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Abstract. We study the gaps in the sequence of sums of h pairwise distinct elements of

a given sequence A in relation with the gaps in the sequence of sums of h not necessarily

distinct elements of A. We present several results on this topic. One of them gives a negative

answer to a question by Burr and Erdős.
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1. Introduction

In [1], Erdős writes:

Here is a really recent problem of Burr and myself : An infinite sequence of
integers a1 < a2 < · · · is called an asymptotic basis of order k, if every large
integer is the sum of k or fewer of the a’s. Let now b1 < b2 < · · · be the
sequence of integers which is (sic) the sum of k or fewer distinct a’s. Is it true
that

lim sup(bi+1 − bi) < ∞.

In other words the gaps between the b’s are bounded. The bound may of
course depend on k and on the sequence a1 < a2 < · · · .

For h ≥ 1, we will use the following notation for addition and restricted addition: hA will
denote the set of sums of h not necessarily distinct elements of A, and h×A, the set of sums
of h pairwise distinct elements of A.

If A is an increasing sequence of integers a1 < a2 < · · · , the largest asymptotic gap in A,
that is

lim sup
i→+∞

(ai+1 − ai),

is denoted by ∆(A).
We shall write A ∼ N to denote that a set of integers A contains all but finitely many

positive integers. According to the Erdős-Burr definition, a set of integers A is an asymptotic
basis of order h if h is the smallest integer such that

⋃h
j=1 jA ∼ N, or equivalently such that

h(A ∪ {0}) ∼ N.
The lower asymptotic density of a set of integers A is defined by

dA = lim inf
x→+∞

|{a ∈ A such that 1 ≤ a ≤ x}|
x

,

The research of the two first-named authors is supported by the “Balaton Program Project” and OTKA

grants T0 43623, 49693, 38396.

1



2 N. HEGYVÁRI, F. HENNECART AND A. PLAGNE

where the notation |F | denotes the cardinality of a finite set F .
The question of Burr and Erdős takes the shorter form: is it true that if h({0} ∪ A) ∼ N,

then
∆(A ∪ 2×A ∪ · · · ∪ h×A) < +∞ ?

We may also ask the following even more natural question: is it true that ∆(hA) < +∞
(or at least hA ∼ N) implies ∆(h × A) < +∞ ? This would imply (and thus give another
proof of) the main result in [5] which states that if A is an asymptotic basis of order h, then
h×A has a positive lower asymptotic density, as it was conjectured in [2].

We will show that the answer to both questions is no, except if h = 2:

Theorem 1. (i) If (A ∪ 2A) ∼ N then

∆(A ∪ 2×A) ≤ 2.

If 2A ∼ N then ∆(2×A) ≤ 2.
(ii) Let h ≥ 3. There exists a set A such that h({0} ∪ A) ∼ N and

∆(A ∪ 2×A ∪ · · · ∪ h×A) = +∞.

There exists a set A such that hA ∼ N and ∆(h×A) = +∞.

The restricted order of an asymptotic basis A, if it exists, is defined as the smallest integer h

such that any large enough integer is the sum of h or fewer pairwise distinct elements of A. We
denote it by ordr(A). In general, asymptotic bases do not have to possess a (finite) restricted
order. However, in the special case of asymptotic bases of order 2, the situation is more simple
and can be precisely described (see [7] and [6]): indeed, being given an arbitrary asymptotic
basis A of order 2, its restricted order is known to exist and to satisfy 2 ≤ ordr(A) ≤ 4;
moreover any integral value in this range can be achieved with asymptotic bases A such that
2A = N. In particular, there exist asymptotic bases A containing 0 verifying ordr(A) > 2
and for which we consequently have ∆(2×A) = ∆(A∪2×A) ≥ 2. This shows that assertion
(i) in Theorem 1 is optimal.

Having Theorem 1 at hand, the next natural question is then: assume that hA ∼ N, that
is hA contains all but finitely many positive integers, is it true that there exists an integer k

such that ∆(k ×A) < +∞ ? If so, k could depend on A. But, suppose that such a k exists
for all A satisfying hA ∼ N: is this value of k uniformly (with respect to A) bounded from
above (in term of h)? If so, write k(h) for the maximal possible value:

k(h) = max
hA∼N

min{k ∈ N such that ∆(k ×A) is finite}.

Theorem 1 implies that k(2) does exist and is equal to 2. No other value of k(h) is known
but we believe that the following conjecture is true.

Conjecture 2. The function k(h) is well-defined in the sense that for any integer h ≥ 1,
k(h) is finite.

If this conjecture is true, what is the asymptotic behaviour of k(h)? Our proof of Theorem 1
will be based on an explicit counterexample to the Erdős-Burr conjecture. This construction
will lead in fact to a lower bound of k(h), which obviously implies Theorem 1 for h ≥ 3.
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Theorem 3. Let h ≥ 2. We have

k(h) ≥ 2h−2 + h− 1.

This study is closely related to the following problem: if A is an asymptotic basis of order
h which admits a (finite) restricted order ordr(A), is it true that ordr(A) is bounded in terms
of h? If so, let us define f(h) to be the maximal possible value taken by ordr(A), when A
runs over the bases of order h having a finite restricted order. For h = 2, the question has
been completely solved in [6] where it is shown that f(2) = 4. For h ≥ 3, if we reuse the
example leading to the bound of Theorem 3, we obtain an explicit lower bound for f(h).

Theorem 4. Let h ≥ 3. One has

f(h) ≥ 2h−2 + h− 1.

In another direction, we can study, for a given set of positive integers A, the asymptotic
behaviour of the sequence

(
∆(h×A)

)
h≥h0

. The first observation is that this sequence is well-
defined for some h0 as soon as ∆(h0×A) is finite. Indeed we have the following proposition.

Proposition 5. Let A be a set of positive integers. Assume that ∆(h0×A) is finite for some
integer h0, then for any h ≥ h0, ∆(h×A) is finite.

This result implies that

k(h) = 1 + max
hA∼N

max{k ∈ N such that ∆(k ×A) = +∞}.

According to what obviously happens in the case of usual addition, it would be of some
interest to establish, for any given set of integers A, the monotonicity of the sequence

(
∆(h×

A)
)
h≥1

:

Conjecture 6. Let A be a set of positive integers, then the sequence
(
∆(h × A)

)
h≥1

is
non-increasing.

We will observe firstly the following:

Proposition 7. Let A be a set of positive integers, then

∆(3×A) ≤ ∆(2×A).

More interestingly, we will show the following partial result in the direction of Conjecture
6:

Theorem 8. Let A be a set of positive integers. Then there exists an increasing sequence of
integers (hj)j≥1 such that

(
∆(hj ×A)

)
j≥1

is non-increasing.

This theorem clearly implies that for a given set of positive integers A, the inequality
∆
(
(h + 1) × A

)
≤ ∆(h × A) holds for infinitely many positive integers h. Theorem 8 is a

direct consequence of the following more precise result.

Theorem 9. Let A be a set of positive integers and h be the smallest positive integer such that
∆(h×A) is finite. Then there exists an increasing sequence of integers (hj)j≥0 with h0 = h

such that for any j ≥ 1, one has hj + 2 ≤ hj+1 ≤ hj + h + 1 and ∆(hj+1 ×A) ≤ ∆(hj ×A).
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This shows that for a given set of positive integers A, the inequality ∆
(
(h + 1) × A

)
≤

∆(h × A) holds for any h belonging to some set of positive integers having a positive lower
asymptotic density bounded from below by 1/(h + 1).

Let A be a set of integers satisfying the weaker condition dhA > 0 (instead of hA ∼ N).
We will establish in Theorem 10 that the validity of Conjecture 2 would imply that ∆(k×A)
is finite for some integer k under this weaker condition. Clearly this result, if true, could not
be uniform in A. Henceforth, we introduce, for β > 0, the quantity

k1(β, h) = max
dhA≥β

min {k ∈ N such that ∆(k ×A) is finite} .

Our final result shows that k1 is as well-defined as k, in some sense.

Theorem 10. Assume that Conjecture 2 holds. Then for any real number β such that
0 < β ≤ 1 and any positive integer h, we have

k1(β, h) ≤ k

(⌈(
1 +

1
h

)
1
β

⌉
h

)
,

where due is the ceiling of u.

2. The proofs

For any real numbers x and y, [x, y] and [x, y) will denote the sets of all integers n (called
intervals of integers) such that x ≤ n ≤ y and x ≤ n < y respectively.

Proof of Theorems 1, 3 and 4. Let us first consider the case h = 2. Clearly the odd elements
in 2A do belong to 2×A. This implies that if 2A ∼ N, then ∆(2×A) ≤ 2. This also implies
that the odd elements in A ∪ 2A are in A ∪ (2 × A). It follows that A ∪ 2A ∼ N implies
∆(A ∪ (2×A)) ≤ 2.

In the case h ≥ 3, it is enough to construct an explicit example. We first introduce the
sequence defined by x0 = h and xn+1 = (3 · 2h−2 − 1)x2

n + hxn for n ≥ 0, and let

An = [0, x2
n) ∪

{
2jx2

n : j = 0, 1, 2, . . . , h− 2
}

.

Finally we define
A = {0} ∪

⋃
n≥0

(xn +An) .

Since any positive integer less than or equal to 2h−1−2 can be written as a sum of at most
h−2 (distinct) powers of 2 taken from {2j : j = 0, 1, . . . , h−2}, any integer in [0, (2h−1−1)x2

n)
can be written as a sum of h− 1 elements of An. Thus it follows

[0, (3 · 2h−2 − 1)x2
n) ⊂ {0, 2h−2x2

n}+ [0, (2h−1 − 1)x2
n) ⊂ {0, 2h−2x2

n}+ (h− 1)An ⊂ hAn.

We therefore infer that [hxn, xn+1) ⊂ h(xn + An). Moreover, since hxn ≤ x2
n, we have

[xn, hxn] ⊂ [xn, x2
n] ⊂ xn +An. It follows that, for any n ≥ 0, we have

[xn, xn+1) ⊂ h
(
(xn +An) ∪ {0}

)
⊂ hA.

Consequently hA ∼ N.
On the other hand, (h−1)A 6∼ N. Indeed, this assertion follows from the more precise fact

that, for any n ≥ 0, no integer in the range [(2h−1 − 1)x2
n + (h − 1)xn + 1, 2h−1x2

n − 1] (an
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interval of integers with a length tending to infinity with n) can be written as a sum of h− 1
elements of A. Let us prove this fact by contradiction and assume the existence of an integer

u ∈ [(2h−1 − 1)x2
n + (h− 1)xn + 1, 2h−1x2

n − 1] ∩ (h− 1)A.

Since we have (using h ≥ 3)
u ≤ 2h−1x2

n − 1 < xn+1,

we deduce that

u ∈ (h− 1)

(
{0} ∪

n⋃
i=0

(xi +Ai)

)
⊂ (h− 1)

(
[0, xn + x2

n] ∪
{
2jx2

n + xn : j = 1, 2, . . . , h− 2
} )

.

In other words, we can express u as a sum of the form

u = αh−2

(
2h−2x2

n + xn

)
+ · · ·+ α1

(
2x2

n + xn

)
+ ρ

(
xn + x2

n

)
=

(
2h−2αh−2 + · · ·+ 2α1 + ρ

)
x2

n + (αh−2 + · · ·+ α1 + ρ) xn,

with α1, . . . , αh−2 ∈ N, ρ a positive real number and

αh−2 + · · ·+ α1 + ρ ≤ h− 1.

If we denote by [ρ] the integral part of ρ, this implies that(
2h−2αh−2 + · · ·+ 2α1 + [ρ]

)
x2

n ≤ u ≤
(
2h−2αh−2 + · · ·+ 2α1 + ρ

)
x2

n + (h− 1)xn

and in view of u ∈ [(2h−1 − 1)x2
n + (h− 1)xn + 1, 2h−1x2

n − 1], we deduce that

2h−2αh−2 + · · ·+ 2α1 + [ρ] ≤ 2h−1 − 1

and
2h−2αh−2 + · · ·+ 2α1 + ρ ≥ 2h−1 − 1.

We therefore obtain 2h−2αh−2 + · · · + 2α1 + [ρ] = 2h−1 − 1. We conclude by the facts that
αh−2 + · · · + α1 + [ρ] ≤ h − 1 and that the only decomposition of 2h−1 − 1 as a sum of at
most h− 1 powers of 2 is 2h−1 − 1 = 1 + 2 + 22 + · · ·+ 2h−2 that α1 = · · · = αh−2 = [ρ] = 1.
From this, we deduce that ρ ≤ h − 1 − α1 − · · · − αh−2 = 1 and finally ρ = 1 which gives
u = (2h−1 − 1)x2

n + (h − 1)xn, a contradiction. Since hA ∼ N, we deduce that A is an
asymptotic basis of order h.

Concerning restricted addition, we see that for l ≥ h− 2, we have

max(l ×An) ≤ (2h−1 − 2)x2
n + (l − h + 2)x2

n = (2h−1 + l − h)x2
n.

Hence
xn+1 −max

(
l × (xn +An)

)
≥ (2h−2 − l + h− 1)x2

n + (h− l)xn.

If l ≤ 2h−2 + h − 2, then xn+1 − max
(
l × (xn + An)

)
≥ x2

n − (2h−2 − 2)xn which tends to
infinity as n tends to infinity. It follows that k(h) ≥ 2h−2 + h− 1, as asserted in Theorem 3.

We now complete the proof of Theorem 4. It is clear from the preceding computations
that if the basis A defined above has a (finite) restricted order ordr(A) then it must satisfy
ordr(A) ≥ 2h−2+h−1. Our goal is to prove that ordr(A) exists. We will show more precisely
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that ordr(A) = 2h−2 + h − 1. For this purpose, it is enough to prove that any sufficiently
large integer is a sum of at most 2h−2 + h− 1 distinct elements of A.

It is readily seen that if n is large enough, any integer in [xn, 2h−2x2
n + xn) is a sum of at

most 2h−2 integers of [xn, x2
n + xn) ⊂ xn +An. Moreover for any integer m in [0, 2h−1 − 1],

there exists some integer t(m) verifying 0 ≤ t(m) ≤ h− 1 such that

zm = mx2
n + t(m)xn

can be written as a sum of at most h−1 distinct elements of {xn +2jx2
n : j = 0, 1, 2, . . . , h−

2} ⊂ xn +An. In particular, we observe that t(0) = 0 and t(2h−1 − 1) = h− 1. If we assume
that n is large enough, then for any arbitrary integer m the difference zm+1−zm which satisfies
0 ≤ zm+1 − zm ≤ x2

n + (h− 1)xn is less than the length of the interval [xn, 2h−2x2
n + xn) by

our assumption h ≥ 3. Thus we infer that any integer in the sumset

[xn, 2h−2x2
n + xn) + {zm : 0 ≤ m ≤ 2h−1 − 1} = [xn, 2h−2x2

n + z2h−1−1 + xn)

is a sum of at most 2h−2 +h−1 distinct elements of xn +An. Since z2h−1−1 = (2h−1−1)x2
n +

(h− 1)xn, we deduce that any integer in [xn, xn+1) is a sum of at most 2h−2 + h− 1 distinct
elements of xn +An. This being true for any large enough integer n, it follows that the basis
A, which is of order h, has a restricted order equal to 2h−2 + h− 1.

This ends the proof of Theorem 4. �

Proof of Proposition 5. We denote by a1 < a2 < · · · the (increasing sequence of) elements of
A and by b1 < b2 < · · · the elements of h×A. We assume that ∆(h×A) = lim supi→+∞(bi+1−
bi) is finite.

We define i0 to be the smallest integer such that bi0 > a1 + a2 + · · ·+ ah. Hence, for any
i ≥ i0, there exists an element of A, α(i) ∈ {a1, a2, . . . , ah} such that bi ∈ h× (Ar {α(i)});
in particular this gives ci = α(i) + bi ∈ (h + 1)×A for i ≥ i0.

If i ≥ i0 is large enough, then (bi+1− bi) ≤ ∆(h×A). Let j be the smallest integer greater
than i such that cj > ci. We have

0 < cj − ci ≤ cj − cj−1 = (bj − bj−1) + (α(j)− α(j − 1)) ≤ ∆(h×A) + (ah − a1).

This shows that for any large enough ci ∈ (h+1)×A, there exists cj ∈ (h+1)×A such that
1 ≤ cj − ci ≤ ∆(h×A) + (ah − a1). From this, it clearly follows that

∆
(
(h + 1)×A

)
≤ ∆(h×A) + (ah − a1),

thus in particular ∆
(
(h + 1)×A

)
is finite.

Proposition 5 follows by an easy induction. �

Proof of Proposition 7. Let X = {x1 < x2 < · · · < xi < · · · } be a set of positive integers.
We denote D(X) = maxi≥1(xi+1 − xi) and recall that ∆(X) = lim supi→+∞(xi+1 − xi).

Let d > 0. We shall say that X d-covers an interval of integers I if the union of the balls
centered on the elements of X with radius d/2 contains I. In other words:

for all r ∈ I, there exists x ∈ X such that |x− r| ≤ d/2.
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Let A = {a1 < a2 < · · · < ai < · · · }. Assume d = ∆(2 × A) < +∞. There exists an x0

such that [x0,+∞) is d-covered by 2×A. We shall see that for any ai ∈ A large enough, the
interval [ai + x0, ai+1 + x0) is d-covered by 3×A. This will imply ∆(3×A) ≤ d = ∆(2×A).

First case : if ai+1 ≤ 2ai − x0− d/2, then ai +
(
(2×A)∩ [0, ai)

)
is contained in 3×A and

d-covers [ai + x0, 2ai − d/2) which contains [ai + x0, ai+1 + x0) by assumption.

Second case : if ai+1 > 2ai − x0 − d/2, then

(2×A) ∩
[3ai

2
, ai+1

)
⊂ 2×

(
A ∩

[ai

2
, ai

])
.

Indeed, if a and b are two distinct elements of A such that 3ai/2 ≤ a + b < ai+1, then a ≤ ai

and b ≤ ai; consequently we must have a ≥ ai/2 and b ≥ ai/2.
Let a ∈ A such that d/2 + x0 < a < ai/2− d (we may always find such an a if ai is large

enough). Then

a +
(

(2×A) ∩
[3ai

2
, ai+1

))
⊂ 3×A.

Since [3ai/2, ai+1) is d-covered by 2 × A, the interval [3ai/2 + d/2 + a, a + ai+1 − d/2) is
d-covered by 3 × A. Since, in view of the choice made for a, 3ai/2 + d/2 + a ≤ 2ai − d/2
and a + ai+1 − d/2 ≥ ai+1 + x0, we infer that [2ai − d/2, ai+1 + x0) is d-covered by 3 × A.
Moreover, the interval of integers [ai + x0, 2ai − d/2) is d-covered by ai +

(
(2×A) ∩ [0, ai)

)
.

Therefore we conclude that [ai + x0, ai+1 + x0) is d-covered by 3×A. �

Proof of Theorem 9. Let A be such that d = ∆(h × A) < +∞. This implies that for any
sufficiently large x,

A(x) = |A ∩ [1, x]| ≥ Cx1/h,

for some positive constant C depending only on d. Now, the number of subsets of A ∩ [1, x]
with cardinality h + 1 is equal to the binomial coefficient

(A(x)
h+1

)
� x1+1/h where the implied

constant depends on both A and h. Choose an x such that
(A(x)

h+1

)
≥ (h + 2)! hh+2x. It thus

exists an integer n less than (h + 1)x such that

n = a
(i)
1 + · · ·+ a

(i)
h+1, for i = 1, . . . , (h + 1)!hh+2,

where the (h+1)!hh+2 sets Ei = {a(i)
1 , . . . , a

(i)
h+1} of h+1 pairwise distinct elements of A are

distinct. We now make use of the following intersection theorem for systems of sets due to
Erdős and Rado (cf. Theorem III of [3]):

Lemma (Erdős-Rado). Let m, q, r be positive integers and Ei, 1 ≤ i ≤ m, be sets of cardi-
nality at most r. If m ≥ r! qr+1, then there exist an increasing sequence i1 < i2 < · · · < iq+1

and a set F such that Eij ∩ Eik = F as soon as 1 ≤ j < k ≤ q + 1.

By applying this result with q = h and r = h + 1, we obtain that there are h + 1 sets
Eij , j = 1, . . . , h + 1, and a set F , with 0 ≤ |F | ≤ h − 1, such that Eij ∩ Eik = F if
1 ≤ j 6= k ≤ h + 1. Observe that we must have 0 ≤ |F | ≤ h − 1 since the Ei’s are distinct
and the sum of all elements of Ei is equal to n for any i. We obtain that the integer

n′ = n−
∑
a∈F

a
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can be written as a sum of h + 1− |F | pairwise distinct elements of A in at least h + 1 ways,
such that all summands occurring in any of these representations of n′ in (h+1−|F |)×A are
pairwise distinct (equivalently, this means that the set ∪h+1

j=1Eij r F has exactly (h + 1)(h +
1− |F |) distinct elements). This shows that

n′ + (h×A) ⊂ (2h + 1− |F |)×A,

and finally ∆(h×A) = ∆
(
n′ + (h×A)

)
≥ ∆(h1 ×A), where h1 = 2h + 1− |F |.

Iterating this process, we get an increasing sequence (hj)j≥0, with h0 = h, such that

∆(hj ×A) = ∆
(
n′ + (hj ×A)

)
≥ ∆(hj+1 ×A),

where hj+1 is of the form hj + h + 1 − |Fj | for some set Fj satisfying 0 ≤ |Fj | ≤ h − 1. We
conclude that hj + 2 ≤ hj+1 ≤ hj + h + 1, as stated. �

Proof of Theorem 10. Let h be a positive integer and A be a sequence of integers. We put
B = hA and assume that dB ≥ β > 0. Define

j =
⌈(

1 +
1
h

)
1
β

⌉
.

We thus have

jdB ≥ 1 +
1
h

> 1 ≥ djB.

By Kneser’s theorem on addition of sequences of integers (cf. [9, 10], [4] or [12]), we obtain
that there exist an integer g ≥ 1 and a sequence B1 of integers such that

B ⊂ B1, g + B1 ⊂ B1, jB1 r jB is finite,

and

djB1 ≥ jdB1 −
j − 1

g
.

We may assume that g is the smallest integer satisfying these conditions.
Since dB1 ≥ dB = β, we deduce from the previous inequality that

g ≤ j − 1
jβ − 1

.

Hence g ≤ (j − 1)h ≤ jh.
We denote by A ⊂ Z/gZ the image of A by the canonical homomorphism of Z onto Z/gZ,

the group of residue classes modulo g. Let H be the period of gA, that is the subgroup of Z/gZ
formed by the elements c such that c + gA = gA. Since g ≤ jh, the sumset jhA = jB = jB1

satisfies
jB1 + H = jB1.

It therefore follows from the minimality of g that H = {0}. Thus, from a repeated application
of Kneser’s theorem on addition of sets in an abelian group (see [9, 10], [8] or [11]), we deduce

g ≥ |gA| ≥ g(|A| − 1) + 1,

which implies |A| = 1. Therefore there exists an integer a0 such that any element of A can
be written in the form a0 +gx for some integer x. We define A1 = {(a−a0)/g : a ∈ A} ⊂ N.
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Since jhA = jB ∼ jB1, we get jhA1 ∼ N. Assuming the validity of Conjecture 2, we obtain
that ∆

(
k(jh)×A1

)
is finite, and accordingly ∆

(
k(jh)×A

)
< +∞. �
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