ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS

N. HEGYVÁRI, F. HENNECART AND A. PLAGNE

Abstract

We study the gaps in the sequence of sums of h pairwise distinct elements of a given sequence \mathcal{A} in relation with the gaps in the sequence of sums of h not necessarily distinct elements of \mathcal{A}. We present several results on this topic. One of them gives a negative answer to a question by Burr and Erdős.

2000 Mathematics Subject Classification: 11B05, 11B13, 11P99

1. Introduction

In [1], Erdős writes:
Here is a really recent problem of Burr and myself : An infinite sequence of integers $a_{1}<a_{2}<\cdots$ is called an asymptotic basis of order k, if every large integer is the sum of k or fewer of the a 's. Let now $b_{1}<b_{2}<\cdots$ be the sequence of integers which is (sic) the sum of k or fewer distinct a 's. Is it true that

$$
\limsup \left(b_{i+1}-b_{i}\right)<\infty
$$

In other words the gaps between the b 's are bounded. The bound may of course depend on k and on the sequence $a_{1}<a_{2}<\cdots$.
For $h \geq 1$, we will use the following notation for addition and restricted addition: $h \mathcal{A}$ will denote the set of sums of h not necessarily distinct elements of \mathcal{A}, and $h \times \mathcal{A}$, the set of sums of h pairwise distinct elements of \mathcal{A}.

If \mathcal{A} is an increasing sequence of integers $a_{1}<a_{2}<\cdots$, the largest asymptotic gap in \mathcal{A}, that is

$$
\limsup _{i \rightarrow+\infty}\left(a_{i+1}-a_{i}\right)
$$

is denoted by $\Delta(\mathcal{A})$.
We shall write $\mathcal{A} \sim \mathbb{N}$ to denote that a set of integers \mathcal{A} contains all but finitely many positive integers. According to the Erdős-Burr definition, a set of integers \mathcal{A} is an asymptotic basis of order h if h is the smallest integer such that $\bigcup_{j=1}^{h} j \mathcal{A} \sim \mathbb{N}$, or equivalently such that $h(\mathcal{A} \cup\{0\}) \sim \mathbb{N}$.

The lower asymptotic density of a set of integers \mathcal{A} is defined by

$$
\underline{\mathrm{d}} \mathcal{A}=\liminf _{x \rightarrow+\infty} \frac{\mid\{a \in \mathcal{A} \text { such that } 1 \leq a \leq x\} \mid}{x}
$$

[^0]where the notation $|F|$ denotes the cardinality of a finite set F.
The question of Burr and Erdős takes the shorter form: is it true that if $h(\{0\} \cup \mathcal{A}) \sim \mathbb{N}$, then
$$
\Delta(\mathcal{A} \cup 2 \times \mathcal{A} \cup \cdots \cup h \times \mathcal{A})<+\infty ?
$$

We may also ask the following even more natural question: is it true that $\Delta(h \mathcal{A})<+\infty$ (or at least $h \mathcal{A} \sim \mathbb{N}$) implies $\Delta(h \times \mathcal{A})<+\infty$? This would imply (and thus give another proof of) the main result in [5] which states that if \mathcal{A} is an asymptotic basis of order h, then $h \times \mathcal{A}$ has a positive lower asymptotic density, as it was conjectured in [2].

We will show that the answer to both questions is no, except if $h=2$:
Theorem 1. (i) If $(\mathcal{A} \cup 2 \mathcal{A}) \sim \mathbb{N}$ then

$$
\Delta(\mathcal{A} \cup 2 \times \mathcal{A}) \leq 2
$$

If $2 \mathcal{A} \sim \mathbb{N}$ then $\Delta(2 \times \mathcal{A}) \leq 2$.
(ii) Let $h \geq 3$. There exists a set \mathcal{A} such that $h(\{0\} \cup \mathcal{A}) \sim \mathbb{N}$ and

$$
\Delta(\mathcal{A} \cup 2 \times \mathcal{A} \cup \cdots \cup h \times \mathcal{A})=+\infty
$$

There exists a set \mathcal{A} such that $h \mathcal{A} \sim \mathbb{N}$ and $\Delta(h \times \mathcal{A})=+\infty$.
The restricted order of an asymptotic basis \mathcal{A}, if it exists, is defined as the smallest integer h such that any large enough integer is the sum of h or fewer pairwise distinct elements of \mathcal{A}. We denote it by $\operatorname{ord}_{r}(\mathcal{A})$. In general, asymptotic bases do not have to possess a (finite) restricted order. However, in the special case of asymptotic bases of order 2 , the situation is more simple and can be precisely described (see [7] and [6]): indeed, being given an arbitrary asymptotic basis \mathcal{A} of order 2 , its restricted order is known to exist and to satisfy $2 \leq \operatorname{ord}_{r}(\mathcal{A}) \leq 4$; moreover any integral value in this range can be achieved with asymptotic bases \mathcal{A} such that $2 \mathcal{A}=\mathbb{N}$. In particular, there exist asymptotic bases \mathcal{A} containing 0 verifying $\operatorname{ord}_{r}(\mathcal{A})>2$ and for which we consequently have $\Delta(2 \times \mathcal{A})=\Delta(\mathcal{A} \cup 2 \times \mathcal{A}) \geq 2$. This shows that assertion (i) in Theorem 1 is optimal.

Having Theorem 1 at hand, the next natural question is then: assume that $h \mathcal{A} \sim \mathbb{N}$, that is $h \mathcal{A}$ contains all but finitely many positive integers, is it true that there exists an integer k such that $\Delta(k \times \mathcal{A})<+\infty$? If so, k could depend on \mathcal{A}. But, suppose that such a k exists for all \mathcal{A} satisfying $h \mathcal{A} \sim \mathbb{N}$: is this value of k uniformly (with respect to \mathcal{A}) bounded from above (in term of h)? If so, write $k(h)$ for the maximal possible value:

$$
k(h)=\max _{h \mathcal{A} \sim \mathbb{N}} \min \{k \in \mathbb{N} \text { such that } \Delta(k \times \mathcal{A}) \text { is finite }\}
$$

Theorem 1 implies that $k(2)$ does exist and is equal to 2 . No other value of $k(h)$ is known but we believe that the following conjecture is true.

Conjecture 2. The function $k(h)$ is well-defined in the sense that for any integer $h \geq 1$, $k(h)$ is finite.

If this conjecture is true, what is the asymptotic behaviour of $k(h)$? Our proof of Theorem 1 will be based on an explicit counterexample to the Erdős-Burr conjecture. This construction will lead in fact to a lower bound of $k(h)$, which obviously implies Theorem 1 for $h \geq 3$.

Theorem 3. Let $h \geq 2$. We have

$$
k(h) \geq 2^{h-2}+h-1
$$

This study is closely related to the following problem: if \mathcal{A} is an asymptotic basis of order h which admits a (finite) restricted order $\operatorname{ord}_{r}(\mathcal{A})$, is it true that $\operatorname{ord}_{r}(\mathcal{A})$ is bounded in terms of h ? If so, let us define $f(h)$ to be the maximal possible value taken by $\operatorname{ord}_{r}(\mathcal{A})$, when \mathcal{A} runs over the bases of order h having a finite restricted order. For $h=2$, the question has been completely solved in [6] where it is shown that $f(2)=4$. For $h \geq 3$, if we reuse the example leading to the bound of Theorem 3, we obtain an explicit lower bound for $f(h)$.

Theorem 4. Let $h \geq 3$. One has

$$
f(h) \geq 2^{h-2}+h-1
$$

In another direction, we can study, for a given set of positive integers \mathcal{A}, the asymptotic behaviour of the sequence $(\Delta(h \times \mathcal{A}))_{h \geq h_{0}}$. The first observation is that this sequence is welldefined for some h_{0} as soon as $\Delta\left(h_{0} \times \mathcal{A}\right)$ is finite. Indeed we have the following proposition.

Proposition 5. Let \mathcal{A} be a set of positive integers. Assume that $\Delta\left(h_{0} \times \mathcal{A}\right)$ is finite for some integer h_{0}, then for any $h \geq h_{0}, \Delta(h \times \mathcal{A})$ is finite.

This result implies that

$$
k(h)=1+\max _{h \mathcal{A} \sim \mathbb{N}} \max \{k \in \mathbb{N} \text { such that } \Delta(k \times \mathcal{A})=+\infty\}
$$

According to what obviously happens in the case of usual addition, it would be of some interest to establish, for any given set of integers \mathcal{A}, the monotonicity of the sequence ($\Delta(h \times$ A) $)_{h \geq 1}$:

Conjecture 6. Let \mathcal{A} be a set of positive integers, then the sequence $(\Delta(h \times \mathcal{A}))_{h \geq 1}$ is non-increasing.

We will observe firstly the following:
Proposition 7. Let \mathcal{A} be a set of positive integers, then

$$
\Delta(3 \times \mathcal{A}) \leq \Delta(2 \times \mathcal{A})
$$

More interestingly, we will show the following partial result in the direction of Conjecture 6 :

Theorem 8. Let \mathcal{A} be a set of positive integers. Then there exists an increasing sequence of integers $\left(h_{j}\right)_{j \geq 1}$ such that $\left(\Delta\left(h_{j} \times \mathcal{A}\right)\right)_{j \geq 1}$ is non-increasing.

This theorem clearly implies that for a given set of positive integers \mathcal{A}, the inequality $\Delta((h+1) \times \mathcal{A}) \leq \Delta(h \times \mathcal{A})$ holds for infinitely many positive integers h. Theorem 8 is a direct consequence of the following more precise result.

Theorem 9. Let \mathcal{A} be a set of positive integers and h be the smallest positive integer such that $\Delta(h \times \mathcal{A})$ is finite. Then there exists an increasing sequence of integers $\left(h_{j}\right)_{j \geq 0}$ with $h_{0}=h$ such that for any $j \geq 1$, one has $h_{j}+2 \leq h_{j+1} \leq h_{j}+h+1$ and $\Delta\left(h_{j+1} \times \mathcal{A}\right) \leq \Delta\left(h_{j} \times \mathcal{A}\right)$.

This shows that for a given set of positive integers \mathcal{A}, the inequality $\Delta((h+1) \times \mathcal{A}) \leq$ $\Delta(h \times \mathcal{A})$ holds for any h belonging to some set of positive integers having a positive lower asymptotic density bounded from below by $1 /(h+1)$.

Let \mathcal{A} be a set of integers satisfying the weaker condition $\underline{\mathrm{d}} h \mathcal{A}>0($ instead of $h \mathcal{A} \sim \mathbb{N})$. We will establish in Theorem 10 that the validity of Conjecture 2 would imply that $\Delta(k \times \mathcal{A})$ is finite for some integer k under this weaker condition. Clearly this result, if true, could not be uniform in \mathcal{A}. Henceforth, we introduce, for $\beta>0$, the quantity

$$
k_{1}(\beta, h)=\max _{\underline{d} h \mathcal{A} \geq \beta} \min \{k \in \mathbb{N} \text { such that } \Delta(k \times \mathcal{A}) \text { is finite }\} .
$$

Our final result shows that k_{1} is as well-defined as k, in some sense.
Theorem 10. Assume that Conjecture 2 holds. Then for any real number β such that $0<\beta \leq 1$ and any positive integer h, we have

$$
k_{1}(\beta, h) \leq k\left(\left[\left(1+\frac{1}{h}\right) \frac{1}{\beta}\right\rceil h\right),
$$

where $\lceil u\rceil$ is the ceiling of u.

2. The proofs

For any real numbers x and $y,[x, y]$ and $[x, y)$ will denote the sets of all integers n (called intervals of integers) such that $x \leq n \leq y$ and $x \leq n<y$ respectively.

Proof of Theorems 1, 3 and 4. Let us first consider the case $h=2$. Clearly the odd elements in $2 \mathcal{A}$ do belong to $2 \times \mathcal{A}$. This implies that if $2 \mathcal{A} \sim \mathbb{N}$, then $\Delta(2 \times \mathcal{A}) \leq 2$. This also implies that the odd elements in $\mathcal{A} \cup 2 \mathcal{A}$ are in $\mathcal{A} \cup(2 \times \mathcal{A})$. It follows that $\mathcal{A} \cup 2 \mathcal{A} \sim \mathbb{N}$ implies $\Delta(\mathcal{A} \cup(2 \times \mathcal{A})) \leq 2$.

In the case $h \geq 3$, it is enough to construct an explicit example. We first introduce the sequence defined by $x_{0}=h$ and $x_{n+1}=\left(3 \cdot 2^{h-2}-1\right) x_{n}^{2}+h x_{n}$ for $n \geq 0$, and let

$$
\mathcal{A}_{n}=\left[0, x_{n}^{2}\right) \cup\left\{2^{j} x_{n}^{2}: j=0,1,2, \ldots, h-2\right\} .
$$

Finally we define

$$
\mathcal{A}=\{0\} \cup \bigcup_{n \geq 0}\left(x_{n}+\mathcal{A}_{n}\right) .
$$

Since any positive integer less than or equal to $2^{h-1}-2$ can be written as a sum of at most $h-2$ (distinct) powers of 2 taken from $\left\{2^{j}: j=0,1, \ldots, h-2\right\}$, any integer in $\left[0,\left(2^{h-1}-1\right) x_{n}^{2}\right)$ can be written as a sum of $h-1$ elements of \mathcal{A}_{n}. Thus it follows

$$
\left[0,\left(3 \cdot 2^{h-2}-1\right) x_{n}^{2}\right) \subset\left\{0,2^{h-2} x_{n}^{2}\right\}+\left[0,\left(2^{h-1}-1\right) x_{n}^{2}\right) \subset\left\{0,2^{h-2} x_{n}^{2}\right\}+(h-1) \mathcal{A}_{n} \subset h \mathcal{A}_{n} .
$$

We therefore infer that $\left[h x_{n}, x_{n+1}\right) \subset h\left(x_{n}+\mathcal{A}_{n}\right)$. Moreover, since $h x_{n} \leq x_{n}^{2}$, we have $\left[x_{n}, h x_{n}\right] \subset\left[x_{n}, x_{n}^{2}\right] \subset x_{n}+\mathcal{A}_{n}$. It follows that, for any $n \geq 0$, we have

$$
\left[x_{n}, x_{n+1}\right) \subset h\left(\left(x_{n}+\mathcal{A}_{n}\right) \cup\{0\}\right) \subset h \mathcal{A} .
$$

Consequently $h \mathcal{A} \sim \mathbb{N}$.
On the other hand, $(h-1) \mathcal{A} \not \nsim \mathbb{N}$. Indeed, this assertion follows from the more precise fact that, for any $n \geq 0$, no integer in the range $\left[\left(2^{h-1}-1\right) x_{n}^{2}+(h-1) x_{n}+1,2^{h-1} x_{n}^{2}-1\right]$ (an
interval of integers with a length tending to infinity with n) can be written as a sum of $h-1$ elements of \mathcal{A}. Let us prove this fact by contradiction and assume the existence of an integer

$$
u \in\left[\left(2^{h-1}-1\right) x_{n}^{2}+(h-1) x_{n}+1,2^{h-1} x_{n}^{2}-1\right] \cap(h-1) \mathcal{A} .
$$

Since we have (using $h \geq 3$)

$$
u \leq 2^{h-1} x_{n}^{2}-1<x_{n+1},
$$

we deduce that

$$
\begin{aligned}
u & \in(h-1)\left(\{0\} \cup \bigcup_{i=0}^{n}\left(x_{i}+\mathcal{A}_{i}\right)\right) \\
& \subset(h-1)\left(\left[0, x_{n}+x_{n}^{2}\right] \cup\left\{2^{j} x_{n}^{2}+x_{n}: j=1,2, \ldots, h-2\right\}\right) .
\end{aligned}
$$

In other words, we can express u as a sum of the form

$$
\begin{aligned}
u & =\alpha_{h-2}\left(2^{h-2} x_{n}^{2}+x_{n}\right)+\cdots+\alpha_{1}\left(2 x_{n}^{2}+x_{n}\right)+\rho\left(x_{n}+x_{n}^{2}\right) \\
& =\left(2^{h-2} \alpha_{h-2}+\cdots+2 \alpha_{1}+\rho\right) x_{n}^{2}+\left(\alpha_{h-2}+\cdots+\alpha_{1}+\rho\right) x_{n},
\end{aligned}
$$

with $\alpha_{1}, \ldots, \alpha_{h-2} \in \mathbb{N}, \rho$ a positive real number and

$$
\alpha_{h-2}+\cdots+\alpha_{1}+\rho \leq h-1 .
$$

If we denote by $[\rho]$ the integral part of ρ, this implies that

$$
\left(2^{h-2} \alpha_{h-2}+\cdots+2 \alpha_{1}+[\rho]\right) x_{n}^{2} \leq u \leq\left(2^{h-2} \alpha_{h-2}+\cdots+2 \alpha_{1}+\rho\right) x_{n}^{2}+(h-1) x_{n}
$$

and in view of $u \in\left[\left(2^{h-1}-1\right) x_{n}^{2}+(h-1) x_{n}+1,2^{h-1} x_{n}^{2}-1\right]$, we deduce that

$$
2^{h-2} \alpha_{h-2}+\cdots+2 \alpha_{1}+[\rho] \leq 2^{h-1}-1
$$

and

$$
2^{h-2} \alpha_{h-2}+\cdots+2 \alpha_{1}+\rho \geq 2^{h-1}-1 .
$$

We therefore obtain $2^{h-2} \alpha_{h-2}+\cdots+2 \alpha_{1}+[\rho]=2^{h-1}-1$. We conclude by the facts that $\alpha_{h-2}+\cdots+\alpha_{1}+[\rho] \leq h-1$ and that the only decomposition of $2^{h-1}-1$ as a sum of at most $h-1$ powers of 2 is $2^{h-1}-1=1+2+2^{2}+\cdots+2^{h-2}$ that $\alpha_{1}=\cdots=\alpha_{h-2}=[\rho]=1$. From this, we deduce that $\rho \leq h-1-\alpha_{1}-\cdots-\alpha_{h-2}=1$ and finally $\rho=1$ which gives $u=\left(2^{h-1}-1\right) x_{n}^{2}+(h-1) x_{n}$, a contradiction. Since $h \mathcal{A} \sim \mathbb{N}$, we deduce that \mathcal{A} is an asymptotic basis of order h.

Concerning restricted addition, we see that for $l \geq h-2$, we have

$$
\max \left(l \times \mathcal{A}_{n}\right) \leq\left(2^{h-1}-2\right) x_{n}^{2}+(l-h+2) x_{n}^{2}=\left(2^{h-1}+l-h\right) x_{n}^{2} .
$$

Hence

$$
x_{n+1}-\max \left(l \times\left(x_{n}+\mathcal{A}_{n}\right)\right) \geq\left(2^{h-2}-l+h-1\right) x_{n}^{2}+(h-l) x_{n} .
$$

If $l \leq 2^{h-2}+h-2$, then $x_{n+1}-\max \left(l \times\left(x_{n}+\mathcal{A}_{n}\right)\right) \geq x_{n}^{2}-\left(2^{h-2}-2\right) x_{n}$ which tends to infinity as n tends to infinity. It follows that $k(h) \geq 2^{h-2}+h-1$, as asserted in Theorem 3 .

We now complete the proof of Theorem 4. It is clear from the preceding computations that if the basis \mathcal{A} defined above has a (finite) restricted order $\operatorname{ord}_{r}(\mathcal{A})$ then it must satisfy $\operatorname{ord}_{r}(\mathcal{A}) \geq 2^{h-2}+h-1$. Our goal is to prove that $\operatorname{ord}_{r}(\mathcal{A})$ exists. We will show more precisely
that $\operatorname{ord}_{r}(\mathcal{A})=2^{h-2}+h-1$. For this purpose, it is enough to prove that any sufficiently large integer is a sum of at most $2^{h-2}+h-1$ distinct elements of \mathcal{A}.

It is readily seen that if n is large enough, any integer in $\left[x_{n}, 2^{h-2} x_{n}^{2}+x_{n}\right)$ is a sum of at most 2^{h-2} integers of $\left[x_{n}, x_{n}^{2}+x_{n}\right) \subset x_{n}+\mathcal{A}_{n}$. Moreover for any integer m in $\left[0,2^{h-1}-1\right]$, there exists some integer $t(m)$ verifying $0 \leq t(m) \leq h-1$ such that

$$
z_{m}=m x_{n}^{2}+t(m) x_{n}
$$

can be written as a sum of at most $h-1$ distinct elements of $\left\{x_{n}+2^{j} x_{n}^{2}: j=0,1,2, \ldots, h-\right.$ $2\} \subset x_{n}+\mathcal{A}_{n}$. In particular, we observe that $t(0)=0$ and $t\left(2^{h-1}-1\right)=h-1$. If we assume that n is large enough, then for any arbitrary integer m the difference $z_{m+1}-z_{m}$ which satisfies $0 \leq z_{m+1}-z_{m} \leq x_{n}^{2}+(h-1) x_{n}$ is less than the length of the interval $\left[x_{n}, 2^{h-2} x_{n}^{2}+x_{n}\right)$ by our assumption $h \geq 3$. Thus we infer that any integer in the sumset

$$
\left[x_{n}, 2^{h-2} x_{n}^{2}+x_{n}\right)+\left\{z_{m}: 0 \leq m \leq 2^{h-1}-1\right\}=\left[x_{n}, 2^{h-2} x_{n}^{2}+z_{2^{h-1}-1}+x_{n}\right)
$$

is a sum of at most $2^{h-2}+h-1$ distinct elements of $x_{n}+\mathcal{A}_{n}$. Since $z_{2^{h-1}-1}=\left(2^{h-1}-1\right) x_{n}^{2}+$ $(h-1) x_{n}$, we deduce that any integer in $\left[x_{n}, x_{n+1}\right)$ is a sum of at most $2^{h-2}+h-1$ distinct elements of $x_{n}+\mathcal{A}_{n}$. This being true for any large enough integer n, it follows that the basis \mathcal{A}, which is of order h, has a restricted order equal to $2^{h-2}+h-1$.

This ends the proof of Theorem 4.
Proof of Proposition 5. We denote by $a_{1}<a_{2}<\cdots$ the (increasing sequence of) elements of \mathcal{A} and by $b_{1}<b_{2}<\cdots$ the elements of $h \times \mathcal{A}$. We assume that $\Delta(h \times \mathcal{A})=\lim \sup _{i \rightarrow+\infty}\left(b_{i+1}-\right.$ b_{i}) is finite.

We define i_{0} to be the smallest integer such that $b_{i_{0}}>a_{1}+a_{2}+\cdots+a_{h}$. Hence, for any $i \geq i_{0}$, there exists an element of $\mathcal{A}, \alpha(i) \in\left\{a_{1}, a_{2}, \ldots, a_{h}\right\}$ such that $b_{i} \in h \times(\mathcal{A} \backslash\{\alpha(i)\})$; in particular this gives $c_{i}=\alpha(i)+b_{i} \in(h+1) \times \mathcal{A}$ for $i \geq i_{0}$.

If $i \geq i_{0}$ is large enough, then $\left(b_{i+1}-b_{i}\right) \leq \Delta(h \times \mathcal{A})$. Let j be the smallest integer greater than i such that $c_{j}>c_{i}$. We have

$$
0<c_{j}-c_{i} \leq c_{j}-c_{j-1}=\left(b_{j}-b_{j-1}\right)+(\alpha(j)-\alpha(j-1)) \leq \Delta(h \times \mathcal{A})+\left(a_{h}-a_{1}\right)
$$

This shows that for any large enough $c_{i} \in(h+1) \times \mathcal{A}$, there exists $c_{j} \in(h+1) \times \mathcal{A}$ such that $1 \leq c_{j}-c_{i} \leq \Delta(h \times \mathcal{A})+\left(a_{h}-a_{1}\right)$. From this, it clearly follows that

$$
\Delta((h+1) \times \mathcal{A}) \leq \Delta(h \times \mathcal{A})+\left(a_{h}-a_{1}\right),
$$

thus in particular $\Delta((h+1) \times \mathcal{A})$ is finite.
Proposition 5 follows by an easy induction.
Proof of Proposition 7. Let $X=\left\{x_{1}<x_{2}<\cdots<x_{i}<\cdots\right\}$ be a set of positive integers. We denote $D(X)=\max _{i \geq 1}\left(x_{i+1}-x_{i}\right)$ and recall that $\Delta(X)=\lim \sup _{i \rightarrow+\infty}\left(x_{i+1}-x_{i}\right)$.

Let $d>0$. We shall say that $X d$-covers an interval of integers I if the union of the balls centered on the elements of X with radius $d / 2$ contains I. In other words:
for all $r \in I$, there exists $x \in X$ such that $|x-r| \leq d / 2$.

Let $\mathcal{A}=\left\{a_{1}<a_{2}<\cdots<a_{i}<\cdots\right\}$. Assume $d=\Delta(2 \times \mathcal{A})<+\infty$. There exists an x_{0} such that $\left[x_{0},+\infty\right)$ is d-covered by $2 \times \mathcal{A}$. We shall see that for any $a_{i} \in \mathcal{A}$ large enough, the interval $\left[a_{i}+x_{0}, a_{i+1}+x_{0}\right)$ is d-covered by $3 \times \mathcal{A}$. This will imply $\Delta(3 \times \mathcal{A}) \leq d=\Delta(2 \times \mathcal{A})$.

First case : if $a_{i+1} \leq 2 a_{i}-x_{0}-d / 2$, then $a_{i}+\left((2 \times \mathcal{A}) \cap\left[0, a_{i}\right)\right)$ is contained in $3 \times \mathcal{A}$ and d-covers $\left[a_{i}+x_{0}, 2 a_{i}-d / 2\right)$ which contains $\left[a_{i}+x_{0}, a_{i+1}+x_{0}\right)$ by assumption.

Second case : if $a_{i+1}>2 a_{i}-x_{0}-d / 2$, then

$$
(2 \times \mathcal{A}) \cap\left[\frac{3 a_{i}}{2}, a_{i+1}\right) \subset 2 \times\left(\mathcal{A} \cap\left[\frac{a_{i}}{2}, a_{i}\right]\right) .
$$

Indeed, if a and b are two distinct elements of \mathcal{A} such that $3 a_{i} / 2 \leq a+b<a_{i+1}$, then $a \leq a_{i}$ and $b \leq a_{i}$; consequently we must have $a \geq a_{i} / 2$ and $b \geq a_{i} / 2$.

Let $a \in \mathcal{A}$ such that $d / 2+x_{0}<a<a_{i} / 2-d$ (we may always find such an a if a_{i} is large enough). Then

$$
a+\left((2 \times \mathcal{A}) \cap\left[\frac{3 a_{i}}{2}, a_{i+1}\right)\right) \subset 3 \times \mathcal{A}
$$

Since $\left[3 a_{i} / 2, a_{i+1}\right)$ is d-covered by $2 \times \mathcal{A}$, the interval $\left[3 a_{i} / 2+d / 2+a, a+a_{i+1}-d / 2\right)$ is d-covered by $3 \times \mathcal{A}$. Since, in view of the choice made for $a, 3 a_{i} / 2+d / 2+a \leq 2 a_{i}-d / 2$ and $a+a_{i+1}-d / 2 \geq a_{i+1}+x_{0}$, we infer that $\left[2 a_{i}-d / 2, a_{i+1}+x_{0}\right)$ is d-covered by $3 \times \mathcal{A}$. Moreover, the interval of integers $\left[a_{i}+x_{0}, 2 a_{i}-d / 2\right)$ is d-covered by $a_{i}+\left((2 \times \mathcal{A}) \cap\left[0, a_{i}\right)\right)$. Therefore we conclude that $\left[a_{i}+x_{0}, a_{i+1}+x_{0}\right)$ is d-covered by $3 \times \mathcal{A}$.

Proof of Theorem 9. Let \mathcal{A} be such that $d=\Delta(h \times \mathcal{A})<+\infty$. This implies that for any sufficiently large x,

$$
A(x)=|\mathcal{A} \cap[1, x]| \geq C x^{1 / h}
$$

for some positive constant C depending only on d. Now, the number of subsets of $\mathcal{A} \cap[1, x]$ with cardinality $h+1$ is equal to the binomial coefficient $\binom{A(x)}{h+1} \gg x^{1+1 / h}$ where the implied constant depends on both \mathcal{A} and h. Choose an x such that $\binom{A(x)}{h+1} \geq(h+2)!h^{h+2} x$. It thus exists an integer n less than $(h+1) x$ such that

$$
n=a_{1}^{(i)}+\cdots+a_{h+1}^{(i)}, \quad \text { for } i=1, \ldots,(h+1)!h^{h+2},
$$

where the $(h+1)!h^{h+2}$ sets $E_{i}=\left\{a_{1}^{(i)}, \ldots, a_{h+1}^{(i)}\right\}$ of $h+1$ pairwise distinct elements of \mathcal{A} are distinct. We now make use of the following intersection theorem for systems of sets due to Erdős and Rado (cf. Theorem III of [3]):

Lemma (Erdős-Rado). Let m, q, r be positive integers and $E_{i}, 1 \leq i \leq m$, be sets of cardinality at most r. If $m \geq r!q^{r+1}$, then there exist an increasing sequence $i_{1}<i_{2}<\cdots<i_{q+1}$ and a set F such that $E_{i_{j}} \cap E_{i_{k}}=F$ as soon as $1 \leq j<k \leq q+1$.

By applying this result with $q=h$ and $r=h+1$, we obtain that there are $h+1$ sets $E_{i_{j}}, j=1, \ldots, h+1$, and a set F, with $0 \leq|F| \leq h-1$, such that $E_{i_{j}} \cap E_{i_{k}}=F$ if $1 \leq j \neq k \leq h+1$. Observe that we must have $0 \leq|F| \leq h-1$ since the E_{i} 's are distinct and the sum of all elements of E_{i} is equal to n for any i. We obtain that the integer

$$
n^{\prime}=n-\sum_{a \in F} a
$$

can be written as a sum of $h+1-|F|$ pairwise distinct elements of \mathcal{A} in at least $h+1$ ways, such that all summands occurring in any of these representations of n^{\prime} in $(h+1-|F|) \times \mathcal{A}$ are pairwise distinct (equivalently, this means that the set $\cup_{j=1}^{h+1} E_{i_{j}} \backslash F$ has exactly $(h+1)(h+$ $1-|F|)$ distinct elements). This shows that

$$
n^{\prime}+(h \times \mathcal{A}) \subset(2 h+1-|F|) \times \mathcal{A},
$$

and finally $\Delta(h \times \mathcal{A})=\Delta\left(n^{\prime}+(h \times \mathcal{A})\right) \geq \Delta\left(h_{1} \times \mathcal{A}\right)$, where $h_{1}=2 h+1-|F|$.
Iterating this process, we get an increasing sequence $\left(h_{j}\right)_{j \geq 0}$, with $h_{0}=h$, such that

$$
\Delta\left(h_{j} \times \mathcal{A}\right)=\Delta\left(n^{\prime}+\left(h_{j} \times \mathcal{A}\right)\right) \geq \Delta\left(h_{j+1} \times \mathcal{A}\right),
$$

where h_{j+1} is of the form $h_{j}+h+1-\left|F_{j}\right|$ for some set F_{j} satisfying $0 \leq\left|F_{j}\right| \leq h-1$. We conclude that $h_{j}+2 \leq h_{j+1} \leq h_{j}+h+1$, as stated.

Proof of Theorem 10. Let h be a positive integer and \mathcal{A} be a sequence of integers. We put $\mathcal{B}=h \mathcal{A}$ and assume that $\underline{\mathrm{d}} \mathcal{B} \geq \beta>0$. Define

$$
j=\left\lceil\left(1+\frac{1}{h}\right) \frac{1}{\beta}\right\rceil .
$$

We thus have

$$
j \underline{\mathrm{~d}} \mathcal{B} \geq 1+\frac{1}{h}>1 \geq \underline{\mathrm{d}} j \mathcal{B} .
$$

By Kneser's theorem on addition of sequences of integers (cf. [9, 10], [4] or [12]), we obtain that there exist an integer $g \geq 1$ and a sequence \mathcal{B}_{1} of integers such that

$$
\mathcal{B} \subset \mathcal{B}_{1}, \quad g+\mathcal{B}_{1} \subset \mathcal{B}_{1}, \quad j \mathcal{B}_{1} \backslash j \mathcal{B} \text { is finite }
$$

and

We may assume that g is the smallest integer satisfying these conditions.
Since $\underline{\mathrm{d}} \mathcal{B}_{1} \geq \underline{\mathrm{d}} \mathcal{B}=\beta$, we deduce from the previous inequality that

$$
g \leq \frac{j-1}{j \beta-1} .
$$

Hence $g \leq(j-1) h \leq j h$.
We denote by $\overline{\mathcal{A}} \subset \mathbb{Z} / g \mathbb{Z}$ the image of \mathcal{A} by the canonical homomorphism of \mathbb{Z} onto $\mathbb{Z} / g \mathbb{Z}$, the group of residue classes modulo g. Let H be the period of $g \overline{\mathcal{A}}$, that is the subgroup of $\mathbb{Z} / g \mathbb{Z}$ formed by the elements c such that $c+g \overline{\mathcal{A}}=g \overline{\mathcal{A}}$. Since $g \leq j h$, the sumset $j h \overline{\mathcal{A}}=j \overline{\mathcal{B}}=j \overline{\mathcal{B}_{1}}$ satisfies

$$
j \overline{\mathcal{B}_{1}}+H=j \overline{\mathcal{B}_{1}} .
$$

It therefore follows from the minimality of g that $H=\{0\}$. Thus, from a repeated application of Kneser's theorem on addition of sets in an abelian group (see [9, 10], [8] or [11]), we deduce

$$
g \geq|g \overline{\mathcal{A}}| \geq g(|\overline{\mathcal{A}}|-1)+1,
$$

which implies $|\overline{\mathcal{A}}|=1$. Therefore there exists an integer a_{0} such that any element of \mathcal{A} can be written in the form $a_{0}+g x$ for some integer x. We define $\mathcal{A}_{1}=\left\{\left(a-a_{0}\right) / g: a \in \mathcal{A}\right\} \subset \mathbb{N}$.

Since $j h \mathcal{A}=j \mathcal{B} \sim j \mathcal{B}_{1}$, we get $j h \mathcal{A}_{1} \sim \mathbb{N}$. Assuming the validity of Conjecture 2, we obtain that $\Delta\left(k(j h) \times \mathcal{A}_{1}\right)$ is finite, and accordingly $\Delta(k(j h) \times \mathcal{A})<+\infty$.

References

[1] P. Erdős, Some of my new and almost new problems and results in combinatorial number theory, Number Theory (Eger, 1996), de Gruyter, Berlin, 1998.
[2] P. Erdős and R. L. Graham, "Old and new problems and results in combinatorial number theory", Monographies de L'Enseignement Mathématique 28, Enseign. Math. (1980).
[3] P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85-90.
[4] H. Halberstam and K. Roth, "Sequences", Oxford University Press, 1966.
[5] N. Hegyvári, F. Hennecart and A. Plagne, A proof of two Erdős' conjectures on restricted addition and further results, J. Reine Angew. Math. 560 (2003), 199-220.
[6] F. Hennecart, On the restricted order of asymptotic bases of order two, Ramanujan J. 9 (2005), 123-130.
[7] J. B. Kelly, Restricted bases, Amer. J. Math. 79 (1957), 258-264.
[8] J. H. B. Kemperman, On small sumsets in an abelian group, Acta Math. 103 (1960), 63-88.
[9] M. Kneser, Abschätzungen der asymptotischen Dichte von Summenmengen, Math. Z. 58 (1953), 459-484.
[10] M. Kneser, Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen, Math. Z. 61 (1955), 429-434.
[11] M. B. Nathanson, "Additive number theory: Inverse problems and the geometry of sumsets", Graduate Texts in Mathematics 165, Springer-Verlag, 1996.
[12] A. Plagne, À propos de la fonction X d'Erdős et Graham, Ann. Inst. Fourier 54 (2004), 1717-1767.

```
Norbert HegyvÁRI
Department of Mathematics
Eötvös University
Budapest, Pázmány P. st. 1/C
P.O. Box 120
H-1518 Budapest
Hungary
E-mail address: hegyvari@elte.hu
François Hennecart
LaMUSE
Université de Saint-Étienne
4 2 0 2 3 \text { Saint-Étienne Cedex 2}
France
E-mail address: francois.hennecart@univ-st-etienne.fr
Alain Plagne
Centre de Mathématiques Laurent Schwartz
UMR 7640 du CNRS
École polytechnique
9 1 1 2 8 ~ P a l a i s e a u ~ C e d e x ~
France
E-mail address: plagne@math.polytechnique.fr
```


[^0]: The research of the two first-named authors is supported by the "Balaton Program Project" and OTKA grants T0 43623, 49693, 38396.

