ANSWER TO A QUESTION BY BURR AND ERDŐS ON RESTRICTED ADDITION, AND RELATED RESULTS

N. HEGYVÁRI, F. HENNECART AND A. PLAGNE

ABSTRACT. We study the gaps in the sequence of sums of h pairwise distinct elements of a given sequence \mathcal{A} in relation with the gaps in the sequence of sums of h not necessarily distinct elements of \mathcal{A} . We present several results on this topic. One of them gives a negative answer to a question by Burr and Erdős.

2000 Mathematics Subject Classification: 11B05, 11B13, 11P99

1. Introduction

In [1], Erdős writes:

Here is a really recent problem of Burr and myself : An infinite sequence of integers $a_1 < a_2 < \cdots$ is called an asymptotic basis of order k, if every large integer is the sum of k or fewer of the a's. Let now $b_1 < b_2 < \cdots$ be the sequence of integers which is *(sic)* the sum of k or fewer distinct a's. Is it true that

$$\limsup(b_{i+1} - b_i) < \infty.$$

In other words the gaps between the b's are bounded. The bound may of course depend on k and on the sequence $a_1 < a_2 < \cdots$.

For $h \ge 1$, we will use the following notation for addition and restricted addition: $h\mathcal{A}$ will denote the set of sums of h not necessarily distinct elements of \mathcal{A} , and $h \times \mathcal{A}$, the set of sums of h pairwise distinct elements of \mathcal{A} .

If \mathcal{A} is an increasing sequence of integers $a_1 < a_2 < \cdots$, the largest asymptotic gap in \mathcal{A} , that is

$$\limsup_{i \to +\infty} (a_{i+1} - a_i),$$

is denoted by $\Delta(\mathcal{A})$.

We shall write $\mathcal{A} \sim \mathbb{N}$ to denote that a set of integers \mathcal{A} contains all but finitely many positive integers. According to the Erdős-Burr definition, a set of integers \mathcal{A} is an asymptotic basis of order h if h is the smallest integer such that $\bigcup_{j=1}^{h} j\mathcal{A} \sim \mathbb{N}$, or equivalently such that $h(\mathcal{A} \cup \{0\}) \sim \mathbb{N}$.

The lower asymptotic density of a set of integers \mathcal{A} is defined by

$$\underline{\mathbf{d}}\mathcal{A} = \liminf_{x \to +\infty} \frac{|\{a \in \mathcal{A} \text{ such that } 1 \le a \le x\}|}{x},$$

The research of the two first-named authors is supported by the "Balaton Program Project" and OTKA grants T0 43623, 49693, 38396.

where the notation |F| denotes the cardinality of a finite set F.

The question of Burr and Erdős takes the shorter form: is it true that if $h(\{0\} \cup \mathcal{A}) \sim \mathbb{N}$, then

$$\Delta(\mathcal{A} \cup 2 \times \mathcal{A} \cup \cdots \cup h \times \mathcal{A}) < +\infty?$$

We may also ask the following even more natural question: is it true that $\Delta(h\mathcal{A}) < +\infty$ (or at least $h\mathcal{A} \sim \mathbb{N}$) implies $\Delta(h \times \mathcal{A}) < +\infty$? This would imply (and thus give another proof of) the main result in [5] which states that if \mathcal{A} is an asymptotic basis of order h, then $h \times \mathcal{A}$ has a positive lower asymptotic density, as it was conjectured in [2].

We will show that the answer to both questions is no, except if h = 2:

Theorem 1. (i) If $(\mathcal{A} \cup 2\mathcal{A}) \sim \mathbb{N}$ then

$$\Delta(\mathcal{A} \cup 2 \times \mathcal{A}) \le 2.$$

If $2\mathcal{A} \sim \mathbb{N}$ then $\Delta(2 \times \mathcal{A}) \leq 2$. (ii) Let $h \geq 3$. There exists a set \mathcal{A} such that $h(\{0\} \cup \mathcal{A}) \sim \mathbb{N}$ and

$$\Delta(\mathcal{A} \cup 2 \times \mathcal{A} \cup \cdots \cup h \times \mathcal{A}) = +\infty.$$

There exists a set \mathcal{A} such that $h\mathcal{A} \sim \mathbb{N}$ and $\Delta(h \times \mathcal{A}) = +\infty$.

The restricted order of an asymptotic basis \mathcal{A} , if it exists, is defined as the smallest integer h such that any large enough integer is the sum of h or fewer pairwise distinct elements of \mathcal{A} . We denote it by $\operatorname{ord}_r(\mathcal{A})$. In general, asymptotic bases do not have to possess a (finite) restricted order. However, in the special case of asymptotic bases of order 2, the situation is more simple and can be precisely described (see [7] and [6]): indeed, being given an arbitrary asymptotic basis \mathcal{A} of order 2, its restricted order is known to exist and to satisfy $2 \leq \operatorname{ord}_r(\mathcal{A}) \leq 4$; moreover any integral value in this range can be achieved with asymptotic bases \mathcal{A} such that $2\mathcal{A} = \mathbb{N}$. In particular, there exist asymptotic bases \mathcal{A} containing 0 verifying $\operatorname{ord}_r(\mathcal{A}) > 2$ and for which we consequently have $\Delta(2 \times \mathcal{A}) = \Delta(\mathcal{A} \cup 2 \times \mathcal{A}) \geq 2$. This shows that assertion (i) in Theorem 1 is optimal.

Having Theorem 1 at hand, the next natural question is then: assume that $h\mathcal{A} \sim \mathbb{N}$, that is $h\mathcal{A}$ contains all but finitely many positive integers, is it true that there exists an integer ksuch that $\Delta(k \times \mathcal{A}) < +\infty$? If so, k could depend on \mathcal{A} . But, suppose that such a k exists for all \mathcal{A} satisfying $h\mathcal{A} \sim \mathbb{N}$: is this value of k uniformly (with respect to \mathcal{A}) bounded from above (in term of h)? If so, write k(h) for the maximal possible value:

 $k(h) = \max_{h \mathcal{A} \sim \mathbb{N}} \min\{k \in \mathbb{N} \text{ such that } \Delta(k \times \mathcal{A}) \text{ is finite}\}.$

Theorem 1 implies that k(2) does exist and is equal to 2. No other value of k(h) is known but we believe that the following conjecture is true.

Conjecture 2. The function k(h) is well-defined in the sense that for any integer $h \ge 1$, k(h) is finite.

If this conjecture is true, what is the asymptotic behaviour of k(h)? Our proof of Theorem 1 will be based on an explicit counterexample to the Erdős-Burr conjecture. This construction will lead in fact to a lower bound of k(h), which obviously implies Theorem 1 for $h \ge 3$. **Theorem 3.** Let $h \ge 2$. We have

$$k(h) \ge 2^{h-2} + h - 1.$$

This study is closely related to the following problem: if \mathcal{A} is an asymptotic basis of order h which admits a (finite) restricted order $\operatorname{ord}_r(\mathcal{A})$, is it true that $\operatorname{ord}_r(\mathcal{A})$ is bounded in terms of h? If so, let us define f(h) to be the maximal possible value taken by $\operatorname{ord}_r(\mathcal{A})$, when \mathcal{A} runs over the bases of order h having a finite restricted order. For h = 2, the question has been completely solved in [6] where it is shown that f(2) = 4. For $h \geq 3$, if we reuse the example leading to the bound of Theorem 3, we obtain an explicit lower bound for f(h).

Theorem 4. Let $h \ge 3$. One has

$$f(h) \ge 2^{h-2} + h - 1.$$

In another direction, we can study, for a given set of positive integers \mathcal{A} , the asymptotic behaviour of the sequence $(\Delta(h \times \mathcal{A}))_{h \ge h_0}$. The first observation is that this sequence is well-defined for some h_0 as soon as $\Delta(h_0 \times \mathcal{A})$ is finite. Indeed we have the following proposition.

Proposition 5. Let \mathcal{A} be a set of positive integers. Assume that $\Delta(h_0 \times \mathcal{A})$ is finite for some integer h_0 , then for any $h \ge h_0$, $\Delta(h \times \mathcal{A})$ is finite.

This result implies that

 $k(h) = 1 + \max_{h \mathcal{A} \sim \mathbb{N}} \max\{k \in \mathbb{N} \text{ such that } \Delta(k \times \mathcal{A}) = +\infty\}.$

According to what obviously happens in the case of usual addition, it would be of some interest to establish, for any given set of integers \mathcal{A} , the monotonicity of the sequence $(\Delta(h \times \mathcal{A}))_{h>1}$:

Conjecture 6. Let \mathcal{A} be a set of positive integers, then the sequence $(\Delta(h \times \mathcal{A}))_{h \ge 1}$ is non-increasing.

We will observe firstly the following:

Proposition 7. Let \mathcal{A} be a set of positive integers, then

$$\Delta(3 \times \mathcal{A}) \le \Delta(2 \times \mathcal{A}).$$

More interestingly, we will show the following partial result in the direction of Conjecture 6:

Theorem 8. Let \mathcal{A} be a set of positive integers. Then there exists an increasing sequence of integers $(h_j)_{j\geq 1}$ such that $(\Delta(h_j \times \mathcal{A}))_{j\geq 1}$ is non-increasing.

This theorem clearly implies that for a given set of positive integers \mathcal{A} , the inequality $\Delta((h+1) \times \mathcal{A}) \leq \Delta(h \times \mathcal{A})$ holds for infinitely many positive integers h. Theorem 8 is a direct consequence of the following more precise result.

Theorem 9. Let \mathcal{A} be a set of positive integers and h be the smallest positive integer such that $\Delta(h \times \mathcal{A})$ is finite. Then there exists an increasing sequence of integers $(h_j)_{j\geq 0}$ with $h_0 = h$ such that for any $j \geq 1$, one has $h_j + 2 \leq h_{j+1} \leq h_j + h + 1$ and $\Delta(h_{j+1} \times \mathcal{A}) \leq \Delta(h_j \times \mathcal{A})$.

This shows that for a given set of positive integers \mathcal{A} , the inequality $\Delta((h+1) \times \mathcal{A}) \leq \Delta(h \times \mathcal{A})$ holds for any h belonging to some set of positive integers having a positive lower asymptotic density bounded from below by 1/(h+1).

Let \mathcal{A} be a set of integers satisfying the weaker condition $\underline{d}h\mathcal{A} > 0$ (instead of $h\mathcal{A} \sim \mathbb{N}$). We will establish in Theorem 10 that the validity of Conjecture 2 would imply that $\Delta(k \times \mathcal{A})$ is finite for some integer k under this weaker condition. Clearly this result, if true, could not be uniform in \mathcal{A} . Henceforth, we introduce, for $\beta > 0$, the quantity

$$k_1(\beta, h) = \max_{\underline{d}h\mathcal{A} \ge \beta} \min \left\{ k \in \mathbb{N} \text{ such that } \Delta(k \times \mathcal{A}) \text{ is finite} \right\}.$$

Our final result shows that k_1 is as well-defined as k, in some sense.

Theorem 10. Assume that Conjecture 2 holds. Then for any real number β such that $0 < \beta \leq 1$ and any positive integer h, we have

$$k_1(\beta, h) \le k \left(\left\lceil \left(1 + \frac{1}{h}\right) \frac{1}{\beta} \right\rceil h \right),$$

where $\lceil u \rceil$ is the ceiling of u.

2. The proofs

For any real numbers x and y, [x, y] and [x, y) will denote the sets of all integers n (called intervals of integers) such that $x \le n \le y$ and $x \le n < y$ respectively.

Proof of Theorems 1, 3 and 4. Let us first consider the case h = 2. Clearly the odd elements in 2 \mathcal{A} do belong to $2 \times \mathcal{A}$. This implies that if $2\mathcal{A} \sim \mathbb{N}$, then $\Delta(2 \times \mathcal{A}) \leq 2$. This also implies that the odd elements in $\mathcal{A} \cup 2\mathcal{A}$ are in $\mathcal{A} \cup (2 \times \mathcal{A})$. It follows that $\mathcal{A} \cup 2\mathcal{A} \sim \mathbb{N}$ implies $\Delta(\mathcal{A} \cup (2 \times \mathcal{A})) \leq 2$.

In the case $h \ge 3$, it is enough to construct an explicit example. We first introduce the sequence defined by $x_0 = h$ and $x_{n+1} = (3 \cdot 2^{h-2} - 1)x_n^2 + hx_n$ for $n \ge 0$, and let

$$\mathcal{A}_n = [0, x_n^2) \cup \left\{ 2^j x_n^2 : j = 0, 1, 2, \dots, h - 2 \right\}.$$

Finally we define

$$\mathcal{A} = \{0\} \cup \bigcup_{n \ge 0} \left(x_n + \mathcal{A}_n \right).$$

Since any positive integer less than or equal to $2^{h-1}-2$ can be written as a sum of at most h-2 (distinct) powers of 2 taken from $\{2^j : j = 0, 1, ..., h-2\}$, any integer in $[0, (2^{h-1}-1)x_n^2)$ can be written as a sum of h-1 elements of \mathcal{A}_n . Thus it follows

$$[0, (3 \cdot 2^{h-2} - 1)x_n^2) \subset \{0, 2^{h-2}x_n^2\} + [0, (2^{h-1} - 1)x_n^2) \subset \{0, 2^{h-2}x_n^2\} + (h-1)\mathcal{A}_n \subset h\mathcal{A}_n.$$

We therefore infer that $[hx_n, x_{n+1}) \subset h(x_n + \mathcal{A}_n)$. Moreover, since $hx_n \leq x_n^2$, we have $[x_n, hx_n] \subset [x_n, x_n^2] \subset x_n + \mathcal{A}_n$. It follows that, for any $n \geq 0$, we have

$$[x_n, x_{n+1}) \subset h((x_n + \mathcal{A}_n) \cup \{0\}) \subset h\mathcal{A}.$$

Consequently $h\mathcal{A} \sim \mathbb{N}$.

On the other hand, $(h-1)\mathcal{A} \not\sim \mathbb{N}$. Indeed, this assertion follows from the more precise fact that, for any $n \geq 0$, no integer in the range $[(2^{h-1}-1)x_n^2 + (h-1)x_n + 1, 2^{h-1}x_n^2 - 1]$ (an

interval of integers with a length tending to infinity with n) can be written as a sum of h-1 elements of A. Let us prove this fact by contradiction and assume the existence of an integer

$$u \in \left[(2^{h-1} - 1)x_n^2 + (h-1)x_n + 1, 2^{h-1}x_n^2 - 1 \right] \cap (h-1)\mathcal{A}.$$

Since we have (using $h \ge 3$)

$$u \le 2^{h-1} x_n^2 - 1 < x_{n+1},$$

we deduce that

$$u \in (h-1)\left(\{0\} \cup \bigcup_{i=0}^{n} (x_i + \mathcal{A}_i)\right)$$

$$\subset (h-1)\left([0, x_n + x_n^2] \cup \{2^j x_n^2 + x_n : j = 1, 2, \dots, h-2\}\right).$$

In other words, we can express u as a sum of the form

$$u = \alpha_{h-2} \left(2^{h-2} x_n^2 + x_n \right) + \dots + \alpha_1 \left(2x_n^2 + x_n \right) + \rho \left(x_n + x_n^2 \right)$$
$$= \left(2^{h-2} \alpha_{h-2} + \dots + 2\alpha_1 + \rho \right) x_n^2 + \left(\alpha_{h-2} + \dots + \alpha_1 + \rho \right) x_n,$$

with $\alpha_1, \ldots, \alpha_{h-2} \in \mathbb{N}$, ρ a positive real number and

 $\alpha_{h-2} + \dots + \alpha_1 + \rho \le h - 1.$

If we denote by $[\rho]$ the integral part of ρ , this implies that

$$\left(2^{h-2}\alpha_{h-2} + \dots + 2\alpha_1 + [\rho]\right)x_n^2 \le u \le \left(2^{h-2}\alpha_{h-2} + \dots + 2\alpha_1 + \rho\right)x_n^2 + (h-1)x_n$$

and in view of $u \in [(2^{h-1}-1)x_n^2 + (h-1)x_n + 1, 2^{h-1}x_n^2 - 1]$, we deduce that

$$2^{h-2}\alpha_{h-2} + \dots + 2\alpha_1 + [\rho] \le 2^{h-1} - 1$$

and

$$2^{h-2}\alpha_{h-2} + \dots + 2\alpha_1 + \rho \ge 2^{h-1} - 1.$$

We therefore obtain $2^{h-2}\alpha_{h-2} + \cdots + 2\alpha_1 + [\rho] = 2^{h-1} - 1$. We conclude by the facts that $\alpha_{h-2} + \cdots + \alpha_1 + [\rho] \leq h-1$ and that the only decomposition of $2^{h-1} - 1$ as a sum of at most h-1 powers of 2 is $2^{h-1} - 1 = 1 + 2 + 2^2 + \cdots + 2^{h-2}$ that $\alpha_1 = \cdots = \alpha_{h-2} = [\rho] = 1$. From this, we deduce that $\rho \leq h-1-\alpha_1 - \cdots - \alpha_{h-2} = 1$ and finally $\rho = 1$ which gives $u = (2^{h-1} - 1)x_n^2 + (h-1)x_n$, a contradiction. Since $h\mathcal{A} \sim \mathbb{N}$, we deduce that \mathcal{A} is an asymptotic basis of order h.

Concerning restricted addition, we see that for $l \ge h - 2$, we have

$$\max(l \times \mathcal{A}_n) \le (2^{h-1} - 2)x_n^2 + (l - h + 2)x_n^2 = (2^{h-1} + l - h)x_n^2.$$

Hence

$$x_{n+1} - \max\left(l \times (x_n + \mathcal{A}_n)\right) \ge (2^{h-2} - l + h - 1)x_n^2 + (h - l)x_n$$

If $l \leq 2^{h-2} + h - 2$, then $x_{n+1} - \max(l \times (x_n + \mathcal{A}_n)) \geq x_n^2 - (2^{h-2} - 2)x_n$ which tends to infinity as n tends to infinity. It follows that $k(h) \geq 2^{h-2} + h - 1$, as asserted in Theorem 3.

We now complete the proof of Theorem 4. It is clear from the preceding computations that if the basis \mathcal{A} defined above has a (finite) restricted order $\operatorname{ord}_r(\mathcal{A})$ then it must satisfy $\operatorname{ord}_r(\mathcal{A}) \geq 2^{h-2} + h - 1$. Our goal is to prove that $\operatorname{ord}_r(\mathcal{A})$ exists. We will show more precisely that $\operatorname{ord}_r(\mathcal{A}) = 2^{h-2} + h - 1$. For this purpose, it is enough to prove that any sufficiently large integer is a sum of at most $2^{h-2} + h - 1$ distinct elements of \mathcal{A} .

It is readily seen that if n is large enough, any integer in $[x_n, 2^{h-2}x_n^2 + x_n)$ is a sum of at most 2^{h-2} integers of $[x_n, x_n^2 + x_n) \subset x_n + \mathcal{A}_n$. Moreover for any integer m in $[0, 2^{h-1} - 1]$, there exists some integer t(m) verifying $0 \leq t(m) \leq h-1$ such that

$$z_m = mx_n^2 + t(m)x_n$$

can be written as a sum of at most h-1 distinct elements of $\{x_n+2^jx_n^2: j=0,1,2,\ldots,h-2\} \subset x_n + \mathcal{A}_n$. In particular, we observe that t(0) = 0 and $t(2^{h-1}-1) = h-1$. If we assume that n is large enough, then for any arbitrary integer m the difference $z_{m+1}-z_m$ which satisfies $0 \leq z_{m+1}-z_m \leq x_n^2 + (h-1)x_n$ is less than the length of the interval $[x_n, 2^{h-2}x_n^2 + x_n)$ by our assumption $h \geq 3$. Thus we infer that any integer in the sumset

$$[x_n, 2^{h-2}x_n^2 + x_n) + \{z_m : 0 \le m \le 2^{h-1} - 1\} = [x_n, 2^{h-2}x_n^2 + z_{2^{h-1}-1} + x_n)$$

is a sum of at most $2^{h-2} + h - 1$ distinct elements of $x_n + A_n$. Since $z_{2^{h-1}-1} = (2^{h-1}-1)x_n^2 + (h-1)x_n$, we deduce that any integer in $[x_n, x_{n+1})$ is a sum of at most $2^{h-2} + h - 1$ distinct elements of $x_n + A_n$. This being true for any large enough integer n, it follows that the basis A, which is of order h, has a restricted order equal to $2^{h-2} + h - 1$.

This ends the proof of Theorem 4.

Proof of Proposition 5. We denote by $a_1 < a_2 < \cdots$ the (increasing sequence of) elements of \mathcal{A} and by $b_1 < b_2 < \cdots$ the elements of $h \times \mathcal{A}$. We assume that $\Delta(h \times \mathcal{A}) = \limsup_{i \to +\infty} (b_{i+1} - b_i)$ is finite.

We define i_0 to be the smallest integer such that $b_{i_0} > a_1 + a_2 + \cdots + a_h$. Hence, for any $i \ge i_0$, there exists an element of \mathcal{A} , $\alpha(i) \in \{a_1, a_2, \ldots, a_h\}$ such that $b_i \in h \times (\mathcal{A} \setminus \{\alpha(i)\})$; in particular this gives $c_i = \alpha(i) + b_i \in (h+1) \times \mathcal{A}$ for $i \ge i_0$.

If $i \ge i_0$ is large enough, then $(b_{i+1} - b_i) \le \Delta(h \times \mathcal{A})$. Let j be the smallest integer greater than i such that $c_j > c_i$. We have

$$0 < c_j - c_i \le c_j - c_{j-1} = (b_j - b_{j-1}) + (\alpha(j) - \alpha(j-1)) \le \Delta(h \times \mathcal{A}) + (a_h - a_1).$$

This shows that for any large enough $c_i \in (h+1) \times A$, there exists $c_j \in (h+1) \times A$ such that $1 \leq c_j - c_i \leq \Delta(h \times A) + (a_h - a_1)$. From this, it clearly follows that

$$\Delta((h+1) \times \mathcal{A}) \le \Delta(h \times \mathcal{A}) + (a_h - a_1),$$

thus in particular $\Delta((h+1) \times \mathcal{A})$ is finite.

Proposition 5 follows by an easy induction.

Proof of Proposition 7. Let $X = \{x_1 < x_2 < \cdots < x_i < \cdots\}$ be a set of positive integers. We denote $D(X) = \max_{i \ge 1} (x_{i+1} - x_i)$ and recall that $\Delta(X) = \limsup_{i \to +\infty} (x_{i+1} - x_i)$.

Let d > 0. We shall say that X d-covers an interval of integers I if the union of the balls centered on the elements of X with radius d/2 contains I. In other words:

for all
$$r \in I$$
, there exists $x \in X$ such that $|x - r| \le d/2$.

Let $\mathcal{A} = \{a_1 < a_2 < \cdots < a_i < \cdots\}$. Assume $d = \Delta(2 \times \mathcal{A}) < +\infty$. There exists an x_0 such that $[x_0, +\infty)$ is *d*-covered by $2 \times \mathcal{A}$. We shall see that for any $a_i \in \mathcal{A}$ large enough, the interval $[a_i + x_0, a_{i+1} + x_0)$ is *d*-covered by $3 \times \mathcal{A}$. This will imply $\Delta(3 \times \mathcal{A}) \leq d = \Delta(2 \times \mathcal{A})$.

First case : if $a_{i+1} \leq 2a_i - x_0 - d/2$, then $a_i + ((2 \times \mathcal{A}) \cap [0, a_i))$ is contained in $3 \times \mathcal{A}$ and d-covers $[a_i + x_0, 2a_i - d/2)$ which contains $[a_i + x_0, a_{i+1} + x_0)$ by assumption.

Second case : if $a_{i+1} > 2a_i - x_0 - d/2$, then

$$(2 \times \mathcal{A}) \cap \left[\frac{3a_i}{2}, a_{i+1}\right) \subset 2 \times \left(\mathcal{A} \cap \left[\frac{a_i}{2}, a_i\right]\right).$$

Indeed, if a and b are two distinct elements of \mathcal{A} such that $3a_i/2 \leq a+b < a_{i+1}$, then $a \leq a_i$ and $b \leq a_i$; consequently we must have $a \geq a_i/2$ and $b \geq a_i/2$.

Let $a \in \mathcal{A}$ such that $d/2 + x_0 < a < a_i/2 - d$ (we may always find such an a if a_i is large enough). Then

$$a + \left((2 \times \mathcal{A}) \cap \left[\frac{3a_i}{2}, a_{i+1} \right) \right) \subset 3 \times \mathcal{A}.$$

Since $[3a_i/2, a_{i+1})$ is *d*-covered by $2 \times \mathcal{A}$, the interval $[3a_i/2 + d/2 + a, a + a_{i+1} - d/2)$ is *d*-covered by $3 \times \mathcal{A}$. Since, in view of the choice made for a, $3a_i/2 + d/2 + a \leq 2a_i - d/2$ and $a + a_{i+1} - d/2 \geq a_{i+1} + x_0$, we infer that $[2a_i - d/2, a_{i+1} + x_0)$ is *d*-covered by $3 \times \mathcal{A}$. Moreover, the interval of integers $[a_i + x_0, 2a_i - d/2)$ is *d*-covered by $a_i + ((2 \times \mathcal{A}) \cap [0, a_i))$. Therefore we conclude that $[a_i + x_0, a_{i+1} + x_0)$ is *d*-covered by $3 \times \mathcal{A}$.

Proof of Theorem 9. Let \mathcal{A} be such that $d = \Delta(h \times \mathcal{A}) < +\infty$. This implies that for any sufficiently large x,

$$A(x) = |\mathcal{A} \cap [1, x]| \ge Cx^{1/h},$$

for some positive constant C depending only on d. Now, the number of subsets of $\mathcal{A} \cap [1, x]$ with cardinality h + 1 is equal to the binomial coefficient $\binom{A(x)}{h+1} \gg x^{1+1/h}$ where the implied constant depends on both \mathcal{A} and h. Choose an x such that $\binom{A(x)}{h+1} \ge (h+2)! h^{h+2}x$. It thus exists an integer n less than (h+1)x such that

$$n = a_1^{(i)} + \dots + a_{h+1}^{(i)}, \quad \text{for } i = 1, \dots, (h+1)! h^{h+2}$$

where the $(h+1)! h^{h+2}$ sets $E_i = \{a_1^{(i)}, \ldots, a_{h+1}^{(i)}\}$ of h+1 pairwise distinct elements of \mathcal{A} are distinct. We now make use of the following intersection theorem for systems of sets due to Erdős and Rado (cf. Theorem III of [3]):

Lemma (Erdős-Rado). Let m, q, r be positive integers and $E_i, 1 \le i \le m$, be sets of cardinality at most r. If $m \ge r! q^{r+1}$, then there exist an increasing sequence $i_1 < i_2 < \cdots < i_{q+1}$ and a set F such that $E_{i_j} \cap E_{i_k} = F$ as soon as $1 \le j < k \le q+1$.

By applying this result with q = h and r = h + 1, we obtain that there are h + 1 sets E_{i_j} , $j = 1, \ldots, h + 1$, and a set F, with $0 \leq |F| \leq h - 1$, such that $E_{i_j} \cap E_{i_k} = F$ if $1 \leq j \neq k \leq h + 1$. Observe that we must have $0 \leq |F| \leq h - 1$ since the E_i 's are distinct and the sum of all elements of E_i is equal to n for any i. We obtain that the integer

$$n' = n - \sum_{a \in F} a$$

can be written as a sum of h + 1 - |F| pairwise distinct elements of \mathcal{A} in at least h + 1 ways, such that all summands occurring in any of these representations of n' in $(h+1-|F|) \times \mathcal{A}$ are pairwise distinct (equivalently, this means that the set $\bigcup_{j=1}^{h+1} E_{i_j} \smallsetminus F$ has exactly (h+1)(h+1-|F|) distinct elements). This shows that

$$n' + (h \times \mathcal{A}) \subset (2h + 1 - |F|) \times \mathcal{A}_{\mathcal{A}}$$

and finally $\Delta(h \times \mathcal{A}) = \Delta(n' + (h \times \mathcal{A})) \ge \Delta(h_1 \times \mathcal{A})$, where $h_1 = 2h + 1 - |F|$.

Iterating this process, we get an increasing sequence $(h_j)_{j\geq 0}$, with $h_0 = h$, such that

$$\Delta(h_j \times \mathcal{A}) = \Delta(n' + (h_j \times \mathcal{A})) \ge \Delta(h_{j+1} \times \mathcal{A}),$$

where h_{j+1} is of the form $h_j + h + 1 - |F_j|$ for some set F_j satisfying $0 \le |F_j| \le h - 1$. We conclude that $h_j + 2 \le h_{j+1} \le h_j + h + 1$, as stated.

Proof of Theorem 10. Let h be a positive integer and \mathcal{A} be a sequence of integers. We put $\mathcal{B} = h\mathcal{A}$ and assume that $\underline{d}\mathcal{B} \ge \beta > 0$. Define

$$j = \left\lceil \left(1 + \frac{1}{h}\right) \frac{1}{\beta} \right\rceil.$$

We thus have

$$j\underline{\mathbf{d}}\mathcal{B} \ge 1 + \frac{1}{h} > 1 \ge \underline{\mathbf{d}}j\mathcal{B}.$$

By Kneser's theorem on addition of sequences of integers (cf. [9, 10], [4] or [12]), we obtain that there exist an integer $g \ge 1$ and a sequence \mathcal{B}_1 of integers such that

$$\mathcal{B} \subset \mathcal{B}_1, \quad g + \mathcal{B}_1 \subset \mathcal{B}_1, \quad j\mathcal{B}_1 \smallsetminus j\mathcal{B} \text{ is finite},$$

and

$$\underline{\mathrm{d}} j \mathcal{B}_1 \geq j \underline{\mathrm{d}} \mathcal{B}_1 - \frac{j-1}{g}.$$

We may assume that g is the smallest integer satisfying these conditions.

Since $\underline{d}\mathcal{B}_1 \geq \underline{d}\mathcal{B} = \beta$, we deduce from the previous inequality that

$$g \le \frac{j-1}{j\beta - 1}.$$

Hence $g \leq (j-1)h \leq jh$.

We denote by $\overline{\mathcal{A}} \subset \mathbb{Z}/g\mathbb{Z}$ the image of \mathcal{A} by the canonical homomorphism of \mathbb{Z} onto $\mathbb{Z}/g\mathbb{Z}$, the group of residue classes modulo g. Let H be the period of $g\overline{\mathcal{A}}$, that is the subgroup of $\mathbb{Z}/g\mathbb{Z}$ formed by the elements c such that $c + g\overline{\mathcal{A}} = g\overline{\mathcal{A}}$. Since $g \leq jh$, the sumset $jh\overline{\mathcal{A}} = j\overline{\mathcal{B}} = j\overline{\mathcal{B}}_1$ satisfies

$$j\overline{\mathcal{B}_1} + H = j\overline{\mathcal{B}_1}.$$

It therefore follows from the minimality of g that $H = \{0\}$. Thus, from a repeated application of Kneser's theorem on addition of sets in an abelian group (see [9, 10], [8] or [11]), we deduce

$$g \ge |g\overline{\mathcal{A}}| \ge g(|\overline{\mathcal{A}}| - 1) + 1,$$

which implies $|\overline{\mathcal{A}}| = 1$. Therefore there exists an integer a_0 such that any element of \mathcal{A} can be written in the form $a_0 + gx$ for some integer x. We define $\mathcal{A}_1 = \{(a - a_0)/g : a \in \mathcal{A}\} \subset \mathbb{N}$.

Since $jh\mathcal{A} = j\mathcal{B} \sim j\mathcal{B}_1$, we get $jh\mathcal{A}_1 \sim \mathbb{N}$. Assuming the validity of Conjecture 2, we obtain that $\Delta(k(jh) \times \mathcal{A}_1)$ is finite, and accordingly $\Delta(k(jh) \times \mathcal{A}) < +\infty$.

References

- P. Erdős, Some of my new and almost new problems and results in combinatorial number theory, Number Theory (Eger, 1996), de Gruyter, Berlin, 1998.
- [2] P. Erdős and R. L. Graham, "Old and new problems and results in combinatorial number theory", Monographies de L'Enseignement Mathématique 28, Enseign. Math. (1980).
- [3] P. Erdős and R. Rado, Intersection theorems for systems of sets, J. London Math. Soc. 35 (1960), 85–90.
- [4] H. Halberstam and K. Roth, "Sequences", Oxford University Press, 1966.
- [5] N. Hegyvári, F. Hennecart and A. Plagne, A proof of two Erdős' conjectures on restricted addition and further results, J. Reine Angew. Math. 560 (2003), 199–220.
- [6] F. Hennecart, On the restricted order of asymptotic bases of order two, Ramanujan J. 9 (2005), 123–130.
- [7] J. B. Kelly, Restricted bases, Amer. J. Math. 79 (1957), 258–264.
- [8] J. H. B. Kemperman, On small sumsets in an abelian group, Acta Math. 103 (1960), 63–88.
- [9] M. Kneser, Abschätzungen der asymptotischen Dichte von Summenmengen, Math. Z. 58 (1953), 459–484.
- [10] M. Kneser, Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen, Math. Z. 61 (1955), 429–434.
- [11] M. B. Nathanson, "Additive number theory: Inverse problems and the geometry of sumsets", Graduate Texts in Mathematics 165, Springer-Verlag, 1996.
- [12] A. Plagne, À propos de la fonction X d'Erdős et Graham, Ann. Inst. Fourier 54 (2004), 1717–1767.

Norbert HEGYVÁRI Department of Mathematics Eötvös University Budapest, Pázmány P. st. 1/C P.O. Box 120 H-1518 Budapest Hungary *E-mail address*: hegyvari@elte.hu

François HENNECART LaMUSE Université de Saint-Étienne 42023 Saint-Étienne Cedex 2 France *E-mail address*: françois.hennecart@univ-st-etienne.fr

Alain PLAGNE Centre de Mathématiques Laurent Schwartz UMR 7640 du CNRS École polytechnique 91128 Palaiseau Cedex France *E-mail address*: plagne@math.polytechnique.fr