$

via the differential symbol (\rightarrow) :

$$
\left\{x_{1}, \ldots, x_{r}\right\} \mapsto \operatorname{dlog}\left(x_{1}\right) \wedge \cdots \wedge \operatorname{dlog}\left(x_{r}\right) .
$$

Theorem (Kazuya Katō (simplified version))
Let A be a henselian excellent discrete valuation ring of mixed characteristic $(0, p)$. Let K, k the corresponding fields. Then:

$$
\operatorname{cd}_{p}(K)=1+\operatorname{dim}_{p}(k)
$$

where $\operatorname{dim}_{p}(k)$ is equal to the $p-r a n k$ of $k, \operatorname{dim}_{k} \Omega_{k}^{1}\left(=\left[k: k^{p}\right]\right)$, or $\operatorname{dim}_{k} \Omega_{k}^{1}+1$.

Definition (of the p-dimension dim_{p}; first part)
Let κ be a field of characteristic $p>0$ and $n \in \mathbf{N}$. We define $H_{p}^{n+1}(\kappa)$ as the cokernel of the map (also denoted by " $1-C^{-1 "}$):

$$
\Omega_{\kappa}^{n} \xrightarrow{\wp} \Omega_{\kappa}^{n} / d \Omega_{\kappa}^{n-1}: a \frac{d b_{1}}{b_{1}} \wedge \cdots \wedge \frac{d b_{n}}{b_{n}} \mapsto\left(a-a^{p}\right) \frac{d b_{1}}{b_{1}} \wedge \cdots \wedge \frac{d b_{n}}{b_{n}},
$$

where

$$
\Omega_{\kappa}^{i}:=\bigwedge_{\bigwedge}^{i} \Omega_{\kappa / Z}^{1}
$$

and

$$
a \in \kappa, b_{i} \in \kappa^{\times}
$$

Characteristic p analogue of $\mathrm{H}^{n+1}\left(\operatorname{Spec}(\kappa)_{e ́ t}, \mu_{p}^{\otimes n}\right)$.
$\mathrm{H}_{p}^{1}(\kappa)=\kappa / \wp(\kappa)$. Non zero for \mathbf{F}_{p}.
$\mathrm{H}_{p}^{2}(\kappa)=\operatorname{Br}(\kappa)[p]$.

Definition (of the p-dimension dim_{p}; final part)

Let κ be a field, p a prime number.

1. Assume char. $(\kappa) \neq p$. Then $\operatorname{dim}_{p}(\kappa):=\operatorname{cd}_{p}(\kappa)$.
2. Assume char. $(\kappa)=p$.

$$
\operatorname{dim}_{p}(\kappa) \leq N
$$

iff

$$
\left[\kappa: \kappa^{p}\right] \leq p^{N} \& \mathrm{H}_{p}^{N+1}\left(\kappa^{\prime}\right)=0 \forall \kappa^{\prime} / \kappa \text { finite }
$$

$\operatorname{dim}_{p}\left(F_{p}\right)=1$.
Remarks
The p-rank is invariant under finite field extension.
Need to consider $\kappa^{\prime} / \kappa \longleftrightarrow \mathrm{H}_{p}^{r+1}$ is a "constant" coefficient cohomology theory. (Cf. $\mathrm{R} \Gamma\left(G_{\kappa}, M\right)$ (for various p-torsion G_{κ}-modules $\left.M\right) \longleftrightarrow \mathrm{R} \Gamma\left(G_{\kappa^{\prime}}, \mathbf{Z} / p\right)$ (for finite étale $\left.\kappa^{\prime} / \kappa\right)$.)

Theorem (K. Katō (final version); analogue of Lang's theorem)

Let A be a henselian excellent discrete valuation ring and p a prime number. Then,

$$
\operatorname{dim}_{p}(K)=1+\operatorname{dim}_{p}(k) .
$$

Corollary (Analogue of Tsen's theorem)

Let K / k a field extension of transcendence degree N and p a prime number. Then,

$$
\operatorname{dim}_{p}(K) \leq N+\operatorname{dim}_{p}(k) .
$$

Proof: use the "classical" formula for cd_{p} and the possibility to make K / k a "residue field extension" of a characteristic zero dvr extension.

Kazuya Katō.
Galois cohomology of complete discrete valuation rings.
LNM 967, 1980.
K. Katō's conjecture

Let A be an integral henselian, excellent (e.g. complete) local ring. Let K be its fraction field and k its residue field of characteristic $p>0$. Then:

$$
\operatorname{dim}_{p}(K)=\operatorname{dim}(A)+\operatorname{dim}_{p}(k) .
$$

(Here, $\operatorname{dim}(A)$ is the Krull dimension.)
Theorem (K. Katō, 1986)
Let A be a normal excellent henselian local ring of dimension 2 with residue field k and fraction field K. Suppose that k is algebraically closed. Then, for all prime number $p \neq$ char. (K), we have:

$$
\operatorname{cd}_{p}(K)=2 .
$$

Remarks

- The proof uses the theorem of Merkur'ev-Suslin and resolution of singularities for surfaces.
圊 Shūji Saitō.
Arithmetic on two dimensional local rings.
Inventiones mathematicæ 85, 1986.
- This has been extended to an arbitrary residue field by Takako Kuzumaki.

In the following, we will K. Katō's conjecture, namely:
Theorem
Let A be an integral henselian, excellent local ring. Let K be its fraction field and k its residue field of characteristic $p>0$. Then:

$$
\operatorname{dim}_{p}(K)=\operatorname{dim}(A)+\operatorname{dim}_{p}(k)
$$

Remark

The equal-characteristic formula is proved first and used to show the mixed-characteristic formula.

Lower bound: $\operatorname{dim}_{p}(K) \geq \operatorname{dim}(A)+\operatorname{dim}_{p}(k)$
Reduction to the normal case

We may assume A normal:

- A^{ν} / A is finite (A is excellent).
- dim_{p} is invariant by finite extension (when it is finite).

The characteristic p case can be shown by using the classical result and the theorem of K. Katō or, more simply, by using the existence of trace maps on H_{p}^{r+1}.

Lower bound: $\operatorname{dim}_{p}(K) \geq \operatorname{dim}(A)+\operatorname{dim}_{p}(k)$ Induction using K. Kato's theorem (i.e. dim 1 case)

Let \mathfrak{p} be a height one prime ideal $L:=\operatorname{Frac} A_{\mathfrak{p}}, B=\widehat{A_{\mathfrak{p}}}$ (complete dvr) and $\widehat{L}:=\operatorname{Frac} B$.

Mixed characteristic: $G_{\widehat{L}} \hookrightarrow G_{L}$
$\Rightarrow \operatorname{cd}_{p}(K=L) \geq \operatorname{cd}_{p}(\stackrel{\llcorner }{L})$

$$
\geq 1+\operatorname{dim}_{p}(\operatorname{Frac} A / \mathfrak{p}) \quad[K . \operatorname{Kato}]
$$

$$
\geq 1+\left(\operatorname{dim}(A)-1+\operatorname{dim}_{p}(k)\right) \quad \text { [induction]. }
$$

Equal characteristic:
$\left[L: L^{p}\right] \geq\left[\widehat{L}: \widehat{L}^{p}\right]$ (if $\left[L: L^{p}\right]$ is finite) and $\mathrm{H}_{p}^{r+1}(L) \rightarrow \mathrm{H}_{p}^{r+1}(\widehat{L})$.

Upper bound: $\operatorname{dim}_{p}(K) \leq \operatorname{dim}(A)+\operatorname{dim}_{p}(k)$ Ofer Gabber's algebraization technique

- Reduction to the complete case (Artin-Popescu; cf. excellency hyp.) \Rightarrow finite over "good" ring (i.e. ring of power series).
- (Proof of) Nagata's Jacobian criterion (equal characteristic) \Rightarrow generically étale (and finite) over good ring.
Mixed characteristic: use Helmut Epp's result.
- Ramification locus finite over lower dimensional base (Weierstraß) and Renée Elkik's algebraization.
\Rightarrow relative dimension 1

Upper bound: $\operatorname{dim}_{p}(K) \leq \operatorname{dim}(A)+\operatorname{dim}_{p}(k)$ Ofer Gabber's algebraization technique

Ofer Gabber.
A finiteness theorem for non abelian H^{1} of excellent schemes.
Conférence en I'honneur de Luc Illusie, Orsay, 2005-6-27.
围
Ofer Gabber.
Finiteness theorems for étale cohomology of excellent schemes. Conference in honor of Pierre Deligne, Princeton, 2005-10-17.

- Michael Artin.

Cohomologie des préschémas excellents d'égales caractéristiques.
SGA 4, exposé XIX.

Upper bound: $\operatorname{dim}_{p}(K) \leq \operatorname{dim}(A)+\operatorname{dim}_{p}(k)$

Reduction to the complete case

Lemma

Let A be a local henselian quasi-excellent integral ring, \widehat{A} its completion and K, \widehat{K} the respective fraction fields. Then the K-algebra K is a filtered colimit of K-algebras of finite type with retraction.

Definition

A ring A is quasi-excellent if it is noetherian and

- for all $x \in X=\operatorname{Spec}(A)$, the morphism $\operatorname{Spec}\left(\widehat{\mathscr{O}_{X, x}}\right) \rightarrow \operatorname{Spec}\left(\mathscr{O}_{X, x}\right)$ is regular,
- for all A^{\prime} / A finite, $\operatorname{Reg}\left(\operatorname{Spec}\left(A^{\prime}\right)\right)$ is open.

Such a ring is in particular "universally Japanese". For henselian local rings, "excellent"=quasi-excellent.

Proof.

Immediate corollary of Sorin Popescu's version of M. Artin's approximation theorem.

Theorem (S. Popescu; Artin's approximation property)

Any finite system of polynomial equations over A has a A-point iff it has a \widehat{A}-point.

Corollary

Let A as above and F finite presentation functor $(A-\mathrm{Alg}) \rightarrow$ Set. Then ${ }_{18}\left(K_{36}\right) \rightarrow \mathrm{F}(\widehat{K})$ is an injection.

Equicharacteristic upper bound: $\operatorname{dim}_{p}(K) \leq \operatorname{dim}(A)+\operatorname{dim}_{p}(k)$

Around Nagata's Jacobian criterion

Theorem (O. Gabber, conf. L. Illusie, lemma 8.1)
Let A be an integral local complete noetherian ring of dimension d with residue field k. There exists a subring A_{0} of A, isomorphic to $k\left[\left[t_{1}, \ldots, t_{d}\right]\right]$ such that $\operatorname{Spec}(A) \rightarrow \operatorname{Spec}\left(A_{0}\right)$ is finite, generically étale.

Remark

This theorem is obvious in mixed characteristic (hence "generically of characteristic zero"). However, in the algebraization process, it is also used (see below).

Equicharacteristic upper bound: $\operatorname{dim}_{p}(K) \leq \operatorname{dim}(A)+\operatorname{dim}_{p}(k)$
$X=\operatorname{Spec}(A) \rightarrow X_{0}=\operatorname{Spec}\left(A_{0}\right)$ is finite, generically étale. $X_{0} \simeq \mathbf{A}_{k(0)}^{d^{\wedge}}$.

Let $R \subset X_{0}$ ramification locus. WMA: point $\left(t_{1}, \ldots, t_{d-1}\right) \notin R \Rightarrow$ so (Weierstraß) $R \subset V(r), r$ monic polynomial in $k\left[\left[x_{1}, \ldots, x_{d-1}\right]\right]\left[x_{d}\right]$.

Reminder on Weierstraß theorem

Theorem (Weierstraß, circa 1880)

1. Let κ be a local complete ring (e.g. a field) with maximal ideal \mathfrak{m}, and $f \in \kappa\left[\left[t_{1}, \ldots, t_{n}\right]\right]$ with $f \equiv\left(u \in \kappa\left[\left[t_{n}\right]\right]^{\times}\right) \cdot t_{n}^{N} \bmod .\left(\mathfrak{m}, t_{1}, \ldots, t_{n-1}\right)$. Then $f=$ unit $\cdot P$, where $P \in \kappa\left[\left[t_{1}, \ldots, t_{n-1}\right]\right]\left[t_{n}\right]$.
2. For each element $f \in \kappa\left[\left[t_{1}, \ldots, t_{n}\right]\right]$ non zero $\bmod \mathfrak{m}$, there exists a κ-linear automorphism α, defined by $\alpha\left(t_{i}\right)=t_{i}+t_{n}^{c_{i}}$ for $i=1, \ldots, n-1$ (and suitable c_{i} 's), and $\alpha\left(t_{n}\right)=t_{n}$ such that $\alpha(f)$ is as in (1).

Equicharacteristic upper bound: $\operatorname{dim}_{p}(K) \leq \operatorname{dim}(A)+\operatorname{dim}_{p}(k)$
$X=\operatorname{Spec}(A) \rightarrow X_{0}=\operatorname{Spec}\left(A_{0}\right)$ is finite, generically étale. $X_{0} \simeq \mathbf{A}_{k(o)}^{d \wedge}$.

Let $R \subset X_{0}$ ramification locus. WMA: point $\left(x_{1}, \ldots, x_{d-1}\right) \notin R \Rightarrow \Rightarrow$ so (Weierstraß) $R \subset V(r), r$ monic polynomial in $k\left[\left[x_{1}, \ldots, x_{d-1}\right]\right]\left[x_{d}\right]$.

In particular:

- $V(r)$ comes from $\widetilde{X_{0}}:=\operatorname{Spec}\left(k\left[\left[x_{1}, \ldots, x_{d-1}\right]\right]\left\{x_{d}\right\}\right)$.
- The r-adic completion of $\widetilde{X_{0}}$ is X_{0}.
- The ("algebraized") pair $\left(\widetilde{X_{0}}, V(r)\right)$ is henselian, \Rightarrow we can use R. Elkik's theorem to descend $X \rightarrow X_{0}$ to $\widetilde{X} \rightarrow \widetilde{X_{0}}$.

Reminder on Renée Elkik's theorem

Definition

A pair $(X=\operatorname{Spec}(A), Y=V(I))$ is henselian if for every polynomial $f \in A[T]$, every simple root of f in A / I lifts to a root in A.

Theorem (Renée Elkik, 1973)
Let $(X=\operatorname{Spec}(A), Y=V(I))$ be an henselian pair with A noetherian. Let \widehat{X} be the completion of X along Y and \widehat{Y} be the corresponding closed subscheme. Assume for simplicity that the complement U of Y in X is connected. Then $\widehat{U}:=\widehat{X}-\widehat{Y}$ is also connected and the map

$$
\pi_{1}(U) \rightarrow \pi_{1}(\widehat{U})
$$

is an isomorphism.
Renée Elkik
Solutions d'équations à coefficients dans un anneau hensélien.
Annales scientifiques de l'École normale supérieure, 1973.

Equicharacteristic upper bound: proof

1/3
Set $d=\operatorname{dim}(A), r=\operatorname{dim}_{k} \Omega_{k}^{1}, n=r+d$.

$$
\left(\operatorname{dim}_{p} K=\operatorname{dim}_{K} \Omega_{K}^{1}+\{0,1\}\right) \stackrel{?}{\leq} d+\left(\operatorname{dim}_{p}(k)=r+\{0,1\}\right) .
$$

$\operatorname{dim}_{K} \Omega_{K}^{1} \stackrel{\text { easy }}{=} \operatorname{dim}(A)+\operatorname{dim}_{k} \Omega_{k}^{1}(=d+r)$
$1 \stackrel{?!}{\leq} 0 . \longleftrightarrow \mathrm{H}_{p}^{r+1}(k)=0 \Rightarrow \mathrm{H}_{p}^{n+1}(K)=0$ (applied to K^{\prime} / K).

Reminder
If $\operatorname{dim}_{\kappa} \Omega_{\kappa}^{1}=r, \operatorname{dim}_{p}(\kappa)=r$, iff $\forall \kappa^{\prime} / \kappa$ finite, $\mathrm{H}_{p}^{r+1}\left(\kappa^{\prime}\right)=0$
where $\mathrm{H}_{p}^{r+1}(\kappa)$ is the cokernel of the map:

$$
\Omega_{\kappa}^{r} \xrightarrow{\wp} \Omega_{\kappa}^{r} / d \Omega_{\kappa}^{r-1}: a \frac{d b_{1}}{b_{1}} \wedge \cdots \wedge \frac{d b_{r}}{b_{r}} \mapsto\left(a-a^{p}\right) \frac{d b_{1}}{b_{1}} \wedge \cdots \wedge \frac{d b_{r}}{b_{r}} .
$$

Assume $\mathrm{H}_{p}^{r+1}(k)=0$ (and similarly for finite extension), and take an element in Ω_{K}^{n}. Want to show it belongs to the image of \wp (modulo exact forms).

Equicharacteristic upper bound: proof

As above: $d=\operatorname{dim}(A), r=\operatorname{dim}_{k} \Omega_{k}^{1}, n=r+d$, assume $\mathrm{H}_{p}^{r+1}(k)=0$, and consider $\frac{\omega}{f} \in \Omega_{K}^{n}$, where $\omega \in \Omega_{A}^{n} /$ torsion and $f \in \mathfrak{m}_{A}-\{0\}$.

Let $A_{0}=k\left[\left[x_{1}, \ldots, x_{d}\right]\right]$ as in O . Gabber's theorem and we have by algebraization a cartesian diagram

$$
\begin{aligned}
& x=\operatorname{Spec}(A) \longrightarrow \widetilde{X}=\operatorname{Spec}(\widetilde{A}) \\
& \downarrow \\
& x_{0}=\operatorname{Spec}\left(A_{0}\right) \longrightarrow \widetilde{x_{0}}=\operatorname{Spec}\left(\widetilde{A_{0}}\right)
\end{aligned}
$$

where $\widetilde{A_{0}}=k\left[\left[x_{1}, \ldots, x_{d-1}\right]\right]\left\{x_{d}\right\}$.

We may assume $f \in A_{0}$ (by taking norms).

Equicharacteristic upper bound: proof

Up to a change of the first coordinates (Weierstraß), we may assume $f \in k\left[\left[x_{1}, \ldots, x_{d-1}\right]\right]\left[x_{d}\right]$ and is monic. (In particular, it belongs to
$\left.\widetilde{A_{0}}=k\left[\left[x_{1}, \ldots, x_{d-1}\right]\right]\left\{x_{d}\right\}.\right)$
It follows, that A is the f-adic completion of \widetilde{A}.

Hence,

$$
\frac{\omega}{f}=\left(\frac{\tilde{\omega}}{f} \in \Omega_{\tilde{A}}^{n} / \text { tors. }\right)+\left(? \in \mathfrak{m}_{A} \Omega_{A}^{n} / \text { tors. }\right)
$$

Surjectivity of \wp ?

- Second term: easy. Cf. $a=\wp\left(a+a^{p}+a^{p^{2}}+\cdots\right)$.
- First term: Frac \widetilde{A} of transcendence degree one over Frac $k\left[\left[x_{1}, \ldots, x_{d-1}\right]\right] \Rightarrow$ use K. Katō's theorem and induction.

Mixed-characteristic upper bound: $\operatorname{cd}_{p}(K) \leq \operatorname{dim}(A)+\operatorname{dim}_{p}(k)$

Easier: $X=\operatorname{Spec}(A) \rightarrow X_{0}=\operatorname{Spec}\left(A_{0}\right)\left(A_{0}=C\left[\left[x_{1}, \ldots, x_{d-1}\right]\right], C\right.$ Cohen (discrete valuation) ring, finite and generically étale (obvious).

Difficulty: we don't want the ramification locus to be, for example, $V(p) \subset X_{0}(\Rightarrow$ no hope to apply Weierstraß, to algebraize).

Solution: use H. Epp's theorem to make X generically étale over the "special fiber" $V(p)$. (This is part of Ofer Gabber's method to prove finiteness of cohomology.)

Algebraization of cohomology class more subtle than the algebraization of the "denominator" f above (uses formal/henselian comparison theorem).

Reminder on Helmut Epp's theorem

Theorem (Helmut Epp, 1973)

Let $T \rightarrow S$ a dominant morphism of complete traits, of residue characteristic $p>0$. Assume the residue field κ_{S} is perfect and that the maximal perfect subfield of κ_{T} is algebraic over κs. Then there exists a finite extension of traits $S^{\prime} \rightarrow S$ such that

$$
T^{\prime}:=\left(T \times{ }_{S} S^{\prime}\right)_{\mathrm{red}}^{\nu}
$$

has reduced special fiber over S^{\prime}.

Helmut Epp
Eliminating wild ramification.
Inventiones mathematicæ, 1973.
围
Franz-Viktor Kuhlmann
A correction to Epp's paper "Elimination of wild ramification"
Inventiones mathematicæ, 2003.

Mixed-characteristic upper bound: $\operatorname{cd}_{p}(K) \leq \operatorname{dim}(A)+\operatorname{dim}_{p}(k)$

Let k_{0} the maximal perfect subfield of the residue field k of A (A is complete, normal).

Apply H. Epp's result over $W\left(k_{0}\right)$, at the generic points of $V(p)$, to get reduced special fiber.

Lemma

Let X be a noetherian normal scheme. Every generically reduced Cartier divisor is reduced.

Get by O . Gabber's theorem $X_{p} \rightarrow \operatorname{Spec}\left(k\left[\left[x_{1}, \ldots, x_{d-1}\right]\right]\right)$ finite, generically étale.

Lift to $X \rightarrow X_{0}:=\operatorname{Spec}\left(C(k)\left[\left[x_{1}, \ldots, x_{d-1}\right]\right] .(C(k)=\right.$ Cohen ring. $)$

By construction, ramification locus (downstairs) doesn't contain $V(p)$. Weierstraß \Rightarrow contained in $V(f), f \in C(k)\left[\left[x_{1}, \ldots, x_{d-2}\right]\right]\left[x_{d-1}\right]$ (up to change of coordinates).

Upper bound: $\operatorname{cd}_{p}(K) \leq \operatorname{dim}(A)+\operatorname{dim}_{p}(k)=d+r$
Sketch 2/2
We can algebraize $X \rightarrow X_{0}$ (R. Elkik) into $\widetilde{X} \rightarrow \widetilde{X_{0}}=\operatorname{Spec}\left(C(k)\left[\left[x_{1}, \ldots, x_{d-2}\right]\right]\left\{x_{d-1}\right\}\right)$.

We want to show that $\mathrm{H}^{d+r+i}(K, \mathbf{Z} / p)=0$, for all $i>0$. Choose c.

Extend c to an algebraizable locus of X ? (I.e. does it come from \widetilde{K} ?)

Apply K. Katō's theorem and equal characteristic case in the codimension one point (in the special fiber), to make the "pole" locus small in $V(p)$.

Lemma

Let B be a discrete valuation ring, B^{h} its henselization, and K (resp. K^{h}) the respective fraction fields. If the image of an element $c \in H^{j}\left(\operatorname{Spec}(K)_{\text {ét }}, \mathbf{Z} / N\right)$ is zero in $H^{j}\left(\operatorname{Spec}\left(K^{\mathrm{h}}\right)_{e ́ t}, \mathbf{Z} / N\right)$, then c belongs to the image of the restriction morphism

$$
\mathrm{H}^{j}\left(\operatorname{Spec}(B)_{e ́ t}, \mathbf{Z} / N\right) \rightarrow \mathrm{H}^{j}\left(\operatorname{Spec}(K)_{e ́ t}, \mathbf{Z} / N\right)
$$

30/36
Weierstraß / R. Elkik + Fujiwara-Gabber (+ K. Katō and induction) to conclude.

Reminder on Kazuhiro Fujiwara and Ofer Gabber's theorem

Theorem (Kazuhiro Fujiwara and O. Gabber)
For a noetherian henselian pair $(X=\operatorname{Spec}(A), Y=V(I))$ and a torsion étale sheaf \mathscr{F} on $U:=X-Y$, the canonical morphism

$$
\mathrm{H}^{a}\left(U_{e ́ t}, \mathscr{F}\right) \rightarrow \mathrm{H}^{a}\left(\widehat{U}_{e ́ t}, \widehat{\mathscr{F}}\right)
$$

is an isomorphism.
Observe that we don't make hypothesis on the torsion.
Kazuhiro Fujiwara.
Theory of tubular neighborhood in étale topology.
Duke mathematical journal, 1995.

Esta terminado.

Proof of O. Gabber's theorem 1/4

Theorem (O. Gabber, conf. L. Illusie, lemma 8.1)
Let A be an integral local complete noetherian ring of dimension d with residue field k. There exists a subring A_{0} of A, isomorphic to $k\left[\left[t_{1}, \ldots, t_{d}\right]\right]$ such that $\operatorname{Spec}(A) \rightarrow \operatorname{Spec}\left(A_{0}\right)$ is finite, generically étale.

Let κ be a field of representative of k in A (to be changed later) \longleftrightarrow lifting $B_{i}(i \in I)$ in A of a p-basis b_{i} of k (hence non unique if k isn't perfect).
For all finite subset $e \subset I$, let $\kappa_{e}:=\kappa^{p}\left(B_{i}, i \notin e\right) \Rightarrow$ filtered decreasing family of cofinite sub- κ^{p}-extension of κ, such that $\cap_{e} \kappa_{e}=\kappa^{p}$.

Proof of O. Gabber's theorem 2/4
$\kappa_{e}:=\kappa^{p}\left(B_{i}, i \notin e\right), B_{i}$ lifting p-basis, e finite; $\cap_{e} \kappa_{e}=\kappa^{p}$.

Let $t_{1}, \ldots, t_{d} \in A$ a system of parameters
$K_{e}:=\operatorname{Frac} \kappa_{e}\left[\left[t_{1}^{p}, \ldots, t_{d}^{p}\right]\right] \subset K_{\kappa}:=\operatorname{Frac} \kappa\left[\left[t_{1}, \ldots, t_{d}\right]\right] \subset K$.

$$
\bigcap_{e} K_{e}=K_{\kappa}^{p} \stackrel{\operatorname{big}}{g}{ }^{e} \mathrm{rk}_{K} \Omega_{K / K_{e}}^{1}=\operatorname{rk}_{K_{\kappa}} \Omega_{K_{\kappa} / K_{e}}^{1}
$$

Observe:

- $\operatorname{rk}_{K} \Omega_{K / K_{e}}^{1}=\operatorname{rk}_{A} \Omega_{A / K_{e}\left[\left[t_{1}^{p}, \ldots, t_{d}^{p}\right]\right]}^{1}$ (gen. rank i.e. $\left.\mathrm{rk}_{K}\left(K \otimes_{A}-\right)\right)$,
$-\operatorname{rk}_{K_{\kappa}} \Omega_{K_{\kappa} / K_{e}}^{1}=d+\mathrm{rk}_{\kappa} \Omega_{\kappa / \kappa_{e}}^{1}$
Hence:

$$
\mathrm{rk}_{A} \Omega_{A / \kappa_{e}\left[\left[t_{1}^{p}, \ldots, t_{d}^{p}\right]\right]}^{1}=\operatorname{dim}(A)+\mathrm{rk}_{\kappa} \Omega_{\kappa / \kappa_{e}}^{1}=d+\# e \text { for some finite set } e .
$$

(Reminder: $\Omega_{\kappa / \kappa_{e}}^{1}$ generated by the $d B_{i}, i \in e$.)
By changing the lifting B_{i} of $b_{i}, i \in e$ (i.e. $B_{i} \rightsquigarrow B_{i}+\left(m_{i} \in \mathfrak{m}_{A}\right)$), we can make the $d B_{i}$ linearly independent in $\Omega_{A / \kappa_{e}\left[\left[t_{\mathbf{1}}^{p}, \ldots, t_{d}^{p}\right]\right]}^{1} \otimes_{A} K$.
(Use: $d\left(\mathfrak{m}_{A}\right)$ generically generates Ω_{A}^{1}.)

Using the corresponding fields of representatives (still denoted by κ), we achieve:

$$
\mathrm{rk}_{A} \Omega_{A / \kappa\left[\left[t_{\mathbf{1}}^{p}, \ldots, t_{d}^{p}\right]\right]}^{1}=\operatorname{dim}(A) .
$$

Proof of O. Gabber's theorem 3/4

$$
\begin{aligned}
& \mathrm{rk}_{A} \Omega_{A / R_{\kappa}}^{1}=\operatorname{dim}(A) \\
& \left(R_{\kappa}:=\kappa\left[\left[t_{1}, \ldots, t_{d}\right]\right]\right)
\end{aligned}
$$

Let $f_{1}, \ldots, f_{d} \in A$ such that the $d f_{i}$ form a basis of $\Omega_{A / R_{\kappa}}^{1} \otimes K$. WLOG: $f_{i} \in \mathfrak{m}_{A}$. Take

$$
t_{i}^{\prime}:=t_{i}^{p}\left(1+f_{i}\right)
$$

Observe: $d t_{i}^{\prime}=t_{i}^{p} d f_{i}$.
Then, \boldsymbol{A} is finite, generically étale over the subring $A_{0}=\kappa\left[\left[t_{1}^{\prime}, \ldots, t_{d}^{\prime}\right]\right]$.

Proof of O. Gabber's theorem 4/4

This completes the proof of:
Theorem (O. Gabber)
Let A be a local complete noetherian integral ring of dimension d with residue field κ. There exists a subring A_{0} of A, isomorphic to $\kappa\left[\left[t_{1}, \ldots, t_{d}\right]\right]$ such that $\operatorname{Spec}(A) \rightarrow \operatorname{Spec}\left(A_{0}\right)$ is finite, generically étale.

