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CONVENTIONS AND NOTATION

0.1. Numbers.
• N: non-negative integers.
• Z: integers.
• Q: rational numbers.
• R: real numbers.
• C = R+ iR: complex numbers.
• S

1 ⇢ C: complex numbers with absolute value equal to 1.

0.2. Signs. For every k 2 Z, we define the orientation number by the equality "(k) =
(�1)k(k�1)/2. We have

"(k + 1) = � "(�k) = (�1)k "(k), "(k + 2) = � "(k),

"(k + `) = (�1)k` "(k) "(`), "(n� k) = (�1)k "(n+ k).

If we take complex coordinates z1, . . . , zn on C
n and set zj = xj + i yj , then

(�1)n "(n)

(2⇡i)n
(dz1 ^ · · ·^ dzn)^ (dz1 ^ · · ·^ dzn) = (1/⇡)

n
dx1 ^ dy1 ^ · · ·^ dxn ^ dyn.

The following coefficients will often occur later and deserve a specific notation:

Sgn(n, k) = (�1)n "(n+ k)

(2⇡i)n
(n, k 2 Z),

Sgn(n) = Sgn(n, 0) = (�1)n "(n)

(2⇡i)n
=
"(n+ 1)

(2⇡i)n
.

(0.2 ⇤)

Let us notice the following relations:

Sgn(n) = Sgn(n� 1) · (�1)
n�1

2⇡i
,

Sgn(n, k) = (�1)m(p+k)
Sgn(m) Sgn(p, k), n = m+ p, m, p > 0,

Sgn(n,�k) = (�1)k Sgn(n, k).

(0.2 ⇤⇤)



6 CONVENTIONS AND NOTATION

0.3. Categories. Given a category A, we say that a subcategory A
0 is full if, for

every pair of objects A,B of A0, we have HomA0(A,B) = HomA(A,B). A stronger
notion is that of a strictly full subcategory, which has the supplementary condition
that every object in A which is isomorphic (in A) to an object in A

0 is already in A
0.

All along this text, we will use the latter notion, but simply call it a full subcategory,
in order to avoid too many different meanings for the word “strict”. This should not
cause any trouble, since all full subcategories we define consist of all objects satisfying
some properties which are obviously stable by isomorphism.

For a sheaf of rings AX on a topological space X, we denote by Mod(AX), or simply
Mod(AX) the category of AX -modules. It is an abelian category. The category of
complexes on Mod(AX) is denoted by C

?
(AX), with

• ? empty: no condition,
• ? = +: complexes bounded from below,
• ? = �: complexes bounded from above,
• ? = b: bounded complexes.

By considering the morphisms up to homotopy we obtain the category K
?
(AX) of

complexes up to homotopy. Finally, D?
(AX) denotes the corresponding derived cate-

gory. We refer for example to [KS90, Chap. 1] for the fundamental properties of the
derived category of a triangulated category.

0.4. Filtrations.
• Filtrations denoted by F are indexed by Z.
• Increasing filtrations are indicated by a lower index, and decreasing filtrations by

an upper index. The usual rule for passing from one kind to the other one is to set
F

•
= F�•.

• However, this is not the rule used for V -filtrations, which are indexed by R, and
where we set V

•
= V�•�1.

• The shift [k] of a filtration by an integer k is defined by

F [k]• := F•�k, equivalently, F [k]
•
:= F

•+k
.

• Given a filtered sheaf of rings (AX , F•AX) on a topological space, the Rees sheaf
of rings RFAX :=

L
p
FpAX · zp is denoted by a calligraphic letter AX .

• The Rees ring attached to the field C of complex numbers equipped with the
filtration F0C = C and F�1C = 0 is eC = C[z].

• In general, for a filtered object (M, F•M), the associated Rees object is denoted
by the calligraphic letter M. The Rees construction for a filtered morphism ' is
indicated by the decoration e'.

0.5. Vector spaces and sesquilinear pairings
• The conjugate H of a C-vector space H is HR, i.e., H considered as an R-

vector space, together with the C action defined by � · x = �x (for all � 2 C and
x 2 HR) (see Exercise 2.1). In order to make clear the structure, we denote by x the
element x of HR when considered as being in H. Conjugation is a covariant functor
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on the category of C-vector spaces. For a morphism ' : H1 ! H2, we denote by
' : H1 ! H2 the corresponding morphism.

• We denote by h•, •i : H⌦CH_ ! C the tautological duality pairing. We set H⇤ =
H_

= (H)
_, that we call the Hermitian dual vector space. Duality and Hermitian

duality are contravariant functors on the category of C-vector spaces. For a morphism
' : H1 ! H2, we denote by '⇤ : H⇤

2
! H⇤

1
the corresponding morphism.

• A sesquilinear pairing between C-vector spaces H0,H00 is a C-linear morphism

s : H0 ⌦C H00 �! C.

We identify such a sesquilinear pairing s with a linear morphism

s : H00 �! H0⇤

by setting, for x 2 H0, y 2 H00,

s(x, y) := hx, s(y)iH0 (s(y) 2 H0_).

If '00 : H00
1
! H00 is a linear morphism, then s � '00 : H00

1
! H0⇤ corresponds to the

pairing H0⌦H00
1
! C given by s(x,'00(y1)), and if '0 : H0

1
! H0 is a linear morphism,

then '0⇤ � s : H00 ! H0⇤
1

corresponds to the pairing s('
0
(x1), y).

The Hermitian adjoint s
⇤
: H0 ! H00⇤ of a linear morphism s : H00 ! H0⇤ corre-

sponds to the sesquilinear pairing

s
⇤
(y, x) = s(x, y).

Assume now that H0 = H00 = H. We say that s is ±-Hermitian if s⇤ = ±s. For a
linear morphism ' : H ! H, we say that ' is self- resp. skew-adjoint (with respect
to s) if

s('(x), y) = s(x,'(y)) resp. � s(x,'(y)).

Considering s as a linear morphism as above and denoting by '⇤ the Hermitian adjoint
of ', this is translated as

'
⇤ � s = ±s � '.

Then ' is self- resp. skew-adjoint (with respect to s) if and only if it is so with respect
to s

⇤.
If s is non-degenerate, that is, if s : H! H⇤ is an isomorphism, then one can define

the s-adjoint '? (not to be confused with '⇤) of any linear morphism ' : H! H by
the formula

'
?
= s

(�1) � '⇤ � s : H �! H.

In such a case, ' is self- (resp. skew-) adjoint with respect to s if and only if '?
= ±'.

0.6. Complex manifolds and their basic sheaves of rings
• We consider complex manifolds, usually denoted by X,Y of complex dimension

dX , dY , and holomorphic maps f : X ! Y between them, of relative dimension
dX/Y = dX � dY . We will often use the following shortcuts:

n = dX = dimX, m = dY = dimY, n�m = dX � dY = dX/Y .
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• A smooth hypersurface of X (i.e., a closed complex submanifold everywhere of
codimension 1 in X) will usually be denoted by H.

• A divisor D is a reduced complex analytic subspace of X everywhere of codimen-
sion 1. A local reduced defining equation for D or H is usually denoted by g.

• At many places, the divisor D is assume to have only normal crossings as singular-
ities. It is however in general not necessary to assume that its irreducible components
are smooth.

• The structure sheaf of holomorphic functions on X is denoted by OX . The sheaf
of holomorphic differential forms is ⌦1

X
and the sheaf of holomorphic vector fields

is ⇥X . Their k-th wedge product is ⌦k

X
resp. ⇥X,k = ⇥X,k. The dualizing sheaf

^n⌦1

X
is denoted by !X . The sheaf of holomorphic differential operators is DX .

• The sheaf of C
1 function on the underlying C

1 manifold is denoted by C1
X

.
Correspondingly, the sheaf of C1 differential forms of degree k is Ek

X
= C1

X
⌦OX

⌦
k

X

and is decomposed with respect to the holomorphic and anti-holomorphic degrees
with components E(p,q)

X
. The sheaf of C1 poly-vector fields of degree k is denoted by

TX,k = C1
X
⌦OX

⇥X,k and is similarly decomposed with components TX,(p,q).
• The Rees construction for OX , equipped with the filtration F0OX = OX and

F�1OX = 0 leads to eOX = OX [z].
• Correspondingly, we set e⌦1

X
= z

�1
⌦

1

X
[z] and e⇥X = z⇥X [z]. We have e⌦k

X
=

^ke⌦1

X
and e⇥X,k = ^k e⇥X .

• The Rees construction for !X = ⌦
n

X
equipped with the filtration F�n!X = !X

and F�n�1!X = 0 gives rise to e!X = e⌦n

X
.

• The Rees construction for DX with its filtration by the order of differential op-
erators F•DX gives rise to eDX .

• The C
1 analogues are eC1

X
= C1

X
[z], eEk

X
= eC1

X
⌦OX

e⌦k

X
, and Tk

X
= eC1

X
⌦OX

e⇥X .

0.7. Sheaves of rings and modules
• C-vector spaces are denoted by H,H0,H00.
• C
1 vector bundles on X are denoted by H, and a C

1 connection is denoted by
D : H ! E1

X
⌦H. It is decomposed into its (1, 0) and (0, 1) components D

0
: H !

E1,0

X
⌦H and D

00
: H! E0,1

X
⌦H.

• A holomorphic vector bundle is denoted by H0,H00 or V. For a C
1 vector

bundle H with integrable connection D, we regard H0 = KerD
00 as a holomorphic

vector bundle with a integrable holomorphic connection r : H0 ! ⌦
1

X
⌦H0.

• Modules over a sheaf of rings AX = OX ,DX are denoted by M,N.
• The Rees objects associated to filtered holomorphic vector bundles, OX -modules

or DX -modules are denoted by the corresponding calligraphic letter H0,H00,M,N.

0.8. Basic operators of Hodge theory. Some operators will have an invariable
notation, whatever the category they belong to.

• Sesquilinear pairings used for categories of triples are denoted by s.
• Nilpotent endomorphisms are denoted by N, and their monodromy filtration is

denoted by M•(N) or simply M•.
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• Polarizations are denoted by S, but their components may be denoted by S or eS,
depending on the context.

Cohomology functors.
• Whatever derived category it acts on, the k-th cohomology functor is denoted

by H
k.

• Pushforward or pullback functors are mostly defined as functors on derived cat-
egories, but not defined as right or left derived functors. In order to simplify the
notation, the cohomology functors like Hk

Rf⇤ or Df⇤ are denoted by f
(k)

⇤ or Df
(k)

⇤ .





CHAPTER 1

OVERVIEW





CHAPTER 2

HODGE THEORY: REVIEW OF CLASSICAL RESULTS

Summary. This chapter reviews classical results of Hodge theory. It introduces
the general notion of Hodge structure and various extensions of this notion: po-
larized Hodge structure and mixed Hodge structure. These notions are the model
(on finite dimensional vector spaces) of the corresponding notions on complex
manifolds, called Hodge module, polarized Hodge module and mixed Hodge mod-
ule. Although Hodge structures are usually defined over Q (and even over Z),
we emphasize the notion of a C-Hodge structure.

2.1. Introduction

The notion of (polarized) Hodge structure has emerged from the properties of the
cohomology of smooth complex projective varieties. In this chapter, as a prelude to
the theory of complex Hodge modules, we focus on the notion of (polarized) complex
Hodge structure. In doing so, we forget the integral structure in the cohomology of
a smooth complex projective variety, and even the rational structure and the real
structure.

We are then left with a very simple structure: a complex Hodge structure is noth-
ing but a finite-dimensional graded vector space, and a morphism between Hodge
structures is a graded morphism of degree zero between these vector spaces. Hodge
structures obviously form an abelian category.

A polarization is nothing but a positive definite Hermitian form on the underlying
vector space, which is compatible with the grading, that is, such that the decompo-
sition given by the grading is orthogonal with respect to the Hermitian form.

It is then clear that any Hodge substructure of a polarized Hodge structure is itself
polarized by the induced Hermitian form and, as such, is a direct summand of the
original polarized Hodge structure.

Why should the reader continue reading this chapter, since the main definitions
and properties have been given above?

The reason is that this description does not have a good behaviour when considering
holomorphic families of such object. Such families arise, for example, when considering
the cohomology of the smooth varieties occurring in a flat family of smooth complex
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projective varieties. It is known that the grading does not deform holomorphically.
Both the grading and the Hermitian form vary real-analytically, and this causes trou-
bles when applying arguments of complex algebraic geometry.

Instead of the grading, it is then suitable to consider the two natural filtrations
giving rise to this grading. One then varies holomorphically and the other one anti-
holomorphically. From this richer point of view, one can introduce the notion of
weight, which is fundamental in the theory, as it leads to the notion of mixed Hodge
structure.

Similarly, instead of the positive definite Hermitian form, one should consider the
Hermitian form which is ±-definite on each graded term in order to have an object
which varies in a locally constant way, as does the cohomology of the varieties. The
sign will be made precise. Explanations on our sign conventions are given later, after
that enough material has been developed, in an appendix (see Page 657).

This chapter moves around the notion of (polarized) complex Hodge structure by
shedding light on its different aspects. In Chapter 5, we will emphasize the point of
view of “triples”, which will be the one chosen here for the theory of polarizable Hodge
modules.

2.2. Hodge-Tate structure and highest dimensional cohomology

Let X be a connected compact complex manifold of dimension n. The highest
dimensional cohomology H

2n
(X,Z) is a free Z-module of rank 1, and the cap product

with the fundamental homology class [X] induces an isomorphism
Z

[X]

: H
2n
(X,Z)

⇠�! Z.

The complex cohomology H
2n
(X,C) can be realized with C

1 differential forms E•
X

as
the cohomology H

2n

d
(X) = �(X,E2n

X
)/d�(X,E2n�1

X
) and as the Dolbeault cohomology

H
n,n

d00 (X). We say that H
2n
(X,C) is pure of weight 2n. Integration of C1 forms of

maximal degree on X induces a C-linear isomorphism
Z

X

: H
2n

d
(X)

⇠�! C.

Differential forms are equipped with a conjugation operator:

⌘I,J(z) dzI ^ dzJ 7�! ⌘I,J(z) dzI ^ dzJ = (�1)#I#J
⌘I,J(z) dzJ ^ dzI ,

and integration on X commutes with conjugation. Moreover, the natural diagram
commutes:

H
2n
(X,Z)
� _

✏✏

R
[X]

// Z� _

✏✏

H
2n
(X,C)

R
X

// C

Changing the choice of a square root of �1, i.e., i to � i, has the effect to changing
the orientation of C to its opposite, hence to multiplying that of Cn by (�1)n. Since X
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is a complex manifold, it also has the effect to to multiplying its orientation by (�1)n,
in other words to change the fundamental class [X] to (�1)n[X]. This change has the
effect of replacing X with the complex conjugate manifold (i.e., the same underlying
C
1 manifold equipped with the sheaf of anti-holomorphic functions as structural

sheaf). Therefore, it has the effect of multiplying
R
X

by (�1)n.
In order to make

R
[X]

and
R
X

independent of the choice of a square root of �1, one
replaces them with

tr[X] := (2⇡i)
�n

Z

[X]

and trX := (2⇡i)
�n

Z

X

.

The Hodge-Tate structure of weight 2n, also denoted by Z
H
(�n) or simply Z(�n),

consists of the following set of data:
• the C-vector space C, equipped with
• the (trivial) bigrading of bidegree (n, n): C = C

n,n.
• and its Z-lattice (2⇡i)

�n
Z

The very first result in Hodge theory can thus be stated as follows.

2.2.1. Proposition. The normalized integration morphism

trX :
�
H

2n
(X,C), H

n,n

d00 (X), H
2n
(X,Z)

�
�! Z

H
(�n)

is an isomorphism.

2.2.2. Remark (Forgetting the Z-structure). One can define Q
H
(�n) and R

H
(�n). If we

completely forget the R-structure, we are left with C
H
(�n) which consists only of the

first two pieces of data. In the next two sections, we will avoid possible Z-torsion in
abelian groups by working over one of the previous fields, say Q.

2.3. Complex Hodge theory on compact Riemann surfaces

Let X be a compact Riemann surface of genus g > 0. Let us assume for simplicity
that it is connected. Then H

0
(X,Z) and H

2
(X,Z) are both isomorphic to Z (as X is

orientable). The only interesting cohomology group is H
1
(X,Z), isomorphic to Z

2g.
The Poincaré duality isomorphism induces a skew-symmetric non-degenerate bili-

near form

h•, •i : H1
(X,Z)⌦Z H

1
(X,Z)

• [ •����! H
2
(X,Z)

R
[X]����! Z.

One of the main analytic results of the theory asserts that the space H
1
(X,OX)

is finite dimensional and has dimension equal to the genus g (see e.g. [Rey89, Chap.
IX] for a direct approach). Then, Serre duality H

1
(X,OX)

⇠�! H
0
(X,⌦

1

X
)
_ also

gives dimH
0
(X,⌦

1

X
) = g. A dimension count implies then the Hodge decomposition

H
1
(X,C) ' H

1,0
(X)�H

0,1
(X), H

0,1
(X) = H

1
(X,OX), H

1,0
(X) = H

0
(X,⌦

1

X
).
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We also interpret the space H1,0
(X) resp. H0,1

(X) as the Dolbeault cohomology space
H

0,1

d00 (X) resp. H0,1

d00 (X). If we regard Serre duality as the non-degenerate pairing

H
1,0 ⌦C H

0,1
• ^ •����! H

1,1

R
X���! C,

then Serre duality is equivalent to the complexified Poincaré duality pairing

h•, •iC : H
1
(X,C)⌦C H

1
(X,C) �! C,

since hH1,0
, H

1,0iC = 0 and hH0,1
, H

0,1iC = 0.
With respect to the real structure H

1
(X,C) = C ⌦R H

1
(X,R), H

1,0 is conju-
gate to H

0,1, and using Serre duality (or Poincaré duality) we get a skew-Hermitian
sesquilinear pairing (see Exercise 2.1 for the notion of conjugate C-vector space and
sesquilinear pairing)

h•, •iC : H
1
(X,C)⌦C H1(X,C) �! C,

whose restriction to H
1
(X,Z)⌦Z H

1
(X,Z) is h•, •i, and whose restriction to H

1,0

d00 is

H
1,0 ⌦C H1,0 �! C

⌘
0 ⌦ ⌘00 7�!

Z

X

⌘
0 ^ ⌘00.

Then, the Riemann bilinear relations assert that the Hermitian pairing

h(•, •) :=
i

2⇡
h•, •iC = � 1

2⇡i
h•, •iC : ⌘

0 ⌦ ⌘00 7�! � 1

2⇡i

Z

X

⌘
0 ^ ⌘00 = � trX(⌘

0 ^ ⌘00)

is positive definite on H
1,0. In a similar way one finds that 1

2⇡i
h•, •iC is positive definite

on H
0,1.

2.4. Complex Hodge theory of smooth projective varieties

Let X be a smooth complex projective variety of pure complex dimension n (i.e.,
each of its connected components has dimension n). It will be equipped with the
usual topology, which makes it a complex analytic manifold. Classical Hodge theory
asserts that each cohomology space H

k
(X,C) decomposes as the direct sum

(2.4.1) H
k
(X,C) =

L
p+q=k

H
p,q

(X),

where H
p,q

(X) stands for H
q
(X,⌦

p

X
) or, equivalently, for the Dolbeault cohomology

space H
p,q

d00 (X). Although this result is classically proved by methods of analysis
(Hodge theory for the Laplace operator), it can be expressed in a purely algebraic
way, by means of the deRham complex.

The holomorphic de Rham complex is the complex of sheaves (⌦
•
X
, d), where d is

the differential, sending a k-form to a (k + 1)-form. Recall (holomorphic Poincaré
lemma) that (⌦•

X
, d) is a resolution of the constant sheaf. Therefore, the cohomology

H
k
(X,C) is canonically identified with the hypercohomology H

k
�
X, (⌦

•
X
, d)

�
of the

holomorphic de Rham complex.
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The deRham complex can be filtered in a natural way by sub-complexes (“filtration
bête” in [Del71b]).

2.4.2. Remark. In general, we denote by an upper index a decreasing filtration and by
a lower index an increasing filtration. Filtrations are indexed by Z unless otherwise
specified.

We define the “stupid” (increasing) filtration on OX by setting

FpOX =

(
OX if p > 0,

0 if p 6 �1.

Observe that, trivially, d(FpOX ⌦OX
⌦

k

X
) ⇢ Fp+1OX ⌦OX

⌦
k+1

X
. Therefore, the

de Rham complex can be (decreasingly) filtered by

(2.4.3) F
p
(⌦

•
X
, d) = {0 �! F�pOX

d��! F�p+1OX ⌦OX
⌦

1

X

d��! · · · }.

If p 6 0, F p
(⌦

•
X
, d) = (⌦

•
X
, d), although if p > 1,

F
p
(⌦

•
X
, d) = {0 �! · · · �! 0 �! ⌦

p

X

p

�! · · · �! ⌦
dimX

X
�! 0}.

As a consequence, the p-th graded complex is 0 if p 6 �1 and, if p > 0, it is given by

gr
p

F
(⌦

•
X
, d) = {0 �! · · · �! 0 �! ⌦

p

X

p

�! 0 �! · · · �! 0}.

In other words, the graded complex gr
F
(⌦

•
X
, d) =

L
p
gr

p

F
(⌦

•
X
, d) is the complex

(⌦
•
X
, 0) (i.e., the same terms as for the deRham complex, but with differential equal

to 0).
From general results on filtered complexes, the filtration of the de Rham complex in-

duces a (decreasing) filtration on the hypercohomology spaces (that is, on the de Rham
cohomology of X) and there is a spectral sequence starting from H

•�
X, gr

F
(⌦

•
X
, d)

�

and abutting to gr
F
H

•
(X,C). Let us note that H

•�
X, gr

F
(⌦

•
X
, d)

�
is nothing butL

p,q
H

q
(X,⌦

p

X
).

2.4.4. Theorem. The spectral sequence of the filtered deRham complex on a smooth
projective variety degenerates at E1, that is,

H
•
(X,C) ' H

•
DR

(X,C) =
L
p,q

H
q
(X,⌦

p

X
).

2.4.5. Remark. Although the classical proof uses Hodge theory for the Laplace operator
which is valid in the general case of compact Kähler manifolds, there is a purely
algebraic/arithmetic proof in the projective case, due to Deligne and Illusie [DI87].

For each j 2 N, let us consider the following set of data H
j
(X,C)

H (also called a
pure C-Hodge structure of weight j) consisting of:

• the complex vector space H
j
(X,C), equipped with

• the bigrading H
j
(X,C) =

L
p+q=j

H
p,q,



18 CHAPTER 2. HODGE THEORY: REVIEW OF CLASSICAL RESULTS

For every k 2 Z, Poincaré duality is the non-degenerate bilinear pairing

h•, •i(n+k,n�k) : H
n+k

(X,Z)⌦Z H
n�k

(X,Z)
• [ •����! H

2n
(X,Z)

R
[X]����! Z,

whose complexification reads in C
1 de Rham cohomology

h•, •iC,(n+k,n�k) : H
n+k

d
(X)⌦C H

n�k
d

(X)
• ^ •����! H

2n

d
(X)

R
X���! C.

It is (�1)n±k-symmetric.
In analogy with the setting of Riemann surfaces, let us consider the case k = 0.

Then h•, •in is a non-degenerate (�1)n-symmetric bilinear form on H
n
(X,Z) and its

complexified bilinear form satisfies

(2.4.6) hHp
0
,n�p0

, H
p,n�piC,n = 0 if p+ p

0 6= n.

Let us define the sesquilinear pairing

S0 : H
n
(X,C)⌦Hn(X,C) �! C

by (recall "(n) = (1)
n(n�1)/2)

(2.4.7) S0(⌘
0
, ⌘00) = (�1)n "(n)

(2⇡i)n

Z

X

⌘
0 ^ ⌘00.

It is Hermitian and the Hodge decomposition is S0-orthogonal. More generally, for
any k 2 Z, we define

Sk : H
n+k

(X,C)⌦Hn�k(X,C) �! C

by (see Notation (0.2 ⇤))

(2.4.8) Sk(⌘
0
, ⌘00) = (�1)n "(n+ k)

(2⇡i)n

Z

X

⌘
0 ^ ⌘00 = Sgn(n, k)

Z

X

⌘
0 ^ ⌘00.

We refer to Section A.3 in the appendix for explanations on how we derive such a
formula.

Classical Hodge theory identifies H
j
(X,C) with the finite-dimensional space of

harmonic j-forms on X. This space is equipped with the metric induced by that used
on the space of C1-forms by means of the Hodge star operator. However, this is not
the metric to be considered later in Hodge theory. Instead of the Hodge operator,
one uses the Lefschetz operator induced by the class of the Kähler form or the first
Chern class of an ample line bundle on X. This leads to Hodge-Lefschetz theory.
The corresponding Hermitian form on H

j
(X,C) is defined in a subtler way, and its

positivity is then a theorem, whose direct consequence is the Hard Lefschetz theorem.

The Lefschetz operator. Fix an ample line bundle L on X (for instance, any embedding
of X in a projective space defines a very ample bundle, by restricting the canonical
line bundle O(1) of the projective space to X). The first Chern class c1(L) 2 H

2
(X,Z)

defines a Lefschetz operator

(2.4.9) LL := c1(L) [ • : H
j
(X,Z) �! H

j+2
(X,Z).
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(Note that wedging on the left or on the right amounts to the same, as c1 has degree 2.)
In such a case, one can choose as a Kähler form ! on X a real (1, 1)-form whose
cohomology class in H

2
(X,R) is c1(L), and the Lefschetz operator LL can be lifted

as the operator on differential forms obtained by wedging with !. The Lefschetz
operator has thus type (1, 1) with respect to the Hodge decomposition, hence sends
H

p,q to H
p+1,q+1. Denoting the latter Hodge structure by the Tate twist notation

H(1), we regard LL as a morphism of Hodge structures H ! H(1).

Polarization in the middle dimension. It is mostly obvious that the category of pure
Hodge structures of a given weight is abelian, that is, we can consider kernels and
cokernels in this category in a natural way. In particular, the pure Hodge structure
of weight n

P0(X,Q) = Ker[LL : H
n
(X,C)! H

n+2
(X,C)(1)]

whose underlying C-vector space consists of primitive classes in H
n
(X,C), can thus

be decomposed correspondingly as
L

p+q=n
P
p,q

0
(X). Moreover, P0(X,Q) is a direct

summand of Hn
(X,Q). The orthogonality relations (2.4.6) imply that the restriction

of S0 (defined by (2.4.7)) to P0(X,C) induces a morphism of pure C-Hodge structures
of weight n:

S0 : P0(X,C)⌦ P0(X,C) �! C(�n).

Classical Hodge theory states that the Hermitian form h0 on P
n
(X,C), defined by

(2.4.10) h0 = (�1)qS0 on P
p,q

0
(X,C)

and for which the Hodge decomposition is orthogonal, is positive definite.

Polarization in any dimension. Set now H =
L

k2Z H
n+k

(X,C) and let

(2.4.11) S : H ⌦H �! C(�n)

be the sesquilinear pairing defined in such a way that S(H
n+k

, Hn�`) = 0 if k 6= `

and, for every k, its restriction to H
n+k

(X,C)⌦CHn�k(X,C) is equal to Sk as defined
by (2.4.8). Then S is Hermitian.

In order to obtain positivity results, it is necessary to choose an isomorphism
between the pure Hodge structures H

n�k
(X,C) and H

n+k
(X,C)(k) for any k > 0

(we know that the underlying vector spaces have the same dimension, as Poincaré
duality is non-degenerate). A class of good morphisms is given by the Lefschetz
operators

(2.4.12) XL = (2⇡i)LL

with LL defined above. Since LL is real, we have hu,LLvi = hLLu, vi and from the
properties of " one deduces that

(2.4.13) S(u,XLv) = S(XLu, v).

The Hard Lefschetz theorem, usually proved together with the previous results of
Hodge theory, asserts that, for any smooth complex projective variety X, any ample
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line bundle L, and any ` > 1, the `-th power

X
`

L : H
n�`

(X,C) �! H
n+`

(X,C)(`)

is an isomorphism. In order to express the corresponding positivity property, we con-
sider the primitive sub-Hodge structure (of weight n� `)

P�`(X,C) := Ker
⇥
X

`+1

L : H
n�`

(X,C)! H
n+`+2

(X,C)(`+ 1)
⇤
.

For ` > 0, we consider the sesquilinear form

(2.4.14) S(X
`

L•, •) = S(•,X`

L
•) : H

n�`
(X,C)⌦Hn�`(X,C) �! C,

which is in fact Hermitian. Classical Hodge theory then asserts that, for each ` > 0,
its restriction P�`S to P�`(X,C)⌦P�`(X,C) is a polarization, in the sense that, for
each q > 0,

(2.4.15) (�1)qP�`S(⌘,X`

L⌘) > 0 for ⌘ 2 P
p,q

�` (X,C)r {0}.

Anticipating the definitions in Chapter 3, we regard the graded vector space
H

n+•
(X,C) as an sl2-Hodge structure, and considering the modified Weil operator

CD = (�1)q on H
p,q and the Weil element w, the positivity property can be concisely

rephrased by saying that the Hermitian form S(•,wCD
•) on the total cohomology

space H =
L

k
H

n+k
(X,C) is positive definite (see Section 3.2 for an interpretation

in terms of sl2-representations).

2.5. Polarizable Hodge structures

The previous properties of the cohomology of a projective variety can be put in
an axiomatic form. This will happen to be useful as a first step to Hodge modules.
We will first emphasize the notion of a C-Hodge structure and we will indicate the
additional properties brought by a Q-structure.

2.5.a. Category of C-Hodge structures. This is, in some sense, a category look-
ing like that of finite dimensional complex vector spaces. In particular, it is abelian,
that is, the kernel and cokernel of a morphism exist in this category. This category
is very useful as an intermediate category for building that of mixed Hodge struc-
tures, but the main results in Hodge theory use a supplementary property, namely
the existence of a polarization (see Section 2.5.b). Let us start with the oppositeness
property.

2.5.1. Definition (Opposite filtrations). Let us fix w 2 Z. Given two decreasing filtra-
tions F 0•H, F

00•H of a vector space H by vector subspaces, we say that the filtrations
F
0•H and F

00•H are w-opposite if
(
F
0pH \ F

00w�p+1H = 0

F
0pH + F

00w�p+1H = H
for every p 2 Z,
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i.e., F 0pH � F
00w�p+1H

⇠�! H for every p 2 Z. Equivalently setting

Hp,w�p
= F

0pH \ F
00w�pH,

then H =
L

p
Hp,w�p (see Exercise 2.5(1b)).

2.5.2. Definition (C-Hodge structure). A C-Hodge structure of weight w 2 Z

H = (H, F
0•H, F

00•H)

consists of a finite dimensional complex vector space H equipped with two decreasing
filtrations F

0•H and F
00•H which are w-opposite. A morphism between C-Hodge

structures is a linear morphism between the underlying vector spaces compatible
with both filtrations. We denote by HS(C) the category of C-Hodge structures of
some weight w and by HS(C, w) the full category whose objects have weight w.

2.5.3. Operations on C-Hodge structures. The category HS(C) has the following func-
tors lifting those existing on C-vector spaces (see Exercise 2.7):

• tensor product H1 ⌦H2, of weight w1 + w2,
• homomorphisms Hom(H1, H2) of weight w2 � w1,
• dual H_ of weight �w,
• conjugate H of weight w,
• Hermitian dual H⇤ = H

_
= H_ of weight �w.

Let us emphasize the following statement (see Exercise 2.5).

2.5.4. Proposition. The category HS(C, w) of complex Hodge structures of weight w is
abelian, and any morphism is strictly compatible with both filtrations and with the
decomposition.

2.5.5. Caveat. On the other hand, the category HS(C) is not abelian (see an example
in Exercise 2.6).

2.5.6. Proposition (Morphisms in HS(C)).

(1) Let ' : H1 ! H2 be a morphism between objects of HS(C, w) such that the
induced morphism H1 ! H2 is injective resp. surjective. Then F

•H1 = '
�1

F
•H2

resp. F •H2 = '(F
•H1), and ' is a monomorphism resp. an epimorphism in

HS(C, w). If moreover the induced morphism H1 ! H2 is an isomorphism, then ' is
an isomorphism in HS(C, w).

(2) There is no non-zero morphism ' : H1 ! H2 in HS(C) if w1 > w2.

Proof.

(1) The first point is nothing but the reformulation that ' is strict.
(2) The image of Hp,w1�p

1
is contained in F

0pH2 \ F
00w1�pH2, hence in F

0pH2 \
F
00w2+1�pH2 since w1 > w2, and the latter space is zero by Definition 2.5.1.
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2.5.7. Twists. Given a C-Hodge structure H of weight w and integers k, `, we set
H(k, `) := (H, F [k]

0•H, F [`]
00•H) (see Convention 0.4). Then H(k, `) is a C-Hodge

structure of weight w � k � `. If ' : H1 ! H2 is a morphism of C-Hodge structures
of weight w, then it is also a morphism H1(k, `) ! H2(k, `). The twist (k, `) is then
an equivalence between the category HS(C, w) with HS(C, w� k� `) (morphisms are
unchanged). Let us note in particular that H

⇤
(k, `) = H(�k,�`)⇤.

2.5.8. Definition (Tate twist). The symmetric twists (k, k) are called Tate twists.
We also regard them as the tensor product with C

H
(k) as defined in Remark

2.2.2. We will use the notation (k, k) when we only want to consider bi-filtered
objects, and (k) when we want to keep in mind the relation with classical Hodge
theory. Given a morphism ' : H1 ! H2, we still denote by ' the morphism
'⌦ Id : H1 ⌦ C

H
(k)! H2 ⌦ C

H
(k).

2.5.9. Complex Hodge structures and representations of S
1. A C-Hodge structure of

weight 0 on a complex vector space H is nothing but a grading of this space in-
dexed by Z, and a morphism between such Hodge structures is nothing but a graded
morphism of degree zero. Indeed, in weight 0, the summand Hp,�p can simply be
written Hp. This grading defines a continuous representation ⇢ : S

1 ! Aut(H) by
setting ⇢(�)|Hp = �

p
IdHp .

Conversely, any continuous representation ⇢ : S
1 ! Aut(H) is of this form. This

can be seen as follows. Since S
1 is compact, one can construct a Hermitian metric

on H which is invariant by any ⇢(�). It follows that each ⇢(�) is semi-simple and there
is a common eigen-decomposition of H. The eigenvalues are continuous characters
on S

1. Any such character � takes the form �(�) = �
p (note first that |�| = 1

since |�(S1)| is compact in R
⇤
+

and, if |�(�o)| 6= 1, then |�(�k
o
)| = |�(�o)|k tends to 0

or 1 if k !1; therefore, � is a continuous group homomorphism S
1 ! S

1, and the
assertion is standard).

Recall (Schur’s lemma) that the center of Aut(H) is C
⇤
Id. We claim that a con-

tinuous representation e⇢ : S
1 ! Aut(H)/C

⇤
Id determines a C-Hodge structure of

weight 0, up to a shift by an integer of the indices. In other words, one can lift e⇢ to
a representation ⇢. We first note that the morphism

R
⇤
+
⇥Ker |det| �! Aut(H)

(c, T ) 7�! c
1/d

T (d = dimH)

is an isomorphism. It follows that Ker |det| ! Aut(H)/R
⇤
+
Id is an isomorphism.

Similarly, Ker |det|/S1 Id ' Aut(H)/C
⇤
Id. It follows that any continuous representa-

tion e⇢ lifts as a continuous representation b⇢ : S
1 ! Aut(H)/S

1
Id. Given a Hermitian

metric h and [T ] 2 Aut(H)/S
1
Id, then h(Tu, Tv) does not depend on the lift T of [T ]

in Aut(H), and one can thus construct a b⇢-invariant metric on H. The eigenspace
decomposition is well-defined, although the eigenvalues of b⇢(�) are defined up to a
multiplicative constant. One can fix the constant to 1 on some eigenspace, and argue
as above for the other eigenspaces. The lift is not unique, and the indeterminacy
produces a shift in the filtration.
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2.5.10. Example.
(1) Let X be a smooth complex projective variety. Then H

k
(X,C) defines

a C-Hodge structure of weight k by setting F
0p
H

k
(X,C) = F

p
H

k
(X,C) and

F
00q
H

k
(X,C) = F qHk(X,C) and by using the isomorphism Hk(X,C) ' H

k
(X,C)

coming from the real structure H
k
(X,C) ' C⌦R H

k
(X,R).

(2) Let f : X ! Y be a morphism between smooth projective varieties. Then the
induced morphism f

⇤
: H

k
(Y,C) ! H

k
(X,C) is a morphism of Hodge structures of

weight k.

2.5.b. Polarized/polarizable C-Hodge structures. In the same way Hodge
structures look like complex vector spaces, polarized C-Hodge structures look like
vector spaces equipped with a positive definite Hermitian form. Any such object
can be decomposed into an orthogonal direct sum of irreducible objects, which have
dimension 1 (this follows from the classification of positive definite Hermitian forms).
We will see that this remains true for polarized C-Hodge structures (for polarizable
Hodge modules in higher dimensions, the decomposition remains true, but the
irreducible objects may have rank bigger than 1, fortunately). From a categorical
point of view, i.e., when considering morphisms between objects, it will be convenient
not to restrict to morphisms compatible with polarizations (see §2.5.19).

2.5.11. Definition (Polarization of a C-Hodge structure, first definition)
Given a Hodge structure H of weight w, regarded as a grading H =

L
p
Hp,w�p of

the finite-dimensional C-vector space H, a polarization is a positive definite Hermitian
form h on H such that the grading is h-orthogonal (so h induces a positive definite
Hermitian form on each Hp,w�p).

Although this definition is natural and quite simple, it does not extend “flatly” in
higher dimension, and this leads to emphasize the polarization S below, which is also
the right object to consider when working with Q-Hodge structures.

Let H = (H, F
0•H, F

00•H) be a C-Hodge structure of weight w. By a pre-
polarization of the C-Hodge structure H, we mean a morphism S : H⌦H ! C

H
(�w)

of C-Hodge structures of weight 2w (see Exercise 2.7(1) for the tensor product) such
that the morphism S : H ! H

⇤
(�w) that it defines is a Hermitian isomorphism.

This is nothing but a non-degenerate Hermitian pairing S : H ⌦C H! C satisfying

(2.5.12) S(F 0pH, F 00qH) = 0 and S(F 00pH, F 0qH) = 0 for p+ q > w,

or, equivalently, such that the decomposition H =
L

p
Hp,w�p is S-orthogonal. In

the following, for the sake of simplicity, we will not distinguish between the C-linear
morphism S and the morphism of Hodge structures S that it underlies.

Recall that the Hermitian adjoint S⇤ of a sesquilinear pairing S is the sesquilinear
pairing defined by

S⇤(y, x) := S(x, y).
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2.5.13. Definition (The Weil operator).
(1) The Weil operator C is the automorphism of H equal to i

p�q on Hp,q.
(2) The Deligne-Weil operator CD is the automorphism of H equal to (�1)q on

Hp,q.

2.5.14. Remark (Weil operator and Tate twist). Interpreting H(k) as H⌦C
H
(k), we de-

note by C(k) resp. CD(k) the tensor product of the Weil operators, and not the
morphism C resp. CD induced by the Weil operator after Tate twist (i.e., by tensor-
ing C resp. CD on H with Id on C

H
(k), see Definition 2.5.8). In such a way, we have

C(k) = C, and CD(k) = (�1)kCD.

Let S be a pre-polarization of H. By the S-orthogonality of the Hodge decompo-
sition, the only nonzero pairings S(x, y) occur when both x, y are in the same Hp,q.
We conclude that

S(CDx, y) = S(x,CDy).

This is translated as C
⇤
D
� S = S � CD, and also follows from the property that the

Hermitian adjoint C
⇤
D

: H⇤ ! H⇤ of the Deligne-Weil operator CD on H is the
Deligne-Weil operator of H⇤(�w) (see Exercise 2.7(6)).

2.5.15. Definition (Polarization of a C-Hodge structure, second definition)
Let H = (H, F

0•H, F
00•H) be a C-Hodge structure of weight w. A polarization

of H is an isomorphism S : H ⌦H ! C
H
(�w) satisfying

(1) S is Hermitian, i.e., S⇤ = S, equivalently, S(x, y) = S(y, x) for all x, y 2 H,
(2) the pairing h(x, y) := S(CDx, y) = S(x,CDy) on H is (Hermitian) positive defi-

nite.
In other words, S is a pre-polarization satisfying the positivity condition (2).

2.5.16. Remark (Deligne’s convention). We adopt here a sign convention which differs
by multiplication by (�1)w to the usual one, where one would instead consider the
operator

L
p
(�1)p Id|Hp,q .

2.5.17. Remarks (Polarized C-Hodge structures). Let H be a C-Hodge structure of
weight w with polarization S.

(1) Let H⇤ denote the Hermitian dual complex Hodge structure (Exercise 2.7(6)).
We can regard S as a morphism H ! H

⇤
(�w). Its Hermitian adjoint morphism S

⇤

is a morphism H(w) ! H
⇤, that we can also regard as a morphism H ! H

⇤
(�w).

Condition 2.5.15(1) can then be expressed by saying that S is Hermitian as such,
that is, S⇤ = S.

(2) Regarding S as a morphism H ! H
⇤
(�w), Condition 2.5.15(2) simply says

that the Hermitian form underlying S � CD = (CD)
⇤ � S is positive definite.

(3) Similarly, defining the form S : H ⌦ H ! C
H
(�w) by S(x, y) = S(y, x), one

checks that (�1)wS a polarization of H, as defined by Exercise 2.7(5). One can also
regard S as the conjugate Hermitian morphism H ! H

⇤
(�w) obtained from S as

given by (1).
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(4) It follows from 2.5.15(2) that the decomposition H =
L

p
Hp,w�p is also

h-orthogonal, so a polarization in the sense of the second definition 2.5.15 gives rise
to a polarization in the sense of the first one 2.5.11. Notice also that

h(x, y) = (�1)w�pS(x, y) on Hp,w�p
.

Conversely, from h as in the first definition 2.5.11 one defines S by S(x, y) =

h((CD)
�1

x, y) and, the decomposition being S-orthogonal, one recovers a polarization
in the sense of the second definition 2.5.15.

(5) If S is a polarization of H, then (�1)kS is a polarization of H(k) for any k 2 Z

(this follows from the behaviour of CD with respect to Tate twist).

2.5.18. Polarized Hodge structure as a filtered Hermitian pair. The definition of a po-
larized Hodge structure as a pair (H, S) contains some redundancy. However, it has
the advantage of exhibiting the underlying Hodge structure. We give a simplified
presentation, which only needs one filtration, together with the sesquilinear form S.

By a filtered Hermitian pair of weight w we mean the data (H, F
•H, S, w), where w

is an integer, (H, F
•H) is a filtered vector space, and S : H⌦C H! C is a Hermitian

sesquilinear pairing, i.e., a morphism S : H! H⇤ satisfying S⇤ = S.
A polarized Hodge structure of weight w can be described as the data of a filtered

Hermitian pair (H, F
•H, S, w) subject to the following conditions:

(1) S is non-degenerate, i.e., induces an isomorphism H
⇠�! H⇤,

(2) if F •H⇤ is the filtration on the Hermitian dual space H⇤ naturally defined by
F

•H, then F
•H is 0-opposite to the filtration S�1(F •H⇤) (which corresponds thus to

F
00
[w]

•H),
(3) the positivity condition 2.5.15(2) holds.

A filtered Hermitian pair (H, F
•H, S, w) satisfying these conditions will also be

called a polarized Hodge structure of weight w. We then define the filtration F
00•H by

F
00w�p+1H = F pH?S ,

and (2) means that F
00•H is w-opposite to F

pH, then denoted by F
0•H, and the

corresponding decomposition is S-orthogonal. In this setting, the weight w can be
chosen freely.

2.5.19. Category of polarizable C-Hodge structures. A C-Hodge structure may be pola-
rized by many polarizations. At many places, we do not want to make a choice
of a polarization, and it is enough to know that there exists one. Nevertheless,
any C-Hodge structure admits at least one polarization, as is obvious from Defini-
tion 2.5.11. Notice that this property will not remain true when considering Q-Hodge
structures (see Section 2.5.c below) or variations of C-Hodge structure on a com-
plex manifold, and this will lead us to distinguish the full subcategory of polarizable
(instead of polarized) objects (see Definition 4.1.9). This is not needed here.

Recall that the category HS(C) is equipped with tensor product, Hom, duality and
conjugation. If we are moreover given a polarization of the source terms of these
operations, we naturally obtain a polarization on the resulting C-Hodge structure
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(see Exercise 2.11). For example, if H = H1 ⌦H2, then
Hp,w�p

=
L

p1+p2=p

Hp1,w1�p1

1
⌦Hp2,w2�p2

2

and the positive definite Hermitian forms h1, h2 induce such a form h on each
Hp1,w�p1

1
⌦Hp2,w�p2

2
, and thus on Hp,w�p by imposing that the above decomposition

is h-orthogonal.

2.5.c. Real and rational (polarized) Hodge structures. A real structure on a
C-Hodge structure H is an isomorphism  : H

⇠�! H (see Exercise 2.7(5)) such that
 �  = Id and  �  = Id. In other words, a real Hodge structure of weight w consists
of the data (HR, F

•H), where
(i) HR is a finite-dimensional R-vector space,
(ii) H = C⌦R HR,
(iii) the filtration F

•H is w-opposite to the conjugate filtration; equivalently, the
Hodge decomposition satisfies Hq,p

= Hp,q, where the conjugation is taken with
respect to the real structure HR.

A Q-Hodge structure HQ consists of the data (HQ, HR, iso), where HQ is a finite-
dimensional Q-vector space and HR is a real Hodge structure and iso is an isomorphism
R ⌦Q HQ

⇠�! HR. Morphisms should be compatible with the data, so that we can
assume that R⌦Q HQ = HR and iso = Id.

Real and rational Hodge structures are preserved by the operations tensor product,
Hom and duality considered in Exercise 2.7. By definition, conjugation is the identity
on such Hodge structures, and therefore Hermitian duality reduces to duality. We ob-
tain in a natural way an abelian category HS(Q, w) (morphisms should preserve the
Q-structure on HQ) for each integer w and a forgetful functor HS(Q, w)! HS(C, w).

A polarization of a Q-Hodge structure of weight w is a morphism SQ : HQ⌦HQ !
Q

H
(�w) inducing a polarization of the associated C-Hodge structure. A typical ex-

ample is given by the geometric setting (2.4.11). Although C-Hodge structures can
always be polarized, imposing that S is defined over Q is a constraint that cannot be
always satisfied for a Q-Hodge structure. This makes stronger the notion of polar-
izability for a Q-Hodge structure, and leads us to denote the category of polarizable
Q-Hodge structures of weight w by pHS(Q, w). Exercises 2.11 and 2.12 can be adapted
to the rational setting:

2.5.20. Proposition. The full subcategory pHS(Q, w) of HS(Q, w) is abelian and stable
by direct summand in HS(Q, w). The tensor product, Hom and duality functors on
HS(Q) preserve pHS(Q).

2.6. Mixed Hodge structures

Our aim is to construct an abelian category which contains all the categories
HS(C, j) as full subcategories. The category HS(C) of Hodge structures of arbitrary
weight is not suitable, since it is not abelian (see Exercise 2.6). Instead, we will use
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the category T of triples defined in Remark 2.6.a below, and we will regard an object
of HS(C, j) as an object of T of weight j.

2.6.a. An ambient abelian category. In order to regard all categories HS(C, w)

(w 2 Z) as full subcategories of a single abelian category, one has to modify a little
the presentation of HS(C, w). We anticipate here the constructions in Chapter 5,
which we refer to for details (see also Convention 0.4). The starting point is that the
category of filtered vector spaces and filtered morphisms is not abelian, and one can
use the Rees trick (see §5.1.3) to replace it with an abelian category.

A finite dimensional C-vector space H with an exhaustive filtration F
•H defines a

free graded C[z]-module eH of finite rank by the formula eH =
L

p
F

pHz
�p (the term

F
pHz

�p is in degree p). On the other hand, the category Modgr ft(C[z]) of graded
C[z]-modules of finite type (whose morphisms are graded of degree zero) is abelian,
but not all its objects are free. The free modules in this category are also called
strict objects. Strict objects are in one-two-one correspondence with filtered vector
spaces: from a strict object eH one recovers the vector space H := eH/(z � 1) eH, and
the grading eH =

L eHp induces a filtration F
pH := eHp

/ eHp \ (z � 1) eH.
Similarly, we say that a morphism in this category is strict if its kernel and cokernel

are strict. A morphism between strict objects corresponds to a filtered morphism
between the corresponding filtered vector spaces. A morphism between strict objects
is strict if and only if its cokernel is strict.

To a bi-filtered vector space (H, F
0•H, F

00•H) we associate the following pair of
filtered vector spaces:

• (H0, F •H0) := (H, F
0•H),

• (H00, F •H00) := (H, F 00•H).
We thus have an isomorphism � : H0

⇠�! H00 (the identity). We associate to
(H, F

0•H, F
00•H) the object ( eH0, eH00, �) (where we regard � as an homogeneous iso-

morphism of degree zero). In such a way, we embed the (non abelian) category
of bi-filtered vector spaces (and morphisms compatible with both filtrations) as a
full subcategory of the category T of triples ( eH0, eH00, �) consisting of two graded
C[z]-modules eH0, eH00 and an isomorphism � : H0

⇠�! H00. Morphisms are pairs of
graded morphisms ('

0
,'
00
) of degree zero whose restriction to z = 1 are compatible

with �. One recovers a bi-filtered vector space if eH0, eH00 are strict (i.e., C[z]-flat,
see Exercise 5.2) by setting H = H0, by getting the filtrations F

•H0, F •H00 from
eH0, eH00, and by transporting them to H by the isomorphisms Id and ��1.

2.6.1. Lemma. For every j 2 Z, the category HS(C, j) is a full subcategory of T which
satisfies the following properties.

(1) HS(C, j) is stable by Ker and Coker in T.
(2) For every j > k, HomT(HS(C, j),HS(C, k)) = 0.

Proof. The first point follows from the abelianity of the full subcategory HS(C, j)

of T, and the second one is Proposition 2.5.6(2).
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2.6.b. Abelian categories and W -filtrations. Let A be an abelian category. The
category WA consisting of objects of A equipped with a finite exhaustive(1) increasing
filtration indexed by Z, and morphisms compatible with filtrations, is an additive
category which has kernels and cokernels, but which is not abelian in general. For
a filtered object (H,W•H) and for every k 6 `, the object (W`H,W•H)•6` is a
subobject of (H,W•H) (i.e., the kernel of (W`H,W•H)•6` ! (H,W•H) is zero) and
the object (W`H/WkH,W•H/WkH)k6•6` is a quotient object of (W`H,W•H)•6`

(i.e., the cokernel of (W`H,W•H)•6` ! (W`H/WkH,W•H/WkH)k6•6` is zero).

2.6.2. Definition. Let Aj (j 2 Z) be full abelian subcategories of A which are stable
by Ker and Coker in A an such that, for every j > k, HomA(Aj ,Ak) = 0. We will
denote by A• the data (A, (Aj)j2Z) and by WA• the full subcategory of WA consisting
of objects such that for every j, grW

j
2 Aj .

2.6.3. Proposition. The category WA• is abelian, and morphisms are strictly compatible
with W•.

Proof. It suffices to show the second assertion. Let ' : (H,W•H) ! (H
0
,W•H

0
) be

a morphism. It is proved by induction on the length of W•. Consider the diagram of
exact sequences in A:

(2.6.4)

0 // Wj�1H //

'j�1
✏✏

WjH
//

'j

✏✏

gr
W

j
H //

gr
W

j
'

✏✏

0

0 // Wj�1H
0

// WjH
0

// gr
W

j
H
0

// 0

Due to the induction hypothesis, the assertion reduces to proving in A:

Im'j�1 = Im'j \Wj�1H
0
,

equivalently, Coker'j�1 ! Coker'j is a monomorphism. This follows from the
assumption on the categories Aj and the snake lemma, which imply that the short
sequences of Ker’s and that of Coker’s are exact.

2.6.c. Mixed Hodge structures. Following Definition 2.6.2, we will denote by
HS•(C) the data

�
T,HS(C, j)j2Z

�
.

2.6.5. Definition (Mixed Hodge structures). The category MHS(C) is the category
WHS•(C).

Proposition 2.6.3 and Lemma 2.6.1 immediately imply the following corollary.

2.6.6. Corollary. The category MHS(C) is abelian, and morphisms are strictly compat-
ible with W•.

(1)Exhaustivity means that, for a given object H in A, we have W`H = 0 for ` ⌧ 0 and W`H = H

for ` � 0.
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2.6.7. Remark. Let us make explicit the notion of mixed Hodge structure.

(1) A mixed C-Hodge structure consists of
(a) a finite dimensional C-vector space H equipped with an exhaustive in-

creasing filtration W•H indexed by Z,
(b) decreasing filtrations F

•H (F = F
0 or F

00),
such that each quotient space gr

W

`
H := W`H/W`�1H, when equipped with the in-

duced filtrations

F
p
gr

W

`
H :=

F
pH \W`H

F pH \W`�1H

is a C-Hodge structure of weight `. From the point of view of C-Hodge triples (the
category A), a mixed C-Hodge triple consists of a W -filtered triple (H,W•H) such
that H is strict and each gr

`
H is a C-Hodge triple of weight `. In particular it is

strict, hence Remark 5.2.2(5) applies.
(2) A morphism of mixed C-Hodge structures

(H1,W•H1) �! (H2,W•H2)

is a morphism H1 ! H2 which is compatible with the filtrations W• and with the
filtrations F

0•
, F
00•. Equivalently, it consists of a pair of bi-filtered morphisms
8
<

:
(H0

1
, F

•H0
1
,W•H

0
1
)! (H0

2
, F

•H0
2
,W•H

0
2
),

(H00
2
, F

•H00
2
,W•H

00
2
)! (H00

1
, F

•H00
1
,W•H

00
1
)

compatible with �1, �2.
(3) The category MHS(C) of mixed Hodge structures defined by 2.6.5, i.e., as in (1)

and (2), is equipped with endofunctors, the twists (k, `) (k, ` 2 Z) defined by

(H,W•H)(k, `) :=
�
(H(k, `),W [�(k + `)]•H(k, `))

�
.

(4) We say that a mixed Hodge structure H is
• pure (of weight w) if grW

`
H = 0 for ` 6= w,

• graded-polarizable if grW
`
H is polarizable for every ` 2 Z.

2.6.8. Proposition. Any morphism in the abelian category MHS(C) is strictly compatible
with both filtrations F

• and W•.

Proof. Note that for every morphism ', the graded morphism gr
W

`
' is F -strict, ac-

cording to Exercise 2.5(2). The proof is then by induction on the length of W•,
by considering the diagram (2.6.4). Since the sequence of cokernels is exact, the
cokernel of 'j is strict, and we can apply the criterion of Exercise 5.1(3).

Since any C-Hodge structure is polarizable, any mixed Hodge structure is graded-
polarizable.
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2.6.9. Operations on mixed Hodge structures. In a way similar to that for Hodge struc-
tures (§2.5.3), the category MHS(C) has the following functors lifting those existing
on C-vector spaces (adapt Exercise 2.7 or Exercise 5.7):

• tensor product H1 ⌦ H2, with W`(H1 ⌦ H2) =
P

`1+`2=`
W`1

(H1) ⌦W`2
(H2),

so that gr
W

`
(H1 ⌦H2) =

L
`1+`2=`

gr
W

`1
(H1)⌦ gr

W

`2
(H2),

• homomorphisms Hom(H1, H2), with

W` Hom(H1, H2) = {f 2 Hom(H1, H2) | 8 k 2 Z, f(Wk(H1)) ⇢W`+k(H2)},

• dual H_, with W`(H
_
) = (W�`�1H)

_, so that gr
W

`
H

_
= (gr

W

�`H)
_,

• conjugate H, with W`(H) = W`H, so that gr
W

`
(H) = gr

W

`
H

• Hermitian dual H⇤ = H
_
= H_, with W`(H

⇤
) = (W�`�1H)

⇤, so that grW
`
(H
⇤
) =

(gr
W

�`H)
⇤.

2.6.10. Examples (of mixed Hodge structures). The following simple examples will be
used in the proof of the structure theorem in Chapter 16.

(1) Let N be a new variable, let m 2 N be a nonnegative integer, and let us equip
the infinite dimensional vector space C[N] with the filtrations

• F
p
(C[N]) =

L
06k6�p C ·Nk,

• W`(C[N]) =
L

j>0, `+2j>0
C ·Nj .

Then (gr
W

`
(C[N]), F

•
) ' C(�`/2) if �`/2 2 N and gr

W

`
(C[N]) = 0 otherwise.

(2) Let m 2 N be a nonnegative integer and let us set

Jm+1 = C[N]/(N
m+1

) =

mL
k=0

C ·Nk
,

which is an (m+ 1)-dimensional vector space. The filtrations induced by F
• and W•

make Jm+1 a mixed Hodge structure. Anticipating Chapter 3, we introduce the
monodromy filtration of the nilpotent endomorphism N of Jm+1 by setting

Mm�2k+1(Jm+1) = Mm�2k(Jm+1) =

X

06k6j6m

C ·Nj
.

Then W`Jm+1 = Mm+`Jm+1, and we say that the weight filtration is the monodromy
filtration centered at m.

(3) Let (H,F
•
,W•) be a mixed Hodge structure (e.g. H is the pure Hodge struc-

ture C of weight 0). We define

F
p
(H ⌦ C[N]) =

X

k>0

Fp�kH ⌦N
k
, W`(H ⌦ C[N]) =

X

j>0

W`+2jH ⌦N
j
.

Then, with the induced filtrations, H ⌦ Jm+1 is a mixed Hodge structure.
(4) Assume that N1, . . . ,Nb are commuting nilpotent endomorphisms of H which

are also morphisms of mixed Hodge structures (H,F
•
,W•) ! (H,F

•
,W•)(�1). Let

us consider the (injective) linear map

' : H ⌦ C[N] �! H ⌦ C[N], ' =

bY

i=1

(N�Ni).
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It is a bifiltered morphism (H ⌦ C[N], F
•
,W•)(b) ! (H ⌦ C[N], F

•
,W•). We claim

that the cokernel of ', with the induced filtrations, is a mixed Hodge structure and
that N : Coker'! Coker'(�1) is a morphism of mixed Hodge structures.

The second property is clear from the definition of the filtrations on Coker'. To see
the first one, we note that N is nilpotent on the cokernel, so that the cokernel is indeed
finite dimensional: assume there exists i such that Ni 6= 0 (otherwise the assertion
is clear); by induction on b, the assertion holds if we replace H with KerNi, and we
then argue by induction on dimH applied to H/KerNi. Then we replace ' with
'm : H ⌦ Jm+1 ! H ⌦ Jm+1 by choosing for m + 1 the nilpotency order of N on
Coker', and we still have Coker' = Coker'm as bi-filtered vector spaces. Since
'm = H ⌦ Jm+1(�b) ! H ⌦ Jm+1 is a morphism of mixed Hodge structures, its
cokernel is a mixed Hodge structure.

2.6.d. Mixed Q-Hodge structures. A real mixed Hodge structure is a complex
mixed Hodge structure together with an isomorphism  : (H,W•H)

⇠�! (H,W•H)

satisfying  �  = Id and  �  = Id. We have a description similar to that of Section
2.5.c.

The category MHS(Q) of (graded-polarizable) mixed Q-Hodge structure consists
of objects

�
HQ,W•HQ), (HR,W•HR), iso

�
, where

• (HR,W•HR) is a real mixed Hodge structure
• W•HQ is an exhaustive filtration of the finite-dimensional Q-vector space HQ,
• iso is a filtered isomorphism R⌦ (HQ,W•HQ)

⇠�! (HR,W•HR)
• for each ` 2 Z, (gr

W

`
HQ, grW` HR) is a polarizable Q-Hodge structure, i.e., an

object of pHS(Q, `).
The morphisms are Q-linear morphisms between the Q-vector spaces which preserve
the filtrations. In a way analogous to Corollary 2.6.6 and Proposition2.6.8, we obtain
the fundamental result:

2.6.11. Proposition. The category MHS(Q) is abelian. Any morphism is strictly compat-
ible with both filtrations F

• and W• (on the C- and Q-vector spaces respectively).

The main result in the theory of mixed Hodge structures is due to Deligne [Del71b,
Del74].

2.6.12. Theorem (Hodge-Deligne Theorem, mixed case). Let X be a complex quasi-
projective variety. Then the cohomology H

k
(X,Q) and the cohomology with compact

supports H
k

c
(X,Q) admit a canonical (graded-polarizable) mixed Hodge structure for

each k. The weights of Hk
(X,Q) are > k and those of Hk

c
(X,Q) are 6 k.

2.7. Exercises

Exercise 2.1 (Conjugate vector space). Let H be a complex vector space. If we only
remember the R-structure it is an R-vector space. Show that the action of C defined by

� · x := �x, � 2 C, x 2 HR,
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defines a new complex vector space, the conjugate H of H, which has the same
underlying R-vector space as H. Given an element x 2 H, we denote by x the
same element regarded as belonging to H. Show the following (tautological) formula

�x = �x.

Show that C-linear morphisms are transformed by the rule

'(x) = '(x).

Show that HomC(H1,H2) = HomC(H1,H2) by the correspondence given above. Sim-
ilarly, show that

H1 ⌦C H2 = H1 ⌦C H2.

Exercise 2.2 (Finite dimensional Hilbert spaces). Consider the category of finite-
dimensional C-vector spaces equipped with a positive definite Hermitian form
h. For two objects (H1, h1) and (H2, h2) in this category, equip H1 ⌦C H2 and
HomC(H1,H2) of natural positive definite Hermitian forms. Show that the Hermi-
tian forms on HomC(H1,H2) and H_

1
⌦C H2 coincide (where H_

1
:= HomC(H1,C)).

[Hint : Fix a hi-orthonormal basis "i of Hi (i = 1, 2) and define h on H1⌦H2 so that
"1 ⌦ "2 is an orthonormal basis, etc.]

Exercise 2.3 (Algebraic de Rham complex). Using the Zariski topology on X, we get
an algebraic variety denoted by X

alg. In the algebraic category, it is also possible to
define a deRham complex, called the algebraic deRham complex.

(1) Is the algebraic de Rham complex a resolution of the constant sheaf CXalg?
(2) Do we have H

•
(X

alg
,C) = H

•�
X

alg
, (⌦

•
Xalg , d)

�
?

Exercise 2.4. Check that the sesquilinear form of (2.4.14) is Hermitian.

Exercise 2.5 (The category HS(C, w) is abelian).
(1) Given two decreasing filtrations F

0•H, F
00•H of a vector space H by vector

subspaces, show that the following properties are equivalent:
(a) the filtrations F

0•H and F
00•H are w-opposite;

(b) setting Hp,w�p
= F

0pH \ F
00w�pH, then H =

L
p
Hp,w�p.

(2) (Strictness of morphisms) Show that a morphism ' : H1 ! H2 between objects
of HS(C, w) preserves the decomposition (1b) as well. Conclude that it is strictly
compatible with both filtrations, that is, '(F •H1) = '(H1) \ F

•H2 (with F = F
0

or F = F
00). Deduce that, if H

0 is a sub-object of H in HS(C, w), i.e., there is a
morphism H

0 ! H in HS(C, w) whose induced morphism H0 ! H is injective, then
F

•H0 = H0 \ F
•H for F = F

0 and F = F
00, and H0p,q = H0 \Hp,q.

(3) (Abelianity) Conclude that the category HS(C, w) is abelian.

Exercise 2.6 (Non-abelianity). Consider a linear morphism ' : H1,0

1
�H0,1

1
! H2,0

2
�

H1,1

2
�H0,2

2
sending H1,0

1
into H2,0

2
�H1,1

2
and H0,1

1
into H1,1

2
�H0,2

2
, and check when

it is strict. [Hint : Write ' = '
1 � '0 with '1

= '
1

2,0
� '1

1,1
and '0

= '
0

1,1
� '0

0,2
, so

that gr1' = '
1

1,1
and gr

0
' = '

0

0,2
.] Conclude that the category HS(C) is not abelian.
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Exercise 2.7 (Operations on filtrations and oppositeness (see also Exercise 5.7)
Let H1, H2, H be C-Hodge structures of respective weights w1, w2, w.

(1) (Tensor product) One defines H1 ⌦H2 so that the underlying vector space is
H1 ⌦C H2 and the filtration on the tensor product is

F
p
(H1 ⌦H2) =

X

p1+p2=p

F
p1H1 ⌦ F

p2H2.

Show that (F
0•
(H1 ⌦H2), F

00•
(H1 ⌦H2)) are (w1 + w2)-opposite.

(2) (Hom) One defines Hom(H1,H2) so that the underlying vector space is
HomC(H1,H2) and the filtration on the space of linear morphisms is

F
p
HomC(H1,H2) = {f 2 HomC(H1,H2) | 8 k 2 Z, f(F

kH1) ⇢ F
p+kH2}.

Show that (F
0•
Hom(H1,H2), F

00•
Hom(H1,H2)) are (w2 � w1)-opposite.

(3) (Dual) One sets H
_
= Hom(H,C

H
) with C

H
:= C

H
(0) (see Section 2.2), which

is a pure Hodge structure of weight �w according to (2). Show that the filtrations
on the dual space H_ are given by

F
0pH_

= (F
0�p+1H)

?
, F

00pH_
= (F

00�p+1H)
?
,

and that we have

gr
p

F 0H
_ '

�
gr
�p
F 0 H

�_
, gr

p

F 00H
_ '

�
gr
�p
F 00H

�_
, (H_

)
p,q

= (H�p,�q)_.

(4) Identify Hom(H1, H2) with H
_
1
⌦H2.

(5) (Conjugation) Let H be the complex conjugate of H (see Exercise 2.1). Con-
sider the bi-filtered vector space H := (H, F 00•H, F 0•H). Show that H 2 HS(C, w)

and Hp,q = Hq,p.
(6) (Hermitian duality) Define the Hermitian dual Hodge structure H

⇤ as the
conjugate dual Hodge structure H

_. Deduce that it is an object of HS(C,�w) and
that

(H⇤)p,q = (H�q,�p)⇤.

Exercise 2.8 (Behaviour with respect to Tate twist). Show the following behaviour of
the functors of Exercise 2.7 with respect to Tate twist:

• H1(k)⌦H2 = H1 ⌦H2(k) = (H1 ⌦H2)(k),
• Hom(H1(k), H2) = Hom(H1, H2(�k)) = Hom(H1, H2)(k),
• H

_
(k) = H(�k)_,

• H(k) = H(k),
• H

⇤
(k) = H(�k)⇤.

Exercise 2.9 (The Hodge polynomial). Let H be a Hodge structure of weight w

with Hodge decomposition H =
L

p+q=w
Hp,q. The Hodge polynomial Ph(H) 2

Z[u, v, u
�1

, v
�1

] is the two-variable Laurent polynomial defined as
P

p,q2Z h
p,q

u
p
v
q

with h
p,q

= dimHp,q. This is a homogeneous Laurent polynomial of degree w. Show
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the following formulas:

Ph(H1 ⌦H2)(u, v) = Ph(H1)(u, v) · Ph(H2)(u, v),

Ph(Hom(H1, H2))(u, v) = Ph(H1)(u
�1

, v
�1

) · Ph(H2)(u, v),

Ph(H
_
)(u, v) = Ph(H)(u

�1
, v
�1

),

Ph(H(k))(u, v) = Ph(H)(u, v) · (uv)�k.

Exercise 2.10 (Polarization and twist). Show that, if (H, S) is a polarized Hodge struc-
ture of weight w, then (H(k, `), (�1)`S) is a polarized Hodge structure of weight
w � k � `. In particular, considering the Tate twist, (H(k), (�1)kS) is a polarized
Hodge structure of weight w � 2k.

Exercise 2.11 (Operations on polarized Hodge structures). Show the following for po-
larized Hodge structures (H1, S1), (H2, S2), (H, S):

(1) (Tensor product) S1 ⌦ S2 : (H1 ⌦ H2) ⌦ H1 ⌦H2) = H1 ⌦ H1 ⌦ H2 ⌦ H2 !
C

H
(�(w1 + w2)) is a polarization of H1 ⌦H2.
(2) (Dual) Using the interpretation (Remark 2.5.17(1)) of S as a Hermitian mor-

phism H ! H
⇤
(�w), and the definition of S in Remark 2.5.17(3)), show that

S
_
:= (�1)wS⇤ is a polarization of H_.

Exercise 2.12 (Polarization on C-Hodge sub or quotient structures)
Let S be a polarization (Definition 2.5.15) of a C-Hodge structure H of weight w.

Let H1 be a C-Hodge sub-structure of weight w of H (see Proposition 2.5.6(1)).
(1) Show that the restriction S1 of S to H1 is a polarization of H1. [Hint : Use that

the restriction of a positive definite Hermitian form to a subspace remains positive
definite.]

(2) Deduce that (H1, S1) is a direct summand of (H, S) in the category of polarized
C-Hodge structures of weight w. [Hint : Define H2 to be H?

1
, where the orthogonal

is taken with respect to S; use (1) to show that (H, S) = (H1, S1) � (H2, S2); show
similarly that Hp,w�p

2
:= H2 \Hp,w�p

= Hp,w�p,?
1

for every p and conclude that H2

is a C-Hodge structure of weight w, which is polarized by S2.]
(3) Argue similarly with a quotient C-Hodge structure.

Exercise 2.13 (Semi-simple C-Hodge structures). Show the following:
(1) A C-Hodge structure H of weight w is simple (i.e., does not admit any nontrivial

C-Hodge sub-structure) if and only if dimC H = 1.
(2) Any C-Hodge structure is semi-simple as such.

2.8. Comments

Sections 2.3 and 2.4 give a very brief abstract of classical Hodge theory, for which
various references exist: Hodge’s book [Hod41] is of course the first one; more re-
cently, Griffiths and Harris’ book [GH78], Demailly’s introductory article [Dem96]
and Voisin’s book [Voi02] are modern references. The point of view of an abstract
Hodge structure, as emphasized by Deligne in [Del71a, Del71b], is taken up in
Peters and Steenbrink’s book [PS08], which we have tried to follow with respect to
notation at least.
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In Hodge theory, the Q-structure (or, better, the Z-structure) is usually empha-
sized, as both Hodge and Q-structures give information on the transcendental as-
pects of algebraic varieties, by means of the periods for example. It may then look
strange to focus, as we did in this chapter, and as is also done in [Kas86b, KK87]
and [SV11], on one aspect of the theory, namely that of complex Hodge structures,
where the Q-structure is absent, and so is any real structure. The main reason is
that this is a preparation to the theory in higher dimensions, where the analytic and
the rational structures diverge with respect to the tools needed for expressing them.
On the one hand, the analytic part of the theory needs the introduction of holo-
nomic D-modules (replacing C-vector spaces), while on the other hand the rational
structure makes use of the theory of Q-perverse sheaves (replacing Q-vector spaces).
The relation between both theories is provided by the Riemann-Hilbert correspon-
dence, in the general framework developed by Kashiwara [Kas84] and Mebkhout
[Meb84a, Meb84b] (see also [Meb89] and [Meb04]). The theory of Hodge mod-
ules developed by Saito [Sai88, Sai90] combines both structures, as desirable, but
this leads to developing fine comparison results between the analytic and the rational
theory by means of the Riemann-Hilbert correspondence. This is done in [Sai88] and
also in [Sai89a]. In order to simplify the text and focus on the very Hodge aspects
of the theory, we emphasize on C-Hodge structures, and consider the Q-structure as
an additional property, whose relations with the C-Hodge structure are governed by
the Riemann-Hilbert correspondence.

Developing the theory from the complex point of view also has the advantage
of emphasizing the relation with the theory of twistor D-modules, as developed in
[Sab05, Moc02, Moc07, Moc15]. In fact, the idea of introducing a sesquilin-
ear pairing s is inspired by the latter theory, where one does not expect any Q- or
R-structure in general, and where one is forced to develop the theory with a complex
approach only. The category of triples that will be introduced in Section 5.2 mim-
ics the notion of twistor structure, introduced by Simpson in [Sim97], and adapted
for a higher dimensional use in [Sab05]. The somewhat strange idea to replace an
isomorphism by a sesquilinear pairing is motivated by the higher dimensional case,
already for a variation of Hodge structure, where among the two filtrations consid-
ered in Definition 2.5.1, one varies in a holomorphic way and the other one in an
anti-holomorphic way. Also, the idea of emphasizing the Rees module of a filtration,
as in Remark 2.6.a, is much inspired by the theory of twistor D-modules.

Also, in complex Hodge theory, the (Tate) twist is more flexible since we can reduce
to weight zero any complex Hodge structure of weight w 2 Z. However, we will not
use this possibility in order to keep the relation with standard Hodge theory as close
as possible.

Mixed Hodge structures are quickly introduced in Section 2.6. This fundamental
notion, envisioned by Grothendieck as part of the realization properties of a theory of
motives, and realized by Deligne in [Del71a, Del71b, Del74], is explained carefully
in [PS08, Chap. 3]. In the theory of pure Hodge modules, it only appears through
the disguise of a Hodge-Lefschetz structure considered in Chapter 3.





CHAPTER 3

HODGE-LEFSCHETZ STRUCTURES

Summary. We develop the notion of a Hodge-Lefschetz structure as the first
example of a mixed Hodge structure. The total cohomology of a smooth com-
plex projective variety, together with the Chern class of an ample line bun-
dle, gives rise to the notion of sl2-Hodge structure. On the other hand, de-
generations of 1-parameter families of smooth complex projective varieties are
the main provider of Hodge-Lefschetz structures. Vanishing cycles of holomor-
phic functions with isolated critical points also produce such structures. The
S-decomposition theorem 3.4.22 is the main result in this chapter.

3.1. sl2-representations and quivers

3.1.a. sl2-representations. The Lie algebra sl2(C) is generated by the three ele-
ments usually denoted by X,Y,H which satisfy the relations

[X,Y] = H, [H,X] = 2X, [H,Y] = �2Y.

(See Exercise 3.1 for a few properties of X,Y,H.) With respect to the standard basis
of C2, the matrices of X,Y,H are respectively

X =

✓
0 1

0 0

◆
, Y =

✓
0 0

1 0

◆
, H =

✓
1 0

0 �1

◆
.

Let H be a finite-dimensional C-vector space equipped with a representation ⇢ :

sl2 ! End(H) (i.e., a Lie algebra morphism sl2 ! End(H)). We still denote by
X,Y,H the endomorphisms ⇢(X), ⇢(Y), ⇢(H). The following lemma is classical.

3.1.1. Lemma.
(1) The endomorphism H is semi-simple and its eigenvalues are integers. The

eigenspace corresponding to the eigenvalue k is denoted Hk.
(2) For each k 2 Z, X (resp. Y) sends Hk to Hk+2 (resp. Hk�2).
(3) For each ` > 0, X`, resp. Y`, induces an isomorphism

X
`
: H�`

⇠�! H`, resp. Y`
: H`

⇠�! H�`.

Let H⇤ denote the Hermitian dual vector space of H. Then the Hermitian adjoint
endomorphisms (X

⇤
,Y
⇤
,�H⇤) define an sl2-representation on H

⇤.
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It is useful to enlarge the previous setting to sl2-representations on objects of an
abelian category. Let us introduce the corresponding notation. Let k be a field of
characteristic zero (we will mainly use k = C in the subsequent sections). We fix a
k-linear abelian category A (i.e., the Hom’s are k-vector spaces). We have in mind
the category of Hodge structures HS(C, w), the category of mixed Hodge structures
MHS(C), or the category of holonomic D-modules for example.

Let H be an object of A. By an sl2-representation ⇢ : sl2 ! EndA(H) we mean a
morphism of Lie algebras satisfying the following properties (by analogy to the case
of finite-dimensional vector spaces):

• The endomorphism ⇢(H) is semi-simple and its eigenvalues are integers. The
eigenspace corresponding to the eigenvalue k is denoted Hk. (Hence the object H

decomposes as the direct sum
L

k
Ker(⇢(H) � k Id) =

L
k
Hk and ⇢(X), resp. ⇢(Y),

send Hk to Hk+2, resp. to Hk�2.)
• The endomorphisms ⇢(X), ⇢(Y) are nilpotent.
• For each ` > 1, ⇢(X)

`
: H�` ! H` and ⇢(Y)

`
: H` ! H�` are isomorphisms

(hence the decomposition H =
L

k
Hk is finite).

In the following, we will omit ⇢ in the notation of an sl2-representation, and
we denote by X,Y,H the endomorphisms that ⇢ induces. A morphism between
sl2-representations in A is a morphism in A which commutes with the sl2-action.
It is then graded, and its kernel, image and cokernel in A are sl2-representations in A,
so that the category of sl2-representations in A is abelian.

3.1.2. �-sl2-representations. We will have to apply the previous notions in a slightly
more general setting. We assume that the abelian category A is equipped with an
automorphism � : A 7! A. By a �-endomorphism of an object H of A we mean
a morphism H ! �

�1
H. It defines for every k a morphism �

�k
H ! �

�k�1
H.

We say that a �-endomorphism N is nilpotent if there exists k > 0 such that
�
�k

N � · · · � ��1N �N = 0. By a �-sl2-representation ⇢ we mean the data of nilpotent
⇢(X) 2 Hom(H,�H) and ⇢(Y) 2 Hom(H,�

�1
H), and semi-simple ⇢(H) 2 End(H)

satisfying the sl2-relations. We will mainly use the case where � is the Tate twist (1)
in the category of Hodge structures. We will omit the reference to � when there is
no possible confusion.

3.1.3. Definition (Primitive subobjects). For each ` > 0, the primitive subobject P�` ⇢
H�` of an sl2-representation is KerY : H�` ! H�`�2. Similarly, the primitive
subobject P` is KerX : H` ! H`+2.

Note that P0 is equal to both KerX and KerY acting on H0. One also checks the
following.

3.1.4. Lemma (Lefschetz decomposition).
• For each ` > 0, X` induces an isomorphism P�`

⇠�! P` = X
`
(P�`). Similarly,

Y
` induces an isomorphism P`

⇠�! P�` = Y
`
(P`).
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• For each ` > 0, we have

(3.1.4 ⇤)
P�` = KerX

`+1
: H�` �! H`+2,

P` = KerY
`+1

: H` �! H�`�2.

• For every k > 0 we have

(3.1.4 ⇤⇤)
H�k =

L
j>0

X
j
P�k+2j and Hk =

L
j>0

X
k+j

P�k+2j ,

Hk =
L
j>0

Y
j
Pk+2j and H�k =

L
j>0

Y
k+j

Pk+2j .

• The morphism Y : Hk ! Hk�2 is a monomorphism if k > 1 and an epimorphism
if k 6 �1, and the morphism X : Hk ! Hk+2 is a monomorphism if k 6 �1 and an
epimorphism if k > 0.

This structure is pictured in Figure 3.1. By exponentiating the action of X,Y,H,
an sl2-representation leads to an action of the group SL2. There is a distinguished
element in this group, called the Weil element and denoted by w, which induces an
automorphism (also denoted by) w of H. It is defined by the formula

w = e
X
e
�Y

e
X
.

In the standard basis of C2, its matrix is

w =

✓
0 1

�1 0

◆
.

Some of its properties are considered in Exercise 3.1.

3.1.5. Lemma. The Weil element w induces isomorphisms w : Hk

⇠�! H�k and Pk

⇠�!
P�k for any k 2 Z.

Proof. We use the relations of Exercise 3.1(3). The first assertion follows from the
relation wHw

�1
= �H. If k > 0 and x 2 Pk for example, then Xx = 0, hence

Y(wx) = �w(Xx) = 0, so wx 2 P�k.

3.1.6. Proposition. Let (H•,N) be a finitely graded object in A endowed with a nilpotent
endomorphism N sending Hk to Hk�2 for each k and such that N

`
: H` ! H�` is

an isomorphism for each ` > 0. Then there exists a unique A-representation of sl2

on H mapping Y to N and such that H|H`
= ` IdH`

for every ` 2 Z. Lastly, any
endomorphism Z 2 End(H) which commutes with Y and H also commutes with X.

Proof. Indeed, if X exists, the relation [H,X] = 2X implies that X sends H` to
H`+2 for every ` 2 Z. Then, for ` > 0 and 0 6 j 6 ` � 1, let us denote by
N`,j : N

j
P`

⇠�! N
j+1

P` the isomorphism induced by N. We define the morphism
X`,j+1 : N

j+1
P`

⇠�! N
j
P` as c`,jY

�1
`,j

, where c`,j are positive integers uniquely deter-
mined by the relations c`,j+1 = c`,j + ` � j. This determines X, according to the
Lefschetz decomposition for N.

For the uniqueness it suffices to check that if [Z,Y] = 0 and [H, Z] = 2Z, then
Z = 0. For ` > 0, the composition Y

`+2
Z : P`H ! H�`�2, being equal to ZY

`+2, is
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H` = P`

⇤⇤

H`�1 = P`�1

⇥⇥

� 0

H`�2 = P`�2 � 0 � YP`

⌅⌅

...
...

...

...
...

...

H2 = P2

⇤⇤

� 0

H1 = P1

⇤⇤

� 0 � YP3 � . . .

H0 = P0 � 0 � YP2

⌅⌅

� 0 � Y2P4� . . .

H�1 = YP1 � 0 � Y2P3 � . . .

H�2 = Y2P2 � 0

...
...

...

⌃⌃

...
...

⇧⇧

...

H�`+2= 0 � Y�`+1P�`

⇧⇧

H�`+1= Y`�1P`�1 � 0

H�` = Y`P`

Figure 3.1. A graphical way of representing the Lefschetz decomposition
(with ` > 0): the arrows represent the isomorphisms induced by Y; each Hk

is the direct sum of the terms of its line, where empty places are replaced
with 0. The Lefschetz decomposition relative to X is obtained by reversing
the vertical arrows.

zero, so Z is zero on P`H. It is then easy to conclude that Z is zero on each Y
j
P`H

(j > 0).
Let now Z 2 End(H) be such that Z commutes with Y and H. Then for

c 2 k nonzero, the Jacobi identity shows that (X + c[Z,X],Y,H) also defines an
sl2-representation on H, hence [Z,X] = 0 by uniqueness.

3.1.7. Remark. One can obviously exchange the roles of X and Y in the previous
proposition.
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3.1.b. sl2-quivers

By an sl2-quiver we mean a data (H,G, c, v) consisting of a pair (H,G) of sl2-rep-
resentations and A-morphisms c : H ! G, v : G! H, with

c : Hk �! Gk�1 and v : Gk �! Hk�1, for each k 2 Z,

such that c � v = YG and v � c = YH . The sl2-quivers form in an obvious way an
abelian category (morphisms of sl2-quivers consist of pairs of morphisms H ! H

0,
G ! G

0, of sl2-representations which commute both with c and v). We denote such
an object (omitting the shift in the notation) by

(3.1.8) H

c

&&

G.

v

ee

Note that c, v commute with Y, but are not morphisms of sl2-representations in A

since they do not commute with H (hence neither with X). The properties of Y in
Lemma 3.1.4 imply that

• c : Hk ! Gk�1 and v : Gk ! Hk�1 are monomorphisms for k > 1 and epimor-
phisms for k 6 �1.

3.1.9. Remark (X-sl2-quiver). One can also develop the notion of sl2-quiver by replac-
ing Y with X, in which case we speak of an X-sl2-quiver to distinguish the notion.
In such a case, c sends Hk to Gk+1 and v sends Gk to Hk+1, and satisfy c � v = XG,
v � c = XH. Then c : Hk ! Gk+1 and v : Gk ! Hk+1 are monomorphisms for k 6 �1
and epimorphisms for k > 1.

3.1.10. Definition (Middle extension, punctual support, S-decomposability)
Let (H,G, c, v) be an sl2-quiver.

• We say that it is a middle extension if c is an epimorphism and v is a monomor-
phism in A.

• We say that it has a punctual support if H = 0, hence G = G0 is endowed with
the zero sl2-representation.

• We say that (H,G, c, v) is Support-decomposable, or simply S-decomposable, if it
can be decomposed as the direct sum of a middle extension quiver and a quiver with
punctual support.

Let H be an sl2-representation. Set Gk = Im[Y : Hk+1 ! Hk�1]. Then G =L
k
Gk is left invariant by H and Y (but not by X) and (G, (H + Id)|G,Y|G) can be

completed as an sl2-representation, according to Proposition 3.1.6. The sl2-quiver

(3.1.10 ⇤) H

c = Y

&&

G

v = incl

ff

is called the middle extension quiver attached to H (see Remark 3.3.12 for an expla-
nation of the terminology).
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The following proposition is easily checked by using the Lefschetz decomposition
for Y.

3.1.11. Proposition. For a middle extension quiver (H,G, c, v), we have the following
properties. For each k 2 Z,

(a) c : Hk ! Gk�1 is an epimorphism and, if k > 1, an isomorphism,
v : Gk ! Hk�1 is a monomorphism and, if k 6 �1, an isomorphism

(b) v(Gk) = Im
⇥
Y : Hk+1 ! Hk�1

⇤
'
(
Hk+1 if k > 0,

Hk�1 if k 6 0,

(c) Pk(G) = c(Pk+1(H)) if k > 0.

3.1.12. Remark (A criterion for S-decomposability). An sl2-quiver (H,G, c, v) is
S-decomposable if and only if the sl2-representation G decomposes as Im c � Ker v,
in which case

(H,G, c, v) = (H, Im c, c, v| Im c)� (0,Ker v, 0, 0).

The following weaker property is modeled on the classical weak Lefschetz theorem
for a smooth projective variety.

3.1.13. Definition (Weak Lefschetz property). We say that an sl2-quiver (H,G, c, v)

satisfies the weak Lefschetz property if v is an isomorphism for k 6 �1 (and an
epimorphism for k = 0). For an X-sl2-quiver, the condition is that v is an isomorphism
for k > 1 (and a epimorphism for k = 0).

3.1.14. Remarks.
(1) Clearly, if (H,G, c, v) is S-decomposable, it satisfies the weak Lefschetz prop-

erty.
(2) If (H,G, c, v) satisfies the weak Lefschetz property, then v : G�1!H�2 is an

isomorphism, and therefore P0(H)=Ker[Y:H0!H�2] is equal to Ker[c :H0!G�1].
For an X-sl2-Hodge quiver, P0(H) = Ker[c : H0 ! G1].

3.2. Polarized sl2-Hodge structures

3.2.a. sl2-Hodge structures and quivers. We say that an sl2-representation H is
an sl2-Hodge structure with central weight w 2 Z if for each k 2 Z, Hk is (equipped
with) a pure Hodge structure of weight w+ k, and if sl2 acts by morphisms of Hodge
structure as follows, for k 2 Z,

X : Hk �! Hk+2(1), Y : Hk �! Hk�2(�1).

(Note that H acts by k Id on Hk, hence is trivially a morphism of Hodge structure).
It follows from (3.1.4 ⇤) that PkH is a pure Hodge structure of weight w+k for each k 2
Z and that the Lefschetz decompositions (3.1.4 ⇤⇤) are decompositions in the category
of Hodge structures of weight w + k. The notion of Tate twist is meaningful in this
context, and the twist by (k) shifts the central weight by �2k. Lastly, the Hermitian
dual sl2-representation H

⇤ is an sl2-Hodge structure with central weight (�w).
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3.2.1. Remark (sl2-Hodge structures are mixed Hodge structures)
The sl2-Hodge structures are examples of mixed Hodge structures, with (increas-

ing) weight filtration W• defined by

WkH =
L
k06k

Hk0�w.

The symmetry of Lemma 3.1.1(3) reads, for ` > 0,

X
`
: gr

W

w�`H
⇠�! gr

W

w+`
H(`) and Y

`
: gr

W

w+`
H

⇠�! gr
W

w�`H(�`),

justifying the expression “with central weight w”.

An sl2-quiver (H,G, c, v) is an sl2-Hodge quiver with central weight w if H resp. G is
an sl2-Hodge structure with central weight w�1 resp. w and c, v are graded morphisms
of degree �1 of mixed Hodge structures:

c : H �! G, v : G �! H(�1).

More precisely, for each k, c, resp. v, is a morphism of pure Hodge structure of weight
w + k:

(3.2.2) ck : Hk+1 �! Gk, resp. vk : Gk �! Hk�1(�1).

We will use the notation

(3.2.3) H

c

&&

G.

v

ee

(�1)

We say that (H,G, c, v) is a middle extension sl2-Hodge quiver if the morphisms
(3.2.2) are respectively epimorphisms and monomorphisms in the category of pure
Hodge structures of weight w + k for each k 2 Z (equivalently, c, v, are graded epi
(resp. mono) morphisms of degree �1 of mixed Hodge structures). We also have
similar definitions for punctual support and S-decomposability. Lastly, the notion of
X-sl2-Hodge quiver is defined similarly (see Remark 3.1.9), with the Tate twist shift
by v being equal to (1).

3.2.4. Remark. The criterion of S-decomposability given in Remark 3.1.12 holds for
sl2-Hodge quivers, by replacing sl2-quiver, resp. sl2-representation, with sl2-Hodge
quiver, resp. sl2-Hodge structure.

3.2.5. Example. If H is an sl2-Hodge structure with central weight w � 1, then the
middle extension quiver (3.1.10 ⇤) is an sl2-Hodge quiver with central weight w. In-
deed, since Y : Hk+1 ! Hk�1(�1) is a morphism of pure Hodge structures of weight
w + k, its image Gk is of the same kind, and is a Hodge sub-structure of Hk�1(�1),
since HS(w + k) is an abelian category.

3.2.6. Example (see [Voi02, §13.2.2]). Let X ⇢ P
N be a smooth projective variety

of dimension n and let Y be a smooth hyperplane section of X. The cohomology
H =

L
k
Hk =

L
k
H

n+k
(X,C), endowed with the action of the cup product with

(2⇡i)[Y ] = X is an sl2-Hodge structure centered at n. The cohomology G =
L

k
Gk =



44 CHAPTER 3. HODGE-LEFSCHETZ STRUCTURES

L
k
H

n�1+k
(Y,C) of Y is also endowed with a natural action of X. If we denote

by c : H
n+k

(X,C) ! H
n�1+(k+1)

(Y,C) the restriction morphism ◆
⇤
Y

and by v :

H
n�1+k

(Y,C) ! H
n+(k+1)

(X,C)(1) the Gysin morphism (2⇡i)◆Y ⇤, then (H,G, c, v)

is an X-sl2-Hodge quiver.

3.2.b. Polarization of sl2-Hodge structures and quivers

3.2.7. Definition. Let H be an sl2-Hodge structure with central weight w.
(1) A pre-polarization of H is a Hermitian isomorphism S : H

⇠�! H
⇤
(�w) of

sl2-Hodge structures with central weight w. Equivalently, S is a morphism of mixed
Hodge structures

S : H ⌦H �! C
H
(�w)

which is Hermitian and non-degenerate on the underlying vector spaces and satisfies
the identities, for x, y 2 H,

S(Hx, y) = �S(x,Hy), S(Xx, y) = S(x,Xy), S(Yx, y) = S(x,Yy),

hence also S(wx, y) = S(x,wy).
(2) We say that a pre-polarization S of H is a polarization if the form S(w•, •)

induces a polarization
Sk : Hk ⌦Hk �! C(�w � k)

of each Hodge structure Hk of weight w + k (k 2 Z), i.e., the Hermitian form

hk(x, y) = Sk(x,CDy) = S(wx,CDy) (x, y 2 Hk)

is positive definite on Hk.

3.2.8. Remarks.
(1) If S is a pre-polarization of H, we have S(Hk ⌦H`) = 0 if k+ ` 6= 0. It follows

that the direct sum decomposition H =
L

k
Hk is orthogonal for S(w•, •). If more-

over S is a polarization, h(•, •) = S(w•,CD
•) is positive definite on H.

(2) With respect to h, X,Y,H satisfy the following relations:

h(X•, •) = h(•,Y•), h(Y•, •) = h(•,X•), h(H•, •) = h(•,H•).

Let us check the first one for example: we have

h(Xx, y) = S(wXx,CDy) = �S(Ywx,CDy)

= �S(wx,YCDy) = S(wx,CDYy) = h(x,Yy).

3.2.9. Equivalent definitions of a polarized sl2-Hodge structure (1)
We can describe a polarized sl2-Hodge structure by means of the metric h in a way

similar to Definition 2.5.11.
Let H be an sl2-Hodge structure and let h be a positive definite Hermitian form

on H such that
(1) the direct sum H =

L
k
Hk is orthogonal for h,

(2) for each k, the Hodge decomposition Hk =
L

H
p,q

k
is h-orthogonal,

(3) X,Y are adjoint with respect to h and H is h-self-adjoint.
If we define S such that h(•, •) = S(w•,CD

•), then S is a polarization of H.
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3.2.10. Equivalent definitions of a polarized sl2-Hodge structure (2)
From the last identities in 3.2.7(1) and those of Exercise 3.1(3), one deduces that,

for each k 2 Z, the Lefschetz decomposition of Hk is Sk-orthogonal. The relation
w|P�`

= X
`

|P�`

for ` > 0 (Exercise 3.1(5)) implies that the restriction to P�` of the
form

P�`S(x, y) = S(X
`
x, y)

is a polarization of P�` if ` > 0. Indeed, for x 6= 0 2 P�`, we have CDx 2 P�` and
wx = X

`
x/`!, hence

0 < h(x, x) = S(wx,CDx) = S(X
`
x,CDx)/`! = P�`S(x,CDy)/`!.

Conversely, if S as in Definition 3.2.7 satisfies 3.2.7(1) and
(20) P�`S is a polarization of P�` for each ` > 0,

then S is a polarization of H in the sense of Definition 3.2.7, that is, it also satisfies
3.2.7(2). Indeed, let us fix k, ` > 0 and, for i, j > 0, let us first compute S(wx,CDy)

for x = X
i
x�k and y = X

j
y�` with x�k 2 P�k and y�` 2 P�`. Since X is of type

(1, 1), it anti-commutes with CD, so that

CDX
j
y�` = (�1)jXj

CDy�`.

Therefore,

S(wx,CDy) = S(wX
i
x�k,CDX

jy�`)

= (�1)jS(wXi
x�k,XjCDy�`)

= S(wY
j
X

i
x�k,CDy�`) since wX = �Yw (Exercise 3.1(3)).

According to the computation of Exercise 3.1(2), this term vanishes if we do not have
0 6 j 6 i 6 k, and is equal to ?S(wXi�j

x�k,CDy�`) = ?S(X
i�j

x�k,wCDy�`) if this
condition holds, where ? is a positive constant. Furthermore, this term vanishes if
k � ` 6= 2(i � j). Since CDy�` 2 P�`, we have wCDy�` = X

`
CDy�`/`!, so finally

S(wx,CDy) may be nonzero only if 0 6 j 6 i 6 k and k > 2(i� j), in which case

S(wx,CDy) = ?S(X
`+i�j

x�k,CDy�`) = ?S(X
k�(i�j)

x�k,CDy2(i�j)�k), ? > 0.

Lastly, if k � (i � j) > k � 2(i � j), we have X
k�(i�j)

y2(i�j)�k = 0, so the only
remaining possibility for S(wx,CDy) to be nonzero is the case where i = j. Then

S(wx,CDy) = ?S(X
k
x�k,CDy�k) = ?P�kS(x,CDy).

By using the Lefschetz decomposition with respect to X, we finally find that, with
the assumption that all P�`S are polarizations, S(wx,CDx) > 0 for any nonzero
x 2 H.

3.2.11. Equivalent definitions of a polarized sl2-Hodge structure (3)
For ` > 0, let us define similarly P`S on P` as the restriction to P` of S � (Y`⌦ Id).

If S as in Definition 3.2.7 satisfies 3.2.7(1) and
(200) (�1)`P`S is a polarization of P` for each ` > 0,



46 CHAPTER 3. HODGE-LEFSCHETZ STRUCTURES

then S is a polarization of H in the sense of Definition 3.2.7, that is, it also satisfies
3.2.7(2). Indeed, for x

0 2 P` r {0}, we have x = Y
`
x
0 2 P�` and thus, by 3.2.10,

0 < S(X
`
x,CDx) = S(X

`
Y

`
x
0
,CDY

`x0) = ?S(x
0
,CDY

`x0)

= (�1)` ? S(x0,Y`CDx
0) (Y of type (�1,�1))

= (�1)` ? S(Y`
x
0
,CDx

0).

3.2.12. Definition. Let (H,G, c, v) be an sl2-Hodge quiver with central weight w.
A (pre-)polarization of (H,G, c, v) is a pair S = (SH , SG) of (pre-)polarizations of
the sl2-Hodge structures H,G of respective central weights w�1 and w, which satisfy
the following relations:

SG(cx, y) = �SH(x, vy) and SG(y, cx) = �SH(vy, x), 8x 2 H, y 2 G.

3.2.13. Remark. It can be convenient to interpret the pairings as morphisms and the
above relations in terms of commutativity of a diagram. Let H

⇤
, G
⇤ be the Hermi-

tian duals of H,G respectively (Exercises 2.7 and 2.8) endowed with ⇢
⇤
(X) = X

⇤,
⇢
⇤
(Y) = Y

⇤, ⇢⇤(H) = �H⇤, and let c
⇤
: G
⇤ ! H

⇤ and v
⇤
: H(�1)⇤ = H

⇤
(1)! G

⇤

denote the Hermitian adjoint morphisms. Then, defining the Hermitian dual
(H,G, c, v)

⇤ as
(H,G, c, v)

⇤
:= (H

⇤
(1), G

⇤
,�v⇤,�c⇤),

we conclude that the Hermitian dual of an sl2-Hodge quiver centered at w is an
sl2-Hodge quiver centered at �w. The signs �v⇤,�c⇤ are justified as follows.

We interpret the pre-polarizations SH of H and SG of G as sl2- isomorphisms

SH : H
⇠�! H

⇤
(�w + 1), SG : G

⇠�! G
⇤
(�w).

Then the relations in Definition 3.2.7(1) are equivalent to the commutativity of the
following diagram:

(3.2.14)

H
SH
//

c

✏✏

H
⇤
(�w + 1) = H

⇤
(1)(�w)

�v⇤
✏✏

G
SG

// G
⇤
(�w)

and

G
SG

//

v

✏✏

G
⇤
(�w)

�c⇤
✏✏

H(�1)
SH
// H
⇤
(�w)

In other words, we can regard the pair S = (SH , SG) as an isomorphism

S : (H,G, c, v)
⇠�! (H,G, c, v)

⇤
(�w).

3.2.15. Proposition. If (H,G, c, v) is a middle extension sl2-Hodge quiver with central
weight w, and if H is a polarizable sl2-Hodge structure, then (H,G, c, v) is polarizable.

Proof. Let SH be a polarization of H. It defines a morphism of mixed Hodge structures

�SH(•, •) : H ⌦H(�1) �! C(�w),

that induces morphism �SH(•, v•) : H ⌦ G ! C(�w). Since c : H ! G is an
epimorphism, this morphism induces a well-defined morphism SG : G⌦G! C(�w)
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if and only if SH(x, vy) = 0 whenever x 2 Ker c = KerYH and y 2 G. We can write
vy = YHy

0 for some y
0 2 H, and then

SH(x, vy) = SH(x,YHy0) = SH(YHx, y0) = 0.

We thus obtain the existence of SG : G ⌦ G ! C(�w). Let us check polarizability.
We will use the criterion of §3.2.11. Let us fix ` > 0. We have P`(G) = c(P`+1(H)).
For x

0
, y
0 2 P`(G), we set x

0
= cx and y

0
= cy with x, y 2 P`+1(H), so that

(3.2.16)

P`SG(x
0
,CDy

0) = SG(Y
`

G
x
0
,CDy

0) = SG(cY
`

H
x,CDcy) (YGc = cYH)

= �SH(Y
`

H
x, vCDcy)

= SH(Y
`

H
x,CDvcy) (v of type (�1,�1))

= SH(Y
`

H
x,CDYHy)

= �SH(Y
`

H
x,YHCDy) (YH of type (�1,�1))

= �SH(Y
`+1

H
x,CDy) = �P`+1SH(x,CD, y).

Since (�1)`+1
P`+1SH is positive definite on P`+1(H), we conclude that (�1)`P`SG is

positive definite on P`(G), as desired.

3.2.c. The S-decomposition theorem for polarizable sl2-Hodge quivers

The following result is at the source of the decomposition theorem for the pushfor-
ward of pure Hodge modules (see Definition 3.1.10).

3.2.17. Theorem (S-decomposition theorem for polarizable sl2-Hodge quivers)
Let (H,G, c, v) be a polarizable sl2-Hodge quiver with central weight w. Then the

sl2-Hodge structure G decomposes as G = Imc � Ker v in the category of sl2-Hodge
structures and (H,G, c, v) is S-decomposable.

Proof of Theorem 3.2.17. Recall that YH : Hk ! Hk�2(�1) and v : Gk ! Hk�1(�1)
anti-commute with the Weil operator CD, and c : Hk ! Gk�1 commutes with it. On
the other hand, cYH = YGc and vYG = YHv. We first notice the following inclusions
for ` > 0:

c(P`H) ⇢
(
YG(P1G(1)) if ` = 0,

P`�1G�YG(P`+1G(1)) if ` > 1,

(3.2.18)

v(P`G) ⇢
(
YH(P1H) if ` = 0,

P`�1H(�1)�YH(P`+1H) if ` > 1,

(3.2.19)

Let us check the inclusions (3.2.18) for example. According to Exercise 3.2 if ` > 1 and
obviously if ` = 0, it is enough to prove that Y

`+1

G
c(P`(H)) = 0. Since YGc = cYH ,

the result follows from the definition of P`(H).
We will prove by induction the following properties for all ` > 0 (below we use the

convention that P�1H = 0 and P�1G = 0).
(a`) c(P`+2H) = P`+1G,
(b`) c(P`H) ⇢ P`�1G.

Let us fix a polarization (SH , SG) of (H,G, c, v).
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Step 1: For each ` > 0 , v(P`+1G) \ P`H = 0. We have to prove, if ` > 0,

y`+1 2 P`+1G and vy`+1 2 P`H =) y`+1 = 0.

Assume y`+1 6= 0. We have, by 3.2.11

(�1)`+1
SG(Y

`+1

G
y`+1,CDy`+1) > 0 and (�1)`SH(Y

`

H
(vy`+1),CD(vy`+1)) > 0.

Then, since v anticommutes with CD,

0 6 (�1)`SH(Y
`

H
(vy`+1),CD(vy`+1)) = (�1)`+1

SH(vY
`

G
y`+1, vCD(y`+1))

= (�1)`SG(Y`+1

G
y`+1,CDy`+1) (by definition)

< 0, a contradiction.

Step 2: Proof that (a`) holds for ` � 0. For ` � 0 we have P`H = 0 and P`+2H = 0,
so (a`) amounts to P`+1G = 0. By (3.2.19), v(P`+1G) = 0. Since ` > 0, this implies
that P`+1G = 0 because v is injective on G`+1.

Step 3: Proof of (a`) =) (b`) if ` > 0. By (a`) we have P`+1G = c(P`+2H), so

c(P`H) ⇢ P`�1G� cYH(P`+2H).

Since c(P`H) ⇢ KerY
`

H
v and, by (3.2.19), P`�1G ⇢ KerY

`

H
v, it is enough to prove

KerY
`

H
v\cYH(P`+2H) = 0, that is, KerY

`+2

H
\P`+2H = 0, which holds by definition.

Step 4: Proof of (b`) =) (a`�2) for `>2. Let us assume that `>2. Let y`�12P`�1G.
We have vy`�1 2 P`�2H�YHP`H by (3.2.19), that is, vy`�1 = x`�2+vcx`. By (b`),
cx` 2 P`�1G. Therefore, since v(y`�1� cx`) = x`�2 2 P`�2H and since ` > 2, Step 1

implies x`�2 = 0. By the injectivity of v on G`�1, this implies y`�1 = cx`.

We can now conclude the proof of the theorem. We notice that (b`) for all ` > 0

implies that the morphism c decomposes with respect to the Lefschetz decomposition.
Similarly, Step 1 together with (3.2.19) implies that v(P`G) ⇢ YHP`+1H, so v is
also compatible with the Lefschetz decomposition. Proving the decomposition G =

Imc�Ker v amounts thus to proving the decomposition on each primitive subspace
P`G (` > 0). We have P`+1G = c(P`+2H) by (a`), and Ker v|P`+1G

= 0 so the
decomposition is trivial. We are left with proving

P0G = c(P1H)�Ker v|P0G
.

This follows from Exercise 3.5 applied to the category of Hodge structures of weight w.

One can replace the polarizability property of (H,G, c, v) in Theorem 3.2.17 by a
weaker condition, involving the weak Lefschetz property (Definition 3.1.13).

3.2.20. Theorem. Let (H,G, c, v) be an sl2-Hodge quiver with central weight w such that
(a) (H,G, c, v) satisfies the weak Lefschetz property,
(b) there exists a pre-polarization (SH , SG) of (H,G, c, v) such that SG is a polar-

ization of G and P0SH is a polarization of P0H.
Then SH is a polarization of H and (H,G, c, v) is S-decomposable.
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Proof. In view of Theorem 3.2.17, it is enough to prove that SH is a polarization of H
and it is enough to check that (�1)`P`SH is a polarization of P`H if ` > 1 since this
property is assumed if ` = 0.

We first claim that, for ` > 1, we have the inclusion c(P`H) ⇢ P`�1G. Indeed,
let x` 2 P`H, so that Y

`+1

H
x` = 0, hence vY

`

G
c(x`) = 0. We have Y

`

G
c(x`) 2 G�`�1

and �`� 1 6 �2, so the weak Lefschetz property implies that Y
`

G
c(x`) = 0, that is,

c(x`) 2 P`�1G.
Assume that x` 6= 0 with ` > 1. Since c is a monomorphism for ` > 1, we have

cx` 6= 0. Assumption (b) then implies

(�1)`P`SH(x`,CDx`) = (�1)`SH(Y
`

H
x`,CDx`) = (�1)`SH(vY

`�1
G

cx`,CDx`)

= (�1)`�1SG(Y`�1
G

cx`, cCDx`) = (�1)`�1SG(Y`�1
G

cx`,CDcx`) > 0.

3.2.d. Differential polarized (bi-) sl2-Hodge structures

3.2.21. Definition (Differential polarized sl2-Hodge structure)
Let (H, S) be a polarized sl2-Hodge structure with central weight w. A differential

on (H, S) is a morphism d : H ! H(�1) of mixed Hodge structures which satisfies
the following properties:

• d � d = 0,
• d is self-adjoint with respect to S,
• [H, d] = �d and [Y, d] = 0.

We say that (H, S, d) is a differential polarized sl2-Hodge structure with central
weight w.

The breaking of symmetry between X and Y is clarified with the next lemma. Note
that, since h (defined by h(•, •) = S(w•,CD

•)) is non-degenerate, X can be defined as
the h-adjoint of Y.

3.2.22. Lemma. Let d? be the h-adjoint of d. Then d
? is a morphism of mixed Hodge

structures H ! H(1) which satisfies the following properties:
• d

? � d? = 0,
• d

? is self-adjoint with respect to S,
• [H, d

?
] = d

? and [X, d
?
] = 0.

Proof. Since h(x, y) = S(x,wCDy), we have the relation

d
?
wCD = wCD d,

and as d anti-commutes with CD, we obtain

d
?
= �w dw

�1
.

Since w and d are self-adjoint with respect to S, so is d
?. The other properties are

obtained by means of the relations of Exercise 3.1(3).
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It is instructive to interpret d and d
? as elements of the sl2-representation End(H)

(see Exercise 3.3). Here, we omit the Hodge structure in order not to deal with the
Tate twist.

3.2.23. Lemma. Let d and d
? be as above. Then d belongs to P�1 End(H), d? belongs

to P1 End(H), and we have

d
?
= �X(d) and d = �Y(d

?
).

Furthermore, the subspace Cd� Cd
? of End(H) is an sl2-sub-representation.

Proof. Due to the commutation relations with H, we have d 2 End(H)�1 and d
? 2

End(H)1. The commutation relations with X and Y show the primitivity of d and d
?.

Since w|P�1
= X|P�1

and w
�1
|P1

= Y|P1
according to the formulas of Exercise 3.1(5)

and (6), we deduce

d
?
= �w(d) = �X(d) and d = �w�1(d?) = �Y(d

?
).

The last assertion is then clear, and with respect to the sl2-representation, we can
write Cd� Cd

?
= P�1(Cd� Cd

?
)� P1(Cd� Cd

?
).

Let (H, S, d) be a differential polarized sl2-Hodge structure with central weight w.
The grading of H defined by the action of H induces a grading on the cohomology
Ker d/ Im d, and Y induces a nilpotent endomorphism on it, which is a graded mor-
phism of degree �2, since Y commutes with d. Moreover, since d is S-self-adjoint, S
induces a sesquilinear pairing on Ker d/ Im d.

3.2.24. Proposition. If (H, S, d) is a differential polarized sl2-Hodge structure with cen-
tral weight w, then its cohomology Ker d/ Im d, equipped with the previous grading,
nilpotent endomorphism and sesquilinear pairing, is a polarized sl2-Hodge structure
with central weight w.

Proof. The first point is to prove that, for ` > 1, Y`
: (Ker d/ Im d)` ! (Ker d/ Im d)�`

is an isomorphism. Let d
? be the h-adjoint of d and consider the “Laplacian” � :=

dd
?
+ d

?
d. It is graded of degree zero. Due to the positivity of h, we have, in a way

compatible with the grading,

Ker d/ Im d = Ker d \Ker d
?
= Ker�, H = Ker�

?
� Im�

where the sum is orthogonal with respect to h. We first notice that H commutes with
dd

? and d
?
d, hence with �, so that H preserves the decomposition. We will prove

that � commutes with Y. Since � is h-self-adjoint, it also commutes with X, hence
with w.

Furthermore, � is a morphism of mixed Hodge structures H ! H, hence induces
for each k 2 Z a morphism of pure Hodge structures Hk ! Hk, and therefore com-
mutes with CD. In particular, Ker� is an sl2-Hodge structure.

On the other hand, if we denote by an index � the restriction of the objects to
Ker�, the sesquilinear form h�(w

�1
�

•,CD�
•) on Ker� is a polarization of Ker�,

since h� is Hermitian positive definite. But by the previous commutation relations,
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this form is equal to the restriction S� of S to Ker�. In such a way, we have obtained
all the desired properties.

Let us thus prove the commutation of � with Y. Let us consider the graded
subspace D = Cd

?�Cd of the sl2-representation EndH (see Lemma 3.2.23; note that
we now forget the Hodge structure) and the morphism induced by the composition

Comp : D ⌦D �! EndH,

which is a morphism of sl2-representations (see Exercise 3.3(2)). The image of d?⌦d+
d⌦ d

? is equal to �. We wish to prove that � 2 P0 EndH (see Exercise 3.4). Since
Comp sends P0(D ⌦D) to P0 EndH, the assertion will follow from the property

(3.2.25) d
? ⌦ d+ d⌦ d

? 2 P0(D ⌦D) + KerComp.

The Lefschetz decomposition of the four-dimensional vector space D ⌦ D is easy to
describe (a particular case of the Clebsch-Gordan formula):

• (D ⌦D)2 = C(d
? ⌦ d

?
),

• (D ⌦D)�2 = C(d⌦ d),
• (D ⌦D)0 = YC(d

? ⌦ d
?
)� P0(D ⌦D).

The assumption d�d=0 implies that Comp(D ⌦D)�2=0, hence Comp(D ⌦D)2=0,
CompY(D ⌦D)2 = 0. In other words, D ⌦D = P0(D ⌦D) + KerComp, so (3.2.25)
is clear.

We will meet the following bi-graded situation when dealing with spectral sequen-
ces. A bi-sl2-Hodge structure with central weight w on a mixed Hodge structure H

consists of the data of two commuting sl2-representation ⇢1, ⇢2 on H making it an
sl2-Hodge structure with central weight w in two ways. The basic operators of one
structure commute with those of the other structure. We denote them X1,X2, etc.
The space H is equipped with a bi-grading, induced by the commuting actions of H1

and H2, and a Lefschetz bi-decomposition involving the bi-primitive subspaces, which
are pure Hodge structures of suitable weight.

We note that X := X1 + X2, Y := Y1 + Y2 and H := H1 + H2 form an sl2-triple,
and define an sl2-Hodge structure with central weight w, with H` =

L
`1+`2=`

H`1,`2
.

The corresponding w is w1w2, due to the commutation properties.

3.2.26. Proposition. Let (H, ⇢1, ⇢2, S) be a polarized bi-sl2-Hodge structure. Then the
associated sl2-Hodge structure (H, ⇢1 + ⇢2), equipped with the same sesquilinear pair-
ing S, is a polarized sl2-Hodge structure.

Sketch of proof. By analyzing the action on each term of the Lefschetz bi-decomposi-
tion in terms of bi-primitive subspaces, in a way similar to that in the proof of §3.2.11,
one checks that the sesquilinear form S(x,w1w2CDy) is Hermitian positive definite on
H. The statement follows from the identity w = w1w2. Let us emphasize that this
proof enables us not to give an explicit expression for P`(H, ⇢1 + ⇢2).

This leads to the bi-graded analogue of Proposition 3.2.24. Let (H, ⇢1, ⇢2, S) be
a polarized bi-sl2-Hodge structure with central weight w. A differential d on it is a
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morphism d : H ! H(�1) of mixed Hodge structures such that (H, ⇢i, S, d) (i = 1, 2)
are both differential polarized sl2-Hodge structures with central weight w.

3.2.27. Proposition. If (H, ⇢1, ⇢2, S, d) is a differential polarized bi-sl2-Hodge structure
with central weight w, then its cohomology Ker d/ Im d, equipped with the natural bi-
grading, nilpotent endomorphisms and sesquilinear pairing, is a polarized bi-sl2-Hodge
structure with central weight w.

Proof. We consider the positive definite Hermitian form h(x, y) = S(x,wCDy) with
w := w1w2 and the Laplacian � = dd

?
+d

?
d corresponding to h, with d

?
= �wdw�1.

Then � is bi-graded of bi-degree zero. As in Proposition 3.2.24, we consider the
bi-graded space D = Cd

? � CY1(d
?
) � Y2(d

?
) � Cd, with d = Y1Y2(d

?
). Arguing

similarly, we only need to prove that

(3.2.28) (d⌦ d
?
+ d

? ⌦ d) 2 P0,0(D ⌦D) + KerComp,

where P0,0(D ⌦D) = KerY1 \KerY2 \ (D ⌦D)(0,0). We have

KerComp 3 Y1Y2(d
?⌦d?) = (d⌦d?+d

?⌦d)+
⇥
(Y1(d

?
)⌦Y2(d

?
))+(Y2(d

?
)⌦Y1(d

?
))
⇤
.

On the other hand,

Y1

⇥
(Y1(d

?
)⌦Y2(d

?
)) + (Y2(d

?
)⌦Y1(d

?
))
⇤

= (Y1(d
?
)⌦Y1Y2(d

?
)) + (Y1Y2(d

?
)⌦Y1(d

?
))

= Y1

⇥
(d

? ⌦Y1Y2(d
?
)) + (Y1Y2(d

?
)⌦ d

?
)
⇤

= Y1(d⌦ d
?
+ d

? ⌦ d),

and similarly with Y2, so we obtain

(d⌦ d
?
+ d

? ⌦ d)�
⇥
(Y1(d

?
)⌦Y2(d

?
)) + (Y2(d

?
)⌦Y1(d

?
))
⇤
2 P0,0(D ⌦D),

since this element is annihilated by Y1, Y2 and has bi-degree (0, 0). We conclude that
(3.2.28) holds.

3.3. A-Lefschetz structures

We use the notation of Section 3.1.a.

3.3.a. The monodromy filtration. Let H be an object of A equipped with a
nilpotent endomorphism N (i.e., Nk+1

= 0 for k large).

3.3.1. Lemma (Jakobson-Morosov). There exists a unique increasing exhaustive filtra-
tion of H indexed by Z, called the monodromy filtration relative to N and denoted by
M•(N)H or simply M•H, satisfying the following properties:

(a) For every ` 2 Z, N(M`H) ⇢ M`�2H,
(b) For every ` > 1, N` induces an isomorphism gr

M

`
H

⇠�! gr
M

�`H.
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The proof of Lemma 3.3.1 is left as an exercise. In case of finite-dimensional vector
spaces, one can prove the existence by using the decomposition into Jordan blocks
and Example 3.3.2. In general, one proves it by induction on the index of nilpotence.
The uniqueness is interesting to prove. In fact, there is an explicit formula for this
filtration in terms of the kernel filtration of N and of its image filtration (see [SZ85]).

3.3.2. Example. If H is a finite dimensional vector space and if N consists only of one
lower Jordan block of size k + 1, one can write the basis as ek, ek�2, . . . , e�k, with
Nej = ej�2. Then M` is the space generated by the ej ’s with j 6 `.

3.3.3. Definition ((Graded) Lefschetz structure).
(1) We call such a pair (H,N) an A-Lefschetz structure. A morphism between two

such pairs is a morphism in A which commutes with the nilpotent endomorphisms.
(2) Assume moreover that H is a graded object in A. We then say that (H,N) a

graded A-Lefschetz structure if H` = gr
M

`
H for every `.

For a pair (H,N), we will denote by grN the induced morphism gr
M

`
H ! gr

M

`�2H.
Therefore, an A-Lefschetz structure (H,N) gives rise to a graded A-Lefschetz struc-
ture, namely, the graded pair (grM• H, grN). Any morphism ' : (H1,N1)!(H2,N2) is
compatible with the monodromy filtrations and induces a graded morphism of degree
zero gr' : (gr

M

• H1, grN1)! (gr
M

• H2, grN2).

3.3.4. Remarks.
(1) According to Proposition 3.1.6, a graded A-Lefschetz structure is nothing but

an sl2-representation in the category A. The results of Section 3.1.a apply thus to
graded A-Lefschetz structures. We will emphasize some of these properties in the
setting of A-Lefschetz structures.

(2) The case of a category A with an automorphism � can (and will) be considered
in the realm of A-Lefschetz structures. The arguments of 3.1.2 readily apply to this
case.

3.3.5. Lefschetz decomposition. For vector spaces, the choice of a splitting of the fil-
tration (which always exists for a filtration on a finite dimensional vector space)
corresponds to the choice of a Jordan decomposition of N. The decomposition (hence
the splitting) is not unique, although the filtration is. In general, there exists a de-
composition of the graded object, called the Lefschetz decomposition (see Figure 3.1).
For every ` > 0, we define the `-th N-primitive subspace as

(3.3.5 ⇤) P`(H) := Ker(grN)
`+1

: gr
M

`
(H) �! gr

M

�`�2(H).

Then for every k > 0, we have

(3.3.5 ⇤⇤) gr
M

k
(H) =

L
j>0

N
j
Pk+2j(H) and gr

M

�k(H) =
L
j>0

N
k+j

Pk+2j(H).
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3.3.6. Lemma. Let H1, H2 be two objects of the abelian category A, equipped with nilpo-
tent endomorphisms N1,N2. Let ' : (H1,N1) ! (H2,N2) be a morphism which is
strictly compatible with the corresponding monodromy filtrations M(N1),M(N2). Then

ImN1 \Ker' = N1(Ker') and ImN2 \ Im' = N2(Im').

Proof. Let us first consider the graded morphisms gr
M

`
' : gr

M

`
H1 ! gr

M

`
H2. One

easily checks that it decomposes with respect to the Lefschetz decomposition
(see Exercise 3.9). It follows that the property of the lemma is true at the graded
level.

Let us now denote by M(N1)• Ker' (resp. M(N2)• Coker') the induced filtration
on Ker' (resp. Coker'). Since ' is strictly compatible with M(N1),M(N2), we have
for every ` an exact sequence

0 �! gr
M(N1)

`
Ker' �! gr

M(N1)

`
H1

gr
M

`
'

�����! gr
M(N2)

`
H2 �! gr

M(N2)

`
Coker' �! 0,

from which we conclude that M(N1)Ker' (resp. M(N2) Coker') satisfies the char-
acteristic properties of the monodromy filtration of N1|Ker' (resp. N2|Coker'). As a
consequence, Ker' \M(N1)` = M(N1|Ker')` and Im' \M(N2)` = M(N2| Im')` for
every `.

Let us show the first equality, the second one being similar. By the result at the
graded level we have

ImN1 \Ker' \M(N1)` = N1

�
Ker' \M(N1)`+2

�
+ ImN1 \Ker' \M(N1)`�1,

and we can argue by induction on ` to conclude.

3.3.7. Lemma (Strictness of N : (H,M•H)! (H,M[2]•H)). The morphism N, regarded
as a filtered morphism (H,M•H) ! (H,M[2]•H) is strictly compatible with the fil-
trations, i.e., for every `, N(M`) = ImN \M`�2. Moreover, considering the induced
filtrations M` KerN := M`H \KerN and M` CokerN = M`H/(M`H \ ImN), we have

gr
M
CokerN ' Coker grN =

L
`>0

P`, gr
M
KerN ' Ker grN =

L
`>0

N
`
P`.

In particular, KerN ⇢M0H and M�1 CokerN = 0.

Proof. The first assertion is equivalent to the following two properties:

(1) if ` 6 1, N : M`H ! M`�2H is onto,
(2) if ` > �2, N : H/M`+2H ! H/M`H is injective.

Let us prove the first one for example. By looking at Figure 3.1, one checks that
M`�2H ⇢ N(M`H) + M`�1H for ` 6 1. Iterating this inclusion for ` � 1, ` � 2, . . .

gives (1).
Once we know that N is M-strict, we deduce that gr

M
KerN ' Ker grN and

gr
M
CokerN ' Coker grN, so that the second part follows from the Lefschetz de-

composition (3.3.5 ⇤⇤).
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The following criterion, whose proof will not be reproduced here, is at the heart
of the decomposition theorem 14.3.3. The notation D

b
(A) is for the bounded derived

category of the abelian category A.

3.3.8. Theorem (Deligne’s criterion). Let C
• be an object of D

b
(A) equipped with an

endomorphism N : C
• ! C

•+2. Assume that (
L

k
H

k
(C

•
),N) is a graded A-Lefschetz

structure (see Definition 3.3.3 and set H�k(C•
) = H

k
(C

•
)). Then C

• is isomorphic
to

L
k
H

k
(C

•
)[�k] in D

b
(A).

3.3.b. Lefschetz quivers

By a Lefschetz quiver on an abelian category A we mean a data (H,G, c, v) con-
sisting of a pair (H,G) of objects of A and a pair of morphisms

(3.3.9) H

c

%%

G

v

ee

such that c � v is nilpotent (on G) and v � c is nilpotent (on H). We denote by
NH ,NG the corresponding nilpotent endomorphisms, so that c, c are morphisms be-
tween (H,NH) and (G,NG). Lefschetz quivers form in an obvious way an abelian
category.

3.3.10. Definition (Middle extension, punctual support, S-decomposability)
We say that a Lefschetz quiver (H,G, c, v) is a middle extension if c is an epi-

morphism and v is a monomorphism. We say that it has a punctual support if
H = 0. We say that a Lefschetz quiver (H,G, c, v) is Support-decomposable, or sim-
ply S-decomposable, if it can be decomposed as the direct sum of a middle extension
quiver and a quiver with punctual support.

Let (H,N) be an A-Lefschetz structure. Set G = ImN and NG = N|G. The
Lefschetz quiver

(3.3.11) (H,N)

c = N
**

(G,NG)

v = incl

jj

is called the middle extension quiver attached to (H,NH).

3.3.12. Remark (on the terminology). Given an A-Lefschetz structure, one can asso-
ciate with it in a canonical way, i.e., without any other choice, three natural Lefschetz
quivers, that we call “extensions of (H,N)”:

• (H,N)! is the quiver (H,H, c = Id, v = N),
• (H,N)⇤ is the quiver (H,H, c = N, v = Id),
• (H,N)!⇤ is the middle extension quiver (H, ImN, c = N, v = incl).

There are canonical epi and mono morphisms in the abelian category of Lefschetz
quivers:

(H,N)! �!�! (H,N)!⇤ ,�! (H,N)⇤,
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justifying the name “middle extension” for (H,N)!⇤. These morphisms are obtained
through the following diagram:

H

Id

  

Id
// H

N

  

Id
// H

N

  

H

N

HH

N
// ImN

incl

HH

incl
// H

Id

HH

3.3.13. Lemma (The middle extension quiver). For the middle extension quiver (3.3.11),
we have the following properties.

(a) M•(NG) = G \M•�1(N) = N(M•+1(N)).
(b) c(M•H) ⇢ M•�1G, v(M•G) ⇢ M•�1H,
(c) the filtered morphisms
c : (H,M•(N)) �! (G,M•�1(NG)) and v : (G,M•(NG)) �! (H,M•�1(N))

are strictly filtered and the associated graded morphisms are the corresponding canon-
ical morphisms at the graded level. They satisfy the properties of Proposition 3.1.11.

Proof. Assume that ` > 0. We first check that the morphism N
`
: ImN\M`�1(N)!

ImN\M�`�1(N) is an isomorphism. By Lemma 3.3.7, this amounts to showing that
N

`
: N(M`+1)! N(M�`+1) is an isomorphism. This is a consequence of the following

properties: N : M`+1 ! N(M`+1) is an isomorphism, N : M�`+1 ! M�`�1 is onto,
and N

`+1
: M`+1 ! M�`�1 is an isomorphism. Now, (b) and (c) follow from the

strictness of N : (H,M•H) ! (H,M[2]•H). The remaining part of the lemma is
straightforward.

3.4. Polarizable Hodge-Lefschetz structures

3.4.a. Hodge-Lefschetz structures. We adapt the general framework of Sec-
tion 3.3 on the Lefschetz decomposition to the case of Hodge structures. Let
H = (H, F

0•H, F
00•H) be a bi-filtered vector space and let N : H! H be a nilpotent

endomorphism. In the case of Hodge structures, as we expect that the nilpotent
operator N : H! H sends F

k into F
k�1 (this is an infinitesimal version of Griffiths

transversality property, see Section 4.1), we regard N as a morphism H ! H(�1)
(see Definition 2.5.8 for the Tate twist).

Let M•H be the monodromy filtration of (H,N). For each ` 2 Z, we define
the bifiltered object (M`H, F

0•
M`H, F

00•
M`H) as the sub-object for which, for F =

F
0
, F
00, F p

M`H = F
pH \M`H. The quotient space gr

M

`
H = M`H/M`�1H is thus

bifiltered by setting, for F = F
0
, F
00,

(3.4.1) F
p
gr

M

`
H :=

F
pH \M`H

F pH \M`�1H
.

By assumption on N, we obtain for each ` a bi-filtered morphism (with F = F
0
, F
00)

(3.4.2) grN : (gr
M

`
H, F

•
gr

M

`
H) �! (gr

M

`�2H, F
•�1

gr
M

`
H).
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By definition, Condition (a) in Lemma 3.3.1 holds in the setting of bi-filtered
vector spaces. Without any other condition on H, there is no reason that, for ` > 0,
Condition (b) holds when considering grN

` as a bi-filtered morphism. The main
reason is that grN in (3.4.2) may not be strictly bi-filtered. If we add the condition
that each bi-filtered vector space is a Hodge structure of suitable weight, then suddenly
everything gets better.

3.4.3. Definition (Hodge-Lefschetz structure). Let H = (H, F
0•H, F

00•H) be a bi-
filtered vector space and let N : H ! H(�1) be a nilpotent endomorphism. We say
that (H,N) is a Hodge-Lefschetz structure with central weight w if for every `, the
object gr

M

`
H belongs to HS(C, w + `).

3.4.4. Remarks.
(1) We can consider a bi-filtered vector space H as an object of the abelian cate-

gory T (see Remark 2.6.a). The general setting of Section 3.3.a applies: the ambient
abelian category A is the category T of triples considered in Remark 2.6.a and we
choose for � the Tate twist (1) by the Hodge-Tate structure C

H
(1) of weight �2

(see Section 2.2). (In Section 5.2 we also consider the abelian category of triples as
in Definition 5.2.1, and we use the Tate twist as in Notation 5.2.3.) The monodromy
filtration M•H in T is then well-defined. What goes wrong in general is that the
quotient objects grM

`
H in T may not be bi-strict, hence do not necessarily correspond

to bi-filtered vector spaces. If we assume they are bi-strict, then the corresponding
bi-filtered vector spaces are given by the formula (3.4.1). Therefore, we could have
defined a Hodge-Lefschetz structure by simply imposing that gr

M

`
H in T belong to

HS(C, w + `).
(2) Notice also that the Hodge property implies that, for each `, the bi-filtered

morphism (3.4.2) is bi-strict.
(3) One can equivalently define the notion of Hodge-Lefschetz structure by asking

that the graded object grMH =
L

`
gr

M

`
H, equipped with the nilpotent endomorphism

grN, is part of a (unique) sl2-Hodge structure with central weight w. That this second
definition is equivalent to the first one follows from the variant of Proposition 3.1.6
in the Hodge setting.

(4) It is important to notice, as in Remark 3.2.1, that Hodge-Lefschetz structures
are mixed Hodge structures. Furthermore, M•H is a filtration in MHS, and each
object gr

M

`
H is a pure object of MHS (of weight w + `). In other words, the weight

filtration W•H is equal to the shifted filtration M•�wH. Then, for each ` 2 Z,

grN : gr
M

`
H �! gr

M

`�2H(�1)

is a morphism in HS(C, w + `).

3.4.5. Definition (Category of Hodge-Lefschetz structures). The category HLS of
Hodge-Lefschetz structures is the category whose objects consist of Hodge-Lefschetz
structures with central weight some w 2 Z, and whose morphisms are morphisms
of mixed Hodge structures compatible with N. The category HLS(w) is the full
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sub-category consisting of objects with central weight w. It is an abelian category
(see Exercise 3.14).

3.4.6. Proposition. Let (H,N) be an object in HLS(w). Then
(1) (H,N)(k) := (H(k),N) is an object in HLS(w + k) for every k 2 Z,
(2) (G := ImN,NG) is an object of HLS(w + 1). Furthermore, it satisfies

gr
M
(ImN) = Im(grN).

Proof. The first point is clear. Let us check (2). The image of N is regarded in
the abelian category T considered at the beginning of this section: it consists of the
triple (N(H),N(F

0•H),N(F
00•H)). Since N : H ! H(�1) is a morphism of mixed

Hodge structures, it is F -strict and we can also write
ImN = (N(H),N(F

0•H),N(F
00•H))

= (N(H), F
0•�1H \N(H), F

00•�1H \N(H)).
(3.4.6 ⇤)

We can thus consider G = ImN as an object of the abelian category MHS. It is
equipped with a weight filtration which satisfies W•G := N(W•H), by W -strictness
of N. Then (2) amounts to identifying the weight filtration W•G with M•�(w+1)G.
This follows from Lemma 3.3.13, provided that we work in the abelian category MHS

�

and extend our objects to objects in this category (see Exercise 3.14(4)). Lastly, the
property gr

M
(ImN) = Im(grN) is a consequence of W -strictness of N as a morphism

in MHS, that is, grW (ImN) = Im(gr
W
N).

3.4.b. Hodge-Lefschetz quivers. The definition of a Hodge-Lefschetz quiver will
be a little different from the general definition (3.3.9) of a Lefschetz quiver, since
we will impose that the nilpotent morphisms NH ,NG are those of the corresponding
Hodge-Lefschetz structures, hence are (1)-morphisms (we use the terminology of 3.1.2,
see Remark 3.3.4).

3.4.7. Definition (Hodge-Lefschetz quiver). A Hodge-Lefschetz quiver with central
weight w consists of data

(H,N), (G,N), c, v,

such that
• (H,N) is a Hodge-Lefschetz structure with central weight w � 1,
• (G,N) is a Hodge-Lefschetz structure with central weight w,
• c, v are morphisms in HLS, hence in MHS:

c : (H,N) �! (G,N), v : (G,N) �! (H,N)(�1),
• c � v = NG and v � c = NH .

We will use the notation reminiscent to that of (3.2.3):

(3.4.8) (H,N)

c

((

(G,N).

v

hh

(�1)
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3.4.9. Proposition. Let ((H,N), (G,N), c, v) be a Hodge-Lefschetz quiver with central
weight w. Then

(1) (Im c,N) and (Ker v,N) are objects of HLS(w),
(2) grading all data with respect to the monodromy filtrations M (in the sense of

Lemma 3.3.13) produces an sl2-Hodge quiver.

Proof. We will use in an essential way that H and G are in MHS and that c, v are
strict with respect to the weight filtrations W•. Let us prove the statement (1) for
Im c. W -strictness of c shows that c(M`�1(NH)) = c(H) \M`(NG) for every `, by
interpreting M• in terms of the weight filtrations. We will prove that this term is
equal to M`(Nc(H)) in MHS. The point is to check that, for ` > 0, N

` induces an
isomorphism

(⇤) c(H) \M`(NG)

c(H) \M`�1(NG)

⇠�! c(H) \M�`(NG)

c(H) \M�`�1(NG)
(�`),

also expressed equivalently by means of c(M•(NH)). Since

grN
`

G
: gr

M

`
(G) �! gr

M

`
(G)(�`)

is a monomorphism and the left-hand term of (⇤) is contained in gr
M

`
(G), we conclude

that (⇤) is a monomorphism. On the other hand, grN`

H
: gr

M

`�1H ! gr
M

�`�1H(�`) is
an epimorphism. Since c is strict with respect to the weight filtrations, we also have
c(gr

M

`�1(NH)) = c(M`�1(NH))/c(M`�2(NH)), and thus

grN
`
: c(M`�1(NH))/c(M`�2(NH)) �! c(M�`�1(NH))/c(M�`�2(NH))(�`)

is also an epimorphism, concluding the proof that (⇤) is an isomorphism. It is then
straightforward to check that (Im c,N) is a subobject of (G,N) in HLS(w).

The proof of (2) is obtained similarly by using strictness of all involved morphisms
with respect to W•, hence to M• up to a suitable shift.

3.4.10. Example. We say that a Hodge-Lefschetz quiver is a middle extension if c is
an epimorphism and v is a monomorphism (when considered as morphisms in the
abelian category MHS). According to Proposition 3.4.6, the set of data

�
(H,N), (ImN,N|ImN), c = N, v = incl

�

forms a middle extension quiver. Here, we consider c as the morphism N : (H,N)!
(ImN,N|ImN) and v as the inclusion (ImN,N|ImN) ,! (H,N)(�1) (see (3.4.6 ⇤)).
Similarly, we have the notion of S-decomposable quiver (see Definition 3.3.10).

3.4.11. Lemma. A Hodge-Lefschetz quiver is a middle extension, resp. with punctual
support, resp. S-decomposable if and only if its associated M-graded quiver is so.

Proof. Similar to that of Proposition 3.4.9.

3.4.12. Remark. The criterion of S-decomposability of Remark 3.2.4 holds for Hodge-
Lefschetz quivers, by replacing there sl2-Hodge quiver, resp. sl2-Hodge structure, with
Hodge-Lefschetz quiver, resp. Hodge-Lefschetz structure.
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The proof of the following proposition is straightforward, once we know that
HLS(w) is abelian (Exercise 3.14) and according to Proposition 3.4.9. We empha-
size that the criterion in item (4) or (5) below will be essential in the construction of
Hodge modules.

3.4.13. Proposition (The category HLQ(w) of Hodge-Lefschetz quivers with central
weight w)

(1) The Hodge-Lefschetz quivers with central weight w form an abelian category
HLQ(w) in an obvious way.

(2) There is no nonzero morphism from a middle extension to an object with punc-
tual support.

(3) There is no nonzero morphism from an object with punctual support to a middle
extension.

(4) A Hodge-Lefschetz quiver (H,G, c, v) is S-decomposable if and only if G =

Imc�Ker v in HLS(w). Then, the decomposition is unique.
(5) The latter condition is also equivalent to the conjunction of the following two

conditions:
• the natural morphism Im(v � c)! Imv is an isomorphism,
• the natural morphism Ker c! Ker(v � c) is an isomorphism.

3.4.c. Polarization. Let H = (H, F
0•H, F

00•H) be a bi-filtered vector space and let
N : H! H be a nilpotent endomorphism. Let w be an integer and let

S : H ⌦H �! C
H
(�w)

be a bi-filtered morphism. Assume that N is self-adjoint with respect to S, that is,
S(•,N•) = S(N•, •) = 0. Then S induces a sesquilinear pairing

gr
M
S : gr

M
H ⌦ grMH �! C

H
(�w)

with respect to which grN is self-adjoint.

3.4.14. Definition (Polarization of a Hodge-Lefschetz structure)
Let (H,N) be a Hodge-Lefschetz structure with central weight w. We say that a

sesquilinear pairing S : H ⌦H ! C
H
(�w) is a polarization of (H,N) if

(1) N is self-adjoint with respect to S,
(2) gr

M
S is a polarization of the sl2-Hodge structure (gr

M
H, grN) centered at w

(see Definition 3.2.7).

3.4.15. Remark. If S is a polarization of (H,N), then
(1) (�1)kS is a polarization of (H,N)(k) for every k 2 Z (see Remark 2.5.17(5)),
(2) S is non-degenerate and Hermitian. Indeed, we can regard S as a morphism of

mixed Hodge structures H ! H
⇤
(�w), where H

⇤ is the Hermitian dual of H. By def-
inition and Remark 3.2.8(1), grWS is an isomorphism (non-degenerate) and equal to
its Hermitian dual (Hermitian). One deduces that S satisfies the same properties.
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3.4.16. Hodge-Lefschetz Hermitian pairs. We can simplify the data of a polarized
Hodge-Lefschetz structure with central weight w by giving a Hodge-Lefschetz Hermi-
tian pair ((H, F

•H),N, S, w), where N is a filtered morphism

(H, F
•
H) �! (H, F

•
H)(�1)

and S is a Hermitian isomorphism S : (H,N)! (H,N)
⇤ in such a way that, defining

F
00•H as in §2.5.18, we obtain data (H,N, S) as in Definition 3.4.14.

3.4.17. Mixed Hodge structure polarized by N. The terminology mixed Hodge structure
polarized by N is also used in the literature for a polarized Hodge-Lefschetz structure.

Let us summarize a few properties of the categories HLS(w) and pHLS(w) (polar-
izable Hodge-Lefschetz structures of weight w).

3.4.18. Proposition.
(1) The category HLS(w) is abelian, and a morphism in HLS(w) is a monomor-

phism (resp. an epimorphism, resp. an isomorphism) if and only if it is injective
(resp. ...) on the underlying vector spaces.

(2) Let
�
(H,N), S

�
be a polarized Hodge-Lefschetz structure with central weight w,

and let (H1,N) be a sub-object in HLS(w). Then S induces a polarization S1 on
(H1,N) and

�
(H1,N), S1

�
is a direct summand of

�
(H,N), S

�
.

(3) The category pHLS(w) of polarizable Hodge-Lefschetz structures with central
weight w is abelian and semi-simple.

Proof. Assertion (1) is treated in Exercise 3.14. For (2), we know by Exercise 3.14(6)
that the inclusion (H1,N) ,! (H,N) is strict for M•(N). Therefore, grM

`
H1 is a sub

Hodge structure of grM
`
H for each `. Let S1 be the sesquilinear pairing induced by S

on H1. Then gr
M
S1 is the sesquilinear pairing induced by gr

M
S on gr

M
H1 ⌦ grMH1,

and gr
M
S1(•,wCD

•) that induced by gr
M
S(•,wCD

•). Since the latter is Hermitian
positive definite by assumption, so is the former, meaning that S1 is a a polarization
of (H1,N). That

�
(H1,N), S1

�
is a direct summand of

�
(H,N), S

�
is proved in a way

similar to Exercise 2.12(2).
Finally, (3) directly follows from (2).

3.4.d. Polarization of Hodge-Lefschetz quivers and the S-decomposition
theorem. In analogy with Definition 3.2.12, we introduce the notion of polarization
of a Hodge-Lefschetz quiver.

3.4.19. Definition. Let (H,G, c, v) be a Hodge-Lefschetz quiver with central weight w.
A polarization of (H,G, c, v) is a pair S = (SH , SG) of polarizations of the Hodge-
Lefschetz structures H,G of respective central weights w�1 and w, which satisfy the
following relations:

SG(cx, y) = �SH(x, vy) and SG(y, cx) = �SH(vy, x), 8x 2 H, y 2 G.

Remark 3.2.13 applies as well for polarizations of Hodge-Lefschetz quivers.
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3.4.20. Proposition. If (H,N) is a Hodge-Lefschetz structure with central weight w� 1,
then the middle extension quiver of Example 3.2.5 is polarizable. More precisely,
let SH be a polarization of (H,N) and let (G,NG) = (ImN,N|ImN) be the image of N
regarded as an object of HLS(w) (Proposition 3.4.6). Using the quiver notation of
Example 3.4.10, the formula

SG(cx, cy) := �SH(Nx, y) = �SH(x,Ny)

well-defines a sesquilinear pairing on G, which is a polarization of (G,NG).

Proof. We argue as in the proof of Proposition 3.2.15 to show that SG is well-defined
as a morphism of mixed Hodge structures G ⌦ G ! C

H
(�w). Furthermore, grading

with respect to M gives back the formula of Proposition 3.2.15, whose conclusion
yields the conclusion of the present proposition.

3.4.21. Examples.
(1) By Proposition 3.4.20, if (H,N) is a polarizable Hodge-Lefschetz structure,

then the associated middle extension quiver is polarizable.
(2) If (G,NG) is a polarizable Hodge-Lefschetz structure, then the quiver with

punctual support (0, (G,NG), 0, 0) is polarizable.

The following theorem is one of the main results in this chapter.

3.4.22. Theorem (S-decomposition theorem for polarizable Hodge-Lefschetz quivers)
Let (H,G, c, v) be a polarizable Hodge-Lefschetz quiver with central weight w.

Then the polarizable Hodge-Lefschetz structure (G,NG) decomposes as (G,NG) =

Im c�Ker v in pHLS(w) and (H,G, c, v) is S-decomposable.

Proof. S-decomposability follows from the decomposition of (G,NG) and Remark
3.4.12.

Recall (Proposition 3.4.9) that (Im c,N) and (Ker v,N) are subobjects of (G,NG)

in HLS(w). By Proposition 3.4.18, a polarization on (G,NG) induces a polarization
on each of them, hence they also belong to pHLS(w). There is a natural morphism in
HLS(w):

(Im c,N)� (Ker v,N) �! (G,NG).

It is enough to prove that it is an isomorphism. Since it is strict with respect to M•

(because it is so with respect to W•), it is enough to prove that grM of this morphism
is an isomorphism. This is provided by the S-decomposition theorem for sl2-Hodge
quivers (Theorem 3.2.17).

Proposition 3.4.18 and Theorem 3.4.22 have the following consequence for Hodge-
Lefschetz quivers.

3.4.23. Proposition.
(1) The category HLQ(w) is abelian, and a morphism in HLQ(w) is a monomor-

phism (resp. epi, resp. iso) if and only if it is injective (resp. onto, resp. iso) on the
underlying vector spaces.
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(2) Let
�
(H,G, c, v), S

�
be a polarized Hodge-Lefschetz quiver with central weight w,

and let (H1, G1, c, v) be a sub-object in HLQ(w). Then S induces a polarization S1 on
(H1, G1, c, v) and

�
(H1, G1, c, v), S1

�
is a direct summand of

�
(H,G, c, v), S

�
.

(3) The category pHLQ(w) of polarizable Hodge-Lefschetz quivers of with central
weight w is abelian and semi-simple.

3.5. Exercises

Exercise 3.1.
(1) Show the following identities in End(H):

e
Y
He
�Y

= H+ 2Y, e
�X

Ye
X
= Y �H�X,

e
�X

He
X
= H+ 2X, e

Y
Xe
�Y

= X�H�Y.

[Hint : Denote by adY : End(H) ! End(H) the Lie algebra morphism A 7! [Y, A];
show that e

Y
He
�Y

= e
adY

(H) = H+ [Y,H] +
1

2
[Y, [Y,H]] + · · · and conclude for the

first equality; argue similarly for the other ones.]
(2) Show that, for j, k, ` > 0,

Y
j
X

k

|P�`H
=

8
<

:
a
(`)

j,k
X

k�j
|P�`H

if 0 6 j 6 k 6 ` and with a
(`)

j,k
=

k!(`� k + j)!

(k � j)!(`� k)!
,

0 otherwise.

[Hint : Compute first a
(`)

1,k
by noticing that Y|P�`H

= 0 and HX
m

|P�`H
= (2m � `)Xm

if 0 6 m 6 ` and is zero otherwise.]
Show similarly that X

j
Y

k

|P`H
= a

(`)

j,k
Y

k�j
|P�`H

or zero in the same range. Conclude
that the isomorphism inverse to X

`

|P�`H
is Y

`

|P`H
/(`!)

2.
(3) Let w := e

X
e
�Y

e
X 2 Aut(H) denote the Weil element. Show that

wH = �Hw, wX = �Yw, wY = �Xw.

Conclude that w sends H` to H�` for every `.
(4) Deduce that we

�X
= e

Y
w and

w = e
�Y

e
X
e
�Y

.

Conclude also that, if h is a Hermitian metric on H such that the h-adjoints X
⇤
,Y
⇤

satisfy X
⇤
= Y and Y

⇤
= X (hence H

⇤
= H), then w

⇤
= w

�1.
(5) For ` > 0, show that

w|P`H
=

(�1)`

`!
Y

`

|P`H
and w|P�`H

=
1

`!
X

`

|P�`H
.

[Hint : Use (3) to avoid any computation.]
(6) Deduce that, for ` > 0 and 0 6 j 6 `,

wY
j

|P`H
=

(�1)`�j

`!
X

j
Y

`

|P`H
=

(�1)`�jj!
(`� j)!

Y
`�j
|P`H

and w
�1

Y
j

|P`H
=

(�1)jj!
(`� j)!

Y
`�j
|P`H

.
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Exercise 3.2. Let H be an sl2-representation in A. Assume that ` > 0. Show that

P`H �YP`+2H = Ker[Y
`+2

: H` ! H�`�4].

[Hint : Consider the rough Lefschetz decomposition

H` = P`H �YP`+2H �Y
2
H`+4,

and show that the first two terms are contained in KerY
`+2, while Y

`+2 is injective
on the third term.]

Exercise 3.3 (The sl2 representation on End(H)).
(1) Let H be an sl2-representation. Consider the grading End•(H) defined by

End`(H) :=
L

k
Hom(Hk, Hk+`), and the nilpotent endomorphism adY = [Y, • ].

Show that this defines the sl2 representation for which H acts by adH, X by adX,
and w by Adw(•) := w •w

�1.
(2) Show that the composition morphism Comp : End(H) ! End(H) is a mor-

phism of sl2-representations:
(a) Since any ' 2 End(H) decomposes with respect to the grading, prove

commutation with H by showing that if ' is of degree k and '0 of degree `, then
' � '0 is of degree k + `.

(b) Show the commutation with X,Y by means of the formula [X,''
0
] =

[X,']'
0
+ '[X,'

0
], and similarly for Y.

(3) Show that if d 2 End�`(H) (` > 0) commutes with Y, then w
�1

dw and
wdw

�1 2 End`(H) belong to P` End(H), i.e., commute with X.

Exercise 3.4. This exercise complements Proposition 3.1.6. Let ' : (H1,•,N1) !
(H2,•,N2) be a morphism between graded Lefschetz structures. Show that ' com-
mutes with the action of X. [Hint : Equip Hom(H1, H2) with an sl2-action as in 3.3(1)
above; with respect to this action, show that H(') = 0, i.e., ' 2 Hom0(H1, H2), and
Y(') = 0, i.e., N2 � '� ' � N1 = 0, and deduce that ' 2 P0 Hom(H1, H2); conclude
that X(') = 0.]

Exercise 3.5. Let P1, P
0
0
, P�1 be objects of an abelian category A. Let c : P1 ! P

0
0

and
v : P

0
0
! P�1 be two morphisms such that v � c : P1 ! P�1 is an isomorphism. Show

that P
0
0
= Im c�Ker v. [Hint : Check that it amounts to proving that the composed

morphism ' : Im c! P
0
0
/Ker v is an isomorphism; with the commutative diagram

P1

c
✏✏

✏✏

⇠
v � c

// P�1

Im c
'
// P
0
0
/Ker v

� ?

v

OO

show that Ker' = Ker v �' = c(Ker v � c) = 0, and similarly, Im v �' = Im v �'� c =
Im v � c = P�1, hence conclude that v � ' is an epimorphism, then that v is both an
epimorphism and a monomorphism, thus an isomorphism, and ' is an isomorphism.]
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Exercise 3.6. Show that an sl2-Hodge structure is completely determined by the Hodge
structures P`H (` > 0).

Exercise 3.7. Let H be a finite dimensional vector space and let N,N
0 be nilpotent

endomorphisms with monodromy filtrations M•(N),M•(N
0
).

(1) Show that if N0 � N sends M`(N) to M`�3(N), then M•(N
0
) = M•(N). [Hint :

Show that M•(N) satisfies the characteristic properties of M•(N
0
).]

(2) Deduce that, in such a case, N0 is then conjugate to N. [Hint : Show that N
0

and N have the same Jordan normal form.]

Exercise 3.8 (Morphisms and monodromy filtration). Let ' : H1 ! H2 be a morphism
such that N2 � ' = ' � N1, in other words, ' is a morphism of pairs (H1,N1) !
(H2,N2).

(1) Show that ' is compatible with the monodromy filtrations.
(2) Let grM' be the associated graded morphism gr

M
H1 ! gr

M
H2. Show that ' is

an isomorphism if and only if grM' is an isomorphism. [Hint : If ' is an isomorphism,
identify '(M`H1) with M`H2 by uniqueness of the monodromy filtration.]

Exercise 3.9 (Morphisms and Lefschetz decomposition). Let ' : H1 ! H2 be a mor-
phism between A-Lefschetz structures, and assume that they are graded. Show that '
is graded with respect to the Lefschetz decomposition. [Hint : Show that, for ` > 0,
' maps P`H1 to P`H2.]

Exercise 3.10 (Inductive construction of the monodromy filtration)
Assume N

`+1
= 0 on H. Show the following properties:

(1) M`H = H, M`�1H = KerN
`, M�`H = ImN

`, M�`�1H = 0.
(2) Set H

0
= KerN

`
/ ImN

` and N
0
: H
0 ! H

0 is induced by N. Then N
0`
= 0 and

for j 2 [�`+ 1, `� 1], MjH is the pullback of MjH
0 by the projection H ! H

0.
(3) Conclude that any morphism of A-Lefschetz structures is compatible with the

monodromy filtrations.

Exercise 3.11.
(1) Show that the Lefschetz quivers on A form an abelian category in an obvious

way.
(2) Show that there is no nonzero morphism from a middle extension to an object

with punctual support.
(3) Show that there is no nonzero morphism from an object with punctual support

to a middle extension.
(4) Show that a Lefschetz quiver (H,G, c, v) is S-decomposable if and only if G =

Imc�Ker v. Show then that the decomposition is unique.
(5) Show that the latter condition is also equivalent to the conjunction of the

following two conditions:
• The natural morphism Im(v � c)! Imv is an isomorphism.
• The natural morphism Ker c! Ker(v � c) is an isomorphism.
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Exercise 3.12. The goal of this exercise is to show that any Hodge-Lefschetz struc-
ture is isomorphic (non-canonically) to its associated sl2-Hodge structure obtained by
grading with the monodromy filtration. In (1)–(4) below, the filtration F is either F 0

or F
00.

(1) For every ` > 0 and p, choose a section sj,p : gr
p

F
P`H ! F

p
M`H of the

projection F
p
M`H ! gr

p

F
gr

M

`
H and show that ImN

`+1
s`,p ⇢ F

p�`�1
M�`�3H. The

next questions aim at modifying this section in such a way that its image is contained
in KerN

`+1.
(2) Show that, for every j > 0, and any p, ` � 0

F
p�`�1

M�`�3�jH ⇢ N
`+j+3

F
p+j+2

M`+j+3H + F
p�`�1

M�`�3�(j+1)H.

(3) Conclude that, for every j > 0,

F
p�`�1

M�`�3�jH ⇢ N
`+1

F
p
M`�1H + F

p�`�1
M�`�3�(j+1)H.

(4) Show that if for some j > 0 we have constructed a section s
(j)

`,p
such that

ImN
`+1

s
(j)

`,p
⇢ F

p�`�1
M�`�3�jH, then one can find a section s

(j+1)

`,p
such that

ImN
`+1

s
(j+1)

`,p
⇢ F

p�`�1
M�`�3�(j+1)H. Use then s`,p = s

(0)

`,p
to obtain a section s

(1)

`,p

such that N
`+1

s
(1)

`,p
= 0.

(5) Use the Lefschetz decomposition to obtained the desired isomorphism.

Exercise 3.13 (Twist of Hodge-Lefschetz structures). Define the twist (k, `) of an
Hodge-Lefschetz structure (H,N) with central weight w as (H(k, `),N) and leav-
ing N unchanged. Show that (H,N)(k, `) is a Hodge-Lefschetz structure with
central weight w � (k + `). In particular, the Tate twisted object (H,N)(k) is a
Hodge-Lefschetz structure with central weight w � 2k.

Exercise 3.14 (The category HLS(w) is abelian). Show the following properties.
(1) In the category HLS, any morphism is strict with respect to the filtrations F

•

and the filtration W•. [Hint : Use Proposition 2.6.8.]
(2) N :

�
H,N) ! (H,N)(�1) is a morphism in this category. In particular,

N(F
pH) = F

p�1H \ ImN for F = F
0 or F

00.
(3) The filtration M•(N)H is a filtration in the category of mixed Hodge structures.
(4) Consider the category MHS

� whose objects are H
�

:=
L

k,`2Z H(k, `),
where H is a mixed Hodge structure, and morphisms '� : H

�
1
! H

�
2

are the direct
sums of the same morphism of mixed Hodge structures ' : H1 ! H2(ko, `o) for some
(ko, `o), twisted by any (k, `) 2 Z. Show that

(a) the category MHS
� is abelian,

(b) for (H,N) in HLS(w), N defines a nilpotent endomorphism N
� in the

category MHS
� on H

�,
(c)

L
k,`

M•(N)H(k, `) is the monodromy filtration of N� in the abelian cat-
egory MHS

�.
(5) Let ' : (H1,N1) ! (H2,N2) be a morphism in HLS. Then ' = 0 if w1 > w2.

[Hint : Use that ' is compatible with both M• and W•.]
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(6) Let ' be a morphism in HLS(w). Show that ' is strictly compatible with M•.
Conclude that HLS(w) is abelian.

(7) Let ' be a morphism in HLS(w). Show that ' is a monomorphism (resp. an
epimorphism, resp. an isomorphism) if and only if it is injective (resp. ...) on the
underlying vector spaces. [Hint : Use that the forgetful functor (H,N) 7! H from
HLS(w) to the category of vector spaces is faithful.]

(8) Show that, for such a ', the conclusion of Lemma 3.3.6 holds in the category of
mixed Hodge structures. [Hint : Use the auxiliary category MHS

� and the nilpotent
endomorphisms N�

1
,N
�
2

; this trick is useful since N is not an endomorphism of (H,N)

in HLS(w), due to the twist by (�1).]
(9) Similar results hold for sl2-Hodge structures.

3.6. Comments

The Hard Lefschetz theorem for complex projective varieties equipped with an
ample line bundle, named so after the fundamental memoir of Lefschetz [Lef24], and
for which there does not exist up to now a purely topological proof (see [Lam81] for
an overview of the topology of complex algebraic varieties), is intrinsically present in
classical Hodge theory (see e.g. [GH78, Dem96, Voi02]). That a relative version
of this theorem is instrumental in proving the decomposition theorem (one of the
main goals of the theory of pure Hodge modules) had been emphasized and proved
by Deligne in [Del68], by introducing the criterion 3.3.8. On the other hand, the
theory of degeneration of polarized variations of Hodge structure [Sch73, GS75] also
gives rise to such Hodge-Lefschetz structures, not necessarily graded however. Note
also that such structures have been discovered by Steenbrink [Ste77] and Varchenko
[Var82] on the space of vanishing cycles attached to an isolated critical point of a
holomorphic function. This property was at the source of the definition of pure Hodge
modules by Saito in [Sai88].

Since the very definition of a pure Hodge module by Saito [Sai88] is modeled on
the theory of degenerations, we devote a complete chapter to the notion of a Hodge-
Lefschetz structure. Together with the criterion 3.3.8, a few results are used in an
essential way in the decomposition theorem for pure polarized Hodge modules as
proved by Saito [Sai88], namely the S-decomposition theorem 3.4.22 and those of
Section 3.2.d. They are originally proved in [Sai88, §4]. We follow here the proof
given by Guillén and Navarro Aznar in [GNA90], according to the idea, due to
Deligne, of using harmonic theory in finite dimensions and the full strength of the
action of SL2 by means of the Weil element denoted by w. The polarization property
is often reduced to saying that the primitive part of the Hodge-Lefschetz structure
is a polarized Hodge structure, and is is rarely emphasized that each graded part
of a polarized sl2-Hodge structure (like any cohomology space of a smooth complex
projective variety) is also a polarized pure Hodge structure. The latter approach
makes it explicit.
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Basic results on the monodromy filtration, which gives rise to the Hodge-theoretic
weight filtration, are explained in [Sch73, CK82, SZ85]. The notion of a polarized
Hodge-Lefschetz structure is also known under the name of polarized mixed Hodge
structure [CK82], and it is also said that the nilpotent operator polarizes the mixed
Hodge structure. This is justified by the fact that the choice of an ample line bundle on
a smooth complex projective variety is regarded as a polarization, and it determines
a polarization form on the cohomology. Such data also give rise to a nilpotent orbit
(see [Sch73, CK82] and also [Kas85, Def. 2.3.1]). We do not use this terminology
here, since we also want to use a Hodge-Lefschetz structure without any polarization,
as we did for Hodge structures.

For the purpose of pure Hodge modules, the notion of middle extension Lefschetz
quiver is a basic tool, corresponding to the notion of middle extension for perverse
sheaves or holonomic D-modules. It consists of two objects, called respectively nearby
cycles and vanishing cycles related by two morphisms usually called can and var. The
middle extension property is that can is an epimorphism and var is a monomorphism,
so that the vanishing cycles are identified with the image of N := var � can in the
nearby cycles. Hodge theory for vanishing cycles can then be deduced from Hodge
theory for nearby cycles, as already remarked by Kashiwara and Kawai [KK87].
In particular, Lemma 3.3.13 is much inspired from [KK87, Prop. 2.1.1], and also of
[Sai88, Lem. 5.1.12].

The basic decomposition result of Exercise 3.5 is at the heart of the notion of
Support-decomposability, which is a fundamental property of Saito’s pure Hodge mod-
ules [Sai88]. Exercise 3.12 is taken from [Sai89b, Prop. 3.7].



CHAPTER 4

VARIATIONS OF HODGE STRUCTURE ON
A COMPLEX MANIFOLD

Summary. The notion of a variation of Hodge structure on a complex manifold
is the first possible generalization of a Hodge structure. It naturally occurs when
considering holomorphic families of smooth projective varieties. Later, we will
identify this notion with the notion of a smooth Hodge module. We consider
global properties of polarizable variations of Hodge structure on a smooth pro-
jective variety. On the one hand, the Hodge theorem asserts that the de Rham
cohomology of a polarizable variation of Hodge structure on a smooth projective
variety is itself a polarizable sl2-Hodge structure. On the other hand, we show
that the local system underlying a polarizable variation of Hodge structure on a
smooth projective variety is semi-simple, and we classify all such variations with
a given underlying semi-simple local system.

4.1. Variations of Hodge structure

4.1.a. Variations of C-Hodge structure. The definition of a variation of C-Hodge
structure is modeled on the behaviour of the cohomology of a family of smooth projec-
tive varieties parametrized by a smooth algebraic variety, that is, a smooth projective
morphism f : Y ! X, that we call below the “geometric setting”.

Let us first motivate the definition. Let X be a connected (possibly non compact)
complex manifold. In such a setting, the generalization of a vector space Ho is a
locally constant sheaf of vector spaces H on X. Let us choose a universal covering
eX ! X of X and let us denote by ⇧ its group of deck-transformations, which is
isomorphic to ⇡1(X, ?) for any choice of a base-point ? 2 X. Let us denote by eH the
space of global sections of the pullback eH of H to eX. Then, giving H is equivalent
to giving the monodromy representation ⇧ ! GL( eH). However, it is known that, in
the geometric setting, the Hodge decomposition in each fiber of the family does not
give rise to locally constant sheaves, but to C

1-bundles.
In the geometric setting, to the locally constant sheaf Rk

f⇤CX (k 2 N) is associated
the Gauss-Manin connection, which is a holomorphic vector bundle on Y equipped
with a holomorphic flat connection. In such a case, the Hodge filtration can be
naturally defined and it is known to produce holomorphic bundles. Therefore, in the
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general setting of a variation of C-Hodge structure that we intend to define, a better
analogue of the complex vector space Ho is a holomorphic vector bundle H0 equipped
with a flat holomorphic connection r : H0 ! ⌦

1

X
⌦OX

H0, so that the locally constant
sheaf H0 = Kerr, that we also denote by H0r, is the desired local system. Note that
we can recover (H0,r) from H0 since the natural morphism of flat bundles

(OX ⌦C H0, d⌦ Id) �! (H0,r)

is an isomorphism. A filtration is then a finite (exhaustive) decreasing filtration by
sub-bundles F •H0 (recall that a sub-bundle F pH0 of H0 is a locally free OX -submodule
of H0 such that H0/F pH0 is also a locally free OX -module; F

•H0 is a filtration by
sub-bundles if each F

pH0/F p+1H0 is a locally free OX -module). The main property,
known as Griffiths transversality property is that the filtration should satisfy

(4.1.1) r(F pH0) ⇢ ⌦1

X
⌦OX

F
p�1H0 8 p 2 Z.

However, the analogue of a bi-filtered vector space is not a bi-filtered holomorphic
flat bundle, since one knows in the geometric setting that one of the filtrations should
behave holomorphically, while the other one should behave anti-holomorphically. This
leads to a presentation by C

1-bundles.
Let H = C1

X
⌦OX

H0 be the associated C
1 bundle and let D be the connection

on H defined, for any C
1 function ' and any local holomorphic section v of H0, by

D('⌦ v) = d'⌦ v+'⌦rv (this is a flat connection which decomposes with respect
to types as D = D

0
+ D

00 and D
00
= d

00 ⌦ Id). Then D
00 is a holomorphic structure

on H, i.e., KerD
00 is a holomorphic bundle with connection r induced by D

0: this is
(H0,r) by construction. Each bundle F

pH0 gives rise similarly to a C
1-bundle F

0pH

which is holomorphic in the sense that D
00
F
0pH ⇢ E0,1

X
⌦ F

0pH (and thus (D
00
)
2
= 0

on F
0pH).

On the other hand, D
0 defines an anti-holomorphic structure on H (see below),

and KerD
0 is an anti-holomorphic bundle with a flat anti-holomorphic connection r

induced by D
00. If we wish to work with holomorphic bundle, we can thus consider the

conjugate bundle(1) H00 = KerD0, that we equip with the holomorphic flat connection
r = D

00
|KerD0 . A filtration of H by anti-holomorphic sub-bundles is by definition a

filtration F
00•H by C

1-sub-bundles on which D
0
= 0. It corresponds to a filtration

of H00 by holomorphic sub-bundles F
•H00.

Conversely, given a flat C1 bundle (H, D), we decompose the flat connection into
its (1, 0) part D0 and its (0, 1) part D00. By considering types, one checks that flatness
is equivalent to the three properties

(D
0
)
2
= 0, (D

00
)
2
= 0, D

0
D
00
+D

00
D
0
= 0.

Since, by flatness, (D00)2 = 0, the Koszul-Malgrange theorem [KM58] implies that
KerD

00 is a holomorphic bundle H0, that we can equip with the restriction r to

(1)The precise definition is as follows. Let OX denote the sheaf of anti-holomorphic functions on X

and regard OX as an OX -module: the action of an anti-holomorphic function g on a holomorphic
function f is by definition g · f := gf . Then any OX -module E

00 determines an OX -module E00 by
setting E00 := OX ⌦OX

E
00.
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KerD
00 of the connection D

0. Flatness of D also implies that r is a flat holomorphic
connection on H0.

The conjugate C
1 bundle H is equipped with the conjugate connection D, which

is also flat. Conjugation exchanges of course the (1, 0)-part and the (0, 1)-part, that is,
D
0
= D00 and D

00
= D0. The corresponding holomorphic sub-bundle is H00 := (H)

0
=

KerD
00. We can also express it as H00 = KerD0, and it is equipped with the flat

holomorphic connection induced by D
0
= D00.

Similarly, we set F
0pH = F 00pH, etc.

4.1.2. Definition (Flat sesquilinear pairings).
(1) A sesquilinear pairing s on a C

1 bundle H is a pairing on H with values in
the sheaf C1

X
, which satisfies, for local sections u, v of H and a C

1 function g the
relation s(gu, v) = s(u, gv) = gs(u, v). We regard it as a C1

X
-linear morphism

s : H ⌦C1
X

H �! C1
X
.

(2) A flat sesquilinear pairing s on a flat C1 bundle (H, D) is a sesquilinear pairing
which satisfies

ds(u, v) = s(Du, v) + s(u,Dv);

equivalently, decomposing into types,
(
d
0
s(u, v) = s(D

0
u, v) + s(u,D00v),

d
00
s(u, v) = s(D

00
u, v) + s(u,D0v).

4.1.3. Lemma. Giving a flat sesquilinear pairing s on (H, D) is equivalent to giving an
OX ⌦C OX-linear morphism s : H0 ⌦C H0 ! C1

X
, that is, which satisfies

(
s(gu, v) = gs(u, v),

s(u, gv) = gs(u, v),

g 2 OX , u, v 2 H0,

and (
d
0
s(u, v) = s(ru, v),

d
00
s(u, v) = s(u,rv).

Proof. Immediate from the definitions.

4.1.4. Definition (Variation of C-Hodge structure, first definition)
A variation of C-Hodge structure H of weight w consists of the data of a flat C1

bundle (H, D), equipped with a filtration F
0•H by holomorphic sub-bundles satisfying

Griffiths transversality (4.1.1), and with a filtration F
00•H by anti-holomorphic sub-

bundles satisfying anti-Griffiths transversality, such that the restriction of these data
at each point x 2 X is a C-Hodge structure of weight w (Definition 2.5.2).

A morphism ' : H1 ! H2 is a flat morphism of C1-bundles compatible with both
the holomorphic and the anti-holomorphic filtrations.

A polarization S is a morphism H ⌦H ! C1
X
(�w) of flat filtered bundles, where

C1
X
(�w), is equipped with the natural connection d and w-shifted trivial filtra-

tions, whose restriction to each x 2 X is a polarization of the Hodge structure Hx
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(see Definition 2.5.11). We usually denote by S : H ⌦H ! C1 the underlying flat
morphism and by S : H ⌦H! C its restriction to the local system H.

4.1.5. Definition (Variation of C-Hodge structure, second definition)
A variation of C-Hodge structure H of weight w consists of the data of a flat C1

bundle (H, D), equipped with a Hodge decomposition by C
1-sub-bundles

H =
L
p

Hp,w�p

satisfying Griffiths transversality :
D
0Hp,q ⇢ ⌦1

X
⌦ (Hp,q �Hp�1,q+1

),

D
00Hp,q ⇢ ⌦1

X
⌦ (Hp,q �Hp+1,q�1

).

(4.1.5 ⇤)

A morphism H1 ! H2 is a D-flat morphism (H1, D)! (H2, D) which is compat-
ible with the Hodge decomposition.

A polarization is a C
1 Hermitian metric h on the C

1-bundle H such that
• the Hodge decomposition is orthogonal with respect to h,
• The polarization form S, defined by the property that (see Definition 2.5.15)

• the decomposition is S-orthogonal and
• h|Hp,w�p := (�1)qS|Hp,w�p ,

induces a D-flat OX ⌦C O
X

-linear pairing S : H ⌦C H! C1
X

.

4.1.6. Lemma. The two definitions are equivalent.

Proof. Given a C
1 flat bundle (H, D) equipped with a C

1 Hodge decomposition sat-
isfying (4.1.5 ⇤), we define F 0pH =

L
p0>p

Hp
0
,w�p0

, and (4.1.5 ⇤) implies D00(F 0pH) ⇢
E1,0

X
⌦ F

0p�1H, so that D
00 induces a holomorphic structure on F

0pH and gr
p

F
H '

Hp,q�p is a C
1 bundle. We argue similarly to obtain the properties of F

00•H. By
construction, the restriction of the filtrations to any point of X is give rise to the
Hodge decomposition

L
Hp,w�p

x
.

Conversely, assume that we are given (H, D, F
0•H, F

00•H) as in Definition 4.1.4.
The dimension of each fiber of Hp,w�p

:= F
0pH\F 00w�pH is constant, since it is equal

to that of the bundle gr
p

F
H. We now use that, if all fibers of the intersection of two

sub-bundles of a vector bundle have the same dimension, then this intersection is also
a sub-bundle. This implies that Hp,w�p is a sub-bundle of H, and the decomposition
follows from the Hodge property in each fiber. In order to obtain (4.1.5 ⇤), we notice
that F

00qH, being anti-holomorphic, is preserved by D
0, so

D
0
(F
0pH \ F

00qH) ⇢ ⌦1

X
⌦ (F

0p�1H \ F
00qH).

We argue similarly with D
00.

4.1.7. Remark. While it is easy, by using a partition of unity, to construct a Hermitian
metric compatible with the Hodge decomposition, the condition of flatness of S is
a true constraint if dimX > 1. For example, any flat C

1-bundle (H, D) can be
regarded as a variation of C-Hodge structure of type (0, 0), and it admits many
Hermitian metrics, but the polarization condition imposes that the Hermitian metric
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is flat, which only occurs when the monodromy representation of the flat bundle is
(conjugate to) a unitary representation.

4.1.8. Remark (Polarized variation of Hodge structure as a flat filtered Hermitian pair)
In analogy with §2.5.18, we can describe a polarized variation of Hodge structure

by using only one filtration. By a flat filtered Hermitian pair we mean the data
((H0,r), F •H0, S), where

(i) (H0,r) is a flat holomorphic vector bundle and F
•H0 is a filtration by holo-

morphic sub-bundles satisfying Griffiths transversality,
(ii) S : H0 ⌦C H0 ! C1

X
is a r-flat Hermitian pairing as defined in Lemma 4.1.3.

This can also be described as C1 data ((H, D), F
•H, S) as in Definition 4.1.2, the

equivalence being given by Lemma 4.1.3.
A flat filtered Hermitian pair ((H0,r), F •H0, S) is a polarized variation of Hodge

structure of weight w if its restriction to every x 2 X is a polarized Hodge structure
in the sense of 2.5.18(1)–(3).

4.1.9. Definition (The categories VHS(X,C, w) and pVHS(X,C, w))
Definitions 4.1.4 and 4.1.5 produce the category VHS(X,C, w) of variations of

C-Hodge structures of weight w on X. The category pVHS(X,C, w) of polarizable
variations of C-Hodge structures of weight w is the full subcategory of VHS(X,C, w)

whose objects admit a polarization.

We refer to Exercises 4.1 and 4.2 for the following result.

4.1.10. Proposition.
(1) The category VHS(X,C, w) is abelian and each morphism is strictly compatible

with the Hodge filtration. It is equipped with the operations tensor product, Hom, dual,
conjugation and Hermitian dual.

(2) The full subcategory pVHS(X,C, w) is abelian and stable by the previous oper-
ations. It is stable by direct summand in VHS(X,C, w) and is semi-simple.

4.1.b. Variations of Q-Hodge structure. We can now mimic the definition of
Section 2.5.c. An object of VHS(X,Q, w) is a tuple (HQ, H, iso), where

• HQ is a Q-local system on X,
• H is an object of VHS(X,C, w),
• iso is an isomorphism C⌦Q HQ

⇠�! H,

with the condition that at each x 2 X, these data restrict to a Q-Hodge structure.
Morphisms are the obvious ones which are compatible with the data. The definition
of pVHS(X,Q, w) is similar, by imposing that the polarization form S comes, after
tensoring with C, from a bilinear form

SQ : HQ ⌦Q HQ �! (2⇡i)
�w

Q.
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4.1.11. Proposition.

(1) The category VHS(X,Q, w) is abelian and each morphism is strictly compatible
with the Hodge filtration. It is equipped with the operations tensor product, Hom, and
dual.

(2) The full subcategory pVHS(X,Q, w) is abelian and stable by the previous oper-
ations. It is stable by direct summand in VHS(X,Q, w) and is semi-simple.

4.1.12. Remark. One can define the category VHS(X,R, w) of variations of R-Hodge
structure without referring to the Riemann-Hilbert correspondence, i.e., without using
the local system H, by using instead a complex involution  : (H, D)

⇠�! (H, D).

4.2. The Hodge theorem

4.2.a. The Hodge theorem for unitary representations. We will extend the
Hodge theorem (Theorem 2.4.4 and the results indicated after its statement concern-
ing the polarization) to the case of the cohomology with coefficients in a unitary
representation.

Let us start with a holomorphic vector bundle H0 of rank d on a complex projec-
tive manifold X equipped with a flat holomorphic connection r. The local system
H = H0r corresponds to a representation ⇡1(X, ?) ! GLd(C), up to conjugation.
The unitary assumption means that we can conjugate the given representation in
such a way that it takes values in the unitary group.

In other words, there exists a Hermitian metric h on the associated C
1-bundle

H = C1 ⌦OX
H0 such that, if we denote as above by D the connection on H defined

by D(' ⌦ v) = d' ⌦ v + ' ⌦ rv, the connection D is compatible with the metric h

(i.e., is the Chern connection of the metric h).
That D is a connection compatible with the metric implies that its formal adjoint

(with respect to the metric) is obtained with a suitably defined Hodge ? operator
by the formula D

?
= � ?D ? . This leads to the decomposition of the space of C1

k-forms on X with coefficients in H (resp. (p, q)-forms) as the orthogonal sum of the
kernel of the Laplace operator with respect to D (resp. D0 or D

00), that is, the space
of harmonic sections, and its image.

As the connection D is flat, there is a C
1 de Rham complex (E•

X
⌦H, D), and

standard arguments give

H
k
(X,H) = H

k
(X,DR(H0,r)) = H

k
�
�(X, (E

•
X
⌦H, D))

�
.

One can also define the Dolbeault cohomology groups by decomposing E• into Ep,q’s
and by decomposing D as D

0
+D

00. Then H
p,q

D00(X,H) = H
q
(X,⌦

p

X
⌦H0).

As the projective manifold X is Kähler, we obtain the Kähler identities for the
various Laplace operators: �D = 2�D0 = 2�D00 .

Then, exactly as in Theorem 2.4.4, we get:
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4.2.1. Theorem. Under these conditions, one has a canonical decomposition

H
k
(X,DR(H0,r)) =

L
p+q=k

H
p,q

D00(X,H)

and H
q,p

D00(X,H) is identified with H
p,q

D00(X,H_), where H_ is the dual bundle.(2)

The Hard Lefschetz theorem also holds in this context.

4.2.b. Harmonic bundles. If we do not assume anymore that H is unitary, but only
assume that it underlies a polarized variation of Hodge structure of some weight w (so
that the unitary case is the particular case of a variation of pure type (0, 0)), we have
a flat connection D on the C

1-bundle H associated to H0, with D = D
0
+ d
00, and

we also have a Hermitian metric h on H associated with S, but D is possibly not
compatible with the metric. The argument using the Hodge ? operator is not valid
anymore. We first consider a general situation.

Let X be a complex manifold, let (H, D) be a flat C1 bundle on X, and let h be a
Hermitian metric on H. We decompose D into its (1, 0) and (0, 1) parts: D = D

0
+D

00.

4.2.2. Lemma. Given (H, D, h), there exists a unique connection Dh = D
0
h
+D

00
h

on H

and a unique C
1-linear morphism ✓ = ✓

0
+ ✓
00
: H! E1

X
⌦H satisfying the following

properties:
(1) Dh is compatible with h, i.e., dh(u, v) = h(Dhu, v)+h(u,Dhv), or equivalently,

decomposing into types,

d
0
h(u, v) = h(D

0
h
u, v) + h(u,D

00
h
v), d

00
h(u, v) = h(D

00
h
u, v) + h(u,D

0
h
v).

(2) ✓ is self-adjoint with respect to h, i.e., h(✓u, v) = h(u, ✓v), or equivalently,
decomposing into types,

h(✓
0
u, v) = h(u, ✓00v), h(✓

00
u, v) = h(u, ✓0v).

(3) D = Dh + ✓, or equivalently, decomposing into types,

D
0
= D

0
h
+ ✓
0
, D

00
= D

00
h
+ ✓
00
.

4.2.3. Remark. In 4.2.2(1), we have extended the metric h in a natural way as a
sesquilinear operator (E1

X
⌦H)⌦H! E1

X
resp. H ⌦ (E1

X
⌦H)! E1

X
.

Proof. Let Dh be a connection on H which is compatible with h. Let A be a C1
X

-linear
morphism A : H! E1

X
⌦H which is skew-adjoint with respect to h, that is, such

that h(Au, v) = �h(u,Av) = 0 for every local sections u, v of H. Then the connec-
tion Dh +A is also compatible with the metric. So let us choose any h-compatible
connection eDh (for example the Chern connection, also compatible with the holomor-
phic structure D

00) and let us set A = D � eDh. Let us decompose A as A
+
+ A

�,
with A

+ self-adjoint and A
� skew-adjoint. We can thus set Dh = eDh + A

� and
✓ = A

+. Uniqueness is seen similarly.

(2)When we work with a polarized variation of Hodge structure, the polarization S identifies (H, D)

and (H_
, D

_) and we recover the usual conjugation relation between H
q,p and H

p,q .
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4.2.4. Remarks.
(1) Iterating 4.2.2(2), we find that ✓00 ^ ✓00 is h-adjoint to �✓0 ^ ✓0 and ✓

0 ^ ✓00 +
✓
00 ^ ✓0 is skew-adjoint. By applying d

0 or d
00 to 4.2.2(1) and (2), we see that D

002
h

is adjoint to �D02
h

, D00
h
(✓
0
) is adjoint to �D0

h
(✓
00
), D00

h
(✓
00
) is adjoint to �D0

h
(✓
0
), and

D
0
h
D
00
h
+D

00
h
D
0
h

is skew-adjoint with respect to h.
(2) Let us set bD0 = D

0
h
� ✓
0. Then the Chern connection for the metric h on

the holomorphic bundle (H, D
00
) is equal to bD0 + D

00 (see Exercise 4.4). Similarly,
setting bD00 = D

00
h
� ✓00, the Chern connection for the anti-holomorphic bundle (H, D

0
)

is D
0
+ bD00. We will set

D
c
= bD00 � bD0.

We refer to Exercise 4.4 for the properties of these operators.

4.2.5. Definition (Harmonic bundle). Let (H, D, h) be a flat C1-bundle equipped with
a Hermitian metric h. We say that (H, D, h) is a harmonic bundle if the operator
D
00
h
+ ✓
0
=

1

2
(D +D

c
) has square 0. We also set

(4.2.5 ⇤) D = D
0
h
+ ✓
00
, D = D

00
h
+ ✓
0
,

so that D = D
0
+D

00
= D+D and D

c
= D�D.

By looking at types, the harmonicity condition is equivalent to

(4.2.6) D
002
h

= 0, D
00
h
(✓
0
) = 0, ✓

0 ^ ✓0 = 0.

By adjunction, this implies

D
02
h
= 0, D

0
h
(✓
00
) = 0, ✓

00 ^ ✓00 = 0.

Moreover, the flatness of D implies then

D
0
h
(✓
0
) = 0, D

00
h
(✓
00
) = 0, D

0
h
D
00
h
+D

00
h
D
0
h
= �(✓0 ^ ✓00 + ✓

00 ^ ✓0).

4.2.7. Lemma. Let (H, D) be a flat bundle and let h be a Hermitian metric on H.
Then

(D)
2
= 0 =)

(
DD

c
+D

c
D = 0,

DD+DD = 0, D2
= 0.

Proof. Since D
2
= 0, it is a matter of proving (D

c
)
2
= 0. From the vanishing above,

we find ( bD0)2 = 0, ( bD00)2 = 0. We also get bD00 bD0 + bD0 bD00 = 0. The properties for
D,D are obtained similarly.

4.2.8. Definition (Higgs bundle). Set E = KerD
00
h
: H ! H. If (H, D, h) is harmonic,

then E is a holomorphic vector bundle equipped with a holomorphic End(E)-valued
1-form ✓ induced by ✓

0, which satisfies ✓ ^ ✓ = 0. It is called the Higgs bundle
associated to the harmonic bundle, and ✓ is its associated holomorphic Higgs field.
Let us also notice that, by definition, Dh is the Chern connection for the Hermitian
holomorphic bundle (E, h).
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4.2.9. Kähler identities for harmonic bundles. We assume that X is a compact Kähler
complex manifold. We can apply the Kähler identities to the holomorphic bundle
(H, D

00
) with Hermitian metric h and Chern connection bD0 + D

00, as well as to the
holomorphic bundle (H, D

00
h
) with Hermitian metric h and Chern connection D

0
h
+D

00
h
.

Denoting by P
? the formal L2-adjoint of an operator P , the classical Kähler identities

take the form
bD0? = i[⇤, D

00
], D

00?
= � i[⇤, bD0], �D00 = � i[D

00
, [⇤, bD0]],

D
0?
h
= i[⇤, D

00
h
], D

00?
h

= � i[⇤, D
0
h
], �D

00
h
= � i[D

00
h
, [⇤, D

0
h
]].

As a consequence, we find

D
?

h
:= D

0?
h
+D

00?
h

= i[⇤, D
c

h
].

Note also the following identity (see Exercise 4.10):

(4.2.10) �D = 2�D = 2�D.

4.2.c. Polarized variations of Hodge structure on a compact Kähler man-
ifold: the Hodge-Deligne theorem. Let us come back to the setting of Sec-
tion 4.2.a.

4.2.11. Proposition. Let (H, D, h) be a flat bundle with metric underlying a polarized
variation of C-Hodge structure on X. Then (H, D, h) is a harmonic bundle.

Proof. This is the content of Exercise 4.3.

Let us emphasize that the h-compatible connections D
0
h

resp. D00
h

of Lemma 4.2.2
are given by the first projection in Griffiths’ transversality relations (4.1.5 ⇤), and ✓

0

resp. ✓00 as the second projections. Recall that (H, D) is the flat C1 bundle associated
with the flat holomorphic bundle (H0,r). Then D

00
h

defines a holomorphic structure on
Hp,w�p, with associated holomorphic bundle KerD

00
h

isomorphic to the holomorphic
bundle gr

p

F
H0. Moreover, ✓0 : Hp,w�p ! Hp�1,w�p+1 is the C

1 morphism associated
with the OX -linear morphism induced by r:

(4.2.12) ✓ := gr
�1
F
r : gr

p

F
H0 �! ⌦

1

X
⌦ gr

p�1
F

H0.

The decomposition D = D
0
+ D

00 is thus replaced with the decomposition D =

D + D. The disadvantage is that we loose the decomposition into types (1, 0) and
(0, 1), but we keep the flatness property. On the other hand, we also keep the Kähler
identities (4.2.10).

We did not really loose the decomposition into types: the operator D sends a
section of Hp,q to a section of (⌦1

X
⌦Hp�1,q+1

) + (⌦
1

X
⌦Hp,q

). Counting the total
type, we find (p, q+ 1) for both terms. In other word, taking into account the Hodge
type of a section, the operator D is indeed of type (0, 1). A similar argument applies
to D. By Definition 4.2.5, (E•

X
⌦H,D) is a complex. Let us set

F
p
(Em

X
⌦H) =

L
i+j=m

i+k>p

Ei,j

X
⌦Hk,w�k

.
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We note that
DF

p
(Em

X
⌦H) ⇢ F

p
(Em+1

X
⌦H),

since D
00
h

sends Ei,j

X
⌦ Hk,w�k to Ei,j+1

X
⌦ Hk,w�k and ✓

0 sends Ei,j

X
⌦ Hk,w�k to

Ei+1,j

X
⌦Hk�1,w�k+1. We thus get a filtered complex by setting

F
p
(E

•
X
⌦H,D) =

n
F

p
(E0

X
⌦H)

D���! F
p
(E1

X
⌦H) �! · · ·

o
,

and the associated graded complex has the following degree-m term:
mL
i=0

(Ei,m�i
X

⌦Hp�i,w�p+i
).

On the other hand, we filter gr
F
H0 by setting F

p
gr

F
H0 =

L
p0>p

gr
p
0

F
H0, so that,

according to (4.2.12), we obtain the holomorphic Dolbeault complex

(4.2.13) Dol(gr
F
H0, ✓) := {0! gr

F
H0

✓��! ⌦
1

X
⌦ gr

F
H0

✓��! · · · }.

which is filtered by setting

F
p
Dol(gr

F
H0, ✓) =

n
F

p
gr

F
H0

✓��! ⌦
1

X
⌦ F

p�1
gr

F
H0 �! · · ·

o
,

so that

gr
p

F
Dol(gr

F
H0, ✓) =

n
gr

p

F
H0

✓��! ⌦
1

X
⌦ gr

p�1
F

H0 �! · · ·
o
.

4.2.14. Proposition (Dolbeault resolution). For each p, the complex F
p
(E•

X
⌦ H,D)

is a resolution of F
p
(⌦

•
X
⌦ gr

F
H0, ✓) and gr

p

F
(E•

X
⌦ H,D) is a resolution of

gr
p

F
Dol(gr

F
H0, ✓).

Proof. Since the filtration F
• is finite, it is enough to prove the second statement. Due

to the relations (4.2.6), we can regard (up to signs) gr
p

F
(E•

X
⌦ H,D) as the simple

complex associated with the double complex

Ei,j ⌦Hp�i,w�p+i

D
00
h
✏✏

✓
0
// Ei+1,j ⌦Hp�i�1,w�p+i+1

D
00
h

✏✏

Ei,j+1 ⌦Hp�i,w�p+i ✓
0
// Ei+1,j+1 ⌦Hp�i�1,w�p+i+1

The i-th vertical complex a resolution of ⌦i

X
⌦ gr

p�i
F

H0.

4.2.15. Corollary (Dolbeault Lemma). We have for each p, q 2 Z:

H
q
�
X, gr

p

F
Dol(gr

F
H0, ✓)

�
' H

q
�
�(X, gr

p

F
(E

•
X
⌦H,D)

�
,

H
q
�
X,F

p
Dol(gr

F
H0, ✓)

�
' H

q
�
�(X,F

p
(E

•
X
⌦H,D)

�
.

This being understood, the arguments of Hodge theory apply to this situation as
in the case considered in Section 4.2.a, to get the Hodge-Deligne theorem.
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4.2.16. Theorem (Hodge-Deligne theorem). Let (H, S) be a polarized variation of
C-Hodge structure of weight w on a smooth complex projective variety X of pure
dimension n and let L be an ample line bundle on X. Then

�
H

•
(X,H),XL) is

naturally equipped with a polarizable sl2-Hodge structure with central weight w+n

(see Definition 3.2.7). In particular, each H
k
(X,H) comes equipped with a polarized

C-Hodge structure of weight w + k. If (H,S) is a polarized variation of Q-Hodge
structure of weight w, then each H

k
(X,HQ) is equipped with a polarized Q-Hodge

structure of weight w + k.

Sketch of proof. We refer to [Zuc79, §2] for the detailed adaptation to this setting
of the Kähler identities and their consequences. One realizes each cohomology class
in H

•
(X,H) by a unique �D-harmonic section, by the arguments of Hodge theory,

which extend if one takes into account the total type, as above.
The polarization is obtained from S on H and Poincaré duality as we did for S in

Section 2.4, and from it we cook up the form S on the cohomology. More precisely,
the flat pairing

S : H ⌦H �! C1
X

induces a pairing of locally constant sheaves

S : H ⌦H �! CX ,

Then S : H
•
(X,H)

H ⌦ H
•
(X,H)H ! C

H
(�(w + n)) satisfies S(H

n+k
, Hn�`) = 0 if

k 6= ` and otherwise induces for every k 2 Z with |k| 6 n a pairing Sk of C-Hodge
structures

H
n+k

(X,H)
H ⌦Hn�k(X,H)H �! H

2n
(X,C)

H
(�(w + n)) = C

H
(�(w + n))

by the formula (see Notation (0.2 ⇤))

(4.2.17) Sk(•, •) := Sgn(n, k)

Z

[X]

S(•, •).

Since the Lefschetz operator XL only acts on the forms and not on the sections of H,
it is self-adjoint with respect to S in the sense that Sk(XL⌘

0
, ⌘00) = Sk�2(⌘

0
,XL⌘

00),
since it is so for the modified Poincaré duality pairing Sgn(n, k)h•, •iC (see (2.4.13)).
Then S is a sesquilinear pairing on the sl2-Hodge structure H

•
(X,H) (see Section

3.4.c).
Due to the Kähler identities and the commutation of LL with �D, a harmonic

section of En�`
X
⌦H (` > 0) is primitive if and only if each of its components with

respect to the total bigrading is so, and since LL only acts on the differential form
part of such a component, this occurs if an only if each of its component on Ep,q

X
⌦Ha,b

is primitive, with p + q = n � ` and a + b = w. Fixing an h-orthonormal basis (vi)i

of Ha,b, such a component can be written in a unique way as
P

i
⌘
p,q

i
⌦ vi with ⌘

p,q

i

primitive. Then the positivity property of P�`S defined in 3.2.10 on ⌘p,q
i
⌦vi amounts

to the positivity of

Sgn(n,�`)
Z

X

(�1)q+bS(vi, vi) · ⌘p,qi
^X

`

L⌘
p,q

i
.
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By the positivity for S, there exists a C
1 function gi such that (�1)bS(vi, vi) = |gi|2.

Therefore, (2.4.15) applied to gi⌘
p,q

i
gives the desired positivity.

Lastly, in the presence of a Q-structure, we define the bilinear form SQ by replac-
ing S with SQ in (4.2.17) in order to obtain a pairing of Q-Hodge structures

H
n+k

(X,HQ)
H ⌦Hn�k(X,HQ)H �! H

2n
(X,Q)(�(w + n))

H
= Q

H
(�(w + n)).

4.2.18. Remarks. Let H be a polarizable variation of C-Hodge structure of weight w

on a smooth complex projective variety X.
(1) (The Hodge filtration) Consider the de Rham complex DR(H0,r). According

to the Griffiths transversality property, it comes equipped with a filtration, by setting
(see Definition 8.4.1):

F
p
DR(H0,r) = {0! F

pH0
r���! ⌦

1

X
⌦ F

p�1H0
r���! · · · r���! ⌦

n

X
⌦ F

p�nH0 ! 0}.

The natural inclusion of complexes F p
DR(H0,r) ,! DR(H0,r) induces a morphism

(4.2.18 ⇤) H
k
(X,F

p
DR(H0,r)) �!H

k
(X,DR(H0,r)) = H

k
(X,H),

whose image is the filtration F
0p
H

k
(X,H). Working anti-holomorphically with the

filtration F
00•H by anti-holomorphic sub-bundles and the anti-holomorphic connection

induced by D
00 on KerD

0, one obtains the filtration F
00•
H

k
(X,H). The Hodge-

Deligne theorem implies that these filtrations are (w + k)-opposed.
(2) (Degeneration at E1 of the Hodge-to-deRham spectral sequence)
Moreover, we claim that, for every p, k, the morphism (4.2.18 ⇤) is injective.

In other words, the filtered complex R�
�
X,F

•
DR(H0,r)

�
is strict (see Section 5.1.b).

The graded complex gr
p

F
DR(H0,r) is the complex

gr
p

F
DR(H0,r) = {0! gr

p

F
H0

✓��! ⌦
1

X
⌦ gr

p�1
F

H0
✓��! · · · ✓��! ⌦

n

X
⌦ gr

p�n
F

H0 ! 0},

that is,
gr

p

F
DR(H0,r) = gr

p

F
Dol(gr

F
H0, ✓).

Since each term of this complex is OX -locally free of finite rank and since ✓ is OX -lin-
ear, the hypercohomology spaces H

k
(X, gr

p

F
DR(H0,r)) are finite-dimensional. The

strictness property is then equivalent to

8 p, k, gr
p

F
H

k
(X,H) = H

k
(X, gr

p

F
DR(H0,r)),

where gr
p

F
H

k
(X,H) ' H

p,w+k�p
(X,H). This property is also equivalent to

8 k, dimH
k
(X,H) = dimH

k
(X,Dol(gr

F
H, ✓)).

This statement is obtained by standard arguments of Hodge theory applied to the
operators D,D,D and their Laplacians.

(3) For any smooth projective variety X, the space H
0
(X,H) is primitive (for

any L) and, given a polarization S of H, a polarization of the pure C-Hodge structure
of weight w is obtained by taking integral of the polarization function against a volume
form (defined from L, in order to match with the Hodge-Deligne theorem).
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If X is a compact Riemann surface, then H
1
(X,H) is also primitive, and there

is no need to choose a polarization bundle L in order to obtain the polarized pure
C-Hodge structure on H

1
(X,H). The polarization (4.2.17) on H

1
(X,H) is simply

written as
S
(1)

= � 1

2⇡i

Z

[X]

S(•, •).

(4) (The fixed-part theorem) The maximal constant subsheaf of H is the constant
subsheaf with stalk H

0
(X,H) at each point, by means of a natural injective morphism

H
0
(X,H) ⌦C CX ! H. By the Hodge-Deligne theorem 4.2.16, H0

(X,H) ⌦C CX is
equipped with a constant variation of Hodge structure of weight w. We claim that
the previous morphism is compatible with the Hodge filtrations, i.e., is a morphism in
VHS(X,C, w), that is, the injective morphism

' : H
0
(X,H)⌦C OX �! H ⌦C OX = H0

is compatible with the Hodge filtration F
• on both terms.

Since X is compact and F
pH0 is OX -coherent (being OX -locally free of finite rank),

the space H0
(X,F

pH0) is finite dimensional, and we have a natural injective morphism

'p : H
0
(X,F

pH0)⌦C OX �! F
pH0

by sending a global section of F pH0 to its germ at every point of X. On the other
hand, regarding F

pH0 as a complex with only one term in degree zero, we have an
obvious morphism of complexes

F
p
DRH0 �! F

pH0,

which induces a morphism H
0
(X,F

p
DRH0)! H

0
(X,F

pH0), from which, together
with 'p, we obtain a morphism

H
0
(X,F

p
DRH0)⌦C OX �! F

pH0.

For p small enough so that F
pH0 = H0, we recover the morphism ' above. By the

degeneration property (2), H0
(X,F

p
DRH0) is identified with F

p
H

0
(X,H), hence

the assertion.
As a consequence, if a global horizontal section of (H0,r), i.e., a global section

of H, regarded as a global section of H0, is in F
pH0 at one point, it is a global section

of F pH0.
Arguing similarly with the anti-holomorphic Hodge filtration, and then with the

Hodge decomposition of the C
1-bundle H, we find that the natural injective mor-

phism
H

0
(X,H)⌦C C1

X
�! H ⌦C C1

X
= H

is compatible with the Hodge decomposition of each term. As a consequence, for any
global horizontal section of (H, D), i.e., any global section of H, regarded as a global
section of H, the Hodge (p, q)-components are also D-horizontal. In particular, if the
global section is of type (p, q) at one point, it is of type (p, q) at every point of X.

Concerning the polarization, let us notice that the restriction of the polarization S

to the constant sub local system H
0
(X,H) ⌦ CX is constant. The polarization on
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H
0
(X,H) is thus equal, up to a positive multiplicative constant, to the restriction

of S to H
0
(X,H) regarded as the stalk of H0

(X,H)⌦CX at any chosen point of X.

4.2.d. The L
2 de Rham and Dolbeault complexes. The compactness assump-

tion in Hodge theory is not mandatory. One can relax it, provided that the metric
on the manifold remains complete (see e.g. [Dem96, §12]). We will indicate the new
phenomena that occur in the setting of Section 4.2.a.

One has to work with C
1 sections v of E•

X
⌦H which are globally L

2 with respect
to the metric h and to the complete metric on X, and whose differential Dv is L

2.
The analysis of the Laplace operator is now similar to that of the compact case. One
uses a L

2 de Rham complex and a L
2 Dolbeault complex (i.e., one puts a L

2 condition
on sections and their derivatives), that we analyze in this section.

We assume that the complex manifold X is equipped with a metric, hence a volume
form vol, that enables to define the space L

2
(U, vol) for each open set U ⇢ X, and

we will omit vol in the notation from now on. The locally free sheaves of differential
forms are then equipped with a metric.

We can regard the sheaf of C1 functions on X at a subsheaf of the sheaf of locally
integrable function, simply denoted by L1,loc (with respect to any metric on X). For
any relatively compact open set U ⇢ X, �(U,L1,loc) := L

1

loc
(U, vol). One checks

easily that the assignment U 7! L
1

loc
(U, vol) is a sheaf, which does not depend on the

choice of the metric.
Let (H, h) be a C

1 vector bundle on X with a Hermitian metric h and let
L1,loc ⌦C1

X
H be the associated sheaf of L

1

loc
sections of H. The h-norm of any

local section of the latter is a locally integrable function.

4.2.19. Definition. The space L2
(X,H, h) is the subspace of �(X,L1,loc⌦H) consisting

of sections whose h-norm belongs to L
2
(X).

The following lemmas are standard.

4.2.20. Lemma. A section u 2 �(X,L1,loc ⌦C1
X

H) belongs to L
2
(X,H, h) if and only

if there exists a sequence un 2 �(X,H) \ L
2
(X,H, h) such that ku � unk2,h ! 0 in

L
2
(X,H, h). In such a case, un ! u weakly, that is, for any � 2 �c(X,H),

Z

X

(h(u,�)� h(un,�)) vol �! 0.

Let " be an h-orthonormal frame of H on X. Then a section u =
P

i
fi"i, with fi 2

L1

loc
(X), belongs to L

2
(X,H, h)) if and only if each fi belongs to L

2
(X). Orthonormal

frames may not be easy to find and in order to check the L
2 property, other frames

may be more convenient.

4.2.21. Definition (L2-adaptedness). A frame v of H on X is said to be L
2-adapted

if there exists a positive constant Cv such that, for any section u =
P

i
fivi in
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�(X,L1

loc
⌦H), the following inequality holds

X

i

kfivik2 6 Cvkuk2
⇣
6 Cv

X

i

kfivik2
⌘
.

In other words, an L
2-adapted frame v gives rise to a decomposition L

2
(X,H, h) =L

i
L
2
(X,Hi, h), where Hi is the C

1 subbundle generated by vi with induced metric.
Let us state some properties.

4.2.22. Lemma.
(1) An orthonormal frame " is L

2-adapted.
(2) If h and h

0 are comparable metrics on H, then a frame of H is L
2-adapted

for h if and only if it is so for h
0.

(3) If a frame v = (v1, . . . , vr) is L
2-adapted, any rescaled frame (h1v1, . . . , hrvr),

with hi 2 L
1

loc
(X) nowhere vanishing, is also L

2-adapted.
(4) A sufficient condition for a frame v to be L

2-adapted is that the functions kvikh
are locally bounded and each entry of the matrix h

�1
v := (h(vi, vj)i,j)

�1 is locally
bounded.

Proof. The first three points are clear. For the last one, let C > 0 denote a bounding
constant, let u =

P
i
fivi be a section of L1

loc
⌦ H and set gi := h(u, vi). Then

|gi| 6 kukhkvikh 6 Ckukh, since kvikh 6 C. The column vectors G and F (of the gi’s
and the fi’s respectively) are related by G = hv · F , so that F = h

�1
v · G. It follows

that, for each i, |fi| 6 rC
2kukh and thus kfivikh 6 rC

3kukh. Then v is L
2-adapted

with constant Cv = rC
3.

Assume now that H is equipped with a flat connection D : H! E1

X
⌦H.

4.2.23. Definition. The space L
2
(X,H, h, D) is the subspace of L2

(X,H, h) consisting
of sections u such that

• Du, considered in the weak sense, (i.e., distributional sense) is a section of L1,loc⌦
(E1

X
⌦H),

• as such, its h-norm belongs to L
2
(X).

C
1-approximation also holds in this case.

4.2.24. Lemma. A section u 2 �(X,L1,loc ⌦C1
X

H) belongs to L
2
(X,H, h, D) if and

only if there exists a sequence un 2 �(X,H) \ L
2
(X,H, h) such that

• ku� unk2,h ! 0 in L
2
(X,H, h),

• Dun belongs to L
2
(X,E1

X
⌦H, h) and is a Cauchy sequence in this space.

The L
2 de Rham complex is then well-defined as the complex

(4.2.25) 0 �! L
2
(X,H, h, D)

D���! L
2
(X,E1

X
⌦H, h, D)

D���! · · ·
D���! L

2
(X,E2n

X
⌦H, h, D) �! 0,

whose cohomology is denoted by H
k

D,L2(X,H).



84 CHAPTER 4. VHS ON A COMPLEX MANIFOLD

4.2.26. Definition. The assignment U 7! L
2
(U,H, h) defines a presheaf, which is a

sheaf on X, denoted by L(2)(H, h). If U is relatively compact in X, we have

�(U,L(2)(H, h)) = L
2
(U,H, h).

We define similarly the sheaf L(2)(H, h, D) and we set

Li

(2)
(H, h, D) := L(2)(E

i

X
⌦H, h, D).

We obtain therefore a complex of sheaves

(4.2.27) 0 �! L(2)(H, h)
D���! L1

(2)
(H, h, D)

D���! · · · D���! L2n

(2)
(H, h, D) �! 0.

4.2.28. Lemma (L2 Poincaré lemma). The complex (4.2.27) is a resolution of the locally
constant sheaf H = KerD.

Proof. Near a given point of X, we can find a local isomorphism (H, D) ' (C1
X
)
rkH

, d)

and the metric h is equivalent to the standard metric on (C1
X
)
rkH in which the

canonical basis is orthonormal. Then both assertions of the theorem need only to
be proved for (C1

X
, d, k·k) where k1k = 1. The proof is then obtained by a standard

regularization procedure (see Corollary 12.2.5).

4.2.29. Definition. By considering the decomposition (4.2.5 ⇤) one defines similarly
L
2
(X,H, h,D) and the L

2 Dolbeault complexes (p = 0, . . . , dX)

(4.2.30) 0! L
2
(X, gr

p

F
(E0

X
⌦H), h,D)

D���! L
2
(X, gr

p

F
(E1

X
⌦H), h,D)

D���! · · · D���! L
2
(X, gr

p

F
(En

X
⌦H), h,D)! 0,

whose m-th cohomology is denoted by H
p,m+w�p
D,L2

(X,H).

The analogue of the C
1-approximation lemma 4.2.24 also holds in this case, and

we define the sheaves L(2)(gr
p

F
(Ei

X
⌦H), h,D) in a way similar to Definition 4.2.26.

Then the Dolbeault complex (4.2.30) sheafifies as

(4.2.31) 0! L(2)(gr
p

F
(E0

X
⌦H), h,D)

D���! L(2)(gr
p

F
(E1

X
⌦H), h,D)

D���! · · ·

4.2.32. Lemma (L2 Dolbeault lemma). The inclusion of complexes

gr
p

F
Dol(gr

F
H0, ✓) ,�!

�
L(2)(gr

p

F
(E

•
X
⌦H), h,D),D)

is a quasi-isomorphism.

Proof. We write D = d
00
h
� ✓
0. Since ✓0 is C

1, it is locally bounded, so the local
L
2-condition on the D-derivative only concerns d00, and we can consider (up to signs)

the complex (4.2.31) as the simple complex associated with the double complex with
differentials d00 and ✓0. For the complex with differential d00 we can apply the standard
L
2-Dolbeault lemma (recalled as Theorem 12.2.6 in Chapter 12). Then the statement

is clear.
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4.2.e. Polarized variations of Hodge structure on a complex manifold with
a complete metric

One missing point in the general context of noncompact complex manifolds is the
finite dimensionality of the L

2-cohomologies involved. In the compact case, it is
ensured, for instance, by the finiteness of the Betti cohomology H

k
(X,H). So the

Hodge theorem is stated as

4.2.33. Theorem. Let (X,!) be a complete Kähler manifold and let (H, S) be a polarized
variation of Hodge structure on X. Let (H, D) be the associated flat C

1 bundle.
Then, with the assumption that all the terms involved are finite dimensional, one has
a canonical isomorphisms

H
k

D,L2(X,H) '
L

p+q=k+w

H
p,q

D,L2
(X,H), H

q,p

D,L2
(X,H) ' H

p,q

D,L2
(X,H_).

We refer to [Zuc79, §7] for a proof of this result. The finiteness assumption can be
obtained by relating the L

2 de Rham cohomology with topology. If we are lucky, then
this will not only provide a relation with Betti cohomology, but the Betti cohomology
will be finite-dimensional and this will also provide finiteness of the L

2 de Rham
cohomology.

There is also a need for finiteness of the L
2 Dolbeault cohomology. In the case that

will occupy us later, where X is a punctured compact Riemann surface, this will be
done by relating L

2 Dolbeault cohomology with the cohomology of a coherent sheaf
on the compact Riemann surface.

We will indicate in Sections 6.12 and 6.14 the way to solve these two problems in
dimension 1, by means of the L

2 Poincaré lemma and the L
2 Dolbeault lemma.

What about the Lefschetz aspect of Hodge theory in this context? The complete
Kähler metric acts as a Lefschetz operator on the L

2 cohomology, and gives rise to a
polarization of the Hodge structure. On the other hand, the theory of Hodge modules
takes place on smooth complex projective varieties (or for some aspects compact
Kähler manifolds). The non-compact manifold that occurs is the complement of
divisor with normal crossings. Such a manifold can be equipped with a complete
Kähler metric having a controlled behaviour at infinity, that is, in the neighbourhood
of the normal crossing divisor of the compactification: the metric has a Poincaré-
like behaviour locally at infinity. However, in the theory of Hodge modules, we only
consider the Lefschetz operator coming from an ample line bundle on the projective
variety.(3)

4.3. Semi-simplicity

4.3.a. A review on completely reducible representations. We review here
some classical results concerning the theory of finite-dimensional linear representa-
tions. Let ⇧ be a group and let ⇢ be a linear representation of ⇧ on a finite-dimensional

(3)See [KK87, §6.4] for the comparison between both Lefschetz operators.
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k-vector space V . In other words, ⇢ is a group homomorphism ⇧! GL(V ). We will
say that V is a ⇧-module (it would be more correct to introduce the associative al-
gebra k[⇧] of the group ⇧, consisting of k-linear combinations of the elements of ⇧,
and to speak of a left k[⇧]-module). The subspaces of V stable by ⇢(⇧) correspond
thus to the sub-⇧-modules of V .

We say that a ⇧-module V is irreducible if it does not admit any nontrivial sub-⇧-
module. Then, any homomorphism between two irreducible ⇧-modules is either zero,
or an isomorphism (Schur’s lemma). If k is algebraically closed, any automorphism of
an irreducible ⇧-module is a nonzero multiple of the identity (consider an eigenspace
of the automorphism).

4.3.1. Proposition. Given a ⇧-module V , the following properties are equivalent:
(1) The ⇧-module V is semi-simple, i.e., every sub-⇧-module has a supplementary

sub-⇧-module.
(2) The ⇧-module V is completely reducible, i.e., V has a decomposition (in general

non unique) into the direct sum of irreducible sub-⇧-modules.
(3) The ⇧-module V is generated by its irreducible sub-⇧-modules.

Proof. The only non-obvious point is (3) =) (1). Let then W be a sub-⇧-module
of V . We will show the result by induction on codimW , this being clear for codimW =

0. If codimW > 1, there exists by assumption a nontrivial irreducible sub-⇧-module
V1 ⇢ V not contained in W . Since V1 is irreducible, we have W \ V1 = {0}, so
W1 := W�V1 is a sub-⇧-module of V to which one can apply the induction hypothesis.
If W 0

1
is a supplementary ⇧-module of W1, then W

0
= W

0
1
� V1 is a supplementary

⇧-module of W .

It follows then from Schur’s lemma that a completely reducible ⇧-module has a
unique decomposition as the direct sum

V =
L
i

Vi =
L
i

(V
o

i
⌦ Ei),

in which the isotypic components Vi are sub-⇧-modules of the form V
o

i
⌦Ei, where V o

i

is an irreducible ⇧-module, V o

i
is not isomorphic to V

o

j
for i 6= j, and Ei is a trivial

⇧-module, i.e., on which ⇧ acts by the identity.
One also notes that if W is a sub-⇧-module of a completely reducible ⇧-module V ,

then W is completely reducible and its isotypical decomposition is

W =
L
i

(W \ Vi),

in which W \ Vi = V
o

i
⌦ Fi for some subspace Fi of Ei. A ⇧-module supplementary

to W can be obtained by choosing for every i a k-vector space supplementary to Fi

in Ei.

4.3.2. Remarks. The previous properties have easy consequences.
(1) A k-vector space V is a semi-simple ⇧-module if and only if the associated

complex space VC = C⌦V is a semi-simple ⇧-module (for the complexified represen-
tation).
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Indeed, let us first recall that the group Autk(C) acts on VC: if " = ("1, . . . , "n) is
some k-basis of V then, for a1, . . . , an 2 C and � 2 Autk(C), one sets �

�P
i
ai"i

�
=P

i
�(ai)"i. A subspace WC of VC is “defined over k”, i.e., of the form C ⌦ W for

some sub-space W of V , if and only if it is stable by any automorphism � 2 Autk(C):
indeed, if d = dimC WC, one can find, up to renumbering the basis ", a basis e1, . . . , ed
of WC such that

e1 = "1 + a1,2"2 + · · ·+ a1,d"d + · · ·+ a1,n"n

e2 = "2 + · · ·+ a1,d"d + · · ·+ a2,n"n

...
ed = "d + · · ·+ ad,n"n,

with ai,j 2 C; one then shows by descending induction on i 2 {d, . . . , 1} that, if WC
is stable by Autk(C), then ai,j are invariant by any automorphism of C over k, i.e.,
belong to k since C is separable over k.

Let us now prove the assertion. Let us first assume that V is irreducible and
let us consider the subspace WC of VC generated by the sub-⇧-modules of minimal
dimension (hence irreducible). Since the representation of ⇧ is defined over k, if EC
is a ⇧-module, so is �(EC) for every � 2 Autk(C); therefore the space WC is invariant
by Autk(C), in other words takes the form C ⌦k W for some subspace W of V . It
is clear that W is a sub-⇧-module of V , hence W = V . According to 4.3.1(3), VC is
semi-simple.

Conversely, let us assume that VC is semi-simple. Let us choose a k-linear form
` : C ! k such that `(1) = 1. It defines a k-linear map L : VC ! V which is
⇧-invariant and which induces the identity on V . Let W be a sub-⇧-module of V .
We have a ⇧-invariant projection VC !WC, hence a composed projection p which is
⇧-invariant:

VC // WC
L
// W

V

� ?

OO

p

44

from which one obtains a ⇧-module supplementary to W in V .
(2) If ⇧00 ! ⇧ is a surjective group-homomorphism and ⇢

00 is the composed rep-
resentation, then V is a semi-simple ⇧-module if and only if it is a semi-simple
⇧
00-module. Indeed, the ⇧-module structure only depends on the image ⇢(⇧) ⇢

GL(V ).
(3) Let ⇧0 C ⇧ be a normal subgroup, and let V be a ⇧-module. Then, if V

is semi-simple as a ⇧-module, it so as a ⇧0-module. Indeed, if V 0 is an irreducible
sub-⇧0-module of V , then ⇢(⇡)V

0 remains so for every ⇡ 2 ⇧. If V is ⇧-irreducible
and if V 0 is a nonzero irreducible sub-⇧0-module, the sub-⇧0-module generated by the
⇢(⇡)V

0 is a ⇧-module, hence coincides with V . As a consequence, V is generated by
its irreducible sub-⇧0-modules, hence is ⇧0-semi-simple, according to 4.3.1(3).
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(4) A real representation ⇧ ! Aut(VR) is simple if and only if the associated
complexified representation ⇧! Aut(VC) has at most two simple components. [Hint :
Any simple component of the complexified representation can be summed with its
conjugate to produce a sub-representation of the real representation.]

4.3.b. The semi-simplicity theorem. Let X be a smooth projective variety. Let
H = (H, F

0•H, F
00•H, D, S) be a polarized variation of C-Hodge structure of weight w

on X (see Definition 4.1.4), and let H = KerD be the associated complex local system.

4.3.3. Theorem. Under these assumptions, the complex local system H is semi-simple.

Let us already note that the result is easy for unitary local systems (underlying
thus polarized variations of type (0, 0), as in Section 4.2.a). The general case will use
the objects introduced in Section 4.2.b, and will not be specific to polarized variations
of Hodge structure. The proof of the semi-simplicity theorem will apply to these more
general objects called harmonic bundle (see Section 4.2.b). Moreover, we can relax the
property that the smooth variety is projective, and only assume that it is a compact
Kähler manifold, since we will only use the Kähler identities.

4.3.4. Remark. If H is obtained from a local system HQ defined over Q, then HQ is
also semi-simple as such, according to Remark 4.3.2(1).

Let H be a C
1-bundle with metric h. The group of C1 automorphisms g of H

acts on a given connection D by the formula gD := g � D � g�1 = D � D(g) � g�1,
where we have extended the action of D in a natural way on the bundle End(H). If D
is flat, then so is gD. We then set gD = gDh + g✓. Let us also set bD = Dh � ✓
(see Lemma 4.2.2).

4.3.5. Lemma. We have g✓ = ✓ � 1

2

�
D(g)g

�1
+ g
⇤�1 bD(g

⇤
)
�
, where g

⇤ is the h-adjoint
of g.

Proof. We have

gD = Dh + ✓ �
�
Dh(g)g

�1
+ [✓, g]g

�1�
= Dh �Dh(g)g

�1
+ g
�1
✓g.

It follows that g✓ is the self-adjoint part of �Dh(g)g
�1

+ g
�1
✓g, that is, taking into

account that the adjoint of Dh(g) is Dh(g
⇤
) (by working in a local h-orthonormal

basis),

(4.3.6) g✓ =
1

2

�
�(Dh(g)g

�1
+ g
⇤�1

Dh(g
⇤
)) + g

�1
✓g + g

⇤
✓g
⇤�1�

.

The lemma follows from a straightforward computation.

If we fix a metric on X, we deduce with h a metric on E1

X
⌦H and then a metric

k·k on Hom(H,E1

X
⌦ H) with associated scalar product (· , ·). We then denote by

h· , ·i the integrated product using the volume form on X:

h· , ·i =
Z

X

(· , ·) vol .
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4.3.7. Definition. The energy of g 2 Aut(H) with respect to (H, D, h) is defined as

E(H,D,h)(g) := kg✓k2 = hg✓, g✓i.

Let ⇠ 2 End(H) and let ⇠ = ⇠
+
+ ⇠
� be its decomposition into its self-adjoint part

⇠
+
=

1

2
(⇠ + ⇠

⇤
) and its skew-adjoint part ⇠� =

1

2
(⇠ � ⇠⇤).

4.3.8. Proposition. For t varying in R, we have
d

dt
E(H,D,h)(e

t⇠
)
��
t=0

= 2hDh⇠
+
, ✓i.

Proof. We have D(e
t⇠
)e
�t⇠

= tD⇠ mod t
2 and e

�t⇠⇤ bD(e
t⇠

⇤
) = t bD⇠⇤ mod t

2. From
Lemma 4.3.5 we deduce

d

dt
E(H,D,h)(e

t⇠
)
��
t=0

= �hD⇠ + bD⇠⇤, ✓i � h✓, D⇠ + bD⇠⇤i

= �hDh⇠
+
+ [✓, ⇠

�
], ✓i � h✓, Dh⇠

+
+ [✓, ⇠

�
]i

= �2RehDh⇠
+
, ✓i = �2hDh⇠

+
, ✓i,

since h✓⇠�, ✓i = �h✓, ✓⇠�i, h⇠�✓, ✓i = �h✓, ⇠�✓i, and both ✓ and Dh⇠
+ are self-

adjoint.

The property of being semi-simple or not for (H, D) is seen on the energy functional.

4.3.9. Proposition. Let (H, D) be a flat bundle. Assume that there exists a metric h

such that the energy functional g 7! E(H,D,h)(g) has a critical point at g = Id. Then
(H, D) is semi-simple.

Proof. Let us argue by contraposition and let us assume that (H, D) is not semi-
simple. Let h be any metric on H. We will prove that Id is not a critical point for
g 7! E(H,D,h)(g). It is enough to prove that there exists ⇠ 2 End(H) such that the
function

f : R �! R, t 7�! E(H,D,h)(e
t⇠
)

has no critical point at t = 0. By assumption, there exists a sub-bundle H1 of H

stable by D such that its orthogonal H2 is not stable by D. Set ni = rkHi (i = 1, 2).
With respect to this decomposition we have

D =

✓
D1 2⌘

0 D2

◆
,

with ⌘ : H2 ! E1

X
⌦ H1 nonzero. Set ⇠ = n2 IdH1

�n1 IdH2
and g = e

t⇠ (t 2 R).
We have

D(e
t⇠
)e
�t⇠

=

✓
0 2⌘

0 0

◆
,

✓
e
n2t 0

0 e
�n1t

◆�
·
✓
e
�n2t 0

0 e
n1t

◆

=

✓
0 2⌘

0 0

◆
�
✓
e
�n2t 0

0 e
n1t

◆✓
0 2⌘

0 0

◆✓
e
n2t 0

0 e
�n1t

◆

=

✓
0 2(1� e

�(n1+n2)t)⌘

0 0

◆
,
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so

gD = D �D(e
t⇠
)e
�t⇠

=

✓
D1 2e

�(n1+n2)t⌘

0 D2

◆
,

and

g✓ =

✓
✓1 e

�(n1+n2)t⌘

e
�(n1+n2)t⌘

⇤
✓2

◆
.

It follows that
f(t) = c0 + c1e

�(n1+n2)t, c0 > 0, c1 > 0,

and it is clear that f
0
(0) 6= 0.

Proof of the semi-simplicity theorem. In view of Propositions 4.2.11 and 4.3.9, the semi-
simplicity theorem 4.3.3 is a consequence of the following.

4.3.10. Proposition. Assume that X is compact Kähler and that (H, D, h) is a harmonic
bundle. Then g 7! E(H,D,h)(g) has a critical point at g = Id.

Proof. According to Proposition 4.3.8, it is enough to show that D?

h
(✓) = 0, where D

?

h

denotes the formal adjoint of Dh. Setting D
c

h
:= D

00
h
�D

0
h
, the Kähler identities for

a Hermitian vector bundle (see Section 4.2.9) imply that D
?

h
is a multiple of [⇤, Dc

h
].

Since ✓ is a matrix of 1-forms and ⇤ is an operator of type (�1,�1), we have ⇤(✓) = 0.
On the other hand, by the properties after Definition 4.2.5, we have D

c

h
(✓) = 0.

4.3.c. Structure of polarized variations of C-Hodge structure

Let X be a complex manifold. We will say that two polarized variations of C-Hodge
structures are equivalent if one is obtained from the other one by a twist (k, `)

(see Exercise 2.10) and by multiplying the polarization form by a positive constant.

4.3.11. Lemma. There exists at most one equivalence class of polarized variations of
C-Hodge structure on a simple (i.e., irreducible) C-local system H on a compact com-
plex manifold X.

4.3.12. Remark. A criterion for the existence of a polarized variation of C-Hodge
structure on a simple C-local system H is given in [Sim92, §4] in terms of rigidity.

Proof. If we are given two polarizable variations of C-Hodge structure on an irre-
ducible local system H, we deduce such a polarizable variation on End(H) (Remark
5.4.5), and the dimension 1 vector space End(H) := H

0
(X,End(H)) is equipped with

a C-Hodge structure of some type (k, `) by the Hodge-Deligne theorem 4.2.16. The
identity morphism IdH2End(H) defines thus a morphism of type (k, `) between the
two variations. Therefore, the first one is obtained from the second one by a twist
(k, `). It remains to check that, on a given polarizable variation of C-Hodge structure
on an irreducible local system H, there exists exactly one polarization up to a positive
multiplicative constant. Note that such a polarization is an isomorphism H

⇠�! H⇤,
so one polarization is obtained from another one by multiplying by a nonzero con-
stant. This constant must be positive, by the positivity property of the associated
Hermitian form.
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Let X be a compact complex manifold and let H = (H, F
0•H, F

00•H, D, S) be
a polarized variation of C-Hodge structure of weight w on X. If the associated
local system H is semi-simple, which is the case when X is Kähler according to
Theorem 4.3.3, it decomposes as H =

L
↵2A Hn↵

↵
, where H

↵
are irreducible and

pairwise non isomorphic, and Hn↵

↵
means the direct sum of n↵ copies of H

↵
. Sim-

ilarly, (H, D) =
L

↵2A(H↵, D)
n↵ , and the polarization S, being D-horizontal, de-

composes with respect to ↵ 2 A as S =
L

S↵,n↵
. Let us set Ho

↵
:= C

n↵ and let us
write H =

L
↵2A Ho

↵
⌦ H

↵
. If we are given a basis S↵ of the dimension 1 vector

space Hom(H
↵
,H⇤

↵
), there exists a unique morphism S

o

↵
2 Hom(Ho

↵
,Ho⇤

↵
) such that

S↵,n↵
= S

o

↵
⌦ S↵.

4.3.13. Theorem. Under these conditions, the following holds:

(1) For every ↵ 2 A, there exists a unique equivalence class of polarized variation
of C-Hodge structure of weight w on H

↵
.

(2) For every ↵ 2 A, let us fix a representative H↵ = (H↵, F
0•H↵, F

00•H↵, D, S↵)

of such an equivalence class. There exists then a polarized C-Hodge structure

H
o

↵
= (Ho

↵
, F
0•Ho

↵
, F
00•Ho

↵
, S

o

↵
)

of weight 0 with dimHo

↵
= n↵ such that

(4.3.13 ⇤) H =
L
↵2A

(H
o

↵
⌦C H↵).

4.3.14. Remark. Let us emphasize the following statement: given a polarized variation
of Hodge structure on a compact complex manifold X such that the underlying local
system is semi-simple (which is the case if X is Kähler), then each irreducible com-
ponent of this local system underlies a polarized variation of Hodge structure (which
is essentially unique). The proposition also explains how to reconstruct the original
variation from its irreducible components.

Proof of Theorem 4.3.13.
(1) The uniqueness statement is given by Lemma 4.3.11. In order to prove the

existence in 4.3.13(1), it is enough to exhibit for every ↵ 2 A a sub-variation of Hodge
structure of H of weight w with underlying local system H

↵
. The polarization S will

then induce a polarization S↵, according to Exercise 4.2(1). For that purpose, it is
enough to exhibit H

↵
as the image of an endomorphism H! H which is compatible

with the Hodge structures: by abelianity (Proposition 4.1.10), this image is an object
of VHS(X,C, w). Let us therefore analyze End(H) = H

0
(X,End(H)).

If we set Ho

↵
= C

n↵ , so that H =
L

↵
(Ho

↵
⌦CH↵

), we have an algebra isomorphism
End(H) '

Q
↵
End(Ho

↵
) (where x↵x� = 0 if x↵ 2 Ho

↵
, x� 2 Ho

�
and ↵ 6= �). We know

that the local system End(H) underlies a polarized variation of C-Hodge structure of
weight 0. Therefore, End(H) = �(X,End(H)) underlies a C-Hodge structure of weight
0 by the Hodge-Deligne theorem 4.2.16. It is then enough to show that each Ho

↵
under-

lies a C-Hodge structure H
o

↵
of weight 0 such that the equality End(H) =

Q
↵
End(Ho

↵
)

is compatible with the Hodge structures on both terms. Indeed, choose then any rank 1
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endomorphism p↵ of some nonzero vector space H
o,(k,�k)
↵ . Extend it as a rank 1 en-

domorphism of Ho

↵
of type (0, 0) by mapping every other summand H

o,(`,�`)
↵ to zero,

and extend it similarly as a rank 1 endomorphism of
L

�
Ho

�
of type (0, 0). One ob-

tains thus a rank 1 endomorphism in End(H)
0,0. With respect to this identification,

its image is (Im p↵)⌦C H
↵
' H

↵
, as wanted.

Let us prove the assertion, which reduces to proving the existence of a grading of
each Ho

↵
giving rise to the Hodge grading of End(H). By the product formula above,

the C-algebra End(H) is semi-simple, with center Z =
Q

↵
C · IdHo

↵
. An algebra

automorphism ' of End(H) induces an automorphism of the ring Z, whose matrix
in the basis above only consists of zeros and ones. By the Skolem-Noether theorem
(see e.g. [Bou12, §14, N�5, Th. 4]), algebra automorphisms for which the correspond-
ing matrix is the identity are interior automorphisms, that is, products of interior
automorphisms of each End(Ho

↵
). Any algebra automorphism can be composed with

an automorphism with matrix having block entries Id or 0 in order that the matrix
on Z is the identity. As a consequence, the identity component of the group of algebra
automorphisms Aut

alg
(End(H)) is identified with

Q
↵2A(Aut(Ho

↵
)/C

⇤
Id↵).

As in §2.5.9, the C-Hodge structure of weight 0 on End(H) defines a continu-
ous representation ⇢ : S

1 ! Aut(End(H)), such that ⇢(�) = �
p on End(H)

p,�p.
Since the grading is compatible with the algebra structure, the continuous repre-
sentation ⇢ takes values in the group of algebra automorphisms Aut

alg
(End(H)).

Since ⇢(1) = Id, it takes values in the identity component of Aut
alg

(End(H)), i.e., inQ
↵2A(Aut(Ho

↵
)/C

⇤
Id↵). By the argument given in §2.5.9, it defines a grading, up to

a shift, on each Ho

↵
, as wanted.

(2) Let us now equip Ho

↵
with a polarized C-Hodge structure of weight 0 so that

(4.3.13 ⇤) holds. We already have obtained a grading, i.e., a C-Hodge structure
of weight 0. In order to obtain a polarization of this C-Hodge structure satisfy-
ing (4.3.13 ⇤), we note the equality Ho

↵
= Hom(H

↵
,H), and since Hom(H

↵
,H) un-

derlies a polarized variation of Hodge structure of weight 0 according to 4.3.13(1), Ho

↵

comes equipped with a polarized Hodge structure of weight 0 by the Hodge-Deligne
theorem 4.2.16. By definition, the natural morphism Ho

↵
⌦ H

↵
! H underlies a

morphism of polarized variations of Hodge structure.

4.4. Exercises

Exercise 4.1.
(1) Show that the category VHS(X,C, w) is abelian. [Hint : Use that, according to

Definition 4.1.5, any morphism is bigraded with respect to the Hodge decomposition,
hence so are its kernel, image and cokernel.]

(2) Define the tensor product

VHS(X,C, w1)⌦ VHS(X,C, w2) �! VHS(X,C, w1 + w2)

and the external Hom

VHS(X,C, w1)⌦ VHS(X,C, w2) �! VHS(X,C, w2 � w1).

(3) Show that these operations preserve the subcategories of polarizable objects.
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Exercise 4.2 (Abelianity and semi-simplicity). Let
�
H, S

�
be a polarized variation of

Hodge structure of weight w on X.
(1) Show that any subobject of H in VHS(X,C, w) is a direct summand of the given

variation, and that the polarization S induces a polarization. [Hint : Use Exercise
2.12.]

(2) Conclude that the full subcategory pVHS(X,C, w) of polarizable variations of
Hodge structure is abelian and semi-simple (i.e., any object decomposes as the direct
sum of its irreducible components). [Hint : Use the C

1 interpretation of Definition
4.1.5.]

Exercise 4.3. Let (H, S) be a polarized variation of Hodge structure of weight w

on X (see Definition 4.1.4). Let h be the Hermitian metric deduced from S and let
D=D

0
+D

00 be the flat C
1 connection. Let H=

L
p+q=w

Hp,q be the Hodge decom-
position (which is h-orthogonal by construction). Show the following properties.

(1) In the Griffiths transversality relations (4.1.5 ⇤), the composition of D
0

(resp. D00) with the projection on the first summand defines a (1, 0) (resp. (0, 1))-
connection D

0
h

(resp. D00
h
), and that the projection to the second summand defines a

C
1-linear morphism ✓

0 (resp. ✓00).
(2) The connection Dh := D

0
h
+D

00
h

is compatible with the metric h, but is possibly
not flat.

(3) The morphism ✓
00 is the h-adjoint of ✓0.

(4) The connection D := D
00
h
+ ✓
0 has square zero, as well as the connection D :=

D
0
h
+ ✓
00.

For each p 2 Z, set ✓0
p
: Hp,w�p ! E

(1,0)

X
⌦Hp�1,w�p+1 be the component of ✓0 on

Hp,w�p and set ✓00
p

similarly.
(5) Show that ✓00

p
is the h-adjoint of ✓0

p�1.
(6) Show that the Hermitian holomorphic bundle (F pH, D

00
) has Chern connection

equal to (D
0
h
+
P

p0>p+1
✓
0
p0) + (D

00
h
+
P

p0>p
✓
00
p0). [Hint : Recall that each Hp,w�p is

stable by Dh and write the holomorphic structure D
00 on F

pH as Dh +
P

p0>p
✓
00
p0 .]

Exercise 4.4. Let (H, D) be a flat bundle and let h be a Hermitian metric on H.
(1) Show that there exist a unique (1, 0)-connection bD0 and a unique (0, 1)-con-

nection bD00 such that D
0
+ bD00 and bD0 +D

00 preserve the metric h.
(2) Show that bD0 = D

0
h
� ✓0 and bD00 = D

00
h
� ✓00.

(3) Conclude that bD0 +D
00 is the Chern connection of the Hermitian holomorphic

bundle (H, D
00
, h).

(4) We set Dc
:= bD00� bD0. Show that Dc

= D�D and 1

2
(D+D

c
) = D

00
h
+✓
0
= D.

(5) Let Rh = ( bD0 + D
00
)
2 be the curvature of the Hermitian holomorphic bundle

(H, h, D
00
). Show that

Rh = �2(D2
+ ✓
0 ^ ✓00 + ✓

00 ^ ✓0).

(6) Show that, if (H, D, h) is harmonic, then trRh = 0. [Hint : Use that, in any
case, tr(✓0 ^ ✓00 + ✓

00 ^ ✓0) = 0.]
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(7) In the setting of Exercise 4.3, show that, for each p 2 Z, the curvature R
p

h

of the Hermitian holomorphic bundle (F
pH, D

00
) satisfies kRp

h
kh 6 Cpk✓0k2h for a

suitable positive constant Cp. Here, the curvature R
p

h
is regarded as a section of

End(F pH) ⌦ E2

X
and its norm is computed with respect to the metric on End(F pH)

induced by h and any fixed norm on differential forms. A similar definition holds
for k✓0kh.

Exercise 4.5 (Example of a harmonic flat bundle). Let ! be a holomorphic one-form
on X which is closed. Show that the trivial rank-one bundle H = C1

X
, equipped with

the connexion D = d + ! and the trivial metric h (i.e., such that h(1, 1) = 1), is a
flat harmonic bundle, with D

0
h
= d

0
+

1

2
!, D00

h
= d

00 � 1

2
! and ✓

0
=

1

2
!, ✓00 = 1

2
!.

[Hint : With the notation of the proof of Lemma 4.2.2, take eDh = d and decompose
A = D � eDh = ! as A

�
+ A

+ with A
�
=

1

2
(! � !) and A

+
=

1

2
(! + !); show that

harmonicity follows from the relation ! ^ ! + ! ^ ! = 0.]

Exercise 4.6 (Norm of horizontal sections). Let (H, D, h) be a harmonic flat bundle
with Higgs fields ✓0, ✓00. Let v be a horizontal section of (H, D) (equivalently, a
horizontal section of the associated holomorphic flat bundle (V,r)). Show that the
h-norm of v satisfies

d
0kvk2

h
= �2h(✓0v, v), d

00kvk2
h
= �2h(✓00v, v).

[Hint : Use that D
0
h
v = �✓0v and D

00
h
v = �✓00v by horizontality.]

Exercise 4.7 (Rescaling the Higgs field).
(1) Let (H, D, h) be a harmonic flat bundle with Higgs fields ✓0, ✓00. Show that, for

any nonzero complex number t, there exists a harmonic flat bundle (H, Dt, h) whose
Higgs fields are (t✓

0
, t✓
00
). [Hint : Set D

0
t
= D

0
h
+ t✓

0, D00
t
= D

00
h
+ t✓

00 and show that
Dt = D

0
t
+D

00
t

is flat.]
(2) In case (H, D, h) is attached to a polarized variation of Hodge structure of

weight w as in Exercise 4.3, show that (H, Dt, h) ' (H, D, h) if |t| = 1. [Hint :
Compare with §2.5.9.]

Exercise 4.8.
(1) Given C

1 bundles with flat connection and Hermitian metric (H1, D1, h1) and
(H2, D2, h2), equip the C

1 bundles H1 ⌦H2 and Hom(H1,H2) with a natural flat
connection D and a natural Hermitian metric h, and identify connection and metric
on H⇤

1
⌦H2 and Hom(H1,H2). [Hint : Use Exercise 2.2.]

(2) Show that, for a section ' of Hom(H1,H2), we have D(') = D2 � '� ' �D1.
(3) Prove that if (H1, D1, h1) and (H2, D2, h2) are harmonic, then (H1 ⌦H2, D, h)

and (Hom(H1,H2), D, h) are also harmonic.
(4) Show that ✓ on Hom(H1,H2) is given by the following formula. For an open

set U and a local section ' : H1|U ! H2|U of Hom(H1,H2) on U ,

8V ⇢ U, 8u1 2 �(V,H1), [✓(')](u1) = ✓2('(u1))� '(✓1(u1)) 2 �(V,EX ⌦H2).

Exercise 4.9 (Formal adjoint). Let (H, h) be a Hermitian vector bundle on a complex
manifold X equipped with a Hermitian metric on its tangent bundle, which induces a
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Hermitian metric on the sheaves Ek

X
, simply denoted by h , i. Then the sheaves Ek

X
⌦H

are equipped with a natural Hermitian metric denoted by h , ih (see Exercise 2.2). For
the differential operator of order 1

D : Ek

X
⌦H �! Ek+1

X
⌦H

induced by a connection D : H! E1

X
⌦H, the formal adjoint D?

: Ek+1

X
⌦H! Ek

X
⌦H

is the operator defined by
Z

X

hDu, vih volX =

Z

X

hu,D?vih volX

for any pair of local sections with compact support of Ek

X
⌦H and Ek+1

X
⌦H.

(1) Show that the formal adjoint '? of a C1
X

-linear morphism ' 2 Hom(H1,H2)

is nothing but its h-adjoint '⇤.
(2) Show that, if ' is self-adjoint with respect to h, then regarding D(') = [D,']

as a C1
X

-linear morphism Ek

X
⌦H! Ek+1

X
⌦H, we have D(')

⇤
= �[D?

,'].

Exercise 4.10. The goal of this exercise is to prove the identity (4.2.10). Recall D =

D
0
h
+ ✓
00 and D = D

00
h
+ ✓
0.

(1) Prove that ✓0? = � i[⇤, ✓
00
] and ✓00? = i[⇤, ✓

0
].

(2) Deduce from the Kähler identities of Section 4.2.9 that
bD00? = � i[⇤, D

0
], D?

= i[⇤,D], D?
= � i[⇤,D].

(3) Conclude by using Lemma 4.2.7 and the computation of standard Kähler iden-
tities.

(4) Show also that D
?
= i[⇤, D

c
].

Exercise 4.11 (Formulas for a holomorphic subbundle). We keep the setting of Exer-
cise 4.4. Let (H1, D1) be a flat holomorphic subbundle of (H, D), i.e., H1 is stable
by D

0 and D
00. Let ⇡ : H ! H1 be the orthogonal projection (so that ⇡ � ⇡ = ⇡).

We still denote by D the connection on End(H), so that D⇡ � ⇡D = D(⇡).
(1) Show the following relations for D,D1 and ⇡:

(a) ⇡D(⇡) = D(⇡) and D(⇡)⇡ = 0. [Hint : for the first one, use that ⇡�D�⇡ =

D � ⇡; for the second one, use that, for a section v of H1, D(v) is a section of
E1

X
⌦H1, so that ⇡(D(v)) = D(v).]

(b) D1 = ⇡ �D � ⇡ = D � ⇡ = ⇡ �D +D(⇡).
(2) Show that ( bD0

1
+D

00
1
) = ⇡ � ( bD0 +D

00
) � ⇡. [Hint : recall that ( bD0 +D

00
) is the

Chern connection for (H, h, D
00
) and use [GH78, Lem. p. 73]).]

(3) Show a similar relation for ( bD00 +D
0
) and deduce a similar relation for D

c.
(4) Conclude that D1D

c

1
+D

c

1
D1 = ⇡(DD

c
+D

c
D)⇡ +D(⇡)D

c
(⇡).

4.5. Comments

Although one can trace back the notion of variation of Hodge structure to the
study of the Legendre family of elliptic curves in the nineteenth century, the modern
approach using the Gauss-Manin connection goes back to the fundamental work of
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Griffiths [Gri68, Gri70a, Gri70b] motivated by the properties of the period domain
(see also [Del71c], [CMSP03]), a subject that is not considered in the present text.
In the work of Griffiths, the transversality property (4.1.1) has been emphasized.
From the point of view of D-modules, this property is now encoded in the notion of
a coherent filtration, and is at the heart of the notion of filtered D-module, which is
part of a Hodge module as defined by Saito.

The notion of a polarized variation of Hodge structure can be regarded as equivalent
to the notion of a smooth polarized Hodge module. However, this equivalence is
not obvious since the definition of a polarized Hodge module imposes properties on
nearby cycles along any germ of holomorphic function, while the notion of variation
only requires to consider coordinate functions.

The C
1 approach as in Definition 4.1.5 proves useful for extending the Hodge

theorem on smooth complex projective varieties and constant coefficients to the case
when the coefficient system is a unitary local system (see [Dem96]) and the more
general case when it underlies a polarized variation of Hodge structure (Hodge-Deligne
theorem 4.2.16 explained in the introduction of [Zuc79]). It is also well-adapted to the
extension of this theorem to harmonic bundles, as explained by Simpson in [Sim92].
In this smooth context, the flat sesquilinear pairing s gives rise in a natural way to
the (non-flat in general) Hermitian Hodge metric. The fixed-part theorem, proved in
Remark 4.2.18(4), is originally due to Griffiths [Gri70a] in a geometric setting, and
has been proved in a more general context by Deligne [Del71b, Cor. 4.1.2], and also
by Schmid [Sch73, Th. 7.22].

We have also mentioned the case of complete Kähler manifolds, going back to
Andreotti and Vesentini [AV65] and Hörmander [Hör65, Hör66]. Theorem 4.2.33
is taken from [Dem96, §12B]. They are useful for understanding the L

2 approach as
in Zucker’s theorem 6.11.1 of [Zuc79].

It is remarkable that the local system underlying a polarized variation of Hodge
structure on a smooth complex projective variety (or a compact Kähler manifold)
is semi-simple. This property, proved by Deligne in the presence of a Z-structure
(see [Del71b, Th. 4.2.6]), can be regarded as a special case of a result of Corlette
[Cor88] and [Sim92], since the Hodge metric is a pluri-harmonic metric on the cor-
responding flat holomorphic bundle. These articles are at the source of Sections 4.2.b
and 4.3.b. Exercises 4.4 and 4.11 are extracted from [Sim90] and [Sim92].

Lastly, the structure theorem for polarized variations of Hodge structure (Theorem
4.3.13) is nothing but [Del87, Prop. 1.13].



CHAPTER 5

THE REES CONSTRUCTION FOR
HODGE STRUCTURES

Summary. In this chapter, we revisit the notion of Hodge structure in order
to adapt it to D-modules. There are two major changes of point of view. On
the one hand, we replace a vector space equipped with two filtrations with two
free modules over the ring C[z] and we express oppositeness in this language as a
gluing property. On the other hand, in order to handle singularities in the gluing
properties for filtered D-modules, we express the gluing as a nondegenerate pair-
ing, in order to relax the nondegeneracy condition when necessary. The notion
of sesquilinear pairing, which was mainly used for expressing the polarization in
the previous chapters, is now used for expressing the oppositeness property. This
leads to the general notion of triples, which form an abelian category, equipped
with Hermitian duality. The polarization is now expressed as an isomorphism
between a triple and its Hermitian dual, satisfying a suitable positivity condition.
We will make clear the way to pass from one approach to the other one.

5.1. Filtered objects and the Rees construction

5.1.1. Convention. We denote with a lower index the increasing filtrations and with
an upper index the decreasing ones. A standard rule is to pass from one type to the
other one by changing the sign of the index. However, this rule is slightly modified
for V -filtrations (see Chapter 9).

5.1.a. Filtered rings and modules

5.1.2. Definition. Let (A, F•) be a filtered C-algebra. A filtered A-module (M, F•M)

is an A-module M together with an increasing filtration indexed by Z satisfying (for
left modules for instance)

FkA · F`M ⇢ Fk+`M 8 k, ` 2 Z.

We always assume that the filtration is exhaustive, i.e.,
S

`
F`M = M. We also say

that F•M is an F•A-filtration, or simply an F -filtration.
A filtered morphism between filtered A-modules is a morphism of A-modules which

is compatible with the filtrations.
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A simple way to treat a filtered module as a module is to consider the Rees object
associated to any filtered object. Let us introduce a new variable z. We will replace
the base field C with the polynomial ring C[z].

5.1.3. Rees ring and Rees module. If (A, F•) is a filtered C-algebra, we denote by eA
(or RFA if we want to insist on the dependence with respect to the filtration) the
graded subring

L
p
FpA · zp of A⌦C C[z, z

�1
] (the term FpA · zp is in degree p). For

example, if FpA = 0 for p 6 �1 and FpA = A for p > 0, we have eA = A⌦C C[z].
It will be convenient to set eC = C[z] (i.e., we apply the Rees construction to C

equipped with its trivial filtration F0C = C and F�1C = 0).
Any filtered module (M, F•) on the filtered ring (A, F•) gives rise similarly to a

graded eA-module RFM =
L

p
FpM · zp ⇢ M ⌦C C[z, z

�1
], and a filtered morphism

gives rise to a graded morphism (of degree zero) between the associated Rees modules.
Conversely, any graded eA-module eM can be written as

L
p
Mpz

p ( eMp = Mpz
p

is in degree p), where each Mp is an A-module, and the C[z]-structure is given by
A-linear morphisms Mp !Mp+1. The A-module M = lim�!p

Mp is called the A-module

associated with the graded eA-module eM. The natural morphism

C[z, z
�1

]⌦C[z] eM �! C[z, z
�1

]⌦C M =: M[z, z
�1

]

is an isomorphism of A[z, z
�1

]-modules.
The category Modgr( eA) is the category whose objects are graded eA-modules and

whose morphisms are graded morphisms of degree zero. It is an abelian category. It
comes equipped with an automorphism �: given an object of Modgr( eA) written as
eM =

L
p
Mpz

p, we set

(5.1.4) �( eM) = eM(1) = z eM so that eM(1)p = Mp�1z
p
.

In other words, we regard multiplication by z as an isomorphism eM ⇠�! eM(1).

5.1.5. Remark (Shift of the filtration and twist of the Rees module)
(1) The shift F [k] of an increasing filtration is defined by

(5.1.5 ⇤) F [k]•M = F•�kM (hence gr
F [k]

p
M = gr

F

p�kM, 8 p).

For example, if F•M only jumps at po, then F [k]•M only jumps at po + k.
(2) If eM = RFM, then FpM = Mp and eM(k)p = Fp�kMz

p. In other words,

(5.1.5 ⇤⇤) eM(k)
⇠�! RF [k]M.

5.1.b. Strictness. Strictness is a property which enables one to faithfully pass prop-
erties from a filtered object to the associated graded object.

5.1.6. Definition (Strictness in Mod( eA) and Modgr( eA)).
(1) An object of Mod( eA) is said to be strict if it has no C[z]-torsion.
(2) A morphism in Mod( eA) is said to be strict if its kernel and cokernel are strict

(note that the composition of two strict morphisms need not be strict).
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(3) A complex eM• of Mod( eA) is said to be strict if each of its cohomology modules
is a strict object of Mod( eA).
An object, resp. morphism, resp. complex in Modgr( eA) is strict if it is so when con-
sidered in Mod( eA).

5.1.7. Caveat. The composition of strict morphisms between strict objects need not
be strict. One cannot form a category (which would be abelian) by only considering
these morphisms. On the other hand, the full subcategory Modgr( eA)st of Modgr( eA)

whose objects are strict (morphisms need not be strict) is in general not abelian.

5.1.8. Proposition (Strict objects).
(1) An object of Modgr( eA) is strict if and only if it comes from a filtered A-module

by the Rees construction.
(2) The Rees construction induces an equivalence between the category of filtered

A-modules (and morphisms preserving filtrations) ant the category Modgr( eA)st.
(3) The restriction functor eM 7! eM/(z � 1) eM from Modgr( eA)st to Mod(A) is

faithful.

Proof.
(1) One checks that eM is strict if and only if the A-linear morphisms Mp !Mp+1

are all injective. In such a case, M = lim�!p
Mp =

S
p
Mp and the Mp form an increasing

filtration F•M, so that, by definition, eM = RFM.
(2) We are left with considering morphisms. Let e' : eM! eN be a graded morphism

of degree zero. Its restriction e'p to eMp satisfies e'p+1zmp = z'pm by eC[z]-linearity.
Therefore, e'p is the restriction of e'p+1 by the inclusion z eMp ,! eMp+1, hence the
family ('p)p defines a morphism ' : M! N, and we obviously have e' = RF'.

(3) See Exercise 5.2.

We now consider the category WA (see Section 2.6.b) of W -filtered objects of the
category A := Modgr( eA) with eA = RFA, and the notion of strictness is as in Definition
5.1.6.

5.1.9. Lemma. We set Modgr( eA) = A.
(1) Let eM be a an object of WA. If each gr

W

k
eM is strict, then eM is strict.

(2) Let e' : eM1 ! eM2 be a morphism in WA. If grW
k
eM1, gr

W

k
eM2 are strict for all k,

and if e' is strictly compatible with W , i.e., satisfies e'(Wk
eM) = Wk

eN \ '( eM) for all
k, then e' is strict.

Proof. The first point is treated in Exercise 5.1(2). Let us prove (2). Let W• Ker e'
and W• Coker e' be the induced filtrations. By strict compatibility, the sequence

0 �! gr
W

k
Ker e' �! gr

W

k
eM

gr
W

k
e'

������! gr
W

k
eN �! gr

W

k
Coker e' �! 0

is exact. By strictness of grW
k
e', and applying (1) to Ker e' and Coker e', one gets that

Ker e' and Coker e' are strict, i.e., e' is strict.
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Strictness with respect to the monodromy filtration. We consider the setup of Chapter 3
on Lefschetz structures and take up the notation of Remark 3.3.4. We equip the cat-
egory Modgr( eA) of graded eA-modules with the automorphism � shifting the grading
by 1, so that �( eM) = eM(1) (see (5.1.4)). Let eM be an object of Modgr( eA) and let
N : eM! eM(�1) = �

�1 eM be a nilpotent endomorphism.

5.1.10. Proposition. Let M•(N) eM be the monodromy filtration of ( eM,N) in the abelian
category Modgr( eA) (see Lemma 3.3.1). Assume that eM is strict. Then the following
properties are equivalent:

(1) For every ` > 1, N`
: eM! eM(�`) is a strict morphism.

(2) For every ` 2 Z, grM
`
eM is strict.

(3) For every ` > 0, P`
eM is strict.

Proof. The equivalence between (2) and (3) comes from the Lefschetz decomposition
in the category Modgr( eA).

(2) =) (1) Assume ` > 1. The Lefschetz decomposition implies that each
morphism gr�2`N

` on gr
M

•
eM is strict. Since N

`, regarded as a filtered morphism

( eM,M•
eM) �! ( eM(�`),M[2`]•

eM)

is strictly compatible with the filtrations M (Lemma 3.3.7), the result follows from
Lemma 5.1.9(2).

(1) =) (2) We will use the inductive construction of the monodromy filtration
given in Exercise 3.10. We argue by induction on the order of nilpotence of N. Assume
that N`+1

= 0. The strictness of eM implies that M`
eM, M`�1 eM, M�` eM = gr

M

�`
eM and

P`
eM = gr

M

`
eM ' gr

M

�`
eM are strict. The strictness of eM0 := eM/M�` eM = CokerN

`

follows from the strictness of N`. Moreover, ( eM0,N0) satisfies (1) with N
0`
= 0, hence

by induction each gr
M

j
eM0 is strict. Now, the relation between gr

M

•
eM0 and gr

M

•
eM

is easily seen from the Lefschetz decomposition (see Figure 3.1), and (2) for gr
M

•
eM

follows.

5.1.c. Filtered holomorphic flat bundles. Let (H0,r) be an OX -module with
connection on a complex manifold X, equipped with a decreasing filtration F

•H0

by OX -submodules (here, we do not make any coherence or local freeness assump-
tion). The filtration on the sheaf of rings OX is simply defined by F

0OX = OX and
F

1OX = 0, so that eOX = OX [z] as a sheaf of graded rings. The Rees module attached
to F

•H0 is the graded coherent OX [z]-module eH0 :=
L

p
F

pH0z�p.
By a holomorphic z-connection on eH0, we mean a morphism

er : eH0 �! e⌦1

X
⌦eOX

eH0(�1)

in the category Modgr(eC) (in particular it is eC-linear) which satisfies the z-Leibniz
rule

er(fv) = edf ⌦ v + f erv, ed := zd, f 2 eOX , v 2 eH0.
We say that er is flat if its curvature er � er (taken in the usual sense) is zero.
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5.1.11. Lemma. The connection r on H0 extends to a z-connection er on eH0 if and
only if the filtration F

•H0 satisfies the Griffiths transversality property. In such a
case, r is flat if and only if er is flat.

Proof. For the “only if” part, define first er : H0[z, z�1] ! e⌦1

X
⌦eOX

H0[z, z�1](�1)
as zr. This is a z-connection. Griffiths transversality implies that it sends eH0 to
e⌦1

X
⌦eOX

eH0(�1), defining thus er. If r is flat, then so is zr, hence er.
Conversely, starting from er, one extends it by z-linearity to H0[z, z�1] and, dividing

by z and then restricting to z = 1, one obtains the desired r.

We can now restate Proposition 5.1.8 in the present setting.

5.1.12. Proposition. The Rees construction induces an equivalence between
• the category of filtered OX-modules with flat connection and with a filtration sat-

isfying the Griffiths transversality property,
• and the full subcategory of strict objects in the category of graded eOX-modules

with flat z-connection.

5.1.d. Filtrations discretely indexed by R. We extend the Rees construction
to filtrations indexed by B + Z, where B is a finite subset of [0, 1), in order to
treat V -filtrations in Chapter 9. We fix a positive integer r (ramification order) and
consider the ring C[u] with the subring C[z] ,! C[u] so that z is mapped to u

r. The
variable u is given the degree 1/r. We set eA(r)

= C[u] ⌦C[z] eA. This is a 1

r
Z-graded

ring containing eA as a Z-graded subring, with degree p/r term

( eA(r)
)p/r = eAbp/rc.

5.1.13. Proposition. Giving a 1

r
Z-graded eA(r)-module eM(r) is equivalent to giving

a finite family eMi/r (i = 0, . . . , r � 1) in Modgr( eA) together with morphisms
eM(i�1)/r ! eMi/r (i = 1, . . . , r � 1) and eM(r�1)/r ! eM1(1) such that, for each
i = 0, . . . , r, their composition eMi/r ! eM1+i/r is equal to the multiplication by z.
As an eA-module, eM(r) decomposes as

L
r�1
i=0

eMi/r ⌦ u
i.

Furthermore, eM(r) is strict (i.e., C[u]-flat) if and only if each eMi/r is strict (i.e.,
C[z]-flat).

Lastly, if eA is Noetherian,(1) then eM(r) is eA(r)-coherent if and only if each eMi/r

is eA-coherent.

Proof. For i = 0, . . . , r � 1, we consider the Z-graded objects eM(r)

i+rZ. These are
Z-graded eA-modules, that we denote by eMi/r. The morphism u : eM(r)

j
! eM(r)

j+1

induces the desired family of morphisms.
Conversely, from the family eMi/r and the morphisms, we set, for p = qr + i

with i 2 {0, . . . , r � 1}, eM(r)

p/r
= ( eMi/r)q and the morphisms are interpreted as the

multiplication by u.

(1)In the sense of [Kas03, Def. A.7], see Remark 8.8.3 in Chapter 8.
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The flatness statement is then clear since u-torsion is equal to z-torsion in eM(r),
and the last statement follows e.g. from [Kas03, Prop. A.10].

If eA is the Rees ring of A with respect to the Z-indexed filtration G•A, then eA(r)

is the Rees ring of A with respect to the 1

r
Z-indexed filtration G

(r)

• A defined by

G
(r)

p/r
A := Gbp/rcA.

If eM(r) is C[u]-flat, it is equal to the Rees module of some A-module M with respect
to a 1

r
Z-indexed G

(r)-filtration G
(r)

• M, that we can consider as a family of nested
Z-indexed G-filtrations Gi/r+•M with Rees module eMi/r, i.e., satisfying

p+ i/r 6 q + j/r =) Gp+i/rM ⇢ Gq+j/rM 8 p, q 2 Z, 8 i, j 2 {0, . . . , r � 1}.

Assuming that eA is a Noetherian sheaf of rings, we say that G(r)

• M is a coherent G(r)-
filtration if eM(r) is eA(r)-coherent, and this property is equivalent to each Gi/r+•M

being a coherent G-filtration of M.
Let now B be a finite subset of [0, 1) containing 0 and let G•M be a filtration

indexed by B + Z. In order to make such a filtrations enter the previous framework,
we number B = {b0, . . . , br�1} with b0 = 0 and we extend the numbering so that, if
p = qr + i with i 2 {0, . . . , r � 1}, we have bp = q + bi. We then set G

r)

`/r
M = Gb`

M

(` 2 Z), which corresponds to the family of nested filtrations Gbi+ZM.
We claim that G

r)

• M is a G
(r)A-filtration, so that the Rees module RG(r)M =L

k2Z G
(r)

k
Mu

k is an eA(r)-module. We need to prove that Gbk/rcA · Gr)

`/r
M ⇢

G
r)

(k+`)/r
M: this follows from the inequality bk+` > brbk/rc+` = bk/rc+ b`.

5.2. The category of eC-triples

5.2.a. A geometric interpretation of a bi-filtered vector space

Let (H, F
0•
) be a filtered vector space. We introduce a new variable z and we

consider, in the free C[z, z
�1

]-module eH := C[z, z
�1

] ⌦C H, the C-vector space
eH0 :=

L
p
F
0pHz

�p. Then eH0 is a eC-submodule of eH which generates eH, that is,
eH = C[z, z

�1
]⌦eC

eH0. It is a free eC-module. Indeed, Let us choose for each p a
family v

p in F
0pH inducing a basis of grp

F 0H; then eH0 =
L

p
eCz�pvp.

Similarly, denote by eH00 the object
L

q
F
00qHz

q. Then eH00 is a free C[z
�1

]-sub-
module of eH which generates eH, that is, eH = C[z, z

�1
]⌦C[z�1]

eH00. Using the gluing

C[z, z
�1

]⌦C[z] eH0
⇠
//

⇠
✏✏

eH C[z, z
�1

]⌦C[z�1]
eH00⇠

oo

the pair ( eH0, eH00) defines an algebraic vector bundle F on P
1 of rank dimH. The prop-

erties 2.5(1a) (oppositeness) and (1b) (Hodge decomposition) are also equivalent to
(see Exercise 5.5)

(c) The vector bundle F is isomorphic to OP1(w)
dimH.
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The gluing isomorphism C[z, z
�1

] ⌦C H
⇠�! C[z, z

�1
] ⌦C H described above has

the property of being homogeneous of degree zero with respect to the z-grading, since
it is induced by a constant isomorphism H

⇠�! H (the identity).

5.2.b. eC-Triples. We will introduce another language for dealing with polarizable
complex Hodge structures. This is similar to the presentation given in Section 2.6.a,
but compared with it, we replace H00 with its dual H00_. This approach will be useful
in higher dimensions.

5.2.1. Definition (eC-Triples). The category eC-Triples is the category whose objects

T = ( eH0, eH00, s)

consist of a pair of eC-modules of finite type eH0, eH00 and a sesquilinear pairing
s : H0 ⌦H00 ! C between the associated vector spaces (see §5.1.3) that we also
regard as a morphism s : H00 ! H0⇤ (see Section 0.5), and whose morphisms
' : T1 ! T2 are pairs (e'0, e'00) of morphisms (graded of degree zero)
(5.2.1 ⇤) e'0 : eH0

1
�! eH0

2
, e'00 : eH00

2
�! eH00

1

such that, for every v
0
1
2 H0

1
and v

00
2
2 H00

2
, denoting by '0,'00 the morphisms induced

by e'0, e'00 on H0,H00, we have
(5.2.1 ⇤⇤) s1(v

0
1
,'00(v00

2
)) = s2('

0
(v
0
1
), v
00
2
),

or equivalently
'
0⇤ � s2 = s1 � '00 : H002 �! H0⇤

1
.

5.2.2. Operations on the category eC-Triples
(1) The category eC-Triples is abelian, the “prime” part is covariant, while the

“double-prime” part is contravariant. In other words, the “prime” part is an object
of the category of eC-vector spaces, while the ‘double-prime” part is an object of the
opposite category.

For example, the triple Ker' is the triple (Ker e'0,Coker e'00, s'
1
), where s

'

1
is the

pairing between Ker'
0 and Coker'

00 induced by s1, which is well-defined because of
(5.2.1 ⇤⇤). Similarly, we have

Coker' = (Coker e'0,Ker e'00, s'
2
), Im' = (Im e'0, eH00

2
/Ker e'00, s'

2
).

(2) An increasing filtration W•T of a triple T consists of increasing filtrations
W•

eH0,W•
eH00 such that s(W`H

0
,W�`�1H00) = 0 for every `. Then s induces a pairing

s` : W`H
0 ⌦H00/W�`�1H00 �! C.

We set W`T = (W`
eH0, eH00/W�`�1 eH00, s`). We have

gr
W

`
T = (gr

W

`
eH0, grW�` eH00, s`).

(3) We say that a triple is strict if eH0, eH00 are strict. Strict triples are in one-
two-one correspondence with filtered triples ((H0, F •H0), (H00, F •H00), s). We will not
distinguish between eC-triples and filtered C-triples.
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We say that a morphism ' : T1 ! T2 is strict if its components e'0, e'00 are strict.
Strict morphisms between strict triples are in one-to-one correspondence with strict
morphisms between filtered triples.

(4) The difference with the construction made in Section 2.6.a is that the “double
prime” part is now contravariant, and the isomorphism � is replaced with a pairing.
This gives more flexibility since the pairing is not assumed to be non-degenerate
a priori. We say that a eC-triple T is non-degenerate if s is so. If T = ( eH0, eH00, s) is
strict and non-degenerate, one can associate a triple like in Section 2.6.a by replacing
(H00, F •H00) defined from eH00 with (H00⇤, F •H00⇤) and by defining � as the isomorphism
H0 ! H00⇤ obtained by Hermitian adjunction from s : H00 ! H0⇤.

(5) Let (T,W•T ) be a W -filtered eC-triple as in (2). Assume that T and all grW
`
T

are strict, i.e., all inclusions W`T ,! W`+1T are strict morphisms. Then gr
W

`
eH0 is

the Rees object attached with the filtered vector space

F
p
gr

W

`
H0 :=

F
pH0 \W`H

0

F pH0 \W`�1H0
,

and a similar equality for gr
W

�`
eH00.

(6) The Hermitian dual of a eC-triple T = ( eH0, eH00, s) is the eC-triple T
⇤

:=

( eH00, eH0, s⇤), where s
⇤ is defined by

s
⇤
(v
00
, v0) := s(v0, v00).

We have T
⇤⇤

= T . If ' = (e'0, e'00) : T1 ! T2 is a morphism, its Hermitian adjoint
'
⇤
: T
⇤
2
!T

⇤
1

is the morphism (e'00, e'0).
The Hermitian dual of a strict eC-triple T is also strict, and T

⇤ corresponds to the
filtered triple T

⇤
:= ((H00, F •H00), (H0, F •H0), s⇤).

(7) Given a pair of integers (k, `), the twist T (k, `) is defined by

T (k, `) := (z
k eH0, z�` eH00, s).

We have (T (k, `))
⇤
= T

⇤
(�`,�k). If ' : T1 ! T2 is a morphism, then it is also a

morphism T1(k, `)! T2(k, `).
If T is strict with associated filtered triple T , the twisted object T (k, `) is also

strict and its associated filtered triple is

(F [k]
•
H0, F [�`]•H00, s).

This is compatible with the twist as defined in §2.5.7, by means of the equivalence of
Lemma 5.2.7 below. (Recall that F [k]

p
:= F

p+k.)

5.2.3. Notation. As in Definition 2.5.8, we simply use the notation (w) for the (sym-
metric) Tate twist (w,w): T (w) = (z

w eH0, z�w eH00, s).

5.2.4. Definition (w-oppositeness condition). Let T be a filtered triple and let w 2 Z.
The filtration F

•H00 naturally induces a filtration F
•H00⇤ on the Hermitian dual

space H00⇤ = H00_. We say that T satisfies the w-oppositeness condition if s is non-
degenerate and if the filtration F

•H0 is w-opposite to the filtration obtained from
F

•H00⇤ by means of the isomorphism H0
⇠�! H00⇤ induced by s

⇤.
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5.2.5. Definition (C-Hodge triples). The category of C-Hodge triples of weight w 2 Z

is the full subcategory of eC-Triples (i.e., morphisms are described by (5.2.1 ⇤) and
satisfying (5.2.1 ⇤⇤)) whose objects are strict and satisfy the w-oppositeness condition.
In particular, s is assumed to be non-degenerate. A C-Hodge triple will be denoted
by H = ( eH0, eH00, s) or ((H0, F •H0), (H00, F •H00), s).

5.2.6. Remark (Hermitian duality and twist). The category of C-Hodge triples of
weight w is changed to that of C-Hodge triples of weight �w by the Hermitian
duality functor 5.2.2(6) and, for a C-Hodge triple H of weight w, the twisted eC-triple
H(k, `) is a C-Hodge triple H of weight w � (k + `). In particular, the Tate twisted
eC-triple H(k) is a C-Hodge triple H of weight w � 2k.

5.2.7. Lemma. The correspondence

H = (H, F
0•H, F

00•H) 7�! H =
�
RFH

0
, RFH

00
, s
�
,

obtained by setting

(H0, F
•
H0) := (H, F

0•H), (H00, F
•
H00) := (H⇤, F 00

•
H⇤), s := h•, •i : H ⌦H_ ! C

(recall that F
00•H⇤ is obtained by duality from F 00•H) is an equivalence between

HS(C, w) and the category of C-Hodge triples of weight w.

From now on, we will not distinguish between C-Hodge structures of weight w and
C-Hodge triples of weight w.

5.2.8. Lemma. Assume we have a decomposition H = H1 � H2 of eC-triples. If H is
C-Hodge of weight w, so are H1 and H2.

Proof. First, H1 and H2 must be strict, hence correspond to filtered triples. The
non-degeneracy of s1 and s2 is also clear. Lastly, we use the interpretation 5.2.a(c) of
w-oppositeness and the standard property that, if a vector bundle on P

1 is isomorphic
to OP1(w)

d, then any direct summand is isomorphic to a power of OP1(w).

5.2.9. Definition (Pre-polarization of weight w of a eC-triple)
A pre-polarization of weight w of a eC-triple T is an isomorphism

S = (eS0,eS00) : T ⇠�! T
⇤
(�w)

which is Hermitian, in the sense that its Hermitian adjoint

S
⇤
= (eS00,eS0) : (T ⇤(�w))⇤ = T (w)

⇠�! T
⇤
,

which defines an isomorphism denoted in the same way S
⇤
: T

⇠�! T
⇤
(�w), satisfies

S
⇤
= S.

The Tate twist acts on a pre-polarized eC-triple (T, S) of weight w by the formula

(T, S)(`) = (T (`), (�1)`S)

(see Notation 5.2.3 for the notation H(`)).
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Let us make explicit this definition. Since the Hermitian dual T ⇤ of a eC-triple
T = ( eH0, eH00, s) is nothing but the triple ( eH00, eH0, s⇤), we have

T
⇤
(�w) = (z

�w eH00, zw eH0, s⇤),

and a morphism S : T ! T
⇤
(�w) is nothing but a pair (eS0,eS00), with eS0 : eH0 ! z

�w eH00
and eS00 : zw eH0 ! eH00 satisfying the compatibility property with s and s

⇤, that is, for
every v

0
1
, v
0
2
2 H0,

s(v
0
1
, S00v0

2
) = s

⇤
(S0v0

1
, v
0
2
) =: s(v

0
2
, S0v0

1
).

That S is Hermitian, i.e., S
⇤
= S, means eS00 = z

weS0. In other words, considering
morphisms of filtered vector spaces, we have

(5.2.10) S0 = S00 : (H0, F
•
H0)

⇠�! (H00, F
•
H00)(�w).

As a consequence of S0 = S00, the compatibility property reads

(5.2.11) s(v
0
1
, S0v0

2
) = s(v

0
2
, S0v0

1
).

This is equivalent to the property that the pairing S of C-vector spaces defined by

(5.2.12) S(•, •) := s(•, S0•) : H0 ⌦H0 �! C

is Hermitian in the usual sense. We call ( eH0, S) the Hermitian pair attached to the
pre-polarized eC-triple (T, S) of weight w. Note that the weight w does not appear
in the definition of a Hermitian pair. In fact, a Hermitian pair can give rise to a
pre-polarized eC-triple of any weight, as a consequence of the lemma below.

5.2.13. Lemma. A pre-polarized eC-triple (T, S) of weight w is isomorphic to the pre-
polarized eC-triple (( eH0, eH0(w), S), (Id, Id)) of weight w. Two pre-polarized eC-triples
of the same weight w are isomorphic if and only if their associated Hermitian pairs
are isomorphic.

Proof. The second part follows from the first one. Let S = (eS0,eS00 = eS0) be a pre-
polarization of T of weight w. Then (Id,eS0) is an isomorphism T

⇠�! ( eH0, eH0(w), s0)
with s

0
(•, •) = s(•, S0•) = S.

We can now give the definition of a polarized C-Hodge triple.

5.2.14. Definition (Polarization of a C-Hodge triple). Let H be a C-Hodge triple of
weight w. A polarization of H is a pre-polarization S = (eS0,eS00) of weight w of the
underlying eC-triple such that the associated filtered Hermitian pair ((H, F

•H), S),
with (H, F

•H) = (H0, F •H0) and S defined by (5.2.12), is a polarized Hodge structure
of weight w in the sense of §2.5.18.
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5.2.15. Tate twist of a Hermitian pair. The isomorphisms of Lemma 5.2.13 behave well
with respect to Tate twist, that is, for a pre-polarized eC-triple (T, S), we have

(T, S)(`) ' (( eH0(`), eH0(w � `), (�1)`S), (Id, Id)),

and Tate twist reads as follows on the associated Hermitian pair ( eH0, S):

( eH0, S)(`) = ( eH0(`), (�1)`S).

If (H, S) = (( eH0, eH00, s), S) is a polarized C-Hodge triple of weight w, the pair
(H, S)(`) := (H(`), (�1)`S) is a polarized C-Hodge triple of weight w � 2`.

The relation with polarized C-Hodge structures in the form of Hodge-Hermitian
pairs (see §2.5.18) can now be expressed in a simpler way.

5.2.16. Proposition. Let T = ( eH0, eH00, s) be an object of eC-Triples. It is a polarizable
C-Hodge triple of weight w if and only if it is isomorphic (in eC-Triples) to the object
( eH0, eH0(w), s0) for some suitable s

0, such that eH0 is strict and the corresponding filtered
Hermitian pair ((H, F

•H), S) := ((H0, F •H0), s0) is a polarized Hodge structure of
weight w (in particular, s0 is Hermitian).

Proof. The “only if” part directly follows from Lemma 5.2.13 and the definition. Con-
versely, given a polarized Hodge structure ((H, F

•H), S) of weight w, one checks that
((H, F

•H), (H, F [w]
•H), s

0
:= S) is a C-Hodge triple of weight w and that (Id, Id) is

a polarization of it. If

' = (e'0, e'00) : T ⇠�! ((H, F
•
H), (H, F [w]

•
H), s

0
)

is an isomorphism in eC-Triples, then T is a C-Hodge triple and, setting eS0 := e'00�1 e'0,
S := (eS0,eS00 = eS0) is a polarization of T .

5.2.17. Remark (Two points of view on (pre-)polarized triples)
The sesquilinear pairing s is constitutive of the notion of a triple and is only

used to reflect the oppositeness of filtrations (with no positivity involved). On the
other hand, a (pre-)polarization can be regarded as a “sesquilinear pairing on triples”.
We thus have two distinct roles for a sesquilinear pairing, that we also distinguish
with the notation.

Lemma 5.2.13 helps us to simplify the setting, by reducing the polarization S to
identity, and transferring the positivity property to the sesquilinear pairing of the
triple. There remains only one sesquilinear pairing involved.

While we can simplify in that way the presentation of polarized triples, we still
have to keep the ordinary sesquilinear pairing s for polarizable triples.

5.3. Hodge-Lefschetz triples

We now make explicit the notion of Hodge-Lefschetz structures, and sl2-Hodge
structure (Definitions 3.3.3, 3.4.3 and 3.2.7) in the language of eC-triples of Section 5.2.
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5.3.a. Lefschetz triples. The abelian category A is that of eC-triples with its au-
tomorphism � (see §3.3.4) given by the Tate twist (1). Let H = ( eH0, eH00, s) be a
eC-triple. Recall that ( eH0, eH00, s)(�1) = ( eH0(�1), eH00(1), s). Note also that giving a
morphism eH00(1)! eH00 is equivalent to giving a morphism eH00 ! eH00(�1).

Assume that H = ( eH0, eH00, s) is equipped with a nilpotent endomorphism N =

(N
0
,N
00
) : H ! H(�1), that is,

N
0
: eH0 �! eH0(�1) and N

00
: eH00(1) �! eH00

which also reads, when H is strict,

N
0
: (H0, F

•
H0) �! (H0, F [�1]•H0) and N

00
: (H00, F [1]

•
H00) �! (H00, F

•
H00),

are two nilpotent morphisms which satisfy, when forgetting the filtration,

(5.3.1) s(v
0
,N00v00) = s(N

0
v
0
, v00), v

0 2 H0, v00 2 H00.

5.3.2. Definition (Hermitian dual of (H,N)). The Hermitian dual (H,N)
⇤ of (H,N) is

(H
⇤
,N
⇤
), where H

⇤ is the Hermitian dual of H and N
⇤ is the Hermitian adjoint of

the morphism N, regarded as a morphism H
⇤ ! H

⇤
(�1).

In other words, H⇤ = ( eH00, eH0, s⇤) and N
⇤
= (N

00
,N
0
). The monodromy filtration

is defined in the abelian category eC-Triples. Let us make it explicit. The monodromy
filtration M(N

0
)•
eH0 exists in the abelian category of graded eC-modules, as well as

M(N
00
)•
eH00. By restricting to z = 1, it induces the monodromy filtration of (H0,N0)

resp. (H00,N00). We note that, according to (5.3.1), s induces zero on M`H
0⌦M�`�1H00

for every `, hence induces a sesquilinear pairing

s : M`H
0 ⌦H00/M�`�1H00 �! C.

We then have

M`T = (M`
eH0, eH00/M�`�1 eH00, s).

Let us also consider the induced pairing

s`,�` : gr
M

`
H0 ⌦eC gr

M

�`H
00 �! C.

Then

gr
M

`
H = (gr

M

`
eH0, grM�` eH00, s`,�`).

On the other hand, grN := (grN
0
, grN

00
) induces a morphism

gr
M

`
H = (gr

M

`
eH0, grM�` eH00, s`,�`)

�! (gr
M

`�2
eH0(�1), grM�`+2

eH00(1), s`�2,�`+2) = gr
M

`�2H(�1).
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5.3.1. Pre-polarization of weight w. A pre-polarization S of weight w of a Lefschetz
triple (H,N) is a Hermitian isomorphism (H,N)

⇠�! (H,N)
⇤
(�w), i.e., an isomor-

phism H
⇠�! H

⇤
(�w) such that

S �N = N
⇤ � S : H �! H

⇤
(�w � 1).

More explicitly, setting S = (eS0,eS00), we have eS00 = z
weS0 and

eS0 �N0 = N
00 � eS0 : eH0 �! eH00(�w � 1).

In particular, the associated sesquilinear pairing S(•, •) = s(•, S0•) on H0 (see (5.2.12))
satisfies

S(N0•, •) = S(•,N0•)

because
s(•, S0N0•) = s(•,N00S0•) = s(N

0•, S0•).

Since S is a morphism, it is compatible with the monodromy filtrations and S

induces a pre-polarization

gr
M
S : gr

M

• H �! gr
M

• (H
⇤
)(�w) = (gr

M

�•H)
⇤
(�w)

of the graded Lefschetz triple (gr
M

• H, grN).

5.3.b. Hodge-Lefschetz triples. Let (H,N) be a Lefschetz triple. We say that
(H,N) is a Hodge-Lefschetz triple with central weight w if grM

`
H is a Hodge triple of

weight w + ` for every `. In such a case, for every j, k 2 Z,

(H,N)(j, k) := (( eH0(j),N0), ( eH00(�k),N00), s)

is a Hodge-Lefschetz triple with central weight w � (k + `) and (H,N)
⇤ is a Hodge-

Lefschetz triple with central weight �w, with monodromy filtration satisfying
gr

M

`
(H
⇤
) = (gr

M

�`H)
⇤.

Therefore, the data (gr
M

• H, grN) defined as
L
`

(gr
M

`
eH0, grM�` eH00, s`,�`), grN := (grN

0
, grN

00
)

form an sl2-Hodge triple. In particular, each s`,�` is non-degenerate, which implies
that s itself is non-degenerate. Its Hermitian dual (grM• H, grN)

⇤ is also an sl2-Hodge
triple.

5.3.3. Remark (Stability by extension). We consider the abelian category of graded
eC-triples H =

L
`
H` equipped with a nilpotent endomorphism N : H` ! H`�2(�1).

Let
0 �! (H1,N1) �! (H,N) �! (H2,N2) �! 0

be an exact sequence in this category. Assume that (H1,N1), (H2,N2) are sl2-Hodge
triples of the same weight w. Then (H,N) is of the same kind. Indeed, by Exercise 5.8,
each summand H` is a C-Hodge triple of weight w + `. It is then clear that N

` is an
isomorphism H`

⇠�! H�`(�`) if this holds on H1, H2.
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5.3.4. Polarization. Let (H,N) be a Hodge-Lefschetz triple of weight w. By a polar-
ization S of (H,N) we mean a pre-polarization of weight w of the Lefschetz triple
(§5.3.1) which satisfies the properties as in Definition 3.4.14.

Lastly, we remark as in Proposition 5.2.16 that any polarized Hodge-Lefschetz
triple with central weight w is isomorphic to (( eH, eH(w), S),N) for a suitable polar-
ized Hodge-Lefschetz structure ((H, F

•H),N, S) with central weight w, as in Remark
3.4.16 (in particular, S : H! H⇤ is Hermitian).

5.3.5. The polarized Hodge-Lefschetz triple ImN. Let (H,N, S) be a polarized Hodge-
Lefschetz triple with central weight w � 1. We have by definition a commutative
diagram

H

N

✏✏

S
// H
⇤
(�w + 1)

N
⇤

✏✏

H(�1) S
// H
⇤
(�w)

Then G = ImN equipped with the nilpotent endomorphism NG = N| ImN is a Hodge-
Lefschetz triple with central weight w polarized by SG, which is the sesquilinear
pairing

SG : ImN �! (ImN)
⇤
= Coker(N

⇤
)

induced by �S. The image ImN = G is expressed as follows:

(G0, F
•
G0) =

�
N
0
(H0),N0(F [�1]•H0) = F [�1]•H0 \N

0
(H0)

�

(G00, F
•
G00) =

�
(H00/KerN

00
), (F [1]

•
H00)/(F [1]

•
H00 \KerN

00
)
�

sG = s|N0(H0)⌦(H00/KerN00),

and N
0
G,N

00
G are the naturally induced nilpotent endomorphisms. It can also be pre-

sented as a filtered Hermitian pair
�
(G, F

•
G),NG, SG

�

obtained from the filtered Hermitian pair
�
(H, F

•H),N, S
�

by setting

(G, F
•
G) = (N(H), F [�1]•H \N(H))

with the induced action NG of N and by defining SG by (see Definition 3.2.12)

SG(N•,N•) = �S(N•, •) = �S(•,N•).

5.3.6. Polarized Hodge-Lefschetz quivers. The definition of a polarized Hodge-Lefschetz
quiver in the setting of triples can be mimicked from that of a polarized Hodge-
Lefschetz quiver of Section 3.4.d.

Given two Lefschetz quivers in the category of eC-modules

eH0
c
0

%% eG0

v
0

ee

(�1)

and eH00
c
00

&& eG00

v
00

ee

(�1)
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(notation of Remark 5.1.5) with N
0
= v

0
c
0, etc., and sesquilinear pairings sH , sG giving

rise to eC-triples

H = ( eH0, eH00(�1), sH) and G = (eG0, eG00, sG)

we can build up a Lefschetz quiver (H,G, c, v) in the category eC-Triples by setting

(5.3.7)
c = (c

0
,�v00) : ( eH0, eH00(�1), sH) �! (eG0, eG00, sG)

v = (v
0
,�c00) : (eG0, eG00, sG) �! ( eH0, eH00(�1), sH)(�1) = ( eH0(�1), eH00, sH),

provided the compatibility relations of c0, . . . , v00 with the sesquilinear pairings sH , sG

hold, that is,

(5.3.8)
sG(c

0
x
0
, y00) = �sH(x

0
, v00y00) x

0 2 H0, y00 2 G00,

sG(v
0
y
0
, x00) = �sH(y

0
, c00x00) x

00 2 H00, y0 2 G0.

The choice of signs is made to ensure later compatibility with the signs occurring
in Definition 3.4.19. The signs cancel out when defining NH = vc and NG = cv.
Furthermore, they are compatible with the definition of the Hermitian dual of a Lef-
schetz quiver given in Remark 3.2.13. Indeed, working now in the category of C-vector
spaces, and recalling that the Hermitian dual of (H00,G00, c00, v00) is (H00,G00, c00, v00)⇤ =
(H00⇤,G00⇤,�v00,�c00), the relations (5.3.8) amount to the property that the pair
(sH , sG) is a morphism of Lefschetz quivers

(sH , sG) : (H
0
,G0, c0, v0) �! (H00,G00, c00, v00)⇤.

One can check that, conversely, any Lefschetz quiver (H,G, c, v) in the category
eC-Triples is obtained by the previous construction.

A Hodge-Lefschetz quiver with central weight w is defined as a Lefschetz quiver
in eC-Triples such that (H,NH), (G,NG) are Hodge-Lefschetz triples with respective
weights w � 1 and w (Section 5.3.b), and c : (H,NH) ! (G,NG) and v : (G,NG) !
(H(�1),NH) are morphisms in the category of Hodge-Lefschetz triples, so that they
are morphisms of mixed Hodge structures.

Defining the Hermitian dual (H,G, c, v)
⇤
= (H

⇤
(1), G

⇤
,�v⇤,�c⇤) as in Remark

3.2.13, a polarization of a Hodge-Lefschetz quiver (H,G, c, v) is a pair of polarizations
S = (SH , SG) of H and G respectively, defining an isomorphism

(5.3.9) S : (H,G, c, v)
⇠�! (H,G, c, v)

⇤
(�w).

Assume now that H and G are presented as Hermitian pairs

H = ( eH0, eH0(�w + 1), SH) and G = (eG0, eG0(�w), SG),

so that SH = (Id, Id) and SG = (Id, Id), and ( eH0, SH), (eG0, SG) are polarized Hodge
structures of respective weights w � 1, w in the sense of §2.5.18. In this setting,
(5.3.9) implies that c = �v⇤, equivalently v = �c⇤, so that, by their definition
(5.3.7), we obtain c

0
= c
00 and v

0
= v

00. Therefore, (5.3.8) reads

SG(c
0
x
0
, y0) = �SH(x

0
, v0y0) and SG(v

0
y
0
, x0) = �SH(y

0
, c0x0).
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5.4. Variations of Hodge triple

5.4.a. Variations of Hodge structure as triples. We now revisit the notion of
variation of Hodge structure, by the using the language of eC-triples of Section 5.2.
It enables us to keep holomorphy for both filtrations, by putting the non-holomorphic
behaviour in the sesquilinear pairing s. This approach will be convenient in presence
of singularities.

When working with a pairing s, we start by introducing a larger category, which
can be enlarged to an abelian category.

We denote by eOX the sheaf of graded rings OX [z] and by an eOX -module we mean
a graded OX [z]-module. By a locally free eOX -module of rank r < 1 we mean an
eOX -module locally isomorphic to the direct sum (see Exercise 5.4)

rL
i=1

eOX(ki) (ki 2 Z).

We replace the filtered flat bundles (H0,r, F •H0) and (H00,r, F •H00) by graded
eOX -modules with a flat z-connection (see Section 5.1.c). (This point of view will
be expanded in Section 8.1.)

5.4.1. Definition (Flat eO-triples with pairing s). A flat eO-triple on X consists of the
data of

• a pair of eOX -modules eH0, eH00 equipped with a flat z-connection er,
• a flat OX ⌦COX

-linear morphism s : H0⌦CH00 ! C1
X

, i.e., for local holomorphic
sections m

0
,m
00 of H0,H00, we have

@s(m
0
,m00) = s(rm0,m00),

@s(m
0
,m00) = s(m

0
,rm00).

5.4.2. Remark (Flatness of s). The restriction s of s to the local system H0 ⌦C H00

takes values in the constant sheaf CX since for local sections m0 of H0 and m
00 of H00,

we have, by the previous formulas, @s(m0,m00) = @s(m
0
,m00) = 0. Moreover, we can

recover s from its restriction s by OX ⌦C O
X

-linearity. As a consequence, we see that
if X is connected, s is non-degenerate if and only if its restriction at some point x 2 X

is a non-degenerate pairing H0
x
⌦C H00

x
! C, since this obviously holds for s.

5.4.3. Definition (Variation of C-Hodge structure, third definition)
A variation of C-Hodge structure of weight w is a flat eOX -triple

H = (( eH0, er), ( eH00, er), s)

such that eH0, eH00 are eOX -locally free of finite rank and whose restriction Hx =

( eH0
x
, eH00

x
, sx) at each x 2 X is a C-Hodge triple of weight w. In particular, s is

non-degenerate.
A polarization is a flat morphism S : H ! H

⇤
(�w) inducing a polarization at

each x 2 X. Equivalently (see §2.5.18), a polarized variation of C-Hodge structure
of weight w consists of the data (( eH, er), S), where S is a flat sesquilinear pairing on
(H,r), inducing a polarized C-Hodge structure at every x 2 X.
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5.4.4. Example. The triple

TOX := ((eOX , ed), (eOX , ed), sn), sn(1, 1) := 1,

is a variation of C-Hodge triple of weight 0. It is polarized by S = (Id, Id). The
associated Hodge-Hermitian pair is (eOX , sn).

5.4.5. Remarks.
(1) One can also define the category VHS(X,C, w) as the full subcategory of that

of filtered flat triples whose objects are variations of C-Hodge structures of weight w

on X. The category pVHS(X,C, w) of polarizable objects is defined correspondingly.
The category VHS can be naturally equipped with the operations Hom, tensor

product, duality, and conjugation. The full subcategory pVHS is stable by these
operations, since the polarization can be constructed in a natural way in each of these
operations (see §2.5.19).

(2) Let f : X ! Y be a holomorphic map between smooth complex manifolds.
The pullback Tf

⇤
H of a triple H is defined as (f

⇤
( eH0, er), f⇤( eH00, er), f⇤s), where

f
⇤
s : f

⇤H0 ⌦ f⇤H00 ! C1
X

is defined by f
⇤
s(1⌦m

0
, 1⌦m00) := s(m

0
,m00) � f . If H is

a variation of C-Hodge triple of weight w, then so is Tf
⇤
H.

5.4.b. Smooth C-Hodge triples. Let us now introduce a different normalization
of the objects, in order to fit with the notion of polarizable Hodge module developed
in Chapters 7 and 14. Recall that we set n = dimX.

5.4.6. Definition (The polarized C-Hodge triple HOX ). We denote by HOX the triple
TOX(0, n) (note the half-twist), that is,

HOX = ((eOX , ed), (eOX(n), ed), sn), sn(1, 1) := 1.

It is a C-Hodge triple of weight n = dimX with polarization

HS = (Id, Id) : HOX �! HOX(�n).

The associated Hermitian pair is ((OX , F
•OX), d), sn) where F

0OX = OX and
F

1OX = 0.

A smooth C-Hodge triple of weight w is defined to be a variation of Hodge triple
of weight w � dimX (Definition 5.4.3) twisted by HOX .

5.4.7. Definition (Smooth C-Hodge triples).
(1) A smooth C-Hodge triple of weight w is a triple

HH := (( eH0, er), ( eH00, er), s),

such that the triple
H = HH(0,�n)

is a variation of C-Hodge structure of weight w � n on X.
(2) A polarization HS of HH is a Hermitian morphism HS : HH ! HH

⇤
(�w) such

that, when regarded as a morphism H !H
⇤
(�(w � n)), S := HS is a polarization

of H.
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(3) A smooth polarized C-Hodge triple of weight w on X consists of the data
(( eH, er), HS), where HS is a non-degenerate Hermitian pairing on H and HH :=

(( eH, er), ( eH, er)(w), HS) is a smooth C-Hodge triple of weight w polarized by HS =

(Id, Id). Tate twist reads (( eH, er), HS)(`) = (( eH(`), er), (�1)`HS).

5.4.8. Definition (Pullback of a smooth C-Hodge triple). Let f : X ! Y be a holo-
morphic map between smooth manifolds of relative dimension p = n � m, and let
HH = (( eH0, er), ( eH00, er), s) be a smooth C-Hodge triple of weight w on Y . The
pullback Tf

⇤
HH is the triple defined as

Tf
⇤
HH := (f

⇤
( eH0, er), f⇤( eH00, er)(p), f⇤s).

Since Tf
⇤
HOY = HOX , we see that Tf

⇤
HH = H(Tf

⇤
H) is a smooth C-Hodge triple of

weight w+p. Moreover, the pullback Tf
⇤
HS := f

⇤
HS of a polarization is a polarization.

Correspondingly, the pullback of a smooth polarized C-Hodge triple (( eH, er), HS) of
weight w is the smooth polarized C-Hodge triple (f

⇤
( eH, er), f⇤S) of weight w + p.

5.4.9. Remark (on the symmetry breaking). Definition 5.4.7 clearly breaks the sym-
metry between the “prime” (or holomorphic) part and the “double prime” (or anti-
holomorphic) part of a triple, in order to obtain a formalism of weights similar to
that of the theory of mixed Hodge modules of M. Saito. Similarly, the definition of
the pullback functor is not symmetric, and the same will occur for other functors in
Chapter 12. However, pre-polarized triples can be reduced to Hermitian pairs, for
which the problem disappears since the behaviour of weights by functors is reflected
by simply changing the sign of the pre-polarization.

5.5. Exercises

Exercise 5.1. Show the following properties in Mod( eA) or in Modgr( eA).
(1) A subobject of a strict object is strict.
(2) An extension in of two strict objects is strict.
(3) A morphism between two strict objects is strict if and only if its cokernel is

strict.
(4) A complex which consists of strict objects and which is bounded from above is

a strict complex if and only if each differential is a strict morphism.

Exercise 5.2.
(1) If eM is a graded eA-module, show that its eC-torsion is also graded and each

torsion element is annihilated by some power of z.
(2) Conclude that (z� a) : eM! eM is injective for every a 2 Cr {0}, equivalently

that eM[z
�1

] := C[z, z
�1

]⌦eC
eM is C[z, z�1]-flat, and that a graded eA-module is eC-flat

if and only if it has no z-torsion.
(3) Let ' : eM! eN be a morphism in Modgr( eA). Assume that ' is injective. Show

that the induced morphism 'a : eM/(z � a) eM! eN/(z � a)eN is injective
• if a 6= 0,
• and also if a = 0 provided that eM is strict.

[Hint : Use (2) for Coker'.]
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(4) Let eM• be a complex in Modgr( eA). Show that, for every i, there is a natural
isomorphism

H
i
( eM•

/(z � a) eM•
) ' H

i eM•
/(z � a)H

i eM•
,

• if a 6= 0,
• and also if a = 0 provided that eM• is strict (see Definition 5.1.6(3)).

[Hint : Consider the long exact sequence

· · ·Hi eM• z � a�����! H
i eM• �! H

i
( eM•

/(z � a) eM•
) �! · · ·

attached to the exact sequence of complexes (according to (3))

0 �! eM• z � a�����! eM• �! eM•
/(z � a) eM• �! 0

and apply (3).]
(5) Recover the associated A-module M of eM as eM/(z � 1) eM and, if eM = RFM

is strict, grFM as RFM/zRFM (as a graded gr
FA-module).

(6) Let ' : eM ! eN be a morphism in Modgr( eA)st (i.e., between strict objects).
Assume that '|z=1 is zero. Show that ' = 0. Deduce the faithfulness of the restriction
functor Modgr( eA)st 7! Mod(A) given by eM 7! eM/(z � 1) eM.

(7) Let ' : eM ! eN be a morphism in Modgr( eA)st. Show that ' is strict if and
only if the associated morphism ' : (M, F•M) ! (N, F•N) is strict, i.e., satisfies
'(FkM) = '(M) \ FkN for every index k. [Hint : Use Exercise 5.1(3).]

Exercise 5.3. If (M, F•M) is a filtered object of Mod(A), then a subobject M0 of M
carries the induced filtration (FpM \M0)p2Z, while a quotient object M/M00 carries
the induced filtration ((FpM+M00)/M00)p2Z. Show the following properties.

(1) RFM
0
=RFM \M0[z, z�1] and RF (M/M00)=RFM \M00[z, z�1]/M00[z, z�1].

(2) The two possible induced filtrations on a subquotient M0\M00/M00 of M agree.
(3) For every filtered complex (M•

, F ), the i-th cohomology of the complex is a
subquotient of Mi, hence it carries an induced filtration. Then there is a canonical
morphism H

i
(FpM

•
)! H

i
(M•

), whose image is denoted by FpH
i
(M•

).

Exercise 5.4 (Locally free eOX -modules and filtrations by sub-bundles)
Let eH be a locally free eOX -module of rank r. Show that the corresponding

filtration F
•H is a filtration by sub-bundles, i.e., F pH/F

p+1H is eOX -locally free for
each p 2 Z. [Hint : reduce the statement to the case where r = 1.]

Conversely, let (H, F
•H) be a filtered holomorphic bundle. Show that eH := RFH

is eOX -locally free. [Hint : use local bases of F pH/F
p+1H for each p.]

Exercise 5.5. We take the notation of §5.2.a.
(1) Let F

0•H and F
00•H be 0-opposite filtrations of H in the sense of Defini-

tion 2.5.1. Show that eH0 '
L

p
Hp,�p

z
�p

C[z] (where the sum is finite), and similarly
eH00 '

L
p
Hp,�p

z
p
C[z
�1

]. Using that the gluing of z�pC[z] with z
p
C[z
�1

] in C[z, z
�1

]

gives rise to the trivial bundle OP1 , conclude that the bundle eF of (c) in §5.2.a is iso-
morphic to the trivial bundle on P

1.
(2) Argue similarly in weight w.
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(3) In order to prove that Condition (c) on F in §5.2.a implies oppositeness, reduce
first to the case where w = 0 by identifying the effect of tensoring with OP1(�w) with
a shift of one filtration.

(4) Assume that F is isomorphic to OdimH
P1 . Show that the two filtrations giving

rise to F are opposite.

Exercise 5.6.
(1) (Another proof of 2.5.6(2)) Show that a morphism in HS(C) induces a mor-

phism between the associated vector bundles on P
1 (see §5.2.a). Conclude that there

is no non-zero morphism if w1 > w2. [Hint : Use standard properties of vector bundles
on P

1.]
(2) Let H1 and H2 be objects of HS(C, w), let F1,F2 be the associated OP1 -mod-

ules (see §5.2.a) and let H be a bi-filtered vector space whose associated OP1 -module
eF is an extension of F1,F2 in the category of OP1 -modules. Show that H is an object
of HS(C, w). [Hint : Use standard properties of vector bundles on P

1.]

Exercise 5.7 (Another proof of Exercise 2.7). Use the geometric interpretation of a
Hodge structure in §5.2.a to prove the existence of operations as in Exercise 2.7
(e.g. use that OP1(w1)⌦ OP1(w2) ' OP1(w1 + w2)).

Exercise 5.8 (Stability by extension). Let 0 ! T1 ! T ! T2 ! 0 be a short exact
sequence of eC-triples. Show that, if T1, T2 are C-Hodge triples of weight w, then so
is T . [Hint : By using the interpretation (c) of w-oppositeness in Section5.2.a, reduce
the question to showing that, if a locally free OP1 -module is an extension of two trivial
bundles Od1

P1 and Od2

P1 , then it is itself a trivial bundle.]

Exercise 5.9. Show that the category VHS(X,C, w) as defined by 5.4.3 is equivalent
to VHS(X,C, w) as defined by 4.1.4, and hence to VHS(X,C, w) as defined by 4.1.5.
Show a similar result for pVHS(X,C, w).

5.6. Comments

The Rees construction for filtered objects, embedding the non-abelian category of
filtered objects into the abelian category of modules over a ring, is a well-known trick
to treat filtered objects. The main application has been the proof of the Artin-Rees
lemma, that we will reproduce in the context of filtered D-modules in Chapters 7, 8
and 9.

The notion of triple has been instrumental in defining generalizations of the cate-
gories of Hodge modules, called twistor D-modules (see [Sab05, Moc07, Moc11a].
When working with the Hodge metric (or more generally a harmonic metric) as a
primary object on flat vector bundles, one is lead to the problem of extending the
notion at the singularities of the vector bundle. The notion of metric is difficult to
extend, because it contains in it the property of being non-degenerate. Similarly, the
notion of C1 vector bundle does not extend across singularities, because the sheaf
C1
X

is not coherent. The notion of sesquilinear pairing with values in distributions
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is a good replacement of the C
1 isomorphism between a holomorphic vector bundle

and its conjugate, as it allows “degenerate” gluings.
This new point of view, which will be present all along this book, is explained at

all levels of Hodge theory, starting from classical Hodge theory.
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POLARIZABLE HODGE MODULES ON
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CHAPTER 6

VARIATIONS OF HODGE STRUCTURE ON CURVES
PART 1: METRIC PROPERTIES NEAR PUNCTURES

Summary. We consider polarizable variations of C-Hodge structure on a punc-
tured smooth projective curve. This is the first occurrence of polarizable vari-
ations of C-Hodge structure with singularities. It is essential to understand
their local behaviour in the neighbourhood of a singular point. In this part
of Chapter 6, we state the main results and, as an application, we prove the
semi-simplicity theorem analogue to that proved in Chapter 4.

6.1. Introduction

A Hodge structure, as explained in Section 2.5, can be considered as a Hodge
structure on a vector bundle supported by a point, that is, a vector space. The
case where the underlying space is a complex manifold is called a variation of Hodge
structure. It has been explained in Section 4.1 from a local point of view. The global
properties have been considered in Section 4.2.

The question we address in this chapter is the definition and properties of Hodge
structures on a vector bundle on a punctured complex projective curve (punctured
compact Riemann surface) in the neighbourhood of the punctures (also called the sin-
gularities of the variation). The notion of a polarized variation of Hodge structure on
a non-compact curve is analytic in nature, and a control near the punctures is needed
in order to obtain interesting global results. Let us emphasize that, nevertheless,
the approach is local, and we will mainly restrict the study to a local setting, where
the base manifold is a disc � centered at the origin in C of radius 1 for convenience
(or simply the germ of � at the origin), and we will denote by t its coordinate.

This chapter is divided in three parts, due to the length of the arguments. In this
part, we state the fundamental properties of the variation near a puncture. We first
focus on metric properties without paying much attention to the Hodge filtration itself.
Our interest lies in the relations between two possible extensions of the holomorphic
bundle with connection and Hermitian metric underlying a variation of C-Hodge
structure from the punctured Riemann surface X

⇤ to the compact one X. We then
explain how to extend the Hodge filtration at the punctures and provide the main
statement for the limiting Hodge-Lefschetz structure. As an application of the metric
properties, we prove the semi-simplicity theorem analogue of Theorem 4.3.3.
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6.2. Variations of Hodge structure on a punctured disc

We consider the behaviour of a variation of C-Hodge structure near a singular point.
From now on, we will work on a disc� of radius 1 with coordinate t, as indicated in the
introduction of this chapter and we will denote by �⇤ the punctured disc � r {0}.
Assume that H is a variation of Hodge structure on �⇤ (Definitions 4.1.4, 4.1.5
and 5.4.3). Our goal is to define a suitable restriction of these data to the origin.
As for the case of a point in �⇤, the underlying vector space of the restricted object
should have a dimension equal to the rank of the bundle on �⇤.

6.2.a. Reminder on holomorphic vector bundles with connection. We recall
in this section the equivalence between the category of holomorphic vector bundle
with connection (V,r) on �⇤ and the category of finite dimensional vector spaces
equipped with an automorphism. We shall first construct a functor from the first one
to the second one.

If we are given a holomorphic vector bundle with connection (V,r) on �⇤, there
exists a canonical meromorphic extension, called the Deligne meromorphic exten-
sion, of the bundle V to a meromorphic bundle V⇤ (that is, a free sheaf of O�[1/t]-
modules) equipped with a connection r. It consists of all local sections of j⇤V (where
j : �

⇤
,! � is the inclusion) whose coefficients in some (or any) basis of multivalued

r-horizontal sections have moderate growth in any sector with bounded arguments.
Equivalently, it is characterized by the property that the coefficients of any multival-
ued horizontal section expressed in some basis of V⇤ are multivalued functions on �⇤

with moderate growth in any sector with bounded arguments.
Similarly, there exists a canonical free O�-submodule V0

⇤ of V⇤, called the Deligne
canonical lattice, consisting of all local sections of j⇤V whose coefficients in any basis
of horizontal sections on any bounded sector are holomorphic functions on this sector
with at most logarithmic growth. On this bundle V0

⇤, the connection r has a pole of
order 1. The residue R of the connection on V0

⇤ is an endomorphism of the vector space
V0

⇤/tV
0

⇤. The real parts of its eigenvalues belong to [0, 1). The latter two properties
also characterize V0

⇤ among all lattices of V⇤ (i.e., free O�-submodules of V⇤ which
generate V⇤ as a O�[t

�1
]-module).

The existence of a free O�-submodule V0

⇤ of V⇤ such that O�[t
�1

]⌦ V0

⇤ = V⇤ and
on which r has a pole of order 1 is by definition the condition ensuring that (V⇤,r)
has a regular singularity at the origin of �.

A classical result (see e.g. [Mal91, (2.6) p. 24]) asserts that V0

⇤ has an O�-basis
with respect to which the matrix of r is constant. More precisely, any C-basis of
V0

⇤/tV
0

⇤ can be lifted to an O�-basis of V0

⇤, and the matrix of r is then equal to the
matrix of the residue R in the given basis of V0

⇤/tV
0

⇤. These results can be reformulated
as follows.

6.2.1. Theorem. The construction (V,r) 7! (V⇤,r) induces an equivalence between the
category of vector bundles with connection on the punctured disc �⇤ and that of free
O�[1/t]-modules with a connection r having a regular singularity at the origin.
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Of course, an inverse functor is the restriction of (V⇤,r) to�⇤. Notice also that this
result implies that any morphism ' : (V1,r)! (V2,r) can be extended in a unique
way as a morphism (V1⇤,r)! (V2⇤,r). The proof is obtained by interpreting ' as a
horizontal section of HomO�⇤ (V1,V2) and by using the property that, for a connection
with regular singularity (as r on HomO�[1/t](V1⇤,V2⇤)), any horizontal section on �⇤

extends in a unique way as a r-horizontal section on � (see Exercise 6.1(4)).
We can then more generally consider a whole family of Deligne canonical lattices:

for every � 2 R, we denote by V�

⇤ the lattice defined by the property that the eigen-
values of the residue of the connection have their real part in [�,� + 1). If we set
V>�

⇤ =
S

�0>�
V�

0

⇤ , then V>�

⇤ is the Deligne canonical lattice for which the eigenvalues
of the residue of the connection have real part in (�,� + 1]. We use the notation

(6.2.2) gr
�V⇤ := V�

⇤/V
>�

⇤ .

See Exercise 6.2 for the properties of the canonical lattices.
If we denote by V>�1

⇤ the lattice on which Resr has eigenvalues with real part in
(�1, 0], and if � 2 (�1, 0], then gr

�V⇤ is identified with the generalized eigenspace of
Resr on V>�1

⇤ /tV>�1
⇤ corresponding to the eigenvalues � + i�

00 (�00 2 R) with real
part �. We set N = �(Resr)nilp (nilpotent part). This is the endomorphism induced
by

L
�00 [�(t@t��� i�00)] on gr

�V⇤. [This choice is suggested by the property that the
unipotent part of the monodromy operator on the locally constant sheaf Vr := Kerr
can be identified with exp 2⇡iN.]

6.2.3. Remark (Behaviour with respect to operations). Let (V,r) be a holomorphic
bundle with connection on �⇤.

(1) Let V1 be a holomorphic subbundle of V which is preserved by the connection.
Then, by construction, the Deligne canonical lattice V0

1,⇤ of (V1,r) is nothing but
j⇤V1 \ V0

⇤, and similarly, for any �, V�

1,⇤ = j⇤V1 \ V�

⇤ .
(2) Let (V_

,r) be the dual bundle with the dual connection. Using that the residue
of the connection on (V�

⇤ )
_ is minus the transposed of that on V�

⇤ , one deduces that

(V_
⇤)

� ' (V>���1
⇤ )

_
.

As a consequence, the natural pairing

(V_
⇤)

� ⌦ V���1⇤ �! O�[1/t]

induces, by composing with the residue at t = 0, a perfect pairing

gr
�V_
⇤ ⌦ gr

���1V⇤ �! C.

Equivalently, after multiplication by t, the natural pairing

h• , •i : (V_
⇤)

� ⌦ V��⇤ �! O�

induces, by composing with restriction at t = 0, a perfect pairing

gr
�V_
⇤ ⌦ gr

��V⇤ �! C.

In particular, for any section v of V��⇤ whose class in gr
��V⇤ is nonzero, there exists

a section v
_ of (V_

⇤)
� (whose class in gr

�V_
⇤ is nonzero) such that hv_

, vi = 1.
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(3) Let det(V,r) be the determinant bundle (maximal exterior power) with con-
nection. Given a frame e of V, the matrix of the connection on detV in the frame
e1 ^ · · · ^ er is the trace of that of r on V in the frame e. Let � > 0 be the sum of
the real parts of the eigenvalues of the residue at the origin of r on V0

⇤. We thus find

(detV)�⇤ = det(V0

⇤) and dimgr
�
(detV)⇤ = 1.

6.2.4. Theorem. The correspondence

(V⇤,r) 7�! (Ho
,T) =

L
�2(�1,0]

(gr
�V⇤, e

� 2⇡i �
T� · e2⇡iN),

with T� semi-simple with positive eigenvalues, is an equivalence between the category
of free O�[1/t]-modules with a connection r having a regular singularity at the origin
and the category of finite dimensional vector spaces with an automorphism.

Here is a quasi-inverse functor. Given (Ho
,T), we group the generalized eigen-

spaces corresponding to the eigenvalues µ of T which share the same value � = µ/|µ|,
and denote this space Ho

�
. On such a subspace, the action of T reads �T�e

2⇡iN with
N nilpotent and T� semi-simple with positive eigenvalue commuting with N. We thus
obtain a decomposition (Ho

,T) =
L

|�|=1
(Ho

�
,�T�e

2⇡iN
). Furthermore, we write

each � as exp� 2⇡i� with � 2 (�1, 0]. We then associate to (Ho

�
,�T�e

2⇡iN
) the free

O�[1/t]-module Ho

�
⌦CO�[1/t] with connectionr = Id⌦d+(� Id+

i

2⇡
log T��N)dt/t.

The canonical decomposition of the right-hand side of the correspondence of The-
orem 6.2.4 corresponds to a canonical decomposition of the left-hand side:

6.2.5. Corollary. There exists a canonical decomposition

(6.2.5 ⇤) (V⇤,r) '
L

�2(�1,0]
(V⇤� ,r)

for which V⇤� has a frame v� in which r has matrix (� Id+
i

2⇡
D� �N)dt/t with N

nilpotent and D� diagonal with positive eigenvalues.

Proof. We denote by V� the subsheaf of V consisting of O�⇤ -linear combinations of
local sections of V annihilated by some power of t@t� (�+ i b

00
) for all possible b

00 2 R.
We then have a canonical decomposition

(6.2.5 ⇤⇤) (V,r) '
L

�2(�1,0]
(V� ,r).

The correspondence of Theorem 6.2.1 induces a canonical decomposition (V⇤,r) 'L
�2(�1,0](V�⇤,r) and we set V⇤� = V�⇤.

It follows from this decomposition that the space of multi-valued horizontal sections
of (V,r) on �⇤ decomposes correspondingly with respect to the eigenvalues � of the
monodromy, which take the form � = exp(� 2⇡i(�+ i b

00
)) for any (�+ i b

00
) occurring

in (6.2.5 ⇤). In particular, the absolute value of the eigenvalues of the monodromy are
all equal to one if and only if D� = 0 for any �.
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6.2.b. Reminder on Hermitian bundles on the punctured disc. Let V be a
holomorphic vector bundle on �⇤ and let h be a Hermitian metric on the associated
C
1-bundle H := C1

�⇤ ⌦O�⇤ V. We denote by Vmod the subsheaf of j⇤V consisting
of local sections whose h-norms have moderate growth in the neighbourhood of the
origin, i.e., bounded by some (negative) power of |t|. This is an O�[1/t]-module,
which coincides with V when restricted to �⇤.

The parabolic filtration V•
mod

is the decreasing filtration, indexed by R, defined as
follows. For any � 2 R, we define V�

mod
as consisting of local sections v of j⇤V such

that, for any " > 0, there exists C"(v) > 0 such that kvkh 6 C"(v)|t|��". For �0 > �,
we have V�

0

mod
⇢ V�

mod
and we set V>�

mod
=
S

�0>�
V�

0

mod
.

Clearly, each V�

mod
is an O�-submodule of Vmod, which coincides with V when

restricted to �⇤, and we have
Vmod =

S
�

V�

mod
, and 8 k 2 Z, t

kV
•
mod

= V
•+k

mod
.

A jump (or, more correctly, jumping index) of the parabolic filtration is a real num-
ber � such that the quotient gr

�
(Vmod) := V�

mod
/V>�

mod
is nonzero. Clearly, if � is a

jump, then � + k is a jump for every k 2 Z. We denote by J(�) the set of jumping
indices which belong to [�,� + 1). We have J(� + k) = J(�) + k for every k 2 Z.

6.2.6. Definition. We say that the metric is moderate if each V�

mod
(� 2 (�1, 0]) is

O�-locally free.

If the metric is moderate, V�

mod
is O�-locally free for any � 2 R and Vmod =

O�[1/t]⌦O�
V�

mod
(any �) is O�[1/t]-locally free. Furthermore, the induced decreasing

filtration V•
mod

(V�

mod
/V�+1

mod
) is finite, so that J(�) is finite. It follows that V>�

mod
=

V�
0

mod
for some �0 > �. We also have

V�

mod
/tV�

mod
=

L
�02J(�)

gr
�
0
Vmod.

6.2.7. Remark (Behaviour with respect to operations). Let (V, h) be a holomorphic bun-
dle with a moderate Hermitian metric.

(1) Let V1 be a holomorphic subbundle of V and let h1 be the Hermitian metric
induced by h on V1. Then, by construction, V1,mod = j⇤V1 \ Vmod and, for any �,
V�

1,mod
= j⇤V1 \ V�

mod
. However, we cannot claim that (V1, h1) is moderate, i.e., that

V�

1,mod
is locally free for any � (see Exercise 6.3).

(2) Let v be a frame of V0

mod
lifting a basis of V0

mod
/tV0

mod
adapted to the filtration

induced by V•
mod

. The diagonal entries of the matrix A of h in this frame have thus
a controlled behaviour. The determinant bundle detV is naturally equipped with
a metric, and using this frame, one finds that it is moderate. Furthermore, setting
� =

P
�2J(0) �, one has (detV)�

mod
= detV0

mod
.

(3) We do not have much information on the other entries of the matrix A. Simi-
larly, we do not have much information on the matrix t

A
�1 of the metric on the dual

bundle V_ in the dual frame v
_.
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We will make use in Part 2 of a criterion of moderateness in terms of the cur-
vature, which goes back to [CG75] and [Sim88], and that we will not prove here
(see [Sim88, §10] and [Sim90, Prop. 3.1]). For a Hermitian holomorphic bundle
(V, h), the curvature operator Rh of the Chern connection of the metric is a linear
morphism H! E2

�⇤ ⌦H, where H is the C
1 bundle associated with V. By fixing a

constant norm on the trivial bundle E2

�⇤ (e.g. dt^ dt has norm one), we can consider
the norm of Rh considered as a section of End(V)⌦ E2

�⇤ , that we denote by kRhkh.

6.2.8. Notation (for L(t)). We consider on �⇤ the function

L(t) = � log |t|2 = � log tt.

The main properties we use are given as an exercise (see Exercise 6.5).

6.2.9. Theorem (Criterion of moderateness). Assume that the curvature Rh satisfies
kRhkh 6 C/|t|2L(t)2 for some constant C > 0. Then the Hermitian holomorphic
bundle (V, h) is moderate.

6.3. Metric properties near a puncture

6.3.a. The Deligne and parabolic filtrations for a polarized variation of
Hodge structure. Let us consider a polarized variation of C-Hodge structure (H, S)

of weight w on the punctured disc �⇤ (see Definitions 4.1.4 and 4.1.5). We set
H = (H, D, F

0•H, F
00•H). We thus have a positive definite Hermitian metric h on H.

On the other hand, we set V = KerD
00, on which the filtration F

0•H induces a
filtration F

•V by holomorphic sub-bundles. We aim at comparing the canonical fil-
tration V•

⇤ and the filtration V•
mod

relative to the Hodge metric h, and more precisely
at showing that they coincide. In particular, this implies that the Hodge metric is
moderate.

6.3.1. Example (The unitary case). In the simple case where the connection is compat-
ible with the Hermitian metric h, we claim that the metric is moderate.

The assumption corresponds to a variation of Hodge structure of pure type (0, 0).
Then the norm of any horizontal section of V is constant, hence bounded. The mon-
odromy matrix being unitary, its eigenvalues have absolute value equal to 1, and the
matrices T� considered in Corollary 6.2.5 are the identity matrices, so that logT� = 0.

The decomposition (6.2.5 ⇤⇤) is compatible with the metric, and we are reduced to
proving the claim on each term. We can then assume for simplicity that � = 0 by
multiplying by |t|2� . It is then enough to identify V0

⇤ and V0

mod
.

Given any section v of V, we express it on a unitary frame of multivalued horizontal
sections, and v is a section of V0

mod
if and only if its multivalued coefficients are

bounded by |t|�" in any bounded angular sector of sufficiently small radius. Similarly,
by definition, a section of V is a section of V0

⇤ if and only if its mutlivalued coefficients
have logarithmic growth, and equivalently satisfy the same growth condition as for
V0

mod
, hence the claim.
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The properties of the previous example hold true for any polarized variation of
C-Hodge structure: this is the main results in this part of Chapter 6.

6.3.2. Theorem. Let (V,r, h) be a Hermitian holomorphic bundle with connection un-
derlying a polarized variation of C-Hodge structure on �⇤. Then,

(1) the metric h on H is moderate and the parabolic filtration V•
mod

on V⇤ induced
by the metric h is equal to the filtration V•

⇤;
(2) furthermore, the eigenvalues of the monodromy have absolute value equal to 1.

6.3.3. Remark. This result justifies the need of refining the filtration V•
⇤ indexed by Z

and its graded spaces with a filtration indexed by R and the corresponding graded
spaces (6.2.2).

Theorem 6.3.2 characterizes sections of V�

⇤ in terms of growth of their norm with
respect to real powers of |t|. In order to analyze the L

2 behaviour of the norm, we will
need to refine this result by using a logarithmic scale.

6.3.4. Definition (Lift of the monodromy filtration). For each � 2 R, we denote by
M•gr

�V⇤ the monodromy filtration relative to the nilpotent endomorphism N of gr�V⇤
(see Theorem 6.2.4). The lift M•V

�

⇤ of M•gr
�V⇤ is the pullback by the projection

V�

⇤ ! gr
�V⇤ of M•gr

�V⇤. This is a locally free extension of V to �.

6.3.5. Theorem (Finer norm estimates). A section of V on �⇤ extends as a section of
M`V

�

⇤ and not as a section of M`�1V
�

⇤ (i.e., with non-zero image in gr
M

`
gr

�V⇤) if and
only if its h-norm has the same order of growth as |t|�L(t)`/2.

Theorems 6.3.2 and 6.3.5, while depending on the Hodge structure in their as-
sumptions, do not involve Hodge properties in their conclusions. As a matter of fact,
the statements hold for harmonic flat bundles (Definition 4.2.5) on the punctured
disc whose Higgs field is nilpotent. We will prove them in that setting. We thus
forget the Hodge filtration for a while and consider a vector bundle (V,r) equipped
with a harmonic metric h. We now assume that (H, h, D) is a harmonic flat bundle
on �⇤ and we consider the associated metric connection Dh = D

0
h
+ D

00
h

and Higgs
field ✓ = ✓

0
+ ✓
00. We recall that the Hermitian holomorphic Higgs bundle (E, h, ✓) is

defined by E = KerD
00
h

and ✓ is induced by ✓0 (see Definition 4.2.8). In other words,
for a polarized variation of Hodge structure, we also pay attention to the graded bun-
dle E = gr

F
V equipped with its Higgs field induced by ✓ := gr

�1
F
r, as in (4.2.12).

However, we forget the grading of this bundle and only remember that ✓ is nilpotent.

6.3.6. Definition (Nilpotent harmonic bundle). We say that the harmonic bundle is
nilpotent if the coefficient of dt in ✓0 is a nilpotent endomorphism of H.

6.3.7. Remarks.
(1) By Hermitian adjunction, the coefficient of dt in ✓

0 is nilpotent if and only if
the coefficient of dt in ✓00 is nilpotent.
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(2) The harmonic bundle associated with a polarized variation of Hodge struc-
ture on �⇤ is nilpotent. Indeed, ✓0 has bidegree (�1, 1) with respect to the Hodge
decomposition.

In this part, we give a proof of these theorems and we give some important conse-
quences, in particular concerning semi-simplicity.

6.3.8. Remarks.
(1) In Section 6.2.a, when extending the vector bundle V with holomorphic con-

nection r from �
⇤ to �, we have chosen Deligne’s meromorphic extension, that is,

we have chosen the (unique) meromorphic extension on which the extended connection
is meromorphic and has regular singularities. Such a choice, while being canonical
and, in some sense, as simple as possible, was not the only possible one. We could
have chosen other kinds of meromorphic extensions, on which the extended meromor-
phic connection has irregular singularities. A posteriori, when considering variations
of polarized Hodge structures, Theorem 6.3.2 strongly justify the previous choice.

(2) One may wonder why we have considered the filtration V•
⇤ decreasing and the

filtration M•gr
�V⇤ increasing. The answer is that this reflects the scale of growth of

the family of functions |t|�L(t)`/2 (� 2 (�1, 0] and ` 2 Z): the function |t|�L(t)`/2
grows faster (or decreases slower) than |t|�0

L(t)
`
0
/2 when t ! 0 if and only if either

� < �
0 or � = �

0 and ` > `
0.

6.3.b. Sketch of the proof of Theorems 6.3.2 and 6.3.5 for nilpotent har-
monic bundles. Let (V,r, h) be a nilpotent harmonic flat bundle.

Step 1. The first objective is to show that the eigenvalues of the monodromy have
absolute value one (Theorem 6.3.2(2)). This point relies on the estimate of the h-norm
of a multi-valued horizontal section of V which is an eigenvector for the monodromy
operator. Due to Exercise 4.6, the h-norm of any multi-valued horizontal section v

satisfies
@tkvk2h = �2h(✓0

0
v, v), @

t
kvk2

h
= �2h(✓00

0
v, v),

where we have set ✓0 = ✓
0
0
dt and ✓

00
= ✓

00
0
dt. Making use of the norm of the Higgs

field computed with the metric on the bundle of endomorphisms of E, we deduce
��@tkvkh

�� 6 2kvkhk✓00k
1/2

h
,

��@
t
kvkh

�� 6 2kvkhk✓000k
1/2

h
= 2kvkhk✓00k

1/2

h
,

where the latter equality follows from the fact that ✓00
0

is the h-adjoint of ✓0
0
. The

main tool for the proof is then an estimate for the norm of the Higgs field, proved in
Section 6.3.d.

6.3.9. Theorem (Simpson’s estimate). If (H, D, h) is a nilpotent harmonic bundle, the
Higgs field ✓0 = ✓

0
0
dt satisfies k✓0

0
kh 6 C/|t|L(t) on �⇤, for some C > 0.

6.3.10. Remark. By choosing a volume form vol on �⇤, giving rise to a norm on
differential forms, one can consider the norm k✓0kh,vol. In the Poincaré metric that
we will consider in Section 6.12.c, the norm of dt/t and dt/t is L(t). The theorem
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thus asserts that the norm k✓0kh,vol (and that of k✓00kh,vol since ✓00 is the h-adjoint
of ✓0) is bounded.

This estimate leads to the following:
��t@t log kvkh

�� 6 C
0
/L(t),

��t@
t
log kvkh

�� 6 C
0
/L(t).

If v is an eigenvector of the monodromy operator T corresponding to the eigenvalue �,
then log kTvkh � log kvkh = log |�|. Expressing this difference by an integral formula
in the universal covering of �⇤ involving the above partial derivatives of log kvkh one
finds

��log |�|
�� 6 C

00
/L(t)

for a suitable constant C
00
> 0. Since the right-hand side tends to zero when t tends

to 0, this implies log |�| = 0, that is, |�| = 1.

Step 2. The next step (Section 6.3.c) is, starting with the only data of (V,r) without
any other assumption, to construct a model harmonic metric, that we call the Deligne
harmonic model, and to show that, if we moreover assume that the eigenvalues of the
monodromy have absolute value equal to one, this model satisfies the conclusions of
Theorems 6.3.2(1) and 6.3.5 (the conclusion of Theorem 6.3.2(2) being part of the
assumption).

Step 3. If (V,r) satisfying 6.3.2(2) is equipped with two comparable harmonic metrics,
and if it satisfies the conclusions of Theorems 6.3.2(1) and 6.3.5 for one of both, it
does so for the other one. These theorems are thus a consequence of the following.

6.3.11. Theorem. Let (V,r, h) be a nilpotent harmonic flat bundle. Then the metrics h
and h

Del are mutually bounded, that is, there exist constants C1, C2 > 0 such that,
on �⇤,

C1|hDel
(•, •)| 6 |h(•, •)| 6 C2|hDel

(•, •)|.

Proof. The filtration V•
⇤ is the parabolic filtration both for h and h

Del. The iden-
tity morphism (H, D, h) ! (H, D, h

Del
) or vice versa, regarded as a flat section of

Hom(H,H) satisfies thus the metric assumption of Lemma 6.3.12 below. Recall that
Hom(H,H), equipped with its natural metric and flat connection, is harmonic (Ex-
ercise 4.8). By Lemma 6.3.12 below, the identity morphism, in both directions, is
bounded, which is equivalent to the mutual boundedness of h and h

Del.

6.3.12. Lemma. Let (H, D, h) be a flat bundle with metric on �
⇤. Assume that

(H, D, h) is harmonic. Let u 2 �(�⇤,H) be a D-flat section of H such that, for
any " > 0, there exists C" > 0 satisfying ku(t)kh 6 C"|t|�" on �⇤. Then ku(t)kh is
bounded near the origin.

A proof of this lemma is given in Section 6.3.d. This concludes the proof of Theo-
rems 6.3.2 and 6.3.5 for nilpotent harmonic bundles.
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6.3.c. The Deligne harmonic model. We will now construct a model of such a
vector bundle, starting from an sl2-representation with a positive definite Hermitian
form, and we will check whether Theorem 6.3.2 holds on such a model. We will link
Property 6.3.2(2) with the nilpotency of the Higgs field of the model. This model
only relies on the datum of the flat vector bundle (V,r) on �⇤ and is built so that
the Deligne canonical filtration V•

⇤ is equal to the parabolic filtration of the harmonic
metric. This is why we call it the Deligne harmonic model.

Let Ho be a C-vector space of dimension d equipped with an sl2-representation,
hence of endomorphisms X,Y,H (see Section 3.1.a). Since we do not deal with Hodge
filtrations for the moment, we do not introduce a polarization S and only consider the
resulting positive definite Hermitian form h

o. In order to prepare compatibility with
the notion of polarization, we impose that

(6.3.13) h
o
(X•, •) = h

o
(•,Y•), h

o
(Y•, •) = h

o
(•,X•), h

o
(H•, •) = h

o
(•,H•),

as suggested by Remark 3.2.8(2). Let us fix an h
o-orthonormal basis vo

= (v
o

1
, . . . , v

o

d
)

consisting of eigenvectors for H. If we denote by A the matrix of the endomorphism
A in a given basis, this identification leads to the notation

(Xv
o

1
, . . . ,Xv

o

d
) = (v

o

1
, . . . , v

o

d
) · X .

Similarly, for a Hermitian form s
o on Ho, we also denote by s

o the matrix (s
o

ij
) defined

by s
o

ij
= s

o
(v

o

i
, v

o

j
).

6.3.14. Simple example. We suggest the reader to follow the next computations on
the simple example where Y consists of a single Jordan block of size ` + 1, so that
dimP` = 1 and P`0 = 0 if `0 6= 0. Then each v

o

`,j
consists of a single element v`,j .

It will be convenient to assume that the basis v
o is obtained as follows: for each

` > 0, let us fix an h
o-orthonormal basis vo

`,0
of the `-th primitive part P`H

o ⇢ KerX

made with eigenvectors of H (with eigenvalue `); for any j > 0, consider the basis of
Y

j
P`H

o

(6.3.15) v
o

`,j
= ?`,jv

o

`,0
Y
j
,

where ?`,j is some constant. In such a way, vo

`,j
is a basis of the Lefschetz component

Y
j
P`, the basis v

o
:= (v

o

`,j
)`,j is h

o-orthogonal, and one can (and will) choose ?`,j
(with ?`,0 = 1) such that this basis is h

o-orthonormal. The formula of Exercise
3.1(2) shows that these constants are positive. Then the matrix H of H in this basis is
diagonal with integral entries, while X (resp. Y) is block upper (resp. lower) triangular
whose entries are positive or zero, X being the transpose of Y.

6.3.16. Definition (The model bundle with connection). Let H = C1
�⇤ ⌦C Ho be the

trivial C1-bundle on�⇤ and let v be the basis v = 1⌦vo. Let b be a complex number,
that we write b= b

0
+ i b

00 (b0, b00 2R) and a real number � 2 (�1, 0]. We endow H

with the connection D such that

(6.3.16 ⇤) D
00
v = 0, D

0
v = v · (b Id�Y)

dt

t
,
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so that V := KerD
00 is the holomorphic trivial bundle O�⇤ · v and the connection r

on V induced by D
0 has matrix (b Id�Y)dt/t.

Let " be the basis obtained from v by the change of basis of having inverse matrix

(6.3.17) P�(t) = e
X|t|�L(t)H /2

= |t|�L(t)H /2
e
X /L(t) (see Exercise 6.5),

that is,

(6.3.18) v = " · P�(t).

The bases " and v are decomposed as " = ("`,j)`,j and v = (v`,j)`,j , so that (6.3.18)
reads

(6.3.19) v`,j = |t|�
X

k>0

c`,j,k"`,j+kL(t)
H /2

= |t|�L(t)`/2�j
X

k>0

c`,j,kL(t)
�k

"`,j+k,

for some nonnegative numbers c`,j,k with c`,j,0 = 1.

6.3.20. Definition (The model metric on the model bundle with connection)
We equip H with the Hermitian metric h such that " is an orthonormal basis.

We now group the terms v`,j , "`,j corresponding to the same w=`� 2j and we set

(6.3.21) " = ("w)w2Z, v = (vw)w2Z with v 2 vw () kvkh ⇠
t!0

|t|�L(t)w/2
.

Moreover, the basis v is asymptotically h-orthogonal, with logarithmic decay.
The metric h and the connection D on H enable us to define operators D0

h
, D00

h
, ✓0

and ✓00 (see Lemma 4.2.2).

6.3.22. Proposition. With the previous assumptions, the metric h on (H, D) is har-
monic.

Proof. Let us write

D
0
" = " ·M0 dt

t
, D

00
" = " ·M00 dt

t
.

Applying the base change formula for connections, we find

M
0
= b Id�P� Y(P�)

�1
+ P� t@t(P�)

�1 and M
00
= P� t@t(P�)

�1
.

According to the identities of Exercise 6.5 we obtain

M
0
=

⇣
b� �

2

⌘
Id�Y+H /2

L(t)

M
00
= ��

2
Id+

H /2� X

L(t)

(6.3.23)

✓
0
=

1

2
(M
0
+M

00⇤
)
dt

t
=

⇣
(b� �)

2
Id� Y

L(t)

⌘
dt

t

✓
00
=

1

2
(M
0⇤
+M

00
)
dt

t
=

⇣
(b� �)

2
Id� X

L(t)

⌘
dt

t

(6.3.24)

and

D
00
h
" = (D

00 � ✓00)" = " ·
⇣
� b

2
Id+

H /2

L(t)

⌘
dt

t
.
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We need to prove that the matrix of ✓0 is holomorphic when expressed in a D
00
h
-holo-

morphic basis of H. We note that, for any complex number c, the diagonal matrix

(6.3.25) Ac(t) = |t|c L(t)H /2

satisfies, according to Exercise 6.5,

t@t Ac(t) = t@
t
Ac(t) =

⇣
c

2
Id�H /2

L(t)

⌘
.

Therefore, after the base change with matrix

(6.3.26) A
b
(t) := |t|b L(t)H /2

,

the basis e = " ·A
b
(t) is D00

h
-holomorphic: indeed, the coefficient of dt/t in the matrix

of D00
h

with respect to the basis e is

(A
b
)
�1H /2� b Id

L(t)
A
b
+(A

b
)
�1

t@
t
A
b
= 0,

hence the assertion. Let us notice that e decomposes as (ew)w2Z according to the
decomposition " = ("w)w2Z analogous to (6.3.21), and each element of ew has norm
|t|b0L(t)w/2. Moreover, e is h-orthogonal.

The coefficient of dt/t in the matrix of ✓0 in the basis e is therefore

(6.3.27) (A
b
)
�1
⇣
(b� �)

2
Id� Y

L(t)

⌘
A
b
=

(b� �)
2

Id�Y,

according to Exercise 6.5.

Proof of Theorem 6.3.2 for the model. The norm of a holomorphic section of V is easily
computed with its coefficients in the orthonormal basis ". Since the entries of the ma-
trices P� and (P�)

�1 defined by (6.3.17) have moderate growth, this norm is moderate
if and only if the coefficients of the section in the holomorphic basis v have moderate
growth on �⇤, i.e., if and only if they are meromorphic functions. Therefore, V⇤ is
determined by the moderate growth condition on the norm of holomorphic sections.

In order to determine the parabolic filtration, we need to compute the norm of the
elements v of v. This norm is computed by (6.3.21). The parabolic filtration V•

mod
is

thus given by V�+k

mod
= t

kO� · v (the jumps occur only at � + Z).
On the other hand, the filtration by Deligne canonical lattices V•

⇤ is given by
Vb

0
+k

⇤ = t
kO� · v (the jumps occur only at b

0
+ Z).

If b
0
= �, then both filtrations coincide, and (6.3.21) also shows that MwV

�

⇤ is
determined by the norm condition of Theorem 6.3.5.

We notice that the model is a nilpotent harmonic bundle if and only if b = �.
The nilpotency condition thus implies both properties in Theorem 6.3.2 as well as the
conclusion of Theorem 6.3.5.

Let (V,r) be a holomorphic bundle with connection. Tensoring the decomposition
of (6.2.5 ⇤⇤) with C1

�⇤ leads to a decomposition

(6.3.28) (H, D) '
L

�2(�1,0]
(H� , D),
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and v� is a holomorphic frame of (H� , D) on�⇤. Besides, the C1 bundle H� is in fact
defined all over �, since the frame v� is so, and its fiber Ho

�
at the origin is isomorphic

to gr
�V⇤ via an identification of bases. For every b

00 2 R such that exp(2⇡b
00
) is an

eigenvalue of T� in Theorem 6.2.4, we associate a model metric hDel

b
as in Section 6.3.c

with b = �+ i b
00 and the nilpotent endomorphism N given by that theorem. Summing

over all such possible b
00 2 R, we obtain a model metric h

Del

�
on each (H� , D), and

summing over all � 2 (�1, 0], we obtain a model metric h
Del in such a way that the

decomposition (6.3.28) is h
Del-orthogonal and that the restriction of hDel to each H�

is the model metric h
Del

�
. Since b

0
= �, the parabolic filtration of (V, hDel

) is the
canonical filtration V⇤. If we consider the Higgs bundle (EDel

, h
Del

, ✓Del
), the parabolic

filtration is such that the frame (e�)�2(�1,0] forms an adapted basis of EDel.

6.3.29. Definition. We call (V, hDel
,r) the Deligne harmonic model for (V,r).

6.3.30. Remark. For the Deligne harmonic model, the statement of Theorem 6.3.2(2)
is equivalent to the property that it is nilpotent.

6.3.d. Proof of Theorem 6.3.9 and Lemma 6.3.12. We continue assuming that
(V,r, h) is a harmonic flat bundle on �⇤. Let us start with a corollary of Theorem
6.3.9 that will be used when proving semi-simplicity in Section 6.4.

6.3.31. Corollary (Curvature properties). The curvature RV of (V, h) and the curvature
RE of (E, h) satisfy an inequality

(6.3.31 ⇤) kRkh 6 C/|t|2L(t)2 for some C > 0,

in particular they are L
1

loc
on �.

6.3.32. Remark. This corollary follows from Simpson’s estimate (Theorem 6.3.9) and
can be combined with the criterion of moderateness provided by Theorem 6.2.9 to
yield moderateness of the metric h. However, we do not make use of this criterion
here, as moderateness follows from the identification of the parabolic filtration V•

mod

with the Deligne canonical filtration V•
⇤, as follows from Theorem 6.3.11 and the

properties of the Deligne harmonic model.

Proof. Let us emphasize that RV is the curvature of the Chern connection of h on H

with the holomorphic structure D
00, while RE is that of h on H with the holomorphic

structure D
00
h
. The formula of Exercise 4.4(5) and the identities following (4.2.6) give

RV = �2(✓0 ^ ✓00 + ✓
00 ^ ✓0) = 2RE.

Since ✓00 has the same h-norm as ✓0, it follows that both RV and RE satisfy (6.3.31 ⇤),
hence are L

1

loc
on �, according to Exercise 6.6.

Proof of Theorem 6.3.9. We start with a variant of Ahlfors Lemma, whose proof is
given as an exercise (Exercise 6.8). We denote by �t the Euclidean Laplacian on the
disc, that is, �t = 4@t@t.
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6.3.33. Lemma. Let f be a C
2 function with nonnegative real values on the unit punc-

tured disc �⇤. Let us assume that the following inequality holds:

(6.3.33 ⇤) �t log f(t) > 4f(t).

Then

(6.3.33 ⇤⇤) f(t) 6 1

|t|2L(t)2 on �⇤.

We thus aim at proving that f = ck✓0k2
h

(for some c > 0) satisfies the assumption
of the lemma. Let us set ✓0 = ✓

0
0
dt and ✓00 = ✓

00
0
dt. Regarding ✓0

0
as generating a line

subbundle of End(E) with induced metric h, so that k✓0k2
h
= 2k✓0

0
kh, the inequality

for the curvature of a subbundle (see [GH78, p. 79]) implies

k✓0
0
k2
h
· d00d0 log k✓0

0
k2
h
6 h

�
ad(RE)(✓

0
0
), ✓
0
0

�
,

in the sense that the coefficients of dt ^ dt satisfy the corresponding inequality. The
above expression of RE amounts to RE = �[✓0

0
, ✓
00
0
]dt^ dt and the previous inequality

reads

�@t@t log k✓00k2h 6 �h([[✓
0
0
, ✓
00
0
], ✓
0
0
], ✓
0
0
)

k✓0
0
k2
h

.

We write

�h([[✓0
0
, ✓
00
0
], ✓
0
0
], ✓
0
0
) = h(ad(✓

0
0
)([✓
0
0
, ✓
00
0
]), ✓

0
0
)

= h([✓
0
0
, ✓
00
0
], ad(✓

00
0
)(✓
0
0
)) = �

��[✓0
0
, ✓
00
0
]
��2
h
,

and the previous inequality reads

�t log k✓00k2h > 4

��[✓0
0
, ✓
00
0
]
��2
h

k✓0
0
k2
h

.

Here comes the assumption that ✓0
0

is nilpotent. We claim that there exists a constant
c > 0 only depending on the rank of E such that

��[✓0
0
, ✓
00
0
]
��
h
> ck✓0

0
k2
h
. Indeed, because

we look for a universal constant c, it is enough to solve the question independently
on each fiber, and we are reduced to a question on vector spaces, which is treated in
see Exercise 6.12. As a consequence,

�t log k✓00k2h > 4c
2k✓0

0
k2
h
.

We conclude the proof of Theorem 6.3.9 by applying Lemma 6.3.33 to f(t) = c
2k✓0

0
k2
h
.

Proof of Lemma 6.3.12. This lemma is a direct consequence of the following lemma,
together with Exercise 6.7.

6.3.34. Lemma. For u as in Lemma 6.3.12, the function log kuk2
h

is subharmonic in �⇤,
that is, we have the inequality

�t log kuk2h > 0.
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Proof. Let us start by computing �tkuk2h. On the one hand, we have

(�tkuk2h) dt ^ dt = 4d
0
d
00kuk2

h
.

On the other hand, u satisfies D
0
u = 0 and D

00
u = 0, that is, D

0
h
u = �✓0u and

D
00
h
u = �✓00u (recall the notation of Section 4.2.b). Moreover, since D

00
h
(✓
0
) = 0

(see (4.2.6)), we find
D
00
h
✓
0
u = �✓0D00

h
u = ✓

0
✓
00
u,

and similarly D
0
h
✓
00
u = ✓

00
✓
0
u. We thus obtain, since ✓00 is the h-adjoint of ✓0 (we use

the convention of Remark 4.2.3),

d
0
d
00kuk2

h
= �d0

⇥
h(✓
00
u, u) + h(u, ✓0u)

⇤
= �2d0h(u, ✓0u)

= 2
⇥
h(✓
0
u, ✓0u)� h(u, ✓0✓00u)

⇤

= 2
⇥
h(✓
0
u, ✓0u)� h(✓

00
u, ✓00u)

⇤
.

Since kdtk = kdtk = 2 with the metric induced by the Euclidean volume form, we find

h(✓
0
u, ✓0u) =

1

4
k✓0uk2

h
dt ^ dt and h(✓

00
u, ✓00u) = �1

4
k✓00uk2

h
dt ^ dt,

we finally obtain

(6.3.35) �tkuk2h = 2
�
k✓0uk2

h
+ k✓00uk2

h

�
.

Now,

�t log kuk2h =
�tkuk2h
kuk2

h

� 4
@tkuk2h
kuk2

h

@
t
kuk2

h

kuk2
h

,

and @tkuk2h · @tkuk2h is the coefficient of dt ^ dt in d
0
h(u, u) ^ d00h(u, u). The previous

arguments give

d
0
h(u, u) ^ d

00
h(u, u) = 4h(✓

0
u, u) ^ h(u, ✓0u)

= 4h(✓
0
u, u) ^ h(✓0u, u) = kh(✓0u, u)k2 dt ^ dt.

Therefore, noticing that kh(✓0u, u)k = kh(✓00u, u)k,

@tkuk2h · @
t
kuk2

h
= kh(✓0u, u)k2 =

1

2
(kh(✓0u, u)k2 + kh(✓00u, u)k2)

6 1

2
kuk2

h
· (k✓0uk2

h
+ k✓00uk2

h

�
,

and the desired inequality follows.

6.3.36. Remarks.
(a) Together with the conclusion of Lemma 6.3.12, (6.3.35) also implies that

�tkuk2h and k✓0uk2
h
+ k✓00uk2

h
are L

1

loc
at the origin (see Exercise 6.9).

(b) On a Riemann surface X equipped with a Kähler metric, the Laplacian �
satisfies � = 2�

00
= �2 i⇤d0d00. In the setting of Lemma 6.3.12 with a punctured X

⇤

instead of �⇤, then an argument similar to that leading to (6.3.35) gives

�kuk2
h
= �4

�
k✓0uk2

h
+ k✓00uk2

h

�
.

Moreover, (a) implies that the right-hand side—hence the left-hand side also—is L1

loc

on X.
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6.4. Semi-simplicity

As an application of the metric properties of Section 6.3, we extend in this section
the results of Section 4.3 to the case of a punctured projective curve. Let X be a
smooth projective curve and let X

⇤ be a Zariski dense open subset of X (i.e., the
complement of a finite set of points).

6.4.1. Theorem. Let (H, h, D) be a nilpotent harmonic bundle on X
⇤ and let H be the

associated local system KerD. Then the complex local system H is semi-simple.

6.4.2. Corollary (of Theorem 6.4.1 and Remark 6.3.7(2)). Let

H = (H, F
0•H, F

00•H, D, S)

be a polarized variation of C-Hodge structure of weight w on X
⇤ (see Definition 4.1.4),

and let H = Kerr be the associated complex local system. Then H is semi-simple.

6.4.3. Remark. After having proved the Hodge-Zucker theorem 6.11.1, we will comple-
ment this corollary in a way analogous to that of Theorem 4.3.13, by showing (The-
orem 6.14.17) that each irreducible component of H underlies an essentially unique
polarized variation of Hodge structure and we will show how to recover the polarized
variation of Hodge structure H from its irreducible components. In other words, the
underlying local system of a simple object in the category of polarized variations of
Hodge structure on X

⇤ is irreducible.

Before starting the proof of the semi-simplicity theorem, we notice useful conse-
quences of Property (1) of Theorem 6.3.2.

6.4.4. Proposition. Assume that (V, h,r) satisfies 6.3.2(1). Then
(1) any flat holomorphic subbundle with induced metric and connection (V1, h,r)

also satisfies 6.3.2(1);
(2) the determinant det(V, h,r) also satisfies 6.3.2(1).

Proof.
(1) In view of Remark 6.2.7(1), the question reduces to the O�-coherence of j⇤V1\

V�

mod
. But the latter is equal to j⇤V1 \V�

⇤ , which O�-locally free, being equal to V�

1,⇤
(see Remark 6.2.3(1)).

(2) This point follows from Remarks 6.2.3(3) and 6.2.7(2).

Let (V,r, h) be a Hermitian holomorphic bundle with connection on a punctured
compact Riemann surface X

⇤. Let Rh denote the curvature of (V, h): it is a section
of E1,1

X⇤ ⌦End(V). The determinant bundle det(V, h,r) has curvature tr(Rh). Assume
that the curvature tr(Rh) of det(V, h) is L

1

loc
on X, i.e., in local coordinates near a

puncture, it can be written as k dt ^ dt with k being L
1

loc
. We then set

deg
an
(V, h) =

i

2⇡

Z

X

tr(Rh).
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6.4.5. Proposition (Vanishing of the analytic degree). Assume that (V, h,r) is a Hermi-
tian holomorphic bundle with connection on a punctured compact Riemann surface X

⇤

that satisfies 6.3.2(1) as well as its dual (V_
, h,r). Assume that the curvature tr(Rh)

of det(V, h) is L
1

loc
on X. Then for any flat holomorphic subbundle (V1,r) of (V,r)

equipped with the induced Hermitian metric, the curvature of det(V1, h) is L
1

loc
on X

and we have
deg

an
(V1, h) = 0.

6.4.6. Lemma. If (V, h,r) and its dual (V_
, h,r) satisfy 6.3.2(1) on �⇤, then the

h-norm of any local section v of V�

⇤ whose image in gr
�V⇤ is nonzero satisfies the

inequalities

(6.4.6 ⇤) 8 " > 0, |t|�+" 6 kvkh 6 |t|��" (|t| < R").

Proof. The right inequality is by assumption. Let v_ be a local section of (V_
⇤)
�� such

that hv_
, vi = 1 (see Remark 6.2.3(1)). Then kv_kh 6 |t|���" for all " > 0 and |t| cor-

respondingly small enough, by assumption. By computing in an orthonormal frame,
Schwartz inequality implies kv_khkvkh > |hv_

, vi| = 1. Therefore, kvkh > |t|�+",
hence the assertion.

Proof of Proposition 6.4.5. Let x 2 X be a puncture and let �x 2 [0, 1) be the unique
jumping index of the canonical filtration of L⇤ := detV1,⇤. For a local frame v at x

of the Deligne canonical extension L0

⇤ obtained from a frame adapted to the filtration
of V1,⇤, we deduce that kvkh satisfies the inequalities of the lemma with �x instead
of � (this is justified by Proposition 6.4.4(2)).

Let us prove the statement on the curvature of (V1, h). This is a local statement
near each puncture, so that we assume that X⇤ = �⇤. Let v be a frame of V inducing
a frame of V0

⇤/tV
0

⇤ adapted to the filtration induced by V•
⇤ and to V1,⇤, so that part

of v, denoted v1, is a frame of V0

1,⇤/tV
0

1,⇤ adapted to the filtration induced by V•
1,⇤.

Then the curvature matrix of (V1, h) in the frame v1 is smaller than that of (V, h) in
the frame v, in the sense of [GH78, p. 79]. Taking traces, the same property holds
for detV1 with its frame v1 = detv1 and detV with its frame v = detv. This reads

�@t@t log kv1k2h 6 �@t@t log kvk2h,
that is, with the Laplacian �t = 4@t@t,

�t log kv1k2h > �t log kvk2h.

We have �t log kv1k2h = �tf1 on �⇤ with f1 = log kv1k2h � log |t|2�1 , where �1 is the
exponent of (6.4.6 ⇤) for v1, and similarly f and � for v. By assumption, f is L1

loc
on�.

On the other hand, (6.4.6 ⇤) for v1 implies that for all " > 0, |f1(t)| 6 "L(t) on �⇤
R"

(x)

for R" > 0 small enough. Therefore, limt!0 |f1(t)|/L(t) = 0. The assumptions in
Exercise 6.10 are thus fulfilled and we can conclude that �tf1 = �t log kv1k2h is L

1

loc

on �, as wanted.
By the residue theorem we have deg(L0

⇤)
_
= � degL0

⇤ =
P

x
�x. Let us fix an

arbitrary C
1 metric on (L0

⇤)
_. We thus obtain a metric, that we still denote by h,
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on the trivial bundle O = (L0

⇤)
_ ⌦ L0

⇤, such that the norm of the unit section 1

satisfies (6.4.6 ⇤) (up to constants). We aim at proving that degan(O, h) is well-defined
and is equal to

P
x
�x.

Let us consider a model metric h
o on O, such that k1kho is C

1 on X
⇤, equal to h

on the complement of discs centered at the punctures, and equal to |t|�x for some
local coordinate t at each puncture x. The curvature of ho is d

00
d
0
log k1k2

ho , and is
meaningful as a (1, 1)-current on X. In the neighbourhood of a puncture, we have

i

2⇡
d
00
d
0
log k1k2

ho =
�x i

⇡
d
00
d
0
log |t| = ��x�x,

so that, on X, we have i

2⇡
d
00
d
0
log k1k2

ho = ⌘ �
P

x
�x�x, where ⌘ 2 E1,1

c
(X
⇤
). Fur-

thermore, degan(O, ho) =
R
X
⌘. We then find

0 = degO =
i

2⇡
h1, d00d0 log k1k2

hoi = deg
an
(O, ho)�

X

x

�x,

and thus deg
an
(O, ho) =

P
x
�x.

Let us set f = log k1kh � log k1kho . It is supported on the union of discs �⇤
R
(x),

where x is a puncture. Then, as above, (6.4.6 ⇤) implies that for each puncture x,
limt!0 |f(t)|/L(t) = 0. On the other hand, we have seen that d

00
d
0
f|X⇤ is L

1

loc
on X,

so that deg
an
(O, h) is well-defined. The assumptions of Exercise 6.9 are thus fulfilled

and we conclude that the current d
00
d
0
f is L

1

loc
on X. Furthermore,

i

2⇡
d
00
d
0
log k1kh = ⌘ +

i

2⇡
d
00
d
0
f �

X

x

�x�x

as currents on X, where the first two terms of the right-hand side are L
1

loc
on X.

Since Z

X⇤
d
00
d
0
f =

Z

X

d
00
d
0
f = h1, d00d0fi = 0,

we find deg
an
(O, h) = deg

an
(O, ho) =

P
x
�x, as wanted.

Proof of the semi-simplicity theorem 6.4.1. We argue by induction on the rank of H, the
case of rank 1 being clear. We first emphasize that we can apply Proposition 6.4.5
to (H, h, D): indeed, the dual Hermitian bundle with connection (H, h, D)

_ is also
harmonic, so that Theorem 6.3.2(1) applies to both (H, h, D) and its dual.

Let (H1, D) be a flat subbundle of (H, D), that we equip with the Hermitian metric
h1 induced by h. Proving that (H1, h1, D) is a direct summand amounts to proving
that the h-orthogonal projection ⇡ : H ! H1 is compatible with D. However, in
order to apply Theorem 6.4.1 by induction on the rank, we also need to prove that
(H1, h1, D) is a nilpotent harmonic bundle. Considering ⇡ as a section of the nilpotent
harmonic bundle (End H, h, D) (see Exercise 6.11), we are thus left with proving

(1) D(⇡) = 0,
(2) ✓(⇡) = 0.

We first claim that the second property is a consequence of the first one. By (1),
⇡ is a flat section of End V which preserves the metric, hence the filtration V•

mod
,

and satisfies thus the hypotheses in Lemma 6.3.12. It follows that k⇡k2
h

is bounded.
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Furthermore, according to Remark 6.3.36(b), the function k✓0(⇡)k2
h
+k✓00(⇡)k2

h
is L1

loc

on X with integral equal to zero, since X is compact and h1,�k⇡k2
h
i = 0. Therefore,

k✓0(⇡)k2
h
+ k✓00(⇡)k2

h
= 0, as claimed.

Let us prove (1), that is, D(⇡) = 0. We set (V1,r) = KerD
00. Let us denote by h1

the metric on V1 to avoid confusion, and let Rh1
denote the corresponding curvature.

6.4.7. Lemma. With the previous notation we have, denoting by k•k2
HS

the Hilbert-
Schmidt norm,

trRh1
=

i

2
kD(⇡)k2

HS
vol .

By Corollary 6.3.31 and Proposition 6.4.5, we have deg
an
(V1, h1) = 0. On the

other hand, the above lemma yields

deg
an
(V1, h1) = �

1

4⇡

Z

X

kD(⇡)k2
HS

vol,

hence D(⇡) = 0, and this concludes the proof of the theorem.

Proof of Lemma 6.4.7. We will use the formulas in Exercises 4.4–4.11 to compute the
curvature of det(V1, h1). For any Hermitian holomorphic bundle with flat connection
(H, h, D), since dimX

⇤
= 1, we have

• D
00
h
(✓
0
) +D

0
h
(✓
00
) = �(✓0 ^ ✓00 + ✓

00 ^ ✓0),
• (D

c
)
2
= D

00
h
(✓
0
) +D

0
h
(✓
00
)� (✓

0 ^ ✓00 + ✓
00 ^ ✓0) = �2(✓0 ^ ✓00 + ✓

00 ^ ✓0),
• 4D2

= DD
c
+D

c
D � 2(✓

0 ^ ✓00 + ✓
00 ^ ✓0),

and the formula of Exercise 4.4(5) becomes

Rh = � 1

2
(DD

c
+D

c
D)� (✓

0 ^ ✓00 + ✓
00 ^ ✓0).

Taking trace, we obtain, since the trace of (✓0 ^ ✓00 + ✓
00 ^ ✓0) is zero,

trRh = � 1

2
tr(DD

c
+D

c
D).

Then Exercise 4.11(4) implies

trRh1
= � 1

2
tr(D(⇡)D

c
(⇡)) =

1

2
tr(D

c
(⇡)D(⇡)),

and this yields

trRh1
= (⇤ trRh1

) vol =
1

2
⇤ tr(D

c
(⇡)D(⇡)) vol .

Since ⇤ commutes with ⇡ and acts by 0 except on (1, 1)-forms with values in H,
we can write, according to Exercise 4.10(4),

⇤D
c
(⇡)D(⇡) = [[⇤, D

c
],⇡]D(⇡) = � iD

?
(⇡)D(⇡).

But ⇡ being obviously self-adjoint with respect to h, and recalling that f?
= f

⇤ for a
C1
X⇤ -linear morphism between Hermitian bundles, we deduce

D
?
(⇡) = [D

?
,⇡] = �[D,⇡]

?
= �[D,⇡]

⇤
= �D(⇡)

⇤
.

If kD(⇡)k2
HS

denotes the square of the Hilbert-Schmidt norm of the C1
X⇤ -linear mor-

phism D(⇡) : H ! E1

X
⌦H, i.e., kD(⇡)k2

HS
= tr(D(⇡)

⇤
D(⇡)), we finally obtain the

desired formula.
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6.5. Exercises

Exercise 6.1 (The structure of (V⇤,r)). Assume that (V⇤,r) has a regular singularity
at the origin of � and no other singularity.

(1) Show that (V⇤,r) is a successive extension of rank 1 meromorphic connections.
[Hint : Use a Jordan basis for R of V0

⇤/tV
0

⇤.]
(2) Assume that V has rank 1. Let v� be an O�-basis of V0

⇤ in which the matrix
of tr@t

is constant. Show that tr@t
v� = �v� with Re � 2 [0, 1). Identify Vr with the

subsheaf of ⇢⇤Oe�⇤ consisting of multiples of some (or any) branch of the multivalued
function t

�� , by sending ct
�� to ct

��
v� .

(3) For Re � 2 [0, 1) and p > 0, set J�,p = (O�[1/t]
p+1

,r), where the matrix ofr@t

in the canonical basis v�,p = (v�,0, . . . , v�,p) is given by tr@t
v�,k = �v�,k � v�,k�1 (so

that v�,p is a generating section with respect to tr@t
). Show that (V⇤,r) has a

decomposition

(6.5.1) (V⇤,r) '
L

�2[0,1)

hL
p

(J�,p,r)
i
.

[Hint : Use a Jordan decomposition for R.]
(4) Compute Kerr on V⇤ in terms of this decomposition.
(5) Show that there is no nonzero morphism J�1,p

! J�2,q
if �1 6= �2 2 [0, 1), and

conclude that the decomposition indexed by � above is unique.

Exercise 6.2. Show the following properties.

(1) V�+k

⇤ = t
kV�

⇤ for every k 2 Z.
(2) gr

�V⇤ can be identified with the generalized �-eigenspace of the residue of r
on V

[�]

⇤ /tV
[�]

⇤ .
(3) The map induced by r@t

sends gr
�V⇤ to gr

��1V⇤ and, if � 6= 0, it is an
isomorphism. [Hint : Use that the composition tr@t

: gr
�V⇤ ! gr

�V⇤ is identified
with the restriction of the residue of r on V

[�]

⇤ /tV
[�]

⇤ to its generalized �-eigenspace.]
(4) The map r@t

: V�

⇤ ! V��1
⇤ is onto (equivalently, tr@t

: V�

⇤ ! V�

⇤ is onto)
provided that � > 0. [Hint : Reduce to the case where V⇤ has rank 1 by using
Exercise 6.1 and has a basis v� which satisfies tr@t

v� = �v� for some � 2 [0, 1), and
show that V�+k

⇤ = t
kO�v� for k 2 Z.]

(5) With respect to a decomposition of (V⇤,r) as in Exercise 6.1(3), show that,
for � 2 [0, 1), we have, for k 2 Z,

V�+k

⇤ =
L

i, �i>�

t
kO� · v�i,pi

�
L

i, �i<�

t
k+1O� · v�i,pi

.

(6) The subsheaf
P

j>0
(r@t

)
jV�

⇤ of V⇤ is an O�-module equipped with a connec-
tion r, and

• does not depend on � > �1, or on � 6 �1,
• in the latter case, it is equal to V⇤,
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• in the former case, we call it the middle extension of (V,r) and denote
it by Vmid; then r@t

: Vmid ! Vmid is onto and has kernel equal to the sheaf
j⇤(V

r
).

Exercise 6.3 (Local freeness and subbundles). Let F be a rank two free bundle on �,
with basis f1, f2. Let E ⇢ j

⇤
F be the subbundle on �⇤ with basis e = exp(1/t)f1+f2.

Show that j⇤E \F is not locally free. [Hint : Show that the germ (j⇤E \F )0 consists
of sections a(t)e, with a(t) holomorphic on some punctured neighbourhood of 0 in �,
such that both a(t) and exp(1/t)a(t) belong to C{t}; conclude that (j⇤E \ F )0 = 0.]

Exercise 6.4. Prove the result of Theorem 6.3.2 in the unitary case of Example 6.3.1.

Exercise 6.5. Show the following identities on �⇤ for the function L(t) = � log |t|2 =

� log tt:

(6.5⇤)
L(t)

±H/2
YL(t)

⌥H/2
= L(t)

⌥1
Y, L(t)

±H/2
XL(t)

⌥H/2
= L(t)

±1
X

L(t)
±H/2

e
Y
L(t)

⌥H/2
= e

L(t)
⌥1

Y
, L(t)

±H/2
e
X
L(t)

⌥H/2
= e

L(t)
±1

X

[Hint : Use Exercise 3.1(1)] and

(6.5⇤⇤)
� t@tL(t)

k
/k! = �t@

t
L(t)

k
/k! = L(t)

k�1
/(k � 1)! (k > 0),

L(t)
H/2

t
@

@t

�
L(t)

�H/2
�
= L(t)

H/2
t
@

@t

�
L(t)

�H/2
�
=

H/2

L(t)
.

Exercise 6.6. Let R 2 (0, 1), let � 2 R and ` 2 Z. Show that the integral
Z

R

0

r
2�
L(r)

`
dr

r

is finite iff � > 0 or � = 0 and ` 6 �2 (recall that L(r) := 2 |log r| = �2 log r).
Conclude that the function t 7! |t|�2L(t)�2 is L1

loc
near the origin. [Hint : Recall that

the volume form in polar coordinates is a multiple of rdrd✓.]

Exercise 6.7 (Subharmonic functions). Let R 2 (0, 1) and let �⇤
R

be the punctured
open disc of radius R. Let f be a continuous subharmonic function on �⇤

R
.

(1) Assume that lim sup
t!0

f(t)/L(t) 6 0. Show that f 6 sup
@�

R0 f(t) on �⇤
R0 .

[Hint : Reduce first to the case where sup
@�

R0 f(t) = 0 by considering f�sup
@�

R0 f(t).
Then, prove that, for any " > 0, f(t) � "L(t) 6 0 on �⇤

R0 by showing first that
lim sup

t!0
(f(t) � "L(t)) 6 0 and by applying the maximum principle on �⇤

R0 for
subharmonic functions, i.e., if g is subharmonic on �⇤

R0 and if for any to 2 {0}[@�R0

it satisfies lim sup
t!to

g(t) 6 0, then g 6 0 on �⇤
R0 .]

(2) Assume that, for any " > 0, there exists C" > 0 satisfying f(t) 6 logC"+"L(t)

on �⇤
R0 . Prove that f 6 sup

@�
R0 f(t) on �⇤

R0 . [Hint : Show that f satisfies the
assumptions in (1).]

Exercise 6.8 (Proof of Lemma 6.3.33). In this exercise, �, resp. �⇤, denotes the
open disc, resp. the punctured open disc, of radius 1 with coordinate ⌧ , resp. t, and
⇢ : �! �

⇤ is the model of a universal covering defined by ⇢(⌧)=exp(i(1+⌧)/(1�⌧)).
The Poincaré metric on �, resp. �⇤, has volume form vol� = (1 � |⌧ |2)�2|d⌧ d⌧ |,
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resp. vol�⇤ = (|t|L(t))�2|dt dt|. Furthermore, ⇢⇤ vol�⇤ = vol�. Let �⌧ = 4@⌧@⌧ ,
resp. �t = 4@t@t, be the corresponding Laplacians. Let f : �

⇤ ! R+ be a C
2 func-

tion satisfying the assumptions of Lemma 6.3.33. We first transfer the assumption
on �⇤ to an assumption on �.

(1) For R 2 (0, 1], set vR(⌧) = R
2
/(R � |⌧ |2)2 on the open disc �R. Show that

�⌧ log vR = 4vR and v1|�R
6 vR.

(2) Express the equality ⇢⇤ vol�⇤ = vol� as (|⇢(⌧)|| log ⇢(⌧)|)�2 = v1 · |⇢0(⌧)|�2.
(3) Set g(⌧) = f � ⇢(⌧) · |⇢0(⌧)|2. Prove that the nonnegative real function g

satisfies �⌧ log g(⌧) > 4g(⌧). [Hint : Show that for a C
2 function h(t), �⌧ (h � ⇢) =

(�th) � ⇢ · |⇢0(⌧)|2.]
(4) Let U(R) ⇢ �R be the open set where g(⌧) > vR(⌧). Show that log(g/vR) is

subharmonic on U(R). [Hint : Use that U(R) ⇢ U(1).]
(5) Show that @U(R) \ @�R = ?. Deduce that U(R) = ?. [Hint : Use that

log(g/vR) = 0 on @U(R) and the maximum principle.]
(6) Conclude that g 6 vR on �R and the proof of Lemma 6.3.33. [Hint : Pass to

the limit R! 1.]

Exercise 6.9. Let R 2 (0, 1) and �⇤
R

be as in Exercise 6.7. Let f be a C
2 function

on �⇤
R

such that limt!0 |f(t)|/L(t) = 0 (in particular, f is L
1

loc
on �R). We consider

the Laplace operator �t = 4@t@t. Then �tf is a distribution on �R and �t(f|�⇤
R
)

is a continuous function on �⇤
R
. The aim of this exercise is to prove that if ⌘ :=

�t(f|�⇤
R
) is L

1

loc
on �R, then �tf = ⌘ as distributions on �R, i.e., �tf does not

have components supported at the origin.

(1) Let  : R+ ! [0, 1] be decreasing a C
1 function such that  (r) = 1 for

r 2 [0, 1/2] and  ⌘ 0 for r > 1. For any N > 0, set

 N (r) = N (re
N
) + L(r)(1�  (reN )).

Show the following properties of the C
1 function  N on (0, 1):

(a) 0 6  N (r) 6 min(N + log 2,L(r)) and  N (r) ⌘ N if L(r) > N + log 2,
(b)  N (t)! L(r) and  N (r)/N ! 0 pointwise when N !1,
(c) setting �t N (r) = @

2

r
 N (r) and @t N (r) = @

t
 N (r) =

1

2
@r N (r), show

that the functions �t N , @t N , @
t
 N are supported on the set

{r | L(r) 6 N + log 2} ⇢ {r | L(r) 6 2N},

and Z

�R

|@t N (r)| vol,
Z

�R

|@
t
 N (r)| vol,

Z

�R

| N (r)| vol

are bounded by a constant independent of N .
(2) Let � 2 C

1
c
(�R) be a test function. Show that
Z

�
⇤
R

f�t[(1�  N/N)�] vol ����!
N!1

Z

�
⇤
R

f�t� vol
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by showing first Z

�
⇤
R

f(1�  N/N)�t� vol ����!
N!1

Z

�
⇤
R

f�t� vol .

[Hint : Use that |f | |�t N |/N 6 2(|f |/L(r))|�t N | and similarly with @r N .]
(3) Using that (1�  N/N)� is a test function on �⇤

R
, show that

Z

�
⇤
R

f�t[(1�  N/N)�] vol =

Z

�
⇤
R

⌘(t)[(1�  N/N)�] vol ����!
N!1

Z

�
⇤
R

⌘(t)�(t) vol,

and conclude.

Exercise 6.10. Same setting as in Exercise 6.9. Prove that if there exists ⌘ 2 L
1

loc
(�R)

such that �t(f|�⇤
R
) > ⌘|�⇤

R
, then the distribution �tf on �R is in fact L

1

loc
, i.e.,

�t(f|�⇤
R
) is L

1

loc
on �R and coincide with �tf as distributions.

(1) Prove that �tf > ⌘ as distributions on �R, i.e., for any nonnegative test
function � on �R,

h�tf,�i >
Z

�
⇤
R

⌘ · � vol .

[Hint : Keep 6.9(1) and (2) as they are with a nonnegative �, and in (3) replace the
equality with an inequality.]

(2) Deduce that the distribution �tf � ⌘, hence also �tf , is the sum of a L
1

loc

function on �R and a multiple of the Dirac mass at the origin. [Hint : Use [Hör03,
Th. 2.1.7] and the theorem of Radon-Nikodym.]

(3) Apply Exercise 6.9 to conclude.

Exercise 6.11. Let (H1, D1, h1) and (H2, D2, h2) be nilpotent harmonic bundles. Show
that (H1⌦H2, D, h) and Hom(H1,H2), D, h) are also nilpotent. [Hint : Use Exercise
4.8.]

Exercise 6.12. Let E be a finite dimensional C-vector space with a Hermitian metric h

and a nilpotent endomorphism ✓
0
0
.

(1) Show that there exists a h-orthonormal basis " of E in which the matrix A

of ✓0
0

is strictly upper triangular.
(2) Let ✓00

0
be the h-adjoint of ✓0

0
, with matrix t

A. Show that there exists a positive
constant c depending only on dimE such that k[A,

t
A]k > ckAk2. [Hint : By homo-

geneity and compactness of the sphere kAk = 1, it is enough to show that the function
A 7! k[A,

t
A]k (A strictly upper triangular) does not vanish on the sphere; use then

that the only normal and nilpotent matrix is the zero matrix.]

6.6. Comments

The fundamental work of Griffiths on the period mapping attached to a polarized
variation of Hodge structure (see [Gri70b, Del71c] and the references therein) leads
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to the analysis of degenerations of such variations, which was achieved in the funda-
mental article of Schmid [Sch73] (see also [GS75] and the references therein). The-
orems 6.3.2(1) and 6.3.5, together with Theorems 6.7.3 and 6.8.7 are due to Schmid
in loc. cit., and Theorem 6.3.2(2) is due to Borel (see [Sch73, Lem. 4.5]).

While Schmid’s theory focuses on variations having unipotent local monodromies,
it is well-known that the results can be extended to the case of quasi-unipotent local
monodromies. The more general case treated here of local monodromies whose eigen-
values have absolute value equal to 1 is known to be a consequence of the methods of
Schmid (see [Del87, §1.11]).

The idea of focusing on the harmonic aspect of the theory is due to Simpson
[Sim88, Sim90]. A similar approach is considered in [S-Sch22], with a more precise
estimate on constants involved, that can prove useful in higher dimensions. The
proof of the semi-simplicity theorem 6.4.1 given here, in the framework of nilpotent
harmonic bundles, is due to Simpson. The idea of considering the analytic degree
deg

an is instrumental in his proof of stability of general harmonic flat bundles.



CHAPTER 6

VARIATIONS OF HODGE STRUCTURE ON CURVES
PART 2: LIMITING HODGE PROPERTIES

Summary. We keep the local setting of Part 1. We state the fundamental
theorems of Schmid concerning the limiting behavior of the Hodge filtration and
give an idea of the proof, together with the example of the Deligne harmonic
model.

6.7. The holomorphic Hodge filtration

We keep the setting of Section 6.3 and we assume (as justified by Theorem 6.3.2(2))
that the eigenvalues of the monodromy have absolute value equal to 1. We wish to
extend the filtration F

•V as a filtration F
•V⇤ by sub-bundles satisfying the Griffiths

transversality property with respect to the meromorphic connectionr. A first natural
choice would be to set

F
pV⇤ := j⇤F

pH \ V⇤,

where j : �
⇤
,! � denotes the inclusion. This choice can lead to a non-coherent

O�-module: for example, if p ⌧ 0, we have F
pV = V and we would get F

pV⇤ = V⇤,
which is not O�-coherent. Since we have at our disposal the locally free O�-modules
V�

⇤ for any � 2 R, it may be more clever to consider, for any such �,

(6.7.1) F
pV�

⇤ := j⇤F
pH \ V�

⇤ ,

where the intersection is taken in j⇤V. The main question to address is whether
these sheaves are O�-coherent. If so, being torsion free, they would be O�-locally
free. Furthermore, we may wonder whether the filtration F

•V�

⇤ of V�

⇤ which clearly
satisfies F pV�

⇤ = 0 for p� 0 and F
pV�

⇤ = V�

⇤ for p⌧ 0) is a filtration by sub-bundles,
i.e., whether the quotients F

pV�

⇤/F
p+1V�

⇤ are locally free for any p 2 Z.
According to Theorem 6.3.2, we can interpret sections of F pV�

⇤ on � as being the
sections of F pV on�⇤ whose h-norm on any punctured closed sub-disc (�0)⇤ (�0 ⇢ �)
is bounded by C"|t|��" for any " > 0 and some C" > 0. Let us already notice:



146 CHAPTER 6. VHS ON CURVES. PART 2: LIMITING HODGE PROPERTIES

6.7.2. Lemma.
(1) For k > 0 and any � 2 R, we have

F
pV�+k

⇤ = t
k
F

pV�

⇤ .

(2) The following properties are equivalent:
(a) there exists � 2 R such that, for any p 2 Z, F pV�

⇤ is OX-coherent,
(b) for any � 2 R, the filtration F

•V�

⇤ of V�

⇤ is a filtration by sub-bundles.

Proof. The first point is clear since V�+k

⇤ = t
kV�

⇤ , as well as the implication (2b))(2a).
Let us show (2a) =) (2b). Let � be such that F

pV�

⇤ is OX -coherent for any p and
let � in R. By the first point, any F

pV�+k

⇤ is OX -coherent, so we can assume that
� 6 �. Then F

pV�

⇤ = (F
pV�

⇤ ) \ V�

⇤ and, since both terms in the right-hand side are
coherent, so is their intersection.(1)

Moreover, by the coherence property and the first point, dim(gr
p

F
V�

⇤/gr
p

F
V�+1

⇤ ) >
rk gr

p

F
V for each p. Since the sum over p of both sides are equal (as V�

⇤ is locally free),
they are equal for each p, hence gr

p

F
V�

⇤ is locally free.

6.7.3. Theorem. For any � 2 R, the filtration F
pV�

⇤ is a filtration of V�

⇤ by sub-bundles.

Proof. According to Lemma 6.7.2, it is enough to prove that, for any p and any �, the
OX -module F

pV�

⇤ is coherent. Let us fix p. Since we already know that V�

⇤ =V�

mod

(Theorem 6.3.2), it is enough to show that the Hermitian holomorphic bundle
(F

pV, h), where h is the metric induced by h on V, is moderate. As noticed in Remark
6.2.7(1), some care has to be taken. Exercise 4.4(7) together with Simpson’s estimate
(Theorem 6.3.9) show that (F

pV, h) satisfies the criterion of Theorem 6.2.9 for each
p 2 Z. Therefore, (F pV, h) is moderate.

6.8. The limiting Hodge-Lefschetz structure

We will now describe the limiting Hodge-Lefschetz structure attached to a polarized
variation of C-Hodge structure (H, S) of weight w on �⇤.

6.8.1. Convention. We use the simplified setting as in Proposition 5.2.16 and we now
write (H, S) as ((V,r, F •V), S) (see Definition 5.4.3, and 5.4.1 for S).

For every � 2 (�1, 0], we define the object gr
�
H as follows. We set

gr
�
(V,r, F •

V) = (gr
�V⇤, F

•
gr

�V⇤),

which is equipped with the nilpotent endomorphism N induced by the action of
�(t@t � �):

(gr
�V⇤, F

•
gr

�V⇤)
N��! (gr

�V⇤, F [�1]•gr�V⇤).
It remains to define the sesquilinear pairing gr

�S

(1)Indeed, the sum (F pV�

⇤ ) + V�

⇤ is clearly locally of finite type in V⇤, hence coherent. Then one
deduces the desired coherence from the isomorphism

⇥
(F pV�

⇤ ) + V�

⇤
⇤
/V�

⇤ ' (F pV�

⇤ )/(F
pV�

⇤ ) \ V�

⇤ .
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6.8.a. Behaviour of sesquilinear pairings. We will make explicit the behaviour
of sesquilinear pairings (see Definition 4.1.2) with respect to the functor (V,r) 7!
(Ho

,T) of Theorem 6.2.4. We assume in this section that the eigenvalues of the
residue of r are real, that is, each matrix D� occurring in Corollary 6.2.5 is equal
to zero. This is justified by Theorem 6.3.2(2).

We keep the notation of Exercise 6.1(3), but we choose the indices in (�1, 0] instead
of [0, 1). Let �0,�00 2 (�1, 0] and let s : J�0,p|�⇤ ⌦ J�00,q|�⇤ ! C1

�⇤ be a sesquilinear
pairing as in Definition 5.4.1. We denote by v

0
�0,p (resp. v00

�00,q) the basis considered
in Exercise 6.1. Recall Notation 6.2.8. The compatibility of s with the connection
enables us to simplify its expression.

6.8.2. Lemma. For i = 0, . . . , p and j = 0, . . . , q, there exist complex numbers ck(i, j)

such that

(6.8.2 ⇤) s(v
0
�0,i, v

00
�00,j) =

(
0 if �0 6= �

00
,

|t|2�
Pmin(i,j)

k=0
ck(i, j) L(t)

k
/k! if �0 = �

00
=: �.

Proof. Let us first assume that i = j = 0. If we restrict on an open sector cen-
tered at the origin on which t

�
0

and t
�
00

are univalued holomorphic functions, then
s(t
��0

v
0
�0,0, t

��00
v
00
�00,0) is constant since it is annihilated by @t and @

t
. Therefore,

s(v
0
�0,0, v

00
�00,0) = ct

�
00
t
�
0

on such a sector. But s(v
0
�0,0, v

00
�00,0) is a C

1 function on
the whole �⇤, hence �

0 � �
00 2 Z unless s(v

0
�0,0, v

00
�00,0) = 0. Since we assume

�
0
,�
00 2 (�1, 0], we obtain the assertion in this case.

In general, we argue similarly by using that, if ⌘ 2 C
1
(�
⇤
) satisfies (t@t)

i+1
⌘ =

(t@
t
)
j+1

⌘ = 0, then ⌘ =
Pmin(i,j)

k=0
ckL(t)

k
/k!.

We conclude that any sesquilinear pairing s : J�0,p|�⇤ ⌦ J�00,q|�⇤ ! C1
�⇤ is zero if

�
0 6= �

00, and we are reduced to considering sesquilinear pairings

s : J�,p|�⇤ ⌦ J�,q|�⇤ �! C1
�⇤ .

Let us notice that, due to the explicit expression of s, we have

s(v
0
, t@tv

00) = s(t@tv
0
, v00).

We still denote by v
0
�,p

(resp. v00
�,q

) the basis induced on gr
�J0

�,p
= O�v

0
�,p

/tO�v
0
�,p

(resp. gr�J00
�,q

). We define gr
�
s by the formula

(6.8.3) (gr
�
s)(v

0
�,i

, v
00
�,j

) = c0(i, j).

We conclude from the previous remark that (gr�s)(v0,Nv00) = (gr
�
s)(Nv

0
, v00) (with N

induced by �(t@t � �)), that is, N is self-adjoint with respect to gr
�
s.

We can now define the pairing gr
�
s : gr

�V⇤ ⌦C gr�V⇤ ! C by using the decompo-
sition (6.5.1) for (V⇤,r) and by applying (6.8.3) to each pair of terms corresponding
to the same � 2 (�1, 0]. This can also be obtained by a residue formula, without
explicitly referring to such a decomposition and showing also the independence with
respect to it (see Exercise 6.13). We can regard gr

�
s as a morphism of Lefschetz pairs

(6.8.4) gr
�
s : (gr

�V⇤, 2⇡iN) �! (gr
�V⇤, 2⇡iN)

⇤
,

as 2⇡iN is skew-adjoint with respect to s.
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We note that the coefficients c0(i, j) (for i, j varying) determine all the coefficients
ck(i, j) (0 6 k 6 min(i, j)). Indeed, if i > 1 we find, by compatibility of s with r,

|t|2�
min(i,j)X

k=1

ck(i, j)
L(t)

k�1

(k � 1)!
= �(t@t � �)s(v0�,i, v00�,j)

= s(v
0
�,i�1, v

00
�,j

) = |t|2�
min(i�1,j)X

k=0

ck(i� 1, j)
L(t)

k

k!
,

hence ck(i, j) = ck�1(i � 1, j) for k > 1. In such a way one reconstructs s from the
sesquilinear pairings gr

�
s by means of (6.8.2 ⇤).

6.8.5. Lemma. The pairing gr
�
s induces a pairing gr

M

• gr
�V⇤⌦CgrM�•gr

�V⇤ ! C, which
is non-degenerate if and only if s is non-degenerate.

Proof. Being a morphism of Lefschetz pairs, gr
�
s is therefore compatible with the

monodromy filtrations (see Section 3.3.a). For the second assertion, we can assume
that only terms J�,p (with the same � 2 (�1, 0]) occur in the decomposition (6.5.1).
Note that grMgr

�
s is an isomorphism if and only if gr�s is so (Exercise 3.8). In order

to conclude, we can now interpret Lemma 6.8.2 as giving an asymptotic expansion of s
when |t|! 0, and (6.8.3) as taking its dominant part. We then clearly obtain that s is
non-degenerate near the origin if and only if gr�s is non-degenerate. The equivalence
with non-degeneracy on the whole disk follows then from Remark 5.4.2.

6.8.6. Example (A symbolic identity). Let ⌘ 2 C
1
c
(�) be any test function. Arguing

as in Exercise 6.13(1), one shows that the function

F (s) =

Z

�

|t|2s�2 ⌘(t) dt ^ dt

is holomorphic on the half-space Re s > 0 and extends as a meromorphic function on
the s-plane with a simple pole at s = 0. An integration by parts gives

(6.8.6 ⇤) F (s) =
1

s2

Z

�

|t|2s @t@t⌘(t) dt ^ dt =

Z

�

|t|2s � 1

s2
@t@t⌘(t) dt ^ dt,

[for the first equality, apply Stokes formula first to d(|t|2s⌘(t)dt/t) and then to
d(|t|2s@t⌘(t)dt); for the second one, apply Stokes formula to obtain the vanishing
of

R
�
@t@t⌘(t) dt ^ dt] and expanding with respect to s (taking into account that

|t|2s = e
�sL(t)) gives the residue:

Ress=0 F (s) = �
Z

�

L(t) @t@t⌘(t) dt ^ dt,

and the regular part Freg(s) := F (s)� 1

s
Ress=0 F (s) of F (s) writes

Freg(s) =

Z

�

|t|2s � 1

s
@t@t⌘(t) dt ^ dt.

Note that, by Exercise 6.13(1) and the residue interpretation, if � is a cut-off function,
we have Z

�

L(t) @t@t�(t) dt ^ dt = 2⇡i .
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Let N be a nilpotent element of some C-algebra. We identify |t|�2N with e
LtN,

which is a polynomial in L(t) with coefficients in this algebra. We are interested in
rewriting the symbolic expression

FN(s) :=

Z

�

|t|2s�2�2N ⌘(t) dt ^ dt =

1X

n=0

✓Z

�

L(t)
n

n!
|t|2s�2 ⌘(t) dt ^ dt

◆
N

n

(which is in fact a finite sum) in a way that lets us analyze how it behaves near s = 0.
Formula (6.8.6 ⇤) becomes the symbolic identity

FN(s) =

Z

�

|t|2s�2N

(N� s)2
@t@t ⌘(t) dt ^ dt

=

Z

�

|t|2s�2N � 1

(N� s)2
@t@t ⌘(t) dt ^ dt.

(6.8.6 ⇤⇤)

It should be understood as an identity between two families of holomorphic functions
– namely the coefficients at N

p on both sides – on the half-space Re s > 0. Indeed,
writing for Re s large enough, we can write

d(|t|2s�2N⌘dt/t) = (s�N)|t|2s�2N⌘dt ^ dt+ |t|2s�2N@t⌘dt ^ dt/t,

d(|t|2s�2N@t⌘dt) = �|t|2s�2N@t@t⌘dt ^ dt� (s�N)|t|2s�2N@t⌘dt ^ dt/t.

Since integration on � of the left-hand terms yields zero as the forms have compact
support, we obtain the desired equality for Re s � 0, and it holds as an equality of
meromorphic functions by unique analytic continuation. The (matrix) function FN(s)

has a pole of higher order at s = 0, with residue equal to that of F (s) Id however,
and the regular part of FN(s) writes

FN,reg(s) =

Z

�

|t|2s�2N � 1

(N� s)
@t@t ⌘(t) dt ^ dt.

In particular, evaluating at s = 0 we find

FN,reg(0) =

Z

�

|t|�2N � 1

N
@t@t ⌘(t) dt ^ dt =

X

p>1

N
p�1

Z

�

L(t)
p

p!
@t@t ⌘(t) dt ^ dt.

6.8.b. The limiting Hodge-Lefschetz structure. We continue with Convention
6.8.1. In order to obtain a Hodge-Lefschetz structure, we use the sesquilinear pairing
gr

�S : gr
�V⇤ ⌦C gr�V⇤ ! C defined by (6.8.3) (see also Exercise 6.13).

6.8.7. Theorem. Let (H, S) be a polarized variation of C-Hodge structure of weight w
on �⇤. Then for every � 2 (�1, 0], the data

(gr
�
H,N, gr

�
S)

form a polarized Hodge-Lefschetz structure with central weight w (Definitions 3.4.3
and 3.4.14).

We will not give a proof of this theorem and refer to [S-Sch22] for a proof of it,
by means of the analysis of the period mapping. We will content ourselves with
illustrating it on the model of Section 6.3.c (from which we keep the notation), that
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we enrich with a Hodge filtration. So we start from a polarized sl2-Hodge structure
(H

o
,N, S

o
) with central weight w 2 Z, so that S

o and h
o are related by (see Defini-

tion 3.2.7(2))
h
o
(u

o
, vo) = S

o
(wu

o
,Co

D
vo).

Recall that, since X,Y are of type (�1,�1), they anti-commute with C
o

D
, while H

commutes with C
o

D
. Let us now examine the commutation of w with C

o

D
. Let us

consider the modified Weil operator C
abs

D
on H

o obtained by removing in CD the
dependence in ` but keeping the dependence in p, that is, by setting

(6.8.8) C
abs

D
= (�1)w�p = (�1)`Co

D
on (H

o

`
)
p,w+`�p

for any ` 2 Z. Since w sends (H
o

`
)
p�`,w�p to (H

o

�`)
p,w+`�p, we have

C
o

D
w = wC

abs

D
.

We can then express the metric h(x, y) := S(wx,Co
D
y) as (see Exercise 3.1(6))

h(x, y) = S(x,wCo
D
y) = S(x,Cabs

D
wy).

Let Cabs

H
and w be the matrices of Cabs

D
and w in the orthonormal basis vo. Then the

matrix of So in this basis is
S
o
:= C

abs

H
·w,

since C
abs

H
is real (its entries are ±1 or 0), as well as the matrix w.

We consider the C
1 bundle H on �⇤ with flat connection D as in Definition

6.3.16, that we equip with the metric h and orthonormal frame " as in Definition
6.3.20. It has a holomorphic frame v = 1 ⌦ v

o, which is now further decomposed as
(v

p
)p2Z, as well as the basis " defined by (6.3.18).
Since, for each p 2 Z, Y sends F p

H
o to F

p�1
H

o and X sends it to F
p+1

H
o, while H

preserves F
p
H

o, (6.3.19) now reads

(6.8.9) v
p

`,j
= |t|�L(t)`/2�j

h
"
p

`,j
+
P

k>1
c`,j,kL(t)

�k
"
p+k

`,j+k

i

We denote by Hp,w�p the C
1 bundle with basis "

p on �⇤, giving rise to a de-
composition H =

L
p
Hp,w�p, and by F

pH the C
1 sub-bundle of H generated by

the sub-basis ("
p
0
)p0>p, equivalently (due to (6.8.9)), the sub-basis (v

p
0
)p0>p. This is

clearly a holomorphic sub-bundle, either because D00vp
= 0, or because the matrix M

00

does not decrease p. Then F
pV := KerD

00
V|FpH is the O�⇤ -submodule of V = O�⇤ · v

generated by the elements of vp
0

`,j
for p

0 > p and `, j arbitrary. Since V�

⇤ = O� · v,
we have F

pV�

⇤ = O� ·v>p, and the O�-coherence is clear. Moreover, by construction,
Griffiths transversality holds for F

•V�

⇤ and the filtration induced on gr
�V⇤ = Ho is

equal to F
pHo.

Let us now analyze the polarization. We define the sesquilinear form S on H by
the expected rule

S(•, •) = h(•, (CD)
�1•) = h(•,CD

•),

where h is the metric for which " is an orthonormal basis and CD is relative to the
decomposition H =

L
Hp,w�p. By definition, when restricted to any point x of �⇤,



6.9. EXERCISES 151

the sesquilinear form S is a polarization of the Hodge structure Hx. Furthermore, the
matrix of CD in the h-orthonormal frame " is equal to C

abs

H
, so the matrix of S in the

frame " is C
abs

H
.

6.8.10. Lemma. The sesquilinear form S is a polarization of the variation of Hodge
structure H on �⇤ which satisfies gr

�S = S
o.

We thus find that (gr
�
H,N, gr

�S), being identified with (H
o
,N, S

o
), is a polarized

Hodge-Lefschetz structure with central weight w.

Proof. In order to prove that S is D-horizontal, let us first compute the matrix S of S
in the holomorphic basis v. According to (6.3.18) and Exercise 6.5, we find

S =
t
P� C

abs

H
P� = |t|2�L(t)H /2

e
Y
C
abs

H
e
X
L(t)

H /2

= C
abs

H
|t|2�L(t)H /2

e
�Y

e
X
L(t)

H /2

= C
abs

H
|t|2�L(t)H /2

e
�X

wL(t)
H /2

= C
abs

H
|t|2�e�L(t)X L(t)

H /2
wL(t)

H /2

= C
abs

H
|t|2�e�L(t)X w

= |t|2�eL(t)X C
abs

H
w = C

abs

H
w |t|2�eL(t)Y.

Recall (see (6.3.16 ⇤)) that v · t�� Id+Y is a horizontal basis of the connection, and the
matrix of S in this basis is, since the transpose of Y is X and both are real,

t
�� Id+X|t|2�eL(t)X Cabs

H
w t
�� Id+Y

= t
X
e
L(t)X

C
abs

H
t
Y
= t

X
C
abs

H
e
L(t)Y

t
Y
.

Horizontality of S follows thus from the identities:

t@t(t
X
e
L(t)X

) = 0 and t@
t
(e

L(t)Y
t
Y
) = 0.

In order to prove the second part of the lemma, let us show that the matrix of
gr

�S is equal to S
o. By Exercise 6.13 (items (2) and (1)) the matrix of gr�S in the

basis v
o is given by

Ress=���1

Z

C
|t|2s S �(t) i

2⇡
dt ^ dt

= Ress+�=�1

Z

C
|t|2(s+�)

C
abs

H
w e

L(t)Y
�(t)

i

2⇡
dt ^ dt

= Ress+�=�1

Z

C
|t|2(s+�)

C
abs

H
w �(t)

i

2⇡
dt ^ dt

= C
abs

H
w = S

o
.

6.9. Exercises

Exercise 6.13 (A residue formula for gr
�
s). Let �(t) be a C

1 function with compact
support on � which is ⌘ 1 near t = 0 (that we simply call a cut-off function near
t = 0). Assume that �(t) only depends on |t| (e.g. �(t) = e�(|t|2) where e� is C

1).



152 CHAPTER 6. VHS ON CURVES. PART 2: LIMITING HODGE PROPERTIES

(1) Show that the function

s 7�! (s+ 1)

Z

C
|t|2s�(t) i

2⇡
dt ^ dt

is holomorphic for Re s > �1 and extends as an entire function. Show that

Ress=�1

Z

C
|t|2s�(t) i

2⇡
dt ^ dt = 1.

[Hint : By expressing the integrand with respect to the real variables x, y with
t = x+ i y, check the sign of the left-hand side; then compute with polar coordinates
up to sign.]

(2) By differentiating k times for Re s > �1, show that
Z

C
|t|2s L(t)

k

k!
�(t)

i

2⇡
dt ^ dt =

(�1)k

(s+ 1)k+1
+ Fk(s),

where Fk(s) is holomorphic for Re s > �1 and extends as an entire function. Conclude
that, for k > 1,

Ress=�1

Z

C
|t|2s L(t)

k

k!
�(t)

i

2⇡
dt ^ dt = 0.

(3) Let s : V0⌦V
00 ! C1

�⇤ be a sesquilinear pairing. For � 2 (�1, 0] and sections v0

of V0�⇤ and v
00 of V00�⇤ , with respective classes [v

0
] and [v

00
] in gr

�V0⇤ and gr
�V00⇤ , show

the formula

(gr
�
s)([v

0
], [v00]) = Ress=���1

Z

C
|t|2ss(v0, v00)�(t) i

2⇡
dt ^ dt.

[Hint : Argue (in a simpler way) as in Proposition 12.5.4.]

6.10. Comments

The idea of defining the limiting Hodge filtration by a formula like (6.7.1) goes back
to [Sai84], where M. Saito was inspired by the work of Steenbrink and Varchenko.
This idea was further developed in his subsequent works, abutting to [Sai88]. The
approach followed for the proof of Theorem 6.7.3 is that of Simpson [Sim88, Sim90],
which was then extended in higher dimension by T. Mochizuki [Moc11a, Chap. 21]
and revisited more recently by Deng [Den22]. In [S-Sch22], the results are obtained
by means of the analysis of the period mapping and its convergence properties, more
in the spirit of the fundamental work of Schmid [Sch73].



CHAPTER 6

VARIATIONS OF HODGE STRUCTURE ON CURVES
PART 3: THE HODGE-ZUCKER THEOREM

Summary. This part provides a proof of the Hodge-Zucker theorem 6.11.1. The
notion of middle extension of a local system appears as the topological analogue
of the L

2 extension of a Hermitian bundle with flat connection, and the main
results consist in the algebraic computation of the L

2 deRham and Dolbeault
complexes.

6.11. Introduction

Our aim in this part is to present the proof of the Hodge-Zucker theorem 6.11.1 on
a punctured compact Riemann surface, which is a Hodge theorem “with singularities”.
We mix the setting of Sections 4.2.c and 4.2.e, that is, we consider a polarized variation
of Hodge structure (H, S) of weight w on a punctured compact Riemann surface
X
⇤
,

j�! X.

6.11.1. Theorem (Hodge-Zucker). In such a case, the cohomology H
k
(X, j⇤H) carries

a natural polarized Hodge structure of weight w + k (k = 0, 1, 2).

The way of using L
2 cohomology is exactly the same as in Section 4.2.e, provided

that we replace D
0 and D

00 with D0 and D00. Then we are left with the corresponding
L
2 Poincaré and Dolbeault lemmas.
In any case, it is important to extend in some way the variation to the projective

curve in order to apply algebraic techniques. What kind of an object should we
expect on the projective curve? On the one hand, the theorems of Schmid enable us
to extend each step of the Hodge filtration as an algebraic bundle over the curve. On
the other hand, Zucker selects the interesting extension among all possible extensions
in order to obtain the Hodge-Zucker theorem. This is the middle extension (Vmid,r)
of the polarized variation of Hodge structure. This selection is suggested by the L

2

approach to the Hodge theorem. As in the previous parts of this chapter, we mainly
work in a neighbourhood � of a puncture.
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6.12. The holomorphic de Rham complexes

6.12.a. The meromorphic deRham complex. Let (V,r) be any holomor-
phic bundle with connection on �⇤. Recall that the holomorphic de Rham com-
plex DR(V,r) is the complex

0 �! V
r���! ⌦

1

�⇤ ⌦ V �! 0,

whose cohomology is nonzero only in degree zero, with H
0
DR(V,r) = Hr := Kerr.

Assume now that (V⇤,r) is a meromorphic bundle with connection on �, having a
regular singularity at the origin and set V = V⇤|�⇤ . Let us consider the meromorphic
de Rham complex DR(V⇤,r), defined as the complex

0 �! V⇤
r���! ⌦

1

�
⌦ V⇤ �! 0.

Its restriction to�⇤ coincides with DR(V,r), hence has nonzero cohomology in degree
zero only. In other words, H1

DR(V⇤,r) is a skyscraper sheaf supported at the origin,
and H

0
DR(V⇤,r) is some sheaf extension (across the origin) of the locally constant

sheaf Vr := Kerr. We will determine these sheaves.
One can filter the de Rham complex, so that each term of the filtration is a complex

whose terms are free O�-modules of finite rank: for every �, we set

(6.12.1) V
�
DR(V⇤,r) = {0 �! V�

⇤
r���! ⌦

1

�
⌦ V��1

⇤ �! 0}.

Since the action of t is invertible on V⇤, the latter complex is quasi-isomorphic to the
complex

V
�
DR(V⇤,r) = {0 �! V�

⇤
tr���! ⌦

1

�
⌦ V�

⇤ �! 0}.

6.12.2. Lemma (The de Rham complex of the canonical meromorphic extension)
The inclusion of complexes V

�
DR(V⇤,r) ,! DR(V⇤,r) is a quasi-isomorphism

provided � 6 0. Moreover, the germs at the origin of these complexes can be computed
as the complex of finite dimensional vector spaces

0 �! gr
0V⇤

t@t���! gr
0V⇤ �! 0.

As a consequence, the natural morphism (in the derived category)

DR(V⇤,r) �! Rj⇤j
�1

DR(V⇤,r) = Rj⇤DR(V,r) ⇠ � Rj⇤V
r

is an isomorphism.

Proof. For the first statement, we notice that it is enough to check that for every
� 6 0 and any � < �, the inclusion of complexes V

�
DR(V⇤,r) ,! V

�
DR(V⇤,r) is

a quasi-isomorphism. This amounts to showing that the quotient complex

0 �! V�

⇤/V
�

⇤
@t���! V��1

⇤ /V��1
⇤ �! 0

is quasi-isomorphic to zero for such pairs (�, �), and an easy inductive argument
reduces to proving that, for every � < 0, the complex

0 �! gr
�V⇤

t@t���! gr
�V⇤ �! 0

is quasi-isomorphic to zero. The result is now easy since t@t�� is nilpotent on gr
�V⇤.
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For the second statement, we are reduced to proving that the germ at the origin
of the complex

0 �! V>0

⇤
t@t���! V>0

⇤ �! 0

is quasi-isomorphic to zero.(2)

Arguing as in Exercise 6.1, one can assume that V⇤ has rank 1, and has a basis v�

(� 2 [0, 1)) such that tr@t
v� = � · v� .

(1) If � 6= 0, then V>0

⇤ = V0

⇤ = O�v� and, setting O = O�,0, the result follows
from the property that (t@t + �) : O! O is an isomorphism (easily checked on series
expansions).

(2) If � = 0, then V>0

⇤ = tV0

⇤ = tO�v0, and the result follows from the property
that (t@t + 1) : O! O is an isomorphism, proved as above.

For the last statement, we first note that the morphism is functorial in (V⇤,r).
We can therefore reduce to the case of rank 1 by the argument of Exercise 6.1. If
� 6= 0, the isomorphism is obvious since both complexes are quasi-isomorphic to zero.
If � = 0, the isomorphism property is checked in a straightforward way.

6.12.b. The deRham complex of the middle extension. This de Rham com-
plex will be the main object for the Hodge-Zucker theorem 6.11.1. We first intro-
duce the middle extension (Vmid,r). We know that V⇤ is generated by V>�1

⇤ as an
O�(⇤0)-module (with connection). On the other hand, we define Vmid as the O�-sub-
module of V⇤ generated by V>�1

⇤ through the iterated action of r@t
(and not t

�1).
In other words,

(6.12.3) Vmid :=

X

j>0

(r@t
)
j V>�1
⇤ ⇢ V⇤.

(See Exercise 6.2(6).) The main properties of Vmid are developed in Exercise 6.14.
We now compute the de Rham complex of the middle extension (Vmid,r). For

� 2 R, let us denote by d�e = �[��] the smallest integer bigger than or equal to �.
We have � := � � d�e 2 (�1, 0]. We set, for any � 2 R (inductively if � 6 �1),

(6.12.4) V�

mid
=

8
>><

>>:

V�

⇤ if � > �1,
(r@t

)
k V�

⇤ + V>�

⇤ if � 6 �1,
with k = �d�e = [��], � = � � d�e,

where >� is the next �0 such that gr
�
0
V⇤ 6= 0. For � 6 �1, the formula also reads

(6.12.5) V�

⇤ = (r@t
)
k V�

⇤ +

k�1X

j=0

(r@t
)
j V>�1
⇤ .

For example, V�1
mid

= @tV
0

⇤ + V>�1
⇤ . We also set gr

�Vmid := V�

mid
/V>�

mid
. We note

that, by Exercise 6.14(4), gr�Vmid is naturally included in gr
�V⇤ for each � and is

preserved by the nilpotent endomorphism N.

(2)This is obviously not true away from the origin.
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6.12.6. Definition (The morphisms can and var). We define can : gr
0Vmid ! gr

�1Vmid

as the homomorphism induced by �@t and var : gr
�1Vmid!gr

0Vmid as that induced
by t, so that

var � can = N : gr
0Vmid �! gr

0Vmid and can � var = N : gr
�1Vmid �! gr

�1Vmid.

By the definition of Vmid, can is onto and var is injective. In other words, the corres-
ponding quiver (gr0Vmid, gr

�1Vmid, can, var) is a middle extension quiver, in the sense
of Definition 3.3.10.

In a way similar to (6.12.1), the complex DR(Vmid,r) is filtered by the subcom-
plexes V

�
DR(Vmid,r) whose terms are thus O�-free of finite rank.

6.12.7. Lemma (The de Rham complex of the middle extension)
The inclusion of complexes V

�
DR(Vmid,r) ,! DR(Vmid,r) is a quasi-iso-

morphism provided � 6 0. Moreover, the germs at the origin of these complexes can
be computed as the complex of finite dimensional vector spaces

0 �! gr
0Vmid

@t���! gr
�1Vmid �! 0.

As a consequence, H1
DR(Vmid,r) = 0 and the natural morphism

H
0
DR(Vmid,r) �! j⇤V

r

is an isomorphism.

Proof. For the first statement, we argue as in Lemma 6.12.2, together with Exercise
6.14(5). The second statement is obtained similarly by using Exercise 6.14(6). The
last statement follows then from that of Lemma 6.12.2.

In particular, since t : V�1⇤ ! V0

⇤ is injective, it induces an isomorphism

(@tV
0

⇤ + V>�1
⇤ )

⇠�! (t@tV
0

⇤ + V>0

⇤ )

and we have

(6.12.8) {0! V0

⇤
t@t���! (t@tV

0

⇤ + V>0

⇤ )! 0} ' V
0
DR(Vmid,r)

⇠�! DR(Vmid,r).

We can refine the presentation (6.12.8) by using the lifted monodromy filtration
M•V

0

⇤. Indeed, the finite dimensional vector space gr
0V⇤ is equipped with the nilpo-

tent endomorphism induced by N = �t@t, hence is equipped with the corresponding
monodromy filtration M•gr

0V⇤ (see Lemma 3.3.1). We can then consider the lifted
monodromy filtration M`V

0

⇤ (see Definition 6.3.4).

6.12.9. Lemma. The complex DR(Vmid,r) is quasi-isomorphic to

{0 �! M0V
0

⇤
t@t���! M�2V

0

⇤ �! 0}.

Proof. Clearly, the complex in the lemma is a subcomplex of (6.12.8). Let us consider
the quotient complex. This is

(6.12.10) 0 �! (gr
0V⇤/M0gr

0V⇤)
t@t���! (image t@t/M�2gr

0V⇤) �! 0.
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Applying Lemma 3.3.7, we find that this complex is quasi-isomorphic to 0 (i.e., the
middle morphism is an isomorphism).

6.12.c. The holomorphic L
2 de Rham complex. The Hodge-Zucker theorem

6.11.1 relies on the L
2 computation of the hypercohomology of a de Rham complex,

since this L2 approach naturally furnishes a Hermitian form on the hypercohomology
spaces (see Section 4.2.e). In order to analyze the global L2 condition on a Riemann
surface, it is convenient to introduce it in a local way, in the form of an L

2 de Rham
complex. We will find in Theorem 6.12.15 the justification for focusing on the de Rham
complex of the middle extension.

Hermitian bundle and volume form. Assume that the holomorphic vector bundle V

on �⇤ is equipped with a metric h (equivalently, the C
1 bundle H = C1

�⇤ ⌦O�⇤ V is
equipped with such a metric). If we fix a metric on the punctured disc, with volume
element vol, we can define the L

2-norm of a section v of V on an open set U ⇢ �⇤ by
the formula

kvk2
2
=

Z

U

h(v, v) vol .

In order to be able to apply the techniques of Section 4.2.e, we choose a metric
on �⇤ which is complete in the neighbourhood of the puncture. We will assume that,
near the puncture, the volume form is given by

(6.12.11) vol =
dx

2
+ dy

2

|t|2L(t)2 , with x = Re t, y = Im t, L(t) :=
��log |t|2

�� = � log tt.

Let us be more explicit concerning the Poincaré metric. Working in polar coordi-
nates t = re

i✓ and volume element d✓ dr/r, vol can also be written as

vol = L(r)
�2 · d✓ dr/r

and the metric on E1

�⇤ is given by

kdr/rk = kd✓k = L(r).

We thus get a characterization of the L
2 behaviour of forms near the puncture:

f 2 L
2
(vol)() |log r|�1 f 2 L

2
(d✓ dr/r);(6.12.12)

0

! = f dr/r + g d✓ 2 L
2
(vol)() f and g 2 L

2
(d✓ dr/r);(6.12.12)

1

⌘ = h d✓ dr/r 2 L
2
(vol)() |log r|h 2 L

2
(d✓ dr/r).(6.12.12)

2

For example, given a section ! ⌦ v of ⌦1

�⇤ ⌦ V on an open subset of �⇤, where ! is
written in polar coordinates as f dr/r+g d✓, its L2-norm with respect to the metric h

and the volume vol is

(6.12.13) k! ⌦ vk2
2
= kfvk2

2
+ kgvk2

2
.

On the other hand, by Exercise 6.6, we have

(6.12.14) r
� |log r|`/2 2 L

2
(d✓ dr/r) () � > 0 or (� = 0 and ` 6 �2).
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The holomorphic L
2 de Rham complex. We will consider the holomorphic L

2 deRham
complex

DR(V⇤,r)(2) = {0! V⇤(2)
r���! (⌦

1

�
⌦ V⇤)(2) ! 0},

which is the subcomplex of the meromorphic de Rham complex DR(V⇤,r) defined in
the following way:

• (⌦
1

�
⌦ V⇤)(2) is the subsheaf of ⌦1

�
⌦ V⇤ consisting of sections whose restriction

to �⇤ is L
2 (with respect to the metric h on V and the volume vol on �⇤),

• V⇤(2) is the subsheaf of V⇤ consisting of sections v whose restriction to �⇤ is L
2

and such that rv belongs to (⌦
1

�
⌦ V⇤)(2) defined above.

Let us note that, by the very definition, we get a complex. The following theorem is
the first step toward an L

2 computation of j⇤Vr.

6.12.15. Theorem. If (V,r, h) underlies a polarized variation of C-Hodge structure,
we have (DRV⇤(2)) ' DRVmid = j⇤V

r.

Proof. We start by identifying the terms in degree one, since the L
2 condition is

simpler for them.

6.12.16. Lemma. We have (⌦
1

�
⌦ V⇤)(2) = (dt/t)⌦M�2V

0

⇤ and V⇤(2) = M0V
0

⇤.

Proof. Let v be a section of V⇤ such that (dt/t)⌦v is L2. Equivalently, both (dr/r)⌦v
and d✓⌦ v are L

2, that is, v is L
2, according to (6.12.12)

1
. If v is a section of M`V

�

⇤ ,
its norm behaves like r

�
L(r)

`/2 near the origin, and (6.12.14) implies that the L
2

condition is achieved iff � > 0 or � = 0 and ` 6 �2.
Similarly, one checks that the holomorphic sections of V which are L2 near the origin

are the sections of M0V
0

⇤, since one is led to test whether L(r)�1 kvk
h

is L2 or not. In
order to conclude that V⇤(2) = M0V

0

⇤, it is enough to check that t@t(M0V
0

⇤) ⇢ M�2V
0

⇤.
This immediately follows from the definition of the monodromy filtration M•.

This conclude the proof of Theorem 6.12.15, since DRVmid is expressed by the
formula of Lemma 6.12.9.

6.13. The L
2 de Rham complex and the L

2 Poincaré lemma

We take up the definitions of Section 4.2.d. The role of the complex manifold X

is played by �⇤ with its Poincaré metric, which induces a metric on the sheaves of
C
1 differential forms on �⇤, and the value of the L

2-norm of forms up to a positive
constant is given by the formulas (6.12.12).

Let H be a C
1 bundle H on �⇤, equipped with a Hermitian metric h. Correspond-

ingly, the sheaf Ei

�⇤ ⌦H is equipped with a metric, and the L
2 norm of a section of

this sheaf is given by a formula like (6.12.13). The various L2 sheaves are thus defined
on �⇤, and we can use the notion of L2-adapted basis (see Definition 4.2.21).
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6.13.1. Examples (of L2-adapted frames).
(1) The frame (dr/r, d✓) is an L

2-adapted frame of E1

�⇤ . If v is an L
2-adapted

frame of H, then (dr/r ⌦ v, d✓ ⌦ v) is an L
2-adapted frame of E1

�⇤ ⌦H.
(2) In the setting of the model of Section 6.3.c, the frame v is L2-adapted. Indeed,

the frame " · eX is L
2-adapted by 4.2.22(4), and v is obtained by a rescaling of the

latter, so 4.2.22(3) gives the assertion.

Let us group (with respect to � 2 (�1, 0]) the model frames of Section 6.3.c to
get a frame v = (v�)� of V>�1

⇤ and let v
o denote its restriction to V>�1

⇤ /tV>�1
⇤ .

It corresponds, via the canonical decomposition V>�1
⇤ /tV>�1

⇤ =
L

�>�1 gr
�V⇤, to

grouping of the bases v
o of Section 6.3.c.

Assume that (V⇤,r) underlies a polarized variation of Hodge structure (H, S)

on �⇤. By Theorem 6.8.7, V>�1
⇤ /tV>�1

⇤ underlies a polarized Hodge-Lefschetz struc-
ture, and we can define on it the model basis v

o as above.

6.13.2. Proposition (A criterion for L
2-adaptedness). With these assumptions, let v

0

be any holomorphic frame of V>�1
⇤ such that its restriction to V>�1

⇤ /tV>�1
⇤ is equal

to v
o. Then v

0 is L
2-adapted with respect to the Hodge metric.

Proof. According to Theorem 6.3.11 and Lemma 4.2.22(2), we can replace the Hodge
metric by the model metric, that we still denote by h. Then the model frame v is
expressed as

v = " · eX Pdiag(t),

where now X denotes the diagonal bloc matrix with diagonal �-bloc corresponding to
that of Section 6.3.c, and similarly Pdiag has diagonal blocs P� . On the other hand,
we can write v

0
= v · (Id+tA(t)) for some holomorphic matrix A(t). Then

v
0
= " · eX Pdiag(t)(Id+tA(t)) = " · eX(Id+tPdiag AP

�1
diag

)Pdiag(t).

An entry of Pdiag AP
�1
diag

is obtained from the corresponding one of A by multiplying
it by a term of the form |t|�0��

L(t)
k/2 for some suitable �,�0 2 (�1, 0] and k 2 Z.

Since |�0 � �| < 1, it follows that Id+tPdiag AP
�1
diag

is bounded as well as its inverse
matrix, so that "·eX(Id+tPdiag AP

�1
diag

) is L2-adapted, according to Lemma 4.2.22(4).
Since v

0 is obtained from the latter by applying a rescaling, it is also L
2-adapted

(Lemma 4.2.22(3)).

The L2 sheaves L(2)(E
i

�⇤⌦H, h) can be extended as sheaves on� by the assignment
U 7! L

2
(U \�⇤,Ei

�⇤ ⌦H, h). We simply denote them by Li

(2)
(H, h).

Assume moreover that H is equipped with a flat connection

D = D
0
+D

00
: H �! E1

�⇤ ⌦H.

By flatness, the bundle V = KerD
00 equipped with the connection r induced by D

0 is
a holomorphic bundle with holomorphic connection on �⇤. Moreover, H := KerD =

Vr := Kerr is a locally constant sheaf on �⇤. The sheaf L(2)(H, h, D) on �⇤

(see Definition 4.2.26) can similarly be extended as a sheaf on �. If U ⇢ � is an open
subset containing the origin, a section u 2 L

2
(U,H, h) belongs to �(U,L(2)(H, h, D))
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if its restriction to U\�⇤ belongs to �(U\�⇤,L(2)(H, h, D)) and if Du 2 L
2
(U,H, h).

One can use the approximation lemma 4.2.24.
The L

2 de Rham complex (4.2.27) reads

(6.13.3) 0 �! L0

(2)
(H, h, D)

D���! L1

(2)
(H, h, D)

D���! L2

(2)
(H, h, D) �! 0,

where the upper index refers to the degree of forms, as a complex of sheaves on �.
Clearly, L2

(2)
(H, h, D) = L2

(2)
(H, h) since the latter condition is tautologically satis-

fied. When restricted to �⇤ the L
2 Poincaré lemma 4.2.28 shows that the complex

(6.13.3) is a resolution of the locally constant sheaf H.
Without further conditions on (H, h, D), one cannot give much information on

(6.13.3) near the origin. The polarized Hodge property provides the formula we
expect.

6.13.4. Theorem (L2 Poincaré lemma). If (V,r, h) underlies a polarized variation of
C-Hodge structure, the natural inclusion of complexes (DRV⇤(2)) ,! L•

(2)
(H, h, D) is

a quasi-isomorphism. Equivalently (see Theorem 6.12.15),

(1) the L
2 complex L•

(2)
(H, h, D) has nonzero cohomology in degree zero at most,

(2) the inclusion j⇤H ' H
0
(DRV⇤(2)) ,! H

0L•
(2)

(H, h, D) is an isomorphism.

By Lemma 4.2.28, its suffices to prove the theorem for the germ of the L
2 de Rham

complex at the origin. The assertions amount then to

(1) H
0
(L•

(2)
(H, h, D)0) = (j⇤H)0,

(2) H
1
(L•

(2)
(H, h, D)0) and H

2
(L•

(2)
(H, h, D)0) are zero.

Applying the hypercohomology functor to Theorems 6.13.4 and 6.12.15, we obtain:

6.13.5. Theorem. Let j : X⇤ ,! X be the inclusion of the complement of a finite set in
a compact Riemann surface X. If (V,r, h) underlies a polarized variation of C-Hodge
structure on X

⇤, the cohomology H
•
(X, j⇤V

r
) is equal to the L

2 cohomology of the
C
1-bundle with flat connection (H, D) associated with the holomorphic bundle (V,r),

the L
2 condition being taken with respect to the Hodge metric h on H and a complete

metric on X
⇤, locally equivalent near each puncture to the Poincaré metric.

The L
2 Poincaré pairing. For i, j > 0 with i + j = 2, we have a natural pairing of

sheaves

(6.13.6) Li

(2)
(H)⌦ Lj

(2)
(H) �! L2

(1)
(H),

where L2

(1)
(H) denotes the sheaf of L1

loc
2-forms (i.e., (1, 1)-forms) on X, which can

thus be integrated. This pairing is compatible with the differential, and induces
therefore a pairing of graded complexes, which in turn produces, by taking global
sections, a pairing on cohomology.
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Proof of Theorem 6.13.4: first reduction. We consider the decomposition (6.2.5 ⇤⇤) and
we work with the corresponding decomposition (6.3.28) of (H, D). According to
Theorem 6.3.11, we can replace the metric h with the model metric h

Del without
changing the L

2 de Rham complex. We now simply denote by h the model metric on
each H� . We thus have

(6.13.7) L
•
(2)

(H, h, D) '
L

�2(�1,0]
L

•
(2)

(H� , h, D).

The assertions (1) and (2) above can thus be shown for each H� separately. We notice
that, if � 6= 0, (1) is also a vanishing assertion.

Let us fix � 2 (�1, 0] and let us work with the model frame (v�,`)` of Section 6.3.c
(we now do not distinguish the components in the Lefschetz decomposition and set
v�,` = (v�,`0,j)`0�2j=` so that v

o

�,`
is a basis of grM

`
gr

�V⇤). We have seen in Example
6.13.1(2) that this frame is L

2-adapted. Denoting by H�,` the subbundle framed
by (v�,`), and setting M`H� =

L
`06`

H�,`0 that we equip with the induced metric,
L
2-adaptedness implies an exact sequence for each i

0 �! Li

(2)
(M`�1H� , h) �! Li

(2)
(M`H� , h) �! Li

(2)
(H�,`, h) �! 0.

On the other hand, since M`H� is preserved by the connection, we can equip H�,`

with the quotient connection by means of the identification with gr
M

`
H� , that is,

Dv�,` = �(dt/t)⌦ v�,`. We thus have an exact sequence

0 �! (M`�1H� , D) �! (M`H� , D) �! (H�,`, D) �! 0.

Then one checks that the sequence

0 �! Li

(2)
(M`�1H� , h, D) �! Li

(2)
(M`H� , h, D) �! Li

(2)
(H�,`, h, D) �! 0

is exact, leading to an exact sequence of complexes

0 �! L
•
(2)

(M`�1H� , h, D) �! L
•
(2)

(M`H� , h, D) �! L
•
(2)

(H�,`, h, D) �! 0.

We can thus regard L•
(2)

(M`H� , h, D) as defining an increasing filtration of the com-
plex L•

(2)
(H� , h, D) with associated graded complexes L•

(2)
(H�,`, h, D). Since this fil-

tration is finite, Hk
(L•

(2)
(H� , h, D)0) is the abutment of a spectral sequence with E1

term defined as (taking into account that M` is increasing, that we make decreasing
by setting M

p
= M�p)

(6.13.8) E
p,q

1
= H

p+q
(L

•
(2)

(H�,�p, h, D)0) =) H
p+q

(L
•
(2)

(H� , h, D)0).

We first aim at computing E
p,q

1
. The main tool will be Hardy’s inequalities.

Proof of Theorem 6.13.4: Hardy’s inequalities and an application. We will make use of
the following type of inequalities, called Hardy’s inequalities.

6.13.9. Theorem (L2 Hardy inequalities, see e.g. [OK90, Th. 1.14])
Let R be a real number in (0, 1) and let v, w be two functions (weights) on IR =

(0, R), which are measurable and almost everywhere positive and finite. Let f be a C
1
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function(3) on I. Then the following inequality holds between L
2 norms with respect

to the measure dr:
��f · w

��
2
6 C

��f 0 · v
��
2
,

with

C =

8
>>><

>>>:

sup
r2I

Z
R

r

w(⇢)
2
d⇢ ·

Z
r

0

v(⇢)
�2

d⇢ if lim
r!0+

f(r) = 0,

sup
r2I

Z
r

0

w(⇢)
2
d⇢ ·

Z
R

r

v(⇢)
�2

d⇢ if lim
r!R�

f(r) = 0.

6.13.10. Corollary. Let (b, k) 2 R ⇥ Z with (b, k) 6= (0, 1). Given g(r) continuous and
integrable on IR, let us set

f(r) =

8
>><

>>:

Z
r

0

g(⇢) d⇢ if b < 0 or if (k > 2 and b = 0),
Z

r

min(R,e�k/2b)

g(⇢) d⇢ if b > 0 or if (k 6 0 and b = 0).

(In the second case, we replace e
�k/2b with its limit +1 when b ! 0+.) Then there

exists a constant C = C(k, b) > 0 such that the following inequality holds (we consider
L
2
(IR; dr/r) norms)

��f(r) · rbL(r)k/2�1
��
2,dr/r

6 C
��g(r) · rbL(r)k/2�1 · rL(r)

��
2,dr/r

= C
��g(r) · rb+1

L(r)
k/2

��
2,dr/r

.

Moreover, for k fixed, there exists bo = bo(R) > 0 such that, for |b| > bo, the constant
C(k, b) can be chosen equal to 1.

The case where b = 0 and k = 1 is missing. This leads to the following definition,
where we are only interested in germs at the origin, so that R 2 (0, 1) can be arbitrary
small.

6.13.11. Definition. The “Hardy bad space” H is the quotient of the space of measurable
functions g on IR for some R 2 (0, 1) such that kg(r)·rL(r)1/2

��
2,dr/r

<1, modulo the
space of such g’s which can be realized (maybe with a smaller R) as the weak deriva-
tive f

0 of functions f which are L
1

loc
on IR and satisfy kf(r) · L(r)�1/2

��
2,dr/r

<1.

Proof of Corollary 6.13.10. We will choose the following weight functions with respect
to the measure dr:

w(r) = r
b�1/2

L(r)
k/2�1 and v(r) = r

b+1/2
L(r)

k/2
.

(3)A weaker property (absolute continuity on every closed subinterval) is sufficient.
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The case b > 0, and the case b = 0 with k 6 0.
(1) If b > 0 and R 6 e

�k/2b, i.e., k/2b 6 L(R), we set bo = |k|/2L(R) and we have

f(r) = �
Z

R

r

g(⇢) d⇢

and limr!R� f(r) = 0. We will show the finiteness of

sup

r2[0,R]

✓Z
r

0

⇢
2b�1

L(⇢)
k�2

d⇢ ·
Z

R

r

⇢
�2b�1

L(⇢)
�k

d⇢

◆
.

After the change of variable y = L(⇢) and setting x = L(r), we have to estimate

sup

x2(L(R),+1)

✓Z
+1

x

e
�2by

y
k
dy

y2
·
Z

x

L(R)

e
2by

y
�k

dy

◆
.

The function y 7! e
�2by

y
k is decreasing on (L(R),+1), hence the first integral is

bounded by e
�2bx

x
k�1, and the second one by e

2bx
x
�k

(x � L(R)), so the sup is
bounded by one. Hardy’s inequality holds with C = 1.

If k 6 0 and b = 0, the same argument applies and gives the same constant C = 1.
(2) Assume now b > 0 and k/2b > L(R) > 0, so that k > 1. We have

f(r) =

Z
r

e�k/2b

g(⇢) d⇢ and lim
r!0+

f(r) = 0.

We will show the finiteness of

sup

r2[0,R]

✓Z
R

r

⇢
2b�1

L(⇢)
k�2

d⇢ ·
Z

r

0

⇢
�2b�1

L(⇢)
�k

d⇢

◆
.

We decompose the argument following whether r 2 (0, e
�k/2b

) or r 2 (e
�k/2b

, R).
(a) If r 2 (0, e

�k/2b
), we can apply the same argument as in (1) after replacing

L(R) with k/2b, and we can therefore choose C = 1.
(b) If r 2 (e

�k/2b
, R), we want show the finiteness of
Z

x

L(R)

e
�2by

y
k
dy

y2
·
Z

k/2b

x

e
2by

y
�k

dy,

with x 2 (k/2b,+1). The function e
�2by

y
k is increasing, and the second integral

is bounded by e
k
(k/2b)

�k
(k/2b�x), hence by e

k
(k/2b)

�k+1. Similarly, the first
one is bounded by e

�2bx
x
k
(1/L(R)� 1/x) = e

�2bx
x
k�1

(x/L(R)� 1) which has
limit zero when x!1.

The case b < 0 and the case b = 0 with k > 2. If b < 0, we have

f(r) =

Z
r

0

g(⇢)d⇢ and lim
r!0+

f(r) = 0.

(1) We assume that e
(k�2)/2|b| > R, i.e., k > 2(1 � |b|L(R)), which is satisfied

in particular whenever k > 2. We also set bo = |2 � k|/L(R). Then the func-
tion e

�2by
y
k�2 is increasing on (L(R),+1). An upper bound of

Z
x

L(R)

e
�2by

y
k�2

dy ·
Z

+1

x

e
2by

y
2�k dy

y2
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is given by

(x� L(R))e
�2bx

x
k�2 · e2bxx�k+2

x
�1

= (1� L(R)/x) 6 1.

The case when b = 0 and k > 2 can be treated in a similar way.
(2) If e(k�2)/2|b| < R, i.e., k < 2(1 � |b|L(R)), the function e

�2by
y
k�2 is decreas-

ing on (L(R),+1). The first integral is bounded by e
2|b|L(R)

L(R)
k�2

(x � L(r)).
For the second one, we can choose " > 0 small enough such that e

2by
y
�k is

bounded by C"e
�2(|b|�")y on [L(R),+1) and we bound the second integral by

C"e
�2(|b|�")x

/2(|b|�"). Hence, the product of both integrals tends to 0 when
x! +1.

Proof of Theorem 6.13.4: computation of of the E1-term of the spectral sequence (6.13.8)
We will prove the following precise result as a consequence of Hardy’s inequalities.

6.13.12. Lemma.
(1) If � 6= 0, the cohomology spaces of L•

(2)
(H�,`, D)0 all vanish.

(2) If � = 0, the cohomology spaces of L•
(2)

(H0,`, D)0 are given by the following
formulas.

H
0
(L

•
(2)

(H0,`, D)0) =

(
Ho

0,`
if ` 6 0,

0 if ` > 1,

(6.13.12)
0

H
1
(L

•
(2)

(H0,`, D)0) =

8
>><

>>:

Ho

0,`
⌦ d✓ if ` 6 �2,

H⌦C Ho

0,2
⌦ (dr/r) if ` = 1,

0 otherwise,

(6.13.12)
1

H
2
(L

•
(2)

(H0,`, D)0) =

(
0 if ` 6= �1,
H⌦C Ho

0,0
⌦ ((dr/r) ^ d✓) if ` = �1.

(6.13.12)
2

Proof. Recall that H is introduced in Definition 6.13.11. Since D is diagonal with
respect to the frame v�,` of H�,`, and by L

2-adaptedness, we may, and will, assume
during the proof that H�,` has rank 1 with frame v�,`. We will use the following
lemma.

6.13.13. Lemma.
(1) Let f(r) 2 L

2
(IR, r

2�
L(r)

k
dr/r). Then there exists a sequence fm 2 C

0
(IR)

such that fm ! f in L
2
(IR, r

2�
L(r)

k
dr/r).

(2) Let f(r) 2 L
2
(IR, r

2�
L(r)

k
dr/r) be such that f 0(r) 2 L

2
(IR, r

2�
L(r)

k+2
dr/r).

Then there exists a sequence fm 2 C
1
(IR) such that fm ! f in L

2
(IR, r

2�
L(r)

k
dr/r)

and f
0
m! f

0 in L
2
(IR, r

2�
L(r)

k+2
dr/r).

Computation of H0
(L•

(2)
(H�,`, D)0). If � 2 (�1, 0), there is no nonzero germ of hori-

zontal section of (j⇤L1

loc
⌦H�,`)0, a fortiori no nonzero L

2 section. Let us thus assume
� = 0, so that the connection is simply d. Then H

0
(j⇤L

1

loc
⌦H�,`)0 = Cv0,` and the
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question reduces to whether L(t)
�1 · L(t)`/2 2 L

2
(d✓ dr/r), according to (6.12.12)

0
.

In conclusion, due to (6.12.14),

H
0
(L

•
(2)

(H�,`, D)0) =

(
Cv0,` if � = 0 and ` 6 0,

0 if � 6= 0 or if (� = 0 and ` > 1).

Computation of H2
(L•

(2)
(H�,`, D)0). As a prelude to the Dolbeault case, we wish to

solve D(f(r, ✓)(dt/t) ⌦ v�,`) = ⌘ weakly, that is, t@
t
f = �h weakly, or equivalently

1

2
(r@r + i @✓)f = �h weakly on �⇤

R
with R < 1 small enough, with f · (dt/t)⌦ v�,` in

�(�
⇤
R
,L1

(2)
(H�,`, D)).

Let us develop a section ⌘ = h(r, ✓)(dt/t) ^ (dt/t) of j⇤E2

�
⇤
R

in Fourier series, with
h(r, ✓) =

P
n2Z hn(r)e

in✓. The L
2 condition (6.12.12)

2
twisted by v�,` reads

X

n

khn(r) · r�L(r)1+`/2k2
2,dr/r

< +1.

Solving termwise the above differential equation amounts to solving in the weak sense

(6.13.14) (r
�n

fn(r))
0
= �2r�n�1hn(r),

with fn(r) 2 L
1

loc
(IR) and

(6.13.15) kfn(r)r�L(r)`/2k2,dr/r 6 Ckhn(r) · r�L(r)1+`/2k2,dr/r

for each n and a constant C independent of n. According to Lemma 6.13.13(1), for n
fixed, we can choose a sequence hn,m 2 C

0
(IR) such that

hn,m �! hn in L
2
(IR, r

2�
L(r)

`+2
dr/r) when m �!1.

In particular, for m large, hn,m 2 L
2
(IR, r

2�
L(r)

`+2
dr/r). Assume that we have

solved (6.13.14) for hn,m with fn,m being C
1 on IR and satisfying (6.13.15) for a

constant C independent of n,m. Then, by arguing with Cauchy sequences, fn =

limm!1 fn,m exists in L
2
(IR, r

2�
L(r)

`
dr/r) and solves (6.13.14) for hn in the weak

sense.
According to Lemma 6.13.13, we can thus assume that hn is continuous on IR. Let

us set b = � + n. Due to Corollary 6.13.10 we can solve (6.13.14) with

kfn(r)r�L(r)`/2k2,dr/r 6 Ckhn(r) · r�L(r)1+`/2k2,dr/r
• for any `, if � 2 (�1, 0), or if � = 0 and n 6= 0,
• for ` 6= �1, if � = 0 and n = 0.

Notice that the constant C can be chosen independent of n since, for |n| large, i.e.,
|b| large, it can be chosen equal to 1. Therefore, we obtain the first line of (6.13.12)

2
,

as well as the second line by definition of H.

Computation of H1
(L•

(2)
(H�,`, D)0). As in the previous case, we start with !⌦ v�,` =

[fdr/r + gd✓]⌦ v�,` with f and g expanded as Fourier series with coefficients fn, gn

satisfying
X

n

kfn(r) · r�L(r)`/2k2,dr/r +
X

n

kgn(r) · r�L(r)`/2k2,dr/r < +1.
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The closedness of D(! ⌦ v�,`) reads (r@r + �)g = (@✓ + i�)f weakly, and we wish to
solve D(h⌦v�,`) = !⌦v�,` weakly, that is, (r@r+�)h = f and (@✓+ i�)h = g weakly,
with appropriate L

2 conditions. Written on the Fourier coefficients, the closedness
condition reads

rg
0
n
(r) + �gn(r) = i(n+ �)fn(r) weakly.

We look for hn such thatX

n

khn(r) · r�L(r)`/2�1k2,dr/r < +1

(rh
0
n
+ �hn) = fn, i(n+ �)hn = gn weakly.and

If n + � 6= 0, then hn is given by gn/i(n + �) and satisfies the left equation above,
by the integrability property. The only point is to bound khn(r) · r�L(r)`/2�1k2,dr/r.
We have

khn(r) · r�L(r)`/2�1k2,dr/r = |n+ �|�1kgn(r)L(r)�1 · r�L(r)`/2k2,dr/r
6 |n+ �|�1L(R)

�1kgn(r) · r�L(r)`/2k2,dr/r,

so there exists C > 0 such that
X

n|n+� 6=0

khn(r) · r�L(r)`/2�1k2,dr/r 6 C

X

n|n+� 6=0

kgn(r) · r�L(r)`/2k2,dr/r.

If � 6= 0, there is no restriction on n and thus

H
1
(L

•
(2)

(H�,`, D)0) = 0 if � 6= 0.

If � = 0, any class in H
1
(L•

(2)
(H0,`, D)0) has a representative f0(r)(dr/r) + g0(r)d✓,

with g0(r) constant. This constant may be nonzero only if L(r)`/2 2 L
2
(IR, dr/r),

that is, ` 6 �2 (Exercise 6.6). On the other hand, we look for h0 such that h0
0
= r
�1

f0.
By the reasoning done for H

2, this equation has a solution if ` 6= 1. This concludes
the proof of (6.13.12)

1
.

End of the proof of Theorem 6.13.4: analysis of the spectral sequence. In the decompo-
sition (6.13.7), we immediately conclude by induction on ` from Lemma 6.13.12 that
L•

(2)
(H� , D)0 is quasi-isomorphic to 0 if � 6= 0. We are thus left with computing the

cohomology of L•
(2)

(H0, D)0, a complex which is filtered by L•
(2)

(H0,`, D)0. We will
analyze the spectral sequence (6.13.8) when � = 0, whose nonzero terms E

p,q

1
are

given by Lemma 6.13.12:

E
p,�p
1

= Ho

0,�p for any p > 0,

E
p,1�p
1

= Ho

0,�p ⌦ d✓ for any p > 2,

E
�1,2
1

= H⌦Ho

0,1
⌦ (dr/r),

E
1,1

1
= H⌦Ho

0,�1 ⌦ ((dr/r) ^ d✓).

The only possible nonzero d1’s are d1 : E
p,�p
1

! E
p+1,�p
1

for p > 0, induced by D.
The only term in D which does not preserve the filtration is �Ndt/t, and it shifts the
filtration by �2, so d1 = 0 and the previous equalities also hold for the correspond-
ing E2’s.
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Now, for p > 0, d2 : E
p,�p
2

! E
p+2,�p�1
2

is induced by �N : Ho

0,�p ! Ho

0,�p�2,
which is surjective (see (1) in the proof of Lemma 3.3.7). On the other hand,
d2 : E

�1,2
2

! E
1,1

2
is equivalent to N : Ho

0,1
! Ho

0,�1. Since N : gr
M

1
gr

0V⇤ !
gr

M

�1gr
0V⇤ is an isomorphism, we conclude that E

p,q

3
= 0 except possibly E

p,�p
3

with
p > 0, and we have

E
�`,`
3
' Ker

⇥
N : gr

M

`
gr

0V⇤ �! gr
M

`�2gr
0V⇤

⇤
for ` 6 0.

The spectral sequence (6.13.8) degenerates thus at E3, and H
i
(L•

(2)
(H0, D)0) = 0 if

i = 1, 2. Moreover, the inclusion (j⇤H)0 ,! H
0
(L•

(2)
(H0, D)0) is an isomorphism,

since both spaces have the same dimension

dimKer
⇥
N : gr

0V⇤ �! gr
0V⇤

⇤
= dimKer

⇥
N : M0gr

0V⇤ �! M�2gr
0V⇤

⇤

=

X

`60

dimKer
⇥
N : gr

M

`
gr

0V⇤ �! gr
M

`�2gr
0V⇤

⇤
.

This concludes the proof of Theorem 6.13.4.

6.14. The Hodge filtration

In this section, we assume that (V,r, h) underlies a polarized variation of Hodge
structure. Our aim is to define a Hodge filtration on the cohomology H

•
(X, j⇤V

r
),

and to prove that it endows this cohomology with a polarizable Hodge structure.
We will also make precise the polarization. The method will be of a local nature, in
a way similar to the computation of the L

2 cohomology.

6.14.a. The Hodge filtration on Vmid. We first define the filtration F
•Vmid from

that on V>�1 by the formula

(6.14.1) F
pVmid =

X

j>0

(r@t
)
j
F

p+jV>�1
⇤ ,

in order to obtain Griffiths transversality (recall that V>�1
⇤ = V>�1

mid
, see (6.12.4)).

One first checks that this formula defines an O�-module by using he standard com-
mutation rule. For example, for a local section m of F p+1V>�1

⇤ ,

g(t)r@t
m = r@t

g(t)m� g
0
(t)m 2 r@t

F
p+1V>�1

⇤ + F
p+1V>�1

⇤

⇢ r@t
F

p+1V>�1
⇤ + F

pV>�1
⇤ .

With this definition, the relation r@t
F

pVmid ⇢ F
p�1Vmid is clearly satisfied. We now

give more properties of the filtration F
•Vmid. For p 2 Z and � 2 R, we set F pV�

mid
:=

F
pVmid \ V�

mid
and F

p
gr

�Vmid := F
pV�

mid
/F

pV>�

mid
.

6.14.2. Proposition (Properties of the filtration F
•Vmid).

(1) The filtration F
•Vmid is exhaustive, that is,

S
p
F

pVmid = Vmid.
(2) For every � > �1, we have

F
pV�

mid
= j⇤F

pV \ V�

mid
= j⇤F

pV \ V�

⇤ .



168 CHAPTER 6. VHS ON CURVES. PART 3: THE HODGE-ZUCKER THEOREM

(3) Moreover,
(a) for every � > �1, t(F pV�

mid
) = F

pV�+1

mid
;

(b) for every � < 0, @tF p
gr

�Vmid = F
p�1

gr
��1Vmid;

(c) The latter property also holds for � = 0.
(4) Conversely, a filtration F

•Vmid by O�-submodules which satisfies (6.7.1), (3b)
and (3c) also satisfies (6.14.1).

The inclusions ⇢ in (3a) and (3b) are easy; the remarkable property is the ex-
istence of inclusions �; we will call the conjunction of (3a) and (3b) the property
of strict R-specializability. Property (3c) involves a Hodge-theoretical argument.
we will call the conjunction of (3a)–(3c) the property of filtered middle extension
(see Section 9.3.c).

Proof. The statement (1) is clear by (6.12.3).
For (2), it is enough to prove the assertion with � = >�1 and we start by showing

that for any k > 0,

(6.14.3) F
pV>�k�1

mid
=

kX

j=0

@
j

t
F

p+jV>�1
⇤ ,

which will give the conclusion in case k = 0. It is enough to prove that, for any
` > k + 1,

⇣ `X

j=k+1

@
j

t
F

p+jV>�1
⇤

⌘
\ V>�`

mid
⇢
⇣ `�1X

j=k+1

@
j

t
F

p+jV>�1
⇤

⌘
,

and this reduces to

(@
`

t
F

p+`V>�1
⇤ ) \ V>�`

mid
⇢ @`�1

t
F

p+`�1V>�1
⇤ for ` > 1.

Let m 2 V>�1
⇤ be such that @`

t
m 2 V>�`

mid
. Let � be such that @tm 2 V�

mid
with

[@tm] 6= 0 in gr
�Vmid. If � > �1, @`�1

t
: gr

�Vmid ! gr
��`+1Vmid is an isomorphism

and @
`�1
t

(@tm) /2 V>��`+1

mid
� V>�`

mid
, a contradiction. We must then have � > �1.

Therefore, @tm 2 F
p+`�1V>�1

⇤ , as wanted.
(3a) follows from (2) since t acts in an invertible way on j⇤F

pV. Let us check (3c),
which amounts to

F
p�1

gr
�1Vmid ⇢ @tF p

gr
0Vmid.

Since t : gr
�1Vmid ! gr

0Vmid = gr
0V⇤ is injective, this is implied by

tF
p�1

gr
�1Vmid ⇢ t@tF

p
gr

0V⇤.

The left-hand side is included in F
p�1

gr
0V⇤ \ Im(t@t). By Theorem 6.8.7, N = �t@t :

(gr
0V⇤, F

•
) ! (gr

0V⇤, F
•
)(�1) is a morphism of Hodge structure, hence is F -strict,

which amounts to F
p�1

gr
0V⇤ \ Im(t@t) ⇢ t@tF

p
gr

0V⇤, as wanted.
Let us now check (3b), which amounts to

F
p�1V��1

mid
⇢ @t(F pV�

mid
) + V>��1

mid
if � < 0.
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For example, let us assume � 2 (�1, 0). Then

F
p�1V��1

mid
= F

p�1Vmid \ V>�2
mid
\ V��1

mid

= (F
p�1V>�1

⇤ + @tF
pV>�1
⇤ ) \ V��1

mid
(after (6.14.3))

⇢ V>��1
mid

+ (@tF
pV>�1
⇤ ) \ V��1

mid
(� > 0).

Since @t : gr�Vmid ! gr
��1Vmid is an isomorphism for � < 0 (see Exercise 6.14(5)),

we have
(@tF

pV>�1
⇤ ) \ V��1

mid
= (@tF

pV�

⇤ ) + V>��1
mid

.

The general case of � > 0 is treated similarly.
Let us end with (4). One first easily checks that (6.7.1) implies (2) and (3a). Then,

by a simple induction on k, (3b) and (3c) imply (6.14.3), hence (6.14.1) by passing to
the limit on k.

6.14.4. Corollary (of Theorem 6.7.3). The O�-modules

F
pVmid, F

pV�

mid
:= F

pVmid \ V�

mid
, F

p
M`V

�

mid
:= F

pVmid \M`V
�

mid

are O�-locally free, hence free, of finite rank.

Proof. Since these sheaves are contained in Vmid, it is enough to prove that they are
locally finitely generated. For � > �1, we simply use Schmid’s theorem 6.7.3 and that
F

pV�

mid
= F

pV�

⇤ . For � = �1, we have F
pV�1

mid
= @tF

p+1V0

mid
+F

pV>�1 according to
6.14.2(3c), which implies the desired finiteness. The argument for � < �1 is similar,
by using 6.14.2(3b) instead. Lastly, the finiteness for F pVmid\M`V

�

mid
is obtained by

induction on `, due to the fact that grM
`
V�

mid
is a finite-dimensional vector space.

6.14.b. The filtered deRham complex. The deRham complex DRVmid has var-
ious presentations (Lemmas 6.12.7 and 6.12.9), the latter being linked with the holo-
morphic L

2 de Rham complex (Theorem 6.12.15). Each of these complexes can nat-
urally be filtered by the usual procedure as in (2.4.3). For Vmid, starting from the
filtration F

•Vmid, we define

(6.14.5)
F

p
DRVmid := {0 �! F

pVmid

r���! ⌦
1

�
⌦ F

p�1Vmid �! 0}

' {0 �! F
pVmid

@t���! F
p�1Vmid �! 0}.

We also define

(6.14.6)
F

p
V

0
DRVmid := {0 �! F

pV0

⇤
r���! ⌦

1

�
⌦ F

p�1Vmid�1 �! 0}

' {0 �! F
pV0

mid

@t���! F
p�1V�1

mid
�! 0}.

Lastly, taking advantage of Theorem 6.12.15, we define

(6.14.7) F
p
DRV⇤(2) := {0 �! F

p
M0V

0

⇤
t@t���! F

p�1
M�2V

0

⇤ �! 0}.
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6.14.8. Proposition. The inclusions of filtered complexes

F
•
DRV⇤(2) ,�! F

•
V

0
DRVmid ,�! F

•
DRVmid

are filtered quasi-isomorphisms.

Proof. For the second inclusion, we are reduced to proving that, when � < 0, the
complex

0 �! F
p
gr

�Vmid

@t���! F
p�1

gr
��1Vmid �! 0

is quasi-isomorphic to zero. This is precisely 6.14.2(3b), since we know that @t :

gr
�Vmid ! gr

��1Vmid is an isomorphism for such �’s.
For the first inclusion, we first argue as for (6.12.8) (by using 6.14.2(3a)) to identify

F
p
V

0
DRVmid with the complex

0 �! F
pV0

⇤
t@t���! (t@tF

pV0

⇤ + F
p�1V>0

) �! 0.

The cokernel complex of the first inclusion is then isomorphic to the complex

0 �! F
p
(gr

0V⇤/M0gr
0V⇤)

�N����!
�
NF

p
gr

0V⇤/F
p�1

M�2gr
0V⇤

�
�! 0,

and we wish to prove that the middle arrow is an isomorphism. Surjectivity is clear,
and injectivity amounts to the equality

NF
p
M0gr

0V⇤ = F
p�1

M�2gr
0V⇤.

We know that N : M0gr
0V⇤ ! M�2gr

0V⇤ is surjective, but we need a supplementary
argument for the compatibility with the Hodge filtration. This argument is furnished
by the Hodge-Lefschetz property provided by Theorem 6.8.7. Indeed, we know that

N : (gr
0V⇤, F

•
,Mw+•) �! (gr

0V⇤, F
•
,Mw+•)(�1)

is a morphism of mixed Hodge structures (see Remark 3.2.1), hence it is strictly
compatible with both F

• and Mw+• (see Proposition 2.6.8), hence N : F
p
M0gr

0V⇤ !
F

p�1
M�2gr

0V⇤ is surjective too.

6.14.9. Remarks.
(1) We do not claim that the filtered complex F

•
DRVmid is strict, that is, that

H
1
F

p
DRVmid = 0 for any p.

(2) The graded complex gr
p

F
DRV⇤(2) ' gr

p

F
DRVmid is a complex in the cat-

egory of O�-modules whose terms are O�-coherent. Reading this property on
a compact Riemann surface X, this implies that the hypercohomology spaces
H

q
(X, gr

p

F
DRV⇤(2)) are finite-dimensional vector spaces.

6.14.c. The L
2 Dolbeault lemma. One of the important points in order to prove

E1-degeneration of the Hodge-to-deRham spectral sequence in the context of the
Hodge-Zucker theorem 6.11.1 is the Dolbeault lemma, making the bridge between
the holomorphic world and the L

2 world of harmonic sections. It will ensure finite
dimensionality needed in the proof of the Hodge-Deligne theorem 4.2.33 in the case
of a complex manifold with a complete metric, here a Riemann surface.
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Let us now come back to the Dolbeault lemma in the context of the Hodge-Zucker
theorem 6.11.1, where X is a compact Riemann surface and X

⇤ is the same surface
with isolated punctures. Given a polarized variation of Hodge structure (H, S) of
weight w on X

⇤, we consider the associated flat bundle with metric (H, h, D) and the
associated flat holomorphic bundle (H0,r), also denoted (V,r).

The L
2 Dolbeault complex (4.2.30) reads

0! L
2
(X
⇤
, gr

p

F
H, h,D00)

D00����! L
2
(X
⇤
, gr

p

F
(E1

X⇤ ⌦H), h,D00)

D00����! L
2
(X
⇤
, gr

p

F
(E2

X⇤ ⌦H), h,D00)! 0.

It will be useful to regard L
2
(X
⇤
, gr

p

F
H, h,D00), as well as its relatives, as the space of

global sections of a flabby sheaf L(2)(gr
p

F
H, h,D00) on X, defined by the assignment

X � U 7�! L
2
(U \X

⇤
, gr

p

F
H, h,D00).

This gives rise to a complex of sheaves L(2)(gr
p

F
(E•

X⇤ ⌦H), h,D00) on X with differ-
ential D00.

On the holomorphic side, we regard the holomorphic Dolbeault complex (4.2.13)
not only on X

⇤ but its extension to X with the L2 condition. Namely, grp
F
DR(V,r) =

gr
p

F
Dol(gr

F
V, ✓) on X

⇤ is extended to X as gr
p

F
DRVmid, that we now can write as

gr
p

F
(DRV⇤(2)), a form which will help us to compare with the L

2 side.

6.14.10. Theorem (L2 Dolbeault lemma). With the assumptions of Theorem 6.13.5,
there is a natural inclusion of complexes

gr
p

F
(DRV⇤(2)) ,�! L(2)(gr

p

F
(E

•
X⇤ ⌦H), h,D00)

which is a quasi-isomorphism.

Away from the punctures, Lemma 4.2.32 shows that the inclusion is a quasi-
isomorphism. We are thus reduced to analyzing the germ L(2)(gr

p

F
(E•

X⇤ ⌦H), h,D00)0
of the sheaf L2 complex at the origin of the disc �.

Proof of Theorem 6.14.10: choice of an L
2-adapted basis. As in the proof of the L2 Poin-

caré lemma, we can replace the Hodge metric h by an equivalent one, and we can
work with an L

2-adapted frame with respect to this metric. However, we cannot use
anymore the decomposition (6.2.5 ⇤⇤), which much simplified the expression of the
connection when analyzing the L2 de Rham complex, since it is a priori not compatible
with the Hodge filtration. We will use Proposition 6.13.2 instead, in a way compatible
with the Hodge filtration.

For that purpose, we specify that the basis (vo

�,`
)�,` of V�1⇤ /tV�1⇤ '

L
�2(�1,0] gr

�V⇤

is compatible with the filtration induced on each gr
�V⇤ by the Hodge filtration, which

is the Hodge filtration of the polarized Hodge-Lefschetz structure
L

�
(gr

�
H,N, gr

�
S)

(Theorem 6.8.7). We thus decompose each v
o

�,`
as vo,p

�,`
(recall that we now set vo

�,`
=

(v
o

�,`0,j)`0�2j=` in order to obtain a basis of gr
M

`
gr

�V⇤), so that v
o,p

�,`
is a basis of

gr
p

F
gr

M

`
gr

�V⇤.
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Let us fix p. Since gr
p

F
V>�1
⇤ is locally free (Theorem 6.7.3), we can lift v

o,p

�,`
as a

family v
p

�,`
in gr

p

F
M`V

�

⇤ so that (vp

�,`
)�,` is a frame of grp

F
V>�1
⇤ . By Proposition 6.13.2,

(the restriction to �⇤ of) (v
p

�,`
)�,` is L

2-adapted with respect to the metric induced
by the Hodge metric h on Hp,w�p ' gr

p

F
V.

Proof of Theorem 6.14.10: simplification of the L
2 complex. We present the L

2 Dol-
beault complex as the simple complex associated with a double complex, by decou-
pling d

00 and ✓0. This relies on the following lemma.

6.14.11. Lemma. For q = 0, 1, the morphism ✓
0
: E0,q

�
⌦ gr

p

F
V ! E1,q

�
⌦ gr

p�1
F

V has
bounded L

2-norm.

Proof. The morphism ✓
0 is the C

1 morphism associated with the holomorphic mor-
phism ✓ : gr

p

F
V! ⌦

1

�⇤ ⌦ gr
p�1
F

V, which is itself induced by

✓ : gr
p

F
V>�1
⇤ �! ⌦

1

�
⌦ gr

p�1
F

V>�1
⇤ .

The restriction of ✓ at t = 0 being that of gr�1
F
r, it has matrix �grp

F
N in the bases

v
o,p

,v
o,p�1. The image by ✓ of a section u =

P
�,`,k

u�,`,k v
p

�,`,k
reads thus

X

�,`,k

u�,`+2,k v
p

�,`,k

dt

t
+ t

X

�,`,k

eu�,`,k v
p

�,`,k

dt

t
,

where eu�,`,k belongs to
P

�0,`0,k0 O� · u�0,`0,k0 . Therefore,

k✓uk2 6
X

�,`,k

k(u�,`+2,k+teu�,`,k)L(t)v
p

�,`,k
k2 ⇠

X

�,`,k

k(u�,`+2,k+teu�,`,k)|t|�L(t)1+`/2k2,

according to Theorem 6.3.5. On the other hand, by the argument already used in the
proof of Proposition 6.13.2, we have

k(u�,`+2,k + teu�,`,k)|t|�L(t)1+`/2kh ⇠ ku�,`+2,k|t|�L(t)1+`/2kh.

Since v
p is L

2-adapted we have (see Definition 4.2.21), still using Theorem 6.3.5,

ku�,`+2,k|t|�L(t)1+`/2k2 ⇠ ku�,`+2,kv
p

�,`+2,k
k2 6 Cvkak2.

We conclude that there exists C > 0 such that k✓uk2 6 Ckuk2.

This lemma implies that

(6.14.12) L(2)(gr
p

F
(Ek

X⇤ ⌦H), h,D00)0 = L(2)(gr
p

F
(Ek

X⇤ ⌦H), h, d
00
)0 k = 0, 1, 2.

Moreover, we claim that

✓
0⇥L(2)((E

0,q

X⇤ ⌦ gr
p

F
V), h, d00)0

⇤
⇢ L(2)((E

1,q

X⇤ ⌦ gr
p�1
F

V), h, d00)0.

Indeed, this also follows from the lemma if q = 1 since, in that case,

L(2)((E
1,1

X⇤ ⌦ gr
p�1
F

V), h, d00)0 = L(2)((E
1,1

X⇤ ⌦ gr
p�1
F

V), h)0.

We need to prove that, given a germ u 2 L(2)((E
0,0

X⇤ ⌦ gr
p

F
V), h, d00)0, its image ✓0u

belongs to L(2)((E
1,0

X⇤⌦grp�1F
V), h, d00)0, that is, d00(✓0u)2L(2)((E

1,1

X⇤ ⌦ gr
p�1
F

V), h, d00)0.
But we have, in the weak sense, d00(✓0u) = �✓0(d00u), and since

d
00
u 2 L(2)((E

0,1

X⇤ ⌦ gr
p

F
V), h, d00)0 = L(2)((E

0,1

X⇤ ⌦ gr
p

F
V), h)0

by assumption, the lemma allows us to conclude.
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We can now regard (up to sign) the complex L(2)(gr
p

F
(E•

X⇤ ⌦ H), h,D00) as the
simple complex associated with the double complex

(6.14.13)

L(2)((E
0,0

X⇤ ⌦ gr
p

F
V), h, d00)0

✓
0
//

d
00
✏✏

L(2)((E
1,0

X⇤ ⌦ gr
p�1
F

V), h, d00)0

d
00
✏✏

L(2)((E
0,1

X⇤ ⌦ gr
p

F
V), h)0

✓
0
// L(2)((E

1,1

X⇤ ⌦ gr
p�1
F

V), h)0

and the inclusion gr
p

F
(DRV⇤(2))0 ,! L(2)(gr

p

F
(E•

X⇤⌦H), h,D00)0 is obtained by means
of the inclusions

(gr
p

F
V⇤(2))0 ⇢ L(2)((E

0,0

X⇤ ⌦ gr
p

F
V), h, d00)0

(gr
p�1
F

(⌦
1

�
⌦ V⇤(2)))0 ⇢ L(2)((E

1,0

X⇤ ⌦ gr
p�1
F

V), h)0.

Proof of Theorem 6.14.10: analysis of the vertical morphisms d00 in (6.14.13). Since these
morphisms are diagonal with respect to the L

2-adapted basis v
p, the question of the

surjectivity of these morphisms will reduce to checking Hardy’s inequalities. Let
us fix p,�, `. In polar coordinates, we wish to check the surjectivity (or not) of
t@

t
=

1

2
(r@r + i @✓):

t@
t
:

8
<

:
L(2)

�
r
2�
L(r)

`�2
d✓ dr/r; (r@r + i @✓)

�
0
! L(2)

�
r
2�
L(r)

`
d✓ dr/r

�
0
,

L(2)

�
r
2�
L(r)

`
d✓ dr/r; (r@r + i @✓)

�
0
! L(2)

�
r
2�
L(r)

`+2
d✓ dr/r

�
0
.

The result has already been obtained in the proof of (6.13.12)
2
: the first (resp. the

second) morphism is onto if (�, `) 6= (0, 1) (resp. (�, `) 6= (0,�1)). Moreover, if
(�, `) = (0, 1) (resp. (�, `) = (0,�1)), the subspace L(2)

�
L(r)dr/r

�
0
, i.e., consisting

of functions only depending on r, surjects to the cokernel.

Proof of Theorem 6.14.10: vanishing of H2L(2)(gr
p

F
(E•

X⇤ ⌦H), h,D00)0. The previous
analysis shows that only combinations of terms u(r)vp

0,�1(dt/t)^(dt/t), where vp
0,�1 is

any element of the subfamily v
p

0,�1 (i.e., � = 0 and ` = �1) may not belong to Imd
00.

However, one then checks that u(r)v
p

0,1
(dt/t) belongs to L(2)((E

0,1

X⇤ ⌦ gr
p

F
V), h)0 and,

by the previous analysis,

✓
0�
u(r)v

p

0,1
(dt/t)

�
⌘ u(r)v

p

0,�1(dt/t) ^ (dt/t) mod Imd
00
.

This implies the vanishing of H2L(2)(gr
p

F
(E•

X⇤ ⌦H), h,D00)0.

End of the proof of Theorem 6.14.10. The previous step identifies, up to a quasi-
isomorphism, the complex L(2)(gr

p

F
(E•

X⇤ ⌦H), h,D00)0 with its subcomplex

0 �! L(2)(gr
p

F
(H), h,D00)0

D00����! KerD00 �! 0,

where

KerD00 = Ker

h
L(2)(gr

p

F
(E1

X⇤ ⌦H), h,D00)0
D00����! L(2)(gr

p

F
(E2

X⇤ ⌦H), h,D00)0

i
.

6.14.14. Lemma. Any local section u
0 · (dt/t) + u

00 · (dt/t) of KerD00 is equivalent,
modulo ImD00, to a local section of L(2)(gr

p

F
(E1,0

X⇤ ⌦H), h,D00)0 \KerD00.
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Proof. Since u
0 · (dt/t) + u

00 · (dt/t) is assumed to belong to KerD00, it is enough to
show that it belongs to ImD00 +L(2)(gr

p

F
(E1,0

X⇤ ⌦H), h,D00)0, and it is also enough to
show that such is the case for u

00 · (dt/t).
First, we write u

00
= u

00
6=(0,1)

+ u
00
(0,1)

, where u
00
6=(0,1)

resp. u00
(0,1)

is a combination of
basis sections v

p

�,`
with (�, `) 6= (0, 1) resp. (�, `) = (0, 1). Since u

00
6=(0,1)

2 Imd
00 by

the previous analysis, it belongs to ImD00+L(2)(gr
p

F
(E1,0

X⇤ ⌦H), h,D00)0. We can thus
write our original section (up to changing notation for u0) as u0 · (dt/t)+u

00
(0,1)

· (dt/t),
and as such it still belongs to KerD00.

Let us denote by u
00
(0,�1) the combination of basis sections vp

0,�1 where the coefficient
of vp

0,�1 is that of u00
(0,1)

on v
p

0,1
. Arguing as in the proof of the vanishing of H2, we find

✓
0
(u
00
(0,1)

(dt/t)) ⌘ u
00
(0,�1)(dt/t) ^ (dt/t) mod Imd

00
.

On the other hand, by assumption, ✓
0
(u
00
(0,1)

(dt/t)) = d
00�
u
0 · (dt/t)

�
, so that

u
00
(0,�1)(dt/t) ^ (dt/t) 2 Imd

00. But the preliminary analysis of Imd
00 done above

shows that this is equivalent to u
00
(0,1)

(dt/t) 2 Imd
00. As a consequence, u00

(0,1)
(dt/t)

belongs to ImD00 + L(2)(gr
p

F
(E1,0

X⇤ ⌦H), h,D00)0, as wanted.

We note that, because of (6.14.12) and by considering types,

L(2)(gr
p

F
(E1,0

X⇤ ⌦H), h,D00)0 \KerD00 = L(2)(gr
p

F
(E1,0

X⇤ ⌦H), h, d
00
)0 \Ker d

00
.

Then the L
2 Dolbeault complex L(2)(gr

p

F
(E•

X⇤ ⌦H), h,D00)0 is now seen to be quasi-
isomorphic to its subcomplex

0!L(2)(gr
p

F
(H), h, d

00
)0

D00����!
⇥
ImD00 +

�
L(2)(gr

p

F
(E1,0

X⇤ ⌦H), h, d
00
)0 \Ker d

00�⇤!0.

Besides, by considering types, the latter is isomorphic to its subcomplex (up to sign)

(6.14.15) 0 �! Ker d
00 ✓

0
���! L(2)(gr

p

F
(E1,0

X⇤ ⌦H), h, d
00
)0 \Ker d

00
.

Extending the germs to a small disc �, the restriction of the above complex to �⇤ is
isomorphic to the holomorphic Dolbeault complex

0 �! gr
pV

✓��! ⌦
1

�⇤ ⌦ gr
pV,

as already mentioned. Then, by definition of the L
2 condition, (6.14.15) is nothing

but gr
p

F
DRV⇤(2), and this ends the proof of Theorem 6.14.10.

6.14.d. Conclusion: proof of the Hodge-Zucker theorem. We are now in posi-
tion to apply Hodge theory on complete non-compact complex manifolds as in Section
4.2.e. Starting from a polarized variation of Hodge structure (H, S) on the punctured
Riemann surface X

⇤ equipped with a complete metric locally like the Poincaré metric
near each puncture, we consider the corresponding L

2 de Rham complex L•
(2)

(H, h, D).
By Theorem 6.13.5, the cohomology of the complex �(X,L•

(2)
(H, h, D)) is isomorphic

to H
⇤
(X, j⇤H), hence is finite dimensional. On the other hand, by the L

2 Dol-
beault lemma 6.14.10, each cohomology space H

k
�
�(X,L•

(2)
(gr

F

p
H, h,D00)

�
is finite-

dimensional, being isomorphic to the cohomology on X of a complex whose terms



6.14. THE HODGE FILTRATION 175

are OX -coherent (see Remark 6.14.9(2)). The finiteness conditions in Theorem 4.2.33
are thus fulfilled, and we obtain the desired Hodge decomposition. It is important to
remark that, according to Theorems 6.13.5 and 6.14.10 read in the reverse direction,
we can express the Hodge structure on H

⇤
(X, j⇤H) only in terms of the algebraic

object (Vmid, F
•Vmid,r).

Let us now consider the polarization. The cohomology H
1
(X, j⇤H) is primitive,

so the polarization on it can be expressed without referring to an ample line bundle.
The positivity property of the polarization on H

0 and H
1 is proved exactly as in

Theorem 4.2.16 in the case of compact Riemann surfaces, by replacing sections of
the C

1 de Rham complex on X with sections of the L
2 complex, with respect to the

complete metric fixed on X
⇤, and using the pairing (6.13.6). There is no need here

to argue on primitivity of L2 sections.

6.14.16. Remarks.
(1) As in Remark 4.2.18(4), a consequence of the Hodge-Zucker theorem 6.11.1 is

that the maximal constant subsheaf of H has stalk H
0
(X
⇤
,H) = H

0
(X, j⇤H), and

thus underlies a constant polarizable variation of Hodge structure of weight w whose
restriction at any point of X is a direct summand in H on which the polarization of H
induces a polarization (see Exercise 2.12). Poincaré duality enables us to transport
this polarized Hodge structure to H

2
(X, j⇤H).

(2) (Degeneration at E1 of the Hodge-to-deRham spectral sequence) One checks
that the filtered complex R�

�
X,F

•
(DRVmid)(2)

�
is strict, exactly as in Remark

4.2.18(2). This reads here as the injectivity of the natural horizontal morphisms

H
k
(X,F

p
V

0
DRVmid)

o
✏✏

� �
// H

k
(X,V

0
DRVmid)

o
✏✏

H
k
(X,F

p
DRVmid)

� �
// H

k
(X,DRVmid)

6.14.e. Structure of polarized variations of C-Hodge structure

Let X be a compact Riemann surface, let X
⇤ be the complement of a finite set of

point, and let (H, F
0•H, F

00•H, D, S) be a polarized variation of C-Hodge structure
of weight w on X

⇤. By Corollary 6.4.2, the local system H is semi-simple, that we
write as H =

L
↵2A Ho

↵
⌦H

↵
, with the same notation as in Section 4.3.c. Moreover,

the polarization decomposes as well.

6.14.17. Theorem. The statements of Lemma 4.3.11 and Theorem 4.3.13 hold in this
setting.

Proof. Indeed, the reference to Theorem 4.3.3 is replaced with a reference to Corol-
lary 6.4.2, so the new argument needed both for Lemma 4.3.11 and for Theorem 4.3.13
only concerns the existence of a pure Hodge structure on

End(H) = H
0
(X
⇤
,End(H)) = H

0
(X, j⇤ End(H)),

and similarly on Hom(H
↵
,H), which is provided by the Hodge-Zucker theorem 6.11.1,

according to Remark 6.14.16(1).
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6.15. Exercises

Exercise 6.14. Show the following properties (see (6.12.4) for V�

mid
, � 2 R).

(1) V�

mid
is an O�-coherent module, which is free of rank equal to rkV, since, being

included in V⇤, it is torsion-free.
(2) For � 2 (�1, 0] and k > 0, @k

t
: gr

�Vmid = gr
�V⇤ ! gr

��kVmid is onto.
(3) gr

�Vmid ⇢ gr
�V⇤. [Hint : Clear if � > �1; for � 2 (�1, 0) and � = �� k < �1,

use @k
t
: gr

�V⇤
⇠�! gr

��kV⇤; for � = �1, show the inclusion directly; for � = �1�k 6
�2, use the inclusion for � = �1 and the bijectivity of @k

t
: gr
�1V⇤ ! gr

�1�kV⇤.]
(4) V�

mid
= Vmid \ V�

⇤ . [Hint : Inclusion ⇢ is clear; for �, let m 2 Vmid \ V�

⇤ with
[m] 6= 0 in gr

�V⇤; there exists �0 6 � such that m 2 V�
0

mid
r V�

0

mid
; then (3) implies

�
0
= �.]
(5) For � 6= 0, @t : gr

�Vmid ! gr
��1Vmid is bijective. Deduce that gr

�Vmid =

gr
�V⇤ for � 6= �1,�2, . . . [Hint : For the injectivity, use (4) to show that gr

�Vmid ⇢
gr

�V⇤.]
(6) gr

�1Vmid ⇢ gr
�1V⇤ is identified with the image of @t : gr

0V⇤ ! gr
�1V⇤.

Conclude that @t : gr0Vmid ! gr
�1Vmid is onto. Using the isomorphism t : gr

�1V⇤
⇠�!

gr
0V⇤ identify also gr

�1Vmid with the image of t@t : gr0V⇤ ! gr
0V⇤.

Exercise 6.15. The goal of this exercise is to illustrate the degeneration property of
Remark 6.14.16(2) in a case where Hodge theory is not needed. The punctured
Riemann surface is the Riemann sphere X = P

1 with r > 3 punctures x1, . . . , xr

and V is a rank 1 bundle with connection on X
⇤. For each i = 1, . . . , r, the residue ↵i

of the connection on V0

mid
at xi, is assumed to have its real part in (0, 1).

(1) Show that d :=
P

i
↵i 2 (0, r) is an integer (hence 1 6 d 6 r � 1) and that

V0

mid
= OP1(�d). Conclude that H

0
(P

1
,V0

mid
) = 0. [Hint : Use the residue theorem

for connections.]
(2) Show that V�1

mid
= V>�1

mid
' OP1(r� d). Conclude that H1

(P
1
,⌦

1

P1 ⌦V�1
mid

) = 0.
[Hint : Compute the residue of the connection on V�1

mid
; use that ⌦1

P1 ' OP1(�2).]
(3) Show that the long exact sequence

· · · �!H
k
(P

1
, V

0
DRVmid) �! H

k
(P

1
,V0

mid
) �! H

k
(P

1
,⌦

1

P1 ⌦ V�1
mid

) �! · · ·

reduces to the short exact sequence

0 �! H
0
(P

1
,⌦

1

P1 ⌦ V�1
mid

) �!H
1
(P

1
, V

0
DRVmid) �! H

1
(P

1
,V0

mid
) �! 0.

(4) Interpret this result as the degeneration at E1 of the spectral sequence associ-
ated with the filtration of V 0

DRVmid defined by

F
1
V

0
DRVmid = 0,

F
0
V

0
DRVmid = ⌦

1

P1 ⌦ V>�1
mid

[�1],
F
�1

V
0
DRVmid = V

0
DRVmid.

(5) If all ↵i’s are real, relate this result with Remark 6.14.16(2). [Hint : The local
system Vr is then unitary.]
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Exercise 6.16. Let X be a compact Riemann surface and let (V,r) be any non constant
irreducible bundle with connection on X

⇤. Consider the filtration of V
0
DRVmid

defined by

F
1
V

0
DRVmid = 0,

F
0
V

0
DRVmid = ⌦

1

P1 ⌦ V>�1
mid

[�1],
F
�1

V
0
DRVmid = V

0
DRVmid.

(1) Show that degeneration at E1 of the associated spectral sequence on hyperco-
homology both for V and V_ is equivalent to the property that both V0

⇤ and (V_
)
0

⇤ do
not have nonzero global sections on X. [Hint :

• =) Show first that H
2
(X, j⇤V) and H

2
(X, j⇤V

_
) are zero; show then

that degeneration at E1 is equivalent to the properties H
1
(X,⌦

1

X
⌦ V>�1

) =

0 and H
0
(X,⌦

1

X
⌦ V>�1

) ,! H
1
(X,V

0
DRVmid) and their dual analogues;

use Serre duality and Remark 6.2.3(2) to get the vanishing of H
0
(X,V0

⇤) and
H

0
(X, (V_

)
0

⇤).
• ( The vanishing of H1

(X,⌦
1

X
⌦ V>�1

) and its dual analogue is obtained
by Serre duality as above; in order to obtain the inclusion property for H

0, use
the exact sequence

· · · �! H
0
(X,V0

⇤) �! H
0
(X,V�1

mid
) �!H

1
(X,V

0
DRVmid) ' H

1
(X, j⇤V

r
) �! · · ·

together with the inclusion H
0
(X,V>�1

mid
) ⇢ H

0
(X,V�1

mid
), and the analogous

results for V_.]
(2) Show that for a unitary local system Vr with no nonzero constant global

section on X
⇤, the vector bundle V0

⇤ has no nonzero global section. [Hint : Prove that
the local system is semi-simple with no constant simple component, and that its dual
local system satisfies the same property; show that the Hodge filtration of V 0

DRVmid

is that considered in (1); use the degeneration property of Remark 6.14.16(2) to
conclude.]

6.16. Comments

The Hodge-Zucker theorem [Zuc79] makes use of the fundamental results of
Schmid (Parts 1 and 2 of this chapter), and is the first occurrence of the purity
theorem of the intermediate (or minimal) extension of a polarizable variation of
Hodge structure. The proof given here is taken from loc. cit., with a small difference
in the proof of the L

2 Dolbeault lemma (Theorem 6.14.10), for which we give a local
result, while that of Zucker is global (on the cohomology).

In the approach of M. Saito [Sai88] to polarizable Hodge modules, the Hodge-
Zucker theorem is the only analytic result that needs to be used. Nevertheless, for
the extension of the theory to the mixed case, Zucker’s theorem in higher dimensions
([CK82, CKS86, CKS87, KK87] and the more recent [Moc22]) are needed.





CHAPTER 7

POLARIZABLE HODGE MODULES ON CURVES

Summary. The aim of this chapter is to introduce the general notion of polar-
ized pure Hodge module on a Riemann surface, as the right notion of a singular
analogue of a polarized variation of Hodge structure. We will define it by local

properties, as we do for polarized variations of Hodge structure. For that pur-
pose, we first recall basics on D-modules, which are much more developed in
Chapters 8–12. While the notion of a variation of C-Hodge structure on a punc-
tured compact Riemann surface is purely analytic, that of a pure Hodge module
on the corresponding smooth projective curve is partly algebraic.

7.1. Introduction

Let j : X
⇤
,! X be the inclusion of the complement of a finite set of points

D in a compact Riemann surface(1) X, and let (H, S) be a polarized variation of
Hodge structure on X

⇤, with associated local system H and filtered holomorphic
bundle (V,r, F •V), as considered in Chapter 6. The Hodge-Zucker theorem gives
importance to the differential object (Vmid,r) (see Exercise 6.2(6)). However it is,
in general, not a coherent OX -module with connection. It is neither a meromorphic
bundle with connection in general, i.e., it is not an OX(⇤D)-module (where OX(⇤D)

denotes the sheaf of meromorphic functions on X with poles on D at most). We have
to consider it as a coherent DX -module, where DX denotes the sheaf of holomorphic
differential operators. In order to do so, we recall in Section 7.2 the basic notions on
D-modules in one complex variable, the general case being treated in Chapter 8.

The punctured Riemann surface will then be a punctured disc �⇤ in the remain-
ing part of this introduction. The object analogue to (V,r, F •V) on � is a holo-
nomic D�-module M equipped with an F -filtration F

•M (this encodes the Griffiths
transversality property). Here, the language of triples introduced in Section 5.2 be-
comes useful in order to avoid using “C1 bundles with singularities”. On the other
hand, we can increase the domain (C1 functions) where sesquilinear pairing takes

(1)In order to simplify some statements, we will always assume in this chapter that X is connected.
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values: as in our discussion of Schmid’s theorem, we should add to C
1 functions

on � functions like |t|2�L(t)k/k!. More generally, we should also accept Dirac “delta
functions”, so that the sheaf of distributions on � is a possible candidate as the target
sheaf of sesquilinear pairings, as it is acted on by holomorphic and anti-holomorphic
differential operators.

The idea of M. Saito for defining the Hodge property of a filtered D-module (more
precisely, triples) in an axiomatic way is to impose the Hodge property on the restric-
tion of the data—a filtered triple in the sense of Section 5.2—at each point of �, in
order to apply the corresponding definitions. While this does not cause any trouble at
points of �⇤ := �r {0}, this leads to problems at the origin for the following reason:
the restriction of M in the sense of D-modules is a complex, which has two coho-
mology vector spaces in general. The right way to consider the restriction consists in
introducing nearby cycles. Therefore, the compatibility of the data with the nearby
and vanishing cycle functors will be the main tool in the theory of Hodge modules.

However, not all D�-modules underlie a Hodge module. On the one hand, we have
to restrict the category by only considering holonomic D�-modules having a reg-
ular singularity at the origin. This is “forced” by the theorem of Griffiths-Schmid
(see Remark 6.3.8(1)) stating the regularity of the connection on the extended Hodge
bundles. Moreover, the Hodge-Zucker theorem leads us to focus on regular holonomic
D�-modules which are middle extensions of their restriction to �⇤. Now, a new
phenomenon appears when dealing with D�-modules, when compared to the case of
vector bundles with connection, namely, there do exist D�-modules supported at the
origin, like those generated by Dirac distributions. But their Hodge variants are easy
to define.

There are thus two kinds of D�-modules that should underlie a pure Hodge module.
Which extensions between these two kinds can we allow? Since our goal is to define
the category of polarizable Hodge modules as an analogue over � of the category
of polarizable Hodge structures, we expect to obtain a semi-simple category. The
polarizability condition we impose solves this question for us: only direct sums of
objects of each kind may appear as a polarizable Hodge module. This is called
Support-decomposability (S-decomposability), and is obtained as a consequence of the
S-decomposability theorem for polarizable Hodge-Lefschetz structures 3.4.22.

In this chapter, we will consider left D-modules in order to keep the analogy with
vector bundles with connections and variations of Hodge structure considered in Chap-
ter 6.

The Hodge theorem takes the following form in the framework of C-Hodge modules
on a compact Riemann surface X. We consider the constant map a : X ! pt. For a
given C-Hodge module M polarized by S, we define for k = �1, 0, 1 the k-th de Rham
cohomology Ta

(k)

X⇤M in the category C-Triples (see Definition 5.2.1).

7.1.1. Theorem (Hodge-Saito). If M is a polarizable Hodge module of weight w on a
compact Riemann surface X, the triple Ta

(k)

X⇤M is a polarizable Hodge structure of
weight w + k.
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7.2. Basics on holonomic D-modules in one variable

We refer to Chapter 8 for a more general setting. We denote by t a coordinate on
the disc �, by C{t} the ring of convergent power series in the variable t. Let us denote
by D = C{t}h@ti the ring of germs at t = 0 of holomorphic differential operators: this
is the quotient of the free algebra generated by C{t} and the ring C[@] of polynomials
in one variable @ by the two-sided ideal generated by the elements @g�g@�g

0 for any
g 2 C{t} (where g

0 denotes the derivative). We denote by @t the class of @. This is
a noncommutative algebra, which operates in a natural way on C{t}: the subalgebra
C{t} acts by multiplication and @t acts as the usual derivation. There is a natural
increasing filtration F•D indexed by Z defined by

FkD =

(
0 if k 6 �1,
P

k

j=0
C{t} · @j

t
if k > 0.

This filtration is compatible with the ring structure (i.e., Fk · F` ⇢ Fk+` for every
k, ` 2 Z). The graded ring gr

FD :=
L

k
gr

F

k
D =

L
k
Fk/Fk�1 is isomorphic to the

polynomial ring C{t}[⌧ ] (graded with respect to the degree in ⌧).
We also denote by D� the sheaf of differential operators with holomorphic coef-

ficients on �. This is a coherent sheaf, similarly equipped with an increasing filtra-
tion F•D� by free O�-modules of finite rank. The graded sheaf grFD� is identified
with the sheaf on � of functions on the cotangent bundle T

⇤
� which are polynomial

in the fibers of the fibration T
⇤
�! �.

7.2.a. Coherent F -filtrations, holonomic modules. Let M be a finitely gener-
ated D-module (we basically use left D-modules, but similar properties can be applied
to right ones). By an F -filtration of M we mean increasing filtration F•M by O =

C{t}-submodules, indexed by Z, such that, for every k, ` 2 Z, FkD · F`M ⇢ Fk+`M .
Such a filtration is said to be coherent if it satisfies the following properties:

(1) FkM = 0 for k ⌧ 0,
(2) each FkM is finitely generated over O,
(3) there exists `0 2 Z such that, for every k > 0 and any ` > `0, FkD · F`M =

Fk+`M .

7.2.1. Remark (Increasing or decreasing?) In Hodge theory, one usually uses decreasing
filtrations. The trick (see Notation 0.4) to pass from increasing (lower index) to
decreasing (upper index) filtrations is to set, for every p 2 Z,

F
p
M := F�pM.

The notion of shift is compatible with this convention:

F [k]
p
M = F

p+k
M, F [k]pM = Fp�kM.

7.2.2. Definition. We say that M is holonomic if it is finitely generated and any element
of M is annihilated by some nonzero P 2 D.
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One can prove that any holonomic D-module can be generated by one element
(i.e., it is cyclic), hence of the form D/I where I is a left ideal in D, and that this
ideal can be generated by two elements (see [BM84]).

7.2.b. The V -filtration. In order to analyze the behaviour of a holonomic module
near the origin, we will use another kind of filtration, called the Kashiwara-Malgrange
filtration. It is an extension to holonomic modules of the notion of Deligne lattice for
meromorphic bundle with connection.

We first define the increasing filtration V•D indexed by Z, by giving to any mono-
mial ta1@

b1
t

· · · tan@
bn
t

the V -degree
P

i
bi �

P
i
ai, and by defining the V -order of an

operator P 2 D as the biggest V -degree of its monomials. (See Exercise 7.2.)

7.2.3. Definition. Let M be a left D-module. By a V -filtration we mean an decreasing
filtration U

•
M of M , indexed by Z, which satisfies VkD · U `

M ⇢ U
`�k

M for every
k, ` 2 Z. We say that U

•
M is coherent if there exists `0 2 N such that the previous

inclusion is an equality for every k > 0 and ` 6 �`0, and for every k 6 0 and ` > `0.

Some properties of V -filtrations are given in Exercise 7.3. In particular, for any
V -filtration U

•
M of a holonomic D-module M , the graded spaces gr

k

U
M are finite-

dimensional and we denote by E the action of t@t on each gr
k

U
M , which has thus a

minimal polynomial on each such space.

7.2.4. Proposition (The Kashiwara-Malgrange filtration). Let M be a holonomic
D-module. Then there exists a unique coherent V -filtration denoted by V

•
M and

called the Kashiwara-Malgrange filtration of M , such that the eigenvalues of E acting
on the finite dimensional vector spaces gr

k

V
M have their real part in [k, k + 1).

Proof. Adapt Exercise 9.14 to the present setting.

See Exercises 7.4–7.7 for more properties of the Kashiwara-Malgrange filtration.

7.2.5. Caveat. It may happen that the V -filtration is constant, so that all V -graded
modules are zero. The regularity condition explained below prevents such a behaviour.

7.2.c. Nearby and vanishing cycles. For simplicity, in the following we always
assume that M is holonomic. We will also assume that the eigenvalues of E (Exer-
cise 7.3) acting on gr

k

V
M are real, i.e., belong to [k, k + 1). This will be the only

case of interest in Hodge theory, according to Theorem 6.3.2(6.3.2). Let B ⇢ [0, 1)

be the finite set of eigenvalues of E acting on gr
0

V
M , to which we add 0 if 0 is not an

eigenvalue. By Exercise 7.5, the set Bk of eigenvalues of E acting on gr
k

V
M satisfies

k + (B r {0}) ⇢ Bk ⇢ k +B.
For every � 2 R, we denote by V

�
M ⇢ V

[�]
M the pullback by V

[�]
M ! gr

[�]

V
M

of the sum of the generalized eigenspaces of gr[�]
V
M corresponding to eigenvalues of E

which are > �, i.e., the subspace
L

�2[�,[�]+1)
Ker(E�� Id)N , N � 0.

In such a way, we obtain a decreasing filtration V
•
M indexed by B + Z ⇢ R, and

we now denote by gr
�

V
M the quotient space V

�
M/V

>�
M . It is identified with the
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generalized eigenspace of E with eigenvalue � in V
[�]
M/V

[�]+1
M , and we still denote

by E the induced action of t@t on it. As a consequence, E�� Id is nilpotent on gr
�

V
M .

We can also consider V •
M as a filtration indexed by R which jumps at most at B+Z

(see Exercise 7.8).
Exercise 7.5 implies:
(1) for every � > �1, the morphism V

�
M ! V

�+1
M induced by t is an isomor-

phism, and so is the morphism t : gr
�

V
M ! gr

�+1

V
M ; in particular, V �

M is O-free if
� > �1;

(2) for every � < 0, the morphism gr
�

V
M ! gr

��1
V

M induced by @t is an isomor-
phism;

(3) for every � 2 [�1, 0) and k > 1,

V
��k

M = @
k

t
V

�
M +

k�1X

j=0

@
j

t
V
�1

M.

In particular, the knowledge of gr
�

V
M for � 2 [�1, 0] implies that for all �. The

following notation will be used.

7.2.6. Notation.
•  t,�M := gr

�

V
M , if � = exp(� 2⇡i�) with � 2 (�1, 0],

• �t,1M := gr
�1

M .

7.2.7. Definition (The morphisms N, can, var). Let M be a holonomic D-module.
(a) We denote by N the nilpotent part of the endomorphism induced by �E on

gr
�

V
M for every � (we will only consider � 2 [�1, 0], according to (1) and (2) above).

So we have N = �(E�� Id) on gr
�

V
M for � 2 [�1, 0].

(b) We define can :  t,1M ! �t,1M as the homomorphism induced by �@t and
var : �t,1M !  t,1M as that induced by t, so that var � can = N :  t,1M !  t,1M

and can � var = N : �t,1M ! �t,1M .
(c) We also denote by M•gr

�

V
M the monodromy filtration defined by the nilpotent

endomorphism N (see Section 3.4.a).

(See Exercise 7.9 for various properties.)

7.2.8. Examples.
(1) If 0 is not a singular point of M , then M is O-free of finite rank and gr

�

V
M = 0

unless � 2 N (i.e.,  t,�M = 0 if � 6= 1 and �t,1M = 0). Then can = 0, var = 0 and
N = 0.

(2) If M is supported at the origin, i.e., if any element of M is annihilated by some
power of t, then  t,�M = 0 for any �, so that can, var,N are zero, and M is identified
with (�t,1M)[@t].

(3) If M is purely irregular, e.g. M = (O[t�1],r) with r = d + dt/t
2, then

gr
�

V
M = 0 for every �. In such a case, the gr

�

V
-functors do not bring any interesting

information on M .
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7.2.9. Definition (Regular singularity). We say that M has a regular singularity (or is
regular) at the origin if V 0

M (equivalently, any V
�
M) has finite type over O.

(See Exercises 7.10 and 7.11.)

Structure of regular holonomic D-modules. Let M be regular holonomic. For � 2 R, set

M
�
:=

S
k

Ker
⇥
(t@t � �)k : M !M

⇤
.

Then M
� \M� = 0 if � 6= �. Moreover, M� \V >�

M = 0: indeed, if (t@t��)km = 0

and b(t@t)m = tP (t, t@t)m with b having roots > �, we conclude a relation m =

tQ(t, t@t)m by Bézout, so the D-module D · m satisfies D · m = V
1
(D · m), and its

V -filtration is constant; iterating, we find V
1
(D · m) = tV

1
(D · m); however, the

O-finiteness of V
1
(D · m) implies V

1
(D · m) = 0 (Nakayama), hence D · m = 0,

and therefore m = 0. As a consequence, M
� injects in gr

�

V
M and thus has finite

dimension. Obviously, multiplication by t sends M
� to M

�+1 and @t goes in the
reverse direction. Moreover, t : M

� ! M
�+1 is an isomorphism if � > �1 and

@t : M
�+1 !M

� is an isomorphism if � < 0.
The set consisting of �’s such that M

� 6= 0 is therefore contained in B + Z (B is
defined at the beginning of Section 7.2.c), and M

alg
:=

L
�
M

� is a regular holonomic
C[t]h@ti-module.

7.2.10. Proposition. If M is regular holonomic, Then the natural morphism

C{t}⌦C[t] M
alg �!M

is an isomorphism of D-modules, and induces an R-graded isomorphism

M
alg ⇠�! gr

V
M

alg ⇠�! gr
V
M.

Sketch of proof. If M is supported at the origin, the result is easy. One can then
assume that M has no section supported at the origin. Let us first set V

>�1
M

alg
:=L

�>�1 M
� and prove C{t} ⌦C[t] V >�1

M
alg ⇠�! V

>�1
M . Note that V

>�1
M is

O-free and the matrix A(t) of the action of t@t on V
>�1

M is holomorphic and the
eigenvalues of A(0) belong to (�1, 0]. It is standard that there exists an O-basis
(m1, . . . ,mr) of V >�1

M for which the matrix of t@t is equal to A(0). This gives the
desired isomorphism.

Let us extend this isomorphism to V
�1

M
alg and V

�1
M for example. If m 2

V
�1

M , then tm =
P

r

i=1
ai(t)mi with ai holomorphic. Let us set ai(t) = ai(0)+tbi(t).

Then t(t@t + 1)
k
(m �

P
i
bi(t)mi) = 0 for some k > 1 and, by our assumption,

m�
P

i
bi(t)mi 2M

�1. Continuing this way, we get the result.

7.2.11. Definition (Middle extension). We say that a regular holonomic M is the mid-
dle (or minimal) extension of M [t

�1
] := O[t�1] ⌦O M if can is onto and var is

injective, that is, if M has neither a quotient nor a submodule supported at the origin
(see Exercise 7.9).

Clearly, there is non non-zero morphism between a middle extension and a D-mod-
ule supported at the origin.
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7.2.12. Definition (S-decomposability). We say that a regular holonomic D-module M

is S(upport)-decomposable if it can be decomposed as M1�M2, where M1 is a middle
extension and M2 is supported at the origin.

See Exercise 7.9 for details. In particular, such a decomposition is unique if it
exists, and there is a criterion for S-decomposability, obtained by considering M

alg

first:

7.2.13. Proposition. A holonomic M is S-decomposable if and only if

�t,1M = Imcan�Ker var .

The following proposition makes the link between the D-module approach and the
approach of Section 6.2.a.

7.2.14. Proposition. Assume that M has a regular singularity at the origin. Then
M [t

�1
] is equal to the germ at 0 of (V⇤,r) (Deligne’s canonical meromorphic exten-

sion), where (V,r) is the restriction of M to a punctured small neighbourhood of the
origin. Moreover, if M is a middle extension, then M is equal to the germ at 0 of
(Vmid,r). Lastly, the filtration V•

⇤ (resp. V•
mid

) is equal to the Kashiwara-Malgrange
filtration.

Proof. Let M be a coherent D�-module that represents the germ M on a small disc�,
having a singularity at 0 only. Set (V,r) = M|�⇤ . By the uniqueness of the Deligne
lattices with given range of eigenvalues of the residue, we have V>�1

⇤ = V
>�1M.

We then have M[t
�1

] = V
>�1M[t

�1
] = V⇤, according to Exercise 7.10(1). If M is

a middle extension, the assertion follows from 7.10(2). The last assertion is proved
similarly.

F -filtration on nearby and vanishing cycles. Let M be holonomic and equipped with a
coherent F -filtration F•M . In order to keep notations analogous to that of Chapter 6,
we rather use the associated decreasing filtration F

•
M (see Remark 7.2.1). There is

a natural way to induce a filtration on each vector space gr
�

V
M by setting

(7.2.15) F
p
gr

�

V
M :=

F
p
M \ V

�
M

F pM \ V >�M
.

Notation 7.2.6 is convenient for the following convention.

F
p
 t,�M := F

p
gr

�

V
M =

F
p
M \ V

�
M

F pM \ V >�M

F
p
�t,1M := F

p�1
gr
�1
V

M = F [�1]pgr�1
V

M =
F

p�1
M \ V

�1
M

F p�1M \ V >�1M
.

(7.2.16)

We also write (see (5.1.5 ⇤⇤))

(7.2.17)  t,�(M,F
•
) = (gr

�

V
M,F

•
), �t,1(M,F

•
) = (gr

�1
V

M,F
•
)(�1).
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We then have a Lefschetz quiver (see Exercise 7.17)

(7.2.18) ( t,1M,F
•
)

can = �@t ·
**

(�t,1M,F
•
).

var = t ·
jj

(�1)
jj

The notion of strict R-specializability models a good behaviour of the filtration
F

•
M with respect to the V -filtration. In the following, we will set

F
p
V

�
M := F

p
M \ V

�
M.

7.2.19. Definition (Strict R-specializability). An F -filtered D-module (M,F
•
M) is said

to be strictly R-specializable if the properties 6.14.2(3a) and (3b) are satisfied, that
is,

(a) for every � > �1 and p, t(F p
V

�
M) = F

p
V

�+1
M ,

(b) for every � < 0 and p, @t(F p
gr

�

V
M) = F

p�1
gr

��1
V

M .

(See also Definition 9.3.18 together with Proposition 10.7.3.) We note that strict
R-specializability implies regularity:

7.2.20. Proposition. Let (M,F
•
M) be a coherently F -filtered D-module with M holo-

nomic. If (M,F
•
M) is strictly R-specializable, then M is regular holonomic.

See Exercise 7.15 for the proof.

7.2.21. Lemma. For a coherently F -filtered D-module (M,F
•
M), 7.2.19(a) and (b)

are respectively equivalent to
(a) for every � > �1 and p, t : F p

gr
�

V
M ! F

p
gr

�+1

V
M is an isomorphism,

(b) for every � < 0 and p, @t : F p
gr

��1
V

M ! F
p�1

gr
��1
V

M is an isomorphism.

Proof. 7.2.19(a) , 7.2.21(a):
• For =) , we note that since t : gr

�

V
M ! gr

�+1
M is injective (� > �1), it

remains so when restricted to F
p
gr

�

V
M . Surjectivity in 7.2.21(a) is then clear.

• For (, we know by regularity that V
�
M has finite type over C{t}. Recall

that Artin-Rees implies that tF
p
V

�
M � F

p \ t
q
V

�
M for q � 0. On the other

hand, 7.2.21(a) means that F
p
V

�+1
M = tF

p
V

�
M + F

p
V

>�+1
M and, by an easy

induction, F p
V

�+1
M = tF

p
V

�
M + F

p
V

�+q
M for any q > 1. We can thus conclude

by Artin-Rees.
7.2.19(b) , 7.2.21(b): 7.2.19(b) means surjectivity in 7.2.21(b). Injectivity is

automatic since it holds when forgetting filtrations.

7.2.22. Caveat. Even if (M,F
•
M) is strictly R-specializable, Proposition 7.2.10 may

not hold with filtration.

The full subcategory of that of coherently F -filtered D-modules which are strictly
R-specializable is not abelian. Nevertheless, strictly R-specializable morphisms have
kernels and cokernels in this category.
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7.2.23. Proposition. Let ' : (M1, F
•
M1)! (M2, F

•
M2) be a morphism between strictly

R-specializable coherently F -filtered D-modules. If ' is strictly R-specializable, that
is, if gr

�

V
' is strict for any � 2 [0, 1], then ' is strict and Ker', Im',Coker' are

strictly R-specializable.

Proof.

Step 1: strictness of '. It is enough to prove that, for any � and p, we have

(7.2.24) '(V
�
M1) \ F

p
V

�
M2 = '(F

p
V

�
M1),

where we have set F p
V

�
M := F

p
M \ V �

M . We know that all objects involved have
finite type over C{t}, and the inclusion � is clear. By assumption, gr�

V
' is strict for

any � 2 [�1, 0]. Now, strict R-specializability of M1,M2 implies that it is so for any
� 2 R. This is translated as

'(V
�
M1) \ F

p
V

�
M2 = '(F

p
V

�
M1) + V

>�
M2

= '(F
p
V

�
M1) + ('(V

�
M1) \ F

p
V

>�
M2)

(7.2.25)

for any � and p. By an easy induction, one can replace in the right-hand side the
term F

p
V

>�
M2 with F

p
V

�+k
M2 for any k > 1. If � > �1, we have F

p
V

�+1
M2 =

tF
p
V

�
M2 and, by V -strictness of ',

'(V
�
M1) \ V

�+1
M2 = '(V

�+1
M1) = t'(V

�
M1),

hence
'(V

�
M1) \ F

p
V

�+1
M2 = t('(V

�
M1) \ F

p
V

�
M2),

so (7.2.24) holds by Nakayama’s lemma. Assuming now that (7.2.24) holds for �0 > �,
(7.2.25) reads

'(V
�
M1) \ F

p
V

�
M2 = '(F

p
V

�
M1) + '(F

p
V

>�
M1) = '(F

p
V

�
M1),

as wanted.

Step 2. We prove that Ker gr
�

V
' (with filtration induced by that of gr�

V
M) is equal

to gr
�

V
Ker' (with filtration coming from that on Ker' induced by that of M), and

similarly for Coker.
The case of Coker gr

�

V
' is clear, since both induced filtrations are equal to the

image of F p
V

�
M2.

Let us consider the case of Ker'. The assertion amounts to the following property
(for all �, p):

{m 2 F
p
V

�
M1 | '(m) 2 V

>�
M2} ⇢ {m 2 F

p
V

�
M1 | '(m) = 0}+ V

>�
M1.

By the V -strictness of ', the equality holds if we forget F
p. Let us fix m in the left-

hand side, and let us write it as m = m1�m01, with m1 2 V
�
Ker' and m

0
1
2 V

>�
M1.

We aim at proving that m1 2 F
p
V

�
M1. We thus write m1 = m+m

0
1
, m 2 F

p
V

�
M1

and m
0
1
2 V

>�
M1.
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Assume that m
0
1
2 V

�
M1 with � > �, and let [m

0
1
] its class in gr

�

V
M1. Its image

by gr
�

V
', being the class of '(m), belongs to F

p
gr

�

V
M2 and, by F -strictness of gr�

V
',

is also the image of [em] 2 F
p
gr

�

V
M1. It follows that

m1 = m+ em+m
00
1
, em 2 F

p
V

�
M1, m

00
1
2 V

>�
M1.

Continuing this way, we can write for each k > 1

m1 = m
(k)

+m
(k)

1
, m

(k) 2 F
p
V

�
M1, m

(k)

1
2 t

k
V

�
M1.

In other words, let us denote by [m1] the image of m1 in V := V
�
M1/F

p
V

�
M1.

Then [m1] becomes zero in V/t
k
V for any k, hence in bV = lim �k

V/t
k
V . Since V has

finite type over C{t}, we have bV = C[[t]] ⌦C{t} V and the natural morphism V ! bV
is injective. Therefore, [m1] = 0, as wanted.

Step 3. We prove that Ker' and Coker', as F -filtered D�-modules, are strictly
R-specializable at the origin. Properties 7.2.21(a) and (b) hold for gr

�

V
Mi (i = 1, 2,

any � 2 R), hence they old for Ker gr
�

V
' and Coker gr

�

V
'. But by Step 2, these are

gr
�

V
Ker' and gr

�

V
Coker', so the assertion holds, according to Lemma 7.2.21.

The definition of middle extension for a coherently F -filtered D-module similar to
that of Definition 7.2.12 is not sufficient for our purposes (see Proposition 9.7.2). If we
restrict to those coherently F -filtered D-modules which are strictly R-specializable,
the definition in terms of injectivity of var and surjectivity of can is stronger and
more convenient. Let us make precise that, for a morphism of filtered vector spaces,
surjectivity means means subjectivity of F p to F

p for each p.

7.2.26. Definition (Filtered middle extension). Let (M,F
•
M) be a coherently F -filtered

holonomic D-module which is strictly R-specializable. We say that (M,F
•
M) is a

middle extension if M is a middle extension, i.e.,
(a) t : gr

�1
V

M ! gr
0

V
M is injective,

(b) @t : gr0V M ! gr
�1
V

M is onto,
and moreover
(c) F

p
gr
�1
V

M = @tF
p+1

gr
0

V
M for all p.

Then the notion of S-decomposability for a coherently F -filtered D-module with M

strictly R-specializable is similar to that of Definition 7.2.12. The criterion of Propo-
sition 7.2.13 extends to the filtered case:

7.2.27. Proposition. If (M,F
•
M) is coherent, holonomic and strictly R-specializable,

then it is S-decomposable if and only if

�t,1(M,F
•
M) = Im can�Ker var .

One should be careful with the notion of image and kernel, since the category of
filtered D-modules is not abelian. Here, we take the image filtration can(F

•
 t,1M)

and the induced filtration Ker var\F •
�t,1M . The proof is left as an exercise. A similar

statement in higher dimension is given in Proposition 9.7.5.
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The germic version of the de Rham complex. Let us first consider the de Rham complex
of M . The holomorphic de Rham complex DRM is defined as the complex

DRM = {0!M
r���! ⌦

1 ⌦O M ! 0},

with the standard grading, i.e., M is in degree 0 and ⌦1 ⌦O M in degree 1. The
de Rham complex can be V -filtered, by setting

V
�
DRM = {0! V

�
M
r���! ⌦

1 ⌦O V
��1

M ! 0},

for every � 2 R. As the morphism gr
�

V
M ! gr

��1
V

M induced by @t is an isomorphism
for every � < 0, it follows that the inclusion of complexes

(7.2.28) V
0
DRM ,�! DRM

is a quasi-isomorphism. If M has a regular singularity, the terms of the left-hand
complex have finite type as O-modules.

If M comes equipped with a coherent filtration F
•
M , we set, in accordance with

the future definition 8.4.1 (see also Remark 8.4.9),

F
p
DRM = {0! F

p
M
r���! ⌦

1 ⌦O F
p�1

M ! 0}.

7.2.d. F -Filtered holonomic D�-modules. We now sheafify the previous con-
structions and consider a D�-module M. We assume it is holonomic, that is, its
germ at any point of the open disc � ⇢ C centered at 0 is holonomic in the previous
sense. Then the D�-module M is an O�-module and is equipped with a connection.
Moreover, we always assume that the origin of � is the only singularity of M on �,
that is, away from the origin M is locally O�⇤ -free of finite rank.

All the notions of the previous subsection extend in a straightforward way to the
present setting. In particular, for a holonomic D�-module M having a regular singu-
larity at the origin, Proposition 7.2.10 reads

M ' O� ⌦C[t] M
alg

.

There are filtered analogues of these notions. We only work with coherently
F -filtered D�-modules, that is, we assume that each F

pM is OX -coherent and that
there exists po such that F

po�pM = FpDX · F poM.

7.2.29. Definition (Pure support).
(1) We say that M as above has pure support the disc � if its germ M at the origin

is a middle extension, as defined in 7.2.11.
(2) We say that (M, F

•M) as above has pure support the disc � if its germ (M,F
•
)

at the origin is a filtered middle extension, as defined in 7.2.26.

Clearly, if (M, F
•M) has pure support �, then so does the underlying M, but the

latter condition is not sufficient to ensure the former.

7.2.30. Remark. For the sheaf version, the conditions 7.2.19(a) and (b) are respectively
equivalent to
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(a) for � > �1 and any p, F p
V

�M = (j⇤j
�1

F
pM) \ V

�M,
(b) for � 2 [�1, 0), k > 1 and any p,

F
p
V

��kM = @
k

t
F

p+k
V

�M+

k�1X

j=0

@
j

t
F

p+j
V
�1M.

In particular, F pM =
P

j>0
@
j

t
F

p+j
V
�1M.

Moreover, if (M, F
•M) is a filtered middle extension (Definition 7.2.26), 7.2.19(b)

together with 7.2.26(c) are equivalent to
(c) for � 2 (�1, 0], k > 1 and any p,

F
p
V

��kM = @
k

t
F

p+k
V

�M+

k�1X

j=0

@
j

t
F

p+j
V

>�1M.

In particular, F pM =
P

j>0
@
j

t
F

p+j
V

>�1M.
As a consequence, if (M, F

•M) is a filtered middle extension, F
•M is uniquely

determined from j
�1

F
•M.

7.2.19(a) , 7.2.30(a): The direction ( is clear. Let us prove =) . Let m be a local
section of (j⇤j�1F pM\V �M). Then m is a local section of (F q

V
�M) for some q > p,

and m induces a section of (F q
V

�M)/(F
p
V

�M) supported at the origin. Since the
latter quotient is O�-coherent, it follows that t

N
m is a local section of F p

V
�M for

some N , hence also a local section of (F p
V

�M)\V �+NM = F
p
V

�+NM = t
N
F

p
V

�M,
according to Property 7.2.19(a). Since t

N is injective on V
�M, this implies that m is

a local section of F p
V

�M, hence the desired assertion.
7.2.19(b) , 7.2.30(b): This is obvious by an easy induction on �.

By definition of F pVmid (see (6.14.1)), we deduce from this remark and Proposi-
tion 6.14.2:

7.2.31. Corollary.
(1) Assume that (M, F

•M) is a filtered middle extension. With the identification
M = Vmid of Proposition 7.2.14, we have F

pM = F
pVmid.

(2) If (V, F •V) underlies a polarizable variation of Hodge structure, then the pair
(Vmid, F

•Vmid) is a filtered middle extension.

On the other hand, we say that M (resp. (M, F
•M)) has support the origin if any

local section m of M = M0 (resp. F p
M for any p) is annihilated by some power

of t. Here, the condition on (M, F
•M) is equivalent to that on M. Let us denote by

◆ : {0} ,! � the inclusion.

7.2.32. Proposition. Let (M, F
•M) be a coherently F -filtered D�-module which is strict-

ly R-specializable. Then it has support the origin if and only if it takes the form
D◆⇤(H, F

•H) for some filtered finite dimensional C-vector space (H, F
•H). We then

have (H, F
•H) = �t,1(M, F

•M).
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Proof. Since M is supported at {0}, there exists a finite-dimensional vector space
H (equal to gr

�1
V

M) such that M = ◆⇤H[@t] (Exercise 7.7). Considering the finite-
dimensional C-vector space H as a holonomic D-module on a point, we regard M as
the D-module pushforward of H by the inclusion ◆, a relation that we denote

M = D◆⇤H := ◆⇤H[@t].

For k > 0 we have V
kM = 0 and V

�k�1M =
P

j6k
◆⇤H@

j

t
, so that one recovers H

from M as
H = �t,1M.

Let now (H, F
•H) be a filtered vector space. The F -filtration on M = D◆⇤H is defined

by (see also Example 8.7.7(2))

(7.2.32 ⇤) F
pM = F

p
D◆⇤H =

L
j>0

◆⇤(F [1]
p+jH) · @j

t
=

L
k>0

◆⇤(F
p+j+1H) · @j

t
.

This defines the pushforward D◆⇤(H, F
•H) as a filtered holonomic DX -module sup-

ported at the origin. Note that it is strictly R-specializable at the origin. We recover
F

•H from F
•M by the formula

F
pH = F

p
�t,1M,

due to the shift in the definition of F •M and the opposite shift in that of F •
�t,1M

(see (7.2.16)).
The converse is left as an exercise (see Exercise 7.14).

7.2.e. Pushforward of regular holonomic left DX-modules. The holomorphic
de Rham complex DRM is defined as the complex (degrees as above)

DRM = {0!M
r���! ⌦

1

�
⌦O�

M! 0},

and its filtered version is

F
p
DRM = {0! F

pM
r���! ⌦

1 ⌦O F
p�1M! 0}.

Away from the origin, the de Rham complex has cohomology in degree 0 only, and
H

0
DRM|�⇤ = Vr is a local system of finite dimensional C-vector spaces on �⇤. In

general, DRM is a constructible complex on �, that is, it is such a locally constant
sheaf on �⇤ and its cohomology spaces at the origin are finite dimensional C-vector
spaces. The subcomplex V

0
DRM is quasi-isomorphic to DRM and, if M has a reg-

ular singularity at the origin, V
0
DRM is a complex whose terms are O�-coherent

(in fact V
0M is O� free).

If M has pure support the disc �, the de Rham complex DRM has cohomology in
degree 0 only, and H

0
DRM = j⇤V

r, with j : �
⇤
,! �. In such a case, both terms

of V 0
DRM are O�-free. On the other hand, if M is supported at the origin, then

DRM ' V
0
DRM reduces to the complex with the single term V

�1M = gr
�1
V

M in
degree 1.

We now consider the global setting of a compact Riemann surface and a regular
holonomic DX -module M with singularities at a finite set D ⇢ X. The pushforward
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(in the sense of left DX -modules) of M by the constant map aX : X ! pt is the
complex

R�(X,DRM),

that we regard as a complex of D-modules on a point, that is, a complex of C-vector
spaces. It follows that R�(X,DRM) has cohomology in degrees 0, 1, 2.

For a regular holonomic DX -module M, it is immediate to check that the hyper-
cohomology space H

k
(X,DRM) is finite dimensional for every k. Indeed, denote

by V
�M the subsheaf of M which coincides with V

�
(M|�) on each disc � near a

singularity and is equal to M away from the singularities. Then V
�M is OX -coherent

and (7.2.28) gives V
0
(DRM) ' DRM, so H

k
(X,DRM) = H

k
(X,V

0
DRM) is fi-

nite dimensional since each term of the complex V
0
DRM is OX -coherent and X is

compact.
If (M, F

•M) is a coherently F -filtered D-module, then H
k
(X,DRM) is filtered by

the formula
F

p
H

k
(X,DRM) := image[H

k
(X,F

p
DRM) �!H

k
(X,DRM)].

7.2.33. Examples.
(1) Assume that M = Vmid and set H = Vr. Then DRM = j⇤H and

H
k
(X,DRM) = H

k
(X, j⇤H). As explained in Remark 6.14.16, the only inter-

esting cohomology is H
1
(X,DRM) = H

1
(X, j⇤H).

(2) Assume M is supported at one point in X, and let � be a small disc centered
at that point, with coordinate t. We can then assume that X = �. We denote by
◆ : {0} ,! � the inclusion. Then V

0
(DRM) is the complex having the skyscraper

sheaf with stalk H at the origin as its term in degree 1, and all other terms of the
complex are zero. We can thus write

DRM = ◆⇤H[�1],

and we find

H
k
(X,DRM) =

(
H if k = 1,

0 otherwise.
On the other hand, for the same reason of shift in the definition, we obtain

F
p
DRM = ◆⇤F

pH[�1],

so that, if we recover H from M as H1
(X,DRM), we also recover F •H by the formula

F
pH = F

p
H

1
(X,DRM).

7.2.34. Caveat. In order to treat on the same footing D-modules with pure support
in dimension zero and one, we replace the de Rham functor DR by its shifted version
p

DR = DR[1]. This shift does not affect the filtrations, in the sense that, for a filtered
D-module (M, F

•M), we set
F

p p

DR(M) = (F
p
DRM)[1].

As a consequence, the notion of weight has to be shifted for variations of Hodge
structure on �⇤.
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7.3. Sesquilinear pairings between D-modules on a Riemann surface

We have seen in Section 4.1 that the notion of a sesquilinear pairing is instrumental
in order to define the polarization of a variation of C-Hodge structure and even, taking
the approach of triples (Section 5.2), in defining the notion of variation of C-Hodge
structure. It takes values in the space of C1 functions. In order to extend this notion
to that of pairing on D-modules, we need to extend the target space, as suggested by
the formula in Lemma 6.8.2. When working with left D-modules, the target space
for sesquilinear pairings will be the spaces of distributions on the Riemann surface X.
A general presentation of sesquilinear pairing will be given in Chapter 12. We also
refer to Section 8.3.5 for general properties of distributions and currents.

7.3.a. Basic distributions. Let us start by noticing that the C
1 functions on �⇤

(punctured unit disc) considered in Lemma 6.8.2, and that we denote by

u�,p := |t|2� L(t)
p

p!
, � > �1, p 2 N, (L(t) = � log |t|2),

define distributions on � by the formula

h⌘, u�,pi =
Z

�

u�,p⌘,

for any C
1

(1, 1)-form ⌘ with compact support on �. In fact, a direct computation
in polar coordinates shows that u�,p is a locally integrable function on �. These
distributions are related by the formula

(7.3.1) �(t@t � �)u�,p = �(t@
t
� �)u�,p = u�,p�1,

as can be seen by using integration by parts (u�,�1 := 0).

7.3.2. Proposition. Suppose that a distribution u 2 Db(�) solves the equations

(t@t � �0)ku = (t@
t
� �00)ku = 0

for real numbers �0,�00 > �1 and an integer k > 0. Then
(a) u = 0 unless �0 � �00 2 Z,
(b) if �0 = �

00
= �, u is a linear combination of the distributions u�,p with p 2

[0, k � 1].

Proof. Let us first show that if Suppu ✓ {0}, then u = 0. By continuity, u is
annihilated by some large power of t; let m 2 N be the least integer such that tmu = 0.
If m > 1, we have

0 = t
m�1

(t@t � �0)ku = (t@t � �0 � (m� 1))
k
t
m�1

u

= (@tt� �0 �m)
k
t
m�1

u = (�1)k(�0 +m)
k
t
m�1

u,

hence t
m�1

u = 0, due to the fact that �0 > �1. The conclusion is that m = 0, and
hence that u = 0.

Now let us prove the general case. We recall (see Section 12.2.c for details) that
the restriction Db(�) ! Db(�

⇤
) has kernel consisting of distributions supported at
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the origin. The preliminary result implies that it is enough to prove the proposition
for distributions on �⇤. The pullback by the exponential mapping

H := {Re ⌧ < 0} exp����! �
⇤
, ⌧ 7�! e

⌧

of such a distribution is then well-defined: for a test (1, 1)-form ⌘ on H, that we write
a(⌧)d⌧ ^ d⌧ with a 2 C

1
c
(H), the trace tr ⌘ is the (1, 1)-form on �⇤ defined as

tr ⌘ = (tr a)(t)
dt

t
^ dt

t
, with (tr a)(t) :=

X

⌧ 7!t

a(⌧).

Since the exponential mapping is a covering and a has compact support, the sum
above is finite and tr a 2 C

1
c
(�
⇤
) satisfies t@t tr a = tr(@⌧a) and a conjugate analogue.

We can thus define a distribution eu := exp
⇤
u on H by

h⌘, eui = htr ⌘, ui,

with the property that

(@⌧ � �0)keu = (@⌧ � �00)keu = 0.

The equations imply that the product

v = e
��0

⌧
e
��00

⌧ · eu

is annihilated by the k-th power of @⌧ and @⌧ , and in particular by the k-th power
(@⌧@⌧ )

k of the Laplacian. By the regularity of the Laplacian, v is C1, and the above
equations imply that v is a polynomial P (⌧, ⌧) of degree 6 k. Consequently,

eu = P (⌧, ⌧) · e�
0
⌧
e
�
00
⌧
.

By construction, eu is invariant under the translation ⌧ 7! ⌧ +2⇡i; if eu 6= 0, this forces
P (⌧, ⌧) to be a polynomial in ⌧ + ⌧ and �0 � �00 2 Z.

Now there are two cases. If �0 � �00 62 Z, then eu = 0, hence u = 0 in Db(�
⇤
), as

wanted. If �0 = �
00
= �, then u is a linear combination of the C

1 functions u�,p|�⇤

with 0 6 p 6 k � 1.

To include the case �0 = �
00
= �1 into the picture, we need the following simple

facts about distributions. Since we do not consider currents in this chapter, we con-
sider the Dirac distribution �0 as defined by

h⌘(t) i

2⇡
(dt ^ dt), �0i = ⌘(0),

which thus depends on the choice of the coordinate t through the identification E1,1

�
=

C1
�

· dt^ dt. Since the form i

2⇡
(dt^ dt) is real, the distribution �0 is real, in the sense

that, defining its conjugate �0 by

h⌘ i

2⇡
(dt ^ dt), �0i := h⌘ i

2⇡
(dt ^ dt), �0i,

we have �0 = �0.
Cauchy’s formula reads (see Exercise 7.19)

@t@tL(t) = ��0.
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For the sake of simplicity, we will set for p > 0

u�1,p := @t@tu0,p+1 = @t@t(L(t)
p+1

)/(p+ 1)!.

In particular, u�1,0 = ��o. Note that the basic relations (7.3.1) also hold for u�1,p,
that is,

�(t@t + 1)u�1,p = �(t@
t
+ 1)u�1,p = u�1,p�1 (u�1,�1 := 0).

7.3.3. Proposition. Suppose that a distribution u 2 Db(�) solves the equations

(t@t + 1)
k
u = (t@

t
+ 1)

k
u = 0

for some k > 1. Then u is a linear combination of u�1,p with 0 6 p 6 k � 1.

Proof. Using the relation t(t@t + 1) = t@tt, we find (t@t)
k|t|2u = (t@

t
)
k|t|2u = 0, and

by Proposition 7.3.2 we deduce

|t|2u =

k�1X

p=0

cp+2u0,p = |t|2@t@t
k+1X

q=2

cqu0,q,

according to the basic relations (7.3.1). On the other hand, distributions solutions of
|t|2v = 0 are C-linear combinations of �0, @jt �0, @

j

t
�0 (j > 1). As a consequence, and

using Cauchy’s formula above, we find an expression

u = @t@t

k+1X

q=1

cqu0,q +

X

j>1

(aj@
j

t
�0 + bj@

j

t
�0),

and we are left with showing ck+1 = aj = bj = 0 for all j > 1. For that purpose,
we note that, for p = 1, . . . , k + 1,

(@tt)
k
@t@tu0,p = @t@t(t@t)

k
u0,p = (�1)k@t@tu0,p�k =

(
0 if p 6 k,

(�1)k+1
�0 if p = k + 1.

On the other hand, since k > 1, we have (@tt)
k
@
j

t
�0 = @

j

t
(@tt)

k
�0 = 0 and thus

(@tt)
k
X

j>1

(aj@
j

t
�0 + bj@

j

t
�0) =

X

j>1

aj�0(@tt)
k
@
j

t
�0

=

X

j>1

aj@
j

t
(@tt� j)

k
�0 =

X

j>1

(�j)kaj@jt �0,

and similarly
(@

t
t)

k
X

j>1

(aj@
j

t
�0 + bj@

j

t
�0) =

X

j>1

(�j)kbj@j
t
�0,

so the equations satisfied by u imply

�ck+1�0 +

X

j>1

j
k
aj@

j

t
�0 = 0 and � ck+1�0 +

X

j>1

j
k
bj@

j

t
�0 = 0,

hence ck+1 = aj = bj = 0, as was to be proved.

In the same vein, we solve the mixed case:
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7.3.4. Proposition. Suppose that a distribution u 2 Db(�) solves the equations

(t@t)
k
u = (t@

t
+ 1)

k
u = 0

for some k > 1. Then u is a linear combination of @
t
u0,p with 1 6 p 6 k.

Proof. We notice that @tu solves the equations in Proposition 7.3.3, so we can write

@tu =

k�1X

p=0

cp+1u�1,p = @t

kX

q=1

cq@tL(t)
q
/q!,

and thus u = h(t) +
P

k

q=1
cq@tL(t)

q
/q! for some anti-holomorphic function h(t). One

checks that

(t@
t
+ 1)

k
@
t
L(t)

q
/q! = @

t
(t@

t
)
k
L(t)

q
/q! = 0 if q 6 k,

so h(t) must satisfy (t@
t
+ 1)

k
h(t) = 0, which implies h = 0.

7.3.b. Sesquilinear pairings. Let M0,M00 be regular holonomic D�-modules, each
of which written as M ' O� ⌦C[t] Malg (see Section 7.2.d). We will consider the
conjugate module M00: this is M00 as a sheaf of R-vector spaces, equipped with the
structure of a module over the sheaf D� of anti-holomorphic differential operators as
follows. Any anti-holomorphic function bj(t) can be written as the conjugate a(t) of a
holomorphic function a(t), and any anti-holomorphic differential operator

P
j
bj(t)@

j

t
,

where bj are anti-holomorphic functions, can be written as the conjugate P (t, @t) of a
holomorphic differential operator P (t, @t) =

P
j
aj(t)@t. When regarded as a section

of M00, we write a section m
00 of the sheaf M00 as m00, and the action of D� is defined by

P (t, @t) ·m00 := P (t, @t)m
00.

A sesquilinear pairing s : M0 ⌦C M00 ! Db� is, by definition (see also Definition
5.4.1), a C-linear pairing which satisfies, for any local sections m

0
,m
00 of M0,M00,

P (t, @t)s(m
0
,m00) = s(P (t, @t)m

0
,m00),

P (t, @t)s(m
0
,m00) = s(m

0
, P (t, @t)m

00).
(7.3.5)

Propositions 7.3.2 and 7.3.3 immediately imply:

7.3.6. Proposition. Let s be a sesquilinear pairing between M0 and M00.

(1) The induced pairing s : M
0�0 ⌦M 00�

00 ! Db(�) vanishes if �0 � �00 /2 Z.
(2) For � > �1, m0 2 M

0� and m
00 2 M

00�, the induced pairing s
(�)

(m
0
,m00) is a

C-linear combination of the basic distributions u�,p (p > 0).

As a consequence, the pairing s
(�), which is a sesquilinear pairing between the finite-

dimensional C-vector spaces M 0� and M
00� with values in Db(�), has a unique expan-

sion
P

p>0
s
(�)

p u�,p, where s
(�)

p (� > �1) is a sesquilinear pairing M
0� ⌦M 00� ! C.
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Using the relations in (7.3.1) and (7.3.5), we get (recall that E = t@t)
X

p>0

s
(�)

p
(�(E��)m0,m00)u�,p = s(�(E��)m0,m00) = �(t@t � �)s(m0,m00)

=

X

p>0

s
(�)

p+1
(m
0
,m00)u�,p,

and therefore s
(�)

p+1
(m
0
,m00) = s

(�)

p (�(E��)m0,m00). So, if we denote by N
0 or N00 the

nilpotent operator �(E��), we have

s
(�)

(m
0
,m00) =

X

p>0

s
(�)

0
(N
0p
m
0
,m00)u�,p =

X

p>0

s
(�)

0
(m
0
,N00pm00)u�,p

(the latter equality is a consequence of (7.3.1)).

7.3.7. Corollary.
(1) For � > �1, the pairing s

(�)

0
: M

0� ⌦M 00� ! C satisfies the equality

(s
⇤
)
(�)

0
= (s

(�)

0
)
⇤
.

(2) For � > �1, the pairing s
(�)

0
: M

0� ⌦M 00� ! C satisfies the relation

(7.3.7 ⇤) s
(�)

0
� (N0 ⌦ Id) = s

(�)

0
� (Id⌦N00).

(3) The pairings s
(0)

0
, s

(�1)
0

satisfy the relations

(7.3.7 ⇤⇤) s
(�1)
0
� (can⌦Id) = s

(0)

0
� (Id⌦var), s

(�1) � (Id⌦can) = s
(0)

0
� (var⌦Id).

Proof. The first point is a consequence from the fact that the basic distributions are
real. The second point has already been noticed. Let us prove for example the first
equality in (7.3.7 ⇤⇤). Assume m

0 2 M
00 and m

00 2 M
00�1. Then s(m

0
,m00) satisfies

the assumption of Proposition 7.3.4, hence s(m
0
,m00) =

P
k�1
p=0

cp@tu0,p+1. Therefore,

s(canm
0
,m00) = �@t

k�1X

p=0

cp@tu0,p+1 = �
k�1X

p=0

cpu�1,p.

On the other hand,

s(m
0
, varm00) = t

k�1X

p=0

cp@tu0,p+1 = �
k�1X

p=0

cpu0,p.

Therefore, �c0 = s
(�1)
0

(canm
0
,m00) = s

(0)

0
(m
0
, varm00).

Using the power series expansion of the exponential function, we may write the
above formula for s

(�) in a purely symbolic way as (m0 2M
0�
, m

00 2M
00�)

(7.3.8) s
(�)

(m
0
,m00) =

8
<

:
s
(�)

0
(|t|2(� Id�N)

m
0
,m00) if � > �1,

@t@ts
(�1)
0

⇣ |t|�2N � 1

N
m
0
,m00

⌘
if � = �1.

(Compare with Example 6.8.6.)

7.3.9. Example. We make more explicit the possible sesquilinear pairings when M
0

and M
00 are either middle extensions or supported at the origin.
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(1) The “mixed case”, where for example M0 is a middle extension and M00 is
supported at the origin, is easily treated: in such a case, we have s = 0 (see Lemma
12.3.10 for a similar statement in higher dimension). The assumption implies that
M
00�

= 0 for � 6= �1,�2, . . . , and on the other hand, t : M 0k�1 ! M
0k is bijective

except if k = 0, in which case it is only injective, and @t : M
0k ! M

0k�1 is bijective
except if k = 0, where it is only onto. If k 6= 0, we have

s(M
0k
,M 00�1) = s(tM

0k�1
,M 00�1) = s(M

0k�1
, tM 00�1) = 0.

Therefore, we also have

s(M
00
,M 00�1) = s(@tM

01
,M 00�1) = @ts(M

01
,M 00�1) = 0.

Lastly, for ` > 0,

s(M
0k
,M 00�1�`) = s(M

0k
, @

`
t
M 00�1) = @

`

t
s(M

0k
,M 00�1) = 0.

(2) If M0,M00 are supported at the origin, then s is determined by s
(�1) and, for

m
0 2M

0�1
,m
00 2M

00�1

s
(�1)

(m
0
,m00) = s

(�1)
0

(m
0
,m00)u�1,0 = �s(�1)

0
(m
0
,m00)�o,

where s
(�1) can be any complex-valued sesquilinear pairing between M

0�1 and M
00�1.

(3) If M0,M00 are middle extensions, then s is uniquely determined by its restriction
s
(�) to M

0� ⌦C M 00� for � 2 (�1, 0], hence by the C-valued sesquilinear pairings s
(�)

0

for � 2 (�1, 0], according to (7.3.8).
Indeed, let us first assume that � 2 (�1, 0). If k > 0 we have M

0�+k
= t

k
M
0� and

M
0��k

= @
k

t
M
0� and similar equalities for M

00. By D ⌦ D-linearity, the restriction
of s to M

0�+k ⌦M 00�+` (k, ` 2 Z) is then uniquely determined by s
(�).

If � = 0, we can argue similarly for the restriction of s to M
0k ⌦M 00`, according

to the middle extension property.

7.3.c. Sesquilinear pairing on nearby cycles. We have seen in Exercise 6.13(3)
a way to define the sesquilinear pairing gr

�

V
s by means of a residue formula, if � > �1.

Notice that, for such a �, the distribution s
(�) is L1

loc
, and it follows that the restriction

of s to V
�M0 ⌦ V �M00 takes values in L

1

loc
(�). We can conclude:

7.3.10. Lemma. For every � > �1, the sesquilinear pairing on V
�M0 ⌦ V �M00 defined

by the formula

(m
0
,m00) 7�! Ress=���1

Z

�

|t|2ss(m0,m00)�(t) i

2⇡
dt ^ dt

(for some, or any, cut-off function � 2 C
1
c
(�)) induces a well-defined sesquilinear

pairing
gr

�

V
s : gr

�

V
M0 ⌦ gr

�

V
M00 �! C

which coincides with s
(�)

0
via the identification M

� ' gr
�

V
M (M = M0,M00) of Propo-

sition 7.2.10 and satisfies (see (7.3.7 ⇤))

gr
�

V
s(N
0•, •) = gr

�

V
s(•,N00•).
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7.3.11. Remark. For m0 2M
0� and m

00 2M
00� , we recover the equality gr

�

V
s(m

0
,m00) =

s
(�)

0
(m
0
,m00) (by using the identification M

�
= gr

�

V
M) as already checked in Exercise

6.13(3), by means of the formula above for s
(�). Indeed,

Ress=���1

Z

�

|t|2ss(�)(m0,m00)�(t) i

2⇡
dt ^ dt

= Res�=0

Z

�

s
(�)

(|t|2(��1�N)
m
0
,m00)�(t) i

2⇡
dt ^ dt

= s
(�)

0

✓
Res�=0

⇣Z

�

|t|2(��1�N)
�(t)

i

2⇡
dt ^ dt

⌘
m
0
,m00

◆
,

and from Example 6.8.6 and Exercise 6.13(1) we have

Res�=0

Z

�

|t|2(��1�N)
�(t)

i

2⇡
dt ^ dt = 1.

7.3.12. Definition (Sesquilinear pairing on nearby cycles). Let s be a sesquilinear pairing
between M0 and M00. For � = exp� 2⇡i� with � 2 (�1, 0], we set

 t,�s = gr
�

V
s :  t,�M

0 ⌦  t,�M00 �! C,

which satisfies  t,�(s
⇤
) = ( t,�s)

⇤ and

 t,�s(N
0•, •) =  t,�s(•,N

00•).

7.3.d. Sesquilinear pairing on vanishing cycles. We note that, if � = �1, the
residue formula of Lemma 7.3.10 is identically zero, since |t|2ss(m0,m00) = 0 for
Re(s) � 0, and this lemma cannot be used for defining �t,1s. On the other hand,
if a distribution u is a C-linear combination of distributions u�,p (� > �1, p > 0),
one can recover the coefficient of u�1,0 by a residue formula applied to the Fourier
transform of u. This justifies the considerations below.

Let b�(✓) be a C
1 function of the complex variable ✓ 2 C such that b� is a cut-off

function near ✓ = 0. For s such that Re s > 0, we consider the function

Ib�(t, s) :=

Z

C
e
t/✓�t/✓ |✓|2(s�1) b�(✓) i

2⇡
d✓ ^ d✓,

and we define Ib�,k,` by replacing |✓|2(s�1) with ✓k✓` |✓|2(s�1) in the integral defining Ib�;
in particular, we have Ib� = Ib�,0,0 and Ib�,k,k(t, s) = Ib�(t, s+k) for any k 2 Z. We refer
to Exercise 7.21 for the properties of these functions that we will use.

7.3.13. Remark. We can also use the coordinate ⌧ = 1/✓ to write Ib�(t, s) as

Ib�(t, s) =

Z
e
t⌧�t⌧ |⌧ |�2(s+1) b�(⌧) i

2⇡
d⌧ ^ d⌧

where now b� is a cut-off function near ⌧ = 1. Ib�(t, s) is the Fourier transform of
|⌧ |�2(s+1) b�(⌧) (see Exercise 7.20): put ⌧ = (⇠ + i⌘)/

p
2 and t = (x+ iy)/

p
2; then

Ib�(t, s) =
1

2⇡

Z
e
�i(⇠y+⌘x) |⌧ |�2(s+1) b�(⌧) d⇠ ^ d⌘.
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By applying the properties of the functions Ib�,k,k obtained in Exercise 7.21 and by
arguing as in Exercise 6.13(3), we obtain that, for any test function � on � (we will
use a cut-off function near 0), the function

s 7�!
⌦
Ib�(t, s)�(t)

i

2⇡
(dt ^ dt), s(m

0
,m00)

↵

extends as a meromorphic function on the plane C with possible poles contained in
R60 (we do not use here the symbol

R
since s(m

0
,m00) is a distribution which is

possibly not a function, like �0).

7.3.14. Lemma. The sesquilinear pairing on V
�1M0 ⌦ V �1M00 defined by the formula

(m
0
,m00) 7�! Ress=0

⌦
Ib�(t, s)�(t)

i

2⇡
(dt ^ dt), s(m

0
,m00)

↵

(for some, or any, cut-off function � 2 C
1
c
(�)) induces a well-defined sesquilinear

pairing
gr
�1
V

s : gr
�1
V

M0 ⌦ gr
�1
V

M00 �! C

which coincides with �s(�1)
0

via the identification M
�1 ' gr

�1
V

M (M = M0,M00) of
Proposition 7.2.10.

Sketch of proof. We note that the basic distributions u�,p (with � > �1 and p > 0) are
temperate distributions on C. Hence so are their Fourier transforms bu�,p := F(u�,p).
Assume first that � > �1. Then bu�,p solves the equations

(⌧@⌧ + � + 1)
p+1bu�,p = (⌧@⌧ + � + 1)

p+1bu�,p = 0,

and thus the restriction of bu�,p to ⌧ 6= 0 is a C-linear combination of the functions
|⌧ |�2(�+1)

L(⌧)
k
/k! for k 6 p. It follows from Exercise 6.13(3), applied with the

variable ✓ = 1/⌧ , that

s 7�!
Z

C
|⌧ |�2(s+1)b�(⌧)bu�,p

i

2⇡
d⌧ ^ d⌧

extends as a meromorphic function with no pole at s = 0. One can refine this
reasoning in order to get the first statement.

For the second statement, we are reduced to showing

Ress=0

⌦
Ib�(t, s)�(t)

i

2⇡
(dt ^ dt), u�1,p)

↵
=

(
�1 if p = 0,

0 if p > 1.

The first case follows from the identity Ress=0 Ib�(0, s) = 1 (see Exercise 7.21(2)), since
u�1,0 = ��0. For p > 1, one uses Exercise 7.21(1) and (4) to show that ((t@t)pIb�)(0, s)
has no pole at s = 0.

7.3.15. Definition. The sesquilinear pairing

�t,1s : gr
�1
V

M0 ⌦ gr
�1
V

M00 �! C

is well-defined by the formula

(7.3.15 ⇤) ([m
0
], [m

00
]) 7�! Ress=0

⌦
Ib�(g, s)�(t)

i

2⇡
(dt ^ dt), s(m

0
,m00)

↵
,
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where m0,m00 are local liftings of [m0], [m00] and �(t) is any cut-off function. It satisfies
(see Corollary (7.3.7)) �t,1(s⇤) = (�t,1s)

⇤ and

(7.3.15 ⇤⇤)
�t,1s(N

0•, •) = �t,1s(•,N
00•),

�t,1s(can
0 •, •) = � t,1s(•, var

00 •), �t,1s(•, can
00 •) = � t,1s(var

0 •, •).

7.3.16. Remark (on the signs). The formulas (7.3.7 ⇤⇤) may look simpler than
(7.3.15 ⇤⇤), as no signs were involved in the former. However, the latter correspond
to our choices for positivity (see the appendix on sign conventions, Section A.10).
Such signs occur basically because of the following reason. The function L(t) is a
positive function on �⇤, but Cauchy’s formula @t@tL(t) = ��o shows that @t@tL(t)
is a negative current. In order to keep positivity, the right sesquilinear pairing to
consider on vanishing cycles is thus �s(�1)

0
, and not s

(�1)
0

. Fortunately, the residue
formula of Lemma 7.3.14 directly gives the right sesquilinear pairing. Such a formula
will be used in higher dimensions in Section 12.5.e. This is also illustrated in the
following examples.

Let s be a sesquilinear pairing between M0 and M00. We denote by M either M0

or M00.
(1) If M0,M00 are supported at the origin, we have M = M

�1
[@t] and we recover

(see Example 7.3.9(2)) that �t,1s on M
0�1 ⌦M 00�1 is the coefficient of �0 in s

(�1).
This is in accordance with our sign convention.

(2) If M is a middle extension, we have �t,1M = ImN :  t,1M !  t,1M, with
can = N and var = incl. Formulas (7.3.15 ⇤⇤) give

�t,1s(N
0•,N00•) := � t,1s(N

0•, •) = � t,1s(•,N
00•).

This is compatible with Proposition 3.4.20.

7.3.e. Pushforward of a sesquilinear pairing. We will consider the case of the
closed inclusion ◆ : {0} ,! � and, in the global setting, the case of the constant map
X ! pt on a Riemann surface X.

7.3.17. Pushforward of a sesquilinear pairing by a closed inclusion. Let ◆ : {0} ,! �

denote the inclusion and let s : H0 ⌦H00 be a sesquilinear pairing between C-vector
spaces. We set the following, for H = H0,H00:

• ◆⇤H is the skyscraper sheaf with stalk H at the origin.
• M = D◆⇤H is the sheaf supported at the origin

◆⇤H[@t] := ◆⇤H ⌦C C[@t] =
L
k>0

◆⇤H · @k
t
,

where we regard @t as a new variable, and that we equip with the left D�-module
structure for which the action of t defined by t · v@k

t
= �kv@k�1

t
(v 2 H), and the

action of @t is the obvious one @t · v@kt = v@
k+1

t
.

• The pairing D,D◆⇤s : M0 ⌦C M00 ! Db� is defined by D� ⌦C D�-linearity from
its restriction to ◆⇤H0 ⌦C ◆⇤H00 as follows:

(D,D◆⇤s)(v
0
, v00) = s(v

0
, v00)�0.
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Note that, since �0 is real, we have D,D◆⇤(s
⇤
) = (D,D◆⇤s)

⇤.

Pushforward of a sesquilinear pairing by a constant map. Let s : M0 ⌦C M00 ! DbX be
a sesquilinear pairing. We wish to “integrate” it on X, that is, to define for each k,
by integration, a sesquilinear pairing

(7.3.18)
R
(k,�k)
X

s : H
1+k

(X,DRM0)⌦H
1�k

(X,DRM00) �! C.

It is convenient to realize elements of the de Rham cohomology H
j
(X,DRM) as

differential forms with coefficients in M. For that purpose, we replace the complex
DRM with its C1 resolution (E•

X
⌦M, d+r). An element of Hj

(X,DRM) can then
be represented by a global section of Ej

X
⌦M which is closed under d+r (a shortcut

for d⌦ Id+ Id⌦r), modulo exact global sections. By using a partition of unity, each
global section can be written as a sum of terms ⌘ ⌦m, where m is a section of M on
some open set of X and ⌘ is a C

1
j-form with compact support contained in this

open subset. For ⌘0 of degree 1 + k and ⌘00 of degree 1� k, we set

(7.3.19) (
R
(k,�k)
X

s)(⌘
0 ⌦m

0
, ⌘00 ⌦m00) := h⌘0 ^ ⌘00, s(m0,m00)i,

where s(m
0
,m00) is regarded as a distribution on the intersection of the domains of m0

and m
00, which contains the support of the C

1
2-form ⌘

0 ^ ⌘00.

7.3.20. Proposition. Formula (7.3.19) (extended by linearity on both sides) well defines
a sesquilinear pairing (7.3.18).

Proof. If we denote by D the differential of the C
1 de Rham complex, the assertion

would follow from the property

(7.3.21) (
R
X
s)(D(⌘

0 ⌦m
0
), ⌘00 ⌦m00) = ±(

R
X
s)(⌘

0 ⌦m
0
, D(⌘00 ⌦m00)),

where ± depends on k. Assume for example that ⌘0 is a C
1 function and ⌘00 a 1-form.

Stokes formula implies

h⌘0⌘00, d0s(m0,m00)i = �hd0(⌘0⌘00), s(m0,m00)i

and similarly with d
00. Since D(⌘

0⌦m0) = d⌘
0⌦m0+⌘0^rm0 and since s(rm0,m00) =

d
0
s(m

0
,m00), the left-hand side of (7.3.21) is equal to

h(d⌘0) ^ ⌘00, s(m0,m00)i � hd0(⌘0⌘00), s(m0,m00)i

while the right-hand side of (7.3.21) is similarly

h⌘0(d⌘00), s(m0,m00)i � hd00(⌘0⌘00), s(m0,m00)i,

and the sum of the two sides is equal to zero.

The sign in the definition below is justified by Formula (2.4.8). We will also find
it in higher dimensions, in Formula (4.2.17) and Proposition 12.4.12.

7.3.22. Definition. The pushforward

Ta
(k,�k)
⇤ s : H

1+k
(X,DRM0)⌦H

1�k
(X,DRM00) �! C
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is defined as

Ta
(k,�k)
⇤ s := Sgn(1, k)

R
(k,�k)
X

s.

7.4. Hodge D-modules on a Riemann surface and the Hodge-Saito theorem

What kind of an algebraic object do we get by considering Vmid together with its
connection and its filtration? How to describe it axiomatically, as we did for variations
of Hodge structure? Is there a wider class of filtered D-modules which would give rise
to a Hodge theorem? We give an answer to these questions in this section.

7.4.a. The category of triples of filtered DX-modules and its functors

The category of triples, as considered in Section 5.4, will prove much convenient
as an ambient abelian category for Hodge modules. We develop here the language of
triples for filtered DX -modules.

A filtered DX -triple

T = ((M0, F
•
M0), (M00, F

•
M00), s)

consists of filtered DX -modules together with a sesquilinear pairing between the un-
derlying DX -modules. We say that a triple is coherent, holonomic, regular, strictly
R-specializable, S-decomposable, middle extension, with punctual support, if both
its filtered DX -module components are so. We note that, by Example 7.3.9(1),
if T is holonomic, strictly R-specializable at any point, hence also regular (Propo-
sition 7.2.20), and S-decomposable, then T decomposes in a unique way as T1 � T2,
where T1 has pure support X and T2 has punctual support.

7.4.1. Morphisms, Hermitian duality, twist
(1) The notion of morphism is the obvious one, as in the category of triples. A mor-

phism ' : T1 ! T2 is a pair ('
0
,'
00
), where '0 is a filtered morphism (M0

1
, F

•M0
1
)!

(M0
2
, F

•M0
2
) and '00 a filtered morphism (M00

2
, F

•M00
2
)! (M00

1
, F

•M00
1
), both satisfying

the compatibility relation (5.2.1 ⇤⇤) in DbX .
(2) It is convenient to embed the category of triples of filtered DX -modules as

a full subcategory of that of triples of RFD-modules, which is abelian. In order
to do so, we start by applying the Rees construction of §5.1.3, and we denote by
eDX = RFDX the Rees ring obtained from the filtered ring (DX , F•DX). We the
consider the triples consisting of pairs ( eM0, eM00) of graded RFDX -modules and a
sesquilinear pairing between the associated DX -modules M = eM/(z � 1) eM) with
values in DbX , and we associate with a triple T as above the triple consisting of the
Rees modules RFM

0
, RFM

00 (in particular they are strict as graded RFDX -modules)
and the sesquilinear pairing s between M0 and M00. This category of triples of is
abelian, since one does not insist on the torsion freeness with respect to z.

(3) Hermitian duality is defined as in §5.2.2(6):

T⇤ = ((M00, F
•
M00), (M0, F

•
M0), s⇤).
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(4) Tate twist is defined as in §5.2.2(7), so

T(k) = ((M0, F [k]
•
M0), (M00, F [�k]•M00), s).

(5) A pre-polarization of T of weight w is an isomorphism S : T ! T⇤(�w) which
is Hermitian.

(6) The data of a pre-polarized filtered triple (T, S) of weight w is equivalent to
the data of a filtered Hermitian pair ((M0, F •M0), S) together with the weight w.

The normalization of Section 5.4.b leads us to de-symmetrize the nearby cycle
functors, in a way similar to that of the pullback functor.

7.4.2. Nearby and vanishing cycles. We assume that X = �. Let

T = ((M0, F
•
M0), (M00, F

•
M00), s)

be coherent, holonomic and strictly R-specializable at the origin. We set (see (7.2.16))

 t,�T := (( t,�M
0
, F

•
 t,�M

0
), ( t,�M

00
, F

•
 t,�M

00
)(�1), t,�s)

�t,1T := ((�t,1M
0
, F

•
�t,1M

0
), (�t,1M

00
, F

•
�t,1M

00
),�t,1s),

N = (N
0
,N
00
), can = (can

0
,� var

00
), var = (var

0
,� can

00
).

The signs are reminiscent of (5.3.7). We have

( t,�T)
⇤
=  t,�(T

⇤
)(�1), (�t,1T)

⇤
= �t,1(T

⇤
).

Since can
0 is a morphism ( t,1M

0
, F

•
 t,1M

0
)! (�t,1M

0
, F

•
�t,1M

0
) and var

00 is a mor-
phism (�t,1M

00
, F

•
�t,1M

00
)! ( t,1M

00
, F

•
 t,1M

00
)(�1), and similarly when exchang-

ing the prime and double prime parts, we deduce from (7.3.15 ⇤⇤) a nearby/vanishing
cycle Lefschetz quiver

 t,1T

can

))

�t,1T.

var

hh

(�1)
hh

If S : T ! T⇤(�w) is a pre-polarization, it induces pre-polarizations

 t,�S : ( t,�T,N) �! ( t,�T,N)
⇤
(�(w � 1)),

�t,1S : (�t,1T,N) �! (�t,1T,N)
⇤
(�w).

where we have set ( t,�T,N)
⇤
= ( t,�T

⇤
,N
⇤
) and similarly for �t,1. We then set

 t,�(T, S) := ( t,�T, t,�S),

�t,1(T, S) := (�t,1T,�t,1S).

For the corresponding filtered Hermitian pair ((M0, F •M0), S, w), this reads as

 t,�((M
0
, F

•
M0), S, w) := ( t,�(M

0
, F

•
M0), t,�S, w � 1),

�t,1((M
0
, F

•
M0), S, w) := (�t,1(M

0
, F

•
M0),�t,1S, w).
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7.4.3. S-decomposability. In the local setting above, we say that T is S-decomposa-
ble if its filtered D-module components are so. It follows from Example 7.3.9(1)
that the sesquilinear pairing decomposes correspondingly, and thus T = T1 � T2

with T2 supported at the origin and where T1 is a middle extension. The criterion
of Proposition 7.2.27 extends as well: T is S-decomposable if and only if �t,1T =

Imcan�Ker var.

7.4.4. Pushforward by a closed inclusion. For a filtered C-triple

T = ((H0, F
•
H0), (H00, F

•
H00), s),

we use the notation of (7.2.32 ⇤) and of §7.3.17, and we set

T◆⇤T :=
�
D◆⇤(H

0
, F

•
H0), D◆⇤(H

00
, F

•
H00), D,D◆⇤s

�
.

We recover T as �t,1(T◆⇤T) (see Proposition 7.2.32 and §7.3.17). A pre-polarization
S of weight w is pushforwarded to a pre-polarization T◆⇤S : T◆⇤T ! T◆⇤(T

⇤
(�w)) =

(T◆⇤T)
⇤
(�w) of weight w.

7.4.5. Pushforward by the constant map. Let aX : X ! pt be the constant map. Re-
call (see Section 7.2.e and Caveat 7.2.34) that, for a coherently F -filtered holonomic
(M, F

•M), we have set Da
(k)

X
M = H

k
(X,

p

DRM) and correspondingly we set
F

p
H

k
(X,

p

DRM) = image
⇥
H

k
(X,F

p p

DRM)!H
k
(X,

p

DRM)
⇤
,

defining thus Da
(k)

X
(M, F

•M). We define

Ta
(k)

⇤ T =
�
Da

(k)

X
(M0, F

•
M0), Da

(�k)
X

(M00, F
•
M00), Ta

(k,�k)
⇤ s

�
.

With this definition we have

Ta
(k)

⇤ (T⇤) = (Ta
(�k)
⇤ T)⇤,

and if S is a pre-polarization T ! T⇤(�w), it defines a pre-polarization

Ta
(k)

⇤ S : Ta
(k)

⇤ T �! Ta
(k)

⇤ (T⇤)(�w) = (Ta
(�k)
⇤ T)⇤(�w).

7.4.6. Example. If T is a polarizable smooth C-Hodge triple of weight w (see Definition
5.4.7) and if X is compact, then Ta

(k)

⇤ T is a C-Hodge triple of weight w+k, according
to the Hodge-Deligne theorem 4.2.16.

7.4.b. Polarizable C-Hodge modules. Let us introduce the main objects of this
section.

7.4.7. Definition (of a polarized C-Hodge module of weight w)
Let T be a holonomic coherently F -filtered DX -triple with singular set ⌃ ⇢ X,

and let S : T ! T⇤(�w) be a morphism (w 2 Z). We say that (T, S) is a polarized
Hodge module of weight w on X if the following properties hold:

(1) (T, S)|Xr⌃ is a polarized smooth C-Hodge triple of weight w (Definition 5.4.7),
(2) For each xo 2 ⌃ and some local coordinate t vanishing at xo, T is strictly

R-specializable at xo and
(a) for any � 2 S

1,  t,�(T, S) := ( t,�T, t,�S) is a polarized Hodge-Lefschetz
triple with central weight w � 1,



206 CHAPTER 7. POLARIZABLE HODGE MODULES ON CURVES

(b) �t,1(T, S) := (�t,1T,�t,1S) is a polarized Hodge-Lefschetz triple with cen-
tral weight w.

See Section 5.3 for the notion of polarized Hodge-Lefschetz triple. We note that
a morphism S satisfying (1) and (2) is a Hermitian isomorphism, i.e., it is a fil-
tered isomorphism which satisfies S

⇤
= S. In other words, it is a pre-polarization of

weight w. Indeed, this property holds on X r ⌃, and at each point xo of ⌃ we have
 t,�S

⇤
=  t,�S (8� 2 S

1) and �t,1S⇤ = �t,1S, by definition of a (pre-)polarization of a
Hodge-Lefschetz triple (see §5.3.4). That S is Hermitian follows from Exercise 7.13(2).
The filtered-isomorphism property follows from Exercise 7.16. We then call S a po-
larization of the Hodge module T of weight w (a positivity property has been added
to the notion of pre-polarization).

7.4.8. Definition (of a polarizable C-Hodge module of weight w)
Let T be a holonomic coherently F -filtered DX -triple. We say that T is a polariz-

able Hodge module of weight w on X if there exists a pre-polarization S : T ! T⇤(�w)
of weight w such that (T, S) is a polarized Hodge module of weight w on X in the
sense of Definition 7.4.7.

We will denote by M a triple which is a polarizable Hodge module and by
pHM(X,w) the full subcategory of the category of holonomic coherently F -filtered
DX -triples whose objects are polarizable C-Hodge modules of weight w.

7.4.9. Proposition (Simplified form for an object of pHM(X,w))
Any object M of pHM(X,w) is isomorphic to an object of the form

�
(M, F

•
M), (M, F

•
M)(w), S

�

such that S⇤ = S and with polarization (Id, Id) : M !M
⇤
(�w).

We also call the data
�
(M, F

•M), S, w
�

a polarized C-Hodge module of weight w

if the corresponding triple
�
(M, F

•M), (M, F
•M)(w), S

�
with polarization (Id, Id) is

polarized Hodge module of weight w.

Proof. Let S = (S0, S00) : M ! M
⇤
(�w) be a polarization. It enables us to identify

(M00, F •M00) with (M0, F •M0)(w) by S0 = S00. We then argue as in Proposition 5.2.16.

7.4.10. Theorem (The S-decomposition theorem for polarizable Hodge modules)
Let M be a polarizable Hodge module of weight w on X. Then M decomposes in

a unique way in pHM(X,w) as the direct sum M = M1 �M2, where M1 has pure
support X and M2 has punctual support.

Proof. Assume that M has weight w and let S : M !M
⇤
(�w) be a polarization. Due

to uniqueness, the question is local at each singular point of M . We can moreover
replace (M, S) with the corresponding Hodge-Hermitian pair

�
(M, F

•M), S, w
�
. In

order to apply the S-decomposition theorem for Hodge-Lefschetz structures 3.4.22 to
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the Hodge-Lefschetz quiver of this Hodge-Hermitian pair, we need to check that it is
polarizable as such. This amounts to checking the equality

�t,1S(m, cann) = � t,1S(varm,n),

which holds, as seen in (7.3.15 ⇤⇤).
The S-decomposability criterion of §7.4.3 implies that M decomposes as wanted

in the category of filtered D-triples. It remains to check that both M1 and M2

are objects of pHM(X,w). But by construction, the corresponding decomposition
of  t,�M and �t,1M is that given in Theorem 3.4.22, hence is by polarized Hodge-
Lefschetz structures, as wanted.

Clearly, there is no non-zero morphism between M1 and M2 in the S-decomposition
of M , as this already holds for the underlying D-modules. Therefore, any mor-
phism in pHM(X,w) S-decomposes correspondingly. We denote by pHM

X
(X,w)

resp. pHM
⌃
(X,w) the full subcategory of pHM(X,w) consisting of objects with

pure support X resp. with punctual support ⌃. Any object M and morphism '

of pHM
⌃
(X,w) decomposes therefore as the direct sum of objects M1 and M2 and

morphisms '1 and '2, one in each subcategory, for a suitable discrete set ⌃ ⇢ X.
Most reasonings concerning polarizable Hodge modules are therefore divided in two

cases, that of middle extensions and that of objects with punctual support. The latter
case is usually reduced to that of polarizable Hodge structures by the previous remark,
and the former is reduced to that of polarizable Hodge-Lefschetz structures by means
of  t,�, while the case of �t,1 is deduced from that of  t,1 by Proposition 3.4.20.

Let us analyze the local structure (on �, with ◆ : ⌃ = {0} ,! �) of M1 and M2.

7.4.11. Proposition. The functor T◆⇤ of §7.4.4 induces an equivalence between pHS(w)

and pHM{0}(�, w), a quasi-inverse functor being �t,1.

7.4.12. Proposition. If (M, F
•M) underlies a Hodge module with pure support � of

weight w, then (M, F
•M) ' (Vmid, F

•Vmid) as defined by (6.14.1), with V = M|�⇤ .
Furthermore, (V, F •V) underlies a variation of Hodge structure of weight w � 1.

Proof. That M ' Vmid follows from Definition 7.2.29. It remains to check that the
filtrations coincide. By Proposition 6.14.2, it is enough to check that F •M\V >�1M =

F
pV>�1

mid
and that F •M satisfies 6.14.2(3c), since we assume that (M, F

•M) is strictly
R-specializable (Definition 7.2.19).

Let us first show that

F
•
M \ V

>�1M = (j⇤j
�1

F
•
M) \ V

>�1M,

the latter term being equal to F
pV>�1

mid
by (6.7.1). Let m be a local section of

(j⇤j
�1

F
pM \ V

>�1M) \ (F
qM \ V

>�1M) for q > p. Then m defines a section of
(F

qM\V >�1M)/(F
pM\V >�1M) supported at the origin. Since the latter quotient

is O�-coherent, it follows that t
N
m is a local section of F pM \ V

>�1M for some N ,
hence a local section of F pM\ V >�1+NM. Now, Property 6.14.2(3a) implies that m
is a local section of F pM \ V

>�1M, hence the desired assertion.
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It remains to check 6.14.2(3c). This amounts to proving that can is an epimor-
phism in the category of filtered vector spaces. This follows from the property
that Im[N :  t,0M!  t,0M] is a Hodge-Lefschetz structure with central weight w

(see Exercise 3.14(2), Proposition 3.4.6 and its translation in the language of triples
in Section 5.3).

7.4.13. Remark. Strict R-specializability, as defined by 7.2.19 and assumed in Defini-
tion 7.4.7, would not have been enough to prove Proposition 7.4.12. Hodge theory is
used in an essential way here, by means of Exercise 3.14, to ensure Property 6.14.2(3c).

It M has pure support the disc, it follows from Theorem 6.8.7 that 7.4.7(1) implies
7.4.7(2a), and Proposition 3.4.20 implies that 7.4.7(2b) also holds. The definition of
a polarized Hodge module consists therefore in taking Theorem 6.8.7 as a defining
property. This leads to the definition of the category pHM

X
(X,w) of polarizable

C-Hodge modules of weight w with pure support X.
Let j denote the inclusion �⇤ ,! �.

7.4.14. Corollary (of the results of Chapter 6). The restriction functor j
⇤, from the

category of polarizable C-Hodge modules with pure support �, weight w and singularity
at 0 at most to the category of polarizable variations of C-Hodge structure on �⇤ of
weight w � 1 is an equivalence of categories.

Proof. Let us prove the essential surjectivity. Given a polarized variation of Hodge
structure (H, S) on �⇤ (i.e., we choose a polarization on H), we know by Formula
(6.14.1), Corollary 6.14.4 and Proposition 6.14.2 that (Vmid, F

•Vmid) is a holonomic
filtered D�-module which is strictly R-specializable at the origin. The sesquilin-
ear pairing S extends as a sesquilinear pairing on V�

⇤ (� 2 (�1, 0]) as explained in
Section 6.8.a, and this uniquely defines an extension of S to Vmid, as noticed in Ex-
ample 7.3.9(3). Then Theorem 6.8.7 implies that Property 7.4.7(2a) holds, and this
is enough, as noticed in Remark 7.4.13.

For the full faithfulness, it is enough to prove that a morphism ' : (V1, F
•V1) !

(V2, F
•V2) extends in a unique way as a morphism

(V1mid, F
•
V1mid) �! (V2mid, F

•
V2mid).

First, ' extends in a unique way as a morphism V1⇤ ! V2⇤, by the equivalence of
Theorem 6.2.1, and this morphism sends V>�1

1
to V>�1

2
, hence V1mid to V2mid. The

compatibility with filtrations follows from (6.7.1) and (6.14.1).

7.4.15. Proposition. There is no nonzero morphism M1 ! M2 between polarizable
C-Hodge modules of weight w1, w2 if w1 > w2.

Proof. We can treat separately the case of pure support and the case with punctual
support. The latter case follows from Proposition 2.5.6(2).

Let us consider the case of a middle extension. The D-module part of Im' has
support {0}, by applying Proposition 2.5.6(2) at points of �⇤, but is included in a
D-module with pure support of dimension 1, hence is zero.
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7.4.16. Proposition (Abelianity). The category pHM(�, w) of polarizable Hodge modules
is abelian and any morphism is strict with respect to the F -filtrations.

Proof. The case of punctual support follows from Proposition 2.5.4, so we only con-
sider the subcategory pHM

�
(�, w). Let ' : M1 !M2 be a morphism.

The morphisms  t,�',�t,1' are morphisms in MHS, hence are strict on the filtered
D-module components. In other words, ' is strictly R-specializable in the sense of
Proposition 7.2.23 and, by loc. cit., Ker and Coker commute with  t,�,�t,1 for ' on
the filtered D-module components. The same property holds with the sesquilinear
pairing, so Ker t,�' resp. Ker�t,1' (and similarly for Coker) are kernel of morphisms
in pHLS(w � 1) resp. in pHLS(w). Since the latter categories are abelian (Proposi-
tion 3.4.18), these kernels and cokernels belong to the corresponding categories, and so
do the objects obtained by commuting Ker,Coker with  t,�,�t,1. We note that Propo-
sition 3.4.18 makes precise that the sesquilinear form induced on these objects by
polarizations S1, S2 of M1,M2 are polarizations. This means that Ker' and Coker',
equipped with the induced S1, S2, are polarized Hodge modules of weight w.

7.4.17. Corollary. Let ' be a morphism in pHM(�, w). Assume that it is injective
on the DX-module components (i.e., '0 is injective and '

00 is onto). Then it is a
monomorphism, i.e., the Hodge filtration on the source of ' is the filtration induced
by that on its target.

According to Exercises 4.2(2) and 2.12, and due to the S-decomposition theorem,
we obtain:

7.4.18. Corollary. Let X be a Riemann surface. The category pHM(X,w) is semi-
simple.

The Hodge-Saito theorem. Let (M, S) be a polarized Hodge module of weight w on a
compact Riemann surface X (see Definition 7.4.7), that we can represent as a Hodge-
Hermitian pair ((M, F

•M), S) of weight w. Away from a finite set ⌃ ,
◆�! X, it

corresponds to a polarized variation of Hodge structure of weight w�1. The deRham
complex p

DRM is naturally filtered (see Caveat (7.2.34)), so that we get in a natural
way a filtration on its hypercohomology.

7.4.19. Theorem. Let ((M, F
•M), S) be a polarized Hodge module of weight w on X.

Then
(1) the filtered complex R�(X,F

• p

DRM) is strict, i.e., for every k, p, the natural
morphism H

k
(X,F

p p

DRM)!H
k
(X,

p

DRM) is injective,
(2) the filtered Hermitian pair

�
H

0
(X,

p

DRM), F
•
H

0
(
p

DRM), S = Ta⇤S
�

is a polarized Hodge structure of weight w,
(3) for k = 1,�1, the triple

(
�
H

k
(X,

p

DRM), F
•
), (H

�k
(X,

p

DRM), F
•
), S = Ta

(k,�k)
⇤ S

�
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is a polarizable Hodge triple of weight w + k.

Proof. We treat the case of pure support X and punctual support separately. Assume
first that M has pure support X. Then M = Vmid and F

•M = F
•Vmid (see Corollary

7.2.31). We recall (see §7.2.d) that DRM is a resolution of j⇤H. The Hodge-
Zucker theorem 6.11.1 (as made precise in Section 6.14.d) implies the theorem in a
straightforward way (recall Definition 7.3.22 for D,Da⇤S and that, for n = 1 and k = 0,
Sgn(n, k) = Sgn(1, 0) = i/2⇡, see (0.2 ⇤)). We also recall that H

k
(X,F

p p

DRM) :=

H
k+1

(X,F
p
DRM) for all p.

Assume now that M has support equal to the origin in �. Then (M, S) = T◆⇤(H, S)

for some polarized Hodge structure H of weight w (see Proposition 7.4.11). According
to Example 7.2.33(2), we thus have H

k
(�,

p

DRM) = 0 for k 6= 0, and the morphism
of complexes F

p p

DRM! p

DRM is nothing but ◆⇤F pH! ◆⇤H. Therefore, the map

H
0
(�, F

p p

DRM)!H
0
(�,

p

DRM)

is nothing but the map F
pH ! H, hence is injective. This proves the first point.

It remains to identify the polarization. For that purpose, it is useful to replace
the holomorphic de Rham complex with its C

1 resolution (E•
�
⌦O�

M, D), with
D = d⌦ Id+ Id⌦r, in order to deal with global sections on �. Let us fix a ba-
sis v = (vi)i of H and let us denote with the same letter the corresponding section of
◆⇤H. Any section m 2 �(�,E1

�
⌦M) can be written as a finite sum

P
i
⌘i,k ⌦ vi@

k

t
.

7.4.20. Lemma. Any D-closed section of �(�,E1

�
⌦M) is equivalent, modulo ImD, to

a section of the form
P

i
fidt⌦ vi, with fi 2 C1(�). Moreover, the cohomology class

of a closed section of the form
P

i
fidt⌦ vi is equal to

P
i
fi(0)vi 2 H.

Proof. For the first point, we argue by induction on the degree ko of the section with
respect to @t. Let us consider the highest degree term

P
i
⌘i,ko

⌦ vi@
ko

t
. The highest

degree term of the differential of the section is
P

i
(⌘i,ko

^ dt) ⌦ vi@
ko+1

t
, hence it is

equal to zero since the section is D-closed. It follows that ⌘i,ko
= fi,ko

dt for some C
1

function fi,ko
. If ko > 1, we subtract D(

P
i
fi,ko

⌦ vi@
ko�1
t

) to the section, and we
get a closed section of degree < ko.

For the second point, it is enough to check that, if
P

i
fidt ⌦ vi is D-closed, it

is equal to
P

i
fi(0)dt ⌦ vi, since we know that the cohomology admits v as a basis

by the first part of the proof of the theorem. First, the closedness property implies
that each fi is holomorphic on �. Then, according to the O�-module structure of
M = D◆⇤H, we have tvi = 0 for each i, hence the result.

We can now compute, for m
0
,m
00 as above, with cohomology classes [m

0
], [m

00
],

Sgn(1, 0)

Z

X

S(m0,m00) =
i

2⇡

X

i,j

hf 0
i
f
00
j
dt ^ dt, S(vi, vj)�oi

= S
�P

i
f
0
i
(0)vi,

P
j
f
00
j
(0)vj

�
= S([m

0
], [m00]).
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7.5. Semi-simplicity

Let X be a Riemann surface. Corollary 7.4.18 tells us that the category pHM(X,w)

is semi-simple. If X is compact, we will determine the simple objects and show more
precisely that their underlying D-modules are themselves simple as such. The main
argument will of course be Theorem 4.3.13 and Corollary 6.4.2.

7.5.1. Theorem (Semi-simplicity). Let X be a compact Riemann surface and let (M, S)

be a polarized Hodge module of weight w. Then the underlying DX-module M is
semi-simple. Furthermore, any simple component M↵ of M underlies a unique (up to
equivalence) polarized Hodge module (M↵, S↵) of the same weight w and there exists
a polarized Hodge structure (H

o

↵
, S

o

↵
) of weight 0 such that (M, S) '

L
↵
((H

o

↵
, S

o

↵
) ⌦

(M↵, S↵)).

(See Section 4.3.c for the notion of equivalence.) Let us start by describing the
simple objects in the category of regular holonomic DX -modules on a Riemann surface
(not necessarily compact).

7.5.2. Proposition. Let X be a Riemann surface. A regular holonomic DX-module is
simple if

• either M is supported on a point x 2 X and in a local coordinate t vanishing
at x, M ' C[@t],

• or there exists a discrete subset ⌃ ⇢ X and an irreducible bundle with connection
(V,r) on X r ⌃ (i.e., such that the local system Vr on X r ⌃ is irreducible) such
that M ' Vmid.

Proof. If M is supported on a point, then it is isomorphic to (gr
�1
V

M)[@t] (Exer-
cise 7.7(2)), and simplicity implies dimgr

�1
V

M = 1. Otherwise, M has no submod-
ule and no quotient module supported on a point. If ⌃ denotes the singular set
of M, then M|Xr⌃ = V is a holomorphic bundle with connection r and M = Vmid

(Definition 7.2.11). Simplicity of M implies simplicity of V (if 0 6= V1  V, then
0 6= V1mid  Vmid), that is, irreducibility of V.

Proof of Theorem 7.5.1. The S-decomposition theorem 7.4.10 already solves part of the
problem: we can assume that M either is supported on a point or has pure support X.
The first case is solved by Proposition 7.4.11. For the second case we use Corollary
7.4.14 to reduce to Corollary 6.4.2 and Theorem 6.14.17 in case X is compact.

7.6. Numerical invariants of variations of C-Hodge structure

Let X be a compact Riemann surface of genus g and let (V, F •
, S) be a polarized

variation of Hodge structure of weight w on X r ⌃, for some finite subset ⌃ ⇢ X

(hence corresponding to a smooth Hodge triple of weight w+1). It can be extended as
a polarized C-Hodge module of weight w+1 with pure support X, whose underlying
DX -module is Vmid. In this section, we relate the local and global numerical invariants
attached to such data. The local numerical invariants are
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• the Hodge numbers of the variation,
• and the Hodge numbers of the nearby and vanishing cycles at each point of ⌃.

The global numerical invariants are
• the degrees of the Hodge bundles F

pVmid,
• the Hodge numbers of the de Rham cohomology.

We also analyze the behaviour of some of these invariants under the tensor product
operation.

7.6.a. Local Hodge numerical invariants. We consider the local setting (�, 0)

of Section 6.2. We define a bunch of numbers attached to a polarizable variation
C-Hodge structure on �⇤ (Definitions 7.6.1 and 7.6.9).

7.6.1. Definition (The local invariant hp). For a filtered holomorphic bundle (V, F •V)

on �⇤, we will set h
p
(V) = h

p
(V, F •V) = rk gr

p

F
V.

For a variation of C-Hodge structure, we thus have

h
p
(V) = rkHp,w�p

.

From the freeness of F pV�

⇤ for every � we obtain:

(7.6.2) h
p
(V) =

X

�2S1
h
p
 t,�(Vmid).

Nearby cycles. In the following, we will set ⌫p
�
(V) = h

p
 t,�(V⇤) = h

p
 t,�(Vmid) for

� 2 S
1. Note that the associated graded Hodge-Lefschetz structure has the same

numbers h
p
(gr

M
 t,�(V⇤)) = h

p
( t,�(V⇤)). The Hodge filtration on gr

M
 t,�(Vmid) =

gr
M
 t,�(V⇤) splits with respect to the Lefschetz decomposition associated with N.

The primitive part P` t,�(Vmid), equipped with the filtration induced by that on
gr

M

`
 t,�(Vmid) and a suitable polarization, is a polarizable C-Hodge structure (Theo-

rem 6.8.7). We can thus define the numbers

⌫
p

�,`
(Vmid) = ⌫

p

�,`
(V⇤) := h

p
�
P` t,�(Vmid)

�
= dimgr

p

F
P` t,�(Vmid).

According to the F -strictness of N and the Lefschetz decomposition of grM t,�(Vmid),
we have

(7.6.3) ⌫
p

�
(Vmid) =

X

`>0

`X

k=0

⌫
p+k

�,`
(Vmid),

and we set

(7.6.4) ⌫
p

�,prim
(Vmid) :=

X

`>0

⌫
p

�,`
(Vmid), ⌫

p

�,coprim
(Vmid) :=

X

`>0

⌫
p+`

�,`
(Vmid).

We have

(7.6.5) ⌫
p

�
(Vmid)� ⌫p�1�

(Vmid) = ⌫
p

�,coprim
(Vmid)� ⌫p�1�,prim

(Vmid).
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Vanishing cycles. For � 6= 1, we set

µ
p

�,`
(Vmid) = ⌫

p

�,`
(Vmid) 8 p.

Let us now focus on � = 1. We have by definition

�t,1(Vmid) = gr
�1

(Vmid).

On the other hand, the filtration F
•
�t,1(Vmid) is defined so that we have natural

morphisms

( t,1(Vmid),N, F
•
)

can����!�! (�t,1(Vmid),N, F
•
) ,

var����! ( t,1(Vmid),N, F
•
)(�1).

Since can is strictly onto and var is injective, (�t,1(Vmid),N, F
•
) is identified with

ImN together with the filtration F
p
ImN = N(F

p
). We also have, by definition of

the Hodge filtration on Vmid,

F
p
�t,1(Vmid) =

F
p�1Vmid \ V�1⇤ Vmid

F p�1Vmid \ V>�1
⇤ Vmid

.

For ` > 0, we thus have

F
p
P`�t,1(Vmid) = N(F

p
P`+1 t,1(Vmid)),

and therefore
µ
p

1,`
(Vmid) = ⌫

p

1,`+1
(Vmid).

From (7.6.4) and (7.6.5) we obtain:

(7.6.6) µ
p

1
(Vmid) = ⌫

p

1
(Vmid)� ⌫p1,coprim(Vmid) = ⌫

p�1
1

(Vmid)� ⌫p�11,prim
(Vmid).

Note that, using the Lefschetz decomposition for the graded pieces of the mon-
odromy filtration of (�t,1(Vmid),N), we also have

(7.6.7) µ
p

1
(Vmid) =

X

`>0

`X

k=0

µ
p+k

1,`
.

We will set, similarly to (7.6.4):

(7.6.8) µ
p

�,prim
(Vmid) =

X

`>0

µ
p

�,`
(Vmid), µ

p

�,coprim
(Vmid) =

X

`>0

µ
p+`

�,`
(Vmid).

The various numbers that we already introduced are recovered from the following
Hodge numbers. We use the notation (V⇤, F

•V⇤) and (Vmid, F
•Vmid) as above.

7.6.9. Definition (Local Hodge numerical invariants for Vmid)
• h

p
(V),

• µ
p

1,`
(Vmid) = dimgr

p

F
P`�t,1(Vmid), where P`�t,1(Vmid) denotes the primitive part

of grM
`
�t,1(Vmid), and µ

p

�,`
(Vmid) = ⌫

p

�,`
(Vmid) if � 6= 1,

• µ
p

�
(Vmid) given by (7.6.7) and µ

p
(Vmid) =

P
�
µ
p

�
(Vmid).

7.6.10. Remark. The data ⌫p
1

are recovered from the data µ
p

• together with h
p
(V):

⌫
p

1,`
(Vmid) =

(
µ
p

1,`�1(Vmid) if ` > 1,

h
p
(V)� µ

p
(Vmid)� µ

p+1

1,coprim
(Vmid) if ` = 0.
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7.6.b. Example: twist with a unitary rank 1 local system. Let L be a nontriv-
ial unitary rank 1 local system on �⇤, determined by its monodromy �o 2 S

1
r {1},

and let (L,r) be the associated bundle with connection. We simply denote by L•

the various Deligne extensions of (L,r), and L⇤ is the meromorphic Deligne exten-
sion. It will be easier to work with L0 (i.e., � = 0). We set �o = exp(� 2⇡i�o) with
�o 2 (0, 1). Then, L0

= L�o and, for every � 2 R,

V�

⇤ ⌦ L0
= (V⇤ ⌦ L⇤)

�+�o ⇢ (V⇤ ⌦ L⇤)
�
.

On the other hand, the Hodge bundles on V ⌦ L are F
pV ⌦ L so that, by Schmid’s

procedure, for every �,

F
p
(V⇤ ⌦ L⇤)

�
:= j⇤(F

pV⌦ L) \ (V⇤ ⌦ L⇤)
�

(intersection taken in V⇤ ⌦L⇤) is a bundle, and we have a mixed Hodge structure by
inducing F

p
(V⇤ ⌦ L⇤)

� on gr
�

V(V⇤ ⌦ L⇤). We claim that

(7.6.11) F
pV�

⇤ ⌦ L0
= F

p
(V⇤ ⌦ L⇤)

�+�o .

This amounts to showing

(j⇤F
p \ V�

⇤ )⌦ L0
= j⇤(F

pH ⌦ L) \ (V⇤ ⌦ L⇤)
�+�o ,

intersection taken in V⇤ ⌦L⇤. The inclusion ⇢ is clear, and the equality is shown by
working with a local basis of L0, which can also serve as a basis for L and L⇤.

We deduce:

h
p
(V⌦ L) = h

p
(V),(7.6.12)

⌫
p

�,`
(V⇤ ⌦ L⇤) = ⌫

p

�/�o,`
(V⇤)(7.6.13)

µ
p

�,`
((V⇤ ⌦ L⇤)mid) =

8
>>>>>>><

>>>>>>>:

µ
p

�/�o,`
(Vmid) if � 6= 1,�o,

µ
p

1/�o,`+1
(Vmid) if � = 1,

µ
p

1,`�1(Vmid) if � = �o and ` > 1,

h
p
(V)� µ

p
(Vmid)

�µp+1

1,coprim
(Vmid)

)
if � = �o and ` = 0.

(7.6.14)

7.6.c. Hodge numerical invariants for a variation on X
⇤. Assume now that X

is a compact Riemann surface and let ⌃ be the finite set of points in X complementary
to X

⇤. Let (V, F 0•V, F 00•V,r) be a polarizable variation of C-Hodge structure on
X
⇤
= X r ⌃. Together with the local Hodge numerical invariants at each x 2 ⌃

we consider the following global Hodge numbers. We consider for every p the Hodge
bundle gr

p

F
V0

⇤ = gr
p

F
V0

mid
, whose rank is h

p
(V).

7.6.15. Caveat (Apparent singular points). A polarizable variation (V, F 0•V, F 00•V,r)
can extend smoothly at some x 2 ⌃. In such a case, all vanishing cycle numbers µ

at x vanish, as well as all nearby cycle numbers ⌫p
�,`

for � 6= 1 or � = 1 and ` 6 0.
There only remains ⌫p

1,0
at x, which is nothing but h

p.
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7.6.16. Definition (Degree of the Hodge bundles). For every p, we set

�
p
(V) = deg gr

p

F
V0

⇤.

7.6.d. Example: degree of the Hodge bundles for a tensor product

Let (L,r) be the holomorphic line bundle with connection associated to a unitary
rank 1 local system on X

⇤. (Up to adding apparent singular points as introduced in
7.6.15, we can assume that L and V are defined on the same open set X⇤.) We denote
by ↵x 2 [0, 1) the residue of the connection (L0

,r) at x, so that degL0
= �

P
x2⌃ ↵x,

and ↵x = 0 if and only if x is an apparent singular point for L. We now denote by
⌫
p

x,�
(V) etc. the local Hodge numbers of V at x whenever � 6= 1, and for � = (�x)x2⌃

we denote by V�
⇤ the extension of V equal to V�x

⇤ near x.

7.6.17. Proposition. With the notation as above, we have

�
p
(V⌦ L) = �

p
(V) + h

p
(V) degL0

+

X

x2⌃

X

�2[�↵x,0)

�=exp(� 2⇡i �)

⌫
p

x,�
(V).

(See Exercise 7.26 for the general formula (7.26 ⇤) when rkL > 1.)

Proof. We deduce from (7.6.11) (at each x 2 ⌃) that

�
p
(V⌦ L) = deg gr

p

F
(V⌦ L)0 = deg

⇥
(gr

p

F
V�↵⇤ )⌦ L0

⇤
after (7.6.11)

= deg gr
p

F
V�↵⇤ + h

p
(V) degL0

= �
p
(V) + h

p
(V) degL0

+

X

x2⌃

X

�2[�↵x,0)

�=exp(� 2⇡i �)

⌫
p

x,�
(V).

7.6.e. Hodge numbers of the de Rham cohomology. Let Vmid denote the mid-
dle extension of V⇤ at each of the singular points x 2 ⌃ and let F

•Vmid be the
extended Hodge filtration as in (6.7.1) and (6.14.1). The de Rham complex DRVmid

is filtered by

F
p
DRVmid = {0 �! F

pVmid �! ⌦
1

P1 ⌦ F
p�1Vmid �! 0},

and this induces a filtration on the hypercohomology H
•
(X,DRVmid) = H

•
(X, j⇤H),

where j : X
⇤
,! X denotes the open inclusion. By the Hodge-Zucker Theorem

6.11.1, F •
H

k
(X, j⇤H) underlies a polarizable C-Hodge structure. Note that, if H is

irreducible and non constant, then H
k
(X, j⇤H) = 0 for k 6= 1. Let g = g(X) denote

the genus of X.

7.6.18. Proposition. Assume that H is irreducible and non constant. Then

(7.6.18 ⇤) h
p
(H

1
(X, j⇤H)) = �

p�1
(V)� �p(V) + (h

p�1
(V) + h

p
(V))(g � 1)

+

rX

x2⌃

�
⌫
p�1
x, 6=1

(V) + µ
p

x,1
(Vmid)

�
.
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Proof. It follows from Proposition 6.14.8 that the inclusion of the filtered subcomplex

F
•
V0

⇤DRVmid := {0 �! F
•
V0

mid
�! ⌦

1

X
⌦ F

•�1V�1
mid
�! 0}

into the filtered de Rham complex is a filtered quasi-isomorphism. By the degen-
eration at E1 of the Hodge-to-deRham spectral sequence (see Remark 6.14.16(2)),
we conclude that

�hp
(H

1
(X, j⇤H)) = �

�
gr

p

F
H

•
(X,DRVmid)

�
(irreducibility and non-constancy of H)

= �
�
H

•
(X, gr

p

F
DRVmid)

�
(degeneration at E1)

= �
�
H

•
(X, gr

p

F
V0

⇤DRVmid)
�

(after Proposition 6.14.8)

= �
�
H

•
(X, gr

p

F
V0

mid
)
�
� �

�
H

•
(X,⌦

1

X
⌦ gr

p�1
F

V�1
mid

)
�

(O-linearity of the differential)
= �

p
(V)� deg(⌦

1

X
⌦ gr

p�1
F

V�1
mid

) + (h
p
(V)� h

p�1
(V))(1� g)

(Riemann-Roch)
= �

p
(V)� deg(gr

p�1
F

V�1
mid

) + (h
p
(V) + h

p�1
(V))(1� g).

We now have

deg(gr
p�1
F

V�1
mid

) = �
p�1

(V) + dimgr
p�1
F

(V�1
mid

/H0

mid
)

= �
p�1

(V) +
P

�2[�1,0) dimgr
p�1
F

(gr
�Vmid)

= �
p�1

(V) +
P

r

x2⌃
�
⌫
p�1
x, 6=1

(V) + µ
p

x,1
(Vmid)

�
.

7.7. Exercises

Exercise 7.1 (The Rees module). The properties of a coherent filtration (Section 7.2.a)
can be expressed in a simpler way by adding a dummy variable. Let M be a left
D-module and let F•M be an F -filtration of M . Let z be such a variable and let us
set RFD =

L
k2Z FkD · zk and RFM =

L
k2Z FkM · zk.

(1) Prove that RFD is a Noetherian ring.
(2) Prove that RFM has no C[z]-torsion.
(3) Prove that the F -filtration condition is equivalent to: RFM is a left graded

RFD-module.
(4) Prove that RFM/zRFM = gr

F
M and RFM/(z � 1)RFM = M .

(5) Prove that the coherence of F•M is equivalent to: RFM is a finitely generated
left RFD-module.

(6) Prove that M has a coherent F -filtration if and only if it is finitely generated.

Exercise 7.2.

(1) Check that the V -order of an operator P 2 D does not depend on the way we
write its monomials (due to the non-commutativity of D).

(2) Check that each VkD is a free O-module, and that, for k 6 0, VkD = t
�k

V0D.
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(3) Check that the filtration by the V -order is compatible with the product, and
more precisely that

VkD · V`D

(
⇢ Vk+`D for every k, ` 2 Z,

= Vk+`D if k, ` 6 0 or if k, ` > 0.

Conclude that V0D is a ring and that each VkD is a left and right V0D-module.
(4) Check that the Rees object RV D :=

L
k2Z VkD · vk is a Noetherian ring.

(5) Show that gr
V

0
D can be identified with the polynomial ring C[E], where E is

the class of t@t in gr
V

0
D.

(6) Show that E does not depend on the choice of the coordinate t on the disc.

Exercise 7.3.
(1) Show that a filtration U

•
M is a V -filtration if and only if the Rees object

RUM :=
L

k2Z U
k
Mv

�k is naturally a left graded RV D-module.
(2) Show that, for every V -filtration U

•
M on M , RUM/vRUM = gr

U
M and

RUM/(v � 1)RUM = M .
(3) Show that any finitely generated D-module has a coherent V -filtration.
(4) Show that a V -filtration is coherent if and only if the Rees module RUM

is finitely generated over RV D. Conclude that if M
0 is a submodule of M , then

a coherent V -filtration U
•
M induces a coherent V -filtration U

•
M
0
:= M

0 \ U
•
M .

[Hint : Use Artin-Rees lemma.]
(5) Show that, if M is holonomic, then for any coherent V -filtration the graded

spaces gr
k

U
M are finite dimensional C-vector spaces equipped with a linear action

of E. [Hint : Prove the result for holonomic D-modules of the form D/(P ), where (P )

is the left ideal generated by P 2 D r {0}; conclude by using the property that any
holonomic D-module is a successive extension of such modules together with (4).]

(6) Show that, if U
•
M is a V -filtration of M , then the left multiplication by t

induces for every k 2 Z a C-linear homomorphism gr
k

U
M ! gr

k+1

U
M and that the

action of @t induces grk
U
M ! gr

k�1
U

M . How does E commute with these morphisms?
(7) Show that if a V -filtration is coherent, then t : U

k
M ! U

k+1
M is an isomor-

phism for every k � 0 and @t : grkUM ! gr
k�1
U

M is so for every k ⌧ 0.

Exercise 7.4 (V -strictness of morphisms). Show that any morphism ' : M ! M
0

between holonomic D-modules is V -strict, i.e., satisfies '(V k
M) = '(M)\V k

M
0 for

every k 2 Z. [Hint : Show that the right-hand side defines a coherent filtration of
'(M) and use the uniqueness of the Kashiwara-Malgrange filtration.]

Exercise 7.5. Show that the Kashiwara-Malgrange filtration satisfies the following
properties:

(1) for every k > 0, the morphism V
k
M ! V

k+1
M induced by t is an isomorphism;

(2) for every k > 0, the morphism gr
�1�k
V

M ! gr
�2�k
V

M induced by @t is an
isomorphism.
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Exercise 7.6. Show that, for any holonomic module M , the module M [t
�1

] :=

O[t�1] ⌦O M is still holonomic and is a finite dimensional vector space over the
field of Laurent series O[t�1], equipped with a connection. Show that its Kashiwara-
Malgrange filtration satisfies V

k
M [t

�1
] = t

k
V

0
M [t

�1
] for every k 2 Z (while this

only holds for k > 0 for a general holonomic D-module. Conversely, prove that
any finite dimensional vector space (V⇤,r) over the field of Laurent series O[t�1]

equipped with a connection is a holonomic D-module.

Exercise 7.7 (D-modules with support the origin). Let M be a finitely generated left
D-module with support the origin, i.e., each element is annihilated by some power
of t (hence M is holonomic). Show that

(1) V
�
M = 0 for � > �1 and gr

�

V
M = 0 for � 62 �N⇤,

(2) M ' (gr
�1
V

M)[@t], where the action of D on the right-hand side is given by

@t ·m@kt = m@
k+1

t
,

t ·m@k
t
= �km@k�1

t
,

(3) M has also the structure of a right D-module (denoted by M
right in Section

8.2) by setting
m@

k

t
· @t = m@

k+1

t
,

m@
k

t
· t = km@

k�1
t

.

Exercise 7.8 (V -strictness of morphisms). Show the V -strictness of morphisms for the
V -filtration indexed by R (see Exercise 7.4).

Exercise 7.9. Let M 6= 0 be a holonomic D-module. One can assume for simplicity
that M is regular and use Proposition 7.2.10. Prove that

(1) the construction of gr�
V
M , gr�1

V
M , can, var, N, is functorial with respect to M ,

and gr
�

V
is an exact functor (i.e., compatible with short exact sequences);

(2) M 6= 0 is supported at the origin if and only if gr�
V
M = 0 for every � > �1

and gr
�1
V

M 6= 0;
(3) can is onto iff M has no nonzero quotient supported at the origin (i.e., there is

no surjective morphism M ! N 6= 0 where each element of N is annihilated by some
power of t);

(4) var is injective if and only if M has no nonzero submodule supported at the
origin (i.e., whose elements are annihilated by some power of t);

(5) gr
�1
V

M = Imcan�Ker var if and only if M = M1 �M2, where M2 is sup-
ported at the origin and M1 has neither a nonzero quotient nor a nonzero submodule
supported at the origin (in such a case, we say that M is S(upport)-decomposable).

Exercise 7.10.
(1) Show that the Kashiwara-Malgrange filtration of M [t

�1
] satisfies

(a) V
>�1

M [t
�1

] = V
>�1

M ,
(b) V

�+k
M [t

�1
] = t

k
V

�
M [t

�1
] for all k 2 Z.
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(2) Show that M is a middle extension D-module if and only if M is equal to the
D-submodule of M [t

�1
] generated by V

>�1
M .

(3) Show that the Kashiwara-Malgrange filtration of a middle extension D-mod-
ule M satisfies, for � 2 (�1, 0] and k > 1,

V
��k

M = @
k

t
V

�
M +

k�1X

j=0

@
j

t
V

>�1
M.

[Hint : Check this first with � = 0 and k = 1.]

Exercise 7.11. Prove that, if M has finite type over D and is supported at the origin,
then M has a regular singularity at the origin.

Exercise 7.12. Let M1,M2 be holonomic D-modules. Let ' : M1 !M2 be a D-linear
morphism. Show that, if M1 is a middle extension, then ' is zero as soon as the
induced morphism M1[t

�1
]!M2[t

�1
]. [Hint : If ' = 0 on M1[t

�1
], show first that '

is zero on V
>�1

M1 because V
>�1

M2 is O-free, and then use Exercise 7.10(2).]

Exercise 7.13. Let ' : M1 ! M2 be a morphism between regular holonomic D-mod-
ules. Show that

(1) ' is an isomorphism if and only if gr�
V
' is an isomorphism for any � having

real part in [�1, 0]. [Hint : use the isomorphism M ' C{t}⌦C[t] Malg.]
(2) ' = 0 if and only if gr�

V
' = 0 for any such �.

Exercise 7.14. Show that any filtered holonomic DX -module supported at the origin,
and which is strictly R-specializable there, is of the form D◆⇤(H, F

•H). [Hint : Use
the relation 7.2.19(b).]

Exercise 7.15. The purpose of this exercise is to show that, if (M,F•M) is a filtered
holonomic D-module which is strictly R-specializable at the origin, then it is regular
(Proposition 7.2.20), i.e., any V

�
M has finite type over O.

(1) Show that F
p
V

�
M := F

p
M \ V

�
M has finite type over O for any p,�.

(2) Show that it is enough to prove the property for some �, that we now fix > �1.
(3) Show that, for p small enough, the filtration F

p
(V

�
M/V

��1
M) is stationary.

(4) Deduce from strict R-specializability that

F
p
V

�
M/tF

p
V

�
M = F

p�1
V

�
M/tF

p�1
V

�
M

for p small enough.
(5) Use Nakayama’s lemma to conclude that, gr

p

F
V

�
M = 0 for p 6 po small

enough, and thus V
�
M = F

poV
�
M .

Exercise 7.16. Let (Mi, F
•
Mi) (i = 1, 2) be as in Exercise 7.15. Let

' : (M1, F
•
M1) �! (M2, F

•
M2)

be a morphism. Show that ' is a strict isomorphism if and only if gr�
V
' is a strict

isomorphism for any � having real part in [�1, 0]. For the direction (:
(a) Show that ' : M1 !M2 is an isomorphism. [Hint : Use Exercise 7.13.]
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(b) Show that gr
�

V
' is a strict isomorphism for any �.

(c) If � > �1, show that F
p
V

�
M2 = '(F

p
V

�
M1) + tF

p
V

�
M2 and conclude that

F
p
V

�
M2 = '(F

p
V

�
M1) by Nakayama’s lemma. [Hint : Use 7.2.19(a).]

(d) Deduce that F
p
V

�
M2 = '(F

p
V

�
M1) for any �. [Hint : Use 7.2.19(b).]

Exercise 7.17. With respect to (7.2.17), show that N·F p
gr

�

V
M ⇢ F

p�1
gr

�

V
M for every

� 2 R and that

can(F
p
gr

0

V
M) ⇢ F

p�1
gr
�1
V

M, var(F
p
gr
�1
V

M) ⇢ F
p
gr

0

V
M.

Exercise 7.18 (Invariance by Tate twist). Show that (see (7.2.17))
�
 t,�(M, F

•
)
�
(k) =  t,�

�
(M, F

•
)(k)

�
,

�
�t,1(M, F

•
)
�
(k) = �t,1

�
(M, F

•
)(k)

�
.

Exercise 7.19. Let �0 be the Dirac distribution, defined by

h⌘(t) i

2⇡
dt ^ dt, �0i = ⌘(0).

Using that 1/t and 1/t are in L
1

loc
(�), and Cauchy’s formula, show the formulas:

@tL(t) = �1/t, @
t
L(t) = �1/t, @t@tL(t) = ��0

as distributions on �.

Exercise 7.20 (Fourier transform with a complex variable). Set ⌧ = (⇠ + i⌘)/
p
2 and

t = (x+ iy)/
p
2. We denote by F the Fourier transform with kernel

e
t⌧�t⌧ i

2⇡
d⌧ ^ d⌧ =

1

2⇡
e
� i(⇠y+⌘x)

d⇠ ^ d⌘.

Show that the inverse Fourier transform F�1 has kernel

e
�t⌧+t⌧ i

2⇡
dt ^ dt =

1

2⇡
e
i(x⌘+y⇠)

dx ^ dy.

[Hint : Show that the assertion holds up to sign (i.e., orientation) by using the standard
result on R

2; to fix the sign, show that F(e�|⌧ |
2

) = e
�|t|2 and F(e�|t|

2

) = e
�|⌧ |2 .]

Exercise 7.21 (The function Ib�). The functions Ib�,k,` are defined by the formula

Ib�,k,`(t, s) =

Z
e
t⌧�t⌧

⌧
�k
⌧
�` |⌧ |�2(s+1) b�(⌧) i

2⇡
d⌧ ^ d⌧ ,

and we set Ib�(s, t) := Ib�,0,0(t, s).
(1) Show that if Re s > 0, Ib�(t, s) is continuous with respect to t and holomorphic

with respect to s. [Hint : Notice that the exponent t/✓ � t/✓ is purely imaginary;
use polar coordinates ✓ = %e

i# and write |✓|2(s�1) i

2⇡
d✓ ^ d✓ as %2s 1

⇡
(d%/%) ^ d# and

conclude.]
(2) Deduce that Ib�(0, s) extends meromorphically on Re s > �" with a simple pole

at s = 0, and Ress=0 Ib�(0, s) = 1. [Hint : Write the integral in terms of the variable ✓
and use Exercise 6.13(1).]

(3) For any p 2 N, show that Ib�, when restricted to the domain 2Re s > p, is C
p

in t and holomorphic with respect to s.
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(4) By using Stokes formula, show that, for Re s large enough, the following iden-
tities hold:

tIb�,k�1,`(t, s) = �(s+ k)Ib�,k,`(t, s)� I@b�/@✓,k+1,`(t, s)

tIb�,k,`�1(t, s) = �(s+ `)Ib�,k,`(t, s)� I
@b�/@✓,k,`+1

(t, s),

with I@b�/@✓,k+1,`, I@b�/@✓,k,`+1
2 C

1
(C⇥ C), holomorphic with respect to s 2 C.

(5) In particular, deduce that

|t|2Ib�(t, s� 1) = �s2Ib�(t, s) + · · · ,

where “ · · · ” is C
1 in (t, s) and holomorphic with respect to s 2 C. This equality

holds on Re s > 1.
(6) Conclude that Ib� can be extended as a C

1 function on {t 6= 0}⇥C, holomorphic
with respect to s.

(7) For Re s > 1, show that

@tIb�(t, s) = �Ib�,�1,0(t, s) and @
t
Ib�(t, s) = �Ib�,0,�1(t, s),

and deduce

t@tIb� = sIb� + I@b�/@✓,1,0 and t@
t
Ib� = sIb� + I

@b�/@✓,0,1.

(8) Show that, by analytic extension, these equalities hold on {t 6= 0}⇥ C.

Exercise 7.22 (The functions bI�,k,`). Let �(t) be a cut-off function near t = 0. For
k, ` 2 Z, we consider the functions

bI�,k,`(⌧, s) := F�1(|t|2stkt`�(t)).

(1) Show that, for any s 2 C with Re(s+1+ (k+ `)/2) > 0, the function (⌧, s) 7!
bI�,k,`(⌧, s) is C

1, depends holomorphically on s, and satisfies

lim
⌧!1

bI�,k,`(⌧, s) = 0

locally uniformly with respect to s [Hint : apply the classical Riemann-Lebesgue
lemma saying that the Fourier transform of a function in L

1 is continuous and tends
to 0 at infinity.]

(2) Show that

(7.7.0 ⇤)
⌧ bI�,k,` = �(s+ k)bI�,k�1,` � bI@�/@t,k,` @⌧

bI�,k,` = bI�,k+1,`

⌧ bI�,k,` = �(s+ `)bI�,k,`�1 � bI
@�/@t,k,`

@⌧
bI�,k,` = bI�,k,`+1,

where the equalities hold on the common domain of definition (with respect to s) of
the functions involved.

(3) Deduce that, for Re(s+ 1) + (k + `)/2 > 0,

(7.7.0 ⇤⇤)
⌧@⌧

bI�,k,` = �(s+ k + 1)bI�,k,` � bI@�/@t,k+1,`,

⌧@⌧
bI�,k,` = �(s+ `+ 1)bI�,k,` � bI

@�/@t,k,`+1
.



222 CHAPTER 7. POLARIZABLE HODGE MODULES ON CURVES

(4) Show that the functions bI@�/@t,k,` and bI
@�/@t,k,`

are C
1 on P

1 ⇥ C, depend
holomorphically on s, and are infinitely flat at ⌧ = 1. [Hint : use that t

k
t
`|t|2s@

t,t
�

is C
1 in t with compact support, and holomorphic with respect to s, so that its

Fourier transform is in the Schwartz class, holomorphically with respect to s.]
(5) Consider the variable ✓ = ⌧

�1 with corresponding derivation @✓ = �⌧2@⌧ , and
write bI�,k,`(✓, s) the function bI�,k,` in this variable. Show that, for any p > 0, any
s 2 C with Re(s+ 1+ (k + `)/2) > p, all derivatives up to order p of bI�,k,`(✓, s) with
respect to ✓ tend to 0 when ✓ ! 0, locally uniformly with respect to s. [Hint : Use
(7.7.0 ⇤⇤) and (7.7.0 ⇤).]

(6) Deduce that the function bI�,k,`(⌧, s) extends as a function of class C
p on the

set P
1 ⇥ {Re(s+ 1 + (k + `)/2) > p}, holomorphic with respect to s.

(7) Conclude that the function bI�,1,0(⌧, s) is C
1 in ⌧ and holomorphic in s on

C⌧ ⇥ {s | Re s > �3/2}.

Exercise 7.23. Let M be a Hodge module of weight w with pure support the disc� and
let ( t,1M,N) be the associated Hodge-Lefschetz structure with central weight w.
Consider the associated Hodge-Lefschetz middle extension quiver (see Definition
3.4.7). Show that ImN has underlying vector spaces �t,1M0,�t,1M00, equipped with
the filtration induced on �t,1M as in (7.2.16).

Exercise 7.24. Same as Exercise 7.23 with polarization.

Exercise 7.25. Show that the sequence

0 �! (Vmid, F
•
Vmid) �! (V⇤, F

•
V⇤) �! (C,F

•
C) �! 0

is exact and strict, and that (C,F
•
C) can be identified with the cokernel of the

morphism var : �t,1(Vmid)!  t,1(Vmid)(�1) of mixed Hodge structures. Conclude in
particular that

h
p
(C) = 0, µ

p

1
(C) = dimgr

p

F
(C) = ⌫

p�1
1,prim

(Vmid).

Exercise 7.26 (Degree for a tensor product). Assume that V1,V2 underlie polarizable
variations of Hodge structure with Hodge filtration F

•Vi (i = 1, 2) on X
⇤
= X r ⌃,

where X is a compact Riemann surface. Then V = V1 ⌦ V2 also underlies such a
variation, with Hodge filtration F

pV =
P

p1+p2=p
F

p1V1⌦F
p2V2. At each x 2 ⌃, set

⌫
p

x
(V1,V2) :=

X

p1+p2=p

X

�j=exp(� 2⇡i �j)

�i2[0,1) (i=1,2)

�1+�2>1

⌫
p1

x,�1
(V1) · ⌫p2

x,�2
(V2).

The aim of this exercise is to prove the formula

(7.26 ⇤) �
p
(V1 ⌦ V2) =

X

p1+p2=p

�
�
p1(V1)h

p2(V2) + h
p1(V1)�

p2(V2)
�
+

X

x2⌃
⌫
p

x
(V1,V2).
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The question consists mainly in comparing V0
= (V1 ⌦V2)

0 equipped with the filtra-
tion F

•V0
= j⇤F

•V \ V0, with V0

1
⌦ V0

2
equipped with the filtration

F
p
(V0

1
⌦ V0

2
) :=

X

p1+p2=p

F
p1V0

1
⌦ F

p2V0

2
,

and the first part of the exercise is local on � with coordinate t.
(1) Show that there are natural inclusions compatible with the F -filtrations

�
V1

, F
•
V1
�
⇢
�
(V0

1
⌦ V0

2
), F

•
(V0

1
⌦ V0

2
)
�
⇢
�
V0

, F
•
V0
�
.

(2) The aim of this question is to show that the inclusion
�
(V0

1
⌦V0

2
), F

•
(V0

1
⌦V0

2
)
�
⇢�

V0
, F

•V0
�

is strict, that is,
F

p
(V0

1
⌦ V0

2
) = F

pV0 \ (V0

1
⌦ V0

2
), 8 p.

(a) By using Proposition 7.2.10 for V1⇤,V2⇤ and V⇤, show that

V0
/(V0

1
⌦ V0

2
) ' t

�1 ·
L

�1,�22[0,1)
�1+�2>1

gr
�1V1 ⌦ gr

�2V2

(V0

1
⌦ V0

2
)/tV0 '

L
�1,�22[0,1)
�1+�2<1

gr
�1V1 ⌦ gr

�2V2.and

(b) Show that the natural composed morphism

(V0

1
/tV0

1
)⌦ (V0

2
/tV0

2
) = (V0

1
⌦ V0

2
)/t(V0

1
⌦ V0

2
) �!�! (V0

1
⌦ V0

2
)/tV0

,�! V0
/tV0

is compatible with the F -filtrations naturally induced on each quotient space.
(c) Filter its source and target with respect to the filtrations induced respec-

tively by V•
1
,V•

2
,V•, and induce on the graded spaces the F -filtrations in order

to obtain an F -filtered morphism
L

�1,�22[0,1)
(gr

�1V1, F
•
)⌦ (gr

�2V2, F
•
) �!

L
�2[0,1)

(gr
�V, F

•
).

(d) Show that the latter morphism is F -strict. [Hint : Use that it underlies a
morphism of mixed Hodge structures.]

(e) Conclude that the morphism of (2b) is also F -strict as well as the natural
morphism

(V0

1
/t

kV0

1
)⌦ (V0

2
/t

kV0

2
) �! V0

/t
kV0

, 8 k > 0.

(f) Set bV0
:= lim �k

V0
/t

kV0 and F
pbV0

:= lim �k
F

p
(V0

/t
kV0

). Conclude from
(2e) that the inclusion

�
(bV0

1
⌦ bV0

2
), F

•
(bV0

1
⌦ bV0

2
)
�
,�!

�bV0
, F

•bV0
�

is strict.
(g) Show that F

pbV0
= bO⌦ F

pV0. [Hint : Argue as in the end of the proof of
Proposition 7.4.16.] By using that bO is faithfully flat over O, conclude that the
inclusion �

(V0

1
⌦ V0

2
), F

•
(V0

1
⌦ V0

2
)
�
,�!

�
V0

, F
•
V0
�

is strict.
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(3) Deduce from (2) that there exists for each p an injective morphism
L

p1+p2=p

gr
p1

F
V0

1
⌦ gr

p2

F
V0

2
,�! gr

p

F
V0

whose cokernel is supported at the origin of � and has dimension

dimgr
p

F

⇣ V0

V0

1
⌦ V0

2

⌘
.

(4) The aim of this question is to prove the equality

(7.26 ⇤⇤) dimgr
p

F

⇣ V0

V0

1
⌦ V0

2

⌘
= ⌫

p
(V1,V2).

(a) Consider the F -filtered composed morphism

V1
/V2 �!�! V1

/t(V0

1
⌦ V0

2
) ,�! (V0

1
⌦ V0

2
)/t(V0

1
⌦ V0

2
) = (V0

1
/tV0

1
)⌦ (V0

2
/tV0

2
).

After grading as in (2c), show that it is F -strict and has image
L

�i2[0,1) i=1,2

�1+�2>1

gr
�1V1 ⌦ gr

�2V2.

(b) By using the F -strictness of t : V0 ! V1 and similarly for V1,V2, show
that t : V0

/(V0

1
⌦ V0

2
) ! V1

/t(V0

1
⌦ V0

2
) is an F -strict isomorphism. Conclude

that (7.26 ⇤⇤) holds true.
(5) Conclude the proof of (7.26 ⇤) by using (3) globally on X together with (7.26 ⇤⇤)

at each point x 2 ⌃. [Hint : Use the standard formula for computing the degree of a
tensor product of two vector bundles on a compact Riemann surface.]

7.8. Comments

This chapter aims at explaining the point of view of Hodge modules of M. Saito
[Sai88] in the simplest case of curves. Many technical points of the general theory are
thus avoided, and this case sheds light on the importance of the Kashiwara-Malgrange
filtration and the notion of nearby and vanishing cycles, which will be instrumental
in the general case. It also emphasizes the notion of pure support and S-decom-
posable modules. The emphasis on sesquilinear pairings is inspired by the work of
Barlet and Maire (in dimension 1, see [BM87, BM89]), and by the notion of complex
conjugation for holonomic D-modules as developed by Kashiwara [Kas86a] (see also
[Bjö93]).

The definitions and computations of Hodge invariants introduced in Section7.6 are
taken from [DS13]. Exercise 7.26 is taken from [DR20].
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CHAPTER 8

TRAINING ON D-MODULES

Summary. In this chapter, we introduce the fundamental functors on D-mod-
ules that we use in order to define supplementary structures, and we also in-
troduce various operations: pullback and pushforward by a holomorphic map
between complex manifolds or a morphism between smooth algebraic varieties.
Most results are presented as exercises. They mainly rely on Leibniz rule. The
main references for this chapter are [Bjö93], [Kas03] and [GM93].

8.1. The sheaf of holomorphic differential operators

Let (X,OX) be a complex manifold equipped with its sheaf of holomorphic func-
tions. We also denote by C1

X
the sheaf of complex-valued C

1 functions on the un-
derlying C

1 manifold XR. This sheaf is a c-soft sheaf.

8.1.a. Vector fields, derivations, differential forms, contractions. We will
denote by ⇥X the sheaf of holomorphic vector fields on X. This is the OX -locally free
sheaf generated in local coordinates by @x1

, . . . , @xn
. It is a sheaf of OX -Lie algebras,

and vector fields act (on the left) on functions by derivation, in a way compatible
with the Lie algebra structure: given local vector fields ⇠, ⌘ acting on functions as a
derivations and given a local holomorphic function f ,

• f⇠ is the vector field acting as (f⇠)(g) = f · ⇠(g),
• the bracket [⇠, ⌘] defined as the operator [⇠, ⌘](g) := ⇠(⌘(g)) � ⌘(⇠(g)) is still a

derivation, hence defines a vector field.
We will denote by ⇥X,k the exterior product ^k⇥X , which is also a locally free OX -
module.

Dually, we denote by ⌦1

X
the sheaf of holomorphic 1-forms on X. We will set

⌦
k

X
= ^k⌦1

X
and !X = ⌦

n

X
. We denote by d : ⌦

k

X
! ⌦

k+1

X
the differential.

The natural nondegenerate pairing h•, •i : ⌦1

X
⌦ ⇥X ! OX extends in a natural

way as a nondegenerate pairing ⌦k

X
⌦⇥X,k ! OX . In local coordinates (x1, . . . , xn),

a basis of ⌦k

X
is given by the family (dxI)I , where I runs among the subsets of

cardinal k of {1, . . . , n} and dxI is defined as dxi1
^ · · · ^ dxik

, with I = {i1, . . . , ik}
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and i1 < · · · < ik. Dually, the partial derivatives @xi
lead to the basis (@xI

)I of ⇥X,k,
with a similar meaning. Due to anti-commutativity of the wedge product, (@xI

)I is
the basis dual to (dxI)I up to sign, that is, denoting by � the Kronecker index,

hdxI , @x0
I
i = "(k)�I,I0 ("(k) := (�1)k(k�1)/2).

We can thus regard sections of ⌦k

X
as OX -linear forms on ⇥X,k. For a local section ⌘

of ⌦k

X
, we may denote h⌘, •i as ⌘(•).

The contraction by a vector field ⇠ is the OX -linear morphism ⇠ : ⌦
k

X
! ⌦

k�1
X

defined by ⌘ 7! ⌘(⇠^ •), where • is local section of ⇥X,k�1. More generally, for a local
section ⇠ of ⇥X,j , the contraction ⌘ 7! ⌘(⇠ ^ •) sends ⌦k

X
to ⌦k�j

X
.

For example, if k = n = dimX, set

dx := dx1 ^ · · · ^ dxn and dxbı := dx1 ^ · · · ^ddxi ^ · · · ^ dxn.

Then we have
@xi

dx = (�1)n�idxbı,

since

(@xi
dx)(@xbı) = dx(@xi

^ @xbı) = (�1)i�1dx(@x)

= (�1)i�1 "(n) = (�1)n�i "(n� 1) = (�1)n�idxbı(@xbı).

As a consequence, for f 2 OX , we have d(f@xi
dx) = (�1)n�1@f/@xi

· dx.
The Lie derivative of dx along ⇠ is defined as L⇠(dx) := d(⇠ dx). Similarly,

we rename the action of ⇠ as a derivation on f as L⇠(f) = @f/@xi
. Note that

L@xi
(dx) = 0. We conclude from these formulas that there is a natural right action

(in a compatible way with the Lie algebra structure) of ⇥X on !X , defined by

(8.1.1) ! · ⇠ = (�1)nL⇠! := (�1)nd(⇠ !).

Indeed, the relation ⇠(f)! = ! · [⇠, f ] = (! ·⇠)f� (!f) ·⇠ holds, as for example, taking
⇠ = @xi

, we find (fdx) · @xi
= �(@f/@xi)dx and

(@f/@xi)dx = (�1)n�1d(f@xi
dx) = �(fdx) · @xi

and (dx · @xi
)f = 0.

Similarly, let us check ! · [⇠, ⇠0] = (! · ⇠) · ⇠0 � (! · ⇠0) · ⇠ with ! = dx, ⇠ = f@xi
,

⇠
0
= @xj

. We have [⇠, ⇠
0
] = �(@f/@xj

)@xi
and ! · ⇠0 = 0, so we only have to check

�(@f/@xjdx) · @xi
= ((fdx) · @xi

) · @xj
,

which follows from the commutativity of the partial derivatives of f .

8.1.2. Definition (The sheaf of holomorphic differential operators)
For any open set U of X, the ring DX(U) of holomorphic differential operators

on U is the subring of HomC(OU ,OU ) generated by
• multiplication by holomorphic functions on U ,
• derivation by holomorphic vector fields on U .

The sheaf DX is defined by �(U,DX) = DX(U) for every open set U of X.

By construction, the sheaf DX acts on the left on OX , i.e., OX is a left DX -module.
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8.1.3. Definition (The filtration of DX by the order). The increasing family of sub-
sheaves FkDX ⇢ DX is defined inductively:

• FkDX = 0 if k 6 �1,
• F0DX = OX (via the canonical injection OX ,! HomC(OX ,OX)),
• the local sections P of Fk+1DX are characterized by the fact that [P, f ] is a local

section of FkDX for any holomorphic function g.

8.1.4. Proposition. Giving a left DX-module M is equivalent to giving an OX-module M

together with an integrable connection r.

Proof. Exercises 8.1, 8.5 and 8.6.

8.1.b. Vector fields and differential forms in presence of a filtration

We now apply the constructions of Section 5.1 to the filtered ring (DX , F•DX) and
its (left or right) modules. We obtain the following properties:

• eOX := RFOX = OX [z].
• in local coordinates, we have

(8.1.5) eDX := RFDX = OX [z]he@x1
, . . . , e@xn

i,

i.e., any germ of section of eDX may be written in a unique way as
X

↵

a↵(x, z)
e@↵
x
=

X

↵

e@�
x
b↵(x, z),

where a↵, b↵ 2 eOX , and where we set

(8.1.6) e@xi
:= z@xi

.

• The ring eDX is equipped with a natural filtration F•
eDX by the order in e@x. If we

write eDX = RFDX , then this filtration is defined by the formula

(8.1.7) Fk
eDX =

k�1L
j=0

FjDXz
j � FkDXz

k
C[z].

The graded ring gr
F eDX can be identified with the graded ring gr

FDX ⌦C C[z] (with
grading only coming from gr

FDX) by dividing each gr
F

k
eDX by z

k. If we regard
gr

FDX as the ring of holomorphic functions on the cotangent space T
⇤
X which are

polynomial with respect to the projection eT ⇤X := T
⇤
X ! X, we interpret the ring

gr
F eDX as the ring of holomorphic functions on T

⇤
X ⇥Cz which are polynomial with

respect to the projection to X.
• The sheaf e⇥X is the locally free eOX -module locally generated by e@x1

, . . . , e@xn

(having degree 1, due to our convention in §5.1.3) and we have [e@xi
, f ] = ze@f/e@xi for

any local section g of eOX ; we also set e⇥X,k = ^k e⇥X ;
• e⌦1

X
is the locally free graded eOX -module z

�1
C[z]⌦C ⌦1

X
, and e⌦k

X
= ^ke⌦1

X
; the

differential ed is induced by 1 ⌦ d on e⌦k

X
= z

�k
C[z] ⌦C ⌦k

X
; we set e!X = e⌦n

X
; we

regard the differential as a graded morphism of degree zero
ed : e⌦k

X
�! e⌦k+1

X
;
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the local basis (edxi = z
�1

dxi)i (having degree �1) is dual to the basis (e@xi
)i of e⇥X .

• We also set eC1
X

:= C1
X
[z]. This is a c-soft sheaf on the underlying C

1 mani-
fold XR.

• Contraction of a z-differential form of degree k by a z-vector field is defined as
in §8.1.a.

• We have natural Lie algebra actions of e⇥X on eOX (action on the left) and on e!X

(action on the right).

8.1.8. Example (Filtered flat bundles). Let (L,r) be a flat holomorphic bundle on X

and let F
•L be a decreasing filtration of L by OX -locally free sheaves. Then the flat

connection r endows L with the structure of a left DX -module (Proposition 8.1.4).
The Griffiths transversality property

(8.1.8 ⇤) rF pL ⇢ ⌦1

X
⌦ F

p�1L, 8 p 2 Z

is equivalent to the property that the corresponding increasing filtration F•L is an
FDX -filtration of the DX -module L.

8.1.9. Definition (Connection). Let eM be a graded eOX -module. A connection on eM is
a graded eC-linear morphism er : eM ! e⌦1

X
⌦ eM (of degree zero) which satisfies the

Leibniz rule
8 f 2 eOX , er(fm) = f erm+ ed f ⌦m.

Proposition 8.1.4 holds true in this filtered setting (Exercise 8.7).

8.1.10. Example. The fundamental examples of filtered left and right DX -modules are:
• (OX , F•OX) with gr

F

p
OX = 0 for p 6= 0, so RFOX = OX [z],

• (!X , F•!X) with gr
F

p
!X = 0 for p 6= �n, so RF!X = e!X = e⌦n

X
= z
�n
!X [z].

8.1.11. Convention. We will use the following convention.

(i) eOX (resp. eC1
X

) denotes either the sheaf rings OX (resp. C1
X

) or the sheaf of
graded rings OX [z] = RFOX (resp. C1

X
[z]), and Mod(eOX) denotes the category of

OX -modules or that of graded OX [z]-modules.
(ii) The notation e⇥X , e⌦k

X
, ^k e⇥X has a similar double meaning.

(iii) Similarly, eDX denotes either the sheaf rings DX or the sheaf of graded rings
RFDX , and Mod(eDX) denotes the category of DX -modules or that of graded RFDX -
modules.

(iv) It will also be convenient to denote by eC either the field C or the graded
ring C[z].

(v) In each of the second cases above, we will usually omit the word “graded”,
although it is always understood.

(vi) One recovers standard results for DX -modules by setting z = 1 and e@ = @.
(vii) The strictness condition that we may consider (see Section 5.1.b) only refers

to the second cases above, it is empty in the first cases.
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8.2. Left and right

Considering left or right eDX -modules is not completely symmetric. The main
reason is that the left eDX -module eOX is a sheaf of rings, while its right analogue
e!X := e⌦n

X
, is not a sheaf of rings. So for example the behaviour with respect to

tensor products over eOX is not the same for left and right eD-modules. Also, the side
changing functor defined below sends eDleft

X
to e!X ⌦eOX

eDX , and not to eDX regarded
as a right eDX -module over itself.

8.2.1. Notation (The category Mod(eDX)). The categories of left (resp. right) eDX -mod-
ules are denoted by Mod

left
(eDX) (resp. Mod

right
(eDX) with the convention that we

implicitly consider graded modules and morphisms of degree zero in the case of eD =

RFD.

We analyze the relations between both categories in this section. The main rule to
be followed is that the side-changing functor changes a functor in the category of left
objects to the functor denoted in the same way in the category of right objects, and
conversely.

Exercises 8.8 and 8.9 give the basic tools for generating left or right eD-modules.

8.2.2. Example (Example 8.1.10 continued).

(1) eDX is a left and a right eDX -module.
(2) eOX is a left eDX -module (Exercise 8.10), with grading

(eOX)p =

(
OX if p > 0,

0 if p < 0.

(3) e!X := e⌦dimX

X
is a right eDX -module (Exercise 8.11), with grading

(e!X)p =

(
!X if p > �n,
0 if p < �n.

8.2.3. Definition (Side-changing of eDX -modules). Any left eDX -module eMleft gives rise
to a right one eMright by setting eMright

= e!X ⌦eOX

eMleft and, for any vector field ⇠ and
any function g,

(! ⌦m) · f = f! ⌦m = ! ⌦ fm, (! ⌦m) · ⇠ = !⇠ ⌦m� ! ⌦ ⇠m.

Conversely, set eMleft
= Hom eOX

(e!X , eMright
), which also has in a natural way the

structure of a left eDX -module (see Exercise 8.13(2)). The grading behaves as follows
(see Example 8.1.10 and (5.1.4)):

eMright
= z
�n
!X ⌦OX

eMleft
= !X ⌦OX

eMleft
(�n),

Mright

p
= !X ⌦OX

Mleft

p+n
.

(8.2.3 ⇤)
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If eM = RFM is the Rees module of a filtration, then the side-changing functor is
written as

(8.2.3 ⇤⇤) FpM
right

= Fp(!X ⌦OX
Mleft

) = !X ⌦OX
Fp+nM

left
.

8.2.4. Caveat. Let e!_
X

= Hom eOX

(e!X , eOX) as an eOX -module. One often finds in the
literature the formula eMleft

= eMright ⌦eOX

e!_
X

, which give the eOX -module structure
of eMleft. However, the left eDX -module structure is not obtained with a “tensor product
formula” as in Exercise 8.12, but uses the interpretation as Hom eOX

(e!X , eMright
).

On the other hand, let U be a chart of X with coordinates x1, . . . , xn. Set edx =

edx1 ^ · · · ^ edxn. This is an eOU -basis of e!X . Let edx_ denote the dual basis of e!_
X

. It
is often convenient, for a right eDU -module eMright, to write eMleft

= eMright⌦edx_ with
the convention that a local section edx_ ⌦m is regarded as the morphism sending edx
to m. In view of the duality between e⌦1

X
and e⇥X , one can identify e!_

X
with ^ne⇥X

and choose the local basis e@^nx := e@x1
^ · · ·^ e@xn

of ^ne⇥U . Both bases are related by
edx_

= "(n)e@^nx . See also Exercise 8.17.

The following is obvious from Exercises 8.14 and 8.15.

8.2.5. Proposition. The side-changing functors left-to-right and right-to-left are iso-
morphisms of between the categories of left and right graded eDX-modules, which are
inverse one another. The left-to-right functor induces a twist (�n), while the right-
to-left functor induces a twist (n) (n = dimX).

8.2.6. Remark. The ring eDX considered as a right eDX -module over itself is not equal
to the right eDX -module associated with eDX regarded as a left eDX -module over itself
by the side-changing functor.

8.2.7. Caveat (Side-changing and grading). For a filtered left DX -module (M, F•M),
side-changing and grading are related by the formula (according to example 8.2.2(3))

gr
F
(!X ⌦OX

M) = !X ⌦OX
gr

FM(�n),

as OX -modules. The action of grFDX is not exactly preserved by this isomorphism.
Indeed, recall that, for a vector field ⇠, we have (! ⌦m)⇠ = !⇠ ⌦m � ! ⌦ ⇠m and,
taking classes in the suitable graded piece, we find [! ⌦m][⇠] = �! ⌦ [⇠m]. We can
thus write, as gr

FDX -modules,

gr
F
(!X ⌦OX

M) = !X ⌦OX
inv
⇤
gr

FM(�n),

where inv
⇤
gr

FM denotes the OX -module gr
FM on which the action of gr

FDX is
modified in such a way that gr

F

k
DX acts by multiplying by (�1)k the usual action.

8.3. Examples of eD-modules

We list here some classical examples of eD-modules. One can get many other ex-
amples by applying various operations on eD-modules.
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8.3.1. Induced eDX -modules. Let eL be an eOX -module. There is a very simple way to
get a right eDX -module from eL: consider eL⌦eOX

eDX equipped with the natural right
action of eDX . This is called an induced eDX -module. Although this construction is
very simple, it is also very useful to get cohomological properties of eDX -modules.
One can also consider the left eDX -module eDX ⌦eOX

eL (however, this is not the left
eDX -module attached to the right one eL ⌦eOX

eDX by the side-changing functor of
Definition 8.2.3).

8.3.2. (Meromorphic) OX -modules with integrable connection. One of the main geomet-
rical examples of DX -modules are the vector bundles on X equipped with an inte-
grable connection. Recall (Proposition 8.1.4) that left DX -modules are OX -modules
with an integrable connection. Among them, the coherent DX -modules are of partic-
ular interest. One can show that such modules are OX -locally free, i.e., correspond
to holomorphic vector bundles of finite rank on X.

It may happen that, for some X, such a category does not give any interesting
geometric object. Indeed, if for instance X has a trivial fundamental group (e.g. X =

P
1
(C)), then any vector bundle with integrable connection is isomorphic to the trivial

bundle OX with the connection d. However, on non simply connected Zariski open
sets of X, there exist interesting vector bundles with connections. This leads to the
notion of meromorphic vector bundle with connection.

Let D be a divisor in X and denote by OX(⇤D) the sheaf of meromorphic functions
on X with poles along D at most. This is a sheaf of left DX -modules, being an
OX -module equipped with the natural connection d : OX(⇤D)! ⌦

1

X
(⇤D).

By definition, a meromorphic bundle is a locally free OX(⇤D) module of finite rank.
When it is equipped with an integrable connection, it becomes a left DX -module.

8.3.3. Twisted connections. One can twist the previous examples. Assume that ! is a
closed holomorphic form on X. Define r : OX ! ⌦

1

X
by the formula r = d + !. As

! is closed, r is an integrable connection on the trivial bundle OX .
Usually, the nonzero closed form on X are meromorphic, with poles on some divi-

sor D. Then r is an integrable connection on OX(⇤D).
If ! is exact, ! = dg for some meromorphic function g on X, then r can be written

as e
�g � d � eg.

More generally, if M is any meromorphic bundle with an integrable connection r,
then, for any such !, r+ ! Id defines a new DX -module structure on M.

8.3.4. Filtered flat bundles. Contrary to what happens for OX -coherent DX -modules,
which are automatically OX -locally free and correspond to vector bundles with inte-
grable connection, eOX -coherent eDX -modules may not be eOX -locally free. We are
mainly interested in eOX -locally free such objects. Let eM be one such. In par-
ticular, eM is eC-flat, hence corresponds to a filtered DX -module (M, F•M). Fur-
thermore, M = eM/(z � 1) eM is OX -coherent, hence is OX -locally free with an inte-
grable connection r satisfying the Griffiths transversality property with respect to
F•M. The eOX -coherency property implies that the (increasing) filtration is stationary
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and is a filtration by OX -coherent subsheaves. Lastly, the graded module eM/z eM is
eOX/zeOX -locally free, hence each graded component gr

F

p
M is OX -locally free, thus

each FpM also. For example, variations of Hodge structure in their holomorphic
description of Section 4.1.a are eOX -locally free (of finite rank) eDX -modules.

8.3.5. Distributions and currents. Denote by DbX the sheaf of distributions on the
complex manifold X of dimension n: given any open set U of X, DbX(U) is the space
of distributions on U , which is by definition the weak dual of the space of C1 forms
with compact support on U , of type (n, n). By Exercise 8.11, there is a right action
of DX on such forms. The left action of DX on distributions is defined by adjunction:
denote by h⌘, ui the natural pairing between a compactly supported C

1-form ⌘ and
a distribution u on U ; let P be a holomorphic differential operator on U ; define then
P · u in such a way that, for every ⌘, on has

h⌘, P · ui = h⌘ · P, ui.

Given any distribution u on X, the subsheaf DX · u ⇢ DbX is the DX -module gener-
ated by this distribution. Saying that a distribution is a solution of a family P1, . . . , Pk

of differential equation is equivalent to saying that the morphism DX ! DX ·u send-
ing 1 to u induces a surjective morphism DX/(P1, . . . , Pk)! DX · u.

Similarly, the sheaf CX of currents of degree 0 on X is defined in such a way that,
for any open set U ⇢ X, CX(U) is dual to C

1
c
(U) with a suitable topology. It is a

right DX -module.
In local coordinates x1, . . . , xn, a current of degree 0 is nothing but a distribution

times the volume form dx1 ^ · · · ^ dxn ^ dx1 ^ · · · ^ dxn.
As we are now working with C

1 forms or with currents, it is natural not to
forget the anti-holomorphic part of these objects. Denote by O

X
the sheaf of anti-

holomorphic functions on X and by D
X

the sheaf of anti-holomorphic differential op-
erators. Then DbX (resp. CX) are similarly left (resp. right) D

X
-modules. Of course,

the DX and D
X

actions do commute, and they coincide when considering multipli-
cation by constants.

The conjugation exchanges both structures. For example, if u is a distribution
on U , its conjugate u is defined by the formula

(8.3.0 ⇤) h⌘, ui := h⌘, ui (⌘ 2 En,n

c
(U)).

This is of course compatible with the usual conjugation of L1

loc
functions.

It is therefore natural to introduce the following sheaves of rings:

(8.3.0 ⇤⇤) O
X,X

:= OX ⌦C O
X
, D

X,X
:= DX ⌦C D

X
,

and consider DbX (resp. CX) as left (resp. right) D
X,X

-modules.

Operations on eDX -modules. One can construct new examples from old ones by using
various operations.
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• Let eM be a left eDX -module. Then Hom eDX

( eM, eDX) has a natural structure of
right eDX -module. Using a resolution eN• of eM by left eDX -modules which are acyclic
for Hom eDX

(•, eDX), one gets a right eDX -module structure on ExtkeDX

( eM, eDX) for k > 0.
• Given two left (resp. a left and a right) eDX -modules eM and eN, the same argument

enables one to put on the various Tor
i,eOX

(eN, eM) a left (resp. a right) eDX -module
structure.

8.4. The de Rham functor

8.4.1. Definition (de Rham). For a left eDX -module eM, the de Rham complex DR eM is
the bounded complex (with • in degree zero and all nonzero terms in non-negative
degrees)

DR eM := {0! eM
•

er���! e⌦1

X
⌦ eM

er���! · · ·
er���! e⌦n

X
⌦ eM! 0}.

The terms are the eOX -modules e⌦•
X
⌦eOX

eMleft and the differentials the eC-linear mor-
phisms er defined in Exercise 8.6 or 8.7.

The shifted de Rham complex p

DR eM is defined as

p

DR eM := {0! eM
(�1)n er
�������! e⌦1

X
⌦ eM

(�1)n er
�������! · · ·

(�1)n er
�������! e⌦n

X
⌦ eM
•

! 0}.

The previous definition produces a complex since er � er = 0, according to the
integrability condition on er, as remarked in Exercise 8.6 or 8.7. The notation p

DR is
motivated by the property that, for a holonomic DX -module M, the complex p

DRM

is a perverse sheaf (a theorem of Kashiwara).

8.4.2. Remark (Shift of a complex). Given a complex (C
•
, e�), the shifted complex

(C
•
, e�)[n] is the complex (C

n+•
, (�1)ne�). Thus the complex p

DR eM is equal to
DR eM[n]. The shifted de Rham complex is implicitly considered in Formula (8.1.1).
In the following, given a complex (C

•
, e�), we will also denote by C

n+• the shifted
complex (C

•
, e�)[n] when there is no doubt about the differential.

8.4.3. Definition (Spencer). The Spencer complex Sp( eM) of a right eDX -module eM is
the bounded complex (with • in degree zero and all nonzero terms in non-positive
degrees; recall also the notation e⇥X,k = ^k e⇥X)

Sp( eM) := {0! eM⌦eOX

e⇥X,n

e�fM���! · · ·
e�fM���! eM⌦eOX

e⇥X,1

e�fM���! eM
•
! 0},

where the differential e�fM is the eC-linear map given by

m⌦ (⇠1 ^ · · · ^ ⇠k) 7
e�fM���!

kX

i=1

(�1)i�1(m⇠i)⌦ (⇠1 ^ · · · ^ b⇠i ^ · · · ^ ⇠k)

+

X

i<j

(�1)i+j
m⌦

�
[⇠i, ⇠j ] ^ ⇠1 ^ · · · ^ b⇠i ^ · · · ^ b⇠j ^ · · · ^ ⇠k

�
,
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where b⇠i means that we omit ⇠i in the wedge product.

Of special interest will be, of course, the de Rham or Spencer complex of the
ring eDX , considered as a left or right eDX -module. Notice that in DR(eDX) the
differentials are right eDX -linear, and in Sp(eDX) they are left eDX -linear. See Exercises
8.21–8.24 for some of their properties.

8.4.4. Remark.
(1) For a right eDX -module eM, the complex Sp( eM) is isomorphic to eM⌦eDX

Sp(eDX)

(Exercise 8.24). It is then possible to prove some statements on Sp( eM) by only
considering the case where eM = eDX .

(2) For a left eDX -module eM, it is usual to find in the literature the definition
of the unshifted deRham complex DR eM as RHom eDX

(eOX
eM) (in a suitable derived

category). Since Sp(eDX) is a resolution of eOX by locally free eDX -modules, this
isomorphism amounts to the isomorphism DR eM ' Hom eDX

(Sp(eDX), eM). This is
shown in Exercise 8.25.

Side-changing. Given any k > 0, the contraction is the morphism (see §8.1.a)

e!X ⌦eOX

e⇥X,k ��! e⌦n�k
X

! ⌦ ⇠ 7�! (⇠ !)(•) = !(⇠ ^ •).

(8.4.5)

8.4.6. Example. In local coordinates (x1, . . . , xn), let us set edx = edx1 ^ · · ·^ edxn. For

i = 1, . . . , k 6 n, let us set e@ bxi
:= e@x1

^ · · ·^ce@xi
^ · · ·^e@xk

(i.e., omitting e@xi
in the

wedge product) for simplicity. Then the following formulas hold, for k 6 n:

(e@x1
^ · · · ^ e@xn

) edx = "(n),

(e@x1
^ · · · ^ e@xk

) edx = "(n) "(n� k)edxk+1 ^ · · · ^ edxn,(8.4.6⇤)
e@ bxi

edx = (�1)k�i "(n) "(n� k + 1)edxi ^ edxk+1 ^ · · · ^ edxn.(8.4.6⇤⇤)

8.4.7. Lemma. There exists a natural isomorphism of complexes of right eDX-modules
(i.e., is compatible with the differentials of these complexes)

◆ : e!X ⌦eOX

Sp(eDX)
⇠�! p

DR(eDX)

which induces the identity

e!X ⌦eOX

Sp
0
(eDX) = e!X ⌦eOX

eDX = DR
n eDX .

It is induced by the isomorphisms of right eDX-modules

e!X ⌦eOX

�eDX ⌦eOX

e⇥X,k

� ◆���!⇠
e⌦n�k
X
⌦eOX

eDX

⇥
! ⌦ (1⌦ ⇠)

⇤
· P 7�! (⇠ !)⌦ P

(where the right structure of the right-hand term is the natural one and that of the
left-hand term is nothing but that induced by the natural left structure of eDX⌦eOX

e⇥X,k

by side-changing).
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Proof. It is enough to prove that the diagram

e!X ⌦eOX

�eDX ⌦eOX

e⇥X,k

� ◆
//

e�
✏✏

e⌦n�k
X
⌦eOX

eDX

(�1)n er
✏✏

e!X ⌦eOX

�eDX ⌦eOX

e⇥X,k�1
� ◆

// e⌦n�k+1

X
⌦eOX

eDX

commutes. We will make use of the relations satisfied by the function " (see Nota-
tion 0.2). It is also enough to check this locally, and, in local coordinates (x1, . . . , xn),
we are reduced by right eDX -linearity to checking this on sections of the form
edx⌦ (1⌦ (e@x1

^ · · · ^ e@xk
)). We use the notation of Example 8.4.6.

On the one hand, we have edx · e@xi
= 0 and, according to (8.4.6⇤⇤) we find

e�
⇥edx⌦ (1⌦ (e@x1

^ · · · ^ e@xk
))
⇤
=

kX

i=1

(�1)i�1edx⌦ (e@xi
⌦ e@ bxi

)

=

kX

i=1

(�1)i
⇥edx⌦ (1⌦ e@ bxi

)
⇤
·e@xi

◆��!
kX

i=1

(�1)i(e@ bxi

edx)⌦ e@xi

= (�1)k "(n) "(n� k + 1)

kX

i=1

(edxi ^ edxk+1 ^ · · · ^ edxn)⌦ e@xi
.

On the other hand, we have, according to (8.4.6⇤) (see Exercises 8.5 and 8.7),

(�1)n er◆
⇥edx⌦(1⌦ (e@x1

^ · · · ^ e@xk
))
⇤

= (�1)n er
⇥
(e@x1

^ · · · ^ e@xk
) edx)⌦ 1

⇤

= (�1)n "(n) "(n� k)er
⇥
(edxk+1 ^ · · · ^ edxn)⌦ 1

⇤

= (�1)n "(n) "(n� k)

kX

i=1

(�1)n�k(edxk+1 ^ · · · ^ edxn ^ edxi)⌦ e@xi

= (�1)n "(n) "(n� k)

kX

i=1

(edxi ^ edxk+1 ^ · · · ^ edxn)⌦ e@xi
.

and the desired equality follows from the relation "(n�k+1) = (�1)n�k "(n�k).

Let eM be a left eDX -module and let eMright the associated right module. We will
now compare p

DRX( eM) and Sp( eMright
). We will denote by p

DR( eMright
) the Spencer

complex Sp( eMright
) and we keep the notation p

DR( eMleft
) for the de Rham complex

of a left eDX -module. Exercise 8.26 gives an isomorphism

(8.4.8) p

DR( eMright
)
⇠�! p

DR( eMleft
).

8.4.9. The grading of p

DR eM. In the left and right case, p

DR eM is a bounded complex
of sheaves of graded eC-modules and the isomorphism (8.4.8) is an isomorphism as
such (i.e., preserves the grading). Indeed, we note that, for k > 0, e⌦k

X
(resp. e⇥X,k) is
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homogeneous of degree �k (resp. k); therefore, the degree p component of p

DR eM is
the complex of C-vector spaces

(
p

DR eMleft
)p := {0!Mleft

p
�! ⌦

1

X
⌦Mleft

p+1
�! · · · �! ⌦

n

X
⌦Mleft

p+n

•

! 0} · zp,

(
p

DR eMright
)p := {0!Mright

p�n ⌦⇥X,n ! · · ·!Mright

p�1 ⌦⇥X,1 !Mright

p

•

! 0} · zp,

and the side-changing functors preserve the grading (see (8.2.3 ⇤)). If eM = RFM

is the Rees module of an F -filtered DX -module M, we regard p

DR eM as the Rees
complex of the filtered complex

Fp

p

DRMleft
:= {0! FpM

left ! ⌦
1

X
⌦ Fp+1M

left ! · · ·! ⌦
n

X
⌦ Fp+nM

left

•
! 0},

Fp

p

DRMright

:= {0! Fp�nM
right ⌦⇥X,n ! · · ·! Fp�1M

right ⌦⇥X,1 ! FpM
right

•
! 0}.

Recall that the side-changing functor for filtered DX -modules (8.2.3 ⇤⇤) amounts to

FpM
right

= !X ⌦ Fp+nM
left

.

Exercise 8.24 clearly shows that p

DR is a functor from the category of left
(resp. right) eDX -modules to the category of bounded complex of sheaves of eC-mod-
ules. It can be extended to a functor between the corresponding bounded derived
categories.

8.4.10. Definition (Contraction by a one-form). The contraction morphism

e⇥X,k ⌦ e⌦1

X
��! e⇥X,k�1

is the unique morphism such that the following diagram commutes:

e!X ⌦ e⇥X,k ⌦ e⌦1

X

✏✏

Id⌦
// e!X ⌦ e⇥X,k�1

✏✏

e⌦n�k
X
⌦ e⌦1

X

^
// e⌦n�k+1

X

where the vertical morphisms are induced by (8.4.5), i.e., e!(⇠ ⌘
1
) = e!(⇠) ^ ⌘1.

8.4.11. Action of a closed one-form on the de Rham complex. Let ⌘ be a closed holomor-
phic one-form on X. Then the exterior product by ⌘ induces a morphism

⌘ ^ • :
p

DR( eMleft
) �! p

DR( eMleft
)[1].

Indeed, for a local section m of eM and a k-form !, we have
er((⌘ ^ !)⌦m) = (ed⌘ ^ !)⌦m� ⌘ ^ er(! ⌦m) = �⌘ ^ er(! ⌦m),

so that the morphism ⌘ ^ commutes with the differentials (see Remark 8.4.2).
According to Lemma 8.4.7, we can define the contraction

• ⌘ : Sp(eDX) �! Sp(eDX)[1]
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as the unique morphism which corresponds to ⌘ ^ • on p

DR(eDX) via ◆. According to
Remark 8.4.4(1), we can define in a similar way a morphism of complexes

(8.4.12) • ⌘ :
p

DR( eMright
) �! p

DR( eMright
)[1].

Note that, if ⌘ = edf is exact, then the induced morphism

⌘ ^ : H
i p

DR( eMleft
) �! H

i+1 p

DR( eMleft
)

is zero. Indeed, if a local section µ of e⌦k

X
⌦ eMleft satisfies erµ = 0, then edf^µ = er(fµ).

In other words, the morphism ⌘ ^ on the cohomology only depends on the class of ⌘
in H

1
�(X, (e⌦•

X
, ed)). The same result holds when we make ⌘ acting on the complex

�(X,
p

DR( eMleft
)), and a similar result holds for the action • ⌘ on p

DR( eMright
).

8.4.13. C
1 de Rham and Spencer complexes. Let us denote by (eE(•,0)

X
, ed0) the complex

eC1
X
⌦eOX

e⌦•
X

with the differential induced by ed (here, we assume • > 0). More generally,
let us set

eE(p,q)

X
= e⌦p

X
^ eE(0,q)

X
= eE(p,0)

X
^ eE(0,q)

X

and let d
00 be the (usual) anti-holomorphic differential. For every p, the complex

(eE(p,•)
X

, d
00
) is a resolution of e⌦p

X
(note that, here, d00 is not affected by z, hence is

homogeneous of degree zero with respect to the grading). We therefore have a complex
(eE•

X
, ed), which is the single complex associated to the double complex (eE(•,•)

X
, ed0, d00).

In particular, since eDX is eOX -locally free, we have a natural quasi-isomorphism of
complexes of right eDX -modules:

(e⌦•
X
⌦eOX

eDX , er) ⇠�! (eE•
X
⌦eOX

eDX , eD) =: DR
1
(eDX), eD := Id⌦er+ d

00 ⌦ Id,

by sending holomorphic k-forms to (k, 0)-forms. Given a left eDX -module eMleft, we can
define similarly the C

1 de Rham complex
p

DR
1
( eMleft

) := (eEn+•
X
⌦eOX

eMleft
, eD), eD := (�1)n(Id⌦er+ d

00 ⌦ Id).

As in Exercise 8.24(2), by using that (eEn+•
X
⌦eOX

eDX , eD) is a complex of right eDX -mod-
ules, we obtain a quasi-isomorphism:

p

DR
1
(eDX)⌦eDX

eMleft ⇠�! p

DR
1
( eMleft

).

From the commutative diagram
p

DR(eDX)⌦eDX

eMleft ⇠
//

o
✏✏

p

DR( eMleft
)

✏✏

p

DR
1
(eDX)⌦eDX

eMleft ⇠
//

p

DR
1
( eMleft

)

we conclude that the right vertical morphism is a quasi-isomorphism.
We can argue similarly for defining the C

1 Spencer complex of a right eDX -module
eMright. We resolve

e⇥X,k

⇠�! (e⇥X,k ⌦eOX

eE(0,•)
X

, Id⌦d00).
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Let us set, for each ` 2 Z,

fSp1,`

X
=

L
j�i=`

(e⇥X,i ⌦eOX

eE(0,j)

X
).

For any right eDX -module eMright, we define
p

DR
1
( eMright

) := ( eMright ⌦eOX

fSp1,•
X

, e�1fM),

where the differential e�1fM is defined in Exercise 8.28. We will use the notation
Sp
1
(eDX) for the C

1 Spencer complex of eDX with its right structure. Then, ar-
guing as in Exercise 8.24(1), we obtain a quasi-isomorphism

eMright ⌦eDX

Sp
1
(eDX)

⇠�! p

DR
1
( eMright

),

from which we deduce as above a quasi-isomorphism
p

DR( eMright
)
⇠�! p

DR
1
( eMright

).

Recall that eC1
X

is flat over eOX , hence so are eEk

X
and fSp1,`

X
. The terms of

p

DR
1
(eDX) and Sp

1
(eDX) are flat over eOX and eDX , and are c-soft sheaves, so that

any short exact sequence 0! eM0 ! eM! eM00 ! 0 gives rise to an exact sequence of
the corresponding C

1 de Rham complexes, which consist of c-soft sheaves.
Moreover, by Exercise 8.28, if eMright corresponds to eMleft by side-changing, then

p

DR
1
( eMright

)
⇠�! p

DR
1
( eMleft

).

8.5. Induced eD-modules

A subcategory of Mod(eDX) proves very useful in many places, namely that of
induced right eDX-modules. Let eL be an eOX -module. It induces a right eDX -module
eL⌦eOX

eDX , called an induced right eDX-module.

8.5.1. Remark. We note that eL⌦eOX

eDX has two structures of eOX -module, one coming
from the action on eL and the other one from the right eDX -module structure, and they
do not coincide. We will mainly use the right one. The “left” eOX -module structure
on eL⌦eOX

eDX will only be used when noticing that some naturally defined sheaves of
eC-vector spaces are in fact sheaves of eOX -modules. On the other hand, eL ⌦eOX

eDX

has a canonical structure of right eDX -module.

The category Modi(
eDX) of right induced differential modules is the full subcategory

of Mod(eDX) consisting of induced eDX -modules (i.e., we consider as morphisms all
eDX -linear morphisms). It is an additive category (but not an abelian category).

8.5.2. Proposition (The canonical resolution by induced eDX -modules)
Let eM be a right eDX-module. Then the complex eM⌦eOX

Sp(eDX) is isomorphic to
a complex of right induced eDX-modules which is a resolution of eM as such.
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One should not confuse eM ⌦eOX

Sp(eDX) with eM ⌦eDX

Sp(eDX) ' Sp( eM) as in
Exercise 8.24(1), where a tensor product over eDX is considered. A good preliminary
for the following proof is Exercise 8.29.

Proof. (See Exercise 8.31 for a detailed proof.) That the terms of the complex are in-
duced eDX -modules follows from Exercise 8.19(4) applied to eL = e⇥X,k. Since Sp(eDX)

is a resolution of eOX as a eDX -module, hence as an eOX -module, and since the terms of
Sp(eDX) are eOX -locally free, we conclude that eM⌦eOX

Sp(eDX) is a resolution of eM.

Let C
?

i
(eDX) the category of ?-bounded complexes of the additive category

Modi(
eDX) and let K?

i
(eDX) be the corresponding homotopy category. Since Sp eDX is

a complex of locally free eOX -modules, the functor eM• ! eM• ⌦eOX

Sp eDX is a functor
of triangulated categories, and sends acyclic complexes to acyclic complexes according
to the previous proposition. It induces therefore a functor D

?
(eDX)! D

?

i
(eDX).

8.5.3. Corollary (Equivalence of D?
(eDX) with D

?

i
(eDX)). The natural functor D?

i
(eDX)!

D
?
(eDX) is an equivalence of categories, and the functor D

?
(eDX)! D

?

i
(eDX) induced

by eM• 7! eM• ⌦eOX

Sp eDX is a quasi-inverse functor.

8.6. Pullback and external product of eD-modules

8.6.a. Pullback of left eD-modules. Let us begin with some relative complements
to Section 8.2. Let f : X ! Y be a holomorphic map between analytic manifolds.
For any local section ⇠ of the sheaf e⇥X of z-vector fields on X, Tf(⇠) is a local section
of eOX ⌦f�1eOY

f
�1e⇥Y . We hence have an eOX -linear map

Tf : e⇥X �! eOX ⌦f�1eOY

f
�1e⇥Y ,

and dually
T
⇤
f : eOX ⌦f�1eOY

e⌦1

Y
�! e⌦1

X
.

Therefore, if eN is any left eDY -module, the connection erY on eN can be lifted as a
connection

erX
: f
⇤eN := eOX ⌦f�1eOY

f
�1eN �! e⌦1

X
⌦

f�1eOY

f
�1eN = e⌦1

X
⌦eOX

f
⇤eN

by setting

(8.6.1) erX
= ed⌦ Id+(T

⇤
f ⌦ IdeN) � (1⌦ erY

).

8.6.2. Lemma. The connection erX on f
⇤eN is integrable and defines the structure of a

left eDX-module on eN.

Proof. Exercise 8.32(1).

This leads to the first definition of the pullback functor for eDY -modules.

8.6.3. Definition. The left eDX -module corresponding to (f
⇤eN, erX) is the pullback of eN

in the sense of eD-modules, and is denoted Df
⇤(0)eN.
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However, this definition is not suited for considering derived inverse images, since
the sheaves Torf

�1eOY

j
(eOX , f

�1eN) are not obviously equipped with an integrable con-
nection. In order to overcome this difficulty, we introduce the transfer modules.

8.6.4. Definition (Transfer modules).
(1) The sheaf

eDX!Y = eOX ⌦f�1eOY

f
�1 eDY = Df

⇤(0) eDY

is a left-right (eDX , f
�1 eDY )-bimodule when using the natural right f

�1 eDY -module
structure and the left eDX -module introduced above (see Exercise 8.32(2)). It has a
canonical section 1.

Correspondingly, we have FpDX!Y = OX⌦f�1OY
f
�1

FpDY and the previous defi-
nition reads RFDX!Y = eOX ⌦f�1eOY

f
�1

RFDY (with eOX =OX [z] and eOY =OY [z]).
(2) The sheaf eDY X is obtained from eDX!Y by using the usual side-changing

functor on both sides:
eDY X = Hom

f�1eOY

�
e!Y , e!X ⌦eOX

eDX!Y

�
.

In the filtered/graded setting, this definition reads

FpDY X = Homf�1OY

�
!Y ,!X ⌦OX

Fp+n�mDX!Y

�
.

8.6.5. Example.
(1) One recovers eDX as eDX!X for the identity map Id : X ! X, so that eDX X

is identified with Hom eOX

�
e!X , e!X ⌦eOX

eDX

�
.

(2) On the other hand, if Y is reduced to a point, so that f�1 is the constant map,
we have eDX!pt =

eOX and eDX pt = e!X .

We can now give a better definition of the pullback of a left eDY -module eN, better
in the sense that it is defined inside of the category of eD-modules. It also enables
one to give a definition of a derived inverse image. The coincidence between both
definitions can be obtained by Exercise 8.39.

8.6.6. Definition (of the pullback of a left eDY -module). Let eN be a left eDY -module.
The pullback Df

⇤(0)eN is the left eDX -module eDX!Y ⌦f�1 eDY

f
�1eN.

The derived pullback Df
⇤eN is now defined by the usual method, i.e., by taking

a flat resolution of eN as a left eDY -module, or by taking a right f
�1 eDY -flat reso-

lution of eDX!Y by (eDX , f
�1 eDY )-bimodules. The cohomology modules Df

⇤(j)eN :=

Torf
�1 eDY

j
(eDX!Y , f

�1eN) are left eDX -modules.

8.6.7. Remark. If f : X ! Y is a smooth morphism, that is, locally expressed as the
projection of a product, or more generally a flat morphism, i.e., having equidmensional
fibers (since both X and Y are smooth), then for any left eDY -module eN, we have
Df
⇤eN = Df

⇤(0)eN, i.e., Df
⇤(j)eN = 0 for j 6= 0. Indeed, in such a case, eDX!Y is

f
�1 eDY -flat (Exercise 8.36). Moreover, if eN is strict (see Definition 5.1.6), then so is
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Df
⇤(0)eN: indeed, the assumption amounts to the injectivity of z : eN ! eN, which is

preserved after flat base change.
We sometimes use the notation Df

⇤ instead of Df
⇤(0).

8.6.8. Side-changing and pullback. The pullback for a right eDY -module eNright is ob-
tained by applying the side-changing functor at the source and the target. Let eNleft

be the left eDY -module associated with eNright, so that eNright
= e!Y ⌦ eNleft. Then

we set

Df
⇤(0)eNright

:= e!X ⌦ Df
⇤(0)eNleft

,

and similarly with Df
⇤. Notice the change of grading by dimY � dimX, due to the

grading of e!X ⌦ f
�1e!_

Y
, i.e., we have

(Df
⇤(0)Nright

)p := !X ⌦ (Df
⇤(0)Nleft

)(m� n)p = !X ⌦ f
⇤Nleft

p+n�m.

8.6.9. Example (Pull-back of a filtered module). Assume that eN is the Rees module
RFN of a filtered left DY -module (N, F•N). Then f

⇤N = OX ⌦f�1OY
f
�1N is

equipped with the filtration

Fpf
⇤N = image

⇥
OX ⌦f�1OY

f
�1

FpN! OX ⌦f�1OY
f
�1N

⇤
,

and the corresponding Rees module RF f
⇤N is equal to f

⇤eN/z-torsion. If for exam-
ple f is a smooth morphism, so that OX is f

�1OY -flat, then eOX is also f
�1eOY -flat

and f
⇤eN = RF f

⇤N.
We also have Fpf

⇤Nright
= !X ⌦ Fp+n�mNleft, after (8.2.3 ⇤⇤).

8.6.b. External product. We start with the case of DX -modules. Let X,Y be two
complex manifolds and let pX , pY be the projections from X ⇥Y to X and Y respec-
tively. For any pair of sheaves FX ,FY of C-vector spaces on X and Y respectively,
let us set FX ⇥C FY := p

�1
X

FX ⌦C p
�1
Y

FY .
By using an analogue of Theorem 8.8.7(2), one obtains that OX ⇥C OY and

DX ⇥C DY are coherent sheaves of rings on X ⇥ Y . Moreover, OX⇥Y is flat
over OX ⇥C OY (as can be seen by applying [Ser56, Prop. 28] to each germ
OX⇥Y,(x,y) and the localization of OX,x ⇥C OY,y), and we also have

DX⇥Y = OX⇥Y ⌦(OX⇥COY ) (DX ⇥C DY ) = (DX ⇥C DY )⌦(OX⇥COY ) OX⇥Y .

For an OX -module LX (resp. a DX -module MX) and an OY -module LY (resp. a
DY -module MY ), set

LX ⇥O LY = (LX ⇥C LY )⌦OX⇥COY
OX⇥Y

MX ⇥D MY = (MX ⇥C MY )⌦OX⇥COY
OX⇥Yresp.

= (MX ⇥C MY )⌦DX⇥CDY
DX⇥Y .

Clearly, if LX ,LY are O-coherent, then LX⇥CLY is OX⇥COY -coherent. It follows
that LX ⇥OLY is OX⇥Y -coherent. Similarly, if MX ,MY are D-coherent, MX ⇥DMY

is DX⇥Y -coherent.



244 CHAPTER 8. TRAINING ON D-MODULES

We now consider the case of eDX -modules. For any pair of sheaves eFX , eFY of eC-
modules on X and Y respectively, we set eFX ⇥eC

eFY := p
�1
X
eFX ⌦eC p

�1
Y
eFY . If we

identify eC⇥C eC with C[z1, z2], then eFX ⇥C eFY is a C[z1, z2]-module and

eFX ⇥eC
eFY = Coker

⇥eFX ⇥C eFY

z1 � z2�������! eFX ⇥C eFY

⇤
.

As a consequence, we will obtain a behaviour of ⇥eC similar to that of ⇥C only with
a supplementary C[z]-flatness (i.e., strictness) condition for eFX , eFY .

We have eOX ⇥eC
eOY = (OX ⇥COY )⌦CC[z], therefore eOX ⇥eC

eOY is a coherent sheaf
of rings, and one also checks that eDX ⇥eC

eDY is coherent. Moreover, from the above
flatness result, we find that eOX⇥Y is flat over eOX ⇥eC

eOY .
For strict eO-modules eLX , eLY (resp. eD-modules eMX , eMY ), one defines the external

product eLX ⇥eO
eLY (resp. eMX ⇥eD

eMY ) as for O-modules (resp. D-modules). In such
a case, we have eMX = RFMX for some F•DX -filtration F•M, and similarly for Y ,
according to Proposition 5.1.8(1).

8.6.10. Lemma (See [Kas03, §4.3]). If F•MX , F•MY are F•D-filtrations, then

Fj(MX ⇥D MY ) :=

X

k+`=j

FkMX ⇥O F`MY

is an F•D-filtration of MX ⇥eD MY for which

gr
F
(MX ⇥D MY ) = gr

FMX ⇥grFD gr
FMY .

Proof. We set eM = RFM. Let us start by considering eMX ⇥C eMY as a C[z1, z2]-
module. One checks that multiplication by z1 � z2 is injective on eMX ⇥C eMY . Its
cokernel is identified with eMX ⇥eC

eMY , where the action of z is induced either by
that of z1 ⇥ 1 or that of 1⇥ z2. But eMX ⇥eC

eMY is also eC-torsion free, and defining
F•(

eMX ⇥C eMY ) by a formula similar to that of the lemma amounts to setting (due
to torsion-freeness)

RF (MX ⇥C MY ) =
eMX ⇥eC

eMY .

We have a commutative diagram of short exact sequences

eMX ⇥C eMY

� � z1 � z2
//

_�

z1

✏✏

eMX ⇥C eMY
_�

z1

✏✏

// //
eMX ⇥eC

eMY

_�

z

✏✏

eMX ⇥C eMY

� � z1 � z2
//

✏✏

✏✏

eMX ⇥C eMY

✏✏

✏✏

// //
eMX ⇥eC

eMY

✏✏

✏✏

gr
FMX ⇥C eMY

� � �z2
// gr

FMX ⇥C eMY
// // C

and the term C is identified with gr
F
(MX ⇥C MY ) when considered as the cokernel

of the vertical arrow, while it is identified with gr
FMX ⇥C gr

FMY when considered
as the cokernel of the horizontal one.
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Once this identification is obtained, the formula of the lemma is simply deduced
by tensoring with OX⇥Y over OX ⇥C OY .

8.6.11. Remark. We will interpret this property in terms of flatness in Exercise 15.4.

8.7. Pushforward of eD-modules

Let f : X ! Y be a holomorphic map between complex manifolds. The pullback
of a C

1 function on Y is easy to define and, by adjunction, the pushforward of a
current of degree 0 is easily defined provided that f is proper. On the other hand, the
pullback of a form of maximal degree on Y is usually not of maximal degree on X,
so the pushforward of a distribution is not defined in an easy way. This example is
an instance of the fact that the pushforward of eDX -modules by a proper holomorphic
map should be defined in a simple way for right eDX -modules, while for left eDX -mod-
ules one should use the side-changing functors.

8.7.1. Remark.
(1) We will distinguish the usual direct image and the direct image with proper

supports for the sake of completeness. However, in the main part of this text, we al-
ways assume properness of the map on the support of the object to which it is applied.
Therefore, this distinction will not be useful.

(2) The pushforward functor by a map f : X ! Y applied to a eDX -module takes
values in the derived category D

+
(eDY ).

8.7.a. Definition and examples. We aim at defining the derived pushforward of a
right eDX -module eM by a formula using the transfer module (see Definition 8.6.4(1))
like

Rf?

� eM⌦L
eDX

eDX!Y

�
.

However, the derived tensor product eM ⌦L
eDX

eDX!Y is a priori an object of

D
�
(eDX)

right and we need to argue that f has finite cohomological dimension in order
to apply Rf? to it. In order to avoid such an argument, we will simply make explicit
a finite resolution of eDX!Y as a (eDX , f

�1 eDY )-bimodule whose terms are eDX -locally
free: this is the relative Spencer complex Sp

X!Y
(eDX) (see Exercise 8.40). Recall

also that the Spencer complex Sp(eDX), which was defined in 8.4.3, is a complex
of locally free left eDX -modules (hence locally free eOX -modules) and is a resolution
of eOX as a left eDX -module. There is an isomorphism of complexes of bi-modules
(see Exercise 8.40)

(8.7.2) Sp
X!Y

(eDX) ' Sp(eDX)⌦eOX

eDX!Y .

On the right-hand term, the left eOX -structure on each factor is used for the tensor
product, and it is a complex of (eDX , f

�1 eDY )-bimodules: the right f
�1 eDY structure
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is the trivial one; the left eDX -structure is that defined by Exercise 8.12(1). It is a
resolution of

eOX ⌦eOX

eDX!Y = eDX!Y

as a left eDX -module, in a way compatible with the right f
�1 eDY -module structure

(see Exercise 8.41).
For a right eDX -module eM, we will use the identification

Sp
X!Y

( eM) ' eM⌦eDX

Sp
X!Y

(eDX)

(see Exercise 8.40).

8.7.3. Definition (Pushforward of a eD-module). Setting ? = ⇤ or ? = !, the direct image
Df? is the functor from Mod(eDX)

right to D
+
(eDY )

right defined(1) by

(8.7.3 ⇤) Df?
eM := Rf⇤

� eM⌦eDX

Sp
X!Y

(eDX)
�
' Rf⇤ SpX!Y

( eM).

For a left eDX -module eM, we set

(8.7.3 ⇤⇤) Df?
eM :=

�
Df?

eMright
�left

.

The cohomology modules are objects of Mod(eDY ) (right or left, respectively) and are
denoted by

Df
(j)

?
eM := H

j
Df?

eM.

One can give a formula for the pushforward of left eDX -modules which looks like
that for the right eDX -modules.

8.7.4. Lemma. For a left eDX-module eM, we have

Df?
eM ' Rf?

�eDY X ⌦L
eDX

eM
�
.

Proof. See Definition 8.6.4(2) for the transfer module. The meaning of eDY X ⌦L
eDX

eM
is Sp

Y X
(eDX)⌦eDX

eM, with an obvious notation. For the proof, see Exercise 8.43.

8.7.5. Remarks.
(1) If f is proper, or proper on the support of eM, we have an isomorphism in the

category D
+
(eDY ):

Df!
eM ⇠�! Df⇤ eM.

(2) If eF is any sheaf on X, we have R
j
f⇤eF = 0 and R

j
f!
eF = 0 for j 62 [0, 2 dimX].

Therefore, taking into account the length dimX of the relative Spencer complex,
we find that Df

(j)

⇤ eM and Df
(j)

!
eM are zero for j 62 [� dimX, 2 dimX]: we say that

Df⇤ eM, Df!
eM have bounded amplitude (see Remark 8.7.13 for a more precise estimate

of the amplitude).
(3) See Exercise 8.52 for a simple expression of the pushforward in terms of differ-

ential forms.

(1)Recall that, if eDX = RFDX , then Mod(eDX) := Modgr(RFDX).
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Let us give natural examples of pushforward of eDX -modules.

8.7.6. Example (Pushforward of a eD-module by a closed embedding)
If ◆ is a closed embedding, it is proper, so the ordinary pushforward and the

pushforward with proper support will be the same. Since eDX!Y is eDX -locally free
in this case (Exercise 8.35), we have, for a right eDX -module eM,

D◆
(0)

⇤ eM = ◆⇤( eM⌦eDX

eDX!Y ), D◆
(k)

⇤ eM = 0 if k 6= 0,

so that we will simply denote D◆
(0)

⇤ by D◆⇤, and it is a functor Mod(eDX) 7! Mod(eDY ).
Similarly, for a left eDX -module eM we can write

D◆⇤ eM = ◆⇤(eDY X ⌦eDX

eM).

8.7.7. Example (Pushforward by a graph inclusion (see also Exercise 8.46))
Let g : X ! C be a holomorphic function and let ◆g : X ,! X ⇥ C denote the

graph embedding of g, with coordinate t on the factor C. A special case is when
g ⌘ 0, so that the formulas below can be simplified by replacing every occurrence
of g by zero. We denote eM⌦eC

eC[e@t] by eM[e@t]. In order to simplify notation, we also
denote the pushforward D◆g⇤ eM by eMg.

(1) Let eM be a right eDX -module. By Exercise 8.35, we have eDX!X⇥C' ◆g⇤ eDX [e@t].
Then eMg := D◆g⇤ eM ' ◆g⇤ eM[e@t] with the right eDX⇥C-action defined locally be the
following formulas (recall that for a holomorphic function h(x, t, z), the bracket [e@k

t
, h]

can be written as
P

j<k
ah,j(x, t, z)

e@j
t
=
P

j<k
e@j
t
bh,j(x, t, z)):

(m⌦ e@k
t
) · e@xi

= (me@xi
)⌦ e@k

t
�
⇣
m

@g

@xi

⌘
⌦ e@k+1

t
,

(m⌦ e@k
t
) · e@t = m⌦ e@k+1

t
,

(m⌦ e@k
t
) · h(x, t, z) =

X

j<k

mah,j(x, g(x), z)⌦ e@j
t
+mh(x, g(x), z)⌦ e@k

t
.

(8.7.7 ⇤)

If eM = RFM, then the filtration of Mg 'M[@t] is simply given by

Fp(M
right

[@t]) =

X

q+r=p

FqM
right

@
r

t
.

(2) Let eM be a left eDX -module. Since the coordinate t on C is fixed, a generator edt
of e!C is also fixed, and we identify (see Caveat 8.2.4 for the notation edt_)

eMg ' ◆g⇤ eM[e@t]⌦ edt_,

i.e., the remaining right action of e@t is changed to a left action. Note that the term edt_
also shifts the grading of the right-hand side. In other words, the left-hand side is
obtained from eMright

g
by applying the left-to-right functor on X⇥eC, which introduces a

twist (dimX+1), while the right-hand side is obtained from ◆g⇤ eMright
[e@t] by applying

the right-to-left functor on X, which introduces a twist (dimX) (see Proposition
8.2.5). We will usually omit the term edt_ in the notation. For example, if eM =
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RFM, the right-hand term corresponds to the DX -module ◆g⇤M[@t] equipped with
the filtration

Fp(◆g⇤M
left

[@t]) =

X

q+r=p

◆g⇤F [1]q(M
left

) @
r

t
=

X

q+r=p�1
◆g⇤FqM

left
@
r

t
.

The left eDX⇥C-action is defined locally be the following formulas (by using Exer-
cise 8.17; note the sign at the second line due to (the omitted) edt_):

e@xi
(m⌦ e@k

t
) = (e@xi

m)⌦ e@k
t
�
⇣
@g

@xi

m

⌘
⌦ e@k+1

t
,

e@t(m⌦ e@k
t
) = �m⌦ e@k+1

t
,

h(x, t, z)(m⌦ e@k
t
) =

X

j<k

(�1)k�1�jbh,j(x, g, z)m⌦ e@j
t
+ h(x, g, z)m⌦ e@k

t
.

(8.7.7 ⇤⇤)

(3) In both left and right cases, we can also consider eM[e@t] as a module over the
ring eDX [t]he@ti, i.e., algebraically with respect to the variable t, with the action of t
given by

(m⌦ e@k
t
) · t = mg ⌦ e@k

t
+ kzm⌦ e@k�1

t
, resp. t · (m⌦ e@k

t
) = gm⌦ e@k

t
� kzm⌦ e@k�1

t
.

This corresponds to the third lines in (8.7.7 ⇤) and (8.7.7 ⇤⇤), according to the equality
[e@k

t
, t] = kze@k�1

t
.

8.7.8. Remark. If eM is a left eDX -module, one can also consider the left eDX⇥C-module
structure on ◆g⇤ eM[e@t] := ◆g⇤ eM ⌦eC

eC[e@t] defined by setting (without a sign on the
second line)

e@xi
(m⌦ e@k

t
) = (e@xi

m)⌦ e@k
t
�
⇣
@g

@xi

m

⌘
⌦ e@k+1

t
,

e@t(m⌦ e@k
t
) = m⌦ e@k+1

t
,

h(x, t, z)(m⌦ e@k
t
) = �

X

j<k

bh,j(x, g, z)m⌦ e@j
t
+ h(x, g, z)m⌦ e@k

t
.

However, there exists a natural eDX⇥C-linear isomorphism

◆g⇤ eM[e@t]
⇠�! ◆g⇤ eM[e@t]⌦ edt_(�1), m⌦ e@k

t
7�! m⌦ (�e@k

t
)⌦ edt_.

8.7.9. Example (Pushforward by a constant map). If Y = pt we denote by aX the
constant map on X. For a eDX -module eM, we have (recall that, as a graded complex,
p

DR eMright ' p

DR eMleft)

DaX,⇤ eM = R�(X,
p

DR eM), DaX,!
eM = R�c(X,

p

DR eM).

These are bounded complexes of eC-modules. If eM = RFM, then for every j 2 Z,
Da

(j)

⇤ M is equipped with the filtration

Fp(Da
(j)

⇤ M) : image[H
j
(X,Fp

p

DRM) �!H
j
(X,

p

DRM)],

where the filtration F•
p

DRM is defined in Remark 8.4.9, and

RF (Da
(j)

⇤ M) ' (Da
(j)

⇤ RFM)/z-torsion.
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8.7.10. Example (Pushforward by a projection, right case). If X = Y ⇥ T and f is the
projection Y ⇥ T ! Y , denote by e⇥X/Y the sheaf of relative tangent vector fields,
i.e., which do not contain e@yj

in their local expression in coordinates adapted to the
product Y ⇥T . It leads to the subsheaf of relative differential operators eDX/Y ⇢ eDX .
On the other hand, Df

⇤ eDY = eOX ⌦f�1eOY

f
�1 eDY = eDX!Y can also be regarded as

a subsheaf of eDX (differential operators only containing e@yj
in their expression).

The relative Spencer complex eDX/Y ⌦eOX

e⇥X/Y,• (with e⇥X/Y,k := ^�k e⇥X/Y )is
defined in the same way as its absolute analogue, and is a resolution of eOX as a
left eDX/Y -module. As a consequence, eDX/Y ⌦eOX

e⇥X/Y,• ⌦f�1eOY

f
�1 eDY is also a

resolution of eOX⌦f�1eOY

f
�1 eDY = eDX!Y as a bimodule by locally free left eDX -mod-

ules. By identifying eDX with eDX/Y ⌦f�1eOY

f
�1 eDY , we can also write this resolution

as eDX ⌦eOX

e⇥X/Y,•. There is moreover a canonical quasi-isomorphism as bimodules

Sp
X!Y

(eDX) =
�eDX ⌦eOX

e⇥X/Y,•

�
⌦

f�1eOY

f
�1�e⇥Y,• ⌦eOY

eDY

�

=
�eDX ⌦eOX

e⇥X/Y,•

�
⌦

f�1 eDY

f
�1�

Sp
Y
(eDY )⌦eOY

eDY

�

⇠�!
�eDX ⌦eOX

e⇥X/Y,•

�
⌦

f�1 eDY

f
�1 eDY!Y

= eDX ⌦eOX

e⇥X/Y,•.

Definition 8.7.3 now reads

(8.7.10 ⇤) Df?
eM = Rf?

� eM⌦eOX

e⇥X/Y,•

�
,

where the right eDY structure is naturally induced from that of Df
⇤ eDY ⇢ eDX on eM.

If eM = RFM, the p-th term of the filtration F•(M ⌦OX
⇥X/Y,•) of the complex

M⌦OX
⇥X/Y,• has Fp+kM⌦OX

⇥X/Y,k in degree �k and for every j 2 Z,

Df
(j)

?
eM/z-torsion ' RF (Df

(j)

? M)

with

Fp(Df
(j)

? M) = image[f
(j)

? Fp(M⌦OX
⇥X/Y,•)! f

(j)

? (M⌦OX
⇥X/Y,•)].

8.7.11. Example (Pushforward by a projection, left case). We take up the setting of
Example 8.7.10 and we make explicit the formula in the case of left eDX -modules
(See Exercise 8.44). Let us denote by e⌦1

X/Y
the sheaf of relative differential forms,

i.e., which do not contain edyj in their local expression in coordinates adapted to the
product Y ⇥T . If eM is a left eDX -module, we can form the relative de Rham complex
p

DRX/Y
eM by mimicking Definition 8.4.1 and by using the relative connection erX/Y .

On the other hand, there remains an action of erY on eM. Due to the integrability
property of er on eM, both connections erX/Y and erY commute, so that the relative
de Rham complex p

DRX/Y
eM (the shift is by dX/Y := dimX � dimY ) is naturally

equipped with an f
�1eOY -connection erY . Then we have (Exercise 8.44), for ? = ⇤ or

? = !,
Df?

eM = (Rf?
p

DRX/Y
eM, erY ).
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If eM = RFM, the p-th term of the filtration F•(
p

DRX/Y M) of the complex
p

DRX/Y M = ⌦
•
X/Y
⌦OX

M has ⌦k

X/Y
⌦OX

Fp+kM in cohomological degree k�dimX

and for every j 2 Z,
Df

(j)

?
eM/z-torsion ' RF Df

(j)

? M

with
Fp Df

(j)

? M = image[f
(j)

? Fp(
p

DRX/Y M)! f
(j)

? (
p

DRX/Y M)].

8.7.12. Remark. Since any morphism can be decomposed as a closed embedding fol-
lowed be a projection, through the graph embedding, we could simply say that the
pushforward by a closed embedding (resp. a projection) of a right eDX -module is
obtained by the definition of Example 8.7.6 (resp. Example 8.7.10), and define the
pushforward by any holomorphic map f by composing the pushforward functors in
these simple cases. Nevertheless, in order to check various other properties, it is useful
to have the intrinsic definition 8.7.3 for any holomorphic mapping f .

8.7.13. Remark (Amplitude of the pushforward). Formula (8.7.17) below shows that
Df

(j)

?
eM = 0 for j /2 [�n, n]. On the other hand, if f is a closed inclusion, the

amplitude is equal to zero, and if f is a projection, the C
1 resolutions for Examples

8.7.10 or 8.7.11 show that Df
(j)

?
eM = 0 for j /2 [�(n�m), (n�m)].

8.7.b. Explicit constructions with the pushforward functor

There are two natural ways (at least) to make explicit the functor Rf? enter-
ing the definition of Df?: one can use the canonical Godement resolution by flabby
sheaves, which is a very general procedure but with few geometric content, or one can
replace the relative Spencer or de Rham complexes by their C

1 counterparts as in
Remark 8.4.13. We will mainly use the latter, but it can be useful to have the former
at hand.

Godement resolution. Recall that the flabby sheaves are injective with respect to the
functor f⇤ (direct image) in the category of sheaves (of modules over a ring) and, being
c-soft, are injective with respect to the functor f! (direct image with proper support).
The Godement canonical resolution is an explicit functorial flabby resolution for any
sheaf (see Exercise 8.49 for details).

8.7.14. Definition (Godement resolution).
(1) The Godement functor C0 (see [God64, p. 167]) associates to any sheaf eL the

flabby sheaf C0
(eL) of its discontinuous sections and to any morphism the correspond-

ing family of germs of morphisms. Then there is a canonical injection eL ,! C0
(eL).

(2) Set inductively (see [God64, p. 168]) Z0
(eL) = eL, Zk+1

(eL) = Ck
(eL)/Zk

(eL),
Ck+1

(eL) = C0
(Zk+1

(eL)) and define � : Ck
(eL)! Ck+1

(eL) as the composition Ck
(eL)!

Zk+1
(eL) ! C0

(Zk+1
(eL)). This defines a complex (C•

(eL), �), that we will denote as
(God

• eL, �).
(3) Given any sheaf eL, (God

• eL, �) is a resolution of eL by flabby sheaves. For
a complex (eL•

, d), we regard God
• eL• as a double complex ordered as written, i.e.,
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with differential (�i, (�1)idj) on God
i eLj , and therefore also as the associated simple

complex.

8.7.15. Corollary. We have, by taking the single complex associated to the double com-
plex, and for ? = ⇤ or ? = !,

Df?
eM = f? God

•
Sp

X!Y
( eM).

C
1 resolution. Recall (see Remark 8.4.13) that Sp

1
(eDX) is a resolution of Sp(eDX)

in the category of left eDX -modules by flat eOX -modules. Therefore,

Sp
1
X!Y

(eDX) ' Sp
1
(eDX)⌦eOX

eDX!Y

is a resolution of Sp
X!Y

(eDX) in the category of (eDX , f
�1 eDY ) bi-modules, so that,

for a right eDX -module eM, (8.7.3 ⇤) becomes

(8.7.16) Df?
eM ' f?(

eM⌦eDX

Sp
1
X!Y

(eDX)) ' f? Sp
1
X!Y

( eM).

On the other hand, for a left eDX -module eM, we can use Exercise 8.52(5) to obtain

(8.7.17) Df?
eM ' f?

⇥eEn+•
X
⌦ ( eM⌦

f�1eOY

f
�1 eDY )

⇤left
.

This expression clearly shows that Df?
eM can be realized by a bounded complex

of amplitude n. It can also be used to construct the spectral sequence attached to a
filtered eDX -module.

8.7.18. Corollary. Let W• eM be a finite increasing filtration of eM by eDX-submodules.
Then there exists a spectral sequence, which is functorial in ( eM,W•

eM):

E
�`,k+`

1
= Df

(k)

⇤ (gr
W

`
eM) =) gr

W

` Df
(k)

⇤ ( eM),

where W•(Df
(k)

⇤ ( eM)) is the image filtration image[Df
(k)

⇤ (W•
eM)! Df

(k)

⇤ ( eM)].

8.7.19. The Lefschetz morphism. As a consequence of Exercise 8.52(5), given a (1, 1)-
form e⌘ 2 �(X, eE(1,1)

X
) which ed-closed (equivalently, ed0 and d

00-closed), there is a well-
defined morphism for a left eDX -module (? = ⇤ or ? = !)

e⌘ ^ : Df?
eM �! Df?

eM[2](1),

induced by e⌘ ^ : eE•
X
! eE•

X
[2](1). (Here, [2] means the shift by 2 of the complex,

which occurs since e⌘ has total degree 2, while (1) is the Tate twist shift, which occurs
since e⌘ has a degree-one holomorphic part.) It is clearly functorial with respect to eM,
that is, given any morphism ' : eM1 ! eM2, the following diagram commutes (where ?
is either for ⇤ or for !):

Df?
eM1

e⌘ ^
//

Df?'
✏✏

Df?
eM1[2](1)

Df?'
✏✏

Df?
eM2

e⌘ ^
//

Df?
eM2[2](1)
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8.7.20. Definition (The Lefschetz morphism attached to a closed (1, 1)-form)
For a left eDX -module eM, the Lefschetz morphism associated to a (usual) closed

(1, 1)-form ⌘ on X is the morphism

L⌘ :=
1

z
⌘ ^ : Df?

eM �! Df?
eM[2](1).

It is functorial with respect to eM.

8.7.21. The Lefschetz morphism attached to a line bundle. Let f : X ! Y be any mor-
phism between complex manifolds and let L be a line bundle on X, with Chern class
c1(L) 2 H

2
(X,Z). We will define a Lefschetz morphism

LL : Df?
eM �! Df?

eM[2](1).

We can choose a closed (1, 1)-form ⌘ on X whose class in H
2
(X,C) is equal to the

complexified class c1(L)C. We regard ⌘ as a closed relative (1, 1)-form with respect
to the projection. As noticed in Remark 8.4.11, namely by using a similar argument,
the action of L⌘ given in Definition 8.7.20 only depends on the class of ⌘ in H

2
(X,C).

Notice also that, since ⌘ has degree two, wedging (or contracting) with ⌘ on the left
or on the right gives the same result.

We thus define LL as L⌘. This operator only depends on c1(L)C. It is functorial
with respect to eM.

8.7.22. Remark (Restriction to z = 1 of the Lefschetz morphism)
It is obvious that the restriction to z = 1 of the morphism LL is the morphism

LL : Df?M �! Df?M[2].

8.7.c. Composition of direct images and the Leray spectral sequence

We compare the result of the pushforward functor by the composition of two
maps with the pushforward by the second map of the pushforward by the first map.
We find an isomorphism at the level of derived categories, that we will translate as
a spectral sequence, which is the eD-module analogue of the Leray spectral sequence
(see Section 8.10.c).

8.7.23. Theorem (Composition of direct images). Let

f : X �! Y and f
0
: Y �! Z

be two holomorphic maps. There is a functorial canonical isomorphism of functors

D(f
0 � f)!(•) = Df

0
!
(Df!(•)).

If f is proper, we also have

D(f
0 � f)⇤(•) = Df

0
⇤(Df⇤(•)).

Proof. We start from the canonical isomorphism of (eDX , (f
0 � f)�1 eDZ)-bimodules

(Exercise 8.37):

(8.7.24) eDX!Y ⌦f�1 eDY

f
�1 eDY!Z

⇠�! eDX!Z .
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We deduce an isomorphism of complexes of (eDX , (f
0 � f)�1 eDZ)-bimodules

h
Sp(eDX)⌦eOX

eDX!Y

i
⌦

f�1 eDY

f
�1 eDY!Z

⇠�! Sp(eDX)⌦eOX

eDX!Z

lifting (8.7.24), that is, a natural isomorphism

Sp
X!Y

(eDX)⌦
f�1 eDY

f
�1 eDY!Z

⇠�! Sp
X!Z

(eDX).

On the other hand, there exists a natural morphism of complexes

Sp
X!Y

(eDX)⌦
f�1 eDY

f
�1

Sp
Y!Z

(eDY ) �! Sp
X!Y

(eDX)⌦
f�1 eDY

f
�1 eDY!Z ,

obtained by tensoring the augmentation morphism Sp
Y!Z

(eDY ) ! eDY!Z with
Sp

X!Y
(eDX), and the left-hand term is a resolution of eDX!Y ⌦f�1 eDY

f
�1 eDY!Z

(in the category of (eDX , (f
0 � f)

�1 eDZ)-bimodules) by locally free eDX -modules.
Indeed, remark that, as Sp

Y!Z
(eDY ) is eDY locally free, one has

Sp
X!Y

(eDX)⌦
f�1 eDY

f
�1

Sp
Y!Z

(eDY )
⇠�! eDX!Y ⌦f�1 eDY

f
�1

Sp
Y!Z

(eDY )

= eOX ⌦f�1eOY

f
�1

Sp
Y!Z

(eDY )

= eOX ⌦L
f�1eOY

f
�1 eDY!Z

= eOX ⌦f�1eOY

f
�1 eDY!Z (eDY!Z is eOY locally free)

= eDX!Y ⌦f�1 eDY

f
�1 eDY!Z .

Altogether, we have found a morphism, lifting (8.7.24),

Sp
X!Y

(eDX)⌦
f�1 eDY

f
�1

Sp
Y!Z

(eDY ) �! Sp
X!Z

(eDX),

between two resolutions (in the category of (eDX , (f
0�f)�1 eDZ)-bimodules). This mor-

phism is therefore a quasi-isomorphism. We now have, for an object eM of Mod(eDX)

or of D+
(eDX)

D(f
0 � f)!( eM) = R(f

0 � f)!
� eM⌦eDX

Sp
X!Z

(eDX)
�

' R(f
0 � f)!

� eM⌦eDX

Sp
X!Y

(eDX)⌦
f�1 eDY

f
�1

Sp
Y!Z

(eDY )
�

' Rf
0
!
Rf!

� eM⌦eDX

Sp
X!Y

(eDX)⌦
f�1 eDY

f
�1

Sp
Y!Z

(eDY )
�

' Rf
0
!

h
Rf!

� eM⌦eDX

Sp
X!Y

(eDX)
�
⌦eDY

Sp
Y!Z

(eDY )

i

= Df
0
!
(Df!

eM).

The above arguments also apply if we replace Sp with Sp
1 as defined in Remark

8.4.13, according to the eDX -flatness of Sp
1
X!Y

and the eDY -flatness of Sp
1
Y!Z

(see Exercise 8.51(1)). All terms of the corresponding complexes are c-soft and we
have

D(f
0 � f)!( eM) ' (f

0 � f)! Sp1X!Z
( eM)

' f
0
!

h
f!

�
Sp
1
X!Y

( eM)
�
⌦eDY

Sp
1
Y!Z

(eDY )

i
.

(8.7.25)

The same result holds with Df⇤ if we only assume that f is proper on the support
of eM. On the other hand, if f is proper or proper on the support of eM, but f

0 is
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possibly not proper, then the same results are valid for ⇤ instead of !: indeed, f! = f⇤
and f! Sp

1
X!Y

( eM) is flabby, so the last isomorphism in (8.7.25) still holds with f
0
⇤,

and the same reasoning gives D(f
0 � f)⇤ = Df

0
⇤ Df⇤.

8.7.26. Remark. If f is not proper, we cannot assert in general that D(f
0 � f)⇤(•) =

Df
0
⇤(Df⇤(•)). However, such an identity still holds when applied to suitable subcate-

gories of D+
(eDX), the main examples being:

• the restriction of f to the support of eM is proper, as already seen,
• eM has eDX -coherent cohomology.

In such cases, the natural morphism coming in the projection formula for f⇤ is a
quasi-isomorphism (see [MN93, §II.5.4] for the coherent case).

This theorem reduces the computation of the direct image by any morphism
f : X ! Y by decomposing it as f = p � ◆f , where ◆f : X ,! X ⇥ Y denotes the
graph inclusion x 7! (x, f(x)). As ◆f is an embedding, it is proper, so we have
Df⇤ = Dp⇤D◆f⇤. The following corollary is a direct consequence of Example 8.7.6.

8.7.27. Corollary (Composition with a closed embedding).
(1) Assume that f is a closed embedding. Then, for each k 2 Z, we have a functo-

rial isomorphism D(f
0 � f)(k)

!
' Df

0(k)
!
� Df!.

(2) Assume that f
0 is a closed embedding. Then, for each k 2 Z, we have a

functorial isomorphism D(f
0 � f)(k)

!
' Df

0
!
� Df

(k)

!
.

The Leray spectral sequence exists in this setting.

8.7.28. Corollary (Leray spectral sequence for the composition of maps)
There exists a bounded spectral sequence with E

p,q

2
= Df

0(p)
!

(Df
(q)

!
eM) which con-

verges to D(f
0 �f)p+q

!
eM. There are corresponding spectral sequences with Df⇤ and Df

0
⇤

under the properness assumptions above.

Proof. Let us consider the expression (8.7.25). First, f! Sp
1
X!Y

( eM) is a bounded
complex having cohomology Df

(q)

!
eM. The second line of (8.7.25) is a double com-

plex (K
•,•

, �1, �2). The single complex attached to (K
•,•

, �1, �2) has cohomology
D(f
0 � f)(k)

!
( eM), according to our previous computation. The spectral sequence at-

tached to this double complex has E2 term

E
p,q

2
= H

p

�2
(H

q

�1
(K

•,•
)) = Df

0(p)
!

(Df
(q)

!
eM).

The spectral sequence degenerates at a finite step. We have a similar result for
D(f
0 � f)(k)⇤ ( eM) if f is proper.

We call this spectral sequence the Leray spectral sequence for the composition f
0�f .

In such a way, the abutment D(f
0 �f)(k)

!
( eM) comes equipped with a natural filtration,

that we call the Leray filtration, such that

E
p,q

1 = gr
p

Ler

⇥
D(f
0 � f)(p+q)

!
( eM)

⇤
.
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It is clear that the restriction to z = 1 of the Leray spectral sequence is the Leray
spectral sequence for DX -modules.

8.7.29. Behaviour of the Spencer complex by pushforward. In the proof of Theorem
8.7.23, let us set Z = pt, so that Sp

Y!Z
(eDY ) = Sp(eDY ). By the same argument,

but not applying the functor Rf
0
!
, we obtain

Sp(Df!
eM) ' Rf! Sp(

eM).

We already have an identification on X as follows: considering the right eDY -structure
on eDX!Y , the Spencer complex Sp

Y
(eDX!Y ) is well defined, and is nothing but

Sp
Y
(eDX!Y ) =

eOX ⌦f�1eOY

f
�1

Sp(eDY ) ' eOX ⌦f�1eOY

f
�1eOY = eOX

as a left eDX -module. Similarly, regarding eM⌦eDX

Sp
X!Y

(eDX) as a complex of right
f
�1

(eDY )-modules, we obtain

Sp
Y
( eM⌦eDX

Sp
X!Y

(eDX)) = Sp
Y
(( eM⌦eDX

Sp(eDX))⌦eOX

eDX!Y )

' ( eM⌦eDX

Sp(eDX))⌦eOX

Sp
Y
(eDX!Y )

' eM⌦eDX

Sp(eDX) ' Sp( eM).

We also conclude that, for a left or right eDX -module, we have
p

DR(Df!
eM) ' Rf!

p

DR( eM).

8.7.d. A morphism of adjunction. There are various adjunction morphisms for
eD-modules in the literature (see [Kas03, HTT08]). We will give here a simple one,
in the case where the source and target of the proper holomorphic map f : X ! Y

have the same dimension. In such a case, the cotangent map T
⇤
f induces a morphism

f
�1e⌦k

Y
�! e⌦k

X

for every k, which is compatible with the differential ed, and similarly for C
1 forms.

8.7.30. Proposition. Under this assumption, if eM is a left eDY -module, there is a func-
torial morphism

adj
f
: eM �! Df

(0)

⇤ (Df
⇤(0) eM).

Proof. Set n = dimX = dimY . The left setting makes easier the definition of
Df
⇤(0) eM. Nevertheless, we will construct the morphism in the right setting.
Firstly, by using Exercise 8.31(2), we find

eMright
= e!Y ⌦eOY

eM ⇠ � (e⌦n+•
Y
⌦ eDY )⌦eOY

eM ⇠�! (eEn+•
Y
⌦ eDY )⌦eOY

eM.

The cotangent map f
�1eEk

Y
! eEk

X
induces, by using the sheaf-theoretic adjunction

Id! f⇤f
�1, a morphism eEk

Y
! f⇤eEk

X
compatible with differentials, hence a morphism

(eEn+•
Y
⌦ eDY )⌦eOY

eM �! (f⇤eEn+•
X
⌦ eDY )⌦eOY

eM.

By using the isomorphism of Exercise 8.18(3), we obtain

(f⇤eEn+•
X
⌦ eDY )⌦eOY

eM ' f⇤eEn+•
X
⌦ ( eM⌦eOY

eDY ),
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where, for the left-hand side, the left eDY -module structure of eDY is used for the C
1-

complex (•), and the right eDY -module structure of eDY is used in the tensor product
with eM in order to obtain the final right eDY -module structure (see Exercise 8.18(2)).

By the sheaf-theoretic projection formula, we have a morphism compatible with
differentials

f⇤eEn+•
X
⌦eOY

( eM⌦eOY

eDY ) �! f⇤

⇣
eEn+•
X
⌦

f�1eOY

f
�1

( eM⌦eOY

eDY )

⌘
,

and we identify the latter complex with the complex

f⇤

⇣
eEn+•
X
⌦eOX

(Df
⇤(0) eM⌦

f�1eOY

f
�1 eDY )

⌘
,

which, by Exercise 8.52 applied to Df
⇤(0) eM, is also identified with

(Df⇤(Df
⇤(0) eM))

right
.

We finally find a morphism between the cohomologies in degree zero:

eMright �! (Df
(0)

⇤ (Df
⇤(0) eM))

right
.

8.7.31. Example (Case of a finite morphism). Let us consider the simple case of a finite
morphism f : X ! Y . Since X and Y are smooth, it is flat. Let us assume that f⇤eOX

is eOY -locally free (hence the same holds for any locally free eOX -module of finite rank,
as e.g. e⌦k

X
for each k > 1). The adjunction morphism reads

eMright ' (e⌦n+•
Y
⌦ eDY )⌦eOY

eM

�! (f⇤e⌦n+•
X
⌦ eDY )⌦eOY

eM ' f⇤e⌦n+•
X
⌦ ( eM⌦eOY

eDY )

⇠�! f⇤

⇣
e⌦n+•
X
⌦

f�1eOY

f
�1

( eM⌦eOY

eDY )

⌘
,

where the latter isomorphism follows from the local freeness assumption and the fact
that f has cohomological dimension zero. In particular, we obtain that

Df
(0)

⇤ (Df
⇤(0) eM) ' Df

(0)

⇤ (Df
⇤(0)eOY )⌦eOY

eM,

and the adjunction morphism for eM is induced by that for eOY .
Assume that f is locally multi-cyclic, that is, near each point of X and its im-

age by f , there exist coordinates x1, . . . , xn on X and coordinates y1, . . . , yn on Y

such that, in these coordinates, f = (f1, . . . , fn) is the finite morphism defined by
fi(x1, . . . , xn) = x

ri

i
with ri 2 N

⇤. Then the local freeness property considered above
is easily checked. By Exercise 8.58, there exists a trace morphism

Trf : Df
(0)

⇤ (Df
⇤(0) eM) �! eM

such that the composition Trf � adjf : eM! eM is the identity. As a consequence, eM is
a direct summand of Df

(0)

⇤ (Df
⇤(0) eM).
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8.7.e. Pushforward of D
X,X

-modules. As we will apply the pushforward functor
by a holomorphic map f : X ! Y to the sheaf of distributions on X or to the sheaf of
currents of maximal degree (see Example 8.3.5), we will make precise the adaptation
of the previous properties to the category of D

X,X
-modules, where we recall that

D
X,X

:= DX ⌦C D
X

(see (8.3.0 ⇤⇤)). We will denote the corresponding pushforward
functor by D,Df! or D,Df⇤. This notation was already used, with that meaning, in
§7.3.17, for the pushforward by a closed inclusion.

We define D
X,X!Y,Y

as DX!Y ⌦C D
X!Y

. This sheaf can also be described
as O

X,X
⌦f�1O

Y,Y
f
�1D

Y,Y
. The Spencer complex Sp(D

X,X
) is the simple com-

plex associated with the double complex Sp(DX) ⌦C Sp(D
X
). Defining ⇥k

X,X
=

L
i+j=k

(⇥
i

X
⌦C ⇥

j

X
), the (�k)-th term of the Spencer complex Sp(D

X,X
) is equal

to D
X,X
⌦ ⇥k

X,X
, which is D

X,X
-locally free of finite rank, and the differentials are

expressed in a way similar to that in Definition 8.4.3. It is a D
X,X

-resolution of O
X,X

by locally free D
X,X

-modules.
The relative Spencer complex is defined similarly to (8.7.2), by

Sp
X,X!Y,Y

(D
X,X

) = Sp(D
X,X

)⌦O
X,X

D
X,X!Y,Y

,

and is a resolution of D
X,X!Y,Y

as a (D
X,X

, f
�1D

Y,Y
)-bimodule by locally free D

X,X
-

modules.
The pushforward functor D,Df? (? =!, ⇤) is defined, for a right D

X,X
-module N, or

a bounded complex of such, by

D,Df?(N) = Rf?(SpX,X!Y,Y
(N)) ' Rf?

�
N ⌦D

X,X
Sp

X,X!Y,Y
(D

X,X
)
�
.

In a way similar to what is done in Theorem 8.7.23 and Corollary 8.7.28, we obtain
the following result. In the present setting, it is enough to use the Godement flabby
resolution Sp

X,X!Y,Y
(N) when a flabby resolution is needed.

8.7.32. Proposition. Let

f : X �! Y and f
0
: Y �! Z

be two holomorphic maps. There is a functorial canonical isomorphism of functors

D,D(f
0 � f)!(•) = D,Df

0
!
(D,Df!(•)).

If f is proper, we also have

D,D(f
0 � f)⇤(•) = D,Df

0
⇤(D,Df⇤(•)).

Furthermore, there exists a bounded spectral sequence with E
p,q

2
= D,Df

0(p)
!

(D,Df
(q)

!
M)

which converges to D,D(f
0 � f)p+q

!
M. There are corresponding spectral sequences with

D,Df⇤ and D,Df
0
⇤ under the properness assumptions above.

8.8. Coherent eDX-modules and coherent filtrations

Although it would be natural to develop the theory of coherent eDX -modules in
a way similar to that of eOX -modules, some points of the theory are not known to
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extend to eDX -modules (the lemma on holomorphic matrices). The approach which
is therefore classically used consists in using the eOX -theory, and the main tools for
that purpose are the coherent filtrations.

8.8.a. Coherence of eDX . Let us begin by recalling the definition of coherence.
Let eA be a sheaf of rings on a space X.

8.8.1. Definition.
(1) A sheaf of eA-modules eF is said to be eA-coherent if it is locally of finite type:

8x 2 X, 9Ux, 9 q, 9 eAq

|Ux

!�! eF|Ux
,

and if, for any open set U of X and any eA-linear morphism ' : eAr

|U ! eF|U , the kernel
of ' is locally of finite type.

(2) The sheaf eA is a coherent sheaf of rings if it is coherent as a (left and right)
module over itself.

8.8.2. Lemma. Assume eA coherent. Let eF be a sheaf of eA-module. Then eF is eA-
coherent if and only if eF is locally of finite presentation: 8x 2 X, 9Ux, 9 p, q and an
exact sequence

eAp

|Ux

�! eAq

|Ux

�! eF|Ux
�! 0.

Classical theorems of Cartan and Oka claim the coherence of eOX , and a theorem
of Frisch asserts that, if K is a compact polycylinder, eOX(K) is a Noetherian ring.
It follows that gr

FeDX(K) is a Noetherian ring, and one deduces that eDX(K) is left
and right Noetherian. From this one concludes that the sheaf of rings eDX is coherent
(see [GM93, Kas03] for details).

8.8.3. Remark (Noetherianity). It follows from these properties that eDX is a Noetherian
sheaf of rings, in the sense of [Kas03, Def. A.7], that is, together with the coherence
property, each germ eDX,x is Noetherian and for any open subset U ⇢ X and any
family eIi of coherent (left or right) ideals of eDU , the ideal

P
i
eIi is a coherent eDU -mod-

ule.

8.8.b. Coherent eD-modules and filtrations

Let eM be a eDX -module. From the preliminary reminder on coherence, we know
that eM is eDX-coherent if it is locally finitely presented, i.e., if for any x 2 X there
exists an open neighbourhood Ux of x an an exact sequence eDq

X|Ux

! eDp

X|Ux

! eM|Ux
.

8.8.4. Definition (Coherent filtrations). Let F•
eM be a filtration of eM (see Section 5.1).

We say that the filtration is coherent if the Rees module RF
eM is coherent over the

coherent sheaf RF
eDX (i.e., locally finitely presented).

It is useful to have various criteria for a filtration to be coherent.

8.8.5. Proposition (Existence of coherent filtrations).
(1) If eM is eDX-coherent, then it admits locally on X a coherent filtration.
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(2) If eDX = RFDX and if eM is eDX-coherent and strict, it admits globally on X

a coherent filtration.

Proof. For (1), see Exercise 8.63. Let us prove (2). By Proposition 5.1.8(1), we have
eM = RFM for some filtered DX -module M and since eM is eDX -coherent, F•M is a
coherent F•D-filtration. Then one can apply Exercise 8.66.

The notion of a coherent filtration is the main tool to obtain results on coherent
eDX -modules from theorems on coherent eOX -modules, and the main results concern-
ing coherent eDX -modules are obtained from the theorems of Cartan and Oka for
eOX -modules.

8.8.6. Theorem (Theorems of Cartan-Oka for eDX -modules)
Let eM be a left eDX-module and let K be a compact polycylinder contained in an

open subset U of X, such that eM has a coherent filtration on U . Then,

(1) �(K, eM) generates eM|K as an eOK-module,
(2) For every i > 1, Hi

(K, eM) = 0.

Proof. This is easily obtained from the theorems A and B for eOX -modules, by using
inductive limits (for A it is obvious and, for B, see [God64, Th. 4.12.1]).

8.8.7. Theorem (Characterization of coherence for eDX -modules, see [GM93])

(1) Let eM be a left eDX-module. Then, for any small enough compact polycylin-
der K, we have the following properties:

(a) eM(K) is a finite type eD(K)-module,
(b) For every x 2 K, eOx ⌦eO(K)

eM(K)! eMx is an isomorphism.
(2) Conversely, if there exists a covering {K↵} by polycylinders K↵ such that X

is the union of the interiors of the K↵ and that on any K↵ the properties (1a) and
(1b) are fulfilled, then eM is eDX-coherent.

A first application of Theorem 8.8.7 is a variant of the classical Artin-Rees lemma:

8.8.8. Corollary. Let eM be a eDX-module with a coherent filtration F•
eM and let eN be

a coherent eDX-submodule of eM. Then the filtration F•
eN := eN \ F•

eM is coherent.

Proof. Let K be a small compact polycylinder for RF
eM. Then �(K,RF

eM) is finitely
generated, hence so is �(K,RF

eN), as �(K,RF
eDX) is Noetherian. It remains to be

proved that, for any x 2 K and any k, the natural morphism

eOx ⌦eO(K)
(Fk

eM(K) \ eN(K)) �! Fk
eMx \ eNx

is an isomorphism. This follows from the flatness of eOx over eO(K) (see [Fri67]).
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8.8.9. Structure of coherent eDX -modules. Let eM be a coherent eDX -module. Its z-tor-
sion submodule is the submodule eM0 :=

S
k>1

Ker[z
k
: eM ! eM]. Since each sub-

module Ker[z
k
: eM! eM] is coherent (see Exercise 8.60) the union is locally finite

and eM0 has a locally finite filtration such that each successive quotient is a cohe-
rent eDX -module annihilated by z. The corresponding graded module gr eM0 is thus a
coherent (graded) (eDX/z eDX) = gr

FDX -module, on which the z-action is zero.
On the other hand, the quotient module eM00 := eM/ eM0 is strict by definition, hence

of the form RFM
00 for some coherent DX -module equipped with a coherent F -filtra-

tion F•M
00.

8.8.c. Support and characteristic variety. Let eM be a coherent eDX -module.
Being a sheaf on X, eM has a support Supp eM, which is the closed subset complement
to the set of x 2 X in the neighbourhood of which eM is zero.

8.8.10. Lemma. The support of a coherent eOX-module is a closed analytic subset of X.

Proof. This is standard if eOX = OX . On the other hand, if eOX = RFOX , let eI be
a graded ideal of eOX , locally generated by functions fjz

j with fj 2 OX . Then the
support of eOX/eI is that of OX/(fj)j .

Such a property extends to coherent eDX -modules:

8.8.11. Proposition. The support Supp eM of a coherent eDX-module eM is a closed an-
alytic subset of X.

Proof. The property of being an analytic subset being local, we may assume that eM
is generated over eDX by a coherent eOX -submodule eF (see Exercise 8.63(4)). Then
the support of eM is equal to the support of eF.

Let eM be a coherent eDX -module and let Z be a closed analytic subset of X. It
follows from Exercise 8.67 that the subsheaf �Z eM consisting of local sections of eM
annihilated by some power of the ideal IZ is eDX -coherent. In particular, let us denote
by

S
j
Zj the decomposition of Supp eM into its irreducible components. Then �Zj

eM
is a coherent sub eDX -module of eM and eM/�Zj

eM is supported on
S

k 6=j
Zk. The

following lemma is then obvious.

8.8.12. Lemma. The kernel and cokernel of the natural morphism
L
j

�Zj

eM �! eM

have support everywhere of codimension > 1 in Supp eM.

The support is usually not the right geometric object attached to a eDX -module eM,
as it does not provide enough information on eM. A finer object is the characteristic
variety. Using the convention 8.1.11, we set eT ⇤X = T

⇤
X or eT ⇤X = T

⇤
X ⇥ Cz.
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8.8.13. Definition (Characteristic variety). Let eM be a coherent eDX -module. The char-
acteristic variety Char eM is the subset of the cotangent space eT ⇤X defined locally as
the support of grF eM for some (or any) local coherent filtration of eM.

8.8.14. Structure of the characteristic variety. The characteristic variety is additive
(see Exercise 8.68), so by using the notation of Remark 8.8.9 and after Exercise 8.66,
we have a decomposition

Char eM = Char eM0 [ (CharM00 ⇥ Cz),

where Char eM0 is contained in T
⇤
X = T

⇤
X ⇥ {0} ⇢ eT ⇤X.

It is known that CharM00 is involutive in T
⇤
X: the first proof has been given

by Sato, Kawai, Kashiwara [SKK73]. Next, Malgrange gave a very simple proof in
a seminar Bourbaki talk ([Mal78], see also [GM93, p. 165]). And finally, Gabber
gave the proof of a general algebraic version of this theorem (see [Gab81], see also
[Bjö93, p. 473]). A consequence is that any irreducible component of CharM00 has a
dimension > dimX.

On the other hand, there is no restriction on Char eM0, which is nothing but the
support of the gr

FDX -module gr eM0.

8.8.d. (Strictly) non-characteristic restriction. Let ◆Y : Y ,! X denote the
inclusion of a closed submanifold with ideal IY (in local coordinates (x1, . . . , xn), IY
is generated by x1, . . . , xp, where p = codimY ). The pullback functor D◆

⇤
Y

is defined
in Section 8.6.a. The case of left eDX -modules is easier to treat, so we will consider
left eDX-modules in this section.

Let us make the construction explicit in the case of a closed inclusion. A local
section ⇠ of ◆�1

Y
e⇥X (vector field on X, considered at points of Y only; we denote

by ◆
�1
Y

the sheaf-theoretic pullback) is said to be tangent to Y if, for every local
section g of eIY , ⇠(g) 2 eIY . This defines a subsheaf e⇥X|Y of ◆�1

Y
e⇥X . Then e⇥Y =

eOY ⌦◆
�1

Y

eOX

e⇥X|Y = ◆
⇤
Y
e⇥X|Y is a subsheaf of ◆⇤

Y
e⇥X .

Given a left eDX -module, the action of ◆�1
Y

e⇥X on ◆�1
Y

eM restricts to an action of e⇥Y

on ◆⇤
Y
eM = eOY ⌦◆

�1

Y

eOX

◆
�1
Y

eM. The criterion of Exercise 8.8 is fulfilled since it is fulfilled

for e⇥X and eM, defining therefore a left eDY -module structure on ◆⇤
Y
eM: this is D◆

⇤
Y
eM.

Without any other assumption, coherence is not preserved by D◆
⇤
Y

. For example,
D◆
⇤
Y
eDX is not eDY -coherent if codimY > 1. A criterion for coherence of the pullback

is given below in terms of the characteristic variety.
The cotangent map to the inclusion defines a natural bundle morphism

$ : T
⇤
X|Y ⇥ Cz �! T

⇤
Y ⇥ Cz,

the kernel of which is by definition the conormal bundle T ⇤
Y
X⇥Cz of Y ⇥Cz in X⇥Cz.

8.8.15. Definition (Non-characteristic property). Let eM be a coherent eDX -module with
characteristic variety Char eM ⇢ T

⇤
X⇥Cz. Let Y ⇢ X be a submanifold of X. We say

that Y is non-characteristic with respect to the holonomic eDX -module eM, or that eM
is non-characteristic along Y , if one of the following equivalent conditions is satisfied:
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• (T
⇤
Y
X ⇥ Cz) \ Char eM ⇢ T

⇤
X
X ⇥ Cz,

• $ : Char eM|Y⇥Cz
! T

⇤
Y ⇥ Cz is finite, i.e., proper with finite fibers.

For example, if eM is holonomic and strict with characteristic variety contained in
⇤⇥ Cz, where ⇤ ⇢ T

⇤
X is Lagrangean (see Section 8.8.g), the condition is achieved

if the usual one is, that is, T ⇤
Y
X \ ⇤ ⇢ T

⇤
X
X.

8.8.16. Theorem (Coherence of non-characteristic restrictions)
Assume that eM is eDX-coherent and that Y is non-characteristic with respect to eM.

Then D◆
⇤(0)
Y

eM is eDY -coherent and Char D◆
⇤(0)
Y

eM ⇢ $(Char eM|Y ).

Sketch of proof. The question is local near a point x 2 Y . We may therefore assume
that eM has a coherent filtration F•

eM.
(1) Set Fk(D◆

⇤(0)
Y

eM) = image[◆
⇤
Y
Fk

eM! ◆
⇤(0)
Y

eM]. Then, using Exercise 8.64(2), one
shows that F•(D◆

⇤(0)
Y

eM) is a coherent filtration with respect to F•(D◆
⇤(0)
Y

eDX).
(2) The module gr

F
D◆
⇤(0)
Y

eM is a quotient of ◆⇤
Y
gr

F eM, hence its support is contained
in Char eM|Y . By Remmert’s Theorem, it is a coherent gr

FeDY -module.
(3) The filtration F•D◆

⇤(0)
Y

eM is thus a coherent filtration of the eDY -module D◆
⇤(0)
Y

eM.
By Exercise 8.63(1), D◆

⇤(0)
Y

eM is eDY -coherent. Using the coherent filtration above, it
is clear that Char D◆

⇤(0)
Y

eM ⇢ $(Char eM|Y ).

8.8.17. Definition (Strictly non-characteristic property). In the setting of Definition
8.8.15, we say that eM is strictly non-characteristic along Y if eM is non-characteris-
tic along Y and, moreover, the complex D◆

⇤
Y
eM is strict, i.e., each of its cohomology

modules are strict.

8.8.18. Proposition. If eM is strictly non-characteristic along Y , then D◆
⇤
Y
eM = D◆

⇤(0)
Y

eM.

Proof. The result is known to hold for DX -modules (where the strictness assumption
is empty), and therefore it holds after tensoring with C[z, z

�1
]. As a consequence,

D◆
⇤(j) eM is a z-torsion module if j 6= 0. It is strict if and only if it is zero.

8.8.19. Remark. Assume that we have inclusions of closed submanifolds Y ⇢ H ⇢ X

with H of codimension one.
(1) Let M be a coherent DX -module. Then M is non-characteristic along Y if only

if it is non-characteristic along H in some neighborhood of Y and D◆
⇤
H

= D◆
⇤(0)
H

M is
non-characteristic along Y .

Indeed, assume that M is non-characteristic along Y . Then $Y : CharM|Y⇥Cz
!

T
⇤
H|Y ⇥ Cz is also finite finite, hence $H : CharM|H⇥Cz

! T
⇤
H ⇥ Cz is finite in

some neighborhood of Y , so that M is non-characteristic along H in this neighborhood.
Furthermore, Char D◆

⇤(0)
H

M ⇢ $H(CharM|H). Therefore, D◆
⇤(0)
H

M is also non-charac-
teristic along Y . The converse is proved similarly.

(2) For a coherent eDX -module eM only one direction of the previous equivalence
holds, namely, if eM is strictly non-characteristic along H in some neighborhood of Y
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and D◆
⇤
H
eM = D◆

⇤(0)
H

eM is strictly non-characteristic along Y , then eM is strictly non-
characteristic along Y .

Indeed, the non-characteristic property holds as in (1). Let ◆Y,H : Y ,! H the
inclusion. Then D◆

⇤
Y
eM ' D◆

⇤
Y,HD◆

⇤
H
eM. The assumption implies that D◆

⇤
H
eM = D◆

⇤(0)
H

eM
and D◆

⇤
Y,HD◆H⇤(0) eM = D◆

⇤(0)
Y,HD◆

⇤(0)
H

eM, so that

D◆H
eM = D◆

⇤(0)
H

eM = D◆
⇤(0)
Y,HD◆

⇤(0)
H

eM,

which is strict.

8.8.20. Definition ((Strictly) non-characteristic pullback). Let f : X
0 ! X be a mor-

phism between complex manifolds and let eM be a left eDX -module. We say that f is
non-characteristic with respect to eM if, decomposing f as p� ◆f : X

0
,! X

0⇥X ! X,
the pullback Dp

⇤ eM = Dp
⇤(0) eM is non-characteristic along ◆f (X 0). We say that f is

strictly non-characteristic with respect to eM if, moreover, the complex Df
⇤ eM is strict.

Due to the chain rule (Exercises 8.37 and 8.39) and to Remark 8.6.7, we note
that f is strictly non-characteristic with respect to eM if and only if the pullback
Dp
⇤ eM = Dp

⇤(0) eM is strictly non-characteristic along ◆f (X 0).

8.8.e. Coherence of the pushforward and strictness

8.8.21. Theorem (Coherence of the pushforward). Let f : X ! Y be a holomorphic
map between complex manifolds and let eM be a coherent eDX-module. Assume that eM
admits a coherent filtration F•

eM. Then, if f is proper on the support of eM, the
pushforward complex Df⇤ eM has eDY -coherent cohomology.

Proof. Assume first that eM is an induced right eDX -module eL ⌦eOX

eDX where eL is
a coherent eOX -module such that f is proper on its support. Due to the formula
of Exercise 8.53(3), the result follows from Grauert’s direct image theorem. As a
consequence, the same result holds for any bounded complex of such induced right
eDX -modules.

For eM arbitrary, it is enough by Remark 8.7.5(2) to prove the coherence of Df
(j)

⇤ eM
for j 2 [� dimX, 2 dimX]. Since the eDY -coherence is a local property on Y , it is
enough to prove the coherence property in the neighbourhood of any y 2 Y , and
therefore it is enough to show the existence, in the neighbourhood of the compact set
f
�1

(y), of a resolution of eM�N�1 ! · · · ! eM0 ! eM ! 0 of sufficiently large length
N+2, such that eMj is a coherent induced eDX -module for j = �N, . . . , 0 and f proper
on Supp eMj .

Since f
�1

(y) \ Supp eM is compact, there exists p such that Fp
eM⌦eOX

eDX is onto
in some neighbourhood of f

�1
(y) (i.e., the coherent eOX -module Fp

eM generates eM
as a eDX -module). Set Fq(Fp

eM ⌦eOX

eDX) = Fp
eM ⌦eOX

Fq�p eDX . This is a cohe-
rent filtration of Fp

eM ⌦eOX

eDX , which therefore induces a coherent filtration on
Ker[Fp

eM⌦eOX

eDX ! eM]. Continuing this way N +2 times, we obtained a resolution
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of length N +2 of eM by coherent induced right eDX -modules on some neighbourhood
of f�1(y), all supported on Supp eM.

Let us assume that eM is strict, that is, eM is the Rees module RFM of a cohe-
rent filtration F•M on a coherent DX -module M (see the proof of Proposition 8.8.5).
In general, for f : X ! Y proper (or proper on Supp eM), there is no reason that the
pushforward complex Df⇤ eM is strict, i.e., each of its cohomology modules is strict.
However, we will see that this property is satisfies when eM underlies a polarizable
Hodge module (Theorem 14.3.2(1)). We make explicit the meaning of this property
in terms of filtered complex. For that purpose, we make use of Formulas (8.52 ⇤) and
(8.52 ⇤⇤) for the pushforward.

Let eM = RFM be a strict coherent left eDX -module. We can write
eM⌦

f�1eOY

f
�1 eDY = RF (M⌦f�1OY

f
�1DY ),

with
Fp(M⌦f�1OY

f
�1DY ) =

X

i+j=p

(FiM)⌦f�1OY
(f
�1

FjDY ),

and therefore
e⌦n+•
X
⌦ ( eM⌦

f�1eOY

f
�1 eDY ) = RF

�
⌦

n+•
X
⌦ (M⌦f�1OY

f
�1DY )

�

with

Fp

�
⌦

n+k

X
⌦ (M⌦f�1OY

f
�1DY )

�
= ⌦

n+k

X
⌦ Fp�n�k(M⌦f�1OY

f
�1DY ).

There exists a spectral sequence

(8.8.22) E
p,q

1
= R

p+q
f⇤

⇣
gr

F

�p
�
⌦

n+•
X
⌦ (M⌦f�1OY

f
�1DY )

�⌘

=) gr
F

�pR
p+q

f⇤
�
⌦

n+•
X
⌦ (M⌦f�1OY

f
�1DY )

�
.

8.8.23. Proposition (Degeneration at E1). If eM is eDX-coherent and strict and if f is
proper on Supp eM, then the complex Df⇤ eM is strict if and only if the spectral sequence
(8.8.22) degenerates at E1, that is, for each k, p 2 Z, the natural morphism

R
k
f⇤

⇣
Fp

�
⌦

n+•
X
⌦ (M⌦f�1OY

f
�1DY )

�⌘
�! R

k
f⇤
�
⌦

n+•
X
⌦ (M⌦f�1OY

f
�1DY )

�

is injective.

For example, if Y is reduced to a point, the strictness of Df⇤ eM is equivalent to the
degeneration at E1 of the Hodge-to-deRham spectral sequence

H
k
�
X, gr

F

�p(⌦
n+•
X
⌦M)

�
=) gr

F

�pH
k
�
X, (⌦

n+•
X
⌦M)

�
.

Sketch of proof of Proposition 8.8.23. The image of the morphism in the proposition is
by definition FpR

k
f⇤
�
⌦

n+•
X
⌦(M⌦f�1OY

f
�1DY )

�
. Therefore, injectivity is equivalent

to the equality

R
k
f⇤

⇣
RF

�
⌦

n+•
X
⌦ (M⌦f�1OY

f
�1DY )

�⌘
= RFR

k
f⇤
�
⌦

n+•
X
⌦ (M⌦f�1OY

f
�1DY )

�
,

which in turn is equivalent to the left-hand side being C[z]-flat.



8.8. COHERENT eDX -MODULES AND COHERENT FILTRATIONS 265

8.8.24. Laumon’s formula. We give another consequence of strictness of Df⇤M. Let
(M, F•M) be a coherently F -filtered DX -module. The behaviour of grading with
respect to pushforward is treated in Exercises 8.55 and 8.56. For example, for right
DX -modules, Laumon’s formula is that, if f : X ! Y is a holomorphic map and if
Df⇤M is a strict complex, then for every i,

(8.8.24 ⇤) gr
F
Df

(i)

? M ' H
i
Rf?

�
gr

FM⌦L
Sym⇥X

f
⇤
Sym⇥Y

�
.

8.8.f. Künneth formula. Assume that X,Y are compact complex manifolds. Let
eMX , eMY be strict coherent eD-modules. The Künneth formula compares the deRham
cohomology of the external product eMX ⇥eD

eMY with that of the factors.

8.8.25. Theorem (Künneth formula). Let eMX , eMY be coherent eD-modules having a
coherent filtration. Assume that R�(Y,

p

DR eMY ) is strict, i.e., has strict cohomolo-
gies. Then for each k we have

(8.8.25 ⇤) H
k
�
X⇥Y, p

DR( eMX ⇥eD
eMY )

�
'

L
i+j=k

H
i
(X,

p

DR eMX)⌦eCH
j
(Y,

p

DR eMY ).

Note that, if eD = RFD, the existence of a coherent filtration for eM is ensured by
Proposition 8.8.5(2). Note also that the roles of eMX and eMY can be exchanged.

Proof. We denote by p : X ⇥ Y ! X and q : X ⇥ Y ! Y the projections. Let us
assume that eMX = eLX ⌦eOX

eDX and eMY = eLY ⌦eOY

eDY are induced eD-modules
such that eLX is an inductive limit of coherent eOX -modules and eLY is strict. One
computes that

eMX ⇥eD
eMY ' (eLX ⇥eO

eLY )⌦eOX⇥Y

eDX⇥Y ,

and thus
p

DR( eMX ⇥eD
eMY ) ' eLX ⇥eO

eLY = p
⇤eLX ⌦q�1eOY

q
�1eLY .

By the projection formula (see e.g. [KS90, Prop. 2.6.6]) and using the strictness
of eLY , we obtain

Rq⇤
p

DR( eMX ⇥eD
eMY ) ' (Rq⇤p

⇤eLX)⌦eOY

eLY ,

and by Exercise 8.73 the latter term is isomorphic to

(8.8.26) (eOY ⌦eC R�(X, eLX))⌦eOY

eLY ' R�(X, eLX)⌦eC
eLY .

Applying once more the projection formula we finally obtain in D
b
(eC):

R�
�
p

DR( eMX ⇥eD
eMY )

�
' R�

�
Y,Rq⇤

p

DR( eMX ⇥eD
eMY )

�

' R�
�
Y,R�(X, eLX)⌦eC

eLY

�

' R�(X, eLX)
L
⌦eC R�(Y, eLY )

' R�(X,
p

DR eMX)
L
⌦eC R�(Y,

p

DR eMY ).(8.8.27)

Let now eMX and eMY be as in the theorem. Each term of their canonical resolu-
tion (Proposition 8.5.2) satisfies the corresponding assumptions on eLX , eLY and thus
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(8.8.27) holds for each term of the corresponding resolution of eMX ⇥eD
eMY . As a con-

sequence, (8.8.27) holds for eMX ⇥eD
eMY . Strictness of R�(Y, p

DR eMY ) then implies
Künneth formula (8.8.25 ⇤) (see e.g. [God64, Th. 5.5.2]).

8.8.g. Holonomic eDX-modules and duality

8.8.28. Definition (Smooth eDX -modules). A coherent eDX -module eM is said to be
smooth if it is eOX -locally free.

In particular, a smooth eDX -module is strict, and its characteristic variety is equal
to (T

⇤
X
X)⇥ eCz. (See Exercise 8.69 for the converse.)

8.8.29. Definition (Holonomic eDX -modules). A coherent eDX -module eM is said to be
holonomic if Char eM ⇢ ⇤⇥ Cz, where ⇤ is a Lagrangian closed subvariety of T ⇤X.

8.8.30. Remark. By Remarks 8.8.9 and 8.8.14, this is equivalent to asking that M00 is
holonomic and that the support of M0 is Lagrangian in T

⇤
X. In particular, if eM is

strict, holonomicity of eM is equivalent to that of the underlying DX -module M.

Such a Lagrangian subvariety is the union of its irreducible components, each of
which is usually written as T

⇤
Z
X, where Z is a closed irreducible subvariety of X and

T
⇤
Z
X means the closure, in the cotangent space T

⇤
X of the conormal bundle T

⇤
ZoX of

the smooth part Zo of Z. It is also known that, due to the existence of stratifications
satisfying Whitney condition (a), there exist a locally finite family (Z

o

i
)i2I of locally

closed sub-manifolds Z
o

i
of Z, with analytic closure and one of them being Z

o, such
that T

⇤
Z
X ⇢

F
i
T
⇤
Z

o

i

X.
For example, a smooth eDX -module, or a coherent eDX -module as in Exercise 8.69

or 8.70, is holonomic.

8.8.31. Pushforward of a holonomic eDX -module. Assume that the coherent eDX -mod-
ule eM has a coherent filtration. For example, assume that eDX = RFDX and eM
is strict (Proposition 8.8.5(2)). Then, the pushforward of eM by a proper holomor-
phic map f : X ! Y has coherent cohomology. Moreover, a theorem of Kashiwara
[Kas76] complements Theorem 8.8.21 with an estimate of the characteristic variety
of the pushforward cohomology eDY -modules in terms of the characteristic variety
of the source eDX -module. This estimate shows that holonomicity is preserved by
proper pushforward. (The theorem of Kashiwara is proved for holonomic DX -mod-
ules, but it extends in a straightforward way to holonomic eDX -modules.) Therefore,
the pushforward by a proper holomorphic map of a strict coherent eDX -module which
is holonomic has holonomic cohomologies when eDX = RFDX .

The eDX -modules Ext ieDX

( eM, eDX). Holonomicity is related with the vanishing of the
eDX -modules Ext ieDX

( eM, eDX). If eM is a right eDX -module, Ext ieDX

( eM, eDX) is equipped
with the left action coming from the left structure of eDX , and the corresponding right
eDX -module is Ext ieDX

( eM, e!X ⌦ eDX) (see Section 8.3.5) by playing with the two right
structures (triv and tens) on e!X ⌦ eDX .
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8.8.32. Lemma. For a coherent eDX-module eM, we have Ext ieDX

( eM, eDX) = 0 for i >
2n+ 1.

Proof. One can argue as in [Bjö93, §I.7].

For a right eDX -module eM, the right eDX -modules Ext ieDX

( eM, e!X ⌦ eDX) are thus
the cohomology modules of a complex D eM := RHom eDX

( eM, e!X⌦ eDX) in the derived
category D

b
(eDX).

The case of DX -modules is most useful. We will recall some fundamental results.

8.8.33. Proposition. Let M be a coherent DX-module. We have

Ext iDX
(M,DX) = 0 for i > n+ 1.

8.8.34. Theorem (see [Kas76]). Let M be a coherent DX-module and x 2 SuppM.
Then

2n� dimx CharM = inf{i 2 N | Ext iDX,x
(Mx,DX,x) 6= 0}.

8.8.35. Corollary. Let M be a coherent DX-module. Then M is holonomic if and only
if Ext iDX

(M,DX) = 0 for i 6= dimX.

If M is a right holonomic DX -module, the DX -module ExtdimX

DX
(M,!X ⌦ DX) is

called the dual of M, and is the unique nonzero cohomology of the complex DM.
We often identify both objects. For a left DX -module M, we define the left DX -mod-
ule or bounded complex D(M) as D(Mright

)
left.

8.8.36. Theorem (Bi-duality, see [Kas76]). Let M be a holonomic DX-module. Then
its dual module DM is holonomic and the natural functorial morphism from M to its
bi-dual module DDM is an isomorphism.

Let us now consider holonomicity and duality for strict coherent eDX -modules.
Recall that, for any coherent eDX -module eM, Ext ieDX

( eM, eDX) is also coherent for any i.

8.8.37. Definition (Strictly holonomic eDX -modules). Let eM be a holonomic eDX -mod-
ule. We say that eM is strictly holonomic if eM is strict and Ext ieDX

( eM, eDX) is a strict
eDX -module for every i.

If eM is strictly holonomic, then ExtneDX

( eM, eDX) takes the form RFM
_ for some

holonomic DX -module M_ and a unique coherent filtration on it. The complex D eM
has thus a unique nonzero cohomology module, which is the eDX -module obtained
after side-changing from ExtneDX

( eM, eDX). For example, if eM is a right eDX -module,
then D eM = ExtneDX

( eM, e!X ⌦ eDX). Then there exists a unique coherent filtration
F•DM such that D eM = RFDM.

We obtain the following results from Exercise 5.2.

8.8.38. Proposition (Cohen-Macaulay property of the graded module)
Assume that eM is strictly holonomic. Then the following properties hold.
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(1) Ext ieDX

( eM, eDX) = 0 for i 6= n = dimX;
(2) M_ is nothing but ExtnDX

(M,DX);
(3) if eM is written as RFM, then

gr
FExtnDX

(M,DX) ' Extn
grFDX

(gr
FM, gr

FDX) =: (gr
FM)

_
,

(4) and (Cohen-Macaulay property) Ext i
grFDX

(gr
FM, gr

FDX) = 0 for i 6= n;
(5) if for example eM is a right eDX-module, then we obtain the following isomor-

phism of right grFDX-module (see Caveat 8.2.7)

gr
F
(DM) ' !X ⌦ inv

⇤
(gr

FM)
_
(�n).

Proof. Let us check Properties (3) and (4). Property (2) is obtained by a similar
argument, and the other ones are easy to check. There exists a natural morphism
(see e.g. [Kas03, (A.10)])

RHom eDX

( eM, eDX)⌦L
eDX

(eDX/z eDX)

�! RHom eDX

( eM, eDX ⌦L
eDX

(eDX/z eDX)) = RHom eDX

( eM, gr
FDX),

which is an isomorphism since eM is eDX -coherent, where z acts by zero on gr
FDX

(check this with eM = eDX). On the other hand, the “associativity law” of [Kas03,
p. 241] provides an isomorphism in the derived category D

+
(gr

FDX)

RHom eDX/z eDX

( eM⌦L
eDX

(eDX/z eDX), gr
FDX)

= RHomgrFDX
( eM⌦L

eDX

gr
FDX , gr

FDX)

' RHom eDX

� eM,RHomgrFDX
(gr

FDX , gr
FDX)

�

= RHom eDX

( eM, gr
FDX).

Since eM is assume to be strict (by its strict holonomicity), it follows that

eM⌦L
eDX

(eDX/z eDX) = gr
FM,

and we finally obtain an isomorphism in D
+
(gr

FDX):

RHom eDX

( eM, eDX)⌦L
eDX

gr
FDX ' RHomgrFDX

(gr
FM, gr

FDX).

Strict holonomicity of eM also implies that RHom eDX

( eM, eDX) has nonzero cohomology
in degree n at most, and this cohomology is strict. Since the left-hand side also reads
RHom eDX

( eM, eDX) ⌦C[z] (C[z]/zC[z]), it has thus cohomology in degree n at most,
which reads gr

F ExtnDX
(M,DX). Therefore the right-hand side also has cohomology

in degree n at most, that is, Ext i
grFDX

(gr
FM, gr

FDX) = 0 for i 6= n, and we obtain
the isomorphism

gr
F ExtnDX

(M,DX) ' Extn
grFDX

(gr
FM, gr

FDX).

8.8.39. Proposition (Indpendence of strict holonomicity with respect to embeddings)
Let ◆ : Z ,! X be the closed inclusion of a smooth submanifold Z of X and let eM
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be a holonomic eDZ-module. Then eM is strictly holonomic if and only if the holonomic
eDX-module D◆⇤ eM is so.

Proof. The question is local and we can assume that X = Z ⇥ C
r with coordinates

x1, . . . , xr on C
r, and that ◆ is the inclusion induced by {0} ,! C

r. Using the notation
of external product as in Section 8.6.b, we can write D◆⇤ eM = eM ⇥eD

eC[e@x1
, . . . , e@xr

].
The proof of the following lemma is the subject of Exercise 8.74.

8.8.h. Duality, filtration and de Rham. If M is a holonomic DX -module, a cel-
ebrated theorem of Kashiwara [Kas75] asserts that the de Rham complex p

DRM is
a complex with constructible cohomology. Furthermore, the de Rham functors trans-
forms duality of holonomic DX -modules to Poincaré-Verdier duality of constructible
complexes: this is the local duality theorem (see [Nar04] for an account of various
proofs of this theorem). Although there is no reasonable notion of a constructible com-
plex with filtration (for example, one does not expect that p

DR eM is a constructible
complex of C[z]-modules; see however [MFS13, MFS19] for such a notion), one
can regard, for a filtered DX -module (M, F•M), the filtered de Rham complex as
a filtered differential complex and one has a “local duality theorem” in this context
(see [Sai88, §2.4]). Furthermore, the notion of perversity is meaningful in this context
(see [BSY98]).

In this section, we focus on the graded object gr
FM attached to a coherently

filtered right DX -module M. Recall (see §8.4.9) that the Spencer complex Sp(M) is
naturally filtered, so that we can consider the graded complex gr

F
Sp(M). We will

prove a coherent version of the local duality theorem for gr
F
Sp(M), that makes use

of the Grothendieck-Serre duality functor. We start with the following observation:

8.8.40. Lemma. For a filtered right DX-module (M, F•M), the filtered Spencer complex
satisfies

gr
F
Sp(M) ' gr

FM⌦L
grFDX

OX .

In other words, one can interpret the graded complex gr
F
Sp(M) as the O-module

pullback by the inclusion X ,! T
⇤
X (zero section) of grFM. In particular, if M is

coherently filtered, grF Sp(M) has OX -coherent cohomology (check this for M = DX).

Proof. Let us set eM = RFM. By Exercise 8.24 we have a natural isomorphism
eM⌦eDX

Sp(eDX) ' Sp( eM). Since all involved C[z]-modules are flat, we obtain, by ten-
soring with C[z]/zC[z], the isomorphism

gr
FM⌦grFDX

gr
F
Sp(DX) ' gr

F
Sp(M).

Recall (see Exercise 8.21) that gr
F
Sp(DX) is a resolution of OX by locally free

gr
FDX -modules. The conclusion follows.
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If (M, F•M) is a coherently filtered right DX -module, we define the dual grFDX -
module of grFM as the object of D+

coh
(gr

FDX):

Dgr
FM := RHomgrFDX

�
gr

FM, gr
F
(!X ⌦OX

DX)
�

' inv
⇤
RHomgrFDX

�
gr

FM, gr
F
(!X)⌦grFOX

gr
F
(DX)

�
(see Caveat 8.2.7),

where we recall that grFOX = OX is graded of degree zero and gr
F
!X = !X is graded

of degree �n. Therefore, if M is strictly holonomic we have, according to Proposition
8.8.38(5),

Dgr
FM ' gr

F
DM.

We regard gr
F
Sp(M) as an object of Db

coh
(OX) (Lemma 8.8.40) and its Grothen-

dieck-Serre dual object in D
b

coh
(OX) is defined as

D(gr
F
SpM) := RHomOX

�
gr

F
Sp(M), gr

F
(!X)

�
.

8.8.41. Proposition. If eM is strictly holonomic, we have an isomorphism in D
b

coh
(OX)

which depends functorially on eM:

D(gr
F
SpM) ' gr

F
Sp(DM).

Proof. We will use an argument similar to that of the proof of Proposition 8.8.38,
by justifying the following sequence of isomorphisms:

D(gr
F
SpM) = RHomOX

�
gr

F
Sp(M), gr

F
(!X)

�

(a)
' RHomgrFDX

�
gr

FM, gr
F
(!X ⌦DX)

�
⌦L

grFDX
gr

FOX

(b)
' RHom eDX

( eM, e!X ⌦eOX

eDX)⌦L
eDX

(eDX/z eDX)⌦L
grFDX

gr
FOX

(c)
' RHom eDX

( eM, e!X ⌦eOX

eDX)⌦L
eDX

(eOX/zeOX)

(d)
' (D eM⌦L

eDX

eOX)⌦L
eOX

(eOX/zeOX)

(e)
' Sp(D eM)⌦L

eOX

(eOX/zeOX)

(f)
' gr

F
Sp(DM).

For (a), we argue with [Kas03, (A.10)] and the “associativity law” to obtain

RHomgrFDX

�
gr

FM, gr
F
(!X ⌦DX)

�
⌦L

grFDX
gr

FOX

' RHomgrFOX

�
gr

FM⌦L
grFDX

gr
FOX , gr

F
(!X ⌦DX)⌦L

grFDX
gr

FOX

�
,

and by Lemma 8.8.40, the latter term is identified with

RHomgrFOX

�
gr

F
SpM, gr

F
Sp(!X ⌦DX)

�
' RHomOX

�
gr

F
Sp(M), gr

F
(!X)

�
.

For (b), the argument is the same as in the proof of Proposition 8.8.38 and similar
to the above. The isomorphism (c) is then clear, and (d) is obtained by identi-
fying • ⌦L

eDX

(eOX/zeOX) with (• ⌦L
eDX

eOX) ⌦L
eOX

(eOX/zeOX). Then (e) follows from
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Lemma 8.8.40 and (f) from the fact that each term of Sp(D eM) is strict, due to the
strictness of D eM.

8.8.i. Duality and operations

8.8.42. Lemma (Duality and external product). For i = 1, 2, let Mi be a coherent
DXi

-module on the complex manifold Xi. Then there exists a natural isomorphism in
D

b

coh
(DX1⇥X2

):
D(M1 ⇥D M2) ' (DM1)⇥D (DM2).

It is thus enough to prove that

(8.8.43) D(C[@x1
, . . . , @xr

]) ' C[@x1
, . . . , @xr

].

Indeed, this implies that, in this local setting, D◆⇤DM 'D(D◆⇤M), and one concludes
by observing that M is strict if and only if D◆⇤M is strict.

For the proof of (8.8.43), one can use Lemma 8.8.42 once more to reduce to the
case where r = 1. Then we have a simple two-term free resolution of C[@x] which
immediately gives the result.

8.8.44. Proposition (Duality and pushforward). Let eM be a coherent eDX-module ad-
mitting a coherent F -filtration and let f : X ! X

0 be a proper morphism. Then there
exists a functorial isomorphism in D

b
(eDX0):

Df⇤(D eM) 'D(Df⇤ eM).

Indication of proof. For DX -modules, this is a classical result. One can find a proof in
[Bjö93, §II.11] and [Kas03, §4.9] for the analytic case, and in [HTT08, §2.7.2] for
the algebraic case, for example. The adaptation to eDX -modules is straightforward.
The main point is to adapt the construction of the trace morphism Df⇤e!X [dimX]!
e!X0 [dimX

0
]. In the analytic setting that we consider here, we argue as for the C

1

Spencer complex of §8.4.13, by replacing the bicomplex of currents (Db
p,q

, d
0
, d
00
) with

the bicomplex (fDb
p,q

, ed0, d00) having terms fDb
p,q

= e⌦p

X
^Db

(0,q)

X
[z].

8.8.45. Corollary (A criterion for the commutation of D with Df
(k)

⇤ )
In the setting of Proposition 8.8.44, assume that

• the eDX-module eM is strictly holonomic,
• the decomposition theorem holds for the pushforward complex Df⇤ eM, that is,

Df⇤ eM '
L

k2Z Df
(k)

⇤ eM[�k], and
• each holonomic eDX0-module Df

(k)

⇤ eM is strictly holonomic.
Then there exists an isomorphism, for each k 2 Z,

Df
(�k)
⇤ (D eM) 'D(Df

(k)

⇤ eM).

Proof. By assumption, D eM has cohomology in degree zero only, so that the k-th coho-
mology of Df⇤(D eM) is Df

(k)

⇤ (D eM). On the other hand, the assumption also implies
that the complex D(Df⇤ eM) decomposes as

L
k2Z D(Df

(k)

⇤ eM)[k], where D(Df
(k)

⇤ eM)
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has cohomology in degree zero only. The isomorphism of Proposition 8.8.44 yields
the conclusion after taking the k-th cohomology of both sides.

For a morphism f : X
0 ! X of complex manifolds, we denote by Modcoh,f (

eDX)

the full subcategory of Modcoh(
eDX) consisting of coherent eDX -modules eM such that

Df
⇤ eM has eDX0 -coherent cohomology. We then define D

b

coh,f
(eDX) as the full subcat-

egory of Db

coh
(eDX) consisting of complexes having cohomology in Modcoh,f (

eDX).
• If f is smooth, then Modcoh,f (

eDX) = Modcoh(
eDX).

• If f decomposes as X
0 g�! Z

h�! X, we define D
b

coh,g,h
(eDX) as the full subcat-

egory of D
b

coh
(eDX) consisting of complexes eM with coherent cohomology such that

Dh
⇤ eM has eDZ-coherent cohomology and Df

⇤ eM ' Dg
⇤
(Dh
⇤ eM) has eDX0 -coherent coho-

mology.
The next theorem is classical in the theory of DX -modules (see e.g. [HTT08,

§2.7.1]) and its proof can be adapted in a straightforward way to eDX -modules, due
to the results of Section 8.8.d. We give details in Section 8.9

8.8.46. Theorem (Duality and smooth pullback). Let f : X
0 ! X be a morphism of

complex manifolds.
(1) There exists a canonical morphism of functors D

b

coh,f
(eDX)! D

b
(eDX0)

↵f (•) : D Df
⇤
(•) �! Df

⇤
D(•).

(2) If f decomposes as X
0 g�! Z

h�! X, then there exists an isomorphism

↵f (•) ' Dg
⇤
↵h(•) � ↵g(Dh

⇤
(•))

of functors D
b

coh,g,h
(eDX)! D

b
(eDX0).

(3) If f is a smooth morphism, then D
b

coh,f
(eDX) = D

b

coh
(eDX) and for each eM 2

D
b

coh
(eDX), ↵f (

eM) is an isomorphism.
(4) In the non-filtered setting, if f is non-characteristic with respect to (each coho-

mology module of) M 2 D
b

coh
(DX), then M 2 D

b

coh,f
(DX) and ↵f (M) is an isomor-

phism.

8.8.47. Corollary. Assume that f is a smooth morphism and eM is strictly holonomic.
Then Df

⇤ eM = Df
⇤(0) eM is also strictly holonomic.

Proof. The equality Df
⇤ eM = Df

⇤(0) eM as well as strictness of the latter, is due to flat-
ness of f and is not related to strict holonomicity, hence we have the same properties
for D eM. Since ↵f (

eM) is an isomorphism by (3), it follows that D(Df
⇤(0) eM) is in

degree zero only, and it is strict.

8.9. Appendix A: A selection of fundamental results on eDX-modules

In this section, we provide a proof of Theorem 8.8.46 and take this opportunity to
state in the framework of eDX -modules and their derived categories various classical
results for DX -modules.
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8.9.a. A few fundamental identities. We work in the categories of left eD-mod-
ules. For a morphism f : X

0 ! X of complex manifold and an object eM of Db
(eDX),

we denote by Df
⇤
: D

b
(eDX)! D

b
(eDX0) the eD-module derived pullback:

Df
⇤ eM = eDX0!X ⌦L

eDX

eM.

that is expressed as Df
⇤ eM = Sp

X0!X
⌦

f�1 eDX

f
�1 eM and similarly for a morphism

' : eM ! eN, where Sp
X0!X

is the relative Spencer complex, which is a f
�1 eDX -

locally free resolution of eDX0!X by (eDX0 , f
�1 eDX) bimodules. We thus have a natural

morphism

Hom
Db(eDX)

( eM, eN) �! Hom
Db(eD

X0 )
(Df
⇤ eM, Df

⇤eN)

' 7�! Df
⇤
'.

(8.9.1)

On the other hand, we denote by eM ⌦D eN the derived tensor product over eOX .
By taking flat eDX -resolutions (which are thus also eOX -flat), this defines a bifunctor
• ⌦D •

D
�
(eDX)⇥ D

�
(eDX) �! D

�
(eDX).

If the complexes on the left are bounded, their image has bounded cohomology, hence
by truncation can be regarded as an object in D

b
(eDX). For a morphism f : X

0 ! X

of complex manifolds, there exists a canonical bi-functorial isomorphism in D
b
(eDX)

(see [HTT08, Prop. 1.5.18]), for eM, eN 2 D
b
(eDY ),

(8.9.2) Df
⇤
( eM

D

⌦ eN) ' (Df
⇤ eM)

D

⌦ (Df
⇤eN).

Furthermore, we can also consider this bifunctor with the first term and the target
being bounded complexes of right eDX -modules.

We denote by D eM the dual complex of eDX -modules, defined in such a way that

e!X

D

⌦D eM = RHom eDX

( eM, eDX)[n],

or equivalently, denoting by eDright

X
the ring eDX with its right structure,

D eM = RHom eDright

X

(e!X

D

⌦ eM, eDright

X
)[m].

The eDX ⌦eC
eDright

X
-linear Yoneda pairing eM⌦eC RHom eDX

( eM, eDX)! eDright

X
yields

a natural morphism

eM �! RHom eDright

X

�
RHom eDX

( eM, eDX), eDright

X

�

which is an isomorphism if eM 2 D
b

coh
(eDX), since it is so if eM = eDX . One deduces a

functorial biduality isomorphism for such an eM:

(8.9.3) eM ⇠�!D(D( eM)).

There exists a canonical isomorphism of bifunctors

D
�
coh

(eDX)
op ⇥ D

b
(eDX) �! D

+
(eCX)
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given by (see [Kas03, Prop. 3.12 or (A.10)])

(8.9.4) RHom eDX

( eM, eDX)⌦L

eDX

eN ⇠�! RHom eDX

( eM, eN).

There exists a canonical tri-functorial isomorphism in D
b
(eCX) for eL 2 D

b
(eDright

X
)

and eM, eN 2 D
b
(eDX) (see [HTT08, Prop. 1.5.19]):

(8.9.5) (eL
D

⌦ eM)⌦L

eDX

eN ' eL⌦L

eDX

( eM
D

⌦ eN) ' (eL
D

⌦ eN)⌦L

eDX

eM,

which, for eDX -modules, is simply obtained by switching the entries of the tensor
products (on noting that this is well-defined). Here, we have used ⌦D in both its
configurations.

8.9.6. Example. We illustrate these properties by showing the existence of a canonical
bi-functorial isomorphism in D

b
(eCX), for eM, eN 2 D

b

coh
(eDX) (see [Kas03, (3.14)]):

RHom eDX

( eM, eN)
⇠�! RHom eDX

(DeN,D eM).

Proof. It is obtained as follows:

RHom eDX

( eM, eN) ' (e!X

D

⌦D eM)⌦L

eDX

eN[�n] by (8.9.4)(8.9.7)

' (e!X

D

⌦ eN)⌦L

eDX

D eM[�n] by (8.9.5)

' RHom eDX

(DeN,D eM) by (8.9.4).

This morphism induces a natural isomorphism

Hom
Db(eDX)

( eM, eN) �! Hom
Db(eDX)

(DeN,D eM).

Let us check for example that, if eN = eM, then IdfM is mapped to IdDfM. Since the
question is local, it is enough to check this for eM = eDX . For the sake of simplicity,
we use the duality functor such that e!X ⌦D

D
0
(•) = RHom eDX

(•, eDX). We fix a local
section edx of e!X and its dual section (edx)�1 of e!�1

X
.

The section 1 of Hom eDX

(eDX , eDX) writes edx ⌦D
((edx)�1 ⌦ 1) 2 e!X ⌦D

D
0
(eDX).

It is identified with the section (edx ⌦D
1) ⌦eDX

((edx)�1 ⌦ 1) of (e!X ⌦D eDX) ⌦eDX

D
0
(eDX). The biduality isomorphism eDX ' D

0
D
0 eDX identifies the section 1 with

the section (edx)�1 ⌦ s of e!�1
X
⌦Hom eDX

(D
0 eDX , eDX) such that s((edx)�1 ⌦ 1) = 1.

We deduce that the section 1 of Hom eDX

(eDX , eDX) is sent, by (8.9.7), to the section
s ⌦eDX

((edx)�1 ⌦ 1) of Hom eDX

(D
0 eDX , eDX) ⌦eDX

D
0 eDX , and it corresponds to the

section of Hom eDX

(D
0 eDX ,D

0 eDX) that sends (edx)�1 ⌦ 1 to itself, as wanted.

By means of (8.9.5), one also obtains a canonical bi-functorial isomorphism for
eM 2 D

b

coh
(eDX) and eN 2 Dcoh(

eDX) (see [HTT08, Prop. 2.6.14])

(8.9.8) RHom eDX

( eM, eN) ' RHom eDX

(eOX ,D eM
D

⌦ eN).
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Indeed, Applying (8.9.5) to (8.9.7) yields

RHom eDX

( eM, eN) ' e!X ⌦L

eDX

(D eM
D

⌦ eN)[�n]

' RHom eDX

(eOX ,D eM
D

⌦ eN).

We deduce a bi-functorial isomorphism

(8.9.9) Hom
Db(eDX)

( eM, eN) ' Hom
Db(eDX)

(eOX ,D eM
D

⌦ eN).

8.9.b. Proof of Theorem 8.8.46

Proof of Theorem 8.8.46(1). For eM, eN 2 D
b

coh,f
(eDX), we first construct a morphism

(8.9.10) Hom
Db(eDX)

( eM, eN) �! Hom
Db(eD

X0 )
(D(Df

⇤eN), Df
⇤
D eM),

that we also denote by (8.9.10)fM,eN, as follows:

Hom
Db(eDX)

( eM, eN) ' Hom
Db(eDX)

(eOX ,D eM
D

⌦ eN) by (8.9.9)

�! Hom
Db(eD

X0 )
(Df
⇤eOX , Df

⇤
(D eM

D

⌦ eN)) by (8.9.1)

' Hom
Db(eD

X0 )
(eOX0 , Df

⇤
D eM

D

⌦ Df
⇤eN) by (8.9.2)(8.9.11)

' Hom
Db(eD

X0 )
(eOX0 , Df

⇤eN
D

⌦ Df
⇤
D eM)

' Hom
Db(eD

X0 )
(D(Df

⇤eN), Df
⇤
D eM) by biduality.

For eM in D
b

coh
(eDX), we set

↵f (
eM) = (8.9.10)fM,fM(IdfM) 2 Hom

Db(eD
X0 )

(D(Df
⇤ eM), Df

⇤
D eM).

We will check functoriality. Let ' : eM ! eN be a morphism. We aim at proving the
relation

(8.9.12) Df
⇤
D' � ↵f (

eN) = ↵f (
eM) �D(Df

⇤
').

For that purpose, we consider the following diagram:

Hom
Db(eDX)

( eM, eM)

(8.9.10)fM,fM
//

' �
✏✏

Hom
Db(eD

X0 )
(D(Df

⇤ eM), Df
⇤
D eM)

�D(Df
⇤
')

✏✏

Hom
Db(eDX)

( eM, eN)

(8.9.10)fM,eN
// Hom

Db(eD
X0 )

(D(Df
⇤eN), Df

⇤
D eM)

Hom
Db(eDX)

(eN, eN)

(8.9.10)eN,eN
//

� '
OO

Hom
Db(eD

X0 )
(D(Df

⇤eN), Df
⇤
DeN)

D(Df
⇤
') �

OO

That it is commutative follows from the bi-functoriality of the morphisms in (8.9.11).
Then, since ' � IdfM = ' = IdeN �', this implies that both terms in (8.9.12) are equal
to (8.9.10)fM,eN(').
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Proof of Theorem 8.8.46(3). We will rely on 8.8.46(2) proved below. The question is
local, so we can assume that f is the projection X

0
= Y ⇥ X ! X. Furthermore,

since eM admits a bounded local resolution by free eDX -modules of finite rank, it is
enough, by the functoriality property of ↵f , to consider the case where eM = eDX .
We are thus reduced to proving that ↵f (

eDX) is an isomorphism.
For yo 2 Y , we consider a decomposition Id : X ,

gyo�! Y ⇥X f�! X, where gyo
is the

inclusion X ' {yo} ⇥X ,! Y ⇥X. We conclude from 8.8.46(2) that Dg
⇤
yo
↵f (

eDX) :

Dg
⇤
yo
D(Df

⇤ eDX) ! Dg
⇤
yo
(Df
⇤
D eDX) is onto for any yo 2 Y . In local coordinates,

we identify up to the same shift both D(Df
⇤ eDX) and Df

⇤
(D eDX) with eOX0he@xi '

eDX0/eDX0 e@y (with e@x = (e@x1
, . . . , e@xm

) and e@y = (e@y1
, . . . , e@yp

)). The morphism
↵f (

eD0
X
) is the right multiplication by the operator ↵f (

eD0
X
)(1) =

P
a,k

ca,k(y, x)z
ke@a

x
.

Since any surjective morphism eDX ! eDX must send 1 to an invertible holomorphic
function in OX , ca,k(yo, x) = 0 unless z = 0 and a = 0, and c0,0(yo, x) is an invertible
holomorphic function for any yo, hence the same properties hold for ca,k(y, x). As a
consequence, ↵f (

eDX) is an isomorphism.

Proof of Theorem 8.8.46(2). The proof uses the existence of an isomorphism

Df
⇤ ' Dg

⇤ � Dh
⇤
.

One notices that the following diagram, where the horizontal morphisms are obtained
by applying Dg

⇤, is commutative:

Hom
Db(eDZ)

(Dh
⇤eOX , Dh

⇤
(D eM ⌦D eN)) //

o
✏✏

Hom
Db(eD

X0 )
(Df
⇤eOX , Df

⇤
(D eM ⌦D eN))

o
✏✏

Hom
Db(eDZ)

(eOZ , Dh
⇤
D eM ⌦D

Dh
⇤eN) //

o
✏✏

Hom
Db(eD

X0 )
(eOX0 , Df

⇤
D eM ⌦D

Df
⇤eN)

o
✏✏

Hom
Db(eDZ)

(eOZ , Dh
⇤eN ⌦D

Dh
⇤
D eM) // Hom

Db(eD
X0 )

(eOX0 , Df
⇤eN ⌦D

Df
⇤
D eM)

and this leads to the desired isomorphism.

8.10. Appendix B: Differential complexes and the Gauss-Manin connec-
tion

In this section we switch to the case of DX -modules as in Section 8.1 (see Remark
8.10.9). Let M be a left DX -module and let f : X ! Y be a holomorphic mapping.
On the one hand, we have defined the direct images Df⇤M or Df!M of M viewed as
DX -modules. These are objects in D

+
(DY )

left. On the other hand, when f is a smooth
holomorphic mapping, a flat connection called the Gauss-Manin connection is defined
on the relative de Rham cohomology of M. We will compare both constructions,
when f is smooth. Such a comparison has essentially already been done when f is
the projection of a product X = Y ⇥ T ! Y (see Examples 8.7.10 and 8.7.11).
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In this section we also introduce the derived category of differential complexes on
a complex manifold X, that is, complexes of OX -modules with differential morphisms
as differential. This derived category is shown to be equivalent to that of DX -modules
(Theorem 8.10.15). It is sometimes useful to work in this category (see e.g. the proof
of Theorem 8.10.21).

8.10.a. Differential complexes. Given an OX -module L, there is a natural OX -
linear morphism (with the right structure on the right-hand term)

L �! L⌦OX
DX , ` 7�! `⌦ 1.

There is also a (only) C-linear morphism

(8.10.1) L⌦OX
DX �! L

defined at the level of local sections by `⌦P 7! P (1)`, where P (1) is the result of the
action of the differential operator P on 1, which is equal to the degree 0 coefficient
of P if P is locally written as

P
↵
a↵(x)@

↵

x
. In an intrinsic way, consider the natural

augmentation morphism DX ! OX , which is left DX -linear, hence left OX -linear;
then apply L⌦OX

• to it. Notice however that (8.10.1) is an OX -linear morphism by
using the left OX -module structure on L⌦OX

DX .
Let L,L0 be two OX -modules. A (right) DX -linear morphism

(8.10.2) v : L⌦OX
DX �! L0 ⌦OX

DX

is uniquely determined by the OX -linear morphism

(8.10.3) w : L �! L0 ⌦OX
DX

that it induces (where the right OX -module structure is chosen on L0 ⌦OX
DX). In

other words, the natural morphism

HomOX
(L,L0 ⌦OX

DX) �! HomDX
(L⌦OX

DX ,L0 ⌦OX
DX)

is an isomorphism. We also have, at the sheaf level,

(8.10.4) HomOX
(L,L0 ⌦OX

DX)
⇠�! HomDX

(L⌦OX
DX ,L0 ⌦OX

DX).

Notice that HomOX
(L,L0⌦OX

DX) is naturally equipped with an OX -module struc-
ture by using the left OX -module structure on L0 ⌦OX

DX (see Remark 8.5.1), and
similarly HomOX

(L,L0 ⌦OX
DX) is a �(X,OX)-module.

Now, w induces a C-linear morphism

(8.10.5) u : L �! L0,

by composition with (8.10.1): L0 ⌦OX
DX ! L0. By Exercise 8.75, u is nothing but

the morphism

H
0
(
p

DR(v)) : H
0
�
p

DR(L⌦OX
DX)

�
�! H

0
�
p

DR(L0 ⌦OX
DX)

�
.

8.10.6. Definition (Differential operators between two OX -modules)
The C-vector space HomDi↵(L,L

0
) of differential operators from L to L0 is the

image of the morphism HomDX
(L⌦OX

DX ,L0 ⌦OX
DX)! HomC(L,L0).
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Similarly we define the sheaf of C-vector spaces HomDi↵(L,L
0
).

8.10.7. Definition (The category Mod(OX ,Di↵X)). We denote by Mod(OX ,Di↵X) the
category whose objects are OX -modules and morphisms are differential operators
between OX -modules (this is justified by Exercise 8.76(4)).

In particular, Mod(OX) is a subcategory of Mod(OX ,Di↵X), since any OX -linear
morphism is a differential operator (of degree zero).

We will now show that the correspondence L 7! L ⌦OX
DX induces a functor

Mod(OX ,Di↵X) 7! Modi(DX). In order to do so, one first needs to show that to any
differential morphism u corresponds at most one v.

8.10.8. Lemma. The morphism

HomDX
(L⌦OX

DX ,L0 ⌦OX
DX) �! HomC(L,L

0
)

v 7�! u

is injective.

Proof. Recall that, for any multi-index �, we have @↵
x
(x

�
) = 0 if �i < ↵i for some i,

and @
↵

x
(x

↵
) = ↵!. Assume that u = 0. Let ` be a local section of L and, using local

coordinates (x1, . . . , xn), write in a unique way w(`) =
P

↵
w(`)↵ ⌦ @↵x , where the

sum is taken on multi-indices ↵ and w is as in (8.10.3). If w(`) 6= 0, let � be minimal
(with respect to the usual partial ordering on N

n) among the multi-indices ↵ such
that w(`)↵ 6= 0. Then,

0 = u(x
�
`) =

X

↵

@
↵

x
(x

�
)w(`)↵ = �!w(`)� ,

a contradiction.

8.10.9. Remark. A similar lemma would not hold in the category of induced graded
RFDX -modules because of possible z-torsion: one would only get that z

k
u(x

�
`) = 0

for some k. One thus cannot just replace DX with eDX in this section. On the other
hand, it is possible to restrict to eOX -modules which have no z-torsion, in other words,
to filtered OX -modules. This leads to considering derived categories in the framework
of exact but non abelian categories. We will need such a construction in Chapter 10.

According to Lemma 8.10.8, the following definition is meaningful.

8.10.10. Definition (The inverse de Rham functor). The functor
diff

DR
-1

: Mod(OX ,Di↵X) �! Modi(DX)

is defined by diff
DR

-1

(L) = L⌦OX
DX and diff

DR
-1

(u) = v.

8.10.11. Remarks.
(1) The notation is justified by the fact that p

DR(L ⌦OX
DX) ' L (see Exercise

8.29(5)).
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(2) By the isomorphism of Exercise 8.79, HomDi↵(L,L
0
) is equipped with the struc-

ture of a �(X,OX)-module. Similarly,

HomDX
(L⌦OX

DX ,L0 ⌦OX
DX) �! HomC(L,L

0
)

is injective, and and this equips the image sheaf HomDi↵(L,L
0
) with the structure of

an OX -module.
(3) When considered as taking values in Mod(DX), the functor diff

DR
-1 is not,

however, an equivalence of categories, i.e., is not essentially surjective. The reason is
that, first, not all DX -modules are isomorphic to some L⌦OX

DX and, next, its natural
quasi-inverse would be the de Rham functor p

DR which takes values in a category
of complexes. Nevertheless, if one extends suitably these functors to categories of
complexes, they become equivalences (see below Theorem 8.10.15).

8.10.b. The deRham complex as a differential complex. Given an induced
D-module, its deRham complex gives enough information to recover it, according
to Remark 8.10.11(1). On the other hand, given a bounded complex of induced
D-modules, its de Rham complex does not give enough information to recover its
differentials. We will refine the functor p

DR to a functor diff
DR, which takes values

in differential complexes, and has quasi-inverse induced by diff
DR

-1.
According to Exercise 8.78, one may consider the category C

?
(OX ,Di↵X) of

?-bounded complexes of objects of Mod(OX ,Di↵X) (with ? = ?,+,�, b), and
the category K

?
(OX ,Di↵X) of ?-bounded complexes up to homotopy (see [KS90,

Def. 1.3.4]). These are called ?-bounded differential complexes.
There is a natural forgetful functor Forget from Mod(OX ,Di↵X) to Mod(CX), and

by extension a functor Forget at the level of C? and K
?. Exercise 8.80 shows that we

can decompose the p

DR functor as

Mod(DX)
diff

DR

//

p

DR

))

C
b
(OX ,Di↵X)

Forget

// C
b
(CX)

and

K
?
(DX)

diff
DR

//

p

DR

))

K
?
(OX ,Di↵X)

Forget

// K
?
(CX)

In order to define the “derived category” of the additive category Mod(OX ,Di↵X),
one needs to define the notion of null system in K

?
(OX ,Di↵X) and localize the cat-

egory with respect to the associated multiplicative system. A possible choice would
be to say that an object belongs to the null system if it belongs to the null sys-
tem of C

?
(CX) when forgetting the Di↵ structure, i.e., which has zero cohomology

when considered as a complex of sheaves of C-vector spaces. This is not the choice
made below. One says that a differential morphism u : L ! L0 as in (8.10.5) is a
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Di↵-quasi-isomorphism if the corresponding v as in (8.10.2) is a quasi-isomorphism
of right DX -modules.

The functor diff
DR

-1 of Definition 8.10.10 extends as a functor C
?
(OX ,Di↵X) 7!

C
?

i
(DX) and K

?
(OX ,Di↵X) 7! K

?

i
(DX) in a natural way, and is a functor of triangu-

lated categories on K. Moreover, according to the last part of Exercise 8.79, it is an
equivalence of triangulated categories.

We wish now to define acyclic objects in the triangulated category K
?
(OX ,Di↵X),

and show that they form a null system in the sense of [KS90, Def. 1.6.6].

8.10.12. Definition. We say that a object L• of K
?
(OX ,Di↵X) is Di↵-acyclic if

diff
DR

-1

(L•
) is acyclic in K

?

i
(DX) (equivalently, in K

?
(DX)).

Define, as in [KS90, (1.6.4)], the family S(N) as the family of morphisms which
can be embedded in a distinguished triangle of K?

(OX ,Di↵X), with the third term
being an object of N. We call such morphisms Di↵-quasi-isomorphisms. Clearly, they
correspond exactly via diff

DR
-1 to quasi-isomorphisms in K

?
(DX).

We now may localize the category K
?
(OX ,Di↵X) with respect to the null system N

and get a category denoted by D
?
(OX ,Di↵X). By construction, we still get a functor

(8.10.13) diff
DR

-1

: D
?
(OX ,Di↵X) �! D

?

i
(DX) �! D

?
(DX).

We note that the first component is an equivalence by definition of the null system
(since we have an equivalence at the level of the categories K?). The second component
is also an equivalence, according to Corollary 8.5.3. We will show below (Theorem
8.10.15) that diff

DR is a quasi-inverse functor.

8.10.14. Remark. The category Mod(OX ,Di↵X) is also naturally a subcategory of the
category Mod(CX) of sheaves of C-vector spaces because HomDi↵(L,L

0
) is a subset of

HomC(L,L0). We therefore have a natural functor Forget : K?
(OX ,Di↵X)! K

?
(CX),

forgetting that the differentials of a complex are differential operators, and forgetting
also that the homotopies should be differential operators too. As a consequence of
Theorem 8.10.15, we will see in Exercise 8.85 that any object in the null system N

defined above is sent to an object in the usual null system of K
?
(CX), i.e., objects

with zero cohomology. In other words, a Di↵-quasi-isomorphism is sent into a usual
quasi-isomorphism. But there may exist morphisms in K

?
(OX ,Di↵X) which are quasi-

isomorphisms when viewed in K
?
(CX), but are not Di↵-quasi-isomorphisms.

8.10.15. Theorem. The functors diff
DR and diff

DR
-1 induce quasi-inverse and induce

equivalences of categories

D
?
(DX)

diff
DR

))

D
?
(OX ,Di↵X).

diff
DR

-1

ii
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8.10.16. Lemma. There is an isomorphism of functors diff
DR

-1 � diff
DR

⇠�! Id from
D

?
(DX) (right DX-modules) to itself.

This lemma enables one to attach to each object of D?
(DX) a canonical resolution

by induced DX -modules since diff
DR

-1 takes values in D
?

i
(DX).

Proof. Let us recall that there exists an explicit side-changing isomorphism of com-
plexes p

DRMleft ' p

DRMright which is given by termwise OX -linear morphisms.
If we regard these complexes as objects of C

b
(OX ,Di↵), we deduce that the side-

changing isomorphism is an isomorphism in this category. In other words, we have
diff

DR(Mleft
) ' diff

DR(Mright
).

For the proof of the lemma, start with a left DX -module Mleft. By definition,
diff

DR
-1 diff

DRMleft
= (⌦

n+•
X
⌦ Mleft

) ⌦ DX with differential diff
DR

-1

(r). This is
nothing but the complex ⌦n+•

X
⌦ (Mleft⌦DX) where the differential is the connection

on the left DX -module (Mleft ⌦ DX)tens. Furthermore, this identification is right
DX -linear with respect to the (right)triv structure on both terms.

We note that
⇥
(Mleft⌦OX

DX)
right

⇤
tens
' (Mright⌦OX

DX)tens, i.e., both with the
tensor structure, respectively left and right, and this isomorphism is compatible with
the right DX -structure (right)triv on both terms. By side-changing we find

⇥
p

DR(Mleft ⌦OX
DX)tens

⇤
triv
'
⇥

p

DR(Mright ⌦OX
DX)tens

⇤
triv

,

and by using the involution of Exercise 8.19,
⇥

p

DR(Mright ⌦OX
DX)tens

⇤
triv
'
⇥

p

DR(Mright ⌦OX
DX)triv

⇤
tens

.

Lastly, we have
p

DR(Mright ⌦OX
DX)triv = Mright ⌦OX

Sp
•
(DX) 'Mright ⌦OX

OX = Mright
,

and the remaining right DX -structure is deduced from the tens one, which is the nat-
ural right structure on Mright. We conclude that, functorially, diff

DR
-1 diff

DRMleft '
Mright. Since diff

DRMleft ' diff
DRMright, the lemma follows.

Proof of Theorem 8.10.15. From the previous lemma, it is now enough to show
that, if L• is a complex in C

?
(OX ,Di↵X), there exists a a Di↵-quasi-isomorphism

diff
DR

diff
DR

-1 L• ! L•, and, by definition, this is equivalent to showing the existence
of a quasi-isomorphism diff

DR
-1 diff

DR
diff

DR
-1 L• ! diff

DR
-1 L•, that we know from

the previous result applied to M =
diff

DR
-1 L•.

8.10.17. Remark. The functor diff
DR

-1 diff
DR, regarded as a functor D

?
(DX) !

D
?

i
(DX), is nothing but that of Corollary 8.5.3.

8.10.18. Remark (The Godement resolution of a differential complex)
Let L• be an object of C+

(OX ,Di↵X). Then God
•
L• is maybe not a differen-

tial complex (see Exercise 8.49(2)). However, God
•

diff
DR

diff
DR

-1 L• is a differential
complex, being equal to diff

DRGod
•

diff
DR

-1 L•. Therefore, the composite functor
God

•
diff

DR
diff

DR
-1 plays the role of Godement resolutions in the category of differ-

ential complexes.
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8.10.c. The Gauss-Manin connexion. We assume in this section that f : X ! Y

is a smooth holomorphic map. The cotangent map T
⇤
f : f

⇤
⌦

1

Y
! ⌦

1

X
is then

injective, and we will identify f
⇤
⌦

1

Y
with its image. We set n = dimX, m = dimY

and d = n�m (we assume that X and Y are pure dimensional, otherwise one works
on each connected component of X and Y ).

Consider the Leray filtration Ler
• on the complex (⌦

•
X
, d), defined by

Ler
p
⌦

i

X
= Im(f

⇤
⌦

p

Y
⌦OX

⌦
i�p
X
�! ⌦

i

X
).

[With this notation, Ler
p
⌦

i

X
can be nonzero only when i 2 [0, n] and p 2

[0,min(i,m)].]
Then, as f is smooth, we have (by computing with local coordinates adapted to f),

gr
p

Ler
⌦

i

X
= f

⇤
⌦

p

Y
⌦OX

⌦
i�p
X/Y

,

where ⌦k

X/Y
is the sheaf of relative differential forms: ⌦k

X/Y
= ^k⌦1

X/Y
and ⌦1

X/Y
=

⌦
1

X

�
f
⇤
⌦

1

Y
. Notice that ⌦k

X/Y
is OX -locally free.

Let M be a left DX -module or an object of D
+
(DX)

left. As f is smooth, the
sheaf DX/Y of relative differential operators is well-defined and by composing the flat
connection r : M ! ⌦

1

X
⌦OX

M with the projection ⌦1

X
! ⌦

1

X/Y
we get a relative

flat connection rX/Y on M, and thus the structure of a left DX/Y -module on M. In
particular, the relative de Rham complex is defined as

p

DRX/Y M = (⌦
•
X/Y

⌦OX
M,rX/Y ).

We have p

DRM = (⌦
•
X
⌦OX

M,r) (see Definition 8.4.1) and the Leray filtration
Ler

p
⌦

•
X
⌦OX

M is preserved by the differential r. We can therefore induce the
filtration Ler

• on the complex p

DRM. We then have an equality of complexes

gr
p

Ler

p

DRM = f
⇤
⌦

p

Y
⌦OX

p

DRX/Y M[�p].

Notice that the differential of these complexes are f
�1OY -linear.

The complex f⇤God
• p

DRM (resp. the complex f! God
• p

DRM) is filtered by sub-
complexes f⇤God

•
Ler

p p

DRM (resp. f! God
•
Ler

p p

DRM). We therefore get a spec-
tral sequence (the Leray spectral sequence in the category of sheaves of C-vector
spaces, see, e.g. [God64]). Using the projection formula for f! and the fact that ⌦p

Y

is OY -locally free, one obtains that the E1 term for the complex f! God
• p

DRM is
given by

(8.10.19) E
p,q

1,!
= ⌦

p

Y
⌦OY

R
q
f!

p

DRX/Y M,

and the spectral sequence converges to (a suitable graded object associated with)
R

p+q
f!

p

DRM. If f is proper on SuppM or if M has DX -coherent cohomology, one
can also apply the projection formula to f⇤ (see [MN93, §II.5.4]).

By definition of the spectral sequence, the differential d1 : E
p,q

1
! E

p+1,q

1
is the

connecting morphism (see Exercise 8.88 below) in the long exact sequence associated
to the short exact sequence of complexes

0 �! gr
p+1

Ler

p

DRM �! Ler
p p

DRM
�
Ler

p+2 p

DRM �! gr
p

Ler

p

DRM �! 0

after applying f! God
• (or f⇤God

• if one of the previous properties is satisfied).
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8.10.20. Lemma (The Gauss-Manin connection). The morphism

rGM
:= d1 : R

q
f!

p

DRX/Y M = E
0,q

1
�! E

1,q

1
= ⌦

1

Y
⌦OY

R
q
f!

p

DRX/Y M

is a flat connection on R
q
f!

p

DRX/Y M, called the Gauss-Manin connection and the
complex (E

•,q
1

, d1) is equal to the deRham complex diff
DRY (R

q
f!

p

DRX/Y M,rGM
).

Sketch of proof of Lemma 8.10.20. Instead of using the Godement resolution, one can
use the C

1 de Rham complex E•
X
⌦OX

M, with the differential D defined by

D(⌘ ⌦m) = d⌘ ⌦m+ (�1)k⌘ ^rm,

if ⌘ is C
1 differential k-form, that is, a local section of Ek

X
(k 6 0). By a stan-

dard argument (Dolbeault resolution) analogous to that of Exercise 8.52(5), this C
1

de Rham complex is quasi-isomorphic to the holomorphic one, and is equipped with
the Leray filtration. The quasi-isomorphism is strict with respect to Ler

•. One can
therefore compute with the C

1 de Rham complex. Moreover, the assertion is local
with respect to Y .

Assume first that, in the neighbourhood of f�1(y), X is diffeomorphic to a product
X ' Z ⇥ Y . This occurs for example if f is proper (Ehresmann’s theorem). Then
we identify Ep+q

X
with Ep

Y
⌦ Eq

X/Y
and the differential D decomposes accordingly as

DY + DX/Y . The flatness of D implies the flatness of DX/Y and DY . Given a
section µ of f!

�
Ep

Y
⌦ (Eq

X/Y
⌦ M)

�
which is closed with respect to DX/Y , we can

identify it with its lift eµ (see Exercise 8.88), and d1µ is thus the class of DY µ, so the
C
1 Gauss-Manin connection D

GM in degree zero induces d1 in any degree.
In general, choose a partition of unity (�↵) such that for every ↵, when restricted

to some open neighbourhood of Supp�↵, f is locally the projection from a product
to one of its factors. We set D =

P
↵
�↵D =

P
↵
D

(↵) and we apply the previous
argument to each D

(↵).

8.10.21. Theorem. Let f : X ! Y be a smooth holomorphic map and let M be left
DX-module—or more generally an object of D+

(DX)
left. Then there is a functorial

isomorphism of left DY -modules

R
k
f!

p

DRX/Y M �! Df
(k)

!
M

when one endows the left-hand term with the Gauss-Manin connection rGM. The
same result holds for Df⇤ instead of Df! if f is proper on SuppM or M is DX-coherent
(or has coherent cohomology).

Proof. Recall (Exercise 8.26) that, for a left DX -module M, we have

Mright ⌦DX
Sp

•
X!Y

(DX) ' ⌦•
X
(M⌦f�1OY

f
�1DY )[n],

so that the direct image of M, regarded as a right DY -module, is

(8.10.22) (Df!M)
right

= Rf!
p

DRX(M⌦f�1OY
f
�1DY )[m],

by Exercise 8.52(3). We conclude that
diff

DRY Df!M ' diff
DRY

�
Rf!

p

DRX(M⌦f�1OY
f
�1DY )

�
.
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There is a Leray filtration Ler
• p

DRX(M ⌦f�1OY
f
�1DY ). Notice that the graded

complex gr
p

Ler

p

DRX(M⌦f�1OY
f
�1DY ) is equal to the complex

f
�1
⌦

p

Y
⌦f�1OY

p

DRX/Y M⌦f�1OY
f
�1DY [�p],

with differential induced by rX/Y on M (remark that the part of the differential
involving T

⇤
f is killed by taking gr

p

Ler
). The differential is now f

�1OY -linear.
The filtered complex Rf!Ler

• p

DRX(M ⌦f�1OY
f
�1DY ) gives rise to a spectral

sequence in the category of right DY -modules. By the previous computation, the E
p,q

1

term of this spectral sequence is the right DY -module

R
p+q

f!

�
f
�1
⌦

p

Y
⌦f�1OY

p

DRX/Y M⌦f�1OY
f
�1DY [�p]

�

' ⌦p

Y
⌦OY

R
q
f!

p

DRX/Y M⌦OY
DY ,

which is an induced DY -module, whose diff
DRY is equal to the corresponding Gauss-

Manin term (8.10.19). We claim, as will show below, that the differential d1 becomes
the Gauss-Manin d1 after applying diff

DRY . This will prove that the Gauss-Manin E1

complex is equal to diff
DRY of the E1 complex of right DY -modules.

Notice now that Lemma 8.10.20 shows in particular that the E1 complex considered
there is a complex in C

+
(OY ,Di↵Y ), and

diff
DR

�1

Y
(E

•,q
1

, d1) ' (R
q
f!

p

DRX/Y M,rGM
)
right

[�m],

since, for a left DY -module N, we have, according to Theorem 8.10.15,
diff

DR
�1

Y

diff
DRY (N) =

diff
DR

�1

Y

diff
DRY (N

right
)[�m] ' Nright

[�m].

The claim above, together with Lemma 8.10.16, implies that the E1 com-
plex of the DY -Leray spectral sequence has cohomology in degree m only, hence
this spectral sequence degenerates at E2, this cohomology being isomorphic to
(R

q
f!

p

DRX/Y M,rGM
)
right

[�m]. But the spectral sequences converges (the Leray
filtration is finite) and its limit is

L
p
gr

p
(Df

(q�m)

!
M)

right for the induced filtration
on (Df!M

(q�m)
)
right, according to (8.10.22). We conclude that this implicit filtration

is trivial and that (Df
(q)

!
M)

right
= (R

q
f!

p

DRX/Y M,rGM
)
right, as wanted, after side

changing.
Let us now compare the d1 of both spectral sequences. As the construction is

clearly functorial with respect to M, we can replace M by the flabby sheaf God
` M

for every `. We then have

Rf!

�
⌦

•
X
⌦OX

God
` M⌦f�1OY

f
�1DY

�

= Rf!

�
God

`
(⌦

•
X
⌦OX

M)⌦f�1OY
f
�1DY

�
(Exercise 8.49)

= Rf!

�
God

`
(⌦

•
X
⌦OX

M)
�
⌦OY

DY (projection formula)

= f!

�
God

`
(⌦

•
X
⌦OX

M)
�
⌦OY

DY (flabbiness of God
`)

= f!

�
⌦

•
X
⌦OX

God
` M

�
⌦OY

DY (Exercise 8.49)

= f!

�
⌦

•
X
⌦OX

God
` M⌦f�1OY

f
�1DY

�
(projection formula).
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It is also enough to make the computation locally on Y , so that we can write
f = (f1, . . . , fm), using local coordinates (y1, . . . , ym). If µ is a section of ⌦k

X
⌦M

and 1Y is the unit of DY , then (8.6.1) can be written as

rX
(µ⌦ 1Y ) = (rµ)⌦ 1Y +

mX

j=1

µ ^ dfj ⌦ @yj
.

Using the definition of d1 given by Exercise 8.88 and an argument similar to that of
Exercise 8.86, one gets the desired assertion.

8.11. Exercises

8.11.a. Exercises for Section 8.1

Exercise 8.1. Let E be a locally free OX -module of rank d and let E_ be its dual.
Show that, given any local basis e = (e1, . . . , ed) of E with dual basis e

_, the sectionP
d

i=1
ei⌦e_

i
of E⌦OX

E_ does not depend on the choice of the local basis e and extends
as a global section of E⌦OX

E_. Show that it defines, up to a constant, an OX -linear
section OX ! E ⌦OX

E_ of the natural duality pairing E ⌦OX
E_ ! OX . Conclude

that we have a natural global section of ⌦1

X
⌦OX

⇥X given, in local coordinates, byP
i
dxi ⌦ @xi

.

Exercise 8.2. Show that a differential operator P of order 6 1 satisfying P (1) = 0 is
a derivation of OX , i.e., a section of ⇥X .

Exercise 8.3 (Local computations). Let U be an open set of C
n with coordinates

x1, . . . , xn. Denote by @x1
, . . . , @xn

the corresponding vector fields.
(1) Show that the following relations are satisfied in D(U):

[@xi
, f ] =

@f

@xi

, 8 f 2 O(U), 8 i 2 {1, . . . , n},

[@xi
, @xj

] = 0 8 i, j 2 {1, . . . , n}.

with standard notation concerning multi-indices ↵,�.
(2) Show that any element P 2 D(U) can be written in a unique way as

P
↵
a↵@

↵

x

or
P

↵
@
↵

x
b↵with a↵, b↵ 2 O(U). Conclude that DX is a locally free module over OX

with respect to the action on the left and that on the right.
(3) Show that max{|↵| ; a↵ 6= 0} = max{|↵| ; b↵ 6= 0}. It is denoted by ordxP .
(4) Show that ordxP does not depend on the coordinate system chosen on U .
(5) Show that PQ = 0 in D(U) =) P = 0 or Q = 0.
(6) Identify FkDX with the subsheaf of local sections of DX having order 6 k

(in some or any local coordinate system). Show that it is a locally free OX -module of
finite rank.

(7) Show that the filtration F•DX is exhaustive (i.e., DX =
S

k
FkDX) and that

it satisfies
FkDX · F`DX = Fk+`DX .

(The left-hand term consists by definition of all sums of products of a section of FkDX

and a section of F`DX .)
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(8) Show that the bracket [P,Q] := PQ � QP induces for every k, ` a C-bilinear
morphism FkDX ⌦C F`DX ! Fk+`�1DX .

(9) Conclude that the graded ring gr
FDX is commutative.

Exercise 8.4 (The graded sheaf gr
FDX ). We consider the sheaf DX of holomorphic

differential operators on X with its order filtration F•DX (Definition 8.1.3). The goal
of this exercise is to show that the sheaf of commutative graded OX -algebras gr

FDX

can be canonically identified with the sheaf of graded OX -algebra Sym⇥X .
(1) Identify ⇥X with the sheaf of functions on the cotangent space T

⇤
X which

are linear in the fibers, and Sym⇥X with the sheaf of functions on T
⇤
X which are

polynomial in the fibers.
(2) Show that gr

F

1
DX = ⇥X and that gr

FDX is a sheaf of commutative graded
OX -algebras. [Hint : Use Exercise 8.3.]

(3) Deduce the existence of a unique morphism of commutative graded OX -algebras
Sym⇥X ! gr

FDX which extends the identity OX �⇥X

⇠�! gr
F

0
DX � gr

F

1
DX .

(4) Show that this morphism is an isomorphism. [Hint : Check this in local coor-
dinates.]

Exercise 8.5 (The universal connection).
(1) Show that the natural left multiplication of ⇥X on DX can be written as a

connection
r : DX �! ⌦

1

X
⌦OX

DX ,

i.e., as a C-linear morphism satisfying the Leibniz rule r(fP ) = df ⌦ P + frP ,
where g is any local section of OX and P any local section of DX . [Hint : r(1) is the
global section of ⌦1

X
⌦OX

⇥X considered in Exercise 8.1.]
(2) Extend this connection for every k > 1 as a C-linear morphism

(k)r : ⌦
k

X
⌦OX

DX �! ⌦
k+1

X
⌦OX

DX

satisfying the Leibniz rule written as
(k)r(! ⌦ P ) = d! ⌦ P + (�1)k! ^rP.

(3) Show that (k+1)r � (k)r = 0 for every k > 0 (i.e., r is integrable or flat).
(4) Show that the morphisms (k)r are right DX -linear (but not left OX -linear).

Exercise 8.6. More generally, show that a left DX -module M is nothing but an OX -
module with an integrable connection r : M ! ⌦

1

X
⌦OX

M. [Hint : To get the
connection, tensor the left DX -action DX⌦OX

M!M by ⌦1

X
on the left and compose

with the universal connection to get DX ⌦M! ⌦
1

X
⌦M; compose it on the left with

M ! DX ⌦ M given by m 7! 1 ⌦ m.] Define similarly the iterated connections
(k)r : ⌦

k

X
⌦OX

M! ⌦
k+1

X
⌦OX

M. Show that (k+1)r � (k)r = 0.

Exercise 8.7.
(1) Show that eDX has a universal connection er for which er(1) =

P
i
edxi⌦e@xi

.
(2) Show the equivalence between graded left eDX -modules and graded eOX -modules

equipped with an integrable connection.
(3) Extend the properties shown in Exercises 8.5 and 8.6 to the present case.
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8.11.b. Exercises for Section 8.2

Exercise 8.8 (Generating left eDX -modules). Let eM be an eOX -module and let 'left
:

e⇥X ⌦eCX

eM ! eM be a eC-linear morphism such that, for any local sections g of eOX ,
⇠, ⇠
0 of e⇥X and m of eM, one has
(1) 'left

(g⇠ ⌦m) = g'
left

(⇠ ⌦m),
(2) 'left

(⇠ ⌦ gm) = g'
left

(⇠ ⌦m) + ⇠(g)m,
(3) 'left

([⇠, ⇠
0
]⌦m) = '

left
(⇠ ⌦ 'left

(⇠
0 ⌦m))� 'left

(⇠
0 ⌦ 'left

(⇠ ⌦m)).
Show that there exists a unique structure eMleft of left eDX -module on eM such that
⇠m = '

left
(⇠ ⌦m) for every ⇠,m.

Exercise 8.9 (Generating right eDX -modules). Let eM be an eOX -module and let 'right
:

eM ⌦eCX

e⇥X ! eM be a eC-linear morphism such that, for any local sections g of eOX ,
⇠, ⇠
0 of e⇥X and m of eM, one has
(1) 'right

(mg ⌦ ⇠) = '
right

(m⌦ g⇠) ('right is in fact defined on eM⌦eOX

e⇥X),
(2) 'right

(m⌦ g⇠) = '
right

(m⌦ ⇠)g �m⇠(g),
(3) 'right

(m⌦ [⇠, ⇠
0
]) = '

right
('

right
(m⌦ ⇠)⌦ ⇠0)� 'right

('
right

(m⌦ ⇠0)⌦ ⇠).
Show that there exists a unique structure eMright of right eDX -module on eM such that
m⇠ = '

right
(m⌦ ⇠) for every ⇠,m.

Exercise 8.10 (OX is a simple left DX -module). We consider here the setting of Sec-
tion 8.1.

(1) Use the left action of⇥X on OX to define on OX the structure of a left DX -mod-
ule.

(2) Let g be a nonzero holomorphic function on C
n. Show that there exists a

multi-index ↵ 2 N
n such that (@

↵
gm)(0) 6= 0.

(3) Conclude that OX is a simple left DX -module, i.e., does not contain any proper
non trivial DX -submodule. Is it simple as a left OX -module?

(4) Show that RFOX is not a simple graded RFDX -module. [Hint : Consider
zRFOX ⇢ RFOX .]

Exercise 8.11 (!X is a simple right DX -module). Same setting as in Exercise 8.10.
(1) Use the right action of ⇥X on !X to define on !X the structure of a right

DX -module.
(2) Show that it is simple as a right DX -module.
(3) Show that RF!X is not a simple graded right RFDX -module.

Exercise 8.12 (Tensor products over eOX ).
(1) Let eMleft and eNleft be two left eDX -modules.

(a) Show that the eOX -module eMleft ⌦eOX

eNleft has the structure of a left
eDX -module when setting, by analogy with the Leibniz rule,

⇠ · (m⌦ n) = ⇠m⌦ n+m⌦ ⇠n.



288 CHAPTER 8. TRAINING ON D-MODULES

(b) If eMleft and eNleft are regarded as eOX -modules with connection (Proposi-
tion 8.1.4 and Exercise 8.7), show that the connection on eMleft⌦eOX

eNleft coming
from the left eDX -module structure above is equal to er⌦ IdeN +IdfM⌦er.

(c) Notice that, in general, m⌦ n 7! (⇠m)⌦ n (or m⌦ n 7! m⌦ (⇠n)) does
not define a left eDX -action on the eOX -module eM⌦eOX

eN.
(d) Let ' : eM ! eM0 and  : eN ! eN0 be eDX -linear morphisms. Show that

'⌦  is eDX -linear.
(e) Show the associativity

( eMleft ⌦eOX

eNleft
)⌦eOX

Pleft
= eMleft ⌦eOX

(eNleft ⌦eOX

Pleft
).

(2) Let eMleft be a left eDX -module and eNright be a right eDX -module.
(a) Show that eNright ⌦eOX

eMleft has the structure of a right eDX -module by
setting

(n⌦m) · ⇠ = n⇠ ⌦m� n⌦ ⇠m,

and prove the analogue of (1d).
Remark: one can define a right eDX -module structure on eMleft ⌦eOX

eNright

by using the natural involution eMleft ⌦eOX

eNright ⇠�! eNright ⌦eOX

eMleft, so this
brings no new structure.

(b) Show the associativity

(eNright ⌦eOX

eMleft
)⌦eOX

Pleft
= eNright ⌦eOX

( eMleft ⌦eOX

Pleft
).

(3) Assume that eMright and eNright are right eDX -modules. Does there exist a (left
or right) eDX -module structure on eMright⌦eOX

eNright defined with analogous formulas?

Exercise 8.13 (Hom over eOX ).
(1) Let eM, eN be left eDX -modules. Show that Hom eOX

( eM, eN) has a natural struc-
ture of left eDX -module defined by

(⇠ · ')(m) = ⇠ · ('(m)) + '(⇠ ·m),

for any local sections ⇠ of e⇥X , m of eM and ' of Hom eOX

( eM, eN).
(2) Similarly, if eM, eN are right eDX -modules, then Hom eOX

( eM, eN) has a natural
structure of left eDX -module defined by

(⇠ · ')(m) = '(m · ⇠)� '(m) · ⇠.

Exercise 8.14 (Compatibility of side-changing functors). Show that the natural mor-
phisms
eMleft �! Hom eOX

(e!X , e!X ⌦eOX

eMleft
), e!X ⌦eOX

Hom eOX

(e!X , eMright
) �! eMright

are isomorphisms of graded eDX -modules.

Exercise 8.15 (Side-changing on morphisms). To any left eDX -linear morphism '
left

:

eMleft

1
! eMleft

2
is associated the eOX -linear morphism '

right
= Ide!X

⌦'left
: eMright

1
!

eMright

2
.
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(1) Show that 'right is right eDX -linear.
(2) Define the reverse correspondence 'right 7! '

left.
(3) Conclude that the left-right correspondence Mod

left
(eDX) 7! Mod

right
(eDX) is a

functor, as well as the right-left correspondence Mod
right

(eDX) 7! Mod
left

(eDX).

Exercise 8.16 (Compatibility of side-changing functors with tensor product)
Let eMleft and eNleft be two left eDX -modules and denote by eMright

, eNright the
corresponding right eDX -modules (see Definition 8.2.3). Show that there is a natu-
ral isomorphism of graded right eDX -modules (by using the right structure given in
Exercise 8.12(2)):

eNright ⌦eOX

eMleft ⇠�! eMright ⌦eOX

eNleft

(! ⌦ n)⌦m 7�! (! ⌦m)⌦ n

and that this isomorphism is functorial in eMleft and eNleft.

Exercise 8.17 (Local expression of the side-changing functors)
Let U be an open set of Cn.

(1) Show that there exists a unique eC-linear involution P 7! t
P from eD(U) to itself

such that
• 8 g 2 eO(U), t

g = g,
• 8 i 2 {1, . . . , n}, te@xi

= �e@xi
,

• 8P,Q 2 eD(U), t
(PQ) =

t
Q · tP .

(2) Let eM be a left eDX -module and let t eM be eM equipped with the right eDX -mod-
ule structure

m · P :=
t
Pm.

Show that z
�nt eM ⇠�! eMright, that is, t eM(n)

⇠�! eMright. [Hint : Use that Fp
tOX =

Fp�n!X , hence RF
tOX = RF [n]!X , so teOX = e!X(�n), according to Remark 5.1.5(2).]

Argue similarly starting with a right eDX -module.

Exercise 8.18 (Tensor product of a left eDX -module with eDX )
Let eMleft be a left eDX -module. Notice that eMleft ⌦eOX

eDX has two commuting
structures of eOX -module. Similarly eDX ⌦eOX

eMleft has two such structures. The goal
of this exercise is to extend them as eDX -structures and examine their relations.

(1) Show that eMleft ⌦eOX

eDX has the structure of a left and of a right eDX -module
which commute, given by the formulas:

( eMleft ⌦eOX

eDX)tens :

⇢
f · (m⌦ P ) = (fm)⌦ P = m⌦ (fP ),

⇠ · (m⌦ P ) = (⇠m)⌦ P +m⌦ ⇠P,(left)

( eMleft ⌦eOX

eDX)triv :

⇢
(m⌦ P ) · f = m⌦ (Pf),

(m⌦ P ) · ⇠ = m⌦ (P ⇠),
(right)
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for any local vector field ⇠ and any local holomorphic function g. Show that a left
eDX -linear morphism ' : eMleft

1
! eMleft

2
extends as a bi-eDX -linear morphism ' ⌦ 1 :

eMleft

1
⌦eOX

eDX ! eMleft

2
⌦eOX

eDX .
(2) Similarly, show that eDX ⌦eOX

eMleft also has such structures which commute
and are functorial, given by formulas:

(eDX ⌦eOX

eMleft
)triv :

⇢
f · (P ⌦m) = (fP )⌦m,

⇠ · (P ⌦m) = (⇠P )⌦m,
(left)

(eDX ⌦eOX

eMleft
)tens :

⇢
(P ⌦m) · f = P ⌦ (fm) = (Pf)⌦m,

(P ⌦m) · ⇠ = P ⇠ ⌦m� P ⌦ ⇠m.
(right)

(3) Show that both morphisms
eMleft ⌦eOX

eDX �! eDX ⌦eOX

eMleft eDX ⌦eOX

eMleft �! eMleft ⌦eOX

eDX

m⌦ P 7�! (1⌦m) · P P ⌦m 7�! P · (m⌦ 1)

are left and right eDX -linear, induce the identity eMleft ⌦ 1 = 1 ⌦ eMleft, and their
composition is the identity of eMleft⌦eOX

eDX or eDX⌦eOX

eMleft, hence both are reciprocal
isomorphisms. Show that this correspondence is functorial (i.e., compatible with
morphisms).

(4) Let eM be a left eDX -module and let eL be an eOX -module. Justify the following
isomorphisms of left eDX -modules and eOX -modules for the action on the right:

eM⌦eOX

(eDX ⌦eOX

eL) ' ( eM⌦eOX

eDX)⌦eOX

eL

' (eDX ⌦eOX

eM)⌦eOX

eL ' eDX ⌦eOX

( eM⌦eOX

eL).

Assume moreover that eM and eL are eOX -locally free. Show that eM⌦eOX

(eDX ⌦eOX

eL)
is eDX -locally free.

Exercise 8.19 (Tensor product of a right eDX -module with eDX )
Let eMright be a right eDX -module.

(1) Show that eMright ⌦eOX

eDX has two structures of right eDX -module denoted
triv and tens (tensor; the latter defined by using the left structure on eDX and
Exercise 8.12(2)), given by:

( eMright ⌦eOX

eDX)triv :

⇢
(m⌦ P ) ·triv f = m⌦ (Pf),

(m⌦ P ) ·triv ⇠ = m⌦ (P ⇠),
(right)

( eMright ⌦eOX

eDX)tens :

⇢
(m⌦ P ) ·tens f = mf ⌦ P = m⌦ fP,

(m⌦ P ) ·tens ⇠ = m⇠ ⌦ P �m⌦ (⇠P ).
(right)

(2) Show that there is a unique involution ◆ : eMright ⌦eOX

eDX

⇠�! eMright ⌦eOX

eDX

which exchanges both structures and is the identity on eMright ⌦ 1, given by
(m ⌦ P )triv 7! (m ⌦ 1) ·tens P . [Hint : Show first the properties of ◆ by using local
coordinates, and glue the local constructions by uniqueness of ◆.]

(3) For every p > 0, consider the p-th term Fp
eDX of the filtration of eDX by the

order (see Exercise 8.1.3) with both structures of eOX -module (one on the left, one on
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the right) and equip similarly eMright ⌦eOX

Fp
eDX with two structures of eOX -modules.

Show that, for every p, ◆ preserves eMright⌦eOX

Fp
eDX and exchanges the two structures

of eOX -modules.
(4) Let eMright be a right eDX -module and let eL be an eOX -module. By consider-

ing the natural eOX -module structure on eMright ⌦eOX

eL, we define an induced right
eDX -module

⇥
( eMright⌦eOX

eL)⌦eOX

eDX

⇤
triv

. Here, the eDX -module structure on eMright

is not used.
On the other hand, considering the canonical left eDX -module structure on

eDX ⌦eOX

eL and using Exercise 8.12(2), we obtain a right eDX -module structure
⇥ eMright ⌦eOX

(eDX ⌦eOX

eL)
⇤
tens

. Here, the eDX -module structure on eMright is used in
an essential way.

Prove that the canonical eOX -linear morphism

eMright ⌦eOX

eL �! eMright ⌦eOX

(eDX ⌦eOX

eL)
m⌦ ` 7�! m⌦ (1⌦ `)

extends in a unique way as a eDX -linear morphism
h
( eMright ⌦eOX

eL)⌦eOX

eDX

i

triv

�!
h
eMright ⌦eOX

(eDX ⌦eOX

eL)
i

tens

which is an isomorphism. [Hint : Argue as in (2).]

8.11.c. Exercises for Section 8.4

Exercise 8.20. Check that Sp( eM) is indeed a complex, i.e., that e� � e� = 0.

Exercise 8.21 (Sp(eDX) is a resolution of eOX as a left eDX -module)
The natural surjective morphism eDX ! eOX of left eDX -modules has kernel the

image of eDX ⌦ e⇥X ! eDX . In other words, we have a morphism of complexes of left
eDX -modules

Sp(eDX) �! eOX

(where eOX is regarded as a complex with a nonzero term in degree zero only), which
induces an isomorphism

H
0
Sp(eDX)

⇠�! eOX .

In this exercise, one proves that H
k
(Sp(eDX)) = 0 for k 6= 0, so that the morphism

above is a quasi-isomorphism.
Let F•

eDX be the filtration of eDX by the order of differential operators. Filter the
Spencer complex Sp(eDX) by the subcomplexes Fp(Sp(

eDX)) defined as

· · ·
e���! Fp�k eDX ⌦ e⇥X,k

e���! Fp�k+1
eDX ⌦ e⇥X,k�1

e���! · · ·

(1) Show that, locally on X, using coordinates x1, . . . , xn, the graded com-
plex gr

F
Sp(eDX) :=

L
p
gr

F

p
Sp(eDX) is equal to the Koszul complex of the ring

eOX [⇠1, . . . , ⇠n] with respect to the regular sequence ⇠1, . . . , ⇠n.
(2) Conclude that gr

F
Sp(eDX) is a resolution of eOX .
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(3) Check that Fp Sp(
eDX) = 0 for p < 0, F0 Sp(

eDX) = gr
F

0
Sp(eDX) is isomorphic

to eOX and deduce that the complex

gr
F

p
Sp(eDX) := {· · ·

e���! gr
F

p�k
eDX ⌦ e⇥X,k

e���! gr
F

p�k+1
eDX ⌦ e⇥X,k�1

e���! · · · }

is acyclic (i.e., quasi-isomorphic to 0) for p > 0.
(4) Show that the inclusion F0 Sp(

eDX) ,! Fp Sp(
eDX) is a quasi-isomorphism for

every p > 0 and deduce, by passing to the inductive limit, that the Spencer complex
Sp(eDX) is a resolution of eOX as a left eDX -module by locally free left eDX -modules.

Exercise 8.22 (pDR(eDX) is a resolution of e!X as a right eDX -module)
Show similarly that the natural morphism of right eDX -modules

e!X ⌦eOX

eDX �! e!X

defined as the right action of eDX on e!X extends as a morphism of complexes of right
eDX -modules

p

DR(eDX) �! e!X .

Show that H
k
(DR eDX) = 0 for k 6= n, so that the shifted complex DR(eDX)[n] is a

resolution of e!X as a right eDX -module by locally free right eDX -modules.

Exercise 8.23 (Tensor product over eDX ). Let eMleft
, eNleft be two left eDX -modules. One

can consider the tensor products eMright ⌦eDX

eNleft and eNright ⌦eDX

eMleft. Both are
bi-functors with values in the category of sheaves of eC-vector spaces (a priori they
do not have any other structure). Show that there is a natural eC-linear isomorphism
eMright ⌦eDX

eNleft ⇠�! eNright ⌦eDX

eMleft induced by

(e! ⌦eO m)⌦eD n 7�! (e! ⌦eO n)⌦eD m.

[Hint : Show that, for any holomorphic vector field ⇠, one has the equality
(e! ⌦m)⌦ ⇠n = (e! ⌦ n)⌦ ⇠m.]

Exercise 8.24 (The Spencer complex: tensoring over eDX with Sp(eDX))
(1) Let eMright be a right eDX -module. Show that the natural morphism

eMright⌦eDX

(eDX ⌦eOX

e⇥X,k) �! eMright⌦eOX

e⇥X,k

defined by m⌦ (P ⌦ ⇠) 7! mP ⌦ ⇠ induces an isomorphism of complexes

eMright ⌦eDX

Sp(eDX)
⇠�! p

DR( eMright
).

[Hint : The point is to check that the differential Id⌦e�eD on the left corresponds to
the differential e�fM on the right.]

(2) Let eMleft be a left eDX -module. Similar question for
p

DR(eDX)⌦eDX

eMleft �! p

DR( eMleft
).
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Exercise 8.25 (The unshifted de Rham complex: Hom eDX

(Sp(eDX), eM))
For left eDX -modules eM, eN, the sheaf Hom eDX

( eM, eN) is a priori only a eC-module.
If eN is also a right eDX -module, like eDX , Hom eDX

( eM, eN) comes equipped with the
structure of right eDX -module inherited from that of eN. In particular, for each k,
Hom eDX

(eDX ⌦eOX

e⇥X,k,
eDX) is a right eDX -module and Hom eDX

(Sp(eDX), eDX) is a
complex of right eDX -modules whose term in degree k is Hom eDX

(eDX⌦eOX

e⇥X,k,
eDX).

(1) Identify the complex of right eDX -modules Hom eDX

(Sp(eDX), eDX) (where the
right structure comes from the second term eDX) with the unshifted complex DR eDX

up to changing the sign of the differential in the latter complex. [Hint :
(a) Identify first the right eDX -module Hom eDX

(eDX ⌦eOX

e⇥X,k,
eDX) with

Hom eOX

(e⇥X,k,
eDX), then to Hom eOX

(e⇥X,k,
eOX)⌦eOX

eDX , hence to e⌦k

X
⌦eOX

eDX ;
(b) In local coordinates, for I, I

0 ⇢ {1, . . . , n} such that #I,#I
0
= k, set

edxI = edxi1
^ · · · ^ edxik

with i1 < · · · < ik, and similarly for e@x
I0 ; consider the

pairing hedxI ,
e@x

I0 i = (�1)k(k�1)/2 if I = I
0, and = 0 otherwise (see §8.1.a); recall

that ed(edxI⌦1) =
P

j /2I
edxI ^edxj⌦ e@xj

in e⌦k+1

X
⌦ eDX , and if J = {i1, . . . , ik+1},

e�(1⌦ e@xJ
) =

P
k+1

j=1
(�1)j e@xij

⌦ e@Jrij
in eDX⌦ e⇥X,k; then show that for any such

I, J , one has hedxI ⌦ 1, e�(1⌦ e@xJ
)i = �hed(edxI ⌦ 1), 1⌦ e@xJ

i and conclude.]
(2) Conclude that, for a left eDX -module eM, one has

DR eM ' DR(eDX)⌦eDX

eM ' Hom eDX

(Sp(eDX), eDX)⌦eDX

eM

' Hom eDX

(Sp(eDX), eM).

Exercise 8.26 (Side-changing for the de Rham functors).
(1) If eM is any left eDX -module and eMright

= e!X ⌦eOX

eM is the associated right
eDX -module, show that ◆ defined in Lemma 8.4.7 induces an isomorphism

eMright ⌦eDX

Sp(eDX)
⇠�! p

DR(eDX)⌦eDX

eM

which is termwise eOX -linear. [Hint : Use Exercise 8.23 to identify eMright⌦eDX

Sp(eDX)

with (e!X ⌦eOX

Sp(eDX))⌦eDX

eM.]
(2) Interpret the isomorphism ◆ of Lemma 8.4.7 as the composition of the inverse

of the isomorphism
⇥
(e!X ⌦eOX

e⇥X,k)⌦eOX

eDX

⇤
triv

⇠�! [e!X ⌦eOX

(eDX ⌦eOX

e⇥X,k)
⇤
tens

of Exercise 8.19(4), with .
(3) Argue as in Lemma 8.4.7 (with the interpretation above) to show that the

eOX -linear isomorphism

e!X ⌦eOX

eM⌦eOX

e⇥X,k

⇠�! e!X ⌦eOX

e⇥X,k ⌦eOX

eM ⇠�! e⌦n�k
X
⌦eOX

eM

given on e!X ⌦eOX

eM⌦eOX

e⇥X,k by

! ⌦m⌦ ⇠ 7�! !(⇠ ^ •)⌦m
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induces a functorial isomorphism p

DR( eMright
)
⇠�!p

DR( eM) for any left eDX -module eM,
which is termwise eOX -linear.

Exercise 8.27 (Interior product with a 1-form). Let x1, . . . , xn be local coordinates. Fix
k > 1 and set e@x = e@x1

^· · ·^e@xk
and, for i 2 {1, . . . , k}, e@xbı =

e@x1
^· · ·^ce@xi

^· · ·^e@xk
.

Show the following equalities for i 6= j 2 {1, . . . , k}:

e@x edxi = (�1)k�ie@xbı ,
e@xb|

edxi =

8
<

:
(�1)k�i+1e@x bı| if i < j,

(�1)k�ie@x bı| if i > j.

[Hint : Use (8.4.6⇤⇤) and (8.4.6⇤).]

Exercise 8.28 (The C
1 Spencer complex). Let eM be a right eDX -module and let us

denote by e�0fM the differential of the Spencer complex p

DR( eM).
(1) Show that, for each j, the formula (for i, j > 0)

eM⌦eOX

e⇥X,i ⌦eOX

eE(0,j)

e�01fM����! eM⌦eOX

e⇥X,i�1 ⌦eOX

eE(0,j)

m⌦ ⇠
i
⌦ ' 7��! e�0fM(m⌦ ⇠

i
)⌦ '+m⌦ ⇠

i
ed0'

defines the differential of a complex eM⌦eOX

e⇥X,• ⌦eOX

eE(0,j). Show that

e�01fM d
00
+ d
00e�01fM = 0,

and deduce a complex p

DR
1
( eM) := ( eM⌦eOX

fSp1,•
X

, e�01fM + d
00
) (notation of §8.4.13).

(2) Show that the natural morphism
p

DR( eM) �! p

DR
1
( eM)

is a quasi-isomorphism.
(3) Argue as in Exercise 8.24(1) to define an isomorphism of complexes

eM⌦eDX

Sp
1
(eDX)

⇠�! p

DR
1
( eM).

(4) Argue as in Exercise 8.26 to define the side-changing isomorphism
p

DR
1
( eMright

)
⇠�! p

DR
1
( eMleft

).

8.11.d. Exercises for Section 8.5

Exercise 8.29. Let eL be an eOX -module.
(1) Show that, for every k, we have a (termwise) exact sequence of complexes

0! eL⌦eOX

Fk�1(Sp(eDX))! eL⌦eOX

Fk(Sp(
eDX))! eL⌦eOX

gr
F

k
(Sp(eDX))! 0.

[Hint : Use that the terms of the complexes Fj(Sp(
eDX)) and gr

F

k
(Sp(eDX)) are eOX -

locally free.]
(2) Show that eL⌦eOX

gr
F
Sp(eDX) is a resolution of eL as an eOX -module.

(3) Show that eL⌦eOX

Sp(eDX) is a resolution of eL as an eOX -module.
(4) Identify the Spencer complex Sp(eL⌦eOX

eDX) with eL⌦eOX

Sp(eDX) as complexes
of “left” eOX -modules.
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(5) Conclude that p

DR(eL⌦eOX

eDX) ' eL.

Exercise 8.30 (A local resolution of a right eDX -module eM). Assume that X = C
n

with coordinates x1, . . . , xn. Let eM be a right eDX -module. Equip eM ⌦eOX

eDX

with the trivial right eDX -module structure and, for i = 1, . . . , n, consider the
eDX -linear morphisms ·tense@xi

, recalling that the right tens structure commutes
with the right triv structure (see Exercise 8.19). Show that the Koszul complex
K(( eM ⌦eOX

eDX)triv, (·tense@xi
)i=1,...,n) is a resolution of eM with the following steps.

Recall that gr
F eDX ' eOX [⇠1, . . . , ⇠n] with ⇠i = [e@xi

] 2 gr
F

1
eDX .

(1) Show that the morphism induced by e@xi
on eM⌦eOX

gr
F eDX is 1⌦ ⇠i.

(2) Deduce that the Koszul complex K( eM ⌦eOX

gr
F eDX , (⇠i)i=1,...,n) is exact in

negative degrees.
(3) Deduce that the Koszul complex K( eM⌦eOX

eDX , (e@xi
)i=1,...,n) is exact in neg-

ative degrees, and conclude.

Exercise 8.31 (Canonical resolution of eM: tensoring over eOX with Sp(eDX))
This is an intrinsic version of Exercise 8.30.

(1) Let eM be a right eDX -module. Regarding Sp(eDX) as a resolution of eOX as
a left eDX -module, the complex eM ⌦eOX

Sp(eDX) is regarded as a complex of right
eDX -module, by using the tensor right eDX -module structure on each term.

(a) Show that eM⌦eOX

Sp(eDX) is a resolution of eM. [Hint : use the functori-
ality of the tensor right eDX -module structure and the local eOX -freeness of each
term of Sp(eDX).]

(b) Show that the differential of this complex is expressed as follows, for local
sections m of eM, ⇠i of e⇥X and P of eDX , and setting

b⇠
i
= ⇠1 ^ · · · ^ ⇠i�1 ^ ⇠i+1 ^ · · · ^ ⇠k,

and a similar meaning for b⇠
i,j

:

(Id⌦e�)
⇥
(m⌦ (1⌦ ⇠)) ·tens P

⇤
=
⇥
(Id⌦e�)(m⌦ (1⌦ ⇠))

⇤
·tens P

=


m⌦

h kX

i=1

(�1)i�1⇠i ⌦ b⇠
i
+

X

i<j

(�1)i+j
1⌦ ([⇠i, ⇠j ] ^ b⇠i,j)

i�
·tens P.

(c) Consider the involution

eM⌦eOX

(eDX ⌦eOX

e⇥X,k) ' ( eM⌦eOX

e⇥X,k)⌦eOX

eDX

exchanging the tens structure on the left-hand side with the triv structure on
the right hand side. Show that the differential becomes e�triv, with

e�triv
⇥
(m⌦ ⇠)⌦ P

⇤
= e�triv

⇥
(m⌦ ⇠)⌦ 1

⇤
·triv P
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and

e�triv
⇥
(m⌦ ⇠)⌦ 1

⇤
=

kX

i=1

(�1)i�1(m⇠i ⌦ b⇠
i
)⌦ 1

�
kX

i=1

(�1)i�1(m⌦ b⇠
i
)⌦ ⇠i +

X

i<j

(�1)i+j
(m⌦ ([⇠i, ⇠j ] ^ b⇠i,j))⌦ 1

=
⇥e�fM(m⌦ ⇠)

⇤
⌦ 1�

kX

i=1

(�1)i�1(m⌦ b⇠
i
)⌦ ⇠i,

where e�fM is the differential occurring in the complex Sp eM. [Hint : write

m⌦ (⇠i ⌦ b⇠
i
) = m⇠i ⌦ (1⌦ b⇠

i
)� [m⌦ (1⌦ b⇠

i
)] · ⇠i.]

(d) Conclude that the complex of induced eDX -modules
�
( eM⌦eOX

e⇥X,•)⌦eOX

eDX , e�triv
�

is a resolution of eM.
(2) Let eM be a left eDX -module. Show that the complex

p

DR(eDX ⌦eOX

eM)

is a resolution of eMright
= e!X ⌦eOX

eM by right eDX -modules, where the left and right
structures of eDX ⌦eOX

eM are those of Exercise 8.18(2), and the left one is used to
compute the deRham complex.

8.11.e. Exercises for Section 8.6

Exercise 8.32 (Definition of the pullback of a left eDX -module)
(1) Show that the connection erX on f

⇤eN := eOX ⌦f�1eOY

f
�1eN is integrable.

(2) Show that, if eN also has a right eDY -module structure commuting with the left
one, then erX is right f

�1 eDY -linear, and Df
⇤(0)eN is a right f

�1 eDY -module.

Exercise 8.33.
(1) Express the previous connection in local coordinates on X and Y .
(2) Show that, if eM is any left eDX -module and eN any left f

�1 eDY -module, then
eM ⌦

f�1eOY

f
�1eN may be equipped with a left eDX -module structure: if ⇠ is a local

z-vector field on X, i.e., a local section of e⇥X , set

⇠ · (m⌦ n) = (⇠m)⌦ n+ Tf(⇠)(m⌦ n).

[Hint : Identify eM⌦
f�1eOY

f
�1eN with eM⌦eOX

Df
⇤eN and use Exercise 8.32.]

Exercise 8.34 (Local computation of eDX!Y ).
(1) Show that Df

⇤(0) eDY is a locally free eOX -module. [Hint : Use that eDY is a
locally free eOY -module.]
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(2) Choose local coordinates x1, . . . , xn on X and y1, . . . , ym on Y . Show that
eDX!Y = eOX [e@y1

, . . . , e@ym
] and, with this identification, the left eDX -structure is

given by

e@xi
·
X

↵

a↵(x)
e@↵
y
=

X

↵

⇣
z
@a↵

@xi

+

mX

j=1

a↵(x)
@fj

@xi

e@yj

⌘
e@↵
y
.

Exercise 8.35 (eDX!Y for a closed embedding). Assume that ◆ : X ,! Y is the closed
immersion of a complex submanifold of Y of codimension d.

(1) Show that the canonical section 1 of eDX!Y = eOX⌦◆�1eOY

◆
�1 eDY is a generator

of eDX!Y as a right ◆�1 eDY -module.
(2) Assume that X is defined by g1 = · · · = gd = 0, where the gi are holomorphic

functions on Y . Show that
eDX!Y = eDY

�P
d

i=1
gi
eDY

with its natural right eDY structure. In local coordinates (x1, . . . , xn, y1, . . . , yd) such
that gi = yi, show that eDX!Y = eDX [e@y1

, . . . , e@yd
].

Conclude that, if f is an embedding, the sheaves eDX!Y and eDY X are locally
free over eDX .

Exercise 8.36 (eDX!Y for a flat morphism). Let 0 ! eN0 ! eN ! eN00 ! 0 be an exact
sequence of left eDY -modules.

(1) Show that the sequence Df
⇤(0)eN0 ! Df

⇤(0)eN! Df
⇤(0)eN00 ! 0 is exact.

(2) Assume that f : X ! Y is flat, i.e., eOX is f
�1eOY -flat (for example, a smooth

map, i.e., locally isomorphic to the projection of a product, is flat). Show that the
sequence 0 ! Df

⇤(0)eN0 ! Df
⇤(0)eN ! Df

⇤(0)eN00 ! 0 is exact. Conclude that eDX!Y

is f
�1 eDY -flat.

Exercise 8.37 (The chain rule). Consider holomorphic maps f : X!Y and f
0
: Y !Z.

(1) Construct a canonical isomorphism eDX!Y ⌦f�1 eDY

f
�1 eDY!Z

⇠�! eDX!Z as
right (f

0 � f)�1 eDZ-modules. [Hint : Show that the contraction morphisms

(eOX ⌦f�1eOY

f
�1 eDY )⌦f�1 eDY

(f
�1eOY ⌦(f 0�f)�1eOZ

(f
0 � f)�1 eDZ)

�! eOX ⌦f�1eOY

(f
�1eOY ⌦(f 0�f)�1eOZ

(f
0 � f)�1 eDZ)

�! eOX ⌦(f 0�f)�1eOZ

(f
0 � f)�1 eDZ

yield such an isomorphism, whose inverse is the morphism '⌦Q 7! ('⌦1)⌦ (1⌦Q).]
(2) Use the chain rule to show that this isomorphism is left eDX -linear.

Exercise 8.38 (Restriction to z = 1). Show that

(Df
⇤(0)eN)/(z � 1)Df

⇤(0)eN = Df
⇤(0)

(eN/(z � 1)eN).

Exercise 8.39.
(1) Show that Definition 8.6.6 coincides with that of Exercise 8.32(1).
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(2) Let f : X ! Y , f 0 : Y ! Z be holomorphic maps and let eN be a left eDZ-mod-
ule. Show that D(f

0 � f)⇤eN ' Df
⇤
(Df
0⇤eN).

8.11.f. Exercises for Section 8.7

Exercise 8.40 (The relative Spencer complex Sp
X!Y

( eM)). Let f : X ! Y be a holo-
morphic map and let eM be a right eDX -module. The goal of this exercise is to identify
the complex eM⌦eDX

Sp
X!Y

(eDX) entering in the definition of the pushforward with
the complex

Sp
X!Y

( eM) :=
�
( eM⌦eOX

e⇥X,k)⌦f�1eOY

f
�1 eDY ,

e�fM,Y
),

where e�fM,Y
is given by the formula

e�fM,Y
((m⌦ ⇠)⌦Q) = e�fM(m⌦ ⇠)⌦Q+

kX

i=1

(�1)i(m⌦ ⇠bı)⌦ Tf(⇠i)Q.

Here, e�fM is given by the formula of Definition 8.4.3 and we use the notation of Exercise
8.31. The first part concerns the complex Sp

X!Y
(eDY ).

(1) Let eL be a locally free eOX -module. Consider on (eDX ⌦eOX

eL)⌦eOX

eDX!Y the
following (eDX , f

�1 eDY ) bi-module structures:
(a) (eDX⌦eOX

eL)⌦
f�1eOY

f
�1 eDY also called the tens structure, where the right

f
�1 eDY is the trivial one and the left eDX -module structure is the left tensor one

on (eDX ⌦eOX

eL)⌦eOX

(eOX ⌦f�1eOY

f
�1 eDY ) (see Exercise 8.12(1)). In particular,

f
�1eOY acts on the left on (eDX ⌦eOX

eL).
(b) eDX ⌦eOX

(eL⌦
f�1eOY

f
�1 eDY ) also called the triv structure, where we use

the trivial f
�1 eDY -module structure on the right and the trivial eDX -module

structure on the left (on the other hand, the right eOX -module structure is used
on eDX for the tensor product).

Show that there exists a unique isomorphism of (eDX , f
�1 eDY ) bi-modules

eDX ⌦eOX

(eL⌦
f�1eOY

f
�1 eDY )

⇠�! (eDX ⌦eOX

eL)⌦
f�1eOY

f
�1 eDY

inducing the identity on eL = eOX ⌦eOX

eL ⌦
f�1eOY

f
�1eOY . [Hint : Show that the

morphism P ⌦ `⌦Q 7! P ·tens (1⌦ `⌦Q) is well-defined by using that eDX is locally
free over eOX , and is an isomorphism by considering the top degree part of P .]

(2) Recall that the differential on the complex Sp(eDX) ⌦eOX

eDX!Y is e� ⌦ Id,
with e� = e�eD (see Exercise 8.12(1d)). Show that e�eD,Y

is linear with respect to the
triv (eDX , f

�1 eDY )-bimodule structure, and that the following diagram commutes, by
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checking first on 1⌦ e⇥X,• ⌦ f
�1 eDY :

eDX ⌦eOX

(e⇥X,k ⌦f�1eOY

f
�1 eDY )

e�eD,Y
✏✏

⇠
// (eDX ⌦eOX

e⇥X,k)⌦f�1eOY

f
�1 eDY

e� ⌦ Id
✏✏

eDX ⌦eOX

(e⇥X,k�1 ⌦f�1eOY

f
�1 eDY )

⇠
// (eDX ⌦eOX

e⇥X,k�1)⌦f�1eOY

f
�1 eDY

and conclude that Sp
X!Y

(eDX)! Sp(eDX)⌦eOX

eDX!Y is an isomorphism.
(3) Deduce that the terms of the complex Sp(eDX)⌦eOX

eDX!Y are locally free left
eDX -modules. [Hint : Check this for the complex Sp

X!Y
(eDX).]

(4) Conclude that Sp
X!Y

( eM)! eM⌦eDX

(Sp(eDX)⌦eOX

eDX!Y ) is an isomorphism.
[Hint : Check that Sp

X!Y
( eM) ' eM⌦eDX

Sp
X!Y

(eDX).]

Exercise 8.41 (The relative Spencer complex of eDX ).
(1) Let eL• be a bounded resolution by left eDX -modules of eOX (as a left eDX -mod-

ule). Let eM be a left eDX -module. Show that, if the terms eLk are eOX -locally free,
eL•⌦eOX

eM (with the tensor product structure of left eDX -module) is a resolution of eM
as a eDX -module.

(2) Deduce that Sp(eDX)⌦eOX

eDX!Y is a resolution of eDX!Y as a bimodule.
(3) Let Sp

Y
(eDX!Y ) be the Spencer complex of eDX!Y considered as a right

eDY -module. Show that Sp
Y
(eDX!Y ) is a resolution of eOX as a left eDX -module.

(4) Show that gr
FDX!Y = RFDX!Y /zRFDX!Y is identified with ⇡

⇤
Sym⇥Y

as a graded (Sym⇥X)-module (see Exercise 8.4). For example, if Y = pt, so that
DX!Y = OX , grFOX = OX is regarded as a (Sym⇥X)-module: in local coordinates,
we have Sym⇥X = C{x1, . . . , xn}[⇠1, . . . , ⇠n] and

C{x1, . . . , xn} = C{x1, . . . , xn}[⇠1, . . . , ⇠n]/(⇠1, . . . , ⇠n).

(5) For f = Id : X ! X, the complex Sp(eDX) ⌦eOX

eDX!X = Sp(eDX) ⌦eOX

eDX

is a resolution of eDX!X = eDX as a left and right eDX -module (notice that the left
structure of eDX is used for the tensor product).

(6) For f : X ! pt, the complex Sp(eDX)⌦eOX

eDX!pt = Sp(eDX) is a resolution of
eDX!pt =

eOX .

Exercise 8.42. Extend Df⇤ and Df! as functors from D
+
(eDX) (or Db

(eDX)) to D
+
(eDY ).

[Hint : Replace first eM• ⌦eDX

Sp
X!Y

(eDX) with the associated simple complex.]
As in Remark 8.7.5(2), show that if eM• has bounded amplitude, then so has Df!

eM•.

Exercise 8.43. Let eM be a left eDX -module.
(1) Show that

⇥
e!X ⌦eOX

eDX!Y

⇤
⌦eDX

eM ' (e!X ⌦eOX

eM)⌦eDX

eDX!Y

as right f
�1 eDY -modules. [Hint : Use Exercise 8.16 and show that the corresponding

isomorphism is compatible with the right f
�1 eDY -action.]



300 CHAPTER 8. TRAINING ON D-MODULES

(2) Same question by replacing eDX!Y with Sp
X!Y

(eDX).
(3) Conclude that

Sp
Y X

(eDX)⌦eDX

eM ' Hom
f�1eOY

�
f
�1e!Y ,

eMright ⌦eDX

Sp
X!Y

(eDX)
�

'
� eMright ⌦eDX

Sp
X!Y

(eDX)
�
⌦

f�1eOY

f
�1e!Y .

(4) Deduce from the first line, by using that f
�1 is left adjoint to Rf⇤, that

Rf⇤(SpY X
(eDX)⌦eDX

eM) '
⇥
Df⇤( eMright

)
⇤left

,

and deduce from the second line (and justify the identification of the eDY -module
structures), by the projection formula for f!, that

Rf!(SpY X
(eDX)⌦eDX

eM) '
⇥
Df!(

eMright
)
⇤left

.

Exercise 8.44. Show that the formula for the pushforward in Example 8.7.11 is ob-
tained by side-changing from that of Example 8.7.10. [Hint : Adapt Exercise 8.26 in
the relative case of a projection.]

Exercise 8.45 (Pushforward by a closed inclusion). Assume that ◆ : X ,! Y is a closed
inclusion. For a eDX -module eM, show that D◆⇤ eM is generated by eM ⌦ 1 over eDY .
[Hint : Use Exercise 8.35.]

Exercise 8.46 (Pushforward by a graph inclusion (see Example 8.7.7))
Let f : X ! Y a holomorphic map and let ◆f : X ,! X⇥Y be the graph inclusion.

In local coordinates y1, . . . , ym on Y , set fj = yj � f .

(1) Let eM be a right eDX -module. Show that D◆f⇤ eM ' ◆f⇤ eM[e@y1
, . . . , e@ym

] with
right eDX⇥Y structure given locally by

µe@↵
y
· e@yj

= µe@↵+1j

y
,

µe@↵
y
· e@xi

= (µe@xi
)e@↵

y
�

mX

j=1

µ
@fj

@xi

e@↵+1j

y
.

(2) Let eM be a left eDX -module. Show that D◆f⇤ eM ' ◆f⇤ eM[e@y1
, . . . , e@ym

](m) with
left eDX⇥Y structure given locally by (omitting edy_ in the notation)

e@yj
· µe@↵

y
= �µe@↵+1j

y
,

e@xi
· µe@↵

y
= (e@xi

µ)e@↵
y
�

mX

j=1

@fj

@xi

µ e@↵+1j

y
.

[Hint : For the shift (m) of the grading, use Remark (8.2.3 ⇤).]

Exercise 8.47 (Compatibility of Spencer with D◆⇤ (right case))
Let ◆ : X ,! Y be a closed embedding. The goal of this exercise is to make explicit

the isomorphism Sp
Y
(D◆!

eM) ' ◆⇤ SpX
eM (equivalently, ◆�1 Sp

Y
(D◆!

eM) ' Sp
X
eM) for

a right eDX -module eM.
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(1) By using that eDX!Y is eDX -locally free (Exercise 8.35), show that

◆
�1

Sp
Y
(D◆!

eM) ' ( eM⌦eDX

eDX!Y )⌦◆�1 eDY

◆
�1

Sp
Y
(eDY )

' eM⌦eDX

(eOX ⌦◆�1eOY

◆
�1 eDY )⌦◆�1 eDY

◆
�1

Sp
Y
(eDY )

' eM⌦eDX

(eOX ⌦◆�1eOY

◆
�1

Sp
Y
(eDY )).

(2) By using the natural eOX -linear injective morphism e⇥X ! eOX ⌦◆�1eOY

◆
�1e⇥Y ,

deduce a natural eOX -linear injective morphism for each k > 0:

eDX ⌦eOX

e⇥X,k �! eOX ⌦◆�1eOY

◆
�1

(eDY ⌦eOY

e⇥Y,k).

(3) In local coordinates (x1, . . . , xn, y1, . . . , yp) where X is defined by y1 = · · · =
yp = 0, and for multi-indices ↵ 2 N

n and � 2 N
p, we use the notation e@^↵

x
for

e@↵1

x1
^ · · · ^ e@↵n

xn
, and similarly for e@^�

y
. Then express the above morphism as the

composition of the two natural inclusions
L

|↵|=k

eDX⌦e@^↵x
,�!

L
|↵|=k

eDX [e@y1
, . . . , e@yp

]⌦e@^↵
x
⇢

L
|↵|+|�|=k

eDX [e@y1
, . . . , e@yp

]⌦(e@^↵
x
^e@^�

y
)

(4) Show that the left action of eDX on the right-hand side of the morphism in (2)
comes from the standard left action on eDX [e@y1

, . . . , e@yp
]⌦ (e@^↵

x
^ e@^�

y
).

(5) Show that the following diagram commutes:

eDX ⌦eOX

e⇥X,k
//

e�X
✏✏

eOX ⌦◆�1eOY

◆
�1

(eDY ⌦eOY

e⇥Y,k)

Id⌦e�Y
✏✏

eDX ⌦eOX

e⇥X,k�1 //
eOX ⌦◆�1eOY

◆
�1

(eDY ⌦eOY

e⇥Y,k�1)

[Hint : Use the local expression of (3) for the horizontal morphisms.]
(6) Show similarly that for a right eDX -module eM, the natural quasi-isomorphism

of complexes Sp
X
( eM)! ◆

�1
Sp

Y
(D◆⇤ eM) is locally termwise described as

L
|↵|=k

eM⌦ e@^↵
x

,�!
L

|↵|=k

eM[e@y1
, . . . , e@yp

]⌦ e@^↵
x
⇢

L
|↵|+|�|=k

eM[e@y1
, . . . , e@yp

]⌦ (e@^↵
x
^ e@^�

y
).

Exercise 8.48 (Compatibility of Spencer with D◆⇤ (left case))
The setting is as in Exercise 8.47. Let eM be a left eDX -module.

(1) Show that D◆⇤ eM ' ◆⇤ eM[e@y] ⌦ edy_. [Hint : let eN be the RHS; prove that
(edx ^ edy)⌦ eN ' (edx⌦ ◆⇤ eM)[e@y].]

(2) Show that the isomorphism p

DRX( eM) ' ◆
�1 p

DRY (D◆⇤ eM) is given termwise,
for any local section ⌘x of e⌦n+k

X
by

e⌦n+k

X
⌦ eM 3 ⌘x ⌦m 7�! (⌘x ^ edy)⌦ (m⌦ edy_

) 2 e⌦n+p+k

X
⌦ D◆⇤ eM.

[Hint : Apply Exercise 8.47(6) to eN considered in (1), and then the side-changing
formula of Lemma 8.4.7.]
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Exercise 8.49 (Compatibility with the Godement functor).
(1) Show by induction on k that, for every k > 0, the functor God

k is exact
(see [God64, p. 168]). Given an exact sequence 0 ! eL0 ! eL ! eL00 ! 0 of sheaves,
show that we have an exact sequence of complexes

0 �! God
• eL0 �! God

• eL �! God
• eL00 �! 0.

Similarly, show that the functors f? God
k are exact (with ? = ⇤ or ? = !) and deduce

an exact sequence of complexes

0 �! f? God
• eL0 �! f? God

• eL �! f? God
• eL00 �! 0.

Deduce also that, for every k > 0 and a complex eL•, we have

H
i
(f? God

k eL•
) ' f? God

k
H

ieL•
.

(2) Show that, if eL and eF are eOX -modules and if eF is locally free, then we have
a natural inclusion C0

(eL) ⌦eOX

eF ,! C0
(eL ⌦eOX

eF), which is an equality if eF has
finite rank. More generally, show by induction that we have a natural morphism
Ck

(eL)⌦eOX

eF ! Ck
(eL⌦eOX

eF), which is an equality if eF has finite rank.
(3) With the same assumptions, show that both complexes God

•
(eL) ⌦eOX

eF and
God

•
(eL⌦eOX

eF) are resolutions of eL⌦eOX

eF. Conclude that the natural morphism of
complexes God

•
(eL)⌦eOX

eF ! God
•
(eL⌦eOX

eF) is a quasi-isomorphism, and an equality
if eF has finite rank.

(4) Let eM be a right eDX -module. Show that the natural morphism of complex

(God
• eM)⌦eOX

Sp eDX �! God
•
( eM⌦eOX

Sp eDX)

is a quasi-isomorphism.
(5) Let eM be a right eDX -module. Show that

Sp(God
• eM) = God

•
Sp eM.

(6) If f : X = Y ⇥ T ! Y is the projection, show that, for ? = ⇤, !,

Df?
eM = f? God

•� eM⌦eOX

e⇥X/Y,•

�
.

[Hint : Use Example 8.7.10.]

Exercise 8.50 (Restriction to z = 1).
(1) Show that the Godement functor applied to sheaves of eC-modules restricts, for

z = 1, to the Godement functor applied to sheaves of C-vector spaces.
(2) Show that Sp

X!Y
(DX) = Sp

X!Y
(eDX)/(z � 1) Sp

X!Y
(eDX).

(3) Conclude that Df?
eM/(z � 1)Df?

eM = Df?(
eM/(z � 1) eM) and, for every i,

Df
(i)

?
eM/(z � 1)Df

(i)

?
eM = Df

(i)

? ( eM/(z � 1) eM) (? = ⇤, !).

Exercise 8.51 (Computation of the pushforward with the C
1 Spencer complex)

We take up the notation of Exercise 8.28. Let f : X ! Y be a holomorphic map.
For a right eDX -module eM, we define on

Sp
1
X!Y

( eM) := eM⌦eOX

fSp1,•
X
⌦eOX

eDX!Y ' eM⌦eOX

fSp1,•
X
⌦

f�1eOY

f
�1 eDY
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the right f
�1 eDY -linear differential

e�1fM,Y

�
(m⌦⇠)⌦'⌦Q

�
:= e�0fM,Y

�
(m⌦⇠)⌦'⌦Q

�
+(m⌦(⇠ ed0'))⌦Q+(m⌦⇠)⌦ed00'⌦Q,

where the first term is naturally defined from the formula in Exercise 8.40, and the
second and third terms are as in Exercise 8.28.

(1) Show that each term of the complex Sp
1
X!Y

(eDX) = eDX⌦eOX

fSp1,•
X
⌦eOX

eDX!Y

is eDX -flat.
(2) Show that e�1fM,Y

is indeed a differential and that Sp
X!Y

( eM)! Sp
1
X!Y

( eM) is
a quasi-isomorphism.

(3) Show that Sp
1
X!Y

( eM) ! eM ⌦eDX

Sp
1
X!Y

(eDX) is an isomorphism. [Hint :
Argue as in Exercises 8.24 and 8.28.]

Exercise 8.52 (Computation of the pushforward with differential forms)
Let f : X ! Y be a holomorphic map. The formula for the pushforward has a

simpler expression when we regard it as producing, from a left eDX -module, a complex
of right eDY -modules. This exercise gives such a formula.

Let eM be a left eDX -module. As eDX!Y is a left eDX -module,
eM⌦eOX

eDX!Y = eM⌦
f�1eOY

f
�1 eDY

has a natural structure of left eDX -module (by setting ⇠(µ⌦ 1Y )=⇠µ⌦1Y +µ⌦Tf(⇠),
see Exercise 8.12(2)) and of course a compatible structure of right f

�1 eDY -module.
(1) Show that the deRham complex

e⌦n+•
X
⌦ ( eM⌦eOX

eDX!Y ) =
e⌦n+•
X
⌦ ( eM⌦eOX

f
⇤ eDY ) =

e⌦n+•
X
⌦ ( eM⌦

f�1eOY

f
�1 eDY )

is isomorphic to eMright ⌦eDX

Sp
X!Y

(eDX), as a complex of right f�1 eDY -modules, by
using the isomorphism (see Lemma 8.4.7)

! ⌦ µ⌦ ⇠ ⌦ 1Y 7�! !(⇠ ^ •)⌦ µ⌦ 1Y (⇠ 2 ^k e⇥X).

[Hint : see Exercise 8.26.]
(2) Check that the connection induced on eM ⌦eOX

f
⇤ eDY by the left eDX -module

structure is er⌦ Id+ IdfM⌦er
X , where erX is obtained from the universal connection

erY on eDY by the formula (8.6.1).
(3) Conclude that, for ? = ⇤, !,

Df?(
eMright

) = Rf?

⇥e⌦n+•
X
⌦ ( eMleft ⌦

f�1eOY

f
�1 eDY )

⇤
,(8.52 ⇤)

Df?(
eMleft

) = Rf?

⇥e⌦n+•
X
⌦ ( eMleft ⌦

f�1eOY

f
�1 eDY )

⇤left
,(8.52 ⇤⇤)

where (8.52 ⇤) is the complex of right eDY -modules associated to the double complex

f? God
•⇥e⌦n+•

X
⌦ ( eM⌦

f�1eOY

f
�1 eDY )

⇤
.

Show that this complex is quasi-isomorphic to the complex

f?

⇥e⌦n+•
X
⌦ (God

• eM⌦
f�1eOY

f
�1 eDY )

⇤
.

[Hint : Use Exercise 8.49.]
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(4) Show that the latter complex is the single complex associated with the
double complex having terms f?(

e⌦n+i

X
⌦ God

j eM) ⌦eOY

eDY and first differential
(�1)nf?(er ⌦ Id+ IdfM⌦er

X
) (the second differential is induced by the Godement

differential).
(5) It is often more convenient to replace the Godement resolution by a Dolbeault

resolution. Prove that

(Df?
eM)

right ' f?

⇥eEn+•
X
⌦ ( eM⌦

f�1eOY

f
�1 eDY )

⇤
,

Df?
eM ' f?

⇥eEn+•
X
⌦ ( eM⌦

f�1eOY

f
�1 eDY )

⇤left
,

where the differential in the latter complexes is obtained in the usual way from the
holomorphic differential of 8.52(1) and the anti-holomorphic differential d00.

Other properties of the pushforward functor
Exercise 8.53 (Pushforward of induced eD-modules). Let eL be an eOX -module and let
eM = eL ⌦eOX

eDX be the associated induced right eDX -module. Let f : X ! Y be a
holomorphic map.

(1) Show that eL⌦eOX

Sp
X!Y

(eDX)! eL⌦eOX

eDX!Y is a quasi-isomorphism. [Hint :
Use that eDX is eOX -locally free.]

(2) Deduce that

eM⌦eDX

Sp
X!Y

(eDX) = eM⌦eDX

eDX!Y = eL⌦
f�1eOY

f
�1 eDY .

(3) Show that Df!(
eL⌦eOX

eDX) is quasi-isomorphic to (Rf!
eL)⌦eOY

eDY . [Hint : Use
the projection formula.]

Exercise 8.54 (Pushforward of eD-modules and pushforward of eO-modules)
Let f : X ! Y be a holomorphic map and let eM be a right eDX -module. It is also

an eOX -module. The goal of this exercise is to exhibit natural eOY -linear morphisms
(? = ⇤, !)

R
i
f?
eM �! Df

(i)

?
eM.

(1) Show that eDX ⌦f�1eOY

f
�1 eDY has a natural global section 1.

(2) Show that there is a natural f�1eOY -linear morphism of complexes

eM �! eM⌦eDX

Sp
X!Y

(eDX), m 7�! m⌦ 1,

where eM is considered as a complex with eM in degree 0 and all other terms equal
to 0, so the differential are all equal to 0. [Hint : Use Exercise 8.18(3) to iden-
tify Sp

0

X!Y
(eDX) = eDX ⌦eOX

eDX!Y with its twisted left eDX -structure (denoted by
eDX!Y ⌦eOX

eDX in loc. cit.) with eDX ⌦eOX

eDX!Y , where the tensor product uses the
right eOX -structure on eDX and the left eDX structure is the trivial one, and then with
eDX ⌦f�1eOY

f
�1eOY with trivial left eDX -structure and tensor product using the right

eOX -structure of eDX . Identify then eM⌦eDX

(eDX⌦eOX

eDX!Y ) with eM⌦
f�1eOY

f
�1 eDY .]

(3) Conclude with the existence of the desired morphisms.
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Exercise 8.55 (Grading and pushforward, right case). Let (M, F•M) be a filtered right
DX -module. Set M = RFM, so that gr

FM = M/zM.
(1) Show that

(M⌦RFDX
SpRFDX!Y )⌦C[z] C[z]/zC[z] ' gr

FM⌦L
Sym⇥X

f
⇤
Sym⇥Y .

[Hint : Use the associativity of ⌦ and Exercise 8.41(4).]
(2) Assume that Df?M is strict (i.e., the complex of Corollary 8.7.15 is strict in

the sense of Definition 5.1.6 or 10.2.2). Show that, for every i, we have, as graded
modules

gr
F
Df

(i)

? M ' H
i
Rf?

�
gr

FM⌦L
Sym⇥X

f
⇤
Sym⇥Y

�
.

Exercise 8.56 (Grading and pushforward, left case). With the assumptions as in Exer-
cise 8.55(2), but assuming that M is a left DX -module, show that

gr
F
Df

(i)

? M ' H
i
Rf?

�
!X/Y ⌦OX

gr
F

•+n�mM⌦L
Sym⇥X

f
⇤
Sym⇥Y

�
,

where !X/Y := !X ⌦OX
f
⇤
!

_
Y

, and we have set n = dimX, m = dimY . (Notice
the shift of the filtration, which comes from e!X/Y = z

n�m
!X/Y .) For example, if

Y = pt, deduce that

gr
F
H

i
(X,

p

DRM) 'H
i
�
X,!X ⌦ (gr

F

•+n
M⌦L

Sym⇥X
OX)

�
.

Exercise 8.57 (Trace for a finite map, preliminaries). We take up the notation of Ex-
ample 8.7.31, so that f : X = C

n ! Y = C
n is defined by fi(x1, . . . , xn) = x

ri

i
, with

ri 2 N
⇤ and ri > 2 if and only if i = 1, . . . , `. We set D = {

Q
`

i=1
xi = 0} and we have

f(D) = {
Q

`

i=1
yi = 0}.

(1) Define Trf : f⇤eOX ! eOY as an eOY -linear morphism such that, composed
with adj

f
: eOY ! f⇤eOX , it yields the identity eOY ! eOY . [Hint : Set Trf (g)(y) =

(1/#g
�1

(y))
P

x2f�1(y)
g(x).]

(2) Show that for any holomorphic function g on X, there exists a holomorphic
function g

0 on Y such that edg/g = f
⇤
(edg0/g0) (where f

⇤ means T
⇤
f).

(3) Show that there exists an eOY -linear morphism

Trf : f⇤e⌦1

X
(logD) �! e⌦1

Y
(log f(D))

satisfying the following properties:
(a) Trf (

edxi/xi) = (1/ri)
edyi/yi for i = 1, . . . , ` and Trf (

edxj) =
edxj for j >

`+ 1,
(b) Trf (

edg/g) = edg0/g0, with g
0 as above,

(c) Trf (h · edg/g) = Trf (h) · edg0/g0.
(4) Deduce that there exists an eOY -linear morphism Trf : f⇤e⌦1

X
! e⌦1

Y
such that

the composition

e⌦1

Y

f⇤(T
⇤
f)

�������! f⇤e⌦1

X

Trf����! e⌦1

Y

is the identity, and satisfies edTrf (g) = Trf (
edg) for any holomorphic function g on X.
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(5) Extend Trf as a morphism of complexes (f⇤(e⌦•
X
), f⇤(ed)) ! (e⌦•

Y
, ed) such that

the composition

(e⌦•
Y
, ed)

f⇤(T
⇤
f)

�������! (f⇤(e⌦•
X
), f⇤(ed))

Trf����! (e⌦•
Y
, ed)

is the identity.

Exercise 8.58 (Trace for a finite map). Let f : X ! Y be as in Exercise 8.57 and let eM
be a left eDY -module. Show that

(Df⇤(Df
⇤(0) eM))

right ' (f⇤e⌦n+•
X
⌦eOY

eDY )⌦eOY

eM.

[Hint : Use that Ri
f⇤(•) = 0 for i > 0 and argue as in the proof of Proposition 8.7.30.]

Deduce that there exist morphisms whose composition is the identity:

eMright
adj

f����! (Df
(0)

⇤ (Df
⇤(0) eM))

right
Trf����! eMright

,

and conclude that eMright is a direct summand in (Df
(0)

⇤ (Df
⇤(0) eM))

right.

8.11.g. Exercises for Section 8.8

Exercise 8.59.
(1) Prove the coherence of the sheaf of rings grFeDX in a way similar to that of eDX .
(2) Let D ⇢ X be a hypersurface and let eOX(⇤D) be the sheaf of meromorphic

functions on X with poles on D at most (with arbitrary order). Prove similarly that
eOX(⇤D) is a coherent sheaf of rings.

(3) Prove that eDX(⇤D) := eOX(⇤D)⌦eOX

eDX is a coherent sheaf of rings.
(4) Let ◆ : Y ,! X denote the inclusion of a smooth submanifold. Show that

i
⇤ eDX := eOY ⌦eOX

eDX is a coherent sheaf of rings on Y .
(5) Let Y ⇢ X be a smooth hypersurface of X. Show that V0

eDX (see Section 9.2)
is a coherent sheaf of rings.

Exercise 8.60.
(1) Let eM ⇢ eN be a eDX -submodule of a coherent eDX -module eN. Show that, if eM

is locally finitely generated, then it is coherent.
(2) Let � : eM ! eN be a morphism between coherent eDX -modules. Show that

Ker� and Coker� are coherent.

Exercise 8.61 (Non-validity of Cartan Theorem B for D-modules)
(1) Let X be an open disc with coordinate x, of radius r (possibly1) in C, and let

(xi)i2N be a sequence of points in X such that limi(r � |xi|) = 0. Let ' : ON
X
! ON

X

be the diagonal morphism equal to (x � xi) on the i-th component. Let Cxi
denote

the skyscraper sheaf supported on xi. Show that
(a) Coker' =

L
i
Cxi

and H
0
(X,Coker') =

Q
i
H

0
(X,Cxi

);
(b) Coker[H

0
' : H

0
(X,ON

X
)! H

0
(X,ON

X
)] =

L
i
H

0
(X,Cxi

).
(2) Deduce that H

1
(X,ON

X
) 6= 0.
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(3) Let OX(⇤0) be the sheaf of meromorphic functions on X with poles at x = 0

at most. Show that H
1
(X,OX(⇤0)) 6= 0. [Hint : Use Cartan Theorem B for OX and

apply the previous result to OX(⇤0)/OX .]

Exercise 8.62 (Characterization of coherent filtrations).
(1) Show that the following properties are equivalent:

(a) F•
eM is a coherent filtration;

(b) for every k 2 Z, Fk
eM is eOX -coherent, and, for every x 2 X, there exists a

neighbourhood U of x and k0 2 Z such that, for every k > 0, Fk
eDX|U ·Fk0

eM|U =

Fk+k0

eM|U ;
(c) the graded module gr

F eM is gr
FeDX -coherent.

(2) Conclude that, if F•
eM, G•

eM are two coherent filtrations of eM, then, locally
on X, there exists k0 such that, for every k, we have

Fk�k0

eM ⇢ Gk
eM ⇢ Fk+k0

eM.

Exercise 8.63 (Local existence of coherent filtrations). Let F•
eM be a filtration of eM.

(1) Write RF
eM =

L
k
Fk

eM⇣
k, where ⇣ is a new variable, and show that, if eM

has a coherent filtration, then it is eDX -coherent. [Hint : Use that the tensor product
C[⇣]/(⇣ � 1)⌦C[⇣] • is right exact.]

(2) Conversely, show that any coherent eDX -module admits locally a coherent fil-
tration. [Hint : Choose a local presentation eDq

X |U
'�! eDp

X |U ! eM|U ! 0, and show
that the filtration induced on eM|U by F•

eDp

X |U is coherent by using Exercise 8.62: Set
eK = Im' and reduce the assertion to showing that Fj

eDX \ eK is eOX -coherent; prove
that, up to shrinking U , there exists ko 2 N such that '(Fk

eDq

X |U ) ⇢ Fk+ko

eDp

X |U

for every k; deduce that '(Fk
eDq

X |U ), being locally of finite type and contained in
a coherent eOX -module, is eOX -coherent for every k; conclude by using the fact that
an increasing sequence of coherent eOX -modules in a coherent eOX -module is locally
stationary.]

(3) Show that a coherent filtration F•
eM satisfies Fp

eM = 0 for p⌧ 0 locally [Hint :
Use that this holds for the filtration constructed in (2) and apply Exercise 8.62(2).]

(4) Show that, locally, any coherent eDX -module is generated over eDX by a coherent
eOX -submodule.

(5) Let eM be a coherent eDX -module and let eF be an eOX -submodule which is
locally finitely generated. Show that eF is eOX -coherent. [Hint : Choose a coherent
filtration F•

eM and show that, locally, eF ⇢ Fk
eM for some k; apply then the analogue

of Exercise 8.60(1) for eOX -modules.]

Exercise 8.64.
(1) Show statements similar to those of Theorem 8.8.7 for RF

eDX -modules, grFeDX -
modules, eOX(⇤D)-modules, eDX(⇤D)-modules and i

⇤ eDX -modules (see Exercise 8.59).
(2) Let eM be a coherent eDX -module. Show that eDX(⇤D) ⌦eDX

eM is eDX(⇤D)-
coherent and that i

⇤ eM is i
⇤ eDX -coherent.
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Exercise 8.65. Similarly to Corollary 8.8.8, prove that if ' : eM ! eN is a surjective
morphism of coherent eDX -modules and if F•

eM is coherent, then F•
eN := '(F•

eM) is
coherent as well.

Exercise 8.66.
(1) Show that RFDX is naturally filtered by locally free graded OX [z]-modules of

finite rank by setting (locally)
Fk(RFDX) =

X

|↵|6k

OX [z]@
↵

x
.

(2) Show that gr
F
(RFDX) = C[z]⌦C gr

FDX with the tensor product grading.
(3) For a filtered DX -module (M, F•M), show that, if one defines the filtration

Fk(RFM) =

X

j6k

FjM⌦C z
j
C[z],

then F•(RFM) is an F•(RFDX)-filtration and gr
F
(RFM) can be identified with

C[z]⌦C gr
FM, equipped with the tensor product grading.

Exercise 8.67. Recall (see e.g. [ST71, Prop. 1.9]) that, for a coherent sheaf F of
eOX -modules and a closed analytic subset Z ⇢ X, the sheaf �ZF consisting of local
sections which vanish away from Z is also the sheaf of local sections annihilated by
some power of IZ , and is a coherent sheaf of eOX -modules. Deduce a similar property
for coherent eDX -modules. [Hint : Prove that the assertion is local and apply the
result for eOX -modules for a large step of a coherent filtration of eM.]

Exercise 8.68. Let 0 ! eM0 ! eM ! eM00 ! 0 be an exact sequence of eDX -modules.
Show that Char eM = Char eM0[Char eM00. [Hint : Take a coherent filtration on eM and
induce it on eM0 and eM00.]

Exercise 8.69 (Coherent eDX -modules with characteristic variety T
⇤
X
X)

Assume that eM is coherent with characteristic variety contained in T
⇤
X
X ⇥ Cz.

(1) Show that, for any local coherent filtration F•
eM, the graded module gr

F eM is
locally of finite type, hence coherent (see Exercise 8.63(5)) over eOX .

(2) Deduce that, locally on X, there exists po such that gr
F

p
eM = 0 for p > po.

(3) For a DX -module M, deduce that M is locally free of finite rank.

Exercise 8.70 (Coherent DX -modules with characteristic variety contained in T
⇤
Y
X)

In this exercise, we switch to the case of DX -modules. Let ◆ : Y ,! X be the
inclusion of a smooth codimension p closed submanifold. Define the p-th algebraic
local cohomology with support in Y by R

p
�[Y ]OX = lim�!k

Extp(OX/Ik
Y
,OX), where IY

is the ideal defining Y . R
p
�[Y ]OX has a natural structure of DX -module. In local

coordinates (x1, . . . , xn) where Y is defined by x1 = · · · = xp = 0, we have

R
p
�[Y ]OX '

OCn [1/x1 · · ·xn]P
p

i=1
OCn(xi/x1 · · ·xn)

.

Denote this DX -module by BY X.



8.11. EXERCISES 309

(1) Show that BY X has support contained in Y and characteristic variety equal
to T

⇤
Y
X.

(2) Identify BY X with D◆⇤OY .
(3) Let M be a coherent DX -module with characteristic variety equal to T

⇤
Y
X.

Show that M is locally isomorphic to (BY X)
d for some d.

Exercise 8.71. Let M be a coherent DX -module equipped with a coherent filtration
F•M. Set M = RFM.

(1) Show that Char(RFM) = (CharM)⇥Cz, so that M is holonomic (in the sense
of Definition 8.8.29) if and only if M is holonomic. (In other words, for a strict coherent
eDX -module M, M/(z � 1)M is holonomic if and only if M itself is holonomic.)

(2) In such a case, show that Ext i
RFDX

(RFM, RFDX) consists of z-torsion if i 6=
dimX.

Exercise 8.72 (Characteristic variety of the external product, see [Kas03, §4.3])
Consider the setting of Lemma 8.6.10. Assume moreover that the filtrations

F•MX , F•MY are coherent. Show that F•(MX ⇥D MY ) is coherent. Conclude that
Char(MX ⇥D MY ) = CharMX ⇥ CharMY .

Exercise 8.73 (Projection formula for eO-modules). Let X,Y be complex manifolds,
X being compact, let eLX be an eOX -module and let us denote by p : X ⇥Y ! X and
q : X ⇥ Y ! Y the projections.

(1) Show that there exists a natural morphism eOY ⌦eC R�(X, eLX) ! Rq⇤p
⇤eLX .

[Hint : Justify the following composition of morphisms

eOY ⌦eC R�(X, eLX)
⇠�! eOY ⌦eC Rq⇤p

�1eLX ' Rq⇤(q
�1eOY ⌦eC p

�1eLX) �! Rq⇤p
⇤eLX

and conclude.]

The goal of the remaining part is to prove (8.8.26), that is, if eLX is the inductive
limit of its coherent eOX -submodules this morphism is an isomorphism.

(2) Reduce the statement to the case where eLX is eOX -coherent. [Hint : Proper
pushforward commutes with inductive limits.]

(3) Consider first the case of OX -modules. Use Grauert’s theorem (see e.g. [BS76,
Th. 4.12]) to prove the result.

(4) For eOX -modules, apply the previous result to each graded piece and conclude.

Exercise 8.74 (Proof of Lemma 8.8.42). Let eMi (i = 1, 2) be left eDX -modules (consider
right modules as left modules on eDop

X
).

(1) Show that

RHom eDX1
⇥eC

eDX2

( eM1 ⇥eC
eM2,

eDX1
⇥eC

eDX2
)

' RHom eDX1

( eM1,
eDX1

)⇥eC RHom eDX2

( eM2,
eDX2

)
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[Hint : let I
•
i

(resp. I•) be a eDXi
⌦ eDop

Xi
(resp. (eDX1

⇥eC
eDX2

) ⌦ (eDX1
⇥eC

eDX2
)
op)-

injective resolution of eDXi
(resp. I•

1
⇥eC I

•
2
). Show the existence of a (eDX1

⇥eC
eDX2

)
op-

linear morphism

Hom eDX1

( eM1, I
•
1
)⇥eC Hom eDX2

( eM2, I
•
2
) = Hom eDX1

⇥eC
eDX2

( eM1 ⇥eC
eM2, I

•
1
⇥eC I

•
2
)

�! Hom eDX1
⇥eC

eDX2

( eM1 ⇥eC
eM2, I

•
)

That it is an isomorphism is a local question, and as each eMi is coherent, by taking a
local free resolution of eMi, it is enough to check this for eDXi

, for which the assertion
is easy.]

(2) Show that there exists a natural morphism (in D
+
(eDop

X1⇥X2
)):

RHom eDX1
⇥eC

eDX2

( eM1 ⇥eC
eM2,

eDX1
⇥eC

eDX2
)⌦eDX1

⇥eC
eDX2

eDX1⇥X2

�! RHom eDX1
⇥eC

eDX2

( eM1 ⇥eC
eM2,

eDX1⇥X2
),

where eDX1⇥X2
is regarded as a eDX1

⇥eC
eDX2

-module and as a eDop

X1⇥X2
-module. [Hint :

consider an injective resolution J
• of eDX1

⇥eC
eDX2

as a (eDX1
⇥eC

eDX2
)⌦(eDX1

⇥eC
eDX2

)
op-

module. Deduce a natural morphism of eDop

X1⇥X2
-modules:

Hom eDX1
⇥eC

eDX2

( eM1 ⇥eC
eM2, J

•
)⌦eDX1

⇥eC
eDX2

eDX1⇥X2

�! Hom eDX1
⇥eC

eDX2

( eM1 ⇥eC
eM2, J

• ⌦eDX1
⇥eC

eDX2

eDX1⇥X2
).

Then choose an injective resolution K
• of J•⌦eDX1

⇥eC
eDX2

eDX1⇥X2
as a (eDX1

⇥eC
eDX2

)⌦
eDop

X1⇥X2
-module, and obtain the desired morphism.]

Show moreover that, if eMi are eDXi
-coherent, then this morphism is an isomorphism

in D
b
(eDop

X1⇥X2
). [Hint : the assertion is local, so by taking a local free resolution of

eMi, reduce to the case where eMi =
eDXi

and conclude.]
(3) Lastly, show that there exists a natural morphism

RHom eDX1
⇥eC

eDX2

( eM1 ⇥eC
eM2,

eDX1⇥X2
) �! RHom eDX1⇥X2

( eM1 ⇥eD
eM2,

eDX1⇥X2
).

[Hint : as eDX1⇥X2
is eDX1

⇥eC
eDX2

-flat, an injective eDX1⇥X2
-module is also an injective

eDX1
⇥eC

eDX2
-module. Take an injective resolution I

• of eDX1⇥X2
as a eDX1⇥X2

⌦
eDop

X1⇥X2
-module, show the existence of a morphism of eDop

X1⇥X2
-complexes

Hom eDX1
⇥eC

eDX2

( eM1 ⇥eC
eM2, I

•
) �! Hom eDX1⇥X2

( eM1 ⇥ eM2, I
•
),

and obtain the desired morphism.]
Moreover, show as in (2) that it is an isomorphism if eMi are eDXi

-coherent.
By using the usual shifts, deduce

D eM1 ⇥eD D eM2 'D( eM1 ⇥eD
eM2).

[Hint : the left-hand term is that considered in (2), after (1), and the right-hand term
is the second one in (3).]
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8.11.h. Exercises for Section 8.10

Exercise 8.75. Let L be an OX -module. Recall (Exercise 8.29) that Sp(L⌦OX
DX) is

a resolution of L as an OX -module. Show that the morphism (8.10.1) is the augmen-
tation morphism Sp

0
(L⌦OX

DX)! L.

Exercise 8.76.
(1) Show that any OX -linear morphism u : L! L0 is a differential operator from L

to L0 and that a corresponding v is u⌦ 1.
(2) Assume that L,L0 are right DX -modules. Let u : L! L0 be DX -linear. Show

that the corresponding v is DX -linear for both structures (right)triv and (right)tens
(see Exercise 8.19) on L(0) ⌦OX

DX .
(3) Show that HomDi↵(OX ,OX) = DX .
(4) Show that the morphism in Definition 8.10.6 is compatible with composition.

Conclude that the composition of differential operators is a differential operator and
that it is associative.

Exercise 8.77 (Integrable connections are differential operators)
Let M be an OX -module and let r : M! ⌦

1

X
⌦OX

M be an integrable connection
on M.

(1) Show that r is a differential morphism, by considering the right DX -linear
morphism

v(m⌦ P ) := r(m)⌦ P +m⌦r(P ),

for any local section m of M and P of DX , and where rP is defined in Exercise 8.5.
Extend this result to connections (k)r.

(2) Let M0,M00 be OX -submodules of M such that (k)r induces a C-linear mor-
phism (k)r0 : ⌦k

X
⌦OX

M0 ! ⌦
k+1

X
⌦OX

M00. Show that (k)r0 is a differential morphism.

Exercise 8.78. Show that Mod(OX ,Di↵X) is an additive category, i.e.,
• HomDi↵(L,L

0
) is a C-vector space and the composition is C-bilinear,

• the 0 OX -module satisfies HomDi↵(0, 0) = 0,
• HomDi↵(L1 � L2,L

0
) = HomDi↵(L1,L

0
) � HomDi↵(L2,L

0
) and similarly with

L0
1
,L0

2
.

Exercise 8.79 (De Rham and inverse de Rham on induced D-modules)
(1) Let L be an OX -module. Show that H

k
�
p

DR(L⌦OX
DX)

�
= 0 for k 6= 0 and

H
0
�
p

DR(L⌦OX
DX)

�
= L. [Hint : Use Exercise 8.29.]

(2) Show that H
0
(
p

DR) defines a functor Modi(DX) 7! Mod(OX ,Di↵X), which
will be denoted by diff

DR.
(3) Show that diff

DR
-1

: Mod(OX ,Di↵X) 7! Modi(DX) is an equivalence of cate-
gories, a quasi-inverse functor being diff

DR : L⌦OX
DX 7! L, diff

DR(v) = u.
(4) Show that the composed functor Mod(OX ,Di↵X) 7! Modi(DX) 7! Mod(DX),

still denoted by diff
DR

-1, is fully faithful, i.e., it induces a bijective morphism

HomDi↵(L,L
0
)
⇠�! HomDX

(L⌦OX
DX ,L0 ⌦OX

DX).
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(One may think that we “embed” the additive (non abelian) category Mod(OX ,Di↵X)

in the abelian category Mod(DX); we will use this “embedding” to define below acyclic
objects).

Exercise 8.80 (The de Rham functor diff
DR).

(1) Show that the deRham complex of a left DX -module M is a complex in
C
b
(OX ,Di↵X). [Hint : Use Exercise 8.76(1).]
(2) By using Exercise 8.26(1), show that the de Rham complex of a right DX -mod-

ule M is a complex in C
b
(OX ,Di↵X)

(3) Show that the de Rham complex of a ?-bounded complex of right DX -modules
has its associated single complex in C

?
(OX ,Di↵X). [Hint : Use Exercise 8.24.]

(4) Conclude that p

DR induces a functor diff
DR : C

?
(DX) 7! C

?
(OX ,Di↵X).

(5) Extend this functor as a functor of triangulated categories K
?
(DX) !

K
?
(OX ,Di↵X).

Exercise 8.81. Let M be a DX -module. Show that God
•

diff
DRM is a differential

complex. [Hint : Identify this complex with diff
DRGod

•
M.]

Exercise 8.82. Show that the family N of Di↵-acyclic objects forms a null system in
K
?
(OX ,Di↵X), i.e.,
• the object 0 belongs to N,
• an object L• belongs to N iff L•

[1] does so,
• if L• ! L0• ! L00• ! L•

[1] is a distinguished triangle of K?
(OX ,Di↵X), and if

L•
,L0• are objects in N, then so is L00•.

[Hint : Use that the extension of diff
DR

-1 to the categories K
? is a functor of triangu-

lated categories.]

Exercise 8.83 (The functor D
?
(OX) 7! D

?
(OX ,Di↵X)). Using Exercise 8.76(1), define

a functor C?
(OX) 7! C

?
(OX ,Di↵X) and K

?
(OX) 7! K

?
(OX ,Di↵X). By using that DX

is OX -flat, show that if L• is acyclic in K
?
(OX), then L•⌦OX

DX is acyclic in K
?
(DX).

Conclude that the previous functor extends as a functor D
?
(OX) 7! D

?
(OX ,Di↵X).

Exercise 8.84. Show that the following diagram commutes:

D
?
(DX)

diff
DR

//

p

DR

))

D
?
(OX ,Di↵X)

Forget

// D
?
(CX)

Exercise 8.85. Assume that L• is Di↵-acyclic. Show that ForgetL• is acyclic. [Hint :
By definition, diff

DR
-1

(L•
) is acyclic; then p

DR
diff

DR
-1

(L•
) is also acyclic and quasi-

isomorphic to ForgetL•.]
Conclude that Forget induces a functor D

?
(OX ,Di↵X) 7! D

?
(CX), and that we

have an isomorphism of functors
p

DR
diff

DR
-1 ⇠�! Forget : D

?
(OX ,Di↵X) 7�! D

?
(CX).

Compare with Exercise 8.29.
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Exercise 8.86. Let L,L0 be two OX -modules and

v : M = L⌦OX
DX �!M0 = L0 ⌦OX

DX

a DX -linear morphism. It defines a f
�1DY -linear morphism

v ⌦ 1 : M⌦DX
DX!Y �!M0 ⌦DX

DX!Y ,

where 1 is the section introduced in Exercise 8.54(1). This is therefore a morphism

ev : L⌦f�1OY
f
�1DY �! L0 ⌦f�1OY

f
�1DY .

Show that diff
DRY (ev) = diff

DRX(v).
[Hint : Since the problem is local, argue with coordinates on X and Y and write

f = (f1, . . . , fm). Let ` be a local section of L, and let 1X be the unit of DX . Set
v(`⌦ 1X) = w(`) =

P
↵
w(`)↵ ⌦ @↵x and ev(`⌦ 1X) = v(`⌦ 1X)⌦ 1X!Y . Show that,

if ↵i 6= 0,

@
↵i

xi
⌦ 1X!Y = @

↵i�1
xi

X

j

@fj

@xi

⌦ @yj
.

Deduce that the image of ev(` ⌦ 1X) by the map L ⌦f�1OY
f
�1DY ! L is equal to

the image of w(`)0, which is nothing but u(`) by definition of u := H
0
DRX(v).]

Exercise 8.87.
(1) Show that the Leray filtration is a decreasing finite filtration and that it is

compatible with the differential.
(2) Show that, locally, being in Ler

p means having at least p factors dyj in any
summand.

Exercise 8.88 (The connecting morphism). Let 0 ! C
•
1
! C

•
2
! C

•
3
! 0 be an exact

sequence of complexes. Let [µ] 2 H
k
C

•
3

and choose a representative in C
k

3
with

dµ = 0. Lift µ as eµ 2 C
k

2
.

(1) Show that deµ 2 C
k+1

1
and that its differential is zero, so that the class [deµ] 2

H
k+1

C
•
1

is well-defined.
(2) Show that � : [µ] 7! [deµ] is a well-defined morphism H

k
C

•
3
! H

k+1
C

•
1
.

(3) Deduce the existence of the cohomology long exact sequence, having � as its
connecting morphism.

8.12. Comments

Most of the results in this chapter are now classical and explained in various refer-
ence books (e.g. [MS93a, MS93b], [Bjö93], [MN04], [Kas03], [HTT08]). We have
emphasized their adaptation to the case of filtered D-modules, or more precisely to the
case of eD-modules, in a way similar to what is done in [Sab05] with the analytifica-
tion R with respect to the variable z of the sheaf eD, and [Moc07, Moc11a, Moc15].

The notion of induced D-module and the idea of inverting the de Rham func-
tor is due to M. Saito [Sai89a]. The comparison of the notion of pushforward of a
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D-module with the Katz-Oda construction of the Gauss-Manin connection is taken
from [DMSS00].

The pushforward of a holonomic D-module M by a finite morphism (or finite on
the support of M) is worth considering in detail. This is done in [Käl18] in the
algebraic setting. In particular, the decomposition theorem holds without any Hodge
assumption for such morphisms.



CHAPTER 9

NEARBY AND VANISHING CYCLES OF eD-MODULES

Summary. We introduce the Kashiwara-Malgrange filtration for a eDX -module,
and the notion of strict R-specializability. This leads to the construction of the
nearby and vanishing cycle functors. One of the main results is a criterion for the
compatibility of this functor with the proper pushforward functor of eD-modules.

Throughout this chapter we use the following notation.

9.0.1. Notation.
• X denotes a complex manifold.
• H denotes a smooth hypersurface in X.
• Locally on H, we choose a decomposition X = H ⇥�t, where �t is a small disc

in C with coordinate t. We have the corresponding z-vector field e@t.
• D denotes an effective divisor on X with support denoted by |D|. Locally on D,

we choose a holomorphic function g : X ! C such that D = (g). We then have
|D| = g

�1
(0).

• Recall that eDX means DX or RFDX and, in the latter case, eDX -modules mean
graded eDX -modules (see Chapter 8). We then use (k) for the shift by k of the grading
(see Section 5.1.a). When the information on the grading is not essential, we just
omit to indicate the corresponding shift. We use the convention that, whenever eDX

means DX , all conditions and statements relying on gradedness or strictness are
understood to be empty or tautological.

9.0.2. Remark (Left and right eD-modules). For various purposes, it is more convenient
to work with right eD-modules. However, left eD-modules are more commonly used
in applications. We will therefore mainly treat right eD-modules and give the corre-
sponding formulas for left eD-modules in various remarks.

9.0.3. Remark (Restriction to z = 1). Throughout this chapter we keep the Conven-
tion 8.1.11. All the constructions can be done either for DX -modules or for graded
RFDX -modules, in which case a strictness assumption (strict R-specializability) is
most often needed. By “good behaviour with respect to the restriction z = 1”,
we mean that the restriction functor eM 7! M := eM/(z � 1) eM is compatible with
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the constructions. We will see that many, but not all, of the constructions in this
chapter have good behaviour with respect to setting z = 1. We will make this precise
for each such construction.

9.1. Introduction

This chapter has one main purpose: Given a coherent eDX -module, to give a suffi-
cient condition such that the restriction functor to a divisor D, producing a complex
of eDX -modules supported on the divisor D which corresponds to the functor D◆H⇤D◆

⇤
H

when ◆H : H ,! X is the inclusion of a smooth hypersurface, gives rise to a complex
of eDX -modules with coherent cohomology.

The property of being specializable along D will answer this first requirement. How-
ever, in the case where eDX = RFDX , strictness comes into play in a fundamental way
in order to ensure a good behaviour. This leads to the notion of strict specializability
along D. When forgetting the F -filtration, i.e., when considering DX -modules, the
strictness condition is empty.

Given any holomorphic function g on X with associated divisor D and for ev-
ery strictly R-specializable eDX -module eM along D, we introduce the nearby cycle
eDX -modules  g,�

eM (� 2 C
⇤ with |�| = 1) and the vanishing cycle module �g,1 eM.

They are the “generalized restriction functors”, which the usual restriction functors
can be deduced from.

The construction is possible when the Kashiwara-Malgrange V -filtration exists on
a given eDX -module. More precisely, the notion of V -filtration is well-defined in the
case when D is a smooth divisor. We reduce to this case by considering, when more
generally D = (g), the graph inclusion ◆g : X ,! X ⇥ C. The V -filtration can exist
on the pushforward D◆⇤ eM. We then say that eM is strictly specializable along D.

Kashiwara’s equivalence is an equivalence (via the pushforward functor ◆Y :Y ,!X)
between the category of coherent DY -modules and that of coherent DX -modules
supported on the submanifold Y . When Y has codimension 1 in X, this equivalence
can be extended as an equivalence between strict coherent eDY -modules and coherent
eDX -modules which are strictly R-specializable along Y .

Complex Hodge modules will satisfy a property of semi-simplicity with re-
spect to their support that we introduce in this chapter under the name of strict
S-decomposability (“S” is for “support”). The support of a coherent eDX -module eM
is a closed analytic subspace in X. It may have various irreducible components.
We introduce a condition that ensures the following to properties.

• The eDX -module eM decomposes as the direct sum of eDX -modules, each of which
supported by a single component.

• Moreover, each such summand decomposes itself as the direct sum of eDX -mod-
ules, each of which supported on an irreducible closed analytic subset of the support
of the given summand, in order to satisfy a “geometric simplicity property”, namely
each such new summand has no coherent sub- nor quotient module supported on a
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strictly smaller closed analytic subset. We then say that such a summand has pure
support.

In Section 9.8, we give a criterion in order that the functors  g,� and �g,1 com-
mute with proper pushforward. This will be an essential step in the theory of complex
Hodge modules (see Chapter 14), where we need to prove that the property of strict
S-decomposability (i.e., geometric semi-simplicity) is preserved by projective pushfor-
ward.

9.2. The filtration V•
eDX relative to a smooth hypersurface

Let H ⇢ X be a smooth hypersurface(1) of X with defining ideal IH ⇢ OX . Let
us set eI`

H
= eOX for ` < 0 and eI`

H
= I`

H
eOX for ` > 0. The sheaf of logarithmic vector

fields along H, denoted by e⇥X(logH) is the subsheaf of the sheaf e⇥X of holomorphic
vector fields on X which preserve the ideal eIH . This is a sheaf of Lie sub-algebras
of e⇥X . We denote by ◆H : H ,! X the inclusion.

9.2.a. The sheaf of rings V0
eDX and its modules. The subsheaf of algebras

of eDX generated by eOX and e⇥X(� logH) is called the sheaf of logarithmic differential
operators along H. We will denote it by V0

eDX . In local coordinates (t, x2, . . . , xn)

where H has equation t = 0, a local section of e⇥X(� logH) can be written as a1te@t+
a2
e@x2

+ · · ·+an
e@xn

, where ai are local sections of eOX . Local sections of V0
eDX consist

of local sections of eDX expressed only with te@t, e@x2
, e@xn

. This sheaf shares many
properties with eDX that we summarize below, and whose proof is left as an exercise
(see Exercise 9.1).

We denote by e⌦1

X
(logH) (sheaf of logarithmic 1-forms along H) the eOX -dual

of e⇥X(� logH). It is the locally free eOX -module locally generated by e⌦1

X
and

edg/g for any local equation g of H. In local coordinates as above, one can choose
edt/t, edx2, . . . ,

edxn as an eOX -basis.
We set e⌦k

X
(logH) = ^ke⌦1

X
(logH) and we consider the logarithmic de Rham com-

plex (e⌦•
X
(logH), ed), which contains (e⌦•

X
, ed) as a sub-complex. We also consider

the corresponding complex where we tensor each term with eOX(�H), and with in-
duced differential, that we denote by e⌦•

X
(logH)(�H). For each k > 0, the sheaf

e⌦k

X
(logH)(�H) maps injectively to e⌦k

X
and the cokernel is ◆H⇤e⌦k

H
. The morphism

T
⇤
◆H : e⌦k

X
! ◆H⇤e⌦k

H
is the pullback of forms. We then have a natural exact sequence

of complexes

0 �! (e⌦•
X
(logH)(�H), ed) �! (e⌦•

X
, ed) �! ◆H⇤(e⌦•

H
, ed) �! 0.

On the other hand, we have an exact sequence

0 �! (e⌦•
X
, ed) �! (e⌦•

X
(logH), ed) Res����! ◆H⇤(e⌦•�1

H
,�ed)(�1) �! 0,

(1)Other settings can be considered, for example a smooth subvariety, or a finite family of smooth
subvarieties, but they will not be needed for our purpose.
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where ResH is defined in local coordinates by (setting I = i1, . . . , ik)

ResH

⇣
'(t, x)

edt
t
^ edxI

⌘
= '(0, x)edxI .

The Tate twist (�1) is due to the division by edt.
We have ^n(e⌦1

X
(logH)) = e!X(H) := e!X ⌦eOX

eOX(H), and e!X(H) is a right
V0

eDX -module. One can then define the side-changing functors for V0
eDX -modules by

means of e!X(H).
If eN is a left, resp. right V0

eDX -module, one can define the logarithmic deRham
complex p

DRlog(
eN), resp. the logarithmic Spencer complex Sp

log
(eN) (since H is fixed,

there may be no confusion for what log is for), in a way similar to that of Section 8.4
by means of logarithmic forms and vector fields. For example (the • indicates the
term in degree zero),

p

DRlog
eN = {0! eN

(�1)n er
�������! e⌦1

X
(logH)⌦ eN �! · · · �! e⌦n

X
(logH)⌦ eN

•
! 0}.

The complex Sp
log

(V0
eDX) is a resolution of eOX as a left V0

eDX -module and
p

DRlog(V0
eDX) is a resolution of e!X(H) as a right V0

eDX -module (adapt Exercises
8.22 and 8.21 to V0

eDX). From now on, we denote both as p

DRlog(
eN).

To any (say, right) V0
eDX -module eN is associated a right eDX -module eM, defined by

(9.2.1) eM = eN ⌦
V0

eDX

eDX ,

where the left structure of eDX is used for the tensor product and the right one for
the right eDX -module structure.

9.2.2. Proposition. There exists a natural morphism of complexes p

DRlog
eN! p

DR eM.
If any local equation t of H acts in an injective way on eN, it is a quasi-isomorphism.

Proof. We treat the right case. By Exercise 9.1, we have

Sp
log

(eN) ' eN ⌦
V0

eDX

Sp
log

(V0
eDX),

and we recall (see Exercise 8.24) that, similarly, Sp( eM) ' eM⌦eDX

Sp(eDX). We have
a natural morphism Sp

log
(V0

eDX) ! Sp(eDX) and we obtained the desired natural
morphism Sp

log
(eN)!Sp( eM) as

Sp
log

(eN) ' eN ⌦
V0

eDX

Sp
log

(V0
eDX)

�! eN ⌦
V0

eDX

Sp(eDX) ' (eN ⌦
V0

eDX

eDX)⌦eDX

Sp(eDX) ' Sp( eM).

On the one hand, Sp
log

(V0
eDX) is a resolution of eOX as a left V0(

eDX)-module, and
Sp(eDX) is a resolution of eOX as a left eDX -module, that we can also regard as a resolu-
tion of eOX as left V0(

eDX)-module. On the other hand, since each term of Sp
log

(V0
eDX)

is V0
eDX -locally free, Sp

log
(eN) is a realization of eN⌦L

V0
eDX

eOX . If t : eN! eN is injective
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for any local equation of H, we have eN⌦
V0

eDX

eDX = eN⌦L

V0
eDX

eDX by Proposition 9.2.3

below, and thus, since each term of Sp(eDX) is eDX -locally free, we obtain

eN ⌦
V0

eDX

Sp(eDX) ' eN ⌦L

V0
eDX

Sp(eDX) ' eN ⌦L

V0
eDX

eOX .

It follows that the natural morphism above

eN ⌦
V0

eDX

Sp
log

(V0
eDX) �! eN ⌦

V0
eDX

Sp(eDX)

is a quasi-isomorphism.

9.2.b. Tensoring with respect to V0
eDX . In this section, we analyze more pre-

cisely the tensor product (9.2.1).

9.2.3. Proposition. Let eN be a right V0
eDX-module such that for some (or any) local

equation t of H, t : eN! eN is injective. Then

H
i
(eN ⌦L

V0
eDX

eDX) = 0 for i 6= 0,

that is,
eN ⌦L

V0
eDX

eDX ' eN ⌦
V0

eDX

eDX .

Furthermore,

eN ⌦
V0

eDX

eDX ' Coker

�eN ⌦eOX

e⇥X(� logH)
�
⌦eOX

eDX �! eN ⌦eOX

eDX

(n⌦ ✓)⌦ P 7�! (n✓ ⌦ P � n⌦ ✓P )

�
.

Proof. We first revisit Exercise 9.2. Recall (see Exercise 9.1) that SpV0
eDX is the

complex having V0
eDX ⌦eOX

e⇥X,k(logH) as its term in degree �k, and differential the
left V0

eDX -linear morphism

V0
eDX ⌦eOX

e⇥X,k(logH)
e���! V0

eDX ⌦eOX

e⇥X,k�1(logH)

given, for ✓ = ✓1 ^ · · · ^ ✓k

e�(P ⌦ ✓) =

kX

i=1

(�1)i�1(P✓i)⌦ b✓i +

X

i<j

(�1)i+j
P ⌦ ([✓i, ✓j ] ^ b✓i,j),

with b✓i = ✓1^· · ·^✓i�1^✓i+1^· · ·^✓k, and a similar meaning for b✓i,j (see Exercise 9.1).
Since Sp(V0

eDX) is a resolution of eOX by locally free left V0
eDX -modules which are

eOX -locally free, we have
eN ' eN ⌦eOX

SpV0
eDX ,

with their right V0
eDX -module structure, by using the tensor right structure on the

right-hand side. The complex eN ⌦eOX

SpV0
eDX has eN⌦eOX

(V0
eDX⌦eOX

e⇥X,k(logH))

as its term in degree �k, and differential Id⌦e�, which is right V0
eDX -linear for the

tensor right structure (see Exercise 8.12(2a)). Let us make explicit the differential.
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For P 2 V0
eDX , the element [n⌦ (1⌦ ✓)] · P is complicated to express, but we must

have, by right V0
eDX -linearity of Id⌦e�,

(Id⌦e�)
⇥
(n⌦ (1⌦✓)) · P

⇤
=
⇥
(Id⌦e�)(n⌦ (1⌦ ✓))

⇤
· P

=


n⌦

h kX

i=1

(�1)i�1✓i ⌦ b✓i +

X

i<j

(�1)i+j
1⌦ ([✓i, ✓j ] ^ b✓i,j)

i�
· P.

We now write

n⌦ (✓i ⌦ b✓i) = n✓i ⌦ (1⌦ b✓i)� [n⌦ (1⌦ b✓i)] · ✓i,

so the previous formula reads, after the involution

eN ⌦eOX

(V0
eDX ⌦eOX

e⇥X,k(logH)) ' (eN ⌦eOX

e⇥X,k(logH))⌦eOX

V0
eDX

transforming the tens structure to the triv one, by denoting e�triv the corresponding
differential:

(9.2.4) e�triv
⇥
(n⌦ ✓)⌦ P

⇤
=

kX

i=1

(�1)i�1(n✓i ⌦ b✓i)⌦ P

�
kX

i=1

(�1)i�1(n⌦ b✓i)⌦ (✓iP ) +

X

i<j

(�1)i+j
(n⌦ ([✓i, ✓j ] ^ b✓i,j))⌦ P

=
⇥e�eN(n⌦ ✓)

⇤
⌦ P �

kX

i=1

(�1)i�1(n⌦ b✓i)⌦ (✓iP ),

where e�eN is the differential of the Spencer complex Sp
log

eN of eN as a right V0
eDX -mod-

ule.
We obtain, due to the local eOX -freeness of V0

eDX and eDX ,

eN ⌦L

V0
eDX

eDX ' (eN ⌦eOX

SpV0
eDX)⌦L

V0
eDX

eDX

'
�
(eN ⌦eOX

e⇥X,•(logH))⌦eOX

V0
eDX , e�triv

�
⌦L

V0
eDX

eDX

'
�
(eN ⌦eOX

e⇥X,•(logH))⌦L

eOX

V0
eDX , e�triv

�
⌦L

V0
eDX

eDX

'
�
(eN ⌦eOX

e⇥X,•(logH))⌦L

eOX

eDX , e�triv
�

'
�
(eN ⌦eOX

e⇥X,•(logH))⌦eOX

eDX , e�triv
�
.

In the last two lines, e�triv is given by (9.2.4), where P is now a local section of eDX .
We have thus realized eN ⌦L

V0
eDX

eDX as a complex (eF• ⌦eOX

eDX , e�triv), where each

term eFk is an eOX -module (here, we forget the right V0
eDX -module structure of eN).

With respect to the filtration eF•⌦eOX

Fk
eDX , e�triv has degree one, and the differential

gr
F

1
e�triv of the graded complex eF• ⌦eOX

gr
F eDX is expressed as

e�triv
⇥
(n⌦ ✓)⌦Q

⇤
=

kX

i=1

(�1)i(n⌦ b✓i)⌦ (✓i ·Q)
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for a local section Q of grF eDX . The filtration Fp(
eF• ⌦eOX

eDX , e�triv) whose term in
degree �k is eF�k ⌦eOX

Fp�k eDX satisfies Fp(
eF• ⌦eOX

eDX , e�triv) = 0 for p < 0 and we
have

(9.2.5) gr
F
(eF• ⌦eOX

eDX , e�triv) = (eF• ⌦eOX

gr
F eDX , gr

F

1
e�triv),

compatible with the grading.

9.2.6. Assertion. The graded complex (eF• ⌦eOX

gr
F eDX , gr

F

1
e�triv) has zero cohomology

in any degree i 6= 0.

Proof. In local coordinates t, x2, . . . , xn such that H={t=0}, let us choose a basis
e@t, e@x2

, . . . , e@xn
as a basis of local vector fields, and let us replace e@t with te@t to

obtain a basis of logarithmic vector fields. Let ⌧, ⇠2, . . . , ⇠n resp. t⌧, ⇠2, ⇠2, . . . , ⇠n be
the corresponding basis of gr

F

1
eDX resp. grF

1
V0

eDX . Then gr
F
(eF• ⌦eOX

eDX , e�triv) is
identified with a Koszul complex. More precisely, it isomorphic to the simple complex
associated to the n-cube with vertices eN ⌦eOX

gr
F eDX = eN ⌦eC

eC[⌧, ⇠2, . . . , ⇠n] and
arrows in the i-th direction all equal to multiplication by ⇠i if i 6= 1 and by t ⌦ ⌧ if
i = 1.

In such a way we obtain that (eF• ⌦eOX

gr
F eDX , gr

F

1
e�triv) is quasi-isomorphic to the

complex
eN ⌦eC

eC[⇠1]
t⌦ ⌧�����! eN ⌦eC

eC[⇠1]
•

,

where • indicates the term in degree zero. Injectivity of the differential immediately
follows from the injectivity assumption on t : eN! eN.

By (9.2.5), the assertion applies to the graded complex gr
F
(eF• ⌦eOX

eDX , e�triv)
and therefore each gr

F

p
(eF• ⌦eOX

eDX , e�triv) has cohomology in degree zero at most.
It follows that each Fp(

eF• ⌦eOX

eDX , e�triv) satisfies the same property, and passing to
the inductive limit, so does the complex (eF• ⌦eOX

eDX , e�triv).
Lastly, eN ⌦

V0
eDX

eDX is isomorphic to the cokernel of

e�triv : (eN ⌦eOX

e⇥X(� logH))⌦eOX

eDX �! eN ⌦eOX

eDX ,

and the last formula of the proposition follows from the expression (9.2.4) of e�triv.

Let eN be a left eDX -module. We consider similarly the tensor product eDX⌦L

V0
eDX

eN
with the trivial left eDX -action, and where the right V0

eDX -action on eDX is used for
the tensor product.

9.2.7. Corollary. Let eN be a coherent left V0
eDX-module such that for some local equa-

tion t of H, t : eN! eN is injective. Then H
i
(eDX ⌦L

V0
eDX

eN) = 0 for i 6= 0.

Proof. Here, the right action of V0
eDX on eDX is used. The question is local, and we

can interpret the side-changing functor for V0
eDX -modules (given by eNleft 7! eNright

=

e!X(H) ⌦eOX

eNleft) as coming from an involution of V0
eDX induced by an involution
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of eDX (see Exercise 8.17). If (V0
eDX)

• is a finite resolution of eNleft by free V0
eDX -mod-

ule, it gives rise to a eDX -free resolution (eDX)
• of eDX ⌦L

V0
eDX

eN. Regarding these

modules as right eDX -modules via the involution above, Proposition 9.2.3 implies that
the cohomology of this complex vanishes in any nonzero degree.

9.2.c. The filtration V•
eDX . One can characterize sections of V0

eDX on an open
subset U of X as follows:

V0
eDX(U) = {P 2 eDX(U) | P · eIj

H
(U) ⇢ eIj

H
(U), 8 j 2 Z}.

This leads us to define a canonical increasing filtration of eDX indexed by Z. For
every k 2 Z, the subsheaf Vk

eDX ⇢ eDX (k 2 Z) consists of operators P such that
PeIj

H
⇢ eIj�k

H
for every j 2 Z. For every open subset U of X we thus have

(9.2.8) Vk
eDX(U) = {P 2 eDX(U) | P · eIj

H
(U) ⇢ eIj�k

H
(U), 8 j 2 Z}.

This defines an increasing filtration V•
eDX of eDX indexed by Z. Note that one can

also define Vk
eDX(U) with the right action, that is, as the set of Q 2 eDX(U) such

that eIj
H
(U) ·Q ⇢ eIj�k

H
(U), 8 j 2 Z. See Exercise 9.3 for basic properties of V•

eDX .
The Euler vector field E is the class E of te@t in gr

V

0
eDX in some local product

decomposition as in Exercise 9.3. See Exercise 9.4 for its basic properties. Let us
insist on the fact that E only depends on H, not on the generator chosen in the
ideal eIH .

9.2.9. Structure of grV
0
eDX and gr

V
eDX . What is the geometric meaning of the sheaf of

rings gr
V

0
eDX? A natural question is to relate the sheaf eDH of differential operators

on H with it. While eDH can be identified to the quotient gr
V

0
eDX/Egr

V

0
eDX =

gr
V

0
eDX/gr

V

0
eDX E, one cannot in general consider it as a subsheaf of grV

0
eDX . This is

related to the possible non-triviality of the normal bundle of H in X.
When H is globally defined by a holomorphic function g, Exercise 9.4(3) shows an

identification gr
V

0
eDX ' eDH [E]. More generally, for any effective divisor D defined by

a holomorphic function g : X ! C, we will often use the trick of the graph inclusion
◆g : X ,! X ⇥ C and we will then consider the filtration V•

eDX⇥C with respect to
X ⇥ {0}, so that we will be able to identify gr

V

0
eDX⇥C with the ring eDX [E].

What about the sheaf gr
V
eDX? Let ⌫ : NHX ! H denote the normal bundle of H

in X. Let us define the sheaf eD[NHX] of differential operators which are algebraic in the
fibers of ⌫. We first consider the sheaf eO[NHX] on X of holomorphic functions which
are algebraic in the fibers of ⌫. It is locally defined by using a local trivialization
of ⌫ as a product X ⇥ C, where C has coordinate t. Then eO[NHX] = eOX [t]. For
an intrinsic definitions, one extends in a canonical way ⌫ as a projective fibration
e⌫ : P(NHX � O) with fibers P

1 and we denote by X1 the section 1 of this bundle.
Then eO[NHX] := e⌫⇤eOP(NHX�O)(⇤X1). Now, eD[NHX] is by definition the sheaf of
differential operators with coefficients in eO[NHX]. It is similarly equipped with its
V -filtration V•

eD[NHX]. Then there is a canonical isomorphism (as graded objects)
gr

V eDX ' gr
V eD[NHX], and the latter sheaf is isomorphic (forgetting the grading) to

eD[NHX].
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9.2.10. Remark (Restriction to z = 1). The V -filtration restricts well when setting
z = 1, that is, VkDX = Vk

eDX/(z � 1)Vk
eDX = Vk

eDX/(z � 1)eDX \ Vk
eDX .

9.3. Specialization of coherent eDX-modules

In this section, we denote by H a smooth hypersurface of a complex manifold X

and by t a local generator of IH . We use the definitions and notation of Section 9.2.

9.3.1. Caveat. In Subsections 9.3.a–9.3.c, when eDX = RFDX , we will forget about the
grading of the eDX -modules and morphisms involved, in order to keep the notation
similar to the case of DX -modules. From Section 9.4, we will remember the shift of
grading for various morphisms, in the case of RFDX -modules (this shift has no effect
in the case of DX -modules).

9.3.a. Coherent V -filtrations

The coherence of the Rees sheaf of rings RV
eDX is proved in Exercise 9.8.

9.3.2. Definition (Coherent V -filtrations indexed by Z). Let eM be a coherent right
eDX -module. A V -filtration indexed by Z is an increasing filtration U•

eM which satis-
fies

Vk
eDX · U`

eM ⇢ U`+k
eM 8 k, ` 2 Z.

In particular, each U`
eM is a right V0

eDX -module. We say that it is a coherent V -filtra-
tion if each U`

eM is V0
eDX -coherent, locally on X, there exists `o > 0 such that, for

all k > 0,

U�k�`0
eM = U�`o

eMt
k and Uk+`0

eM =

kX

j=0

U`o
eMe@j

t
.

The definition is similar for left eDX -modules and decreasing filtrations.

We will have to consider the notion of filtration indexed by R, so we introduce the
notion of coherence for such a filtration.

9.3.3. Definition (Coherent V -filtrations indexed by R). Let eM be a coherent right
eDX -module. A V -filtration indexed by R is an increasing filtration U•

eM which satis-
fies

Vk
eDX · U↵

eM ⇢ U↵+k
eM 8 k 2 Z, ↵ 2 R.

We set U<↵
eM :=

S
↵0<↵

U<↵0 eM and gr
U

↵
eM := U↵

eM/U<↵
eM. We say that U•

eM is a
coherent V -filtration indexed by R if

• there exists a finite set A ⇢ (�1, 0] such that U<↵
eM = U↵

eM for ↵ /2 A+ Z and
• for each ↵ 2 A, the Z-indexed filtration U↵+•

eM is a coherent V -filtration in the
sense of Definition 9.3.2.



324 CHAPTER 9. NEARBY AND VANISHING CYCLES OF eD-MODULES

In other words, giving a coherent V -filtration indexed by R is equivalent to giving
a finite family of coherent V -filtrations (U↵+•

eM)↵2A which are nested, that is, which
satisfy for all ↵,↵0 2 A and `, `0 2 Z, the relation

(9.3.4) ↵+ ` 6 ↵
0
+ `
0
=) U↵+`

eM ⇢ U↵0+`0
eM.

9.3.5. The Rees module of a V -filtration indexed by A + Z. The following construction
of extending the set of indices will prove useful (see Section 5.1.d). Let A ⇢ (�1, 0]
be a finite subset containing 0 and set r = #A. Let us fix the 1

r
Z-numbering of

A+Z = {. . . ,↵�1/r,↵0,↵1/r, . . . } which respects the order and such that ↵k = k for
any k 2 Z. We denote by A

V•
eDX the filtration indexed by 1

r
Z defined by A

Vp/r
eDX :=

Vbp/rc eDX . The Rees ring is RAV
eDX :=

L
k2Z

A
Vk/r

eDXu
k with u

r
= v. Note that

gr
A
V

k/r
eDX = 0 if k/r /2 Z and

gr
A
V eDX =

L
k2Z

gr
A
V

k/r
eDX =

L
p2Z

gr
V

p
eDX .

For a V -filtration U•
eM indexed by A+ Z we similarly set RU

eM =
L

k2Z U↵k/r

eMu
k,

which is an RAV
eDX -module since bk/rc + ↵`/r = ↵bk/rc+`/r 6 ↵(k+`)/r. The cohe-

rency property in Definition 9.3.3 is equivalent to the coherency of RU
eM. As an

RV
eDX -module, we have RU

eM =
L

↵2A RU↵+Z
eM.

9.3.6. Remark (Left and right). In the following, it will be more natural to consider
decreasing V -filtrations on left eDX -modules, mimicking the t-adic filtration on eOX ,
while the V -filtrations on right eDX -modules will remain increasing. In such a way, the
formulas for the Bernstein polynomial below remain very similar. As usual, decreasing
filtrations are denoted with an upper index. We will mainly work in the context of
right eD-modules, and we will give the main formulas in both cases. Let us insist,
however, that both cases are interchanged naturally by the side changing functor
(Exercise 9.25) and that the final formulas in terms of the functors  ,� are identical.

9.3.b. Specializable coherent eDX-modules. Let H ⇢ X be a smooth hypersur-
face. Let eM be a coherent eDX -module and let m be a germ of section of eM. In the
following, we abuse notation by denoting E 2 V0

eDX any local lifting of the Euler
operator E 2 gr

V

0
eDX , being understood that the corresponding formula does not

depend on the choice of such a lifting.

9.3.7. Definition.
(1) A weak Bernstein equation for m is a relation (right resp. left case)

(9.3.7 ⇤) m · (z`b(E)� P ) = 0 resp. (z`b(E)� P )m = 0,

where
• ` is some non-negative integer,
• b(s) is a nonzero polynomial in a variable s with coefficients in C, which

takes the form
Q

↵2A(s�↵z)⌫↵ for some finite subset A 2 C (depending on m),
• P is a germ in V�1 eDX , i.e., P = tQ = Q

0
t with Q,Q

0 germs in V0
eDX .



9.3. SPECIALIZATION OF COHERENT eDX -MODULES 325

(2) We say that eM is specializable along H if any germ of section of eM is the
solution of some weak Bernstein equation (9.3.7 ⇤).

9.3.8. Remark. The full subcategory of Mod(eDX) consisting of eDX -modules which are
specializable along H is abelian (see Exercises 9.16 and 9.17).

Assume that eM is eDX -coherent and specializable along H. According to Bézout,
for every local section m of eM, there exists a minimal polynomial

bm(s) =

Y

↵2R(m)

(s� ↵z)⌫↵ , R(m) ⇢ C finite,

giving rise to a weak Bernstein equation (9.3.7 ⇤). We say that eM is R-specializable
along H if for every local section m, we have R(m) ⇢ R. We then set:

(9.3.9) ordH(m) = maxR(m), resp. ordH(m) = minR(m).

9.3.10. Definition (Filtration by the order along H). Assume that eM is a right eDX -mod-
ule. The filtration by the order along H is the increasing filtration V•

eMxo
indexed

by R defined by (↵ 2 R)

V↵
eMxo

= {m 2 eMxo
| ordH,xo

(m) 6 ↵},(9.3.11)

V<↵
eMxo

= {m 2 eMxo
| ordH,xo

(m) < ↵}.(9.3.12)

We do not claim that it is a coherent V -filtration. The order filtration satisfies
(see Exercise 9.15):

8 k 2 Z, 8↵,� 2 R, V↵
eMxo

· Vk
eDX,xo

⇢ V↵+k
eMxo

.

It is a filtration of eM by subsheaves V↵
eM of V0

eDX -modules. We set

(9.3.13) gr
V

↵
eM := V↵

eM/V<↵
eM.

These are gr
V

0
eDX -modules. In particular, they are equipped with an action of the

Euler field E. We already notice, as a preparation to strict R-specializability, that
they satisfy part of the strictness condition.

9.3.14. Lemma. The gr
V

0
eDX-module gr

V

↵
eM has no z-torsion.

Proof. It is a matter of proving that, for a section m of V↵
eM, if mz

j is a section of
V<↵

eM for some j > 0, then so does m. But one checks in a straightforward way that,
if P in Exercise 9.15 is equal to z

j , then the inequality there is an equality (with
k = 0).

9.3.15. The case of left eDX -modules. Recall that the order of a local section m is defi-
ned as ordH(m)=minR(m). In Exercise 9.15 we have ordH,xo

(Pm)>ordH,xo
(m)�k.

The filtration by the order along H is the decreasing filtration V
• eMxo

indexed by R

defined by

V
� eMxo

= {m 2 eMxo
| ordH,xo

(m) > �},

V
>� eMxo

= {m 2 eMxo
| ordH,xo

(m) > �}.
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The order filtration satisfies

8 k 2 Z, 8↵,� 2 R, Vk
eDX,xo

· V � eMxo
⇢ V

��k eMxo
.

We set gr
�

V
eM := V

� eM/V
>� eM. Lemma 9.3.14 also applies. See Exercise 9.25 for the

side-changing properties.

9.3.c. Strictly R-specializable coherent eDX-modules. A drawback of the set-
ting of Section 9.3.b is that we cannot ensure that the order filtration is a coherent
V -filtration.

9.3.16. Lemma (Kashiwara-Malgrange V -filtration). Let eM be an R-specializable cohe-
rent eDX-module. Assume that, in the neighbourhood of any xo 2 X there exists a
coherent V -filtration U•

eM indexed by Z with the following two properties:
(1) its minimal weak Bernstein polynomial bU (s) =

Q
↵2A(U)

(s � ↵z)⌫↵ satisfies
A(U) ⇢ (�1, 0],

(2) for every k, Uk
eM/Uk�1 eM has no z-torsion.

Then such a filtration is unique and equal to the order filtration when considered
indexed by integers, which is therefore a coherent V -filtration as such. It is called the
Kashiwara-Malgrange filtration of eM.

9.3.17. Remark. Exercise 9.26 shows that, under the assumption of Lemma 9.3.16, the
filtration by the order (indexed by R) is coherent, in the sense of Definition 9.3.3, and
that te@t � ↵z is nilpotent on gr

V

↵
eM for each ↵ 2 R (in fact, ↵ 2 A(U) + Z).

Proof of Lemma 9.3.16. Assume U•M satisfies (1) and (2). Let m be a local sec-
tion of Uk

eM and let U•(m · eDX) be the V -filtration induced by U•
eM on m · eDX .

By Exercise 9.11(1), it is a coherent V -filtration. There exists thus ko > 1 such that
Uk�ko

(m · eDX) ⇢ m · V�1 eDX . It follows that

R(m) ⇢ (A(U) + k) [ · · · [ (A(U) + k � ko + 1)

and thus ordHm = maxR(m) 6 k, so m ⇢ Vk
eM.

Conversely, assume m is a local section of Vk
eM. It is also a local section of

Uk+ko

eM for some ko > 0. Its class in gr
U

k+ko

eM is annihilated both by z
`
bm(E) and by

z
`
0
bU (E�(k + ko)z) (for some `, `0 > 0), so if ko > 0, both polynomials have no com-

mon z-root, and this class is annihilated by some non-negative power of z, according
to Bézout. By Assumption (2), it is zero, and m is a local section of Uk+ko�1

eM, from
which we conclude by induction that m is a local section of Uk

eM, as wanted.

9.3.18. Definition (Strictly R-specializable eDX -modules). Assume that eM is R-speciali-
zable along H. We say that it is strictly R-specializable along H if

(1) there exists a finite set A ⇢ (�1, 0] such that the filtration by the order along H

is a coherent V -filtration indexed by A+ Z,
and for some (or every) local decomposition X ' H ⇥�t,

(2) for every ↵ < 0, t : grV
↵
eM! gr

V

↵�1
eM is onto,

(3) for every ↵ > �1, e@t : grV↵ eM! gr
V

↵+1
eM(�1) is onto.
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For each ↵ 2 A+ Z, we denote by N the endomorphism E�↵z Id on gr
V

↵
eM, which is

nilpotent, due to (1).

See Exercise 9.26 for the relation between Definition 9.3.18 and Lemma 9.3.16, and
Exercise 9.18 for the equivalence between “some” and “every” in the definition above.

9.3.19. Remark (Morphisms preserve the V -filtration). Any eDX -linear morphism ' :

eM! eN between strictly R-specializable eDX -modules preserves the V -filtration, pos-
sibly not strictly. See Exercises 9.16, 9.17 and 9.23.

9.3.20. Remark (The need of a shift). We will now remember explicitly the grading in
the case of RFDX -modules. Recall (see (5.1.4) and (5.1.5 ⇤⇤)) that, given a graded
object M =

L
p
Mp (with Mp in degree �p), we set M(k) =

L
p
M(k)p with M(k)p =

Mp�k.
If we regard the actions of t and e@t as morphisms in Mod(eDH)-modules,

that is, graded morphisms of degree zero, we have to introduce a shift by �1
(see Remark 5.1.5) for the action of e@t, which sends Fpz

p to Fp+1z
p+1. The same

shift has to be introduced for the action of E, as well as for that of N = (E�↵z Id).
We have seen that, for strictly R-specializable RFD-modules, the module grV

↵
eM are

graded RFD-modules in a natural way. Let us emphasize that, in Definition 9.3.18(2)
and (3),

• the morphism t is graded of degree zero,
• the morphism e@t is graded of degree one; this explains why we write 9.3.18(3) as

e@t : grV↵ eM ⇠�! gr
V

↵
eM(�1) for ↵ > �1.

9.3.21. Proposition. Assume that eM is strictly R-specializable along H. Then, every
gr

V

↵
eM is a graded gr

V

0
eDX-module, and is strict as such (see Definition 5.1.6).

Proof. Recall that, for a graded module, strictness is equivalent to absence of z-tor-
sion (see Exercise 5.2(1)). Therefore, the second point follows from the first one and
from Lemma 9.3.14.

Let us consider the first point. We first claim that a local section m of eM is a local
section of V↵

eM if and only if it satisfies a relation

m · b(E) 2 V↵
eM

for some b with z-roots 6 ↵. Indeed, if m is a local section of V�
eM with � > ↵

and satisfying such a relation, the Bézout argument already used and the absence of
z-torsion on each gr

V

�
eM (Lemma 9.3.14) implies that m is a local section of V<�

eM.
Property 9.3.18(1) implies that there is only a finite set of jumps of the V -filtration
between ↵ and �, so by induction we conclude that m 2 V↵

eM. The converse is clear.
The grading on eM induces a natural left action of z@z on eM: for a local section

m =
L

p
mp of eM =

L
p
eMp, we set z@zm :=

L
p
pmp. We define a right action of

�@zz by the trick of Exercise 8.17: we set m(�@zz) := z@zm. This action is natural
in the sense that it satisfies the usual commutation relations with the right action
of eDX . We claim that, for every ↵ 2 R, we have V↵

eM(�@zz) ⇢ V↵
eM. Let m be a
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local section of V↵
eM, which satisfies a relation mbm(E) = m · P with P 2 V�1 eDX .

Then one checks that

m(�@zz)bm(E) = mbm(E)(�@zz) +mQ, Q 2 V0
eDX

= mP (�@zz) +mQ, P 2 V�1 eDX

= m(�@zz)P +mR, R 2 V0
eDX .

We conclude that m(�@zz) 2 V↵
eM by applying the first claim above.

Since the eigenvalues of (�@zz) on eM are integers and are simple, the same prop-
erty holds for V↵

eM, showing that V↵
eM decomposes as the direct sum of its (�@zz)-

eigenspaces, which are its graded components of various degrees.

9.3.22. Caveat. For a morphism ' between eDX -modules which are strictly R-specia-
lizable along H, the kernel and cokernel of ', while being R-specializable along H,
need not be strictly R-specializable. See Exercises 9.20, 9.23, as well as Definition
9.3.29, Caveat 9.3.30 and Proposition 9.3.38 for further properties.

9.3.23. Remark (The case of left eDX -modules). For left eDX -modules, we take � > �1
in 9.3.18(2) and � < 0 in 9.3.18(3) for gr

�

V
eM. The nilpotent endomorphism N of

gr
�

V
eM is induced by the action of �(E��z).

9.3.24. Side-changing. Let eM be a left eDX -module and let eMright
= e!X⌦ eM denote the

associated right eDX -module. Let us assume that H is defined by one equation g = 0,
so that gr

�

V
eM and gr

V

↵
eMright are respectively left and right eDH -modules equipped

with an action of E (see Exercise 9.4(3)).
Assume first that eM = eOX and eMright

= e!X . We have

V
keOX =

(
eOX if k 6 0,

g
keOX if k > 0,

and Vke!X =

(
e!X if k > �1,
g
�(k+1)e!X if k 6 �1.

We have grV�1e!X =e!H⌦dg/z, so that dg/z induces an isomorphism (see Remark 5.1.5)

e!H(�1) ⇠�! gr
V

�1e!X , that is, gr
V

�1(
eOright

X
) ' (gr

0

V
eOX)

right
(�1).

Arguing similarly for eM and eMright gives an identification

gr
V

↵
( eMright

) ' (gr
�

V
eM)

right
(�1), � = �↵� 1.

With this identification, the actions of E (resp. N) on both sides coincide. Be aware
that this identification depends on the choice of the defining equation g of H.
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9.3.25. Proposition. Assume that eM is strictly R-specializable along H. Then, in any
local decomposition X ' H ⇥�t we have

8↵ < 0, t : V↵
eM �! V↵�1 eM is an isomorphism;(a)

8↵ > 0, V↵
eM = V<↵

eM+ (V↵�1 eM)e@t;(b)

t : gr
V

↵
eM �! gr

V

↵�1
eM is

(
an isomorphism if ↵ < 0,

injective if ↵ > 0;

(c)

e@t :grV↵ eM�!gr
V

↵+1
eM(�1) is

(
an isomorphism if ↵ > �1,
injective if ↵ < �1;

(d)

In particular (from (b)), eM is generated as a eDX-module by V0
eM.

Proof. Because V↵+•
eM is a coherent V -filtration, (a) holds for ↵ ⌧ 0 locally

and (b) for ↵ � 0 locally. Therefore, (a) follows from (c) and (b) follows from (d).
By 9.3.18(2) (resp. (3)), the map in (c) (resp. (d)) is onto. The composition
te@t = (E�↵z) + ↵z is injective on gr

V

↵
eM for ↵ 6= 0 since (E�↵z) is nilpotent and

gr
V

↵
eM is strict, hence (c) holds. The argument for (d) is similar.

9.3.26. Remark (Restriction to z = 1). Let us keep the notation of Exercise 9.24. For a
coherent DX -module M which is R-specializable, 9.3.18(2) and (3) are automatically
satisfied. Moreover, the morphisms in 9.3.25(c) and (d) are isomorphisms for the
given values of ↵. In other words, for coherent DX -modules, being R-specializable
is equivalent to being strictly R-specializable. In particular, Exercise 9.24 applies to
coherent RFDX -modules which are strictly R-specializable along H.

In the application of strict R-specializability to pure or mixed Hodge modules,
we will see that the nilpotent endomorphisms N on each gr

V

↵
eM (↵ 2 A+ Z) and the

morphisms t : gr
V

0
eM ! gr

V

�1
eM and e@t : grV�1 eM ! gr

V

0
eM(�1) (see Definition 9.3.18)

underlie morphisms of mixed Hodge modules (with a suitable shift, they are denoted
by var and can), and therefore are strict. It is thus valuable to highlight this property
and some of its consequences.

9.3.27. Definition (Strong strict R-specializability). We will say that eM is strongly strict-
ly R-specializable along H if the nilpotent endomorphisms N

` (` > 1) on each gr
V

↵
eM

(↵ 2 A + Z) and, for some (or any) decomposition X ' H ⇥ �t, the morphisms
t : gr

V

0
eM! gr

V

�1
eM and e@t : grV�1 eM! gr

V

0
eM(�1) are strict.

9.3.28. Lemma. If eM is strongly strictly R-specializable along H, then for each ↵ 2
A + Z and each ` 2 Z, denoting by M•gr

V

↵
eM the monodromy filtration of grV

↵
eM, the

eDH-modules gr
M

`
gr

V

↵
eM are strict.

Proof. This is Proposition 5.1.10.

9.3.29. Definition (Strictly R-specializable morphisms). A morphism ' between strictly
R-specializable coherent left eDX -modules is said to be strictly R-specializable if for
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every ↵ 2 [�1, 0], the induced morphism gr
V

↵
' is strict (i.e., its cokernel is strict),

and a similar property for right modules.

9.3.30. Caveat. The composition of strictly R-specializable morphisms need not be
strictly R-specializable (see Caveat 5.1.7).

9.3.31. Proposition. If ' is strictly R-specializable, then gr
V

↵
' is strict for every ↵ 2 R,

and Ker', Im' and Coker' are strictly R-specializable along H and their V -filtra-
tions are given by

(9.3.31 ⇤)
V↵ Ker' = V↵

eM \Ker', V↵ Coker' = Coker('|V↵
fM),

V↵ Im' = Im('|V↵
fM) = V↵

eN \ Im'.

Proof. Let us equip Ker' and Coker' with the filtration U• naturally induced by
V•

eM, V•
eN. By using 9.3.25(c) and (d) for eM and eN, we find that gr

U

↵
Ker' and

gr
U

↵
Coker' are strict for every ↵ 2 R. By the uniqueness of the V -filtration, the

first line in (9.3.31 ⇤) holds, and therefore all properties of Definition 9.3.18 hold for
Ker' and Coker'. Now, Im' has two possible coherent V -filtrations, one induced
by V•

eN and the other one being the image of V•
eM. For the first one, strictness of

gr
↵
Im' holds, hence Im' is strictly R-specializable and V↵ Im' = Im' \ V↵

eN. For
the second one U↵ Im', grU

↵
Im' is identified with the image of grV

↵
', hence is also

strict, so U• Im' is also equal to V• Im'. Then all properties of Definition 9.3.18 also
hold for Im'.

9.3.32. Corollary. Let eM•
= {· · · di�! eMi

di+1�! · · · } be a complex bounded above whose
terms are eDX-coherent and strictly R-specializable along H. Assume that, for ev-
ery ↵ 2 [�1, 0], the graded complex gr

V

↵
eM• is strict, i.e., its cohomology is strict.

Then each differential di and each H
i eM• is strictly R-specializable along H and gr

V

↵

commutes with taking cohomology.

Proof. By using 9.3.25(c) and (d) for each term of the complex gr
V

↵
eM•, we find that

strictness of the cohomology holds for every ↵ 2 R. We argue by decreasing induction.
Assume eMk+1

= 0. Then the assumption implies that dk : eMk�1 ! eMk is strictly
R-specializable, so we can apply Proposition 9.3.31 to it. We then replace the complex
by · · · eMk�2 dk�1�! Ker dk ! 0 and apply the induction hypothesis. Moreover, the strict
R-specializability of eMk

/Ker dk ' Im dk+1 implies that of dk�1.

9.3.33. Definition (Strictly R-specializable W -filtered eDX -module)
Let ( eM,W•

eM) be a coherent eDX -module equipped with a locally finite filtration by
coherent eDX -submodules. We say that ( eM,W•

eM) is a strictly R-specializable filtered
eDX-module (along H) if each W`

eM and each gr
W

`
eM is strictly R-specializable.

9.3.34. Lemma. Let ( eM,W•
eM) be a strictly R-specializable filtered eDX-module. Then

each W`
eM/Wk

eM (k < `) is strictly R-specializable along H.
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Proof. By induction on ` � k > 1, the case ` � k = 1 holding true by assumption.
Let U•(W`

eM/Wk
eM) be the V -filtration naturally induced by V•W`

eM. It is a cohe-
rent filtration. By induction we have U•(W`�1 eM/Wk

eM) = V•(W`�1 eM/Wk
eM) and

U•gr
W

`
eM = V•gr

W

`
eM. Similarly, V•W`

eM \W`�1 eM = V•W`�1 eM. We conclude that
the sequence

0 �! gr
V

• (W`�1 eM/Wk
eM) �! gr

U

• (W`
eM/Wk

eM) �! gr
V

• gr
W

`
eM �! 0

is exact, hence the strictness of the middle term.

9.3.d. eDX-modules and V0
eDX-modules. In this section, we consider the question

of how much V0
eM or V�1 eM determines eM when eM is strictly R-specializable along H,

that is, how much a eDX -module which is strictly R-specializable is determined by a
logarithmic (along H) eDX -module.

We assume that X = H⇥�t and we associate to a eDX -module eM which is strictly
R-specializable along H the following set of data:

( eM6�1, eM0, c, v) = (V�1 eM, gr
V

0
eM, e@t, t),

where we regard V�1 eM as a coherent V0
eDX -module, grV

0
eM as a coherent grV

0
eDX -mod-

ule, and the data c = e@t, v = t as gr
V

0
eDX -linear morphisms

gr
V

�1
eM

c

))

(�1)
))

gr
V

0
eM.

v

ii

A morphism ' : ( eM1,6�1, eM1,0, c, v)! ( eM2,6�1, eM2,0, c, v) is a pair ('6�1,'0) which
satisfies, denoting by '�1 the morphism induce by '6�1 on gr

V

�1
eM1,6�1:

(9.3.35) c � '�1 = '0 � c, '�1 � v = v � '0.

9.3.36. Proposition (Recovering morphisms from their restriction to V�1 and gr
V

0
)

Any morphism

('6�1,'0) : (V�1 eM1, gr
V

0
eM1,

e@t, t) �! (V�1 eM2, gr
V

0
eM2,

e@t, t)

can be lifted in a unique way as a morphism ' : eM1 ! eM2.

9.3.37. Lemma (Recovering morphisms from their restriction to V0)
Assume that X = H ⇥�t and that eM1,

eM2 are strictly R-specializable along H.
Let '60 : V0

eM1 ! V0
eM2 be a morphism in Mod(V0

eDX) such that the diagram

(D0)

V�1 eM1

e@t
✏✏

'60
// V�1 eM2

e@t
✏✏

V0
eM1

'60
// V0

eM2

commutes. Then '60 extends in a unique way as a morphism ' : eM1 ! eM2.
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Proof. We show inductively the existence and uniqueness of '6k : Vk
eM1 ! Vk

eM2

(k > 1) such that '6k|Vk
fM1

= '6k�1 and the diagram

(Dk)

Vk�1 eM1

e@t
✏✏

'6k
// Vk�1 eM2

e@t
✏✏

Vk
eM1

'6k
// Vk

eM2

commutes. Let us check for example the case k = 1. For the uniqueness, if  1|V0
fM1

=0

and  1 � e@t : V0
eM1 ! V1

eM2 is zero. A local section m of V1
eM1 writes, according to

9.3.25(d), m = m0 +m
0
0
e@t where m0,m

0
0

are local sections of V0
eM1. Then  1(m) =

 1(m
0
0
e@t) = 0.

Let us show the existence. For m,m
0
, n, n

0 2 V0
eM1, if m�m

0
= (n

0 � n)e@t, then
we have n

0 � n 2 V�1 eM2, according to 9.3.25(d). Therefore, setting '61(m+ ne@t) =
'60(m) + '60(n)

e@t well defines a V0
eDX -linear morphism '61 : V1

eM1 ! V1
eM2 for

which (D1) commutes.

Proof of Proposition 9.3.36. According to Lemma 9.3.37, the morphism ' can be
uniquely reconstructed from '60 : V0

eM1 ! V0
eM2 such that (D0) commutes.

We then reconstruct '60 from the data ('6�1,'0).
We consider the morphisms

gr
V

�1
eM(1)

A
// V�1 eM� gr

V

�1
eM(1)� gr

V

0
eM B

// gr
V

�1
eM

e
�

// (0, e, ee@t)

(m, e, ")
�

// [m] + e · e@tt� " · t

where, for m 2 V�1 eM, [m] denotes its class in gr
V

�1
eM. Clearly, the composition is

zero, so that A and B define a complex C
• of V0

eDX -modules (by regarding each
gr

V

↵
eM as a V0

eDX -module). It is also clear that A is injective and B is surjective, so
that H

j
(C

•
) = 0 for j 6= 1.

Let us consider the morphism from V0
eM to the middle term defined by the for-

mula µ 7! (µ · t, 0, [µ]), where [µ] denotes the class of µ in gr
V

0
eM. It is injective:

if [µ] = 0, then µ 2 V<0
eM, and if moreover tµ = 0, then µ = 0, according to 9.3.25(a).

Furthermore, the intersection of its image with ImA is zero.
We claim that the induced morphism V0

eM ! H
1
(C

•
) is an isomorphism. Injec-

tivity has been seen above. Modulo ImA, any element of KerB can be represented
in a unique way as (m, 0, �) with [m] = � · t. We choose any lifting e� 2 V0

eM of � and
9.3.25(a) implies that there exists ⌘ 2 V<0

eM such that m� e� · t = ⌘ · t. We conclude
by setting µ = e� + ⌘.

Let '60 : V0
eM1 ! V0

eM2 be a V0
eDX -linear morphism such that (D0) commutes.

The associated pair ('6�1,'0) determines a morphism C
•
1
! C

•
2

between the corre-
sponding complexes, and therefore a morphism between their cohomology. Conversely,
a pair ('6�1,'0) satisfying (9.3.35) determines a morphism of complexes, and thus a
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morphism H
1
(C

•
1
) ! H

1
(C

•
2
), that is, a morphism '60. One then checks that (D0)

commutes.

9.3.38. Proposition (Morphisms inducing an isomorphism on V<0)
Assume that X = H ⇥ �t. Let eM, eN be strictly R-specializable along H and

let ' : eM ! eN be a eDX-linear morphism which induces an isomorphism V0
eM ⇠�!

V0
eN of V0

eDX-modules. Then the eDX-module Ker', resp. Coker', is identified with
the eDX-module D◆H⇤Ker gr

V

0
', resp. D◆H⇤ Coker gr

V

0
'. In particular, if ' is strictly

R-specializable along H, then Coker' is strict.

We first analyze the V0
eDX -module eM/V<0

eM.

9.3.39. Structure of eM/V<↵o

eM. Let eM be a coherent right eDX -module which is strict-
ly R-specializable along H. Let us fix ↵o 2 R. Then eM/V<↵o

eM is a V0
eDX -module.

We make explicit its structure when ↵o = �1.
(1) An easy induction shows that eM/V<↵o

eM is strict.
(2) Moreover, each local section of eM/V<↵o

eM is annihilated by a product of terms
(E�↵z)N for some N � 0. Together with Bézout, it follows that eM/V<↵o

eM decom-
poses as

L
↵>↵o

Ker(E�↵z)N with N � 0, and the ↵-summand can be identified with
gr

V

↵
eM. Thus eM/V<↵o

eM can be identified with
L

↵>↵o
gr

V

↵
eM as a V0

eDX -module.
In general, this V0

eDX -module structure does not extend to a eDX -module structure:
in local coordinates, let m be a local section of V↵o

eM with a nonzero class in gr
V

↵o

eM;
then mt = 0 in eM/V<↵o

eM, while me@tt = [m]e@tt in gr
V

↵o

eM may be distinct from z[m],
so that the relation m · [e@t, t] = zm may not hold in eM/V<↵o

eM. We analyze more
precisely this obstruction when ↵o = 0.

(3) Assume now that X ' H⇥�t. Let s be a new variable and, for ↵ 2 A+Z, let
us equip gr

V

↵
eM[s] := gr

V

↵
eM⌦CC[s] with the following right V0

eDX -structure defined by

m
(j)

↵
s
j · t =

(
0 if j = 0,
�
m

(j)

↵ (E+jz)
�
s
j�1 if j > 1,

(m
(j)

↵
s
j
)te@t =

�
m

(j)

↵
(E+jz)

�
s
j
.

One checks that this is indeed a V0
eDX -module structure (i.e., [te@t, t] acts as zt) and

that eM/V�1 eM can be identified with
L

↵2[0,1) gr
V

↵
eM[s], since e@t : grV↵ eM ! gr

V

↵+1
eM

is an isomorphism for ↵ > 0. With this structure, we have

gr
V

↵
eMs

j
= Ker(te@t � (↵+ j)z)

N (with N � 0 locally).

(4) We equip gr
V

↵
eM[s] with the action of e@t defined by (m

(j)

↵ s
j
)e@t = m

(j)

↵ s
j+1.

Then the relation [e@t, t] = z holds on sgr
V

↵
eM[s], but on the component gr

V

↵
eM of

s-degree zero, we have [e@t, t] = E+z. It follows that this action does not define a
eDX -module structure on gr

V

↵
eM[s] unless E acts by zero on gr

V

↵
eM.

Proof of Proposition 9.3.38. Since ' is also V0
eDX -linear, it induces a morphism

['] : eM/V<0
eM ! eN/V<0

eN, which decomposes with respect to the decomposition of
9.3.39(2). Each summand is then identified with gr

V

↵
' (↵ > 0). Since ' induces an
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isomorphism on V0, grV↵' is an isomorphism for ↵ 2 (�1, 0), hence for each ↵ > 0

not in N.
We have Ker' ' Ker['] and similarly with Coker. Since t is nilpotent on each

local section of eM/V<0
eM and eN/V<0

eN, it is nilpotent on the coherent eDX -modules
Ker',Coker', which are thus supported on H.

The decomposition of 9.3.39(2) induces decompositions

Ker' =
L
k2N

Ker gr
V

k
' and Coker' =

L
k2N

Coker gr
V

k
'

as V0
eDX -modules. The action of e@t defined on the model of 9.3.39(3) descends

to the corresponding models of Ker' and Coker', and since E acts by 0 on
Ker gr

V

0
',Coker gr

V

0
', the obstruction in 9.3.39(4) to extending the V0

eDX -structure
to a eDX -structure vanishes. We thereby obtained the desired identification.

9.4. Nearby and vanishing cycle functors

9.4.1. Definition (Strict R-specializability along D). Let D be an effective divisor in X

and let eM be a coherent eDX -module. We say that eM is strictly R-specializable along D

if for some (or any) local equation g defining D, denoting by X ,
◆g�! X ⇥C the graph

inclusion of g, eMg is strictly R-specializable along X ⇥ {0}.

In order to justify this definition, one has to check
• that the condition does not depend on the choice of g defining D,
• and that it is compatible with Definition 9.3.18 when D = H is a smooth hyper-

surface defined by an equation t.

For the first point, if u(x) is a local invertible function, one considers the isomorphism
'u : (x, t) 7! (x, u(x)t). Then ◆ug = 'u � ◆g, and one deduces the assertion from the
property that eMg is strictly R-specializable along (u(x)t) (see Exercise 9.18).

The second point is treated in Exercise 9.31.

9.4.2. Remark (strict R-specializability of eOX and e!X ). While OX and !X are R-spe-
cializable along any divisor D, as provided by the theory of the Bernstein-Sato poly-
nomial, the strict R-specializability of eOX and e!X does not follow from that theory.
It relies on Hodge properties and will only be obtained in Section 14.6, as a particular
case of Theorem 14.6.1.

9.4.3. Definition (Nearby and vanishing cycle functors). Assume that eM is coherent and
strictly R-specializable along (g). We then set

• (Left case)

(9.4.3 ⇤)
(
 g,�

eMleft
:= gr

�

V
( eMleft

g
), � = exp(� 2⇡i�), � 2 (�1, 0],

�g,1
eMleft

:= gr
�1
V

( eMleft

g
)(�1).
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• (Right case)

(9.4.3 ⇤⇤)
(
 g,�

eM := gr
V

↵
( eMg)(1), � = exp(2⇡i↵), ↵ 2 [�1, 0),

�g,1
eM := gr

V

0
( eMg).

Then  g,�
eM,�g,1

eM are eDX -modules supported on g
�1

(0), equipped with an endo-
morphism E induced by te@t. We set

N =

(
�(E��z) in the left case,
(E�↵z) in the right case.

9.4.4. Remark (Choice of the shift). The choice of a shift (�1) for �g,1 in the left case
has already been justified in dimension 1 (see (7.2.16)). In the right case, the choice
of a shift (1) for  g,�

eM and no shift for �g,1 eM is justified by the following examples.

(1) If eM = e!X⇥C we have gr
V

�1e!X⇥C(1) ' e!X by identifying e!X⇥C with
e!X ⌦eOX

eOX⇥C dt/z (see Remark 9.3.24).
(2) If eM is a right eDX⇥C-module of the form D◆⇤eN where eN is a right eDX⇥{0}-

module and ◆ : X ⇥ {0} ,! X ⇥ C is the inclusion, then gr
V

0
eM = eN.

9.4.5. Lemma (Side-changing for the nearby/vanishing cycle functors)
The side-changing functor commutes with the nearby/vanishing cycle functors,

namely

 g,�(
eMright

) = ( g,�
eMleft

)
right

, �g,1(
eMright

) = (�g,1
eMleft

)
right

.

It is moreover compatible with the actions of N.

Proof. If eN is a left eDX⇥C-module which is strictly R-specializable along X ⇥ {0},
we have (see Remark 9.3.24)

gr
V

↵
(e!X⇥C ⌦ eN)(1) ' e!X ⌦ gr

�

V
(eN) 8↵ 2 R, � = �↵� 1.

We apply this to eN = eMleft

g
, so that eNright

= eMright

g
. The right action of te@t corre-

sponds to the left action of �e@tt = �(te@t + z), so the right action of N = (te@t � ↵z)
corresponds to that of �(te@t + z + ↵z) = �(E��z) = N.

9.4.6. Proposition. Let g : X ! C be a holomorphic function and let eM be a coherent
eDX-module. Assume that eM is strictly R-specializable along g = 0. Then  g,�

eM and
�g,1

eM are eDX-coherent.

Proof. By assumption,  g,�
eM and �g,1

eM are gr
V

0
eDX⇥C = eDX [E]-coherent. Since N

is nilpotent on  g,�
eM and �g,1 eM, the eDX -coherence follows.

9.4.7. Definition (Morphisms N, can and var, nearby/vanishing Lefschetz quiver)
Assume that eM is strictly R-specializable along g = 0. The nilpotent operator N

is a morphism

 g,�
eM N��!  g,�

eM(�1), �g,1
eM N��! �g,1

eM(�1).
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When � = 1, the nilpotent operator N on  g,1
eM and �g,1 eM is the operator obtained

as the composition var � can and can � var in the nearby/vanishing Lefschetz quiver :

(9.4.7 ⇤)  g,1
eM

can = �e@t ·
**

�g,1
eM

var = t ·
jj

(�1)
jj

(left case)

(9.4.7 ⇤⇤)  g,1
eM

can = · e@t
**

�g,1
eM

var = · t
jj

(�1)
jj

(right case)

with the same convention as in (3.4.8).

9.4.8. Definition (Monodromy operator). We work with right DX -modules. Assume
that M is R-specializable along (g). The monodromy operator T on  g,�M is the op-
erator induced by exp(2⇡i t@t) (for left DX -modules T = exp(� 2⇡i t@t)). On  g,�M,
we have T = � exp 2⇡iN, and the nilpotent operator N is given by 1

2⇡i
log(�

�1
T). On

�g,1M we have T = exp 2⇡iN and N =
1

2⇡i
log T.

9.4.9. Remark (Monodromy filtration on nearby and vanishing cycles)
The monodromy filtration relative to N on  g,�

eM and �g,1
eM (see Exercise 3.3.1

and Remark 3.3.4) is well-defined in the abelian category of graded eDX -modules with
the automorphism � induced by the shift (1) of the grading (or in the abelian category
of DX -modules). The Lefschetz decomposition holds in this category, with respect to
the corresponding primitive submodules P` g,�

eM, P`�g,1
eM for ` > 0.

Nevertheless, strict R-specializability is not sufficient to ensure that each such
primitive submodule (hence each graded piece of the monodromy filtration) is strict.
The following proposition gives a criterion for the strictness of the primitive parts.

9.4.10. Proposition. Assume eM is strictly R-specializable along (g) and fix � 2 S
1. The

following properties are equivalent.
(1) For every ` > 1, N`

:  g,�
eM!  g,�

eM(�`) is a strict morphism.
(2) For every ` 2 Z, grM

`
 g,�

eM is strict.
(3) For every ` > 0, P` g,�

eM is strict.
We have similar assertions for �g,1M.

Proof. This is Proposition 5.1.10, see also Lemma 9.3.28.

9.4.11. Remark (Restriction to z = 1 of the monodromy filtration)
If M is a coherent RFDX -module which is strictly R-specializable along D and

setting M = M/(z � 1)M, we have  g,�M =  g,�M/(z � 1) g,�M and �g,1M =

�g,1M/(z � 1)�g,1M, according to Exercise 9.24, and the morphisms can and var

for M obviously restrict to the morphisms can and var for M, as well as the nilpotent
endomorphism N.
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Similarly, the monodromy filtration M•(N) on  g,�M,�g,1M restricts to the mon-
odromy filtration M•(N) on  g,�M,�g,1M, since everything behaves C[z, z

�1
]-flatly

after tensoring with C[z, z
�1

].

9.5. Strictly non-characteristic restrictions in codimension one

We revisit the results of Section 8.8.d in case ◆Y : Y ,! X denote the inclusion of
a closed submanifold of codimension one, that we denote by H. We will consider left
eDX-modules and the corresponding setting for the V -filtration in this section.

9.5.1. Example. Assume that Y = H is a hypersurface defined by a coordinate function
t : X ! C and that M is a holonomic (more generally, coherent) DX -module with
characteristic variety CharM ⇢ T

⇤
X. Then, if H is non-characteristic with respect

to M, M is DX/C-coherent in the neighbourhood of H and t : M ! M is injective
(see e.g. [MT04, Prop. II.3.4 & Prop. III.3.3] and the references therein). It follows
that the filtration U

kM = t
kM for k > 0 and U

kM = M for k 6 0 is a good V -filtra-
tion, which is equal to the Kashiwara-Malgrange filtration, so that M = V

0M.

9.5.2. Proposition. Let eM be a coherent eDX-module and let H ⇢ X be a smooth
hypersurface.

(1) if eM is strictly non-characteristic along H, it is also strictly R-specializable
along H,

(2) if eM is non-characteristic and strictly R-specializable along H, it is strictly
non-characteristic along H.
In such a case, gr

�

V
eM = 0 unless � 2 N, the nilpotent endomorphism te@t on gr

0

V
eM

is equal to zero, and eM is strongly strictly R-specializable along H in the sense of
Definition 9.3.27. Lastly, D◆

⇤
H
eM is naturally identified with gr

0

V
eM.

Proof. Since the question is local, we may assume that X ' H ⇥�t.
(1) Proposition 8.8.18 says that t : eM ! eM is injective and the assumption

amounts to the strictness of eM/t eM.
Since eM is eDX/C-coherent (Exercise 9.34), the filtration defined by U

k eM = t
k eM

(k 2 N) is a coherent V -filtration and E : gr
0

U
eM ! gr

0

U
eM acts by 0 since e@tU0 eM ⇢

U
0 eM = eM. It follows that eM is specializable along H and that the Bernstein poly-

nomial of the filtration U
• eM has only integral roots. Moreover, t : grk

U
eM ! gr

k+1

U
eM

is onto for k > 0. We will show by induction on k that each gr
k

U
eM is strict. The as-

sumption is that gr0
U
eM is strict. We note that E�kz acts by zero on gr

k

U
eM. If grk

U
eM

is strict, then the composition e@tt, that acts by (k+1)z on gr
k

U
eM, is injective, so that

t : gr
k

U
eM! gr

k+1

U
eM is bijective, and gr

k+1

U
eM is thus strict. It follows that eM is strictly

R-specializable along H, and the t-adic filtration U
• eM is equal to the V -filtration.

(2) It follows from the assumption that M is non-characteristic along H, hence
M = V

0M by Example 9.5.1, and gr
�

V
M = 0 for any � < 0. By strict R-specia-

lizability of eM, we deduce that gr
�

V
eM = 0 for any � < 0, hence eM = V

0 eM, that
t : eM! eM is injective, and that eM/t eM = gr

0

V
eM is strict.
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If eM satisfies (1), equivalently (2), we have seen in the proof of (1) that gr�
V
eM = 0

for � /2 N. Since gr
�1
V

eM = 0, we deduce that te@t acts by zero on gr
0

V
eM. Then eM

tautologically satisfies the conditions for strong strict R-specializability of Definition
9.3.27.

We note that gr
0

V
eM is naturally a eDH -module since E acts by 0, and eDH =

gr
V

0
eDX/Egr

V

0
eDX , and one checks that the identification D◆

⇤
H
eM = eM/IH eM = gr

0

V
eM

is compatible with the action of eDH .

9.5.3. Remark (The case of right eDX -modules). Let eM be a left eDX -module and let
eMright

:= e!X ⌦eOX

eM be the associated right eDX -module (with grading). If eM is
strictly non-characteristic along H, then so is eMright. We have

D◆
⇤
H
eMright

:= e!H ⌦eOH
D◆
⇤
H
eM = e!H ⌦eOH

gr
0

V
eM = gr

V

�1
eMright

(1),

according to Remark 9.3.24.
Assume that H is globally defined by the smooth function g. Then

D◆H⇤(D◆
⇤
H
eMright

) = D◆H⇤(gr
0

V
eM) = D◆H⇤(gr

V

�1
eMright

)(1) =  g,1
eMright

,

according to Exercise 9.31.

9.6. Strict Kashiwara’s equivalence

We now return to the case of right eDX -module when considering the pushforward
functor.

Let ◆Y : Y ⇢ X be the inclusion of a complex submanifold. The following is known
as “Kashiwara’s equivalence”.

9.6.1. Proposition (see [Kas03, §4.8]). The pushforward functor D◆Y ⇤ induces a natural
equivalence between coherent DY -modules and coherent DX-modules supported on Y ,
whose quasi-inverse is the restriction functor D◆

⇤
Y
.

Be aware however that this result does not hold for graded coherent RFDX -
modules. For example, if X = C with coordinate s and ◆Y : Y = {0} ,! X denotes
the inclusion, D◆Y ⇤C[z] = �⌧ · C[z, e@⌧ ] with �⌧ ⌧ = 0. On the other hand, consider
the C[z, ⌧ ]he@⌧ i-submodule of C[z]⌦C D◆Y ⇤C = �⌧C[z, @⌧ ] generated by �⌧@⌧ (note: @⌧
and not e@⌧ ). This submodule is written �⌧C[z] �

L
k>0

�⌧
e@k
⌧
@⌧ . It has finite type

over C[z, ⌧ ]he@⌧ i by construction, each element is annihilated by some power of s, and
D◆
⇤(�1)
Y

(�⌧@⌧ · C[z, ⌧ ]he@⌧ i) = �⌧C[z], but it is not equal to D◆Y ⇤C[z].
Note also that this proposition implies in particular that D◆

⇤(k)
Y D◆Y ⇤M = 0 for

k 6= �1, if M is DX -coherent. In the example above, we have D◆Y ⇤C = C[@⌧ ] and the
complex D◆

⇤
Y D◆Y ⇤C is the complex C[@⌧ ]

·⌧�! C[@⌧ ] with terms in degrees �1 and 0.
It has cohomology in degree �1 only.

However, this is not true for graded coherent RFDX -modules. With the similar
example, the complex D◆

⇤
Y D◆Y ⇤C[z] is the complex C[z, e@⌧ ]

·⌧�! C[z, e@⌧ ]. We have
e@k
⌧
· ⌧ = kze@k�1

⌧
, so the cokernel of s is not equal to zero.
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9.6.2. Proposition (Strict Kashiwara’s equivalence). Let Y be a smooth closed subman-
ifold of X, and let ◆Y : Y ,! X denote the inclusion. Then the functor D◆Y ⇤ :

Modcoh(
eDY ) 7! Modcoh(

eDX) is fully faithful. If moreover Y = H is smooth of codi-
mension 1 in X, it induces an equivalence between the full subcategory of Modcoh(

eDH)

whose objects are strict, and the full subcategory of Modcoh(
eDX) whose objects are

strictly R-specializable along H and supported on H. An inverse functor is eM 7!
gr

V

0
eM.

Proof the full faithfulness. It is enough to prove that each morphism ' : D◆Y ⇤eN1 !
D◆Y ⇤eN2 takes the form D◆Y ⇤ for a unique  : eN1 ! eN2. Because of uniqueness, the
assertion is local with respect to Y , hence we can assume that there exist local coordi-
nates (x1, . . . , xr) defining Y . Assume eM = D◆Y ⇤eN for some coherent eDY -module eN.
Then one can recover eN from eM as the eDY -module eM/

P
i
eM · e@xi

. As a consequence,
 must be the morphism induced by ' on eM/

P
i
eM · e@xi

, hence its uniqueness. On
the other hand, since eM1 is generated by eN1 ⌦ 1 over eDX (see Exercise 8.45), ' is
determined by its restriction to eN1⌦1, that is by  , and the formula is ' = D◆Y ⇤ .

9.6.3. Lemma. Assume X ' H ⇥ C with coordinate t on the second factor. Let eM be
a coherent eDX-module supported on H ⇥ {0}.

(1) Assume that there exists a strict eDH-module eN such that eM ' D◆H⇤eN. Then
(a) eN = Ker[t : eM! eM],
(b) eN is eDH-coherent,
(c) eM is strict and strictly R-specializable along H,
(d) eN = gr

V

0
eM.

(2) Conversely, if eM is strictly R-specializable along H, then such an eN exists. In
particular, eM is also strict.

9.6.4. Remark (Strictness and strict R-specializability). Let eM be as in Lemma 9.6.3,
that is, eDX -coherent and supported on H ⇥ {0}. Then the filtration U0

eM = Ker t ⇢
U1

eM = Ker t
2 ⇢ · · · is a filtration by V0

eDX -submodules and obviously admits a
weak Bernstein polynomial. Assume moreover that eM is strict. Then every gr

U

k
eM is

also strict: if m 2 Uk
eM and z

`
m 2 Uk�1 eM, that is, if tk+1

m = 0 and t
k
z
`
m = 0,

then t
k
m = 0 by strictness of eM and thus m = 0 in gr

U

k
eM. Therefore, U•

eM is the
Kashiwara-Malgrange filtration V•

eM in the sense of Lemma 9.3.16, and Properties
9.3.18(1) and (2) are satisfied.

However, the condition that eM is strict is not enough to obtain the conclusion of
9.6.3(1), as shown by the following example. The point is that 9.3.18(3) may not hold.
Assume that H is reduced to a point and let eM be the eDX -submodule of the DX [z]-
module eCh@ti generated by 1 and @t (recall that eC := C[z]), that we denote by [1]

and [@t] for the sake of clarity. By definition, we have [1]t = 0 and [@t]t
2
= 0. For the

Kashiwara-Malgrange filtration V•
eM defined above, e@t : grV0 eM = eC! gr

V

1
eM = [@t]

eC
is not onto, for its cokernel is [@t]C. In other words, eM is not strictly R-specializable
at t = 0 and not of the form D◆H⇤eN.
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Proof of Lemma 9.6.3.
(1) Assume eM = D◆H⇤eN for some strict eDH -module eN. We have D◆H⇤eN =L
k>0

◆H⇤eN⌦�te@kt with �tt = 0 (see Exercise 8.46(1)). The action of t on D◆H⇤eN is the
z-shift n⌦ �te@kt 7! zkn⌦ �te@k�1t

, hence eN = Ker t because eN is strict. Given a finite
family of local eDX -generators of eM, we produce another such family made of homoge-
neous elements, by taking the components on the previous decomposition. Therefore,
there exists a finite family of local sections ni of eN such that ni⌦ �t generate eM. Let
eN0 ⇢ eN be the eDH -submodule they generate. Then D◆H⇤eN0 ! D◆H⇤eN = eM is onto.
On the other hand, since eN0 is also strict, this map is injective: If

P
N

k=1
n
0
k
⌦�te@kt 7! 0,

then n
0
N
⌦ �te@Nt 7! 0, and s

N
n
0
N
⌦ �te@Nt = ?z

N
n
0
N
⌦ �te@Nt 7! 0, where ? is a nonzero

constant; so z
N
n
0
N

= 0 in eN, hence n
0
N

= 0. We conclude eN0 = eN since both are
equal to Ker t in D◆H⇤eN. Therefore, eN is locally finitely eDH -generated in eM, and then
is eDH -coherent. One then checks that the filtration Uj

eM :=
L

j

k>0
◆H⇤eN ⌦ �te@kt is a

coherent V -filtration of eM, and eN = gr
U

0
eM. We deduce that each gr

U

k
eM is strict, and

eM is strictly R-specializable. Lastly, n ⌦ �t satisfies (n ⌦ �t)te@t = 0, so V•
eM = U•

eM
jumps at non-negative integers only.

(2) Assume that eM is strictly R-specializable along H. Then V<0
eM = 0, according

to 9.3.25(a). Similarly, grV
↵
eM = 0 for ↵ /2 Z. As t : gr

V

k
eM ! gr

V

k�1
eM is injective for

k 6= 0 (see 9.3.25(c)), we conclude that

gr
V

0
eM ' V0

eM = Ker[s : eM! eM].

Since e@t : grVk eM! gr
V

k�1
eM is an isomorphism for k 6 0, we obtain

eM =
L
`>0

gr
V

0
eMe@`

t
= D◆⇤gr

V

0
eM.

Lastly, E acts by zero on gr
V

0
eM, which is therefore a coherent eDH -module by means

of the isomorphism gr
V

0
eDX/Egr

V

0
eDX ' eDH . It is strict since eM is strictly R-specia-

lizable.

End of the proof of Proposition 9.6.2. It remains to prove essential surjectivity. Let
V•

eM be the V -filtration of eM along H. By the argument in the second part of
the proof of Lemma 9.6.3, we have local isomorphisms eM ⇠�! D◆⇤gr

V

0
eM which induce

the identity on V0
eM = gr

V

0
eM. By full faithfulness they glue in a unique way as a

global isomorphism eM ' D◆⇤gr
V

0
eM.

9.6.5. Corollary. Assume codimH = 1. Let eN be eDH-coherent and set eM = D◆H⇤eN.
If eM = eM1 � eM2 with eM1,

eM2 being eDX-coherent, then there exist coherent eDH-sub-
modules eN1,

eN2 of eN such that eN = eN1 � eN2 and eMj = D◆H⇤eNj for j = 1, 2.

Proof. Each eMi is coherent and supported on H. We set eNi = eMi \ eN. Locally,
choose a coordinate t defining H and set eN0

i
= eMi/

eMi · e@t. Since eN = eM/ eM · e@t,
we deduce that eN = eN0

1
� eN0

2
, and we have a (local) isomorphism eMi ' D◆⇤eN0i. Then

one checks that eN0
i
= eNi, so it is globally defined.
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We now consider the behaviour of strict R-specializability along a function with
respect to strict Kashiwara’s equivalence. Let ◆ : X ,! X1 be the inclusion of a smooth
hypersurface in X, let g1 : X1 ! C be a holomorphic function and let g = g1 � ◆.
We have a commutative diagram

X
� �
◆g
//

� _

◆

✏✏

X ⇥ Ct� _

◆
0
✏✏

X1

� �
◆g1
// X1 ⇥ Ct

We can regard 9.6.6(1) as the particular case of Theorem 9.8.8 below where f is a
closed embedding ◆.

9.6.6. Proposition. Let eN be a coherent eDX-module and set eM = D◆⇤eN.
(1) Assume that eN is strictly R-specializable along (g). Then eM is strictly R-spe-

cializable along (g1).
(2) Assume that eM is strictly R-specializable along (g1). Then eN is strictly R-spe-

cializable along (g).
In such a case, we have  g1,�

eM ' D◆⇤ g,�
eN and �g1,1 eM ' D◆⇤�g,1eN. Moreover, with

respect to these identifications,canfM = D◆⇤ caneN and varfM = D◆⇤ vareN.

Proof. The first statement is easy to check. Let us consider the second one. We first
consider the case where X1 = X ⇥C⌧ and H1 = H ⇥C⌧ , with X = H ⇥Ct and g, g1

are the projection to Ct. We denote by V the V -filtration along t. We have eM =

D◆⇤eN =
L

k
◆⇤eN ⌦ �⌧ e@k⌧ .

Let us first prove that the V -filtration of eM is compatible with the decomposition.
Let

P
N

i=0
ni⌦�⌧ e@i⌧ be a section in V↵

eM. We will prove by induction on N that ni⌦�⌧ 2
V↵

eM for every i. It is enough to prove it for i = N . We have
�P

N

i=0
ni⌦ �⌧ e@i⌧

�
· ⌧N =

?z
N
nN ⌦ �⌧ 2 V↵

eM for some nonzero constant ?. If nN ⌦ �⌧ 2 V�
eM for � > ↵, then

the class of nN ⌦ �⌧ in gr
V

�
eM is annihilated by z

N , hence is zero since gr
V

�
eM is strict.

Therefore, nN ⌦ �⌧ 2 V↵
eM.

Let us define U↵
eN as the subsheaf of eN consisting of those sections n such that

n⌦�⌧ 2 V↵
eM. Then one has V↵

eM =
L

i
◆⇤U↵

eN⌦�⌧ e@i⌧ and gr
V

↵
eM =

L
i
◆⇤gr

U

↵
eN⌦�⌧ e@i⌧ .

In particular, each gr
U

↵
eN is strict. Clearly, each U↵

eN is a V0
eDX0 -module. We argue

as in Lemma 9.6.3(1) to show that each U↵
eN is V0

eDX0 -coherent.
From the properties of V•

eM one deduces that U•
eN satisfies the characteristic prop-

erties of the V -filtration, hence is equal to it. Therefore, eN is strictly R-specializable
along H and Properties 9.3.18(2) and (3) are clearly satisfied, as they hold for eM.
The last statement is then clear by the computation of the V -filtrations above.

For the general case, the assumption is that ◆g1⇤(◆⇤eN) is strictly R-specializable
along X1 ⇥ {0}, hence so is ◆0⇤(◆g⇤eN). Since the question is local, we can assume
that ◆ is the inclusion X ⇥ {0} ,! X ⇥ eC⌧ = X1 and similarly for ◆0 after taking the
product with eCt. We are then reduced to the previous case and we obtain the strict
R-specializability of ◆g⇤eN along (t).
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9.7. Support-decomposable eD-modules

Let g : X ! C be a holomorphic function. We set D := (g) and |D| = g
�1

(0).
Let ◆g : X ,! X ⇥ C denote the graph embedding associated with g. We set H =

X ⇥ {0} ⇢ X ⇥ C.
Let us make precise the behaviour of the support of nearby and vanishing cycles.

9.7.1. Proposition. Assume that eM is eDX-coherent and strictly R-specializable along D.

(1) For every � 2 S
1, dimSupp g,�

eM < dimSupp eM.
(2) If Supp eM ⇢ |D|, then  g,�

eM = 0 for any � 2 S
1, and eM ' �g,1 eM.

Proof.
(1) Clearly, the support is contained in g

�1
(0) \ Supp eM. The question is local.

Let xo 2 g
�1

(0) \ Supp eM. Assume that a local component Sxo
of Supp eM at xo is

contained in f
�1

(0). It is enough to prove the vanishing of  g,�
eM in the neighbour-

hood of a point x
0
o
2 Sxo

\ (Supp eM)
smooth. We can choose local coordinates at x

0
o

such that g = t
r for some r > 1. By the example of Section 9.9.a below, we are

reduced to proving that, near x
0
o
, we have  t,�

eM = 0 for every � 2 S
1. This follows

from Lemma 9.6.3(2).
(2) The first statement follows from the first point. By Proposition 9.6.2 we have

eMg = D◆t⇤gr
V

0
eMg =: D◆t⇤�g,1 eM. On the other hand, we recover eM from eMg as

eM = Dp⇤ eMg, where p : X⇥C! C is the projection. We then use that p�◆t = IdX .

9.7.2. Proposition. Let eM be a coherent eDX-module which is strictly R-specializable
along (g).

(1) The following properties are equivalent:
(a) var : �g,1

eM!  g,1
eM(�1) is injective,

(b) eMg has no proper subobject in Modcoh(
eDX⇥C) supported on H,

(c) There is no strictly R-specializable inclusion eN ,! eMg with eN strictly
R-specializable supported on H.

(2) If can :  g,1
eM ! �g,1

eM is onto, then eMg has no proper quotient satisfying
9.3.18(1) and supported on H.

9.7.3. Definition (Middle extension along (g)). Let eM be a coherent eDX -module which
is strictly R-specializable along (g). We say that eM is a middle extension along (g) if
var : �g,1

eM!  g,1
eM(�1) is injective and can :  g,1

eM! �g,1
eM is onto. (See Remark

3.3.12 for the terminology.)

The nearby/vanishing Lefschetz quiver of a middle extension is isomorphic to the
Lefschetz quiver (proof as Exercise 9.36)

(9.7.4)  g,1
eM

can = N

**

ImN.

var = incl

jj

(�1)
jj
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9.7.5. Proposition. Let eM be as in Proposition 9.7.2. The following properties are
equivalent:

(1) �g,1 eM = Imcan�Ker var,
(2) eM= eM0� eM00 with eM0, eM00 strictly R-specializable along (g), eM0 being a middle

extension along (g) and eM00 supported on g
�1

(0).

Moreover, such a decomposition is unique, and if eM, eN satisfy these properties, any
morphism ' : eM! eN decomposes correspondingly.

Proof of Propositions 9.7.2 and 9.7.5. All along this proof, we set eN = eMg for short.
9.7.2(1) (1a), (1b): It is enough to show that the morphisms

Ker[t : V0
eN! V�1eN]

i
I

ww ))

Ker[t : eN! eN] Ker[t : gr
V

0
eN! gr

V

�1
eN]

are isomorphisms. It is clear for the right one, since t : V
<0eN ! V

<�1eN is an
isomorphism, according to 9.3.25(a). For the left one this follows from the fact that t
is injective on gr

V

↵
eN for ↵ 6= 0 according to 9.3.25(c).

(1b) , (1c): let us check ( (the other implication is clear). Let eT denote the
t-torsion submodule of eN and eT0 the eDX⇥C-submodule generated by

eT0 := Ker[t : eN �! eN].

9.7.6. Assertion. eT0 is strictly R-specializable and the inclusion eT0 ,! eN is strictly
R-specializable.

This assertion gives the implication ( because Assumption (1c) implies eT0 = 0,
hence t : eN! eN is injective, so eT = 0.

Proof of the assertion. Let us show first that eT0 is eDX⇥C-coherent. As we remarked
above, we have eT0 = Ker[t : gr

V

0
eN ! gr

V

�1
eN]. Now, eT0 is the kernel of a linear

morphism between eDH -coherent modules (H = X ⇥ {0}), hence is also eDH -coherent.
It follows that eT0 is eDX⇥C-coherent.

Let us now show that eT0 is strictly R-specializable. We note that eT0 is strict because
it is isomorphic to a submodule of grV

0
eN. Let U•

eT0 be the filtration induced by V•
eN

on eT0. Then U<0
eT0 = 0, according to 9.3.25(a), and gr

U

↵
eT0 = 0 for ↵ 62 N. Let us

show by induction on k that

Uk
eT0 = eT0 +

eT0
e@t + · · ·+ eT0

e@k
t
.

Let us denote by U
0
k
eT0 the right-hand term. The inclusion � is clear. Let xo 2 H,

m 2 Uk
eT0
xo

and let ` > k such that m 2 U
0
`
eT0
xo

. If ` > k one has m 2 eT0
xo
\ V`�1eNxo
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hence mt
` 2 eT0

xo
\ V�1eNxo

= 0. Set

m = m0 +m1
e@t + · · ·+m`

e@`
t
,

with mjt = 0 (j = 0, . . . , `). One then has m`
e@`
t
t
`
= 0, and since

m`
e@`
t
t
`
= m` ·

`Y

j=1

(te@t + jz) = `!m`z
`

and eT0 is strict, one concludes that m` = 0, hence m 2 U
0
`�1

eT0
xo

. By induction, this
implies the other inclusion.

As gr
U

↵
eT0 is contained in gr

V

↵
eN, one deduces from 9.3.25(d) that e@t : gr

U

k
eT0 !

gr
U

k+1
eT0 is injective for k > 0. The previous computation shows that it is onto,

hence eT0 is strictly R-specializable and U•
eT0 is its Malgrange-Kashiwara filtration.

It is now enough to prove that the injective morphism gr
U

0
eT0 ! gr

V

0
eN is strict. But

its cokernel is identified with the submodule Im[t : gr
V

0
eN ! gr

V

�1
eN] of grV�1eN, which

is strict.

9.7.2(2) If can is onto, then eN = eDX⇥C · V<0
eN. If eN has a t-torsion quotient eT

satisfying 9.3.18(1), then V<0
eT = 0, so V<0

eN is contained in Ker[eN! eT] and thus
eN = eDX⇥C · V<0

eN is also contained in this kernel, that is, eT = 0.
9.7.5(1)) 9.7.5(2) Set

U0
eN0 = V<0

eN + e@tV�1eN and eT0 = Ker[t : eN �! eN].

The assumption (1) is equivalent to V0
eN = U0

eN0 � eT0. Define

Uk
eN0 = Vk

eDX · U0
eN0 and Uk

eN00 = Vk
eDX · eT0

for k > 0. As Vk
eN = Vk�1eN + e@tVk�1eN for k > 1, one has Vk

eN = Uk
eN0 + Uk

eN00 for
k > 0. Let us show by induction on k > 0 that this sum is direct. Fix k > 1 and let
m 2 Uk

eN0 \ Uk
eN00. Write

m = m
0
k�1 + n

0
k�1

e@t = m
00
k�1 + n

00
k�1

e@t,
(
m
0
k�1, n

0
k�1 2 Uk�1eN0,

m
00
k�1, n

00
k�1 2 Uk�1eN00.

One has [n
0
k�1]

e@t = [n
00
k�1]

e@t in Vk
eN/Vk�1eN, hence, as

e@t : Vk�1eN/Vk�2eN �! Vk
eN/Vk�1eN

is bijective for k > 1, one gets [n0
k�1] = [n

00
k�1] in Vk�1eN/Vk�2eN and by induction one

deduces that both terms are zero. One concludes that m 2 Uk�1eN0\Uk�1eN00=0 by
induction.

This implies that eN = eN0 � eN00 with eN0 :=
S

k
Uk

eN0 and eN00 defined similarly. It
follows from Exercise 9.20(1) that both eN0 and eN00 are strictly R-specializable along H

and the filtrations U• above are their Malgrange-Kashiwara filtrations. In particular,
eN0 satisfies (1) and (2). By Corollary 9.6.5 we also know that eN0 = eM0

g
and eN00 = eM00

g

for some coherent eDX -modules eM0, eM00.
9.7.5(2) ) 9.7.5(1): One has V<0

eN00 = 0. Let us show that Im can = gr
V

0
eN0 and

Ker var = gr
V

0
eN00. The inclusions Im can ⇢ gr

V

0
eN0 and Ker var � gr

V

0
eN00 are clear.
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Moreover gr
V

0
eN0 \ Ker var = 0 as eN0 satisfies (1). Lastly, can : gr

V

�1
eN0 ! gr

V

0
eN0 is

onto, as eN0 satisfies (2). Hence gr
V

0
eN = Imcan�Ker var.

Let us now prove the last assertion. We first note that the uniqueness statement
follows from the statement on morphisms: if we have two decomposition eM = eM0

1
�

eM00
1
= eM0

2
� eM00

2
, then the identity morphism decomposes correspondingly.

Let us consider a morphism ' : eM0� eM00 ! eN0� eN00. First, by (1b) in Proposition
9.7.2, the component eM00 ! eN0 is zero. For the component eM0 ! eN00, let us denote
by eM0

1
its image. The V -filtration on eM0

fun,1
induced by V•

eN00
g

is coherent (Exercise
9.11(1)) and satisfies 9.3.18(1), hence by Proposition 9.7.2(2) we have eM0

fun,1
= 0.

9.7.7. Definition (S(upport)-decomposable eDX -modules). We say that a coherent
eDX -module eM is

• S-decomposable along (g) if it is strictly R-specializable along (g) and satisfies
the equivalent conditions 9.7.5;

• S-decomposable at xo 2 X if for any analytic germ g : (X,xo) ! (C, 0) such
that g�1(0)\Supp eM has everywhere codimension 1 in Supp eM, eM is S-decomposable
along (g) in some neighbourhood of xo;

• S-decomposable if it is S-decomposable at all points xo 2 X.

9.7.8. Lemma.
(1) If eM is S-decomposable along (g), then it is S-decomposable along (g

r
) for every

r > 1.
(2) If eM = eM1 � eM2, then eM is S-decomposable of some kind if and only if eM1

and eM2 are so.
(3) We assume that eM is S-decomposable and its support Z is a pure dimensional

closed analytic subset of X. Then the following conditions are equivalent:
(a) for any analytic germ g : (X,xo) ! (C, 0) such that g

�1
(0) \ Z has

everywhere codimension 1 in Z, eMg is a middle extension along (g);
(b) near any xo, there is no eDX-coherent submodule of eM with support having

codimension > 1 in Z;
(c) near any xo, there is no nonzero morphism ' : eM! eN, with eN S-decom-

posable at xo, such that Im' is supported in codimension > 1 in Z.

Proof. Property (1) is an immediate consequence of the example of Section 9.9.a, and
Property (2) follows from the fact that for any germ g, the corresponding can and
var decompose with respect to the given decomposition of eM. Let us now prove (3).
Both conditions (3a) and (3b) reduce to the property that, for any analytic germ g :

(X,xo)! (C, 0) which does not vanish identically on any local irreducible component
of Z at xo, the corresponding decomposition eM = eM0 � eM00 of 9.7.5(2) reduces to
eM = eM0, i.e., eM00 = 0. For the equivalence with (3c), we note that, according to the
last assertion in Proposition 9.7.5, and with respect to the decomposition ' = '

0�'00
along a germ g, we have Im' 6= 0 and supported in g

�1
(0) if and only if Im'

00 6= 0,



346 CHAPTER 9. NEARBY AND VANISHING CYCLES OF eD-MODULES

and thus eM00 6= 0. Conversely, if eM00 6= 0, the projection eM! eM00 gives a morphism
contradicting (3c).

9.7.9. Definition (Pure support). Let eM be S-decomposable and having support a pure
dimensional closed analytic subset Z of X. We say that eM has pure support Z if the
equivalent conditions of 9.7.8(3) are satisfied.

9.7.10. Proposition (Generic structure of a S-decomposable module)
Assume that eM is holonomic and S-decomposable with pure support Z, where Z

is smooth. Then there exists a unique holonomic and S-decomposable eDZ-module eN
such that eM = D◆Z⇤eN. Moreover, there exists a Zariski dense open subset Z

o ⇢ Z

such that eN|Zo is eOZo-coherent and strict.

Proof. Let us consider the first statement. By uniqueness, the question is local on Z.
We argue by induction on dimX. Let H be a smooth hypersurface containing Z

such that H = {t = 0} of some local coordinate system (t, x2, . . . , xd). Since eM
is strictly R-specializable along t, the strict Kashiwara’s equivalence implies that
eM = D◆H⇤eN for a unique coherent eDH -module eN. Moreover, eN is strictly R-spe-
cializable along any holomorphic function on H, according to Proposition 9.6.6. If
this function is the restriction g|H of a holomorphic function on X, then one checks
that a decomposition 9.7.5(2) for eM along (g) comes from a decomposition 9.7.5(2)
for eN along (g|H). We conclude that eN is also S-decomposable, and has pure support
Z ⇢ H. Continuing this way, we reach a coherent eDZ-module which is S-decomposa-
ble. It is easy to check that eN is holonomic since, if Char eM denotes the characteristic
variety of eM, it is obtained by a straightforward formula from Char eN.

Coming back to the global setting, we consider the characteristic variety Char eN
of eN, which is contained, by definition, in a set of the form

�S
i
T
⇤
Zi
Z
�
⇥Cz, where Zi

is an irreducible closed analytic subset of Z, one of them being Z. We set Z
o
=

Z r
S

i|Zi 6=Z
Zi. In such a way, we obtain a Zariski-dense open subset Z

o of Z such
that Char eN|Zo ⇢ T

⇤
ZoZ

o⇥Cz. We conclude from Exercise 8.69 that eN|Zo is eOZo -coh-
erent.

Let us now restrict to Z
o and prove that eN is strict there. If t is a local coordinate,

notice that each term of the V -filtration V•
eN is also eOZo -coherent (recall that we

know that eN is strictly R-specializable along t). It follows that the V -filtration is
locally stationary, hence eN = V0

eN, since gr
V

↵
eN = 0 for ↵� 0 (Proposition 9.3.25(d)),

hence for all ↵ > 0. Let m be a local section of eN killed by z. Then m is zero in
eN/eNt by strict R-specializability. As eN is eOZo -coherent, Nakayama’s lemma (applied
to eN ⌦eOZo

OZo⇥Cz
) implies that m = 0.

9.7.11. Corollary. Let eM be holonomic and S-decomposable. Then eM is strict.

Proof. The question is local, and we can assume that eM has pure support Z with Z

closed irreducible analytic near xo. Proposition 9.7.10 applied to the smooth part
of Z produces a dense open subset Z

o of Z such that eM|Zo is strict. Let m be a
local section of eM near xo 2 Z killed by z. Then m · eDX is supported by a proper
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analytic subset of Z near xo by the previous argument. As eM has pure support Z,
we conclude that m = 0.

9.7.12. Corollary. Let eM be holonomic and S-decomposable. Then there exist irre-
ducible closed analytic subsets Zi of X such that Char eM =

�S
i
T
⇤
Zi
X
�
⇥ Cz.

Proof. Since eM is strict, there exists a coherently F -filtered DX -module (M, F•M)

such that eM = RFM. We can thus apply Exercise 8.71(1).

9.7.13. Corollary. Let Z ⇢ X be a closed analytic subset of X and let eM be holonomic
and S-decomposable with pure support Z. Then there exists a dense open subset Z

o

of Z, a neighbourhood nb(Z
o
) in X, and a eDZo-holonomic module eN which is eOZo-

locally free of finite rank, such that eM|nb(Zo) = D◆Zo⇤eN.

Proof. By restricting first to a neighbourhood of the smooth locus of Z, we can
assume that Z is smooth, so that the setting is that of Proposition 9.7.10, and we can
also assume that X = Z. Recall that, by strictness, eM = RFM. According to the
same proposition, we can also assume that M is OX -coherent, hence OX -locally free
(see Exercise 8.69(3)).

The filtration F•M has then only a finite number of jumps, and gr
FM is also

OX -coherent. Up to restricting to a dense open subset, we can assume that gr
FM

is OX -locally free. For each p, let vp be a local family of elements of FpM whose
classes in gr

F

p
M form a local frame. Then (vp)p is a local frame of M. We have

a natural surjective morphism
L

p
z
peOXvp ! RFM, which induces an isomorphism

after tensoring with eOX [z
�1

] over eOX , since both terms have (vp)p as an eOX [z
�1

]-
basis. Each local section of the kernel is thus annihilated by some power of z, hence
is zero since the left-hand term is obviously strict. Therefore, RFM is eOX -locally
free.

We will now show that a S-decomposable holonomic eDX -module (see Definition
8.8.29) can indeed be decomposed as the direct sum of holonomic eDX -modules hav-
ing as pure support closed irreducible analytic subsets. These subsets are then called
the pure components of (the support of) eM (note that a pure component could be in-
cluded in another one). We first consider the local decomposition and, by uniqueness,
we get the global one. It is important for that to be able to define a priori the pure
components. They are obtained from the characteristic variety of eM, equivalently
of M, according to Corollary 9.7.12.

9.7.14. Proposition. Let eM be holonomic and S-decomposable at xo, and let (Zi, xo)i2I
be the family of closed irreducible analytic germs (Zi, xo) such that Char eM =S

i
T
⇤
Zi
X ⇥ Cz near xo. There exists a unique decomposition eMxo

= �i2I eMZi,xo
of

germs at xo such that eMZi,xo
= 0 or has pure support (Zi, xo).

Proof. For the existence of the decomposition, we will argue by induction on
dimSupp eM. The case where dimSupp eM is clear. First, we reduce to the case when
the support Z of eM (see Proposition 8.8.11) is irreducible at xo. For this purpose,
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let us decompose the germ of Z at xointo its irreducible components
S

j
Zj . Let

g be a germ of holomorphic function at xo such that g
�1

(0) \ S has everywhere
codimension 1 in Z and contains the support of the kernel and cokernel of

L
j

�Zj

eM �! eM

(see Lemma 8.8.12). Let us consider the decomposition eM = eM0� eM00 with eM0 being
a middle extension along (g) and eM00 supported on g

�1
(0). Since the kernel and

cokernel of the above morphism have support contained in g
�1

(0), we conclude that
it induces an isomorphism

L
j
�Zj

eM ! eM0. Moreover, since S-decomposability is
stable by direct summand (Lemma 9.7.8(2)), each �Zj

eM and eM00 are S-decomposa-
ble. We can apply the induction hypothesis to eM00, and we are reduced to treat each
�Zj

eM, so we can assume that Z is irreducible and has dimension > 1.
Let us now choose a germ g : (X,xo)! (C, 0) which is non-constant on Z and such

that g
�1

(0) contains all the components Zi defined by Char eM, except Z. We have,
as above, a unique decomposition eM = eM0� eM00 of germs at xo, where eM0 is a middle
extension along (g), and eM00 is supported on g

�1
(0), by the assumption of S-decom-

posability along (g) at xo. Moreover, eM0 and eM00 are also S-decomposable at xo.
We can apply the induction hypothesis to eM00.

Let us show that eM0 has pure support Z near xo: if eM0
1

is a coherent submodule
of eM0 supported on a strict analytic subset Z ⇢ Z, then Z is contained in the union
of the components Zi, hence eM0

1
is supported in g

�1
(0), so is zero. We conclude

by 9.7.8(3b).
For the uniqueness of the decomposition, we note that, given two local decom-

positions with components eMZi,xo
, eM0

Zi,xo
, the components 'ij of any morphism

' : eMxo
! eMxo

vanishes as soon as i 6=j. Indeed, we have either codimZi
(Zi \ Zj)>1,

or codimZj
(Zi \ Zj) > 1. In the first case we apply Lemma 9.7.8(3c) to eMZi,xo

. In
the second case, we apply Lemma 9.7.8(3b) to eM0

Zj ,xo
. We apply this same result to

' = Id : eM! eM to obtain uniqueness.

By uniqueness of the local decomposition, we get:

9.7.15. Corollary. Let eM be holonomic and S-decomposable on X and let (Zi)i2I be
the (locally finite) family of closed irreducible analytic subsets Zi such that Char eM =S

i
T
⇤
Zi
X ⇥ Cz. There exists a unique decomposition eM = �i

eMZi
such that each

eMZi
= 0 or has pure support Zi.

As indicated above, a closed analytic irreducible subset Z of X such that eMZ 6= 0

is called a pure component of eM.

Proof of Corollary 9.7.15. Given the family (Zi)i2I and xo 2 X, the germs (Zi, xo)

are equidimensional, and Proposition 9.7.14 gives a unique decomposition eMxo
=

�i2I eMZi,xo
by gathering the local irreducible components of (Zi, xo). The uniqueness

enables us to glue all along Zi the various germs eMZi,x
.
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9.7.16. Corollary. Let eM0, eM00 be two holonomic eDX-module which are S-decompo-
sable and let (Zi)i2I be the family of their pure components. Then any morphism
' : eM0

Zi
! eM00

Zj
vanishes identically if Zi 6= Zj.

Proof. The image of ' is supported on Zi\Zj , which has everywhere codimension > 1

in Zi or Zj if Zi 6= Zj . We then apply Lemma 9.7.8.

9.7.17. Remark (Restriction to z = 1). Let us keep the notation of Exercise 9.24 and
let us assume that eM is eDX -coherent and strictly R-specializable. It is obvious that,
if can is onto for eM, it is also onto for M := eM/ eM(z � 1). On the other hand, it is
also true that, if var in injective for eM, it is also injective for M (see Exercise 5.2(3)).
As a consequence, if eM is a middle extension along (g), so is M. Moreover, if eM is
S-decomposable along (g) at xo, so is M, and the strict decomposition eM = eM0� eM00
restricts to the decomposition M = M0 �M00 given by 9.7.5(2).

We conclude that, if eM is S-decomposable, then M is S-decomposable, and the
pure components are in one-to-one correspondence.

9.7.18. The structure of grM
`
gr

V eM. Assume that X = H ⇥�t and let us consider the
V -filtration along t. Let eM be strictly R-specializable along (t). For each ↵ 2 A+Z, let
M•gr

V

↵
eM denote the monodromy filtration of the nilpotent operator N (see Section 3.3,

with §3.1.2 for the twist (�1) induced by the action of N). If moreover eM is S-decom-
posable along (t), we make precise the structure of the gr

V eDX -module gr
M

`
gr

V eM :=L
↵2A+Z gr

M

`
gr

V

↵
eM when eM.

The isomorphisms 9.3.18(2) and (3) commute with the action of N, hence induce,
for each `, corresponding isomorphisms

t : gr
M

`
gr

V

↵
eM ⇠�! gr

M

`
gr

V

↵�1
eM (↵ < 0),

e@t : grM` gr
V

↵
eM ⇠�! gr

M

`
gr

V

↵+1
eM (↵ > �1).

Furthermore, te@t acts as ↵z Id on gr
M

`
gr

V

↵
eM.

For any ↵ 2 (�1, 0), we can thus write (omitting edt)

gr
M

`
gr

V

↵+Z eM '
h
gr

M

`
gr

V

↵
eM⌦eC

eC[t]t
i
� gr

M

`
gr

V

↵
eM�

h
gr

M

`
gr

V

↵
eM⌦eC

eC[e@t]e@t
i
,

where the action of gr
V
eDX = eDH [t]he@ti is described as follows (the action of eDH is

the natural one on gr
M

`
gr

V

↵
eM) for k > 0:

(m⌦ t
k
) · t = m⌦ t

k+1
, (m⌦ t

k+1
) · e@t = (↵� k)z(m⌦ t

k
),

(m⌦ e@k
t
) · e@t = m⌦ e@k+1

t
, (m⌦ e@k+1

t
) · t = (↵+ k + 1)z(m⌦ e@k

t
)

It is thus naturally identified with (omitting edt)

(9.7.18 ⇤) gr
M

`
gr

V

↵
eM⇥eC

h
eC[t]he@ti

�
(te@t � ↵z)eC[t]he@ti

i
.

Let us now consider gr
M

`
gr

V

Z
eM. As eM is assumed to be S-decomposable along (t),

we can assume that either eM is supported on H or that eM is a minimal extension
along H.
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In the first case, the structure of eM is known by the strict Kashiwara’s equivalence:
eM ' gr

V

0
eM ⇥eC

eC[e@t]. Furthermore, N acts by zero on gr
V

0
, so we also have gr

V

Z
eM '

gr
V

0
eM⇥eC

eC[e@t].
In the second case, we claim that (omitting edt)

(9.7.18 ⇤⇤) gr
M

`
gr

V

Z eM '
h
gr

M

`
gr

V

�1
eM⇥eC

eC[t]
i
�
h
gr

M

`
gr

V

0
eM⇥eC

eC[e@t]
i
,

where e@t acts by zero on gr
M

`
gr

V

�1
eM ⇥eC 1 and t acts by zero on gr

M

`
gr

V

0
eM ⇥eC 1.

The point is to check that vart and cant induce the zero morphisms after passing
to gr

M

`
: this is provided by Lemma 3.3.13(b). Note that the first case also admits this

description.

9.8. Direct image of strictly R-specializable coherent eDX-modules

Let us consider the setting of Theorem 8.8.21. So f : X ! X
0 is a proper holo-

morphic map, and eM is a coherent right eDX -module. Let H
0 ⇢ X

0 be a smooth
hypersurface. We will assume that H := f

⇤
(H
0
) is also a smooth hypersurface of X.

If eM has a coherent V -filtration U•
eM along H, the RV

eDX -module RU
eM is therefore

coherent. With the assumptions above it is possible to define a sheaf RV
eDX!X0

and therefore the pushforward Df⇤RU
eM as an RV

eDX0 -module (where V•
eDX0 is the

V -filtration relative to H
0).

We will show the RV
eDX0 -coherence of the cohomology sheaves Df

(k)

⇤ RU
eM of the

pushforward Df⇤RU
eM if eM is equipped with a coherent filtration. By the argument

of Exercise 9.10, by quotienting by the v-torsion, we obtain a coherent V -filtration on
the cohomology sheaves Df

(k)

⇤ eM of the pushforward Df⇤ eM.
The v-torsion part contains much information however, and this supplementary

operation killing the v-torsion looses it. The main result of this section is that, if eM is
strictly R-specializable along H, then so are the cohomology sheaves Df

(k)

⇤ eM along H
0,

and moreover, when considering the filtration by the order, the corresponding Rees
modules Df

(k)

⇤ RV
eM have no v-torsion, and can thus be written as RUDf

(k)

⇤ eM for
some coherent V -filtration U•Df

(k)

⇤ eM. This coherent V -filtration is nothing but the
Kashiwara-Malgrange filtration of Df

(k)

⇤ eM. We say that the Kashiwara-Malgrange
filtration behaves strictly with respect to the pushforward functor Df⇤.

Another way to present this property is to consider the individual terms V↵
eM

of the Kashiwara-Malgrange filtration as V0
eDX -modules. By introducing the sheaf

V0
eDX!X0 , one can define the pushforward complex Df⇤V↵

eM for every ↵, and
the strictness property amounts to saying that for every k and ↵, the morphisms
Df

(k)

⇤ V↵
eM! Df

(k)

⇤ eM are injective. In the following, we work with right eDX -modules
and increasing V -filtrations.

9.8.a. Definition of the pushforward functor and the coherence theorem

We first note that our assumption on H,H
0
, f is equivalent to the property that,

locally at xo 2 H, setting x
0
o
= f(xo), there exist local decompositions (X,xo) '

(H,xo)⇥ (C, 0) and (X
0
, x
0
o
) ' (H

0
, x
0
o
)⇥ (C, 0) such that f(y, t) = (f |H(y), t).
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Let U•
eM be a V -filtration of eM and let RU

eM be the associated graded RV
eDX -

module. Our first objective is to apply the same reasoning as in Theorem 8.8.21 by
replacing the category of eD-modules with that of graded RV

eDX -modules.
The sheaf eDX!X0 has a V -filtration: we set Vk

eDX!X0 := eOX ⌦f�1eO
X0

f
�1

Vk
eDX0 .

One checks in local decompositions as above that, with respect to the left eDX -struc-
ture one has V`

eDX · Vk
eDX!X0⇢Vk+`

eDX!X0 . We can write

(9.8.1) RV
eDX!X0 := eOX ⌦f�1eO

X0
f
�1

RV
eDX0 = RV

eOX ⌦f�1RV
eO

X0
f
�1

RV
eDX0 .

Indeed, this amounts to checking that
eOX ⌦f�1eO

X0
f
�1

RV
eOX0 = RV

eOX ,

which is clear. According to Exercise 9.7, RV
eDX0 is RV

eOX0 -locally free, so RV
eDX!X0

is RV
eOX -locally free.

We define
(9.8.2) Df⇤RU

eM := Rf⇤
�
RU

eM⌦L
RV

eDX

RV
eDX!X0

�

as an object of Db
(RV

eDX0).

9.8.3. Theorem. Let eM be a eDX-module equipped with a coherent filtration F•
eM. Let

U•
eM be a coherent V -filtration of eM. Then the cohomology modules of Df⇤RU

eM have
coherent RV

eDX0-cohomology.

9.8.4. Lemma. Let eL be an RV
eOX-module. Then

(eL⌦
RV

eOX

RV
eDX)⌦L

RV
eDX

RV
eDX!X0 = eL⌦

f�1RV
eO

X0
f
�1

RV
eDX0 .

Proof. It is a matter of proving that the left-hand side has cohomology in degree 0

only, since this cohomology is easily seen to be equal to the right-hand side. This can
be checked on germs at x 2 X. Let eL•

x
be a resolution of eLx by free RV

eOX,x-modules.
We have

(eLx⌦RV
eOX,x

RV
eDX,x)⌦L

RV
eDX,x

RV
eDX!X0,x

= (eLx ⌦L
RV

eOX,x

RV
eDX,x)⌦L

RV
eDX,x

RV
eDX!X0,x (Ex. 9.7)

= (eL•
x
⌦

RV
eOX,x

RV
eDX,x)⌦L

RV
eDX,x

RV
eDX!X0,x

= (eL•
x
⌦

RV
eOX,x

RV
eDX,x)⌦RV

eDX,x

RV
eDX!X0,x

= eL•
x
⌦

RV
eOX,x

RV
eDX!X0,x = eLx ⌦L

RV
eOX,x

RV
eDX!X0,x

= eLx ⌦RV
eOX,x

RV
eDX!X0,x (RV

eDX!X0,x is RV
eOX,x-free)

= eLx ⌦f�1RV
eO

X0,x0
f
�1

RV
eDX0,x0 .

As a consequence of this lemma, we have
(9.8.5) Df⇤(eL⌦RV

eOX

RV
eDX) = (Rf⇤eL)⌦RV

eO
X0

RV
eDX0

and the cohomology of this complex is RV
eDX0 -coherent.
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9.8.6. Remark. Assume that eL = eK ⌦eOX

RV
eOX for some eOX -module eK. Note that,

by flatness (see Exercise 9.7),
eK⌦L

eOX

RV
eDX = eK⌦eOX

RV
eDX = eL⌦

RV
eOX

RV
eDX .

Hence, by Lemma 9.8.4 and (9.8.1),

(eK⌦eOX

RV
eDX)⌦L

RV
eDX

RV
eDX!X0 = eK⌦

f�1eO
X0
f
�1

RV
eDX0 = eK⌦L

f�1eO
X0
f
�1

RV
eDX0 ,

and thus (9.8.5) becomes

Df⇤(eK⌦eOX

RV
eDX) = Rf⇤ eK⌦f�1eO

X0
RV

eDX0 .

9.8.7. Lemma. Assume that eM is a eDX-module having a coherent filtration F•
eM and

let U•
eM be a coherent V -filtration of eM. Then in the neighbourhood of any compact

set of X, RU
eM has a coherent F•RV

eDX-filtration.

Proof. Fix a compact set K ⇢ X. We can thus assume that eM is generated by a
coherent eOX -module eF in some neighbourhood of K, i.e., eM = eDX · eF. Consider the
V -filtration U

0
•
eM generated by eF, i.e., U 0• eM = V•

eDX · eF. Then, clearly, RV
eOX · eF =L

k
Vk
eOX · eFvk is a coherent graded RV

eOX -module which generates RU 0 eM as an
RV

eDX -module.
If the filtration U

00
•
eM is obtained from U

0
•
eM by a shift by �` 2 Z, i.e., if RU 00 eM =

v
`
RU 0 eM ⇢ eM[v, v

�1
], then RU 00 eM is generated by the RV

eOX -coherent submodule
v
`
RV

eOX · eF.
On the other hand, let U

00
•
eM be a coherent V -filtration such that RU 00 eM has a

coherent F•RV
eDX -filtration. Then any coherent V -filtration U•

eM such that Uk
eM ⇢

U
00
k
eM for every k satisfies the same property, because RU

eM is thus a coherent graded
RV

eDX -submodule of RU 00 eM, so a coherent filtration on the latter induces a coherent
filtration on the former.

As any coherent V -filtration U•
eM is contained, in some neighbourhood of K, in

the coherent V -filtration U
0
•
eM suitably shifted, we get the lemma.

Proof of Theorem 9.8.3. The proof now ends exactly as that for Theorem 8.8.21.

9.8.b. Strictness of the Kashiwara-Malgrange filtration by pushforward

9.8.8. Theorem (Pushforward of strictly R-specializable eD-modules)
Let f : X ! X

0 be a proper morphism of complex manifolds, let H 0 be a smooth
hypersurface of X 0 and assume that IH := IH0OX defines a smooth hypersurface H

of X. Let eM be a coherent right eDX-module equipped with a coherent filtration.
Assume that eM is strictly R-specializable along H with Kashiwara-Malgrange filtration
V•

eM indexed by A + Z with A finite contained in (�1, 0], and that each cohomology
module Df

(i)

|H⇤gr
V

↵
eM is strict (↵ 2 [�1, 0]).

Then each cohomology module Df
(i)

⇤ eM, which is eDX0-coherent according to Theorem
8.8.21, is strictly R-specializable along H

0 and moreover,
(1) for every ↵, i, the natural morphism Df

(i)

⇤ (V↵
eM)! Df

(i)

⇤ eM is injective,
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(2) its image is the Kashiwara-Malgrange filtration of Df
(i)

⇤ eM along H
0,

(3) for every ↵, i, grV
↵
(Df

(i)

⇤ eM) = Df
(i)

|H⇤(gr
V

↵
eM).

As an important corollary we obtain in a straightforward way:

9.8.9. Corollary. Let f : X ! X
0 be a proper morphism of complex manifolds. Let

g
0
: X
0 ! C be any holomorphic function on X

0 and let eM be eDX-coherent and strictly
R-specializable along (g) with g = g

0 � f . Assume that for all i and �, Df
(i)

⇤ ( g,�
eM)

and Df
(i)

⇤ (�g,1
eM) are strict.

Then Df
(i)

⇤ eM is eDX0-coherent and strictly R-specializable along (g
0
), we have for

all i and �,

( g,�(Df
(i)

⇤ eM),N) = Df
(i)

⇤ ( g,�
eM,N),

(�g,1(Df
(i)

⇤ eM),N) = Df
(i)

⇤ (�g,1
eM,N),

and the morphisms can, var for Df
(i)

⇤ eM are the morphisms Df
(i)

⇤ can, Df
(i)

⇤ var.

We first explain the mechanism which leads to the strictness property stated in
Theorem 9.8.8(1).

9.8.10. Proposition. Let H
0 ⇢ X

0 be a smooth hypersurface. Let (eN•
, U•

eN•
) be a

V -filtered complex of eDX0-modules, where U• is indexed by Z. Let N > 0 and assume
that

(1) H
i
(gr

U

k
eN•

) is strict for all k 2 Z and all i > �N � 1;
(2) there exists a finite subset A ⇢ (�1, 0] and for every k 2 Z there exists ⌫k > 0

such that
Q

↵2A(E�(↵+ k)z)
⌫k acts by zero on H

i
(gr

U

k
eN•

) for every i > �N � 1;
(3) there exists ko such that for all k 6 ko and all i > �N � 1, the right mul-

tiplication by some (or any) local reduced equation t of H
0 induces an isomorphism

t : Uk
eNi ⇠�! Uk�1eNi;

(4) there exists io 2 Z such that, for all i > io and any k 2 Z, one has
H

i
(Uk

eN•
) = 0;

(5) H
i
(Uk

eN•
) is V0

eDX0-coherent for all k 2 Z and all i > �N � 1.
Then for every k 2 Z and i > �N the morphism H

i
(Uk

eN•
)! H

i
(eN•

) is injective.
Moreover, the filtration U•H

i
(eN•

) defined by

UkH
i
(eN•

) = image
⇥
H

i
(Uk

eN•
) �! H

i
(eN•

)
⇤

satisfies gr
U

k
H

i
(eN•

) = H
i
(gr

U

k
eN•

) for all k 2 Z.

Proof. It will have three steps. During the proof, the indices k, j, ` will run in Z.

First step. This step proves a formal analogue of the conclusion of the proposition.
Put

\
Uk

eN•
= lim �̀Uk

eN•
/U`

eN• and beN•
= lim�!

k

\
Uk

eN•
.

Under the assumption of Proposition 9.8.10, we will prove the following:

(a) For all j 6 k, [Uj
eN• ! \

Uk
eN• is injective (hence, for all k, \Uk

eN• ! beN• is

injective) and \Uk
eN•

/
\

Uk�1eN•
= Uk

eN•
/Uk�1eN•.
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(b) For every j 6 k and any i, Hi
(Uk

eN•
/Uj

eN•
) is strict.

(c) H
i
(
\
Uk

eN•
) = lim �`

H
i
(Uk

eN•
/U`

eN•
) (i > �N).

(d) H
i
(
\
Uk

eN•
)! H

i
(
beN•

) is injective (i > �N).

(e) H
i
(
beN•

) = lim�!k
H

i
(
\
Uk

eN•
) (i > �N).

We note that the statements (b)–(d) imply that H
i
(
beN•

) is strict for i > �N ,
although H

i
(eN•

) need not be strict.

Define UkH
i
(
beN•

) = image
⇥
H

i
(
\
Uk

eN•
)! H

i
(
beN•

)
⇤
. Then the statements (a) and (d)

imply that

gr
U

k
H

i
(
beN•

) = H
i
(
\
Uk

eN•
/
\

Uk�1eN•
) = H

i
(gr

U

k
eN•

) (i > �N).

For ` < j < k consider the exact sequence of complexes

0 �! Uj
eN•

/U`
eN• �! Uk

eN•
/U`

eN• �! Uk
eN•

/Uj
eN• �! 0.

As the projective system (Uk
eN•

/U`
eN•

)` trivially satisfies the Mittag-Leffler condition
(ML) (see e.g. [KS90, Prop. 1.12.4]), the sequence remains exact after passing to
the projective limit, so we get an exact sequence of complexes

0 �! [
Uj

eN• �!\
Uk

eN• �! Uk
eN•

/Uj
eN• �! 0,

hence (a).
Let us show by induction on m = k � ` 2 N that, for all ` < k and i > �N ,
(i)

Q
↵2A

Q
`<j6k

(E�(↵+ j)z)
⌫j annihilates H

i
(Uk/U`),

(ii) for all j such that ` < j < k, we have an exact sequence,

(9.8.11) 0 �!H
i
(Uj

eN•
/U`

eN•
) �! H

i
(Uk

eN•
/U`

eN•
) �! H

i
(Uk

eN•
/Uj

eN•
)�! 0.

(iii) H
i
(Uk

eN•
/U`

eN•
) is strict.

If ` = k� 1, (i) and (iii) are true by assumption and (ii) is empty. Moreover, (ii)m
and (iii)<m imply (iii)m. For ` < j < k and k � ` = m, consider the exact sequence

(9.8.12) · · ·  
i

���! H
i
(Uj/U`) �! H

i
(Uk/U`) �! H

i
(Uk/Uj)

 
i+1

�����! H
i+1

(Uj/U`) �! · · ·

For any i > �N , any local section of Im 
i+1 is then killed by some power ofQ

↵2A
Q

j<r6k
(E�(↵+r)z) and by some power of

Q
↵2A

Q
`<r6j

(E�(↵+r)z) accord-
ing to (i)<m, hence is zero by Bézout and (iii)<m, and the same property holds for
Im 

i, so the previous sequence of Hi is exact, hence (ii)m. then, according to (i)<m,
(i)m follows.

Consequently, the projective system (H
i
(Uk

eN•
/U`

eN•
))` satisfies (ML), so we

get (c). Moreover, taking the limit on ` in (9.8.11) gives, according to (ML), an exact
sequence

0 �! H
i
(
[
Uj

eN•
) �! H

i
(
\
Uk

eN•
) �! H

i
(Uk

eN•
/Uj

eN•
) �! 0,

hence (d). Now, (e) is clear.
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Second step. For every i, k, denote by eTi

k
⇢ H

i
(Uk

eN•
) the IH0 -torsion subsheaf of

H
i
(Uk

eN•
). We set locally IH0 = tOX0 . We will now prove that it is enough to show

(9.8.13) 9 ko, k 6 ko =) eTi

k
= 0 8 i 2 [�N, io].

We assume that (9.8.13) is proved (step 3). Let ` 6 ko and i > �N , so that
eTi

`
= 0 (for i > io, one uses Assumption 4), and let k > `. Then, by definition of a

V -filtration, tk�` acts by 0 on Uk
eN•

/U`
eN•, so that the image of Hi�1

(Uk
eN•

/U`
eN•

) in
H

i
(U`

eN•
) is contained in eTi

`
, and thus is zero. We therefore have an exact sequence

for every i > �N :

0 �! H
i
(U`

eN•
) �! H

i
(Uk

eN•
) �! H

i
(Uk

eN•
/U`

eN•
) �! 0.

Using (9.8.11), we get for every j < k the exact sequence

0 �! H
i
(Uj

eN•
) �! H

i
(Uk

eN•
) �! H

i
(Uk

eN•
/Uj

eN•
) �! 0.

This implies that Hi
(Uj

eN•
)! H

i
(eN•

) = lim�!k
H

i
(Uk

eN•
) is injective. For every k, let

us set
UkH

i
(eN•

) := image
⇥
H

i
(Uk

eN•
) ,�! H

i
(eN•

)
⇤
.

We thus have, for every k 2 Z and i > �N ,

gr
U

k
H

i
(eN•

) = H
i
(gr

U

k
eN•

).

Third step: proof of (9.8.13). Let us choose ko as in 9.8.10(3). We notice that the

multiplication by t induces an isomorphism t :
[
Uk

eNi
⇠�! \

Uk�1eNi for k 6 ko and

i > �N � 1, hence an isomorphism t : H
i
(
\
Uk

eN•
)
⇠�! H

i
(
\

Uk�1eN•
), and that (d)

in Step 1 implies that, for all i > �N and all k 6 ko, the multiplication by t on

H
i
(
\
Uk

eN•
) is injective.

The proof of (9.8.13) is done by decreasing induction on i. We assume that, for
every k 6 ko, we have eTi+1

k
= 0 (this holds for i = io given by 9.8.10(4)). We have

(after 9.8.10(3)) an exact sequence of complexes, for every k 2 N and • > �N � 1,

0 �! Uk
eN• t

k

���! Uk
eN• �! Uk

eN•�
Uk�k eN• �! 0.

As eTi+1

k
= 0, we have, for every k > 1 an exact sequence

H
i
(Uk

eN•
)

t
k

���! H
i
(Uk

eN•
) �! H

i
(Uk

eN•
/Uk�k eN•

) �! 0,

hence, according to Step 1,

H
i
(
\
Uk

eN•
)/H

i
(
\

Uk�k eN•
) = H

i
(Uk

eN•
/Uk�k eN•

) = H
i
(Uk

eN•
)/t

k
H

i
(Uk

eN•
).

According to Assumption 9.8.10(5) and Exercise 9.12, for k big enough (locally on X
0),

the map eTi

k
! H

i
(Uk

eN•
)/t

k
H

i
(Uk

eN•
) is injective. It follows that eTi

k
! H

i
(
\
Uk

eN•
) is

injective too. But we know that t is injective on H
i
(
\
Uk

eN•
) for k 6 ko, hence eTi

k
= 0,

thus concluding Step 3.
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9.8.14. Remark. In Proposition 9.8.10, Condition (4) can be replaced by the following
two conditions:

(4’) there exists io 2 Z such that, for all i > io one has H
i
(eN•

) = 0 and, for any k,
H

i
(gr

U

k
eN•

) = 0,
(5’) for each k 2 Z each p 2 Z and each i > io, the cohomology H

i
((Uk

eN•
)p) is

OX-coherent, where (Uk
eNj

)p denotes the p-th graded component of Uk
eNj.

Indeed, let us show that, together with Condition 9.8.10(3), (4’) and (5’) im-
ply (4). Due to the long exact sequence (9.8.12), one obtains by induction that
H

i
(Uk

eN•
/Uk�j eN•

)=0 for any i > io, any k and any j 2 N. By Condition (3) we
have, for k 6 ko, a long exact sequence

· · · �! H
i
(Uk

eN•
)

t��! H
i
(Uk

eN•
) �! H

i
(Uk

eN•
/Uk�1eN•

) �! · · ·

and this implies that t is bijective on H
i
(Uk

eN•
) if i > io + 1 and k 6 ko, hence on

each component Hi
((Uk

eN•
)p). The coherency condition implies that, for each i > io,

each k 6 ko and any p 2 Z, there exists a neighborhood of t = 0 (possibly depending
on p) such that H

i
((Uk

eN•
)p) = 0. Since Uk

eN•
= eN• away from t = 0, (4’) implies

that the vanishing holds everywhere, that is, Hi
(Uk

eN•
) = 0 for k 6 ko. That it holds

for any k is obtained from the vanishing H
i
(Uk

eN•
/Uk�j eN•

)=0 seen above.

Proof of Theorem 9.8.8
9.8.15. Lemma. Let U•

eM be a V -filtration indexed by A+Z of a eDX-module eM which
satisfies the following properties:

(a) t : U↵
eM! U↵�1 eM is bijective for every ↵ < 0,

(b) e@t : grU↵ eM! gr
U

↵+1
eM is bijective for every ↵ > �1.

Then, for each ↵ 2 A, RU↵+•
eM has a resolution eL•

↵
⌦eOX

RV
eDX , where each eLi

↵

is an eOX-module.

Proof. Property (b) implies

(b’) for every ↵ > 0, e@t : U↵/U↵�1 ! U↵+1/U↵ is bijective.
Therefore, we have a surjective morphism

U↵
eM⌦eOX

Vk
eDX �! U↵+k

eM if

(
↵ 2 [�1, 0) and k 6 0, or
↵ 2 [0, 1) and k > 0.

It follows that, for each ↵ 2 [�1, 0), we have a surjective morphism

'↵ : (U↵
eM� U↵+1

eM)⌦eOX

RV
eDX �! RU↵+•

eM.

We note that V•
eDX satisfies (a) and (b’) with ↵ 2 Z.

Set eK↵ = Ker'↵, that we equip with the induced filtration U•
eK↵. We thus have

an exact sequence for every ↵:

0 �! U•
eK↵ �! (U↵

eM� U↵+1
eM)⌦eOX

V•
eDX �! U↵+•

eM �! 0,
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from which we deduce that U•
eK↵ satisfies (a) and (b’), enabling us to continue the

process.

The assertion of the theorem is local on X
0, and we will work in the neighbourhood

of a point x
0
o
2 H

0. We consider the Kashiwara-Malgrange filtration V•
eM as indexed

by Z, and it satisfies the properties 9.8.15(a) and (b’), according to Proposition 9.3.25.
We can then use a resolution eL• ⌦RV

eDX of RV
eM as in Lemma 9.8.15, that we stop

at a finite step chosen large enough (due to the cohomological finiteness of f) such
that

Df
(i)

⇤ (RV
eM) 6= 0 =) Df

(i)

⇤ (RV
eM) = Df

(i)

⇤ (eL• ⌦eOX

RV
eDX)

and similarly, for any k 2 Z, setting gr
V

k
= Vk/Vk�1,

Df
(i)

|H⇤(gr
V

k
eM) 6= 0 =) Df

(i)

|H⇤(gr
V

k
eM) = Df

(i)

|H⇤(
eL• ⌦eOX

gr
V

k
eDX).

In such a case, Df
(i)

⇤ (RV
eM) = H

i
�
f⇤God

•
(eL• ⌦

f�1eO
X0

f
�1

RV
eDX0)

�
, according to

Remark 9.8.6. We thus set

(eN•
, U•

eN•
) =

�
f⇤God

•
(eL• ⌦

f�1eO
X0

f
�1 eDX0), f⇤God

•
(eL• ⌦

f�1eO
X0

f
�1

V•
eDX0)

�
.

Since the sequences
0 �! Vk

eDX0 �! eDX0 �! eDX0/Vk
eDX0 �! 0

0 �! Vk�1 eDX0 �! Vk
eDX0 �! gr

V

k
eDX0 �! 0and

are exact sequences of locally free eOX0 -modules, they remain exact after applying
eL•⌦eO

X0
, then also after applying the Godement functor (see Exercise 8.49(1)), and

then after applying f⇤ since the latter complexes consist of flabby sheaves.
This implies that Uk

eN• is indeed a subcomplex of eN• and

gr
U

k
eN•

= f⇤God
•
(eL• ⌦

f�1eO
X0

f
�1

gr
V

k
eDX0).

Property 9.8.10(5) is satisfied according to Theorem 9.8.3, and Properties 9.8.10(3)
and (4) are clear.

We have eHi
(gr

U

k
eN•

)=Df
(i)

|H⇤gr
V

k
eM for i>�N for some N such that Df

(i)

|H⇤gr
V

k
eM=0

if i < �N , so that 9.8.10(1) holds by assumption and 9.8.10(2) is satisfied by taking
a suitable finite set A ⇢ (�1, 0] and the maximum of the local values ⌫k along the
compact fiber f

�1
(x
0
o
).

From Proposition 9.8.10 we conclude that 9.8.8(1) holds for k 2 Z and any i.
Denoting by U•Df

(i)

⇤ eM the image filtration in 9.8.8(1), we thus have RUDf
(i)

⇤ eM =

Df
(i)

⇤ RV
eM and therefore

gr
U

k
(Df

(i)

⇤ eM) = Df
(i)

|H⇤(gr
V

k
eM).

In particular, the left-hand term is strict by assumption on the right-hand term.
By the coherence theorem 9.8.3, we conclude that U•Df

(i)

⇤ eM is a coherent V -filtra-
tion of Df

(i)

⇤ eM. Therefore, U•Df
(i)

⇤ eM satisfies the assumptions of Lemma 9.3.16.
Moreover, the properties 9.3.18(2) and (3) are also satisfied since they hold for eM.
We conclude that Df

(i)

⇤ eM is strictly R-specializable along H
0 and that U•(Df

(i)

⇤ eM) is
its Kashiwara-Malgrange filtration indexed by Z. Now, Properties (1)–(3) in Theorem
9.8.8 are clear.



358 CHAPTER 9. NEARBY AND VANISHING CYCLES OF eD-MODULES

In order to pass from the Z-indexed V -filtration to the R-indexed V -filtration,
we use the correspondence of Exercise 9.26.

9.9. Examples of computations of nearby and vanishing cycles

In this section, we make explicit some examples of computation of nearby and
vanishing cycles simple situations, anticipating more complicated computations in
Chapter 15.

9.9.a. Strict R-specializability along (g
r
). Let g be a holomorphic function on X

and let eM be a coherent eDX -module which is strictly R-specializable along (g).
The purpose of this example is to show that eM is then also strictly R-specializa-
ble along (g

r
) for every r > 2, and to compare nearby and vanishing cycles of eM with

respect to g and to h := g
r.

9.9.1. Proposition. Let eM be a coherent eDX-module which is strictly R-specializable
along (g). Then eM is strictly R-specializable along (h) and

(a) ( h,�
eM,N) = ( g,�r

eM,N/r) for every �,
(b) (�h,1

eM,N) = (�g,1
eM,N/r),

(c) denoting by ◆g : X ,! X ⇥ C the graph inclusion and setting eN = eMg, there is
an isomorphism

8
<

:  h,1
eM

canh
,,

�h,1
eM

varh(�1)
ll

9
=

; '

8
>>>>>>>>><

>>>>>>>>>:

gr
V

�r
eN

canh := cang �(rgr�1)�1

##

 g,1
eM

g
r�1

⇠oo
cang

,,

�g,1
eM

varh := g
r�1 � varg

(�1)

bb

varg(�1)
ll

9
>>>>>>>>>=

>>>>>>>>>;

Proof. It is equivalent to prove the assertion with eM = eN, g = t and h = t
r, so

we will only consider this setting. We can then write D◆h⇤ eM =
L

k2N
eM ⌦ �e@k

u
as a

eDX [u]he@ui-module, with

(m⌦ �)e@k
u
= m⌦ �e@k

u
8 k > 0,

(m⌦ �)e@t = (me@t)⌦ � � (rg
r�1

m)⌦ �e@u,
(m⌦ �)u = (mt

r
)⌦ �,

(m⌦ �)eOX = (meOX)⌦ �,

and with the usual commutation rules. We then have the relation

r(m⌦ �)ue@u = [mte@t]⌦ � � (mt⌦ �)e@t.

We will denote by V
t the V -filtration with respect to the variable t and by V

u that
with respect to the variable u.
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For ↵ 6 0, we set

U↵(D◆h⇤ eM) :=
�
V

t

r↵
eM⌦ �

�
· V u

0
(eDX [u]he@ui),

and for ↵ > 0 we define inductively

U↵(D◆h⇤ eM) := U<↵(D◆h⇤ eM) + U↵�1(D◆h⇤ eM)e@u.

We will prove that the filtration U•(D◆h⇤ eM) is the V -filtration V
u
(D◆h⇤ eM).

• Let us assume that ↵ 6 0. Using the above relation we obtain that, if

V
t

r↵
eM(te@t � r↵z)

⌫r↵ ⇢ V
t

<r↵
eM,

then

U↵(D◆h⇤ eM)(ue@u � ↵z)⌫r↵ ⇢ U<↵(D◆h⇤ eM),

from which we conclude that (ue@u � ↵z) is nilpotent on gr
U

↵
(D◆h⇤ eM) for ↵ 6 0.

• By using the relation

(mte@t)⌦ � = (m⌦ �)(te@t � rue@u),

we see that, if m1, . . . ,m` generate V
t

r↵
eM over V t

0
eDX (↵ 6 0), then m1⌦�, . . . ,m`⌦�

generate U↵(D◆h⇤ eM) over V
u

0
(eDX [u]he@ui), from which we conclude that U↵(D◆h⇤ eM)

is V
u

0
(eDX [u]he@ui)-coherent for every ↵60, hence for every ↵.

By using the analogous property for eM we obtain that, for every ↵,

U↵�1(D◆h⇤ eM) ⇢ U↵(D◆h⇤ eM)u,

U↵+1(D◆h⇤ eM) ⇢ U<↵+1(D◆h⇤ eM) + U↵(D◆h⇤ eM)e@u,resp.

with equality if ↵ < 0 (resp. if ↵ > �1), from which we deduce that U•(D◆h⇤ eM) is a
coherent V -filtration.

• For ↵ 6 0, we check that

U↵(D◆h⇤ eM) = U<↵(D◆h⇤ eM) +

X

k>0

(V
t

r↵
eM⌦ �)e@k

t
.

We deduce, by considering the degree in e@t, that the natural morphism
L
k

(gr
V

t

r↵
eM⌦ e@k

t
) �! gr

U

↵
(D◆h⇤ eM)

L
k

[mk]⌦ e@k
t
7�!

hX

k

(mk ⌦ �)e@kt
i

is an isomorphism of eDX -modules. It follows that grU
↵
(D◆h⇤ eM) is strict for any ↵ 6 0.

Since Properties (2) and (3) of Definition 9.3.18 clearly hold for U•(D◆h⇤ eM), we con-
clude from Exercise 9.28 that eM is strictly R-specializable along (h) with Kashiwara-
Malgrange filtration V

u

• (D◆h⇤ eM) equal to U•(D◆h⇤ eM). The assertions (a), (b) and (c)
follow in a straightforward way.
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9.9.b. Specialization along a strictly non-characteristic divisor

Let D = D1 [D2 be a divisor with normal crossings in X and smooth irreducible
components D1, D2. We set D1,2 = D1 \ D2, which is a smooth manifold of codi-
mension two in X. Let eM be a right eDX -module which is strictly non-characteristic
along D1, D2 and D1,2. Let us summarize some consequences of the assumption on
nearby cycles. In local coordinates we will set Di={xi=0} (i=1, 2) and we denote
by ◆i : Di ,! X the inclusion, and similarly ◆1,2.

(a) eM is strictly R-specializable along D1 and D2. We denote by V
(i)

•
eM the

V -filtration of eM along Di (i = 1, 2).
(b) gr

V
(i)

↵
eM = 0 if � /2 N.

(c) gr
V

(i)

�1
eM = D◆

⇤
i
eM = ◆

⇤
i
eM. In local coordinates, grV

(i)

�1
eM = eM/ eMxi.

9.9.2. Lemma. For i = 1, 2, the eDDi
-module D◆

⇤
i
eM is strictly non-characteristic, hence

strictly R-specializable, along D1,2 and V
(j)

• gr
V

(i)

�1
eM is the filtration induced by V

(j)

•
eM

({i, j} = {1, 2}), so that

gr
V

(2)

�1 gr
V

(1)

�1
eM = gr

V
(1)

�1 gr
V

(2)

�1
eM = D◆

⇤
1,2

eM = ◆
⇤
1,2

eM.

Proof. The first point is mostly obvious, giving rise to the last formula, according
to (c). For the second point, we have to check in local coordinates that ( eM/ eMx1)x

k

2
=

eMx
k

2
/ eMx1x

k

2
for every k > 1, that is, the morphism

eM/ eMx1

x
k

2���! eMx
k

2
/ eMx1x

k

2

is an isomorphism. Recall (see Exercise 9.34) that eM is eDX/C2 -coherent, so by taking
a local resolution by free eDX/C2 -modules, we are reduced to proving the assertion for
eM = eD`

X/C2 , for which it is obvious.

Our aim is to compute, in the local setting, the nearby cycles of eM along g = x1x2

(after having proved that eM is strictly R-specializable along (g), of course). We con-
sider then the graph inclusion ◆g : X ,! X ⇥Ct. The following proposition also holds
in the left case after side-changing.

9.9.3. Proposition. Under the previous assumptions, the eDX-module eM is a middle
extension along (g), we have  g,�

eM = 0 for � 6= 1 and there are functorial isomor-
phisms

(9.9.3 ⇤) P` g,1
eM '

8
>><

>>:

 x1,1
eM�  x2,1

eM if ` = 0,

 x1,1
 x2,1

eM(�1) =  x2,1
 x1,1

eM(�1) if ` = 1,

0 otherwise.

Proof. We set eN = eMg. We have eN = ◆g⇤ eM[e@t] with the usual structure of a right
eDX⇥C-module (see Example 8.7.7). We identify ◆g⇤ eM as the component of e@t-degree
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zero in eN. Let U•eN denote the filtration defined by

U�1(eN) = ◆g⇤ eM · eDX ⇢ eN, U�k�1(eN) =

(
U�1(eN) · tk if k > 0,
P

`6�k U�1(eN) · e@`
t

if k 6 0.

We wish to prove that U•
eN satisfies all the properties of the V -filtration of eN.

Let m be a local section of eM. From the relation

(9.9.4) (m⌦ 1)e@x1
= (me@x1

)⌦ 1�mx2 ⌦ e@t

we deduce

(m⌦ 1)e@tt = (me@x1
x1)⌦ 1� (m⌦ 1)x1

e@x1

= (me@x2
x2)⌦ 1� (m⌦ 1)x2

e@x2
,

(9.9.5)

showing that U�1(eN) is a V0
eDX⇥Ct

-module. If (mi)i2I is a finite set of local eDX/C2 -
generators of eM (see Exercise 9.34), we deduce that it is a set of eDX -generators, hence
of V0

eDX⇥Ct
-generators, of U�1(eN). It follows that U•

(eN) is a good V -filtration of eN.
Moreover, the formulas above imply

(m⌦ 1)(e@tt)2 =
�
(me@x1

e@x2
⌦ 1)+ (m⌦ 1)e@x1

e@x2
� (me@x2

⌦ 1)e@x1
� (me@x1

⌦ 1)e@x2

�
· t,

giving a Bernstein relation. Since (e@tt)2 vanishes on gr
U

�1(
eN), the monodromy filtra-

tion is given by

M�2gr
U

�1(
eN) = 0, M�1gr

U

�1(
eN) = gr

U

�1(
eN) · e@tt,

M0gr
U

�1(
eN) = Ker[e@tt : grU�1(eN)! gr

U

�1(
eN)], M1gr

U

�1(
eN) = gr

U

�1(
eN).

As a consequence,

P0gr
U

�1(
eN) = gr

M

0
gr

U

�1(
eN) = Ker e@tt/ Im e@tt,

P1gr
U

�1(
eN) = gr

M

1
gr

U

�1(
eN) = gr

U

�1(
eN)/Ker e@tt

⇠�! M�1gr
U

�1(
eN)(�1).

We will identify these eDX -modules with those given in the statement. This will also
prove that gr

U

�1(
eN) is strict, because  x1,1

eM, x2,1
eM, x1,1

 x2,1
eM are strict.

Let G•
eN denote the filtration by the order with respect to e@t. It will be useful

to get control on the various objects occurring in the computations, mainly because
when working on gr

GeN, the action of e@x1
amounts to that of �x2 ⌦ e@t and similarly

for e@x2
, and the action of x1, x2 on eM is well understood, due to Exercise 9.37.

9.9.6. Lemma. We have U�1(eN) \Gp(
eN) =

P
k1+k26p

( eM⌦ 1)e@k1

x1

e@k2

x2
.

Proof. Any local section ⌫ of U�1(eN) can be written as
P

k1,k2>0
(mk1,k2

⌦ 1)e@k1

x1

e@k2

x2

for some local sections mk1,k2
of eM and, if q = max{k1 + k2 | mk1,k2

6= 0}, the degree
of ⌫ with respect to e@t is 6 q and the coefficient of e@q

t
is

(�1)q
X

k1+k2=q

mk1,k2
x
k1

2
x
k2

1
.
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If this coefficient vanishes, Exercise 9.37 implies that

⌫ =

X

k1+k26q

((µk1�1,k2
x1 � µk1,k2�1x2)⌦ 1)e@k1

x1

e@k2

x2
.

The operator against µi,j ⌦ 1 is (x1
e@x1
� x2

e@x2
)e@i

x1

e@j
x2

, and (9.9.5) implies

(µi,j ⌦ 1)(x1
e@x1
� x2

e@x2
) = (µi,j(x1

e@x1
� x2

e@x2
))⌦ 1,

so that ⌫ 2
P

k1+k26q�1(
eM⌦ 1)e@k1

x1

e@k2

x2
.

As a consequence, let us prove the equality

(9.9.7) e@�1
t

(U�1(eN)) \ U�1eN =

X

k1,k2

( eM·(x1, x2)⌦ 1)e@k1

x1

e@k2

x2
,

where e@�1
t

(U�1(eN)) := {⌫ 2 U�1(eN) | ⌫e@t 2 U�1(eN)}, and that t acts injectively on
U�1eN.

Let ⌫ =
P

q6p
⌫q ⌦ e@q

t
be a nonzero local section of U�1(eN) of G-order p, so that

⌫p 6= 0. We will argue by induction on p. By the lemma we have

⌫p =

X

k1+k2=p

(mk1,k2
⌦ 1)e@k1

x1

e@k2

x2
with

X

k1+k2=p

mk1,k2
x
k1

2
x
k2

1
6= 0 in eM.

Assume ⌫e@t is a local section of U�1(eN). Then
P

k1+k2=p
mk1,k2

x
k1

2
x
k2

1
is a local

section of eM·(x1, x2)
p+1, that is, is equal to
X

k1+k2=p

µk1,k2
x
k1

2
x
k2

1
with µk1,k2

2 eM·(x1, x2),

so ⌫�
P

k1+k2=p
(µk1,k2

⌦1)e@k1

x1

e@k2

x2
a local section of U�1(eN)e@t\U�1eN and has G-order

6 p� 1. We can conclude by induction.
Assume now that ⌫t = 0. We have

0 = (⌫t)p =
⇥
(⌫p ⌦ e@p

t
)t
⇤
p
= ⌫p ⌦ te@p

t
= ⌫px1x2 ⌦ e@p

t
,

so ⌫px1x2 = 0 in eM, and thus ⌫p = 0, a contradiction.

Recall that eM = V
(1)

�1
eM (V -filtration relative to x1), so that eM/ eMx1 = gr

V
(1)

�1
eM

and eN1 := ( eM/ eMx1)[
e@x1

] '  x1,1
eM(�1), according to Exercise 9.31. Similarly, eN12 '

 x1,1
 x2,1

eM(�2). The map

(9.9.8) mk1,k2
⌦ e@k1

x1

e@k2

x2
7�! (mk1,k2

⌦ 1)e@k1

x1

e@k2

x2
· e@tt

sends eM·(x1, x2)[
e@x1

, e@x1
] to U�2eN(�1), according to (9.9.4) and defines thus a sur-

jective morphism

 x1,1
 x2,1

eM(�2) = eN12 �! gr
M

�1gr
U

�1
eN(�1).

Let us prove that it is also injective. Let us denote by [mk1,k2
] the class of mk1,k2

in
eM/ eM·(x1, x2). Let

P
[mk1,k2

]⌦ e@k1

x1

e@k2

x2
be nonzero and of degree equal to p and set

⌫ =

X

k1+k26p

(mk1,k2
⌦ 1)e@k1

x1

e@k2

x2
.
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Assume that ⌫e@tt 2 U�2eN, hence, by the injectivity of t, ⌫e@t 2 U�1eN. The proof
of (9.9.7) above shows that, for k1 + k2 = p, there exists µk1,k2

2 eM·(x1, x2) such
that

P
k1+k2=p

(mk1,k2
� µk1,k2

)x
k1

2
x
k2

1
= 0, and by Exercise 9.37 we conclude that

mk1,k2
2 eM·(x1, x2), so [mk1,k2

] = 0, a contradiction.
As a consequence, if ⌫e@tt =

P
(mk1,k2

⌦ 1)e@k1

x1

e@k2

x2

e@tt belongs to U�2eN = U�1eN · t,
(9.9.7) implies ⌫ 2

P
( eM·(x1, x2)⌦ 1)e@k1

x1

e@k2

x2
. We obtain therefore

(9.9.9) gr
M

1
gr

U

�1
eN N��!⇠ gr

M

�1gr
U

�1
eN(�1) '  x1,1

 x2,1
eM(�2),

and these modules are strict. Note that the isomorphism eN12

⇠�! gr
M

1
gr

U

�1
eN =

U�1eN/(e@tt)�1U�1 eM) is induced by
(9.9.10) mk1,k2

⌦ e@k1

x1

e@k2

x2
7�! (mk1,k2

⌦ 1)e@k1

x1

e@k2

x2
.

Let us now consider M0. Note that (9.9.7) and the injectivity of t imply

M0gr
U

�1
eN =

X

k1,k2

( eM·(x1, x2)⌦ 1)e@k1

x1

e@k2

x2
mod U�2eN,

and clearly
P

k1,k2
( eMx1x2 ⌦ 1)e@k1

x1

e@k2

x2
⇢ U�2eN. Note also that (mx1 ⌦ 1)e@k1

x1
⌘

(me@k1

x1
x1)⌦ 1 mod Im e@tt, according to (9.9.5). As a consequence,

M0gr
U

�1
eN =

X

k1

( eMx2 ⌦ 1)e@k1

x1
+

X

k2

( eMx1 ⌦ 1)e@k2

x2
mod (U�1eNe@tt+ U�2eN),

and we have a surjective morphism

(9.9.11)  x1,1
eM(�1)�  x2,1

eM(�1) = eN1 � eN2 �! gr
M

0
gr

U

�1
eN,

sending mk1,0
⌦ e@k1

x1
to (mk1,0

x2⌦1)e@k1

x1
and m0,k2

⌦ e@k2

x2
to (m0,k2

x1⌦1)e@k2

x2
. In order

to show injectivity, we first check that it is strict with respect to the filtration G•
eN

and the filtration by the degree in e@x1
, e@x2

on eN1,
eN2.

Assume that (mk1,0
x2 ⌦ 1)e@k1

x1
+ (m0,k2

x1 ⌦ 1)e@k2

x2
2 Gp�1eN for k1, k2 6 p. Then

we find that mp,0 2 eMx1 and m0,p
eMx2, as wanted. By the same argument we deduce

the injectivity.
Due to the strictness of eN1,

eN2,
eN12, we conclude at this point that grU�1 eM is strict.

If we show that gr
U

k
eN is also strict for any k, then U•eN satisfies all properties char-

acterizing the V -filtration. As a consequence, eM is strictly R-specializable along (g),
gr

U

�1
eN =  g,1

eM(�1), and (9.9.3 ⇤) holds.
Clearly, e@t : gr

U

�1
eN ! gr

U

0
eN is onto. So we are left with proving the following

assertions:
(i) t

k
: gr

U

�1
eN! gr

U

�1�k
eN is an isomorphism (equivalently, injective) for k > 1,

(ii) t : gr
U

0
eN! gr

U

�1
eN is injective (so gr

U

0
eN is strict),

(iii) e@k
t
: gr

U

0
eN! gr

U

k
eN is an isomorphism (equivalently, injective) for k > 1.

Proof of the assertions.
(i) If ⌫ 2 U�1eN satisfies ⌫tk = µt

k+1 for some µ 2 U�1eN then, by injectivity of t
on U�1eN, ⌫ = µt, so ⌫ 2 U�2eN.

(ii) If ⌫ 2 U�1eN is such that ⌫e@t · t 2 U�2eN, then there exists µ 2 U�1eN such that
(⌫e@t � µ)t = 0 hence, by t-injectivity, ⌫e@t 2 U�1eN.
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(iii) We prove the injectivity by induction on k > 1. Let ⌫ 2 U�1 eM and consider
⌫e@t mod U�1eN as an element of gr

U

0
eN. If (⌫e@t)e@kt 2 Uk�1eN, then (⌫e@k

t
)e@tt = 0 in

gr
U

k�1
eN. Since e@tt� kz is nilpotent on gr

U

k�1
eN and since gr

U

k�1
eN is strict (by (ii) and

the induction hypothesis), e@tt is injective on gr
U

k�1
eN, so (⌫e@t)e@k�1t

= 0 in gr
U

k�1
eN,

and by induction ⌫e@t = 0 in gr
U

0
eN.

This concludes the proof of Proposition 9.9.3.

9.9.c. Nearby cycles along a monomial function of a smooth eD-module

We consider a situation similar to that of the previous example, where we increase
the number of active variables but we simplify the eDX -module. We will work in the
left setting, which is more natural in this context.

Let eM be a smooth eDX -module (see Definition 8.8.28). The purpose of this section
is to compute the nearby cycles of eM with respect to a function g which takes the
form g(x1, . . . , xn) = x1 · · ·xr for some local coordinates x1, . . . , xn on X and for some
r > 1. The goal is to show that, first, eM is strictly R-specializable along (g) = D, and
to compute the primitive parts in terms of the restriction of eM to various coordinate
planes.

The computation is local on X. Thus X denotes a neighbourhood of the origin
in C

n with coordinates (x1, . . . , xr, y), y = (xr+1, . . . , xn), and D is the divisor (g) in
this neighbourhood.

We set eO = eOX,0. For a (possibly empty) subset I ⇢ {1, . . . , r}, we denote by
J = I

c its complementary subset, by eOI the ring C{(xi)i2I , y}[z] and by ◆I the
inclusion {xj = 0, 8 j 2 J} ,! X. In particular, the ring eO? contains no variables
x1, . . . , xr. For ` 6 r, let us denote by J`+1 the set of subsets J ⇢ {1, . . . , r} having
cardinal equal to `+ 1.

9.9.12. Proposition. Under these assumptions
(1) eM is strictly R-specializable and a middle extension along (g);
(2) The morphisms N, can, var are strict;
(3) for � 2 S

1, we have  g,�
eM = 0 unless � = 1 and, for any ` > 0, there is a

functorial isomorphism

(9.9.12 ⇤) P` g,1(
eM)

⇠�!
L

J2J`+1

D◆I⇤(D◆
⇤
I
eM)(�`) (I = J

c
),

where P` g,1
eM denotes the primitive part of grM

`
 g,1

eM.

9.9.13. Remarks.
(1) According to Proposition 9.4.10, (3) implies that N

` is strict for any ` > 1.
(2) Since �g,1 eM = ImN after (1), we have a similar formula for P`�g,1(

eM), accord-
ing to Lemma 3.3.13.

Proof when eM = eO. Let us set (see Example 8.7.7(2))

eN = D◆g⇤eO(�1) = ◆⇤eO[e@t],
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where ◆g : X ,! X ⇥ Ct is the graph inclusion of g. Once we know that eN is strictly
R-specializable along (t), we have  g,1

eO = gr
0

V
eN(1).

We set yj = xr+j for j = 1, . . . , n� r. If e� denotes the eD-generator 1 of eN, we have
the following relations:

(9.9.14) te� = g(x)e�, xi
e@xi

e� = �(te@t + z)e�, e@yj

e� = 0, t

⇣ rY

i=1

e@xi

⌘
e� = (�te@t)re�.

If we set U
0eN = (V0

eD) · e� and, for k > 1,

U
k eN = t

k
U

0eN = (V0
eD) · tke�, U

�k eN = (Vk
eD) · U0eN = (Vk

eD) · e�,

this shows that the coherent V -filtration U
•eN satisfies the R-specializability property:

b(�te@t + kz)U
k eN ⇢ U

k+1eN with b(s) = s
r
.

Each gr
k

U
eN is thus equipped with a nilpotent operator N satisfying N

r
= 0, and with

monodromy filtration M•gr
k

U
eN.

Claim. gr
M

`
gr

k

U
eN is strict for any k, `.

As a consequence of this claim, we obtain that gr
k

U
eN is strict for any k, hence

U
•eN is the order filtration V

•eN, which is indexed by Z, according to Lemma 9.3.16.
Moreover, Properties 9.3.18(2) and (3) are obviously satisfied, due the definition of
U

•eN, so eN is strictly R-specializable along (t). Also by construction, the morphism
can is onto.

It will be convenient to work within the localized module eO(⇤D) := eO[1/g] and its
direct image eN(⇤D) = D◆g⇤eO(⇤D) = eN[1/g], so that we can invert the variables xi for
i = 1, . . . , r. In such a way, we highlight and make simple the action of �te@t, while
the action of other operators are less obvious. We consider eN as a sub eD-module
of eN(⇤D).

9.9.15. Lemma. eN(⇤D) is a free rank 1 module over eO(⇤D)[te@t] with generator e�.

Proof. We have e@j
t
e� = x

�j1
(e@j

t
t
j
)e�, showing that eN(⇤D) =

L
j
eO(⇤D)(e@j

t
t
j
)e�, hence

also eN(⇤D) =
L

j
eO(⇤D)(te@t)je�.

In order to prove the claim, it is necessary to have a canonical expression of local
sections of Uk eN modulo U

k+1eN. For that purpose, we introduce a family of polyno-
mials of one variable s indexed by an integer k and a multi-index a 2 Z

r. For k 2 Z

we set

qa,k(s) =

rY

i=1

Y

`2(�k,ai]

(s� `z),

where the index ` a priori runs in Z and we take the convention that the product
indexed by the empty set is 1. For a 2 Z

r and k 2 Z, we set

Jk(a) = {i 2 {1, . . . , r} | ai > �k}, xJk(a) = (xi)i2Jk(a).
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The following relations are easily checked:

qa,k+1(s) = (s+ kz)
#Jk(a)qa,k(s)

qa�1,k+1(s� z) = qa,k(s)

qa,k(s) = qa�1i,k
(s) ·

(
1 if i /2 Jk(a� 1i),

(s� aiz) if i 2 Jk(a� 1i).

We also set

Qa,k(s) =

(
qa,k(s) if k > 0,

qa,k(s) ·
Q

j2[k,0)(s+ jz)
min(1,#Jj(a)) if k 6 �1,

that is, for k 6 �1, Qa,k(s) is the gcd of the polynomials qa,k(s) ·
Q

j2[`,0)(s + jz)

for ` varying in [k, 0), and

⌫k(a) =

8
>><

>>:

#Jk(a) if k > 0,

#Jk(a)�min(1,#Jk(a)) =

(
#Jk(a)� 1 if #Jk(a) > 1,

0 if #Jk(a) = 0,

if k 6 �1.

(so that ⌫k(a) 6 r 6 n). We have the relation

(9.9.16) Qa,k+1(s) = ?(s+ kz)
⌫k(a)Qa,k(s).

Let us also notice that

(9.9.17) Qa,k(s) is a multiple of Qa�1i,k
(s) 8 i 2 {1, . . . , r}, 8 k 2 Z.

Indeed, this is clear for qa,k, hence if k > 0. On the other hand, we have Jk(a�1i) ⇢
Jk(a), so min(1,#Jj(a � 1i)) 6 min(1,#Jj(a)) and the assertion also holds for
k > �1.

9.9.18. Lemma. For k 2 Z, the filtration U
•eN has the following expression:

U
k eN =

X

a2Zr

eO[te@t]x�aQa,k(�te@t)e�.

Proof. Let us start with U
0eN. Let us rewrite a section P (x, e@x, t, te@t) · e� of U

0eN.
The differential operator P 2 V0(

eD) can be written as a sum of monomials of the
form (te@t)q e@axh(x, t) with h holomorphic in its variables. Since h(x, t)e� = h(x, g(x))e�,
we can simply consider (by using commutation relations) monomials of the form
(te@t)qh(x)e@ax . Moreover, since e@yj

e� = 0, we can assume that a 2 N
r. Using now the

relation xi
e@xi

e� = �(te@t + z)e�, we write

e@a
x
e� = x

�a
rY

i=1

aiY

`=1

(�te@t � `z) · e� = x
�a

Qa,0(�te@t) · e�.

At this point, we have obtained

U
0eN =

X

a2Nr

eOhte@tix�aQa,0(�te@t)e�.
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We note that, if ai 6 0 for some i 2 {1, . . . , r}, then Qa�1i,0
(s) = Qa,0(s), and thus

x
�(a�1i)Qa�1i,0

(�te@t) = xix
�a

Qa,0(�te@t) 2 eOx�aQa,0(�te@t).

Therefore, the above expression of U0eN is equal to that in the statement. For k > 0,
we write

U
k eN = t

k
X

a2Zr

eOhte@tix�aQa,0(�te@t)e� =
X

a2Zr

eOhte@tix�aQa,0(�te@t + kz)t
ke�

=

X

a2Zr

eOhte@tix�a+k1
Qa,0(�te@t + kz)e� =

X

a2Zr

eOhte@tix�aQa,k(�te@t)e�.

Let us now consider U
�k eN for k > 1. We write

e@k
t
x
�a

Qa,0(�te@t)e� = x
�a

Qa,0(�te@t � kz)e@k
t
e�

= (�1)kx�(a+k1)
Qa,0(�te@t � kz)

kY

j=1

(�te@t � jz)e�,

and we note that Qa,0(s� kz) = qa,0(s� kz) = qa+k1,�k(s). One obtains the desired
assertion by induction on k.

The algebraic case. We consider a similar setting as above with the simplification
that the variables x1, . . . , xr are polynomial variables. Namely, we now set eO =

eO?[x1, . . . , xp] and we keep the notation for the corresponding objects eD, eN, U
•eN.

We will prove Proposition 9.9.12 in this setting. The above results can be expressed
in a more precise way.

9.9.19. Lemma. For every k 2 Z, Uk eN can be decomposed as

(9.9.20) U
k eN =

L
a2Zr

eO?[te@t] · x�aQa,k(�te@t)e�.

Proof. Recall that eO[te@t] =
L

a2Zr
eO?[te@t] ·x�a. The lemma characterizes an element

of Uk eN through the possible coefficients of x�ae� with respect to such a decomposition.
We start from the expression of Lemma 9.9.18 and we argue by induction on

a. It suffices to consider a term xix
�a

Qa,k(�te@t)e�, i 2 {1, . . . , r}. Since Qa,k is a
multiple of Qa�1i,k

in eC[e@t] (see (9.9.17)), xix
�a

Qa,k is a multiple of x�(a�1i)Qa�1i,k
.

From (9.9.16) we deduce that, as an eO?[te@t]-module, Uk eN/U
k+1eN admits a sim-

ilar direct sum decomposition, for which the coefficient of x
�a

Qa,k
e� can vary in

the quotient module eO?[te@t]/(�te@t + kz)
⌫k(a). In particular, it is strict, and N,

which is induced by the action of (�te@t + kz), is a strict morphism. The elements
x
�a

Qa,k · (�te@t + kz)
`e� (0 6 ` 6 ⌫k(a)� 1) lift a eO?-basis of this component and N

has only one Jordan block of size ⌫k(a) on this component.
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We can now denote the filtration U
•eN by V

•eN. Since N has only one Jordan block
of size ` > 0 on each term such that ⌫k(a) = `+1, we deduce that, as an eO?-module,

P`gr
k

V
eN '

L
a2Zr

⌫k(a)=`+1

eO? · x�a.

Let us now focus on gr
0

V
eN =  g,1

eO and gr
�1
V

eN = �g,1
eO(1). We have already seen

that e@t : gr0V eN ! gr
�1
V

eN(1) is onto. Let us check that t : gr
�1
V

eN ! gr
0

V
is injective

and strict. Let us fix a 2 Z
r. The corresponding component of gr

�1
V

eN is nonzero
only if ⌫�1(a) > 1, that is, #J�1(a) > 2. We note that J�1(a) = J0(a � 1). A lift
x
�a

Qa,�1(�e@tt)(�e@tt)`e� (0 6 ` 6 ⌫�1(a)� 1) of a basis element of gr�1
V

eN is sent by
t to

x
�(a�1)

Qa,�1(�te@t)(�te@t)`e� = x
�(a�1)

Qa�1,0(�te@t)(�te@t)`+1e�
since Qa,�1(s) = Qa�1,0(s) · smin(1,#J0(a�1)) = sQa�1,0(s). We now note that
⌫0(a� 1) = ⌫�1(a) + 1, so `+1 6 ⌫0(a�1) and the image in gr

0

V
eN is a basis element.

The cokernel of t on this component is identified with eO?x�(a�1)Qa�1,0(�te@t)e�,
hence is strict. One similarly checks that N is strict on gr

0

V
eN and gr

�1
V

eN, and
e@t : gr

0

V
eN ! gr

�1
V

eN is obviously strict, being onto. At this point, we have proved
all the statements of Proposition 9.9.12 except the second part of (3) that we now
consider.

We wish to identify P`gr
0

V
eN as a eD-module. We have the decomposition as an

eO?-module:
P`gr

0

V
eN =

L
J⇢{1,...,r}
#J=`+1

L
a

J0(a)=J

(P`gr
0

V
eN)a,

and if #J0(a) = `+1, the image of eO?x�aQa,0(�te@t) by the projection V
0eN! gr

0

V
eN

is contained in M`gr
0

V
eN and the morphism eO?x�aQa,0(�te@t) ! gr

M

`
gr

0

V
eN induces

an isomorphism onto (P`gr
0

V
eN)a. It is now convenient to go back to the original

expression of the elements of eN.
Recall that, for J = J0(a), x

�aJ

J
QaJ ,0

(�te@t)e� is nothing but e@aJ

xJ

e�. For J ⇢
{1, . . . , r}, we denote by I = J

c its complement. We conclude that
•
L

J|#J=`+1
x
1I

I
eOI [

e@xJ
]e� is contained in M`V

0eN,
• and maps eO?-linearly isomorphically onto P`gr

0

V
eN.

Let us denote by ◆I the inclusion {xj = 0 | j 2 J} ,! X.

9.9.21. Lemma. The eO?-linear isomorphism defined as the composition
L

#J=`+1

D◆I⇤eOI(�(`+ 1)) =
L

#J=`+1

eOI [
e@xJ

]e�J
⇠�!

L
#J=`+1

x
1I

I
eOI [

e@xJ
]e� ⇠�! P`gr

0

V
eN

sending e�J to the class of x1I

I
e� is a eD-linear isomorphism.

The shift �(`+1) comes from the definition of the pushforward of left eD-modules
by a closed embedding (see Exercise 8.46(2)). Since P` g,1

eO = P`gr
0

V
eN(1), this ends

the proof of Proposition 9.9.12 for eO in the algebraic case.
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Proof of the lemma. We are left with proving eD-linearity. This amounts to proving
that xjx

1I

I
e� and e@xi

x
1Ie� have image zero in gr

M

`
gr

0

V
eN. This follows from the previous

computations with the polynomials Qa,0. For example, the set J
0 associated with

xjx
1i

I
e� satisfies #J

0
= `, so this element is mapped to M`�1gr

0

V
eN.

Analytic case for eO. Le us denote by eOalg the ring denoted by eO above, and eOan the
analytic version considered in the proposition. We have similarly eNan

= eOan⌦eOalg
eNalg.

By flatness of eOan over eOalg, the filtration defined by eOan ⌦eOalg V
•eNalg satisfies all

the properties necessary for eNan to be strictly R-specializable along (t). Moreover,
gr

k

V
eNan is obtained in the same way from gr

k

V
eNalg, and similarly for P`gr

0

V
eNan. Also,

Lemma 9.9.21 holds in this analytic setting. We conclude Proposition 9.9.12 holds
for eNan if it holds for eNalg.

Proof for any smooth eDX -module . If now eM is any smooth eDX -module, we note that
eMg = eM⌦eOX

eN with its usual twisted structure of eDX -module, and that the action of
t resp. e@t comes from that on eN. As eM is assumed to be eOX -locally free, the filtration
of eMg defined by V↵(

eMg) =
eM ⌦eOX

V↵(
eN) satisfies all properties of the Malgrange-

Kashiwara filtration. Notice also that Lemma 9.9.21 holds if we replace D◆⇤eOI with
D◆⇤(D◆

⇤ eM). It is then easy to deduce all assertions of the proposition for eM from the
corresponding statement for eN.

9.10. Exercises

Exercise 9.1 (V0
eDX -modules). Let H be a smooth hypersurface of X.

(1) Denote by e⌦1

X
(logH) (sheaf of logarithmic 1-forms along H) the eOX -dual of

e⇥X(� logH). Express a local section of e⌦1

X
(logH) in local coordinates.

(2) Show that ^n(e⌦1

X
(logH)) = e!X(H) := e!X ⌦eOX

eOX(H).
(3) Show that e!X(H) is a right V0

eDX -module.
(4) Define the side-changing functors for V0

eDX -modules by means of e!X(H).
(5) Define the logarithmic de Rham complex and the logarithmic Spencer complex

for a left resp. right V0
eDX -module in a way similar to that of Section 8.4 by means

of logarithmic forms and vector fields.
(6) Show that Sp(V0

eDX) is a resolution of eOX as a left V0
eDX -module and

p

DR(V0
eDX) is a resolution of e!X(H) as a right V0

eDX -module. [Hint : Argue as in
Exercises 8.21 and 8.22.]

(7) Show the analogues of Exercises 8.31, 8.24 and 8.26.

Exercise 9.2 (The Spencer complex of eDX regarded as a right V0
eDX -module)

Let H be a smooth hypersurface of X. We regard eDX as a right V0
eDX -module and

consider the corresponding Spencer complex Sp(eDX ;V0
eDX) := eDX⌦V0

eDX

Sp(V0
eDX).

(1) Choose local coordinates (t, x2, . . . , xn) such that H = {t = 0} and let
⌧, ⇠2, . . . , ⇠n be the corresponding logarithmic vector fields. Show that (⇠2, . . . , ⇠n, t⌧)
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is a regular sequence on the ring eOX [⌧, ⇠2, . . . , ⇠n] and deduce that the corresponding
Koszul complex is a resolution of eOX [⌧ ]/(t⌧).

(2) Arguing as in Exercise 8.21, show that Sp(eDX ;V0
eDX) is a resolution of

eDX/eDX · e⇥X(� logH) by locally free left eDX -modules.
(3) Identify locally eDX/eDX · e⇥X(� logH) with eOXhe@ti/(eOXhe@ti · te@t).
(4) Let eN be a right V0

eDX -module. Show that, if t : eN ! eN is injective, then
eN ⌦eOX

Sp(eDX ;V0
eDX) is a resolution of eN ⌦eOX

(eDX/eDX · e⇥X(� logH)) as a right
V0

eDX -module, by using the tens right V0
eDX -module structures. [Hint : Use that

the terms of Sp(eDX ;V0
eDX) are left eDX -locally free, hence eOX -locally free to con-

clude that eN⌦eOX

Sp(eDX ;V0
eDX) ' eN⌦L

eOX

(eDX/eDX · e⇥X(� logH)); express locally
eN ⌦L

eOX

(eDX/eDX · e⇥X(� logH)) as the complex

eN ⌦eOX

eOXhe@ti
· te@t�����! eN ⌦eOX

eOXhe@ti

and check that the differential is injective.]
(5) Conclude that, under the previous assumption on eN, we have

H
i
(eN ⌦eOX

Sp(eDX ;V0
eDX)) = 0 for i 6= 0.

Exercise 9.3 (The V -filtration of eDX ). Show the following properties.
(1) Let us fix a local decomposition X ' H⇥�t (where �t ⇢ C is a disc with

coordinate t). With respect to this decomposition we have

V0
eDX = eOXhe@x, te@ti, V�j eDX =

(
t
j · V0

eDX ,

V0
eDX · tj ,

Vj
eDX =

8
>>>><

>>>>:

jX

k=0

e@k
t
· V0

eDX ,

jX

k=0

V0
eDX · e@k

t
,

(j > 0)

(2) For every k, Vk
eDX is a locally free V0

eDX -module.
(3) eDX =

S
k
Vk

eDX (the filtration is exhaustive).
(4) Vk

eDX · V`
eDX ⇢ Vk+`

eDX with equality for k, ` 6 0 or k, ` > 0.
(5) V0

eDX is a sheaf of subalgebras of eDX .
(6) Vk

eDX |XrH = eDX |XrH for all k 2 Z.
(7) gr

V

k
eDX is supported on H for all k 2 Z,

(8) The induced filtration Vk
eDX \ eOX = eI�k

H
eOX is the eIH -adic filtration of eOX

made increasing.
(9)

�T
k
Vk

eDX

�
|H = {0}.

Exercise 9.4 (Euler vector field).
(1) Show that the class E of te@t in gr

V

0
eDX in some local product decomposition as

above does not depend on the choice of such a local product decomposition. [Hint :
see [MM04, Lem. 4.1-12].]

(2) Show that V0
eDX acts on eOH = eOX/eIH and with respect to this action that

V<0
eDX acts by 0, so that gr

V

0
eDX acts on eOH , and that E acts by 0. Conclude that
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there exists a morphism gr
V

0
eDX/Egr

V

0
eDX ! eDH and check by a local computation

that it is an isomorphism.
(3) Show that if H has a global equation g, then gr

V

0
eDX ' eDH [E].

(4) Conclude that gr
V

0
eDX is a sheaf of rings and that E belongs to its center.

Exercise 9.5 (Euler vector field, continued).
(1) Show the identification (which forgets the grading) between gr

V eDX and
eD[NHX]. [Hint : see [MM04, Lem. 4.1-12].]

(2) Let M be a monodromic D[NHX]-module, i.e., a D[NHX]-module for which the
action of E has a minimal polynomial with coefficients in C. Show that M has a finite
filtration by DH -submodules. [Hint : Reduce first to the case where the minimal
polynomial has only one root ↵; in this case, filter M so that E�↵ Id vanishes on
each graded piece; identify then gr

V

0
DX/(E�↵)grV

0
DX with DH .]

Exercise 9.6. Show the equivalence between the category of eOX -modules with inte-
grable logarithmic connection er : eM ! e⌦1

X
(logH) ⌦ eM and the category of left

V0
eDX -modules. Show that the residue Res er corresponds to the induced action of E

on eM/eIH eM.

Exercise 9.7 (The Rees sheaf of rings RV
eDX ). Introduce the Rees sheaf of rings

RV
eDX :=

L
k
Vk

eDX · vk ⇢ eDX [v, v
�1

] associated to the filtered sheaf (eDX , V•
eDX)

(see §5.1.3), and similarly RV
eOX =

L
k
Vk
eOX · vk ⇢ eOX [v, v

�1
], which is the Rees

ring associated to the eIH -adic filtration of eOX .

(1) Show that RV
eOX = eOX [v, tv

�1
], where t = 0 is a local equation of H. Identify

this sheaf of rings with eOX [v, w]/(t � vw) and show that, as an eOX -module, it is
isomorphic to eOX [v]� weOX [w]. Conclude that RV

eOX is eOX -flat.
(2) Show that RV

eDX = eOX [v, tv
�1

]hve@t, e@x2
, . . . , e@xn

i.
(3) Conclude that RV

eDX is locally free over RV
eOX and is eOX -flat.

Exercise 9.8 (Coherence of RV
eDX ). We consider the Rees sheaf of rings RV

eDX :=L
k
Vk

eDX · vk as in Exercise 9.7. The aim of this exercise is to show the coherence of
the sheaf of rings RV

eDX . Since the problem is local, we can assume that there are
coordinates (t, x2, . . . , xn) such that H = {t = 0}.

(1) Let K be a compact polycylinder in X. Show that RV
eOX(K) = RV (

eOX(K))

is Noetherian, being the Rees ring of the eIH -adic filtration on the ring eOX(K) (which
is Noetherian, by a theorem of Frisch). Similarly, as eOX,x is flat on eOX(K) for every
x 2 K, show that the ring (RV

eOX)x = RV
eOX(K)⌦eOX(K)

eOX,x is flat on RV
eOX(K).

(2) Show that RV
eOX is coherent on X by following the strategy developed in

[GM93]. [Hint : Let e⌦ be any open set in X and let ' : (RV
eOX)

q

|e⌦
! (RV

eOX)
p

|e⌦

be any morphism. Let K be a polycylinder contained in e⌦. Show that Ker'(K)

is finitely generated over RV
eOX(K) and, if K

� is the interior of K, show that



372 CHAPTER 9. NEARBY AND VANISHING CYCLES OF eD-MODULES

Ker'|K� = Ker'(K)⌦
RV

eOX(K)
(RV

eOX)|K� . Conclude that Ker'|K� is finitely gen-
erated, whence the coherence of RV

eOX .]
(3) Consider the sheaf eOX [⌧, ⇠2, . . . , ⇠n] equipped with the V -filtration for which ⌧

has degree 1, the variables ⇠2, . . . , ⇠n have degree 0, and inducing the V -filtra-
tion (i.e., t-adic in the reverse order) on eOX . First, forgetting ⌧ , Show that
RV (

eOX [⇠2, . . . , ⇠n]) = (RV
eOX)[⇠2, . . . , ⇠n]. Secondly, using Vk(

eOX [⌧, ⇠2, . . . , ⇠n]) =P
j>0

Vk�j(eOX [⇠2, . . . , ⇠n])⌧
j for every k 2 Z, show that we have a surjective

morphism

RV
eOX [⇠2, . . . , ⇠n]⌦eC

eC[⌧ 0] �! RV (
eOX [⌧, ⇠2, . . . , ⇠n])

V`
eOX [⇠2, . . . , ⇠n]q

`
⌧
0j 7�! V`

eOX [⇠2, . . . , ⇠n]⌧
j
q
`+j

.

If K ⇢ X is any polycylinder show that RV (
eOX [⌧, ⇠2, . . . , ⇠n])(K) is Noetherian, by

using that
�
RV

eOX(K)
�
[⌧
0
, ⇠2, . . . , ⇠n] is Noetherian.

(4) As RV
eDX can be filtered (by the degree of the operators) in such a way that,

locally on X, grRV
eDX is isomorphic to RV (

eOX [⌧, ⇠2, . . . , ⇠n]), conclude that, if K is
any sufficiently small polycylinder, then RV

eDX(K) is Noetherian.
(5) Use now arguments similar to that of [GM93] to concludes that RV

eDX is
coherent.

(6) Show similarly that RV
eDX is Noetherian in the sense of Remark 8.8.3.

Exercise 9.9 (Characterization of coherent V -filtrations indexed by Z)
Let eM be a coherent eDX -module. Show that the following properties are equiva-

lent for a V -filtration U•
eM indexed by Z.

(1) U•
eM is a coherent filtration.

(2) The Rees module RU
eM :=

L
`
U`

eMv
` is RV

eDX -coherent.
(3) For every x 2 X, replacing X with a small neighbourhood of x, there exist

integers �j=1,...,q, µi=1,...,p, ki=1,...,p and a presentation (recall that [•] means a shift of
the grading)

qL
j=1

eDX [�j ] �!
pL

i=1

eDX [µi] �! eM �! 0

such that U`
eM = image(

L
p

i=1
Vki+`

eDX [µi]).

Note that, as for eIH -adic filtrations on coherent eOX -modules, it is not enough to check
the coherence of gr

U
eM as a gr

V eDX -module in order to deduce that U•
eM is a coherent

V -filtration.

Exercise 9.10 (From coherent RV
eDX -modules to eDX -modules with a coherent V -filtra-

tion indexed by Z)
(1) Show that a graded RV

eDX -module M can be written as RU
eM for some

V -filtration on some eDX -module eM if and only if it has no v-torsion.
(2) Show that, if M is a graded coherent RV

eDX -module, then its v-torsion is a
graded coherent RV

eDX -module.
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(3) Conclude that, for any graded coherent RV
eDX -module M, there exists a

unique coherent eDX -module and a unique coherent V -filtration U• eM such that
M/v-torsion = RU

eM.

Exercise 9.11 (Some basic properties of coherent V -filtrations indexed by R)
We consider coherent V -filtrations indexed by A+Z for some finite set A ⇢ (�1, 0]

as in Definition 9.3.3.
(1) Show that the filtration naturally induced by a coherent V -filtration on a cohe-

rent eDX -module on a coherent sub or quotient eDX -modules is a coherent V -filtration.
[Hint : Consider first each Z-indexed V -filtration U↵+•

eM. For the case of a submod-
ule, use the characterization of Exercise 9.9(2) and the classical Artin-Rees lemma,
as in Corollary 8.8.8. This proof shows the interest of considering RU

eM. End by
proving that (9.3.4) holds for the induced filtrations.]

(2) Deduce that, locally on X and for each ↵ 2 A, there exist integers �j=1,...,q,
`j=1,...,q, µi=1,...,p, ki=1,...,p and a presentation

L
q

j=1
eDX [�j ]!

L
p

i=1
eDX [µi]! eM!

0 inducing for every ` a presentation
qL

j=1

V`j+`
eDX [�j ] �!

pL
i=1

Vki+`
eDX [µi] �! U↵+`

eM �! 0.

(3) Show that two coherent V -filtrations U•
eM and U

0
•
eM are locally comparable,

that is, locally on X there exists ↵o 2 R+ such that, for every ↵ 2 R,

U↵�↵o

eM ⇢ U
0
↵
eM ⇢ U↵+↵o

eM.

[Hint : Reduce to the case of Z-indexed V -filtrations and use (2).]
(4) If U•

eM is a coherent V -filtration, then for every ↵o 2 R, the filtration U•+↵o

eM
is also coherent.

(5) If U•
eM and U

0
•
eM are two coherent V -filtrations, then the filtration U

00
↵
eM :=

Uv
eM+ U

0
↵
eM is also coherent.

(6) Assume that H is defined by an equation t = 0. Prove that, locally on X,
there exists ↵o such that, for every ↵ 6 ↵o, t : U↵ ! U↵�1 is bijective. [Hint : Use
(2) above.]

Exercise 9.12. Let U be a coherent left V0
eDX -module and let eT be its t-torsion sub-

sheaf, i.e., the subsheaf of local sections locally killed by some power of t. Show
that, locally on X, there exists ` such that eT \ t

`U = 0. Adapt to the right case.
[Hint : Consider the t-adic filtration on V0

eDX , i.e., the filtration V�j eDX with j > 0.
Show (e.g. in the left case) that the filtration t

jU is coherent with respect to it, and
locally there is a surjective morphism (V0

eDX)
n ! U which is strict with respect to

the V -filtration. Deduce that its kernel eK is coherent and comes equipped with the
induced V -filtration, which is coherent. Conclude that, locally on X, there exists
j0 > 0 such that Vj0�j

eK = t
j
V

j0 eK for every j > 0. Show that, for every j > 0 there
is locally an exact sequence (up to shifting the grading on each V•

eDX summand)

(V�j eDX)
m �! (V�(j+j0)

eDX)
n �! t

(j+j0)U �! 0.
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As t : Vk
eDX ! Vk�1 eDX is bijective for k 6 0, conclude that t : t

j0U! t
j0+1U is so,

hence eT \ t
j0U = 0.]

Exercise 9.13. Show that a coherent eDX -module eM is specializable along H if and
only if one of the following properties holds:

(1) locally on X, some coherent V -filtration U•
eM (resp. U• eM, left case) has a weak

Bernstein polynomial, i.e., there exists a nonzero b(s) and a non-negative integer `
such that

(9.10.0 ⇤) 8 k 2 Z, gr
U

k
eM · z`b(E�kz) = 0, resp. z`b(E�kz)grk

U
eM = 0;

(2) locally on X, any coherent V -filtration U
• eM (resp. U•

eM) has a weak Bernstein
polynomial.
[Hint : In one direction, take the V -filtration generated by a finite number of local
generators of eM; in the other direction, use that two coherent filtrations are locally
comparable.]

Exercise 9.14. Assume that eM is (right) eDX -coherent and specializable along H.
(1) Fix `o 2 Z and set U

0
`
eM = U`+`o

eM. Show that bU 0(s) can be chosen as
bU (s� `oz).

(2) Set bU = b1b2 where b1 and b2 have no common root. Show that the filtra-
tion U

0
k
eM := Uk�1 eM+ b2(E�kz)Uk

eM is a coherent filtration and compute a polyno-
mial bU 0 in terms of b1, b2.

(3) Conclude that there exists locally a coherent filtration U•
eM for which bU (s) =Q

↵2A(s� ↵z)⌫↵ and Re(A) ⇢ (�1, 0].
(4) Adapt the result to the left case.

Exercise 9.15. Assume that eM is an R-specializable coherent right eDX -module. Show
that, for m 2 eMxo

and P 2 Vk
eDX,xo

, we have

ordH,xo
(mP ) 6 ordH,xo

(m) + k.

[Hint : Use that [E, V�1 eDX ] ⇢ V0
eDX and that the coherent V -filtrations (mP · eDX)\

m · V•
eDX and mP · V•

eDX of mP · eDX are locally comparable.]
In the left case, show that

ordH,xo
(Pm) > ordH,xo

(m)� k.

Exercise 9.16 (R-specializability).
(1) In a short exact sequence 0 ! eM0 ! eM ! eM00 ! 0 of coherent eDX -modules,

show that eM is R-specializable along H if and only if eM0 and eM00 are so.
(2) Let ' : eM1 ! eM2 be a morphism between R-specializable modules along H.

Show that ' is compatible with the order filtrations along H. Conclude that, on the
full subcategory consisting of R-specializable eDX -modules of the category of eDX -mod-
ules (and morphisms consist of all morphisms of eDX -modules), grV

↵
is a functor to

the category of grV
0
eDX -modules.
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Exercise 9.17 (R-specializability for DX -modules).

(1) Show that, for an R-specializable DX -module M, the assumption of Lemma
9.3.16 is satisfied. [Hint : Choose a finite set of local sections generating M and con-
sider the V -filtration they generate.] Conclude that Properties (1)–(3) of Definition
9.3.18 are also satisfied.

(2) Show that any morphism between coherent R-specializable DX -modules is
strictly compatible with the V -filtrations and its kernel and cokernel are coherent
R-specializable DX -modules.

Exercise 9.18. Show that the notion of strict R-specializability does not depend on
the choice of a local decomposition X ' H⇥�t. [Hint : Use the formulas in [MM04,
Lem. 4.1-12].]

Exercise 9.19 (Strict R-specializability and Bernstein polynomials)
Assume that eM is strictly R-specializable along H and let m be a local section

of eM, with Bernstein polynomial bm. We have seen in the proof of Proposition 9.3.21
that m is a local section of V↵

eM if and only if the z-roots of bm are 6 ↵. Prove
that any z-root � of bm is such that gr

V

�
eM 6= 0. [Hint : Since eDX · m \ V•

eM is
a good V -filtration of eDX · m (see Exercise 9.11(1)), there exists N > 0 such that
eDX ·m\V↵�N eM ⇢ V�1 eDX ·m; let ⌫(�) be the order of nilpotency of E�� on gr

V

�
eM;

show that the product
Q

�2(↵�N,↵]
(E��)⌫(�) sends m to V�1 eDX ·m and conclude.]

Exercise 9.20 (Strict R-specializability and exact sequences)
We consider an exact sequence 0! eM1 ! eM! eM2 ! 0 of coherent eDX -modules.

(1) Assume that eM is strictly R-specializable along H and that the exact sequence
splits, i.e., eM = eM1 � eM2. Show that eM1,

eM2 are strictly R-specializable along H.
[Hint : Show that the order filtration of eM splits, and deduce the V -coherence of the
summands.]

(2) If eM is strictly R-specializable along H, but the exact sequence does not split,
set

U↵
eM1 = V↵

eM \ eM1, U↵
eM2 = image(V↵

eM).

• Show that these V -filtrations are coherent (see Exercise 9.11(1)) and that,
for every ↵, the sequence

0 �! gr
U

↵
eM1 �! gr

V

↵
eM �! gr

U

↵
eM2 �! 0

is exact.
• Conclude that U•

eM1 satisfies the Bernstein property 9.3.16(1) and the
strictness property 9.3.16(2) (with index set R), and thus injectivity in 9.3.25(a)
and (d), but possibly not 9.3.18(2) and (3). Deduce that U↵

eM1 = V↵
eM1. [Hint :

Use the uniqueness property of Lemma 9.3.16.]
• If each gr

U

↵
eM2 is also strict, show that U↵

eM2 = V↵
eM2.

• If moreover one of both eM1,
eM2 is strictly R-specializable, show that so is

the other one.
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(3) Conclude that if eM and eM2 are strictly R-specializable, then so is eM1 and for
every ↵, the sequence

0 �! gr
V

↵
eM1 �! gr

V

↵
eM �! gr

V

↵
eM2 �! 0

is exact.

Exercise 9.21 (Strictness of submodules supported on the divisor H)
Assume that eM is strictly R-specializable along H and let eM1 be a coherent eDX -

submodule of eM supported on H. Show that eM1 is strict. [Hint : Use Exercise 9.20(2)
and show that V<0

eM1 = 0; from strictness of each gr
V

↵
eM1, deduce that each V↵

eM1 is
strict and conclude.]

Exercise 9.22 (Compatibility with Kashiwara’s equivalence)
Let ◆ : X ,! X1 be a closed inclusion of complex manifolds, and let H1 ⇢ X1

be a smooth hypersurface such that H := X \ H1 is a smooth hypersurface of X.
Show that a coherent eDX -module eM is strictly R-specializable along H if and only if
eM1 := D◆⇤ eM is so along H1, and we have, for every ↵,

(gr
V

↵
eM1,N) = (D◆⇤gr

V

↵
eM,N).

[Hint : Assume that X1 = H⇥�t⇥�x and X = H⇥�t⇥{0}, so that eM1 = ◆⇤ eM[e@x];
show that the filtration U↵

eM1 := ◆⇤V↵
eM[e@x] satisfies all the characteristic properties

of the V -filtration of eM1 along H1.]

Exercise 9.23 (Strict R-specializability and morphisms).
(1) Let ' : eM ! eN be an isomorphism between strictly R-specializable eDX -mod-

ules. Show that it is strictly compatible with the V -filtrations and for any ↵, grV
↵
' is

an isomorphism. [Hint : Use the uniqueness in Lemma 9.3.16.]
(2) Let ' : eM ! eN be any morphism between coherent eDX -modules which are

strictly R-specializable along H. Show that the order filtration on Im' is a coherent
V -filtration, and that Im' is strictly R-specializable if and only if so is Ker'. [Hint :
Apply Exercise 9.20(2).]

(3) Let ' : eM ! eN be a morphism between strictly R-specializable eDX -modules.
It induces a morphism gr

V

↵
' : gr

V

↵
eM! gr

V

↵
eN. Show that if grV

↵
' is a strict morphism

for every ↵, then Coker' is also strictly R-specializable and ' is strictly compatible
with V , so that the sequence

0 �! gr
V

↵
Ker' �! gr

V

↵
eM �! gr

V

↵
eN �! gr

V

↵
Coker' �! 0

is exact for every ↵.

Exercise 9.24 (Restriction to z = 1). Let eM be a coherent eDX -module. Assume that eM
is R-specializable along H.

(1) Show that for every ↵,

(z � 1) eM \ V↵
eM = (z � 1)V↵

eM.
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[Hint : Let m = (z�1)n be a local section of (z�1) eM\V↵
eM; then n is a local section

of V�
eM for some �; if � > ↵, show that the class of n in gr

V

�
eM is a annihilated by

z � 1; conclude with Exercise 5.2(1).]
(2) Conclude that M := eM/(z � 1) eM is R-specializable along H and that, for

every ↵,

V↵M = V↵
eM/(z � 1)V↵

eM = V↵
eM/

�
(z � 1) eM \ V↵

eM
�
,

gr
V

↵
M = gr

V

↵
eM/(z � 1)gr

V

↵
eM.

(3) Show that (V↵
eM)⌦eC[z]

eC[z, z�1] = V↵M[z, z
�1

].

Exercise 9.25 (Side changing). Define the side changing functor for V0
eDX -modules

by replacing eDX with V0
eDX in Definition 8.2.3. Show that eMleft is R-specia-

lizable along H if and only if eMright is so and, for every � 2 R, V
�
( eMleft

) =⇥
V���1( eMright

)
⇤left. [Hint : Use the local computation of Exercise 8.17.]

Exercise 9.26 (Indexing with Z or with R). The order filtration is naturally indexed
by R, while the notion of V -filtration considers filtrations indexed by Z. The purpose
of this exercise is to show how both notions match when the properties of Lemma
9.3.16 are satisfied. Let U•

eM be a filtration for which the properties of Lemma 9.3.16
are satisfied. Then we have seen that U•

eM coincides with the “integral part” of the
order filtration V•

eM. Show the following properties.

(1) The weak Bernstein equations (9.3.7 ⇤) and (9.10.0 ⇤) hold without any power
of z, i.e., for every k the operator E�kz has a minimal polynomial on Uk

eM/Uk�1 eM =

Vk
eM/Vk�1 eM which does not depend on k.
(2) The eigen module of E�kz on this quotient module corresponding to the eigen-

value ↵z isomorphic to gr
V

↵+k
eM and the corresponding nilpotent endomorphism is

(9.10.0 ⇤) N := (E�(k + ↵)z).

In particular, each gr
V

↵+k
eM is strict and we have a canonical identification

Vk
eM/Vk�1 eM =

L
�1<↵60

gr
V

↵+k
eM.

(3) For every ↵ 2 (�1, 0], identify V↵+k
eM with the pullback of

L
�1<↵06↵

gr
V

↵0+k
eM

by the projection Vk
eM ! Vk

eM/Vk�1 eM, and show that the shifted order filtration
indexed by integers V↵+•

eM is a coherent V -filtration.
(4) Conclude that there exists a finite set A ⇢ (�1, 0] such that the order filtration

is indexed by A+ Z, and is coherent as such (see Definition 9.3.3).

Exercise 9.27. Check that if 9.3.18(2) and 9.3.18(3) hold for some local decomposition
X ' H ⇥�t at xo 2 H, then they hold for any such decomposition.
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Exercise 9.28 (A criterion to recognize the V -filtration). Assume that eM is coherent
and R-specializable along H and let U•

eM be a good V -filtration indexed by A+Z for
some finite set A ⇢ (�1, 0]. Assume that U•

eM satisfies the following properties:
(1) gr

U

↵
eM is strict for any ↵ 6 0,

(2) same as 9.3.18(2),
(3) same as 9.3.18(3).

Argue as in the proof of Proposition 9.3.25 to deduce that t : gr
V

↵
eM ! gr

V

↵�1
eM is

an isomorphism for any ↵ < 0 and, inductively, that e@t : gr
V

↵
eM ! gr

V

↵+1
eM(�1) is

an isomorphism for any ↵ > �1. Conclude that gr
U

↵
eM is strict for any ↵, that eM is

strictly R-specializable along H, and that U•
eM is the V -filtration of eM.

Exercise 9.29 (Complement to 9.3.39). We keep the notation of 9.3.39. Show that
eM/V�2 eM can be identified, as a V0

eDX -module, to
L

�2(�2,�1]
gr

V

�
eM�

L
↵2(�1,0]

gr
V

↵
eM[s],

where the V0
eDX -module structure on the latter term is a little modified with respect

to that of
L

↵2(�1,0] gr
V

↵
eM[s], namely:

• t acts by zero on
L

�2(�2,�1] gr
V

�
eM,

• for ↵ 2 (�1, 0] and j = 0, m↵

0
· t = m

↵

0
t 2 gr

V

↵�1
eM (instead of 0),

• all the remaining actions are the same as in (3).

Exercise 9.30. Justify that  g,� and �g,1 are functors from the category of R-specia-
lizable right eDX -modules to the category of right eDX -modules supported on g

�1
(0).

[Hint : Use Exercise 9.16(2).]

Exercise 9.31. Assume that X = H ⇥ �t and let g denote the projection to �t, so
that ◆g is induced by the diagonal embedding �t ,! �t1

⇥ �t2
. Let eM be a right

eDX -module.
(1) Show that we have  g,�

eM ' D◆H⇤gr
V

↵
eM(1) and �g,1

eM = D◆H⇤gr
V

0
eM, where

◆H : H ,! X denotes the inclusion:
(a) Set u = (t1� t2)/2, v = (t1+ t2)/2 and eMg =

L
k
◆g⇤ eM⌦ e�ue@ku, and show

that the right action of u, e@u, v, e@v reads

(m⌦ e�ue@ku) · u = kzm⌦ e�ue@k�1u
, (m⌦ e�ue@ku) · e@u = m⌦ e�ue@k+1

u
,

(m⌦ e�ue@ku) · v = mt⌦ e�ue@ku, (m⌦ e�ue@ku) · e@v = me@t ⌦ e�ue@ku.

(b) Using the relation e@t1 =
1

2

e@u +
1

2

e@v, show that eMg '
L

k
◆g⇤ eM ⌦ e�ue@kt1

with the obvious right action of e@t1 .
(c) With respect to the latter decomposition, show that

(m⌦ e�u)t2 = mt⌦ e�u, (m⌦ e�u)e@t2 = me@t ⌦ e�u �m⌦ e�ue@t1 .

(d) Show that the filtration U↵(
eMg) =

L
k
◆g⇤V↵

eM ⌦ e�ue@kt1 has a Bernstein
polynomial with respect to t2 and that gr

U

↵
( eMg) = D◆H⇤gr

V

↵
eM.

(e) Conclude.
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(2) Show that can = e@t2 and var = t2 for eMg are D◆g⇤(e@t) and D◆g⇤(t), with
e@t : grV�1 eM! gr

V

0
eM(�1) and t : gr

V

0
eM! gr

V

�1
eM.

Exercise 9.32 (Strict R-specializability and ramification). We take up the notation of
Section 9.9.a. Let q > 1 be an integer and let ⇢q : C ! C be the ramification
u 7! t = u

q. We set Xq = X0 ⇥ Cu and we still denote by ⇢q the induced map
Xq ! X. Since we will deal with pullbacks of eDX -modules, we will work in the left
setting. Let eM be a left eDX -module.

(1) Show that the pullback D⇢
⇤ eM (Definitions 8.6.3 and 8.6.6) can also be defined

as follows:
• as an eOXq

-module, we set D⇢
⇤
q
eM = ⇢

⇤
q
eM = eOXq

⌦
⇢
�1

q
eOX

⇢
�1
q

eM;
• for coordinates xi on X0, the action of e@xi

is the natural one, i.e., e@xi
(1⌦m) =

1⌦ e@xi
m;

• the action of e@u is defined, by a natural extension using Leibniz rule, from
e@u(1⌦m) = qu

q�1 ⌦ e@tm.

(2) Identify D⇢
⇤
q
eM with

L
q�1
k=0

u
k⌦ eM and make precise the eDXq

-module structure
on the right-hand term.

(3) Assume that eM is R-specializable along (t). Show that any local section of
D⇢
⇤
q
eM satisfies a weak Bernstein functional equation, by using that

u
k ⌦ te@tm =

1

q
(ue@u � kz)(u

k ⌦m).

(4) Assume that eM is strictly R-specializable along (t). Show that the filtration
defined by the formula

V
�

D⇢
⇤
q
eM =

q�1L
k=0

(u
k ⌦ V

(��k)/q eM),

satisfies all properties required for the Kashiwara-Malgrange filtration.
(5) Show that, for any µ 2 S

1,

 u,µ(D⇢
⇤
q
eM) '

L
�q=µ

 t,�
eM,

and, under this identification, the nilpotent endomorphism Nu corresponds to the
direct sum of the nilpotent endomorphisms qNt. Conclude that we have a similar
relation for the graded modules with respect to the monodromy filtration and the
corresponding primitive submodules.

Exercise 9.33. Show that both conditions in Definition 8.8.15 are indeed equivalent.
[Hint : Use the homogeneity property of Char eM.]

Exercise 9.34. With the assumptions of Theorem 8.8.16, show similarly that, if Y is
defined by x1 = · · · = xp = 0 then, considering the map x : X ! C

p induced by
x := (x1, . . . , xp), then eM is eDX/Cp -coherent.
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Exercise 9.35 (Middle extension property for holonomic DX -modules)
(1) Show that an R-specializable DX -module M, the property of being a middle

extension along (g) (i.e., can is onto and var is injective) is equivalent to the property
that M has no submodule not quotient module supported in {g = 0}. [Hint : Notice
that Property 9.3.18(1) is empty in Proposition 9.7.2(2).]

(2) Show that, if M is holonomic, this property is equivalent to the property that
both M and its dual DX -module have no submodules supported in {g = 0}.

(3) Show that if M is smooth (i.e., is a vector bundle with flat connection), then it
is a middle extension along any divisor (g). [Hint : Use that the dual module is also
smooth.]

(4) Let eM be a eDX -module which is strictly R-specializable along (g) and let M be
the underlying DX -module. Show that if eM is a middle extension along (g), then M

is a middle extension along (g). [Hint : Use Definition 9.7.3 both for eM and M and
exactness of the functor eM 7!M.]

Exercise 9.36 (Nearby/vanishing Lefschetz quiver for a middle extension)
Show that the nearby/vanishing Lefschetz quivers (9.4.7 ⇤⇤) and (9.4.7 ⇤) are iso-

morphic to the quiver

 g,1
eM

can = N

**

ImN.

var = incl

jj

(�1)
jj

Exercise 9.37. In the setting of Lemma 9.9.2, prove that (x1, x2) is a regular sequence
on eM, i.e., x1

eM \ x2
eM = x1x2

eM. Show that, for every k > 1, if we have a relationP
k1+k2=k

x
k1

2
x
k2

1
mk1,k2

= 0 in eM, then there exist µi,j 2 eM for i, j > 0 (and the
convention that µi,j = 0 if i or j 6 �1) such that mk1,k2

= x1µk1�1,k2
� x2µk1,k2�1

for every k1, k2.

9.11. Comments

The idea of computing the monodromy of a differential equation with regular sin-
gularities only in terms of the coefficients of the differential equation itself, that is, in
an algebraic way with respect to the differential equation, goes back to the work of
Fuchs. In higher dimension, this has been extended in terms of vector bundles and
connections by Deligne [Del70]. On the other hand, the algebraic computation of
the monodromy by Brieskorn [Bri70] opened the way to the differential treatment
of the monodromy as done by Malgrange in [Mal74], and generalized in [Mal83].
The general definition of the V -filtration has been obtained by Kashiwara [Kas83].
It has been developed for the purpose of the theory of Hodge modules by M. Saito
[Sai88], and an account has been given in [Sab87a]. The theory of the V -filtration is
intimately related to that of the Bernstein-Sato polynomial [Ber68, BG69, Ber72]
and [Kas76, Kas78].
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For the purpose of the theory of Hodge modules, M. Saito has developed the notion
of V -filtration for filtered DX -modules. His approach will be explained in Chapter 10.
In the present chapter, we have followed the adaptation of M. Saito’s approach for
eDX -modules, inspired by [Sab05]. For example, the proof of the pushforward theorem
9.8.8 is a direct adaptation of loc. cit., which in turn is an adaptation of a similar
result of M. Saito in [Sai88], namely, Theorem 10.5.4. The computation of Section
9.9.b followed the same path. On the other hand, the result in Section 9.2.b is due to
[Wei20] and the proof is taken from [ES19].





CHAPTER 10

SPECIALIZATION OF FILTERED D-MODULES

Summary. In this chapter, we take up the notion of specialization and the
compatibility property with proper pushforward for filtered DX -modules. Com-
pared with the approach of Sections 9.3–9.8, we insist in keeping the strictness
property, that is, we only work with filtered DX -modules, not graded modules
over the Rees ring RFDX . We will compare the two approaches in Section 10.7.

10.1. Introduction

One can introduce the notion of filtered D-module by keeping the data of the
D-module and its filtration. The advantage is to keep a hand on the filtration at
each step. The main goal of this chapter (Theorem 10.5.4) is to give a proof of the
criterion given in Theorem 9.8.8 from this point of view. One should be careful since
the category of filtered D-modules is not abelian anymore. As a consequence, dealing
with derived categories, as needed when considering pushforward, needs some care,
as well as strictness for bi-filtered complexes.

The comparison between the present approach and that of Chapter 9 will be done
in Section 10.7. Of particular interest is the property that, for a strict graded RFDX -
module, strict R-specializability along a smooth divisor H implies a regularity prop-
erty, which has not been emphasized up to now, but which is essential for the approach
in this chapter. In particular, the approach of Section 9.8 does not give as a result
the strictness of the pushforward, only its strict specializability. We will show in Sec-
tion 10.7 how to recover strictness properties from this point of view. On the other
hand, the advantage of the approach of Section 9.8 is to allow generalization to cases
where the regularity property is not fulfilled (twistor D-modules), since strictness is
not used for proving Theorem 9.8.8, only strict specializability is used. Lastly, local-
ization and maximalization also have a natural formalism in the framework of graded
RFDX -module. We will not take up the corresponding formalism in the setting of
filtered DX -modules.
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10.2. Strict and bi-strict complexes

In this section we review the definition and basic properties of strictness for fil-
tered and bi-filtered complexes. We will consider the case of several filtrations in
Section 15.1. In particular, when dealing with at least three filtrations, an important
role is played by the compatibility condition on filtrations. However, this condition
does not arise when dealing with one or two filtrations and the strictness condition
on complexes is also very easy to treat directly.

10.2.1. Convention. We work in the abelian category A of sheaves of vector spaces
(over some fixed field, that will be the field of complex numbers for our purposes) on
some topological space T .(1) In such a category, all filtered direct limits exist and are
exact. Given an object A in this category, we only consider increasing filtrations F•A

that are indexed by Z and satisfy lim�!k
FkA = A. We write a filtered object in A as

(A,F ), where F = (FkA)k2Z.

Note that if (A,F ) is a filtered object, then a subobject B of A carries the induced
filtration (FkA \ B)k2Z, while a quotient object A/A

0 carries the induced filtration
((FkA + A

0
)/A
0
)k2Z. It is easy to see that the two possible induced filtrations on a

subquotient B/A
0 of A agree.

10.2.2. Definition (Strictness of filtered complexes). Consider a complex (C
•
, F ) of fil-

tered objects in A. This is a strict complex if all morphisms d : C
i ! C

i+1 are strict,
in the sense that the isomorphism Coim(d) ! Im(d) is an isomorphism of filtered
objects, that is, we have

d(FkC
i
) = FkC

i+1 \ d(C
i
) for all k, i 2 Z.

We will be interested in complexes of bi-filtered objects in A. These are objects
of A carrying two filtrations (A,F

0
, F
00
). We write

(10.2.3) F
0
k
F
00
`
A := F

0
k
A \ F

00
`
A.

The morphisms in this case are required to be compatible with each of the two filtra-
tions.

10.2.4. Definition. Let (C
•
, F
0
, F
00
) be a complex of bi-filtered objects. We say that

the complex is strict (or bi-strict, if we want to emphasize the fact that we consider
two filtrations) if for every i, p, and q, the natural maps in the commutative square

H
i
(F
0
k
F
00
`
C

•
) //

✏✏

H
i
(F
0
k
C

•
)

✏✏

H
i
(F
00
`
C

•
) // H

i
(C

•
)

(1)One can consider more general abelian categories where all filtered direct limits exist and are
exact. However, we will not need such a generality. We refer the reader interested in more general
categories to [Sai88, §1].
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are injective, and furthermore, the square is Cartesian, that is, H
i
(F
0
k
F
00
`
C

•
) =

H
i
(F
0
k
C

•
) \H

i
(F
00
`
C

•
).

10.2.5. Remark. It follows from Remark 10.2 that (C
•
, F
0
, F
00
) is strict if and only if

all canonical morphisms

H
i
(F
0
k
C

•
) �! F

0
k
H

i
(C

•
), H

i
(F
00
`
C

•
) �! F

00
`
H

i
(C•),

H
i
(F
0
k
F
00
`
C

•
) �! F

0
k
F
00
`
H

i
(C

•
)and

are isomorphisms. (See Exercise 10.6 for the case of a bi-strict morphism.)

10.2.6. Lemma. If (C•
, F
0
, F
00
) is a strict complex of bi-filtered objects, then the com-

plexes (C
•
, F
0
) and (F

0
k
C

•
, F
00
) are strict for every k 2 Z. In particular, we have a

short exact sequence

0 �! H
i
(F
0
k
F
00
`
C

•
) �! H

i
(F
0
k
F
00
m
C

•
) �! H

i
(F
0
k
(F
00
m
C

•
/F
00
`
C

•
)) �! 0

for every ` < m and every i. Furthermore, for every k, every ` < m < n, and every i,
we have short exact sequences

0! H
i

⇣
F
0
k
(F
00
m
C

•
/F
00
`
C

•
)

⌘
�! H

i

⇣
F
0
k
(C

•
/F
00
`
C

•
)

⌘
�! H

i

⇣
F
0
k
(C

•
/F
00
m
C

•
)

⌘
! 0

and

0! H
i

⇣
F
0
k
(F
00
m
C

•
/F
00
`
C

•
)

⌘
�! H

i

⇣
F
0
k
(F
00
n
C

•
/F
00
`
C

•
)

⌘

�! H
i

⇣
F
0
k
(F
00
n
C

•
/F
00
m
C

•
)

⌘
! 0.

Proof. The first assertion is an immediate consequence of the definition, while the
exact sequences follow from the strictness of (F

0
k
C

•
, F
00
), using Remarks 10.3 and

10.4.

10.2.7. Lemma. If (C
•
, F
0
, F
00
) is a strict complex of bi-filtered objects, then for

every k < q, the complex (F
00
k
C

•
/F
00
`
C

•
, F
0
) is strict. In particular, each complex

(gr
F

00

k
(C

•
), F

0
) is strict.

Proof. It follows from Lemma 10.2.6 that for every s and i, in the following commu-
tative diagram

0 // H
i
(F
0
m
F
00
k
C

•
) //

u
✏✏

H
i
(F
0
m
F
00
`
C

•
)

v
✏✏

// H
i

⇣
F
0
m
(F
00
`
C

•
/F
00
k
C

•
)

⌘

w
✏✏

// 0

0 // H
i
(F
00
k
C

•
) // H

i
(F
00
`
C

•
) // H

i
(F
00
`
C

•
/F
00
k
C

•
)) // 0

the rows are exact. Furthermore, since (C
•
, F
0
, F
00
) is a strict complex, it follows that

u and v are injective and the left square is Cartesian (this follows by describing all
the objects that appear in that square as subobjects of Hi

(C
•
)). This implies that w

is injective, hence (F
00
`
C

•
/F
00
k
C

•
, F
0
) is a strict complex.
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10.3. Bi-filtered DX-modules

In the remaining part of this chapter, we will work with right DX -modules, since
we are mainly interested in the pushforward theorem. Accordingly, we will consider
increasing V -filtrations.

We consider the setting of Section 9.2 with a smooth hypersurface H ⇢ X locally
defined by a coordinate t. The ring DX is then equipped with the F -filtration, and
the V -filtration corresponding to H. We consider correspondingly DX -modules M

equipped with an F -filtration and a V -filtration. In view of future use, we consider
V -filtrations indexed by A + Z for some finite subset A ⇢ (�1, 0]. We extend in a
trivial way the filtration V•DX indexed by Z to a filtration indexed by A+Z, that is,
we set for any ↵ 2 A+ Z,

V↵DX = V[↵]DX .

In this section, we mainly consider the interaction of both filtrations, without consid-
eration of coherence or R-specializability.

For a DX -module M equipped with filtrations F•M (p 2 Z) and V•M (↵ 2 A+Z),
we set FpV↵M := FpM \ V↵M as in (10.2.3), and Fpgr

V

↵
M := FpV↵M/FpV<↵M.

We notice that (DX , F•, V•) satisfies the following properties:
(a) Multiplication by t induces an isomorphism FpV↵DX ' FpV↵�1DX whenever

↵ 6 0.
(b) Multiplication by @t induces an isomorphism Fpgr

V

↵
DX ' Fp+1gr

V

↵+1
DX when-

ever ↵ > �1.
These will be the basic relations we impose to bi-filtered DX -modules. We consider

then the category FV(DX) consisting of triples (M, F, V ), where M is a right DX -mod-
ule, F is a (usual) filtration and V is a V -filtration indexed by A+Z on M, for some
finite set A 2 (�1, 0], such that the following conditions are satisfied (no coherence
assumption is made here):

(i) the F and V -filtrations F•M and V•M are exhaustive,
(ii) FpM = 0 for p⌧ 0,
(iii) multiplication by t induces an isomorphism FpV↵M ' FpV↵�1M whenever

↵ < 0,
(iv) multiplication by @t induces an isomorphism Fpgr

V

↵
M ' Fp+1gr

V

↵+1
M when-

ever ↵ > �1.
The morphisms in FV(DX) are morphisms of right DX -modules that are compatible

with both filtrations. We usually refer to the objects of FV(DX) simply as bi-filtered
DX-modules. We note that Condition (iii) implies in particular that, for all ↵ < 0,
V↵M has no t-torsion and V↵M · t = V↵�1M (note that we do not include ↵ = 0

for arbitrary bi-filtered DX -modules). However, we do not assume that (V↵M)↵2R
is a coherent V -filtration with respect to H (more precisely, we do not require any
coherence condition or the fact that t@t � ↵ is nilpotent on gr

V

↵
M).

10.3.1. Remark. It is not true that a morphism ' in FV(DX) has kernels and cokernels
(it is not necessarily true that the induced filtrations on the DX -modules kernels or
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cokernels satisfy conditions (iii) and (iv) above). However, this is the case if ' is
bi-strict: indeed, since taking FpV↵ and Fpgr

V

↵
both commute with taking Ker and

Coker, (see Exercise 10.6(3)), the isomorphism condition on t and @t is preserved. If '
is bi-strict, we have an isomorphism Coim(') ' Im(') in FV(DX).

Let L be an OX -module. It defines an induced DX -module L ⌦OX
DX

(see Section 8.5), equipped with filtrations L ⌦OX
(DX , F•) and L ⌦OX

(DX , , V•).
By shifting the filtrations on DX , we obtain for each p 2 Z and ↵ 2 A+Z an induced
DX -module with filtrations L⌦OX

(DX , F [p]•) and L⌦OX
(DX , V [↵]•):

Fq(L⌦DX) = Im(L⌦ Fq�pDX ,�! L⌦DX)

V�(L⌦DX) = Im(L⌦ V��↵DX ,�! L⌦DX).

In order to also obtain “induced properties” for FqV� , we are led to the following
definition.

10.3.2. Definition (Induced bi-filtered DX -modules).
(1) An elementary induced bi-filtered DX-module is a bi-filtered DX -module of the

form
L⌦OX

(DX , F [p]•, V [↵]•), p 2 Z, ↵ 2 [�1, 0],
such that

(a) if ↵ 2 [�1, 0), L has no t-torsion,
(b) if ↵ = 0, L has t-torsion of order at most one, that is,

{u 2 L | utj = 0 for some j > 1} = {u 2 L | ut = 0}.

(2) An induced bi-filtered DX-module is an object of FV(DX) that is isomorphic
to a direct sum of elementary induced bi-filtered DX -modules

L
i

�
Li ⌦OX

(DX , F [pi], V [↵i])
�
, pi 2 Z, ↵i 2 [�1, 0].

The full subcategory of FV(DX) consisting of induced objects is denoted FVi(DX).

We nevertheless need to justify that elementary induced bi-filtered DX -modules as
defined above belong to FV(DX), that is, satisfy Properties (i)–(iv) above. In order
to do so, it is convenient to treat separately the case when L has no t-torsion and
when Lt = 0, the general case following using the existence of an exact sequence

0 �! L0 �! L �! L00 �! 0,

with L0t = 0 and L00 without t-torsion.
It is useful to note that since L0t = 0, we have locally

L0 ⌦DX = L0 ⌦OH
DH [@t],

Fq(L
0 ⌦DX) = �j>0(L

0 ⌦OH
(Fq�p�jDH)@

j

t
)

V�(L
0 ⌦DX) = �b�c

j=0
(L0 ⌦OH

DH@
j

t
).

(10.3.3)

10.3.4. Lemma. With the above notation, for every q and �, we have
(i) FqV�(L⌦DX) = Im(L⌦ Fq�pV��↵DX ! L⌦DX).
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(ii) There is an exact sequence

0 �! FqV�(L
0 ⌦DX) �! FqV�(L⌦DX) �! FqV�(L

00 ⌦DX) �! 0.

Furthermore, we have L⌦ (DX , F [p], V [↵]) 2 FV(DX).

Proof. The assertion in (i) follows easily when L has no t-torsion, using the fact that
the following maps are injective:

L⌦ V��↵DX �! L⌦DX , L⌦ Fq�pV��↵DX �! L⌦DX ,

L⌦ (V��↵DX/Fq�pV��↵DX) �! L⌦DX/Fq�pDX .and

When Lt = 0, we deduce (i) from the explicit description in (10.3.3).
We now note that we have exact sequences

0 �! Fq(L
0 ⌦DX) �! Fq(L⌦DX) �! Fq(L

00 ⌦DX) �! 0

0 �! V�(L
0 ⌦DX) �! V�(L⌦DX) �! V�(L

00 ⌦DX) �! 0and

(exactness follows from definition and the fact that the maps

L00 ⌦ Fq�pDX �! L00 ⌦DX and L00 ⌦ V��↵DX �! L00 ⌦DX

are injective. Let
M = Im(L⌦ Fq�pV��↵DX �! L⌦DX)

and we similarly define M
0 and M

00. We deduce that we have a commutative diagram
with exact rows and injective vertical maps

0 // M
0

//

j
0

✏✏

M //

j

✏✏

M
00

//

j
00

✏✏

0

0 // FqV�(L
0 ⌦DX) // FqV�(L⌦DX) // FqV�(L

00 ⌦DX)

(for the exactness of the top row we use the fact that the map

L00 ⌦ Fq�pV��↵DX �! L00 ⌦DX

is injective; the exactness of the bottom row follows from the above two exact se-
quences). Since we know that j0 and j

00 are surjective, it follows that j is also surjec-
tive. This completes the proof of both (i) and (ii). The last assertion in the lemma is
easy to check for L0 and L00, and we deduce it also for L using (ii).

10.3.5. Remark. Given (M, F, V ) 2 FV(DX), note that for every ↵ 2 [�1, 0] and every
p 2 Z, we obtain an elementary induced bi-filtered DX -module as

FpV↵M⌦ (DX , F [p], V [↵]).

Indeed, we know by Condition (iii) that FpV↵M has no t-torsion when ↵ < 0. Fur-
thermore, if u 2 FpV0M is such that t

j
u = 0 for some j > 2, then tu 2 FpV�1M and

t(tu) = 0, hence tu = 0. We have a strict surjective morphism
L
p2Z

↵2[0,1]

FpV↵M⌦ (DX , F [p], V [↵]) �! (M, F, V )
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(in this case strictness simply means that the filtrations on the target are induced by
the ones on the source, see Exercise 10.6(1)). Indeed, the surjectivity is a consequence
of Conditions (iii) and (iv) in the definition of the category FV(DX). By applying
the same argument to the kernel, with the induced filtrations (note that this lies in
FV(DX)), we obtain a (possibly infinite) resolution of (M, F, V ) by induced objects.

We consider the category of complexes C
⇤
(FV(DX)), where ⇤ stands for +, �, b,

or for the empty set. We assume that all complexes C
• in this category satisfy the

following assumptions:
(i) For p⌧ 0, we have FpC

•
= 0.

(ii) There exists a finite set A ⇢ [�1, 0) suitable for each term of C•.
We have a corresponding homotopic category K

⇤
(FV(DX)). A morphism C

•
1
! C

•
2

in K(FV(DX)) is a filtered quasi-isomorphism if Hi
(FpV↵C

•
1
) ! Hi

(FpV↵C
•
2
) is an

isomorphism for all p 2 Z and ↵ 2 R. Note that since we work with exhaustive
filtrations, every filtered quasi-isomorphism is, in particular, a quasi-isomorphism.

We obtain the filtered derived categories D
⇤
(FV(DX)) by localizing K

⇤
(FV(DX))

at the class of filtered quasi-isomorphisms. As in the case of the derived category
of an abelian category, one shows that each D

⇤
(FV(DX)) is a triangulated category.

It follows from the universal property of the localization that we get exact functors

H
i
FpV↵(�) : D⇤(FV(DX)) �! D

⇤
(OX),

where D
⇤
(OX) is the derived category of OX -modules, with the suitable boundedness

condition.

10.3.6. Remark. Let us assume that X is a product X ' H ⇥�t. Note that for every
↵ 2 R, taking (C

•
, F, V ) to (gr

V

↵
(C

•
), F ) defines an exact functor D

⇤
(FV(DX)) !

D
⇤
(F(DH)), where D

⇤
(F(DH)) is the filtered derived category of filtered DH -modules

(with suitable boundedness conditions).

Let K
⇤
(FVi(DX)) be the homotopic category of complexes of induced objects in

FV(DX), with suitable boundedness conditions. By localizing this with respect to
filtered quasi-isomorphisms, we get D

⇤
(FVi(DX)).

10.3.7. Lemma. The exact functor

D
�
(FVi(DX)) �! D

�
(FV(DX))

induced by inclusion is an equivalence of categories.

Proof. For every (M, F, V ) 2 FV(DX), we construct the resolution I•(M, F, V ) by
induced bi-filtered DX -modules as in Remark 10.3.5. It is clear that this is functorial
and we extend the construction to a functor C�(FV(DX))! C

�
(FVi(DX)), by map-

ping a complex (M•
, F, V ) to the total complex of the double complex I•(M•

, F, V ).
It is standard to check that this induces a functor between the corresponding fil-
tered derived categories and that this gives an inverse for the functor induced by the
inclusion.
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10.3.8. Remark. If (M, F, V ) is a bi-filtered DX -module, we can choose a finite subset
A ⇢ [�1, 0] such that gr

V

↵
(M) = 0 for all ↵ 2 [�1, 0] r A. As in Remark 10.3.5,

we obtain a strict surjective morphism
L
p2Z
↵2A

FpV↵M⌦ (DX , F [p], V [↵]) �! (M, F, V ),

and by iterating this construction, we obtain a resolution (I•, F, V ) of (M, F, V ) by
induced objects such that each (Ii, F, V ) is the direct sum of elementary bi-filtered
modules L⌦OX(DX , F [pi], V [↵i]), with the ↵i varying over a finite set. In particular,
since for every q and � we have

FqV�(L⌦ OX(DX , F [pi], V [↵i])) = 0 unless pi 6 q,

we conclude that if FpV↵M is a coherent OX -module for every p and ↵, then FpV↵I
j

is a coherent OX -module for every p, ↵, and j.

10.3.9. Lemma. Consider two elementary induced bi-filtered DX-modules

(Mi, F, V ) = Li ⌦ (DX , F [p], V [↵]) i = 1, 2,

and consider the exact sequences

0 �! L0
i
�! Li �! L00

i
�! 0,

where L0
i
t = 0 and L00

i
has no t-torsion. If u : L1 ! L2 is an injective morphism

such that the induced morphism u
00
: L00

1
! L00

2
has the property that Coker(u

00
) has

no t-torsion, then the induced morphism u : (M1, F, V ) ! (M2, F, V ) is strict and
Coker(u) ' Coker(u)⌦ (DX , F [p], V [↵]).

Proof. We need to show that if we consider on Coker(u) ' Coker(u)⌦DX the induced
filtrations, then for every q and �, the sequence

0 �! FqV�(L1 ⌦DX) �! FqV�(L2 ⌦DX) �! FqV�(Coker(u)⌦DX) �! 0

is exact. This is easy to check when both Li have no t-torsion and it follows from the
explicit description in (10.3.3) when Lit = 0 for i = 1, 2.

We now consider the general case. Let u
0
: L0

1
! L0

2
be the morphism induced

by u. Note first that the Snake lemma gives an exact sequence

0 �! Coker(u
0
) �! Coker(u) �! Coker(u

00
) �! 0.

(since Ker(u
00
) has no t-torsion, it has to be zero). This exact sequence is the canonical

one associated to Coker(u) such that the first term is annihilated by t and the third
one has no t-torsion.
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Consider the commutative diagram

0

✏✏

0

✏✏

0

✏✏

0 // FqV�(L
0
1
⌦DX) //

✏✏

FqV�(L1 ⌦DX)

✏✏

// FqV�(L
00
1
⌦DX)

✏✏

// 0

0 // FqV�(L
0
2
⌦DX) //

✏✏

FqV�(L2 ⌦DX)

✏✏

// FqV�(L
00
2
⌦DX)

✏✏

// 0

0 // FqV�(Coker(u
0
)⌦DX)

✏✏

// FqV�(Coker(u)⌦DX)

✏✏

// FqV�(Coker(u
00
)⌦DX)

✏✏

// 0

0 0 0.

The first and the third columns are exact by what we have already discussed. More-
over, the rows are all exact by Lemma 10.3.4. Therefore the middle column is also
exact, which is what we had to prove.

In order to define functors between filtered derived categories, it will be convenient
to use the Godement resolution (see Definition 8.7.14), that we now extend to our
bi-filtered setting.

For (M, F, V ) 2 FV(DX), we define C0
(M, F, V ) to be the bi-filtered DX -module

N =
S

p,↵
C0

(FpV↵M) ✓ C0
(M), with the filtrations given by FpN =

S
↵
C0

(FpV↵M)

and V↵N =
S

p
C0

(FpV↵M) for p 2 Z, ↵ 2 R. One checks that

C0
(FpV↵M) \ C0

(FqV�M) = C0
(Fmin(p,q)Vmin(↵,�)M).

It follows that FpV↵N = C0
(FpV↵M), hence each FpV↵N is flabby. We have a natural

strict monomorphism (M, F, V ) ,! C0
(M, F, V ), whose cokernel is also a bi-filtered

DX -module, and we can proceed inductively as in Definition 8.7.14 to define the
complex God

•
(M, F, V ) in C

+
(FV(DX)) that is filtered quasi-isomorphic to (M, F, V ).

10.3.10. Lemma. Given an elementary induced bi-filtered DX-module

(M, F, V ) ' L⌦OX
(DX , F [p], V [↵]),

we have
C0

(M, F, V ) ' C0
(L)⌦OX

(DX , F [p], V [↵]).

Proof. If we consider the exact sequence

0 �! L0 �! L �! L00 �! 0,

where L0t = 0 and L00 has no t-torsion, then we have an induced exact sequence

0 �! C0
(L0) �! C0

(L) �! C0
(L00) �! 0

and C0
(L0)t = 0, while C0

(L00) has no t-torsion. In particular, we see that every
t-torsion element in C0

(L) is annihilated by t. We also deduce from this that it is
enough to prove the lemma when either L has no t-torsion or when Lt = 0.
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Suppose first that L has no t-torsion. In this case we have

FqV�(C
0
(L)⌦DX) = C0

(L)⌦ Fq�pV��↵DX ' C0
(L⌦ Fq�pV��↵DX),

since Fq�pV��↵DX is a locally free OX -module, of finite type (see Exercise 8.49(2)).
This implies the isomorphism in the lemma. The case when Lt = 0 follows similarly,
using the explicit description in (10.3.3).

10.3.11. Corollary. If (M, F, V ) 2 FV(DX) is induced, then its filtered resolution

0 �! (M, F, V ) �! C0
(M, F, V ) �! C1

(M, F, V ) �! · · ·

consists of induced objects and the morphisms are strict and they correspond to mor-
phisms of OX-modules.

Proof. This follows by combining Lemmas 10.3.9 and 10.3.10. The only thing to note
is that if we have a short exact sequence of OX -modules

0 �! L0 �! L �! L00 �! 0,

with L0t = 0 and L00 without t-torsion, then Coker(L00 ! C0
(L00)) has no t-torsion.

10.4. The direct image of bi-filtered DX-modules

Let f : X ! X
0 be a morphism between complex manifolds. We assume that

X
0
= H

0 ⇥�t and X = H ⇥�t such that f = f |H ⇥ Idt. We set X0 = H ⇥ {0} and
X
0
0
= H

0⇥0. Our first goal is to define a functor Df⇤ : D
�
(FV(DX))! D

�
(FV(DX0)).

In addition to the sheaf DX , we also have on X the sheaf f�1(DX0). This carries
the F -filtration and the V -filtration induced from DX0 (the V -filtration being the one
with respect to X

0
0
). In particular, we may consider the categories FV(f�1(DX0)) and

FVi(f
�1

(DX0)). For example, an object in FVi(f
�1

(DX0)) is one that is isomorphic
to a direct sum of objects of the form L ⌦f�1(O

X0 ) (f
�1

(DX0), F [p], V [↵]), where L

is an f
�1

(OX0)-module that has no t-torsion, unless ↵ = 0, in which case the all
local sections of L that are annihilated by some power of t are actually annihilated
by t. The same construction from before (see Lemma 10.3.7) shows that the inclusion
functor determines an equivalence of categories

D
�
(FVi(f

�1
(DX0))) �! D

�
(FV(f

�1
(DX0))).

As in the case of the direct image of non-filtered DX -modules, the key player in
the definition of the direct image for bi-filtered DX -modules is

DX!X0 := OX ⌦f�1(O
X0 ) f

�1
(DX0).

This has a structure of left DX -module and right f
�1

(DX0)-bimodule and carries
an F -filtration and a V -filtration induced from f

�1
(DX0). These are compatible not

only with the F and V -filtrations on f
�1

(DX0), via right multiplication, but also with
the F and V -filtrations on DX , via left multiplication.
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10.4.1. Example. The two main examples are when f is smooth and when f is a closed
immersion. The typical case for f being smooth is when f : X = X

0 ⇥W ! X
0 is

the projection onto the first factor. In this case we have a surjection DX0⇥W !
DX0⇥W!X0 such that in local coordinates w1, . . . , wr on W , we get an isomorphism

DX0⇥W!X0 ' DX0⇥W /DX0⇥W · (@w1
, . . . , @wr

).

On the other hand, the typical case when f is a closed immersion is when f : X ,!
X
0
= X ⇥ Z is given by f(x) = (x, z0). If we have coordinates z1, . . . , zr on Z, then

DX!X⇥Z ' DX ⌦ C[@z1 , . . . , @zr ].

We first claim that

(10.4.2) p

DRX/X0(M, F, V ) = (M, F, V )⌦DX
(DX!X0 , F, V ),

with the tensor product of the filtrations from the two factors, defines a functor
p

DRX/X0 : FVi(DX)! FVi(f
�1

(DX0)). Indeed, we have

L⌦OX
(DX , F [p], V [↵])⌦DX

(DX!X0 , F, V ) ' L⌦f�1(O
X0 ) (f

�1
(DX0), F [p], V [↵]).

It is clear on such a formula that this functor is compatible with grading with
respect to V•, as defined in Remark 10.3.6.

10.4.3. Lemma. The functor p

DRX/X0 maps a filtered quasi-isomorphism in the cate-
gory K(FVi(DX)) to a filtered quasi-isomorphism.

Proof. We need to prove that if (C•
, F, V ) is a complex of bi-filtered DX -modules such

that all complexes FpV↵C
• are exact, then FpV↵

p

DRX/X0(C
•
) is exact for all p 2 Z

and ↵ 2 R. By factoring f as X
j! X ⇥X

0 p! X
0, where p is the second projection

and j is the graph of f , we reduce the proof for f to proving the assertion separately
for j and p (note that DX!X0 ' DX!X⇥X0 ⌦j�1(D

X⇥X0 ) j
�1

(DX⇥X0!X0)).
The assertion for j is trivial since we may assume that we have coordinates

y1, . . . , yr on X
0, so that p

DRX/X⇥X0 can be identified with C[@y1
, . . . , @yr

]⌦C (�).
Let us prove now the assertion for the projection p : X ⇥ X

0 ! X
0. For every

object (M, F, V ) 2 FV(DX⇥X0), consider the complex p

DRX(M, F, V ) consisting of
M ⌦D

X⇥X0 ^�•⇥X (given local coordinates x1, . . . , xn on X, this complex can be
identified to the Koszul-type complex corresponding to @x1

, . . . , @xr
). The filtrations

are defined by

Fp(M⌦ ^�i⇥X) = Fp+iM⌦ ^�i⇥X , V↵(M⌦ ^�i⇥X) = V↵M⌦ ^�i⇥X .

Note that the morphism DX⇥X0 ⌦OX
^�•⇥X ! DX!X0 induces a morphism

p

DRX(M, F, V ) �! (M, F, V )⌦DX
(DX!X0 , F, V )

for every bi-filtered DX -module (M, F, V ). This is a filtered quasi-isomorphism
if (M, F, V ) ' L ⌦ (DX⇥X0 , F [p], V [↵]), hence for all induced bi-filtered DX⇥X0 -
modules. Indeed, it is enough to check the assertion when either L has no t-torsion,
or when Lt = 0; in each case, the verification is straightforward.
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On the other hand, it is clear that if all FpV↵C
• are exact, then also all complexes

FpV↵(C
• ⌦ ^�i⇥W ) are exact, hence each FpV↵

p

DRX/X0(C
•
) is exact by the above

discussion. This completes the proof of the lemma.

As a consequence of the lemma, the functor p

DRX/X0 we have defined in (10.4.2)
induces an exact functor p

DRX/X0 : D
⇤
(FVi(DX)) ! D

⇤
(FVi(f

�1
(DX0))), where ⇤

stands for +, �, b, or the empty set, and this functor is compatible with V -grading.
We now introduce the topological direct image. We first define it at the level of bi-

filtered D-modules. Suppose that f : X ! X
0 is as above. If (M, F, V ) is a bi-filtered

f
�1

(DX0)-module, we define f⇤(M, F, V ) 2 FV(DX0) to be given by (N, F, V ), where
N =

S
p,↵

f⇤(FpV↵M), with FpN =
S

↵
f⇤(FpV↵M) and V↵N =

S
p
f⇤(FpV↵M). We

obtain in this way a functor f⇤ : FV(f
�1

(DX0)) ! FV(DX0). Note that if L is an
f
�1

(OX0)-module, then f⇤(L ⌦ (f
�1

(DX0), F [p], V [↵])) ' f⇤(L) ⌦ (DX0 , F [p], V [↵])

by the projection formula (we use the fact that DX0 is a locally free OX0 -module).
Therefore we also have a functor f⇤ : FVi(f

�1
(DX))! FVi(DX0).

We next define a version of the topological direct image functor at the level of
filtered derived categories

f⇤ : D
⇤
(FVi(f

�1
(DX0))) �! D

⇤
(FVi(DX0)),

as follows. By a variant of Corollary 10.3.11, we associate functorially to every
(M, F, V ) 2 FVi(f

�1
(DX0)) a strict complex C•

(M, F, V )

0 �! C0
(M, F, V ) �! C1

(M, F, V ) �! · · ·

that gives a filtered resolution of (M, F, V ) by induced bi-filtered modules. It is
convenient to replace this by a bounded complex, hence if dimR(X) = 2n, we consider
the complex

eC•
(M, F, V ) : {0! eC0

(M, F, V )! eC1
(M, F, V )! · · ·! eC2n

(M, F, V )! 0},

where

eCj
(M, F, V ) =

8
>>><

>>>:

Cj
(M, F, V ), 0  j 6 2n� 1;

Coker(C2n�2
(M, F, V )! C2n�1

(M, F, V )), j = 2n;

0, j > 2n+ 1.

It follows from the construction that eC•
(M, F, V ) is a strict complex, giving a filtered

resolution of (M, F, V ) by induced bi-filtered f
�1

(DX0)-modules. Moreover, since we
truncated at the dimension of X, we have R

m
f⇤(FpV↵

eCj
(M, F, V )) = 0 for every m >

1 and every j, p, and ↵. Given a complex (M•
, F, V ) in FVi(f

�1
(DX0)), we consider

the total complex of the double complex eC•
(M•

, F, V ). It is now standard to see that
this induces exact functors f⇤ : D⇤(FVi(f

�1
(DX0)))! D

⇤
(FVi(DX0)), where ⇤ stands

for +, �, b, or for the empty set. According to Lemma 10.3.10, the above construction
eC• is compatible with the V -grading functor of Remark 10.3.6 and, by the exactness
of f⇤ on the terms of the complexes eC•, V -grading commutes with f⇤ as defined by
the previous construction.
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By composing f⇤ and p

DRX/X0 , we obtain an exact functor

Df⇤ : D
⇤
(FVi(DX)) �! D

⇤
(FVi(DX0)),

which in light of Lemma 10.3.7 also gives a functor D
�
(FV(DX))! D

�
(FV(DX0)).

It is also clear, by applying the arguments separately to f⇤ and p

DRX/X0 , that
taking the direct image commutes with taking the graded pieces of the V -filtration.
More precisely, if f0 : X0 ! X

0
0

is the restriction of f , then given any (M•
, F, V ) 2

D
�
(FV(DX)) and any ↵ 2 R, we have an isomorphism in D

�
(F(DX

0
0
)):

(10.4.4) (gr
V

↵ Df⇤(M
•
, F, V ), F ) ' Df0⇤(gr

V

↵
(M

•
, F, V ), F ).

We consider two conditions on an object C
• of C(FV(DX)):

(a) The action of t@t � ↵ on H
i
(gr

V

↵
C

•
) is nilpotent for all i 2 Z, ↵ 2 R,

(b) Each H
i
(FpV↵C

•
) is a coherent OX -module.

Let C
⇤
m
(FV(DX)) and C

⇤
c
(FV(DX)) be the full subcategories of C⇤(FV(DX)) con-

sisting of those objects that satisfy condition (a), respectively (b), and we similarly
define D

⇤
m
(FV(DX)) and D

⇤
c
(FV(DX)) as full subcategories of D⇤(FV(DX))

10.4.5. Lemma. With the above notation, suppose also that f is proper and (M, F, V ) 2
FV(DX).

(i) If (M, F, V ) 2 Cc(FV(DX)), then f⇤(M, F, V ) 2 D
�
c
(FVc(DX0)).

(ii) If (M, F, V ) 2 C(FV(DX)), then f⇤(M, F, V ) 2 D
�
m
(FVm(DX0)).

Proof. Let (C
•
, F, V ) ! (M, F, V ) be a filtered resolution by induced bi-filtered

DX -modules constructed as in Remark 10.3.8. If FpV↵M is a coherent OX -module
for every p, ↵, then FpV↵C

k is a coherent OX -module for every p, ↵, and k. One can
then deduce that all H

k
(FpV↵

p

DRX/X0(C
•
)) are coherent f

�1
(OX0)-modules, and

then that all Hk
(FpV↵f⇤(

p

DRX/X0(C
•
))) are coherent OX0 -modules.

If the action of (t@t � ↵)m on gr
V

↵
(M) is zero, then also its action on

f0⇤(gr
V

↵
(M), F ) ' gr

V

↵
f⇤(M, F, V )

is zero, hence the same holds for the action on H
k
(gr

V

↵
f⇤(M, F, V )).

10.5. Specializability of filtered DX-modules

We assume that X = H ⇥ �t, where �t is a disc with coordinate t and we set
X0 = H ⇥ {0} ⇢ X. We use the notion of a coherent V -filtration for a coherent
DX -module M as defined in Section 9.3, as well as the notion of R-specializability.
Since we are dealing with DX -modules, the strictness property is not involved.

We now turn to R-specializability for filtered DX -modules. Suppose that (M, F )

is a coherently F -filtered DX -module (recall that the coherence condition means that
the gr

F
(DX)-module gr

FM := �mFmM/Fm�1M is coherent, see Exercise 8.62).

10.5.1. Definition. One says that (M, F ) is R-specializable along H if M is R-spe-
cializable along H with V -filtration denoted by V•M and if (M, F•, V•) belongs to
FV(DX).
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In other words, arguing as in Proposition 9.3.25, we have
(a) (FpV↵M) · t = FpV↵�1M for all p 2 Z and ↵ < 0.
(b) (Fpgr

V

↵
M) · @t = Fp+1gr

V

↵+1
M for all p 2 Z and ↵ > �1.

Furthermore, we say that (M, F ) is a filtered middle extension along H M is a
middle extension along H, i.e., the non filtered morphism var resp. can is injective
resp. is onto, and moreover if (b) holds also for ↵ = �1, that is, the filtered can is
onto.

Of course, the inclusions “✓” in (a) and (b) always hold for every ↵ 2 R. We also
note that each (gr

V

↵
M, F ) is a filtered DH -module. The first condition can be called

a regularity condition. Indeed, for a nonzero holonomic DX -module M with ir-
regular singularities, we can have V↵M = M for every ↵ (e.g. when dimX = 1,
M = DX/DX(t

2
@t + 1)), and the condition tFpM = FpM cannot be satisfied by a

nonzero coherent OX -module FpM.

10.5.2. Remark. As in Remark 7.2.30, the conditions (a) and (b) are respectively
equivalent to

(a) for ↵ < 0 and any p, FpV↵M = (j⇤j
�1

FpM) \ V↵M,
(b) for ↵ 2 (�1, 0], k > 1 and any p,

FpV↵+kM = @
k

t
FpV↵M+

k�1X

j=0

@
j

t
Fp�jV0M.

Furthermore, if (M, F•) is a filtered middle extension, (b) is replaced with
(c) for ↵ 2 [�1, 0), k > 1 and any p,

FpV↵+kM = @
k

t
FpV↵M+

k�1X

j=0

@
j

t
Fp�jV<0M.

In particular, FpM =
P

j>0
@
j

t
Fp�jV<0M and F•M is uniquely determined from

j
�1

F•M.

As above, in the presence of a nonzero g 2 O(X), we consider the graph embedding
◆g : X ! X ⇥ A

1

C. Given a filtered DX -module (M, F ) on X, we say that (M, F ) is
R-specializable along (g) if ◆g⇤(M, F ) is so along H ⇢ X ⇥A

1

C. One can show that if
(g = 0) is smooth, then this condition holds if and only if (M, F ) is R-specializable
along (g) (see Exercise 9.22).

10.5.3. Lemma. Let (M, F ) be a coherently F -filtered DX-module which is R-speciali-
zable along H. Then for each ↵ 2 A + Z, F•V↵M is a coherent FV0DX-filtration of
V↵M and F•gr

V

↵
M is a coherent F -filtration of grV

↵
M.

Proof. We first prove that FpV↵M is OX -coherent. This is a local question, and we
can then assume that V↵M is the union of OX -coherent submodules. The intersection
of each such with FpM is coherent, according to Corollary 8.8.8, and their union
in FpM is also coherent, as wanted. Applying a similar reasoning to RFV↵M in
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V↵M[z, z
�1

] gives the coherence of (V↵M, F•). Since this holds for each ↵, it follows
that (grV

↵
M, F•) is coherent as a filtered gr

V

0
DX -module. Using now R-specializability

implies the coherence as a filtered DX -module.

We now come to the main result of this chapter.

10.5.4. Theorem. Let f : X!X
0 be a morphism as in Section 10.4 and let f0 : X0!X

0
0

be the restriction of f . Suppose that f is proper and that (M, F ) is a coher-
ently F -filtered DX-module which is R-specializable, with V -filtration V•M. If
Df0⇤(gr

V

↵
(M), F ) is strict for every ↵ 2 R, then Df⇤(M, F, V ) is strict in a neighbor-

hood of X 0
0
.

The strictness assumption means that the natural morphism

R
k
f0⇤(Fp

p

DRX0/X
0
0
gr

V

↵
M) �! R

k
f0⇤

p

DRX0/X
0
0
gr

V

↵
M = Df

(k)

0⇤ gr
V

↵
M

is injective for every k, p,↵.
The proof of the theorem will be given at the end of Section 10.6. Let us emphasize

some consequences of the theorem.

10.5.5. Consequences. Under all assumptions of Theorem 10.5.4, the following holds.
(1) The complex Df⇤(M, F ) is strict, i.e., for all k and all p 2 Z, the natural

morphism R
k
f⇤(Fp

p

DRX/X0 M)! R
k
f⇤

p

DRX/X0 M = Df
(k)

⇤ M is injective.
(2) For each k, the DX0 -module Df

(k)

⇤ M is R-specializable along H
0 and for each

↵ 2 R, grV
↵
(Df

(k)

⇤ M) ' Df
(k)

0⇤ gr
V

↵
(M).

(3) Moreover, for each p 2 Z, Fpgr
V

↵ Df
(k)

⇤ M ' Fp Df
(k)

0⇤ gr
V

↵
M.

10.6. A strictness criterion for complexes of filtered D-modules

10.6.a. Setup. Assume that X = H ⇥ �t and set X0 = X ⇥ {0}. We consider a
bounded (2) complex

· · · �!Mi�1 d��!Mi d��!Mi+1 �! · · ·

of DX -modules. We set X = H ⇥�t. We make the following assumptions:
(a) Each Mi has an increasing filtration F•M

i by OX -submodules, exhaustive,
locally bounded below, and compatible with the order filtration on DX .

(b) Each Mi has an increasing filtration V•M
i by OX -submodules, discretely in-

dexed by R, on which t and @t act in the usual way.
(c) The differentials d : Mi !Mi+1 respect both filtrations F•M

i and V•M
i.

(d) The OX -modules H
i
(FpV↵M

•
) are coherent for every i, p 2 Z and ↵ 2 R.

(e) The morphism t : FpV↵M
i ! FpV↵�1M

i is an isomorphism for i, p 2 Z and
↵ < 0.

(f) The morphism @t : Fpgr
V

↵
Mi ! Fp+1gr

V

↵+1
Mi is an isomorphism for i, p 2 Z and

↵ > �1.

(2)We need in fact a weaker condition stated as (2) in Lemma 10.6.7.
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(g) For every ↵ 2 R, the operator t@t � ↵ acts nilpotently on H
i
(gr

V

↵
M•

).
(h) For every ↵ 2 [�1, 0], the complex gr

V

↵
M•, with the induced differential and

the filtration induced by F•M
•, is strict.

(i) For every i 2 R, the Rees module
L

p2Z H
i
(FpM

•
)z

p is coherent over RFDX .
Let us denote by (M

•
, d) the resulting complex of graded modules over the ring

R = C[z, v]; here the z-variable goes with the filtration F•M
i, and the v-variable

with the filtration V•M
i. Since the latter is indexed by R, this needs a little bit of

care. Because we are dealing with a bounded complex, we can choose an increasing
sequence of real numbers ↵k 2 R, indexed by k 2 Z, such that all the jumps in the
filtrations V•M

b happen at some ↵k; we then define

M
i

j,k
= FjV↵k

Mi

for i, j, k 2 Z. This makes each

M
i
=

L
j,k2Z

M
i

j,k

into a Z
2-graded module over the ring R; since the differentials in the original complex

are compatible with both filtrations, they induce morphisms of graded R-modules
d : M

i !M
i+1.

10.6.1. Theorem. The complex (M•
, d), equipped with the two filtrations F•M

• and
V•M

•, is strict on an open neighborhood of X0.

In contrast with the analogous proposition 9.8.10, the proof we give here does not
use completions. On the other hand, it makes strong use of the coherence property (d)
which does not occur in Proposition 9.8.10. This is related with the strictness assump-
tion of eM that is implicitly used here since we start from eM = RFM (see corollary
10.7.4).

10.6.b. Proof of Theorem 10.6.1. Note first that each M
i is a flat R-module.

Using the above definition of the complex (M
•
, d), we clearly have

(M
•
/vM

•
)j,k =

FjV↵k
M•

FjV↵k�1
M• = Fjgr

V

↵k
M

•
.

The condition in (h) has the following interpretation.

10.6.2. Lemma. All cohomology modules of the complex (M
•
/vM

•
, d) are flat over the

ring R/vR = C[z].

Proof. Together with (e) and (f), the condition in (h) says that the complex gr
V

↵
M•

is strict for every ↵ 2 R. In terms of graded modules, this means that multiplication
by z is injective on the cohomology of the complex M

•
/vM

•, which is equivalent to
flatness over the ring C[z].

The next step in the proof involves a local argument, and so we fix a point x 2 X0

and localize everything at x. Although we keep the same notation as above, in the
remainder of this section, each Mi is a DX,x-module, the condition in (d) reads
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H
i
(FpV↵M

•
) is a finitely generated OX,x-module, etc. With this convention in place,

consider the short exact sequence of complexes

0 �!M
• �!M

• �!M
•
/vM

• �! 0,

in which the morphism from M
• to M

• is multiplication by v. (To keep the notation
simple, we are leaving out the change in the grading.) The resulting long exact
sequence in cohomology looks like this:

· · · �! H
i
(M

•
) �! H

i
(M

•
) �! H

i
(M

•
/vM

•
) �! H

i+1
(M

•
) �! H

i+1
M

• �! · · ·

The following result constitutes the heart of the proof.

10.6.3. Proposition. The connecting homomorphisms � : Hi
(M

•
/vM

•
) ! H

i+1
(M

•
)

in the long exact sequence are trivial.

Once we have proved the proposition, we will know that the multiplication mor-
phisms v : H

i
(M

•
)! H

i
(M

•
) are injective and that

H
i
(M

•
)

vHi(M
•
)
' H

i
(M

•
/vM

•
).

Together with Lemma 10.6.2, this will tell us that v, z is a regular sequence on H
i
(M

•
),

which is two thirds of what we need to prove that H
i
(M

•
) is a flat R-module.

In preparation for the proof, let us consider the graded pieces in a fixed bidegree
(j, k) in the long exact sequence; to simplify the notation, set p = j and ↵ = ↵k.
We then have the following commutative diagram with exact rows and columns:

H
i+1

(FpV�M
•
)

✏✏

H
i
(Fpgr

V

↵
M•

)
�
//

"
((

H
i+1

(FpV<↵M
•
) //

✏✏

H
i+1

(FpV↵M
•
)

H
i+1

(FpV(�,↵)M
•
)

Here � < ↵, and the notation V(�,↵)M
• is an abbreviation for V<↵M

•
/V�M

•. We ob-
serve that the morphism " is trivial because the source and the target have different
“weights” with respect to the action of the operator t@t.

10.6.4. Lemma. With notation as above, the morphism

" : H
i
(Fpgr

V

↵
M

•
) �! H

i+1
(FpV(�,↵)M

•
)

is trivial.
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Proof. We have a commutative diagram

H
i
(Fpgr

V

↵
M•

)
"
//

� _

✏✏

H
i+1

(FpV(�,↵)M
•
)

� _

✏✏

H
i
(gr

V

↵
M•

) // H
i+1

(V(�,↵)M
•
)

in which the two vertical morphisms are injective because of (h). Now the operator t@t
acts on the OX -module in the lower left corner with ↵ as its only eigenvalue, and on
the OX -module in the lower right corner with eigenvalues contained in the interval
(�,↵); this is a consequence of (g). Since the bottom arrow is compatible with the
action of t@t, it must be zero; but then " is also zero.

We conclude from the lemma that the image of

� : H
i
(Fpgr

V

↵
M

•
)! H

i+1
(FpV<↵M

•
)

is contained in the intersection
T

�<↵

Im

⇣
H

i+1
(FpV�M

•
)! H

i+1
(FpV<↵M

•
)

⌘

We can now use (e) and Krull’s intersection theorem to prove that this intersection
is trivial (in the local ring OX,x).

10.6.5. Lemma. We have
T

�<↵

Im

⇣
H

i
(FpV�M

•
)! H

i
(FpV↵M

•
)

⌘
= {0}.

Proof. Consider the following commutative diagram:

FpV�M
i�1 d

//

� _

✏✏

FpV�M
i d

//

� _

✏✏

FpV�M
i+1

� _

✏✏

FpV↵M
i�1 d

// FpV↵M
i d

// FpV↵M
i+1

Suppose that we have an element m 2 FpV↵M
i with dm = 0 that belongs to the

image of Hi
(FpV�M

•
). Then

m = dm0 +m1

for some m0 2 FpV↵M
i�1 and some m1 2 FpV�M

i. Now if � < �1, then by (e),
we have m1 = m2t for a unique m2 2 FpV�+1M

i. Since multiplication by t is injective
on FpV�+1M

i+1, the fact that dm1 = 0 implies that dm2 = 0. As long as � + 1 6 ↵,
we also have

m2t 2 (FpV�+1M
i
) · t ✓ (FpV↵M

i
) · t,

and therefore m 2 d(FpV↵M
i�1

)+ (FpV↵M
i
) · t. By this type of argument, one shows

more generally that
T

�<↵

Im

⇣
H

i
(FpV�M

•
)! H

i
(FpV↵M

•
)

⌘
✓

T
m2N

H
i
(FpV↵M

•
) · tm.



10.6. A STRICTNESS CRITERION FOR COMPLEXES OF FILTERED D-MODULES 401

Since Hi
(FpV↵M

•
) is finitely generated as an OX,x-module by (d), Krull’s intersection

theorem implies that the right-hand side is equal to zero.

The conclusion is that � = 0, and hence that v, z form a regular sequence on
H

i
(M

•
). Together with the following result, this proves that H

i
(M

•
) is flat as an

R-module (see Section 15.2.a for details on flatness for graded R-modules).

10.6.6. Lemma. The morphism z : H
i
(M

•
)! H

i
(M

•
) is injective.

Proof. Since v, z form a regular sequence on H
i
(M

•
), the corresponding Koszul com-

plex is exact. By the same argument as in the proof of Proposition 15.2.7, every
element in the kernel of z : H

i
(M

•
) ! H

i
(M

•
) can be written as v times another

element in the kernel; consequently,

Ker

⇣
z : H

i
(M

•
)! H

i
(M

•
)

⌘
✓

T
m>1

v
m
H

i
(M

•
).

Looking at a fixed bidegree (j, k) and setting p = j and ↵ = ↵k as above, the right-
hand side equals

T
�<↵

Im

⇣
H

i
(FpV�M

•
)! H

i
(FpV↵M

•
)

⌘
,

which is equal to zero by Lemma 10.6.5.

In summary, we have shown that for every point x 2 X0, the localization of the
complex (M•

, d) is strict (as a complex of DX,x-modules with two filtrations). Now it
remains to prove that the complex (M•

, d) is strict on an open neighborhood of X0,
using the coherence condition in (i). This will end the proof of Theorem 10.6.1.

10.6.7. Lemma. If (M•
, F, V ) is a complex of bi-filtered DX-modules whose restriction

to X0 is strict and which satisfies the following two conditions:
(1) for every j, the RFDX-module �p2ZHj

(FpM
•
)z

p is coherent;
(2) we have H

j
(FpM

•
) = 0 for |j|� 0 and all p.

Then (M•
, F, V ) is strict in a neighborhood of X0.

Proof. Note that over XrX0 we have V↵DX = DX for every ↵. Since
S

↵
V↵M = M,

it is easy to deduce that over this open subset, V↵M = M for every ↵. Therefore
(M•

, F, V ) is strict over an open subset U ✓ X rX0 if and only if (M•
, F ) is strict

over U .
By assumption, (M•

, F, V ) is strict at the points x 2 X0, hence in order to complete
the proof of the lemma, it is enough to show that if (M•

, F ) is strict at a point
x 2 X, then it is strict in an open neighborhood of x. Since the F -filtration on M• is
exhaustive, it follows from Exercise 10.5 that (M•

, F ) is strict at x 2 X if and only if
the natural map H

j
(FpM

•
)x ! H

j
(Fp+1M

•
)x is injective for all p and j. For every j,

consider the coherent RFDX -module Mj := �p2ZHj
(FpM

•
). We see that (M•

, F ) is
strict at x 2 X if and only if the map uj : Mj ! Mj given by multiplication with z

is injective for all j. Furthermore, by (2) we only need to consider finitely many j.
Since Mj is a coherent RFDX -module, it follows that Ker(uj) is a coherent RFDX -
module. In the neighborhood of a given point x 2 X, we have a finite set of generators
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s1, . . . , sr of Ker(uj) over RFDX . If all the si vanish at x, then they also vanish in
an open neighborhood of x and uj is injective in this neighborhood. Since we can
argue in this way simultaneously for finitely many j, this concludes the proof of the
lemma.

10.6.c. Proof of Theorem 10.5.4. We will apply Theorem 10.6.1 to the bounded
complex Df⇤(M, F, V ). We first check that the conditions (a)–(i) of Section 10.6.a are
fulfilled.

Since (M, F, V ) is an object of FV(DX), an application of Lemma 10.4.5 gives that
Df⇤(M, F, V ) 2 D

�
(FV(DX0)). Moreover, by hypothesis we have that

(gr
V

↵ Df⇤(M
•
, F, V ), F ) ' Df0⇤(gr

V

↵
(M

•
, F, V ), F )

is strict (the isomorphism is given by (10.4.4)). On the other hand, since (M, F )

is coherent, (M, F, V ) 2 FVc(DX). Therefore another application of Lemma 10.4.5
implies that Df⇤(M, F, V ) 2 D

�
c
(FV(DX0)). As a consequence, the conditions (a)–(h)

are thus fulfilled by Df⇤(M, F, V ). Lastly, the coherence condition (i) follows from
the coherence theorem 8.8.21. Therefore Theorem 10.6.1 implies that Df⇤(M, F, V ) is
strict in a neighborhood of X 0

0
.

10.7. Comparison with the results of Chapter 9

In this section we compare the notion of specializability for filtered DX -modules,
as developed in this chapter, and that for a strict RFDX -module, as considered in
Chapter 9 (see Definition 9.3.18). We also discuss consequences about the regularity
of the underlying holonomic DX -module and its strict holonomicity.

10.7.a. Strictness of strictly R-specializable RFDX-modules. Let eM be a
(right) coherent graded RFDX -module which is strictly R-specializable along a
smooth hypersurface H and let V• eM denotes its Kashiwara-Malgrange filtration.
Then eM is strict if and only if V↵

eM is strict for some ↵, since all grV
�
eM are assumed to

be strict. The former property is equivalent to the existence of a coherent DX -mod-
ule M equipped with a coherent F -filtration F•M such that eM = RFM, while the
latter is equivalent to the existence of a coherent V0DX -module V↵M equipped with
a coherent F -filtration F•V↵M such that V↵

eM = RFV↵M.
Assume thus that eM is strict and let (M, F•M) be the coherently F -filtered

DX -module such that eM = RFM. Then M is R-specializable along H and we have
(see Exercise 9.24):

V↵M = V↵
eM/(z � 1)V↵

eM and V↵
eM[z
�1

] = V↵M[z, z
�1

].

10.7.1. Lemma. Let eM be as above. Then the Kashiwara-Malgrange filtration of eM
satisfies

(10.7.1 ⇤) V↵
eM = eM \ (V↵

eM[z
�1

]),

where the intersection takes place in eM[z
�1

].



10.7. COMPARISON WITH THE RESULTS OF CHAPTER 9 403

Proof. For � > ↵, we have a commutative diagram

0 // V↵
eM

✏✏

� �
// V�

eM

✏✏

// V�
eM/V↵

eM

✏✏

// 0

0 // V↵
eM[z
�1

]
� �
// V�

eM[z
�1

] // (V�
eM/V↵

eM)[z
�1

] // 0

The upper horizontal line is clearly exact, and the lower one is so because C[z, z
�1

]

is flat over C[z]. The first two vertical maps are injective since eM is strict. The third
vertical map is injective since eM is strictly R-specializable. It follows that V↵

eM =

V�
eM \ V↵

eM[z
�1

] in eM[z
�1

]. Taking the limit for � !1 gives the assertion.

Consider on M the bi-filtration FpV↵M := FpM \ V↵M. Then (10.7.1 ⇤) means
that the filtration U• eM defined by U↵

eM :=
L

p
(FpV↵M)z

p satisfies the properties of
the Kashiwara-Malgrange filtration of a strictly R-specializable RFDX -module. In
particular we get, according to 9.3.25(a) and (d):

(a) 8 p and 8↵ < 0, t : FpV↵M! FpV↵�1M is an isomorphism,
(b) 8 p and 8↵ > �1, @t : Fpgr

V

↵
M! Fp+1gr

V

↵+1
M is an isomorphism.

In other words, (M, F•, V•) is an object of FV(DX) (see Definition 10.5.1).

10.7.2. Remark. Due to the coherence of each FpM, the property (a) is equivalent to
(a0) 8 p and 8↵ < 0, FpV↵M = (j⇤j

�1
FpM)\V↵M, where j : XrH ,! X denotes

the open inclusion.
Indeed, let us check the nontrivial implication (a) ) (a0). The inclusion ⇢ is clear
and it is enough to check the inclusion �. For a local section m of M, there exists q

such that m is a local section of FqM. If the restriction of m to X r H is a local
section of FpM for some p < q, there exists k > 1 such that m · tk is a local section
of FpM. Therefore, if m is a local section of (j⇤j

�1
FpM) \ V↵M, m · tk is a local

section of FpM \ V↵�kM = (FpM \ V↵M) · tk. Since t
k
: V↵M! V↵�kM is bijective

for ↵ < 0, the conclusion follows.

10.7.3. Proposition. Let M be a coherent DX-module which is R-specializable along H,
equipped with a coherent F -filtration. The following properties are equivalent:

(1) RFM is strictly R-specializable along H,
(2) (M, F•, V•) is an object of FV(DX).

Moreover, when these conditions are fulfilled, the filtration F•M induces in some
neighbourhood of H on each V↵M a coherent F•DX/C-filtration with respect to any
local reduced equation t : X ! C of H, i.e., each V↵RFM = RFV↵M is RFDX/C-
coherent in some neighbourhood of H.

Proof. We have already seen that (1) implies (2). Conversely, let us assume (2) and
let us set

U↵RFM =
L
p

(FpV↵M)z
p
.
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For a local section mz
p of (FpV↵M)z

p, we have m(t@t�↵z)⌫mz
p2(Fp+⌫m

V<↵M)z
p+⌫m ,

showing the R-specializability of RFM and the fact that U↵RFM ⇢ V↵RFM. It
is enough to show that U•M is a coherent filtration indexed by A + Z, since we
obviously have gr

U

↵
RFM = RF gr

V

↵
M, hence the strictness. According to 10.5.1(a)

and (b), it is enough to show the V0RFDX -coherence of U↵RFM for ↵ 2 [�1, 0).
For a local reduced equation t : X ! C of H, we will more precisely show the
RFDX/C-coherence of U↵RFM in some neighbourhood of H, showing both the reverse
implication (2)) (1) and the last part of the proposition.

We have already seen (see Lemma 10.5.3) that each FpV↵M is OX -coherent. It is
thus enough to show that, locally on X, there exists po such that (Fpo

V↵M)·FpDX/C =

Fp+po
V↵M for all p > 0. Since E�↵ is nilpotent on gr

V

↵
M, the filtration F•gr

V

↵
M,

being F•gr
V

0
DX -coherent for every ↵, is also F•DH -coherent. The same argument

applies to the induced filtration (F•V↵M)/(F•V↵�1M) and therefore there exists lo-
cally po such that

⇥
(Fpo

V↵M)/(Fpo
V↵�1M)

⇤
· FpDH = (Fp+po

V↵M)/(Fp+po
V↵�1M).

Let us set U↵,p = (Fpo
V↵M) · FpDX/C. By 10.5.1(a) and since ↵ has been chosen in

[�1, 0), the left-hand term above can be written as U↵,p/U↵,pt, while the right-hand
term is

(Fp+po
V↵M)/(Fp+po

V↵M)t,

so Nakayama’s lemma implies finally (Fpo
V↵M) ·FpDX/C = Fp+po

V↵M in some neigh-
bourhood of H, as wanted.

One can be more precise concerning the behaviour of each term of the F -filtration.

10.7.4. Corollary. Let eM be a coherent graded RFDX-module which is strictly R-spe-
cializable along H. Then eM strict in some neighbourhood of H if and only if, for
some ↵ < 0 and all p, the p-th graded component (V↵

eM)p is OX-coherent. In such
a case, the properties of Proposition 10.7.3 hold true and in particular, eM = RFM

and (V↵
eM)p = FpM \ V↵M for every ↵, p, where M := eM/(z � 1) eM is a coherent

DX-module which is R-specializable along H and F•M is a coherent F -filtration of M.

Proof. If eM is strict, we can write eM = RFM for some coherent F -filtration on M :=

eM/(z � 1) eM, and we have, according to Proposition 10.7.3, (V↵
eM)p = FpM \ V↵M,

which is OX -coherent as we have seen in the proof of Proposition 10.7.3.
Conversely, since eM is assumed to be strictly R-specializable, each gr

V

�
eM is strict,

and it is enough to prove that V↵
eM is strict for some ↵ < 0. For such an ↵,

V↵
eM/V↵

eMt
j is also strict for every j > 1. By left exactness of lim �j

, we deduce

that lim �j
(V↵

eM/V↵
eMt

j
) is also strict. It is thus enough to show that the natural

morphism V↵
eM! lim �j

(V↵
eM/V↵

eMt
j
) is injective.

We choose ↵ < 0 as given by the assumption of the proposition, and we have
(V↵

eM)pt
j
= (V↵�j eM)p for j > 0 and any p, due to 9.3.25(a). Then

�
V↵

eM/V↵
eMt

j
�
p
= (V↵

eM)p/(V↵
eM)pt

j
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for every j > 0 and p, and therefore
�
lim �
j

(V↵
eM/V↵

eMt
j
)
�
p
= lim �

j

�
(V↵

eM)p/(V↵
eM)pt

j
�
.

Since (V↵
eM)p is OX -coherent, lim �j

(V↵
eM)p/(V↵

eM)pt
j
= O[X|H ⌦OX|H (V↵

eM)p and the

natural morphism (V↵
eM)p|H ! lim �j

(V↵
eM)p/(V↵

eM)pt
j is injective. It follows that

(V↵
eM)p|H �!

�
lim �
j

(V↵
eM/V↵

eMt
j
)
�
p

is injective for every p, and thus so is (V↵
eM)|H !

�
lim �j

(V↵
eM/V↵

eMt
j
)
�
, as wanted.

A useful consequence of regularity along a divisor is provided by the following
corollary.

10.7.5. Corollary (A vanishing criterion). Let g : X ! C be a holomorphic function
and let eM be strict and strictly R-specializable along g. Then Supp eM ⇢ g

�1
(0) if and

only if  g,�
eM = 0 for all � 2 S

1. If moreover �g,1 eM = 0, then eM = 0.

Proof. Let ◆g : X ,! X ⇥ Ct be the inclusion of the graph of g. The properties hold
for eM and g if and only if they hold for eMg and t. We can thus assume that we
are in the setting of Corollary 10.7.4. The direction ) is clear, since the assumption
implies that each local section of eM is annihilated by some power of t, and strict
R-specializability implies then that V<0

eM = 0. For the direction (, we note that
the assumption implies that the filtration V↵

eM is constant for ↵ < 0, hence so is
the filtration FpM \ V↵M (p being fixed). Since this is a coherent OX -module and t

induces an isomorphism on it by strict R-specializability, we conclude by Nakayama
that it is zero.

The remaining assertion on �g,1 eM is then clear.

10.7.6. Corollary (Complement to Corollary 9.3.31). Assume that eM, eN are strict and
strictly R-specializable along (g). If ' : eM ! eN is strictly R-specializable along (g),
then ' is strict in some neighbourhood of g�1(0).

Proof. It is a matter of proving strictness of Coker'. As in the corollary above,
we can assume that we are in the setting of Corollary 10.7.4. By Corollary 9.3.31,
we have (V↵(Coker'))p = Coker'|(V↵

fM)p
, hence is OX -coherent.

We can now add the strictness property as a fourth item in Theorem 9.8.8, obtain-
ing thus a complete analogue of Theorem 10.5.4.

10.7.7. Corollary. With the notation and assumptions of Theorem 9.8.8,

(4) if eM is strict in the neighbourhood of H, then Df
(i)

⇤ eM is strict in the neigh-
bourhood of H 0.
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Proof. We replace X
0 by a suitable neighbourhood of H 0 and X by the pullback of

this neighbourhood, so that eM is strict on X. By Corollary 10.7.4 it is enough to
show the OX -coherence of U↵(Df

(i)

⇤ eM)p = (Df
(i)

⇤ V↵
eM)p for some ↵ < 0 and each p, i,

where the equality holds according to 9.8.8(1).
If f : X = X

0 ⇥ Z ! X
0 is a projection, we have, in a way similar to Exercise

8.49(6), Df⇤V↵
eM = Rf⇤(V↵

eM⌦eOX

^�•e⇥X/X0), and (Df
(i)

⇤ V↵
eM)p is the i-th cohomol-

ogy of the relative Spencer complex (m = dimX/X
0)

Rf⇤

⇣
0! (V↵

eM)p�m ⌦ ^m⇥X/X0 ! · · ·! (V↵
eM)p�1 ⌦⇥X/X0 ! (V↵

eM)p ! 0

⌘

whose differentials are OX0 -linear. Since each term of the complex is OX -coherent by
our assumption of strictness of eM and since f is proper, Grauert’s coherence theorem
together with a standard spectral sequence argument in the category of OX0 -complexes
show that (Df

(i)

⇤ V↵
eM)p is OX0 -coherent.

If f : X ,! X
0 is a closed immersion, it is locally of the form (t, x2, . . . , xn) 7!

(t, x2, . . . , xn, 0, . . . , 0). Then

Df⇤V↵
eM = Df

(0)

⇤ V↵
eM = f⇤V↵

eM[e@x0
1
, . . . , e@x0

m
]

and
(Df

(0)

⇤ V↵
eM)p =

X

|a|6p

f⇤(V↵
eM)p�|a|e@ax0 ,

which is eOX0 -coherent since (V↵
eM)q = 0 for q ⌧ 0 locally (use that (V↵

eM)q =

Fq(
eM/(z�1) eM)\V↵(

eM/(z�1) eM) according to Corollary 10.7.4, and apply Exercise
8.63(3)).

10.7.8. Corollary. With the notation and assumptions of Corollary 9.8.9, if eM is strict
in the neighbourhood of g�1(0), so is Df

(i)

⇤ eM in the neighbourhood of g0�1(0).

10.7.b. Holonomicity, regularity and specialization. We start with a weak no-
tion of regularity.

10.7.9. Definition (Regularity along a smooth hypersurface)
Let H be a a smooth hypersurface defined as the zero set of a function t : X ! C

and let DX/C be the corresponding sheaf of relative differential operators. We say
that a DX -module M which is R-specializable along H is regular along H if some
(equivalently, any) term V↵(M) of its V -filtration along H is DX/C-coherent.

By setting z = 1 in the second part of Proposition 10.7.3, we find:

10.7.10. Corollary. Let eM be a strict eDX-module which is strictly R-specializable
along H. Then the underlying DX-module M is regular along H.

Let us now consider the notion of regular holonomicity. If M is a holonomic
DX -module, it is known ([Kas78]) that M is specializable (but possibly not R-spe-
cializable in the sense that the roots of the Bernstein polynomials need not be real)
along each hypersurface and that nearby and vanishing cycles of M with respect to
any holomorphic function g are holonomic.
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Let eM be a coherent eDX -module. Recall that eM is holonomic iff M is holonomic
(see Remark 8.8.30). The following result is thus straightforward.

10.7.11. Corollary. Assume that eM is holonomic and strictly R-specializable along (g).
Then,  g,�

eM (� 2 S
1) and �g,1 eM are holonomic and strict.

As a preparation for the definition of a polarizable Hodge module (with the project
of proving regular holonomicity of these), we propose a definition of regular holo-
nomicity, that we will show to be equivalent to any of the standard definitions. This
definition is by induction on the dimension of the support.

10.7.12. Definition (Regularity). Let M be a holonomic DX -module with support Z

of dimension d. We say that M is regular when one of the following conditions is
satisfied.

(Reg
0
): d = 0.

(Reg
d
): d > 1 and for any germ g : (X,xo)! (C, 0) of holomorphic function on X,
(1) the DX⇥C-module D◆g,⇤M is regular along H = X ⇥ {0} in the sense of

Definition 10.7.9,
(2) if dim(g

�1
(0) \ Z) 6 d� 1, the holonomic DX -modules  gM and �g,1M

satisfy (Reg
d�1).

We do not assume R-specializability, and in fact one can argue only with the
V -filtrations indexed by Z so that we do not need to fix a total order on C.

10.7.13. Proposition. A holonomic DX-module M is regular in the sense of Definition
10.7.12 if and only if it is regular in any of the usual senses.

Various definitions of regularity of holonomic DX -modules can be found in [Bjö93,
Kas03, Meb04] for example, and are known to be equivalent.

Proof. We denote by (Reg
st

d
) any of the standard regularity conditions for M with

support of dimension d. We prove by induction on d that (Reg
d
) is equivalent to

(Reg
st

d
), the case d = 0 being clear.

(Reg
d
)) (Reg

st

d
), assuming this holds for d

0 6 d� 1. We choose g as in (Reg
d
)(2)

and and we consider the graph inclusion ◆g : X ,! X ⇥Ct. By the induction hypoth-
esis, both  gM and �g,1M satisfy (Reg

st

d�1), hence so does the restriction D◆
⇤
g
M, that

we regard as the complex with differential cant. By stability of (Regst
d�1) by pullback

(see e.g. [Meb04, Th. 6.1-1]), it follows that, for any morphism � from a complex disc
to X, the pullback complex D�

⇤M is regular. This property is also a characterization
of (Regst

d
) (see e.g. [Meb04, Th. 6.2-5]), concluding the proof of this implication.

(Reg
st

d
) ) (Reg

d
), assuming this holds for d

0 6 d � 1. It is enough to prove that,
under the assumption (Reg

st

d
) on M,  gM satisfies (Regst

d�1) for any g as in (Reg
d
)(2),

since D◆
⇤
g
M is known to satisfy (Reg

st

d�1) (see e.g. [Meb04, Th. 6.1-1]), so that �g,1M
will also satisfy (Reg

st

d�1), and thus both  gM,�g,1M will satisfy (Reg
d�1). The idea
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is thus to realize  gM as the pullback to t = 0 of a finite direct sum of DX⇥Ct
-modules

H�1D◆
⇤
t
(D◆g,⇤M)↵,k, ↵ 2 C, k 2 N,

where, considering D◆g,⇤M as a left DX⇥C-module, i.e., an OX⇥C-module with flat
connection r, we define

(D◆g,⇤M)↵,k =

⇣
(D◆g,⇤M)⌦OX

OX⇥C(⇤t)k,r⌦ Id+ Id⌦(↵ Id+Jk)
dt

t

⌘
,

with Jk being the Jordan block (lower, say) of size k. That such an identification
exists for k large enough and a finite set of complex numbers ↵ can be proved as
Proposition 11.6.10(2) in the next chapter. As (OX⇥C(⇤t)k, (↵ Id+Jk)dt/t) is regular
holonomic (being a the pullback of a regular holonomic D-module on the disc with
coordinate t, and as the tensor product of two holonomic D-modules satisfying (Reg

st

d
)

also satisfies (Reg
st

d
) (see e.g. [Meb04, Cor. 6.2-4]), then so does D◆g,⇤M)↵,k, as well

as its restriction H�1D◆
⇤
t
(D◆g,⇤M)↵,k, hence also  gM.

10.7.c. A criterion for strict holonomicity. The good behaviour of the duality
functor on holonomic eDX -modules is important in the theory of mixed Hodge module,
and for that purpose one has to prove that the underlying eD-module of such an object
is strictly holonomic in the sense of Definition 8.8.37. We give here a criterion ensuring
that this property holds. As for the regularity property, it is of an inductive nature
with respect to the support.

10.7.14. Theorem. Let eM be a holonomic eDX-module and let g : X ! C be a holo-
morphic function. Assume that

(1) eM is strict and S-decomposable along (g);
(2) for each ` 2 Z, grM

`
 g,�

eM (� 2 S
1) and gr

M

`
�g,1

eM are strictly holonomic.

Then eM is strictly holonomic in some neighborhood of g
�1

(0) and D eM is strictly
R-specializable along H.

Summary of the proof. By Proposition 8.8.39, we can assume that X = H⇥Ct and g is
the projection (x, t) 7! t. We consider the right setting. We realize the dual complex
D eM as a V -filtered complex (eN•

, (Uk
eN•

)k2Z) and will will show that it satisfies the
conditions in Proposition 9.8.10 with (4) replaced by (4’) and (5’) in Remark 9.8.14.
Together with Assumption (2), we conclude that each Ext ieDX

( eM, eDX) is strictly R-spe-
cializable along H and the filtration induced by Uk

eN• is the Kashiwara-Malgrange
filtration indexed by Z. By the construction of Uk

eN•, each p-th graded component
of Uk

eNi is OX -coherent (because it is so for any V`
eDX), and thus the same property

holds for VkH
i
(eN•

). It follows then from Corollary 10.7.4 that each Ext ieDX

( eM, eDX) is
strict in some neighborhood of H. Since Ext iDX

(M,DX) = 0 for i 6= n by holonomicity
of M, we deduce from Corollary 10.7.5 that Ext ieDX

( eM, eDX) = 0 for i 6= n. In other
words, eM is strictly holonomic in some neighborhood of H.
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The graded case. We set eDX = gr
V eDX and eDt =

eC[t]he@ti for simplifying the notation.
Let us first consider the graded eDX -module fM := gr

V eM=
L

↵2A
fM↵ with A⇢(�1, 0]

finite and fM↵ = gr
V

↵+Z
eM :=

L
k2Z gr

V

↵+k
eM. We claim that the graded eDX -module

Ext ieDX

(fM, eDX) vanishes for i 6= n and Extn is strict. Recall that fM is equipped with
a nilpotent operator N and thus with a finite monodromy filtration M•. By using the
long exact sequence of Ext’s associated to the short exact sequence

0 �! M`�1(fM) �! M`(
fM) �! gr

M

`
(fM) �! 0,

and an obvious induction, we are reduced to proving the same properties for each
gr

M

`
(fM). As we assume that eM is S-decomposable along H (Assumption (1)), §9.7.18

provides the structure of each gr
M

`
(fM) by means of Formulas (9.7.18 ⇤) and (9.7.18 ⇤⇤).

Lemma 8.8.42 reduces the proof to that for each term occurring in these formulas.
For the terms grM

`
gr

V

↵
eM, this is provided by Assumption (2). For the terms edt⌦ eC[t],

edt ⌦ eC[e@t] and edt ⌦ eDt

�
(te@t � ↵z) eDt, a direct computation shows that there Ext0

vanish and
• Ext1eDt

�edt⌦ eC[t]), eDt

�
' eC[t],

• Ext1eDt

�edt⌦ eC[e@t]), eDt

�
' eC[e@t],

• Ext1eDt

� eDt

�
(te@t �↵z) eDt,

eDt

�
' eDt

� eDt(t
e@t �↵z) as a left eDt-module, with associ-

ated right module
eDt

�
(te@t + (↵+ 1)z) eDt.

All this justifies the claim. Furthermore, let us set B = (�A + Z) \ (�1, 0]. The
latter computation shows that the graded eDX -module fM_

:= ExtneDX

(fM, eDX)
right

decomposes as

fM_
=

L
�2B

(fM_
)� with (fM_

)� =

(
ExtneDX

(fM� ,
eDX)

right if � = 0,

ExtneDX

(fM���1, eDX)
right if � 2 (�1, 0),

and te@t � (� + `) nilpotent on the component of degree ` of (fM_
)� . Furthermore,

as eDt

�
(te@t + (↵+ 1)z) eDt is strictly R-specializable at the origin, we deduce that fM_

is strictly R-specializable along H.

End of the proof. Since eM is strict, we can write it as RFM with M holonomic, and
since eM is strictly R-specializable, Proposition 10.7.3 implies that each FpV↵M is
OX -coherent. For the sake of simplicity, we now consider the V -filtration as indexed
by Z.

By (adapting) Remark 10.3.8, we find a resolution of (M, F, V ) by elementary bi-
filtered DX -modules which are finite direct sums of terms Lk," ⌦ (DX , F [k], V ["]),
with " 2 {�1, 0} and Lk," is OX -coherent. Since the question is local, we can replace
Lk," by a finite complex of free OX -modules of finite rank (as eOX,x is a regular local
ring for any x 2 X). We will thus assume that Lk," is OX -free of finite rank. Then
we have found locally a resolution (in non-positive degrees, possibly unbounded from
below) RU

eM• of RV
eM where each term is a finite direct sum of terms z

k
v
"
RV

eDX

(" 2 {�1, 0}, k 2 Z).
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Taking duals, that is, Hom
RV

eDX

(•, RV
eDX)

right, leads to a complex which is in
non-negative degrees, whose terms are finite direct sums of terms z

�k
v
�"

RV
eDX ,

that are thus identified with the Rees modules RU
eN• of eDX -modules eN• associated

to a V -filtration indexed by Z. The complex RU
eN• satisfies the following properties:

(a) restricting to v = 1 induces a resolution D eM ⇠�! eN•;
(b) restricting to v = 0 induces a resolution

Dgr
V eM ⇠�! gr

U eN•
.

By the first part of the proof, on each term (Dgr
V eM)k of the grV-grading D(gr

V eM) =L
k2Z(Dgr

V eM)k, the operator
Q

↵2A(t
e@t + (↵+ 1+ k)z) is nilpotent on (Dgr

V eM)k.

10.7.15. Lemma. The complex RU
eN•, when regarded as a V -filtered complex

(eN•
, (Uk

eN•
)k2Z),

satisfies the properties of Proposition 9.8.10, with (4) replaced with (4’) and (5’) of
Remark 9.8.14.

Proof. The items below refer to those of Proposition 9.8.10 and Remark 9.8.14.
By construction, the complex eN• is in non-negative degrees, so we can take�N�1 = 0.
The conditions concerning gr

U

k
eN•, that is, (1), (2) and part of (4’), are satisfied accord-

ing to the first part of the proof. To complete (4’), we have to check the vanishing
of Hj

(eN•
) for j � 0. Since H

j
(eN•

) ' H
j
(D eM), Lemma 8.8.32 implies the desired

vanishing for j > 2n+ 2.

(3) The bijectivity of t : Uk
eNi ! Uk�1eNi for any k 6 �1 holds for any i, since it

holds for t : Vk
eDX ! Vk�1 eDX for k 6 0, according to the structure of RU

eNi.
(5) The V0

eDX -coherence of H
i
(Uk

eN•
) follows from that of each Uk

eNi, which in
turn is a consequence of that of V0

eDX .
(5’) The OX -coherence of H

i
((Uk

eN•
)p) folllows from that of (Uk

eNi
)p, which in

turn is a consequence of that of (V0
eDX)p = FpV0DX .

For any i > 0, set

UkH
i
(eN•

) = image[H
i
(Uk

eN•
) ,�! H

i
(eN•

)]

(the inclusion follows from Proposition 9.8.10). By Proposition 9.8.10(3), the mor-
phism t : UkH

i
(eN•

)! Uk�1H
i
(eN•

) is bijective for any k 6 �1. From (b) above and
the conclusion of the theorem in the graded case, we deduce that, for any i, Hi

(eN•
)

is strictly R-specializable along H and U•H
i
(eN•

) is its V -filtration indexed by Z.
By Corollary 10.7.4 (that we can apply according to (5’)), we conclude that H

i
(eN•

)

is strict for any i. But by (a) above, we have H
i
(N•

) = H
i
(DM) = 0 if i 6= 0 since M

is holonomic. By strictness, we deduce that Hi
(eN•

) = 0 for i 6= 0. This concludes the
proof of Theorem 10.7.14.
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10.7.16. Remark. The proof can be adapted to the V -filtration indexed by ↵ + Z for
each ↵ 2 A, and gives an isomorphism, when X = H ⇥�t:

Dgr
V

↵+Z eM ' gr
V

�+ZD eM,

with � = �↵ � 1. However, it does not relate the action of N on both sides, as the
first part of the proof only deals with gr

M

• (•), on which this action has been killed.
On the other hand, when considering non-filtered DX -modules in the product

setting X = H⇥�t, one can be more precise (see e.g. [Sab87a, §3.2], [MS89, §4.6]):
for any holonomic DX -modules, there exist functorial isomorphisms of DH -modules

�↵ : gr
V

�
(DM)

⇠�!D(gr
V

↵
M), ↵,� = �↵� 1 2 (�1, 0),

��1 : gr
V

�1(DM)
⇠�!D(gr

V

�1M),

�0 : gr
V

0
(DM)

⇠�!D(gr
V

0
M),

which satisfy (DN) � �↵ = ��↵ � N for any ↵ 2 [�1, 0]. Furthermore, D cant

(resp. D vart) on M corresponds to vart (resp. � cant) on DM. It follows that, if M
is holonomic, there exist local functorial isomorphisms

gr
M

`
 g,�DM 'D(gr

M

�` g,�
M), ` 2 Z, � 2 S

1
,

gr
M

`
�g,1DM 'D(gr

M

�`�g,1M), ` 2 Z.

10.8. Exercises

Exercise 10.1. Show that a complex (C
•
, F ) which is bounded from above is strict if

and only if the associated Rees complex RFC
• is strict in the sense of Definition 5.1.6.

Exercise 10.2. Show that (C
•
, F ) is strict if and only if the canonical morphism

H
i
(FkC

•
)! H

i
(C

•
) is a monomorphism for all k, i 2 Z.

Exercise 10.3. By considering the long exact sequence in cohomology for the exact
sequence

0 �! FkC
• �! C

• �! C
•
/FkC

• �! 0,

show that if (C•
, F ) is strict, then for every i and k we have a short exact sequence

0 �! H
i
(FkC

•
) �! H

i
(C

•
) �! H

i
(C

•
/FkC

•
) �! 0.

Furthermore, show also that the map H
i
(FkC

•
)! H

i
(F`C

•
) is a monomorphism for

every k<`, by considering the long exact sequence in cohomology corresponding to

0 �! FkC
• �! F`C

• �! F`C
•
/FkC

• �! 0,

and obtain a short exact sequence

0 �! H
i
(FkC

•
) �! H

i
(F`C

•
) �! H

i
(F`C

•
/FkC

•
) �! 0

for every i 2 Z.
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Exercise 10.4. Show that if (C
•
, F ) is a strict complex, then for every k 2 Z, the

complexes (FkC
•
, F ) and (C

•
/FkC

•
, F ), with the induced filtrations, are strict. In

particular, using the second complex and Exercise 10.3, deduce that for every k <

` < m and every i, we have short exact sequences

0 �! H
i
(F`C

•
/FkC

•
) �! H

i
(C

•
/FkC

•
) �! H

i
(C

•
/F`C

•
) �! 0

and

0 �! H
i
(F`C

•
/FkC

•
) �! H

i
(FmC

•
/FkC

•
) �! H

i
(FmC

•
/F`C

•
) �! 0.

Exercise 10.5. Show that the complex (C
•
, F ) is strict if and only if all canonical

morphisms H
i
(FkC

•
) ! H

i
(Fk+1C

•
) are monomorphisms. [Hint : It is clear that

this condition is necessary; prove sufficiency by showing that the condition implies
that Hi

(FkC
•
)! H

i
(F`C

•
) is a monomorphism for every k < `; use the exhaustivity

of the filtration and the exactness of filtering direct limits to prove that H
i
(C

•
) '

lim�!`
H

i
(F`C

•
).]

Exercise 10.6. Let ' : (C
0
, F
0
•, F

00
• )! (C

1
, F
0
•, F

00
• ) be a bi-filtered morphism, that we

consider as defining a complex with two terms.
(1) Assume that ' is onto. Show that ' is bi-strict if and only if F

0
k
F
00
`
C

1
=

'(F
0
k
F
00
`
C

0
) for all k, ` 2 Z.

(2) In general, show that ' is bi-strict if and only if it is strict with respect to each
filtration and moreover

(F
0
k
C

1
+ Im') \ (F

00
`
C

1
+ Im') = F

0
k
F
00
`
C

1
+ Im',

F
0
k
F
00
`
C

1 \ Im' = '(F
0
k
F
00
`
C

0
).

(3) Show that, if ' is bi-strict, then taking Ker and Coker commutes with grading
with respect to F

0
•, F 00• , or both in any order.

10.9. Comments

The aim of this chapter, which covers part of the content of [Sai88, §1& 3] and
whose first sketch has been written by Mircea Mustață, is to give a proof of The-
orem 10.5.4 which closely follows the original proof of Saito [Sai88, Prop. 3.3.17],
from which is extracted the formalism of bi-filtered derived categories (see also Sec-
tion 8.10 which is inspired form [Sai89a]). However, the original argument using
formal completions, which has been reproduced in the proof of Proposition 9.8.10,
has been replaced here (Section 10.6.b) by an argument, due to Christian Schnell,
using his interpretation of compatibility of a finite family of filtrations in terms of
flatness, which somewhat clarifies [Sai88, §1.1]. This interpretation is explained with
details in Section 15.2.a. The conclusion of Proposition 10.7.3 is an adaptation of
[Sai88, Cor. 3.4.7], and is inspired from [ESY17, Prop. 2.2.4]. The criterion fo strict
holonomicity is taken from [Sai88, Lem. 5.1.13].



CHAPTER 11

LOCALIZATION, DUAL LOCALIZATION AND
MAXIMAL EXTENSION

Summary. We introduce the localization functor along a divisor D ⇢ X. Al-
though it only consists in tensoring with OX(⇤D) in the case of DX -modules, the
definition for modules over RFDX is more subtle. It strongly uses the Kashiwara-
Malgrange filtration. This construction can also be made for the dual localization
functor, and this leads to the notion of middle extension along D. On the other
hand, the maximal extension functor enables one to describe a eDX -module in
terms of the localized object along D and of a eDX -module supported on D.

In this chapter, we keep the notation and setting as in Chapter 9. In particu-
lar, we keep Notation 9.0.1, and Remarks 9.0.2 and 9.0.3 continue to be applied.
We continue to treat the case of right eDX -modules.

11.0.1. Remark (The case of left eDX -modules). The case of left eDX -modules is very
similar, and the only changes to be made are the following:

• to consider V
>�1 instead of V<0,

• to modify the definition of  t,� with a shift,
• to change the definition of can (with a sign).

11.1. Introduction

We consider the following question in this chapter: given a coherent eDX -module,
to classify all coherent eDX -modules which coincide with it on the complement of a
divisor D. This has to be understood in the algebraic sense, i.e., the eDX -modules
coincide after tensoring with the sheaf OX(⇤D) of meromorphic functions with poles
along D.

For each DX -module M which is R-specializable along D, e.g. holonomic DX -mod-
ules (with the restriction that the roots of the Bernstein-Sato polynomials are real)
it is known that the localized DX -module M(⇤D) := OX(⇤D)⌦OX

M is DX -coherent
and R-specializable along D. There is a dual notion, giving rise to M(!D), and we
obtain natural morphisms

M(!D) �!M �!M(⇤D).
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The notion of localization is subtler when taking into account the coherent F -filtra-
tion. Indeed, for a coherent graded RFDX -module eM, we cannot just consider eM(⇤D),
since this would correspond to tensoring each term of the underlying coherent filtration
by OX(⇤D), that would produce a non-coherent OX -module.

It is nevertheless useful to first consider this “naive” localization of a coherent
graded RFDX -module eM. Let D be an effective divisor in X. The sheaf OX(⇤D)

of meromorphic functions on X with arbitrary poles along the support of D at most
is a coherent sheaf of ring. So are the sheaves DX(⇤D) := OX(⇤D) ⌦OX

DX =

DX ⌦OX
OX(⇤D), and eOX(⇤D), eD(⇤D) defined similarly. Given a coherent eDX -mod-

ule eM, its “naive” localization eM(⇤D) := eM ⌦eOX

eOX(⇤D) is a coherent eDX(⇤D)-
module.

Assume that D is smooth. We then denote it by H and its ideal by IH , and we
keep the notation of Section 9.2. The IH -adic filtration of eOX(⇤H) is now indexed
by Z, and the corresponding V -filtration (9.2.8) of eDX(⇤H) is nothing but the corre-
sponding IH -adic filtration. We can then define the notion of a coherent V -filtration
for a coherent eDX(⇤H)-module, and the notion of strict R-specializability of Defini-
tion 9.3.18 can be adapted in the following way: we replace both conditions 9.3.18(2)
and (3) by the only condition 9.3.18(2) which should hold for every for every ↵ 2 R.
By using a local graph embedding, one defines similarly, for every effective divisor D,
the notion of strict R-specializability along D. The following lemma is then mostly
obvious.

11.1.1. Lemma. Let eM be a coherent eDX-module, strictly R-specializable along D.
Then the coherent eDX(⇤D)-module eM(⇤D) is strictly R-specializable along D.

If eM is strictly R-specializable along a smooth hypersurface H, one can construct a
substitute to the “naive” localized module eM(⇤H), that we call the localized eDX-mod-
ule, denoted by eM[⇤H], and a dual version eM[!H]. Both are eDX -coherent and strictly
R-specializable along H, and we have natural morphisms

eM[!H] �! eM �! eM[⇤H].

Due to the possible failure of Kashiwara’s equivalence for RFDX -modules, the trick of
considering the graph inclusion ◆g when D = (g) is not enough to ensure localizability
for arbitrary D, so we are forced to considering the possibly smaller category of strict-
ly R-specializable eDX -modules along D which are localizable along D, in order to have
well-defined functors [!D] and [⇤D], and a sequence

eM[!D] �! eM �! eM[⇤D].

The purpose of this chapter is to introduce a method for recovering any strict-
ly R-specializable eDX -module eM from a pair of eDX -modules, one of them being
supported on D and the other one being localizable along D, and of morphisms
between them. This leads to the construction of the maximal extension ⌅ eM of eM
along D. It can be done when eM is strictly R-specializable along D, at least when
D = H is a smooth hypersurface (with multiplicity one). For a general divisor D,
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we encounter the same problem as for localization, and the existence of the maximal
extension is not guaranteed by the strict specializability condition only. We say that eM
is maximalizable along D when this maximal extension exists.

Assume that D = (g). Given a strictly R-specializable, localizable and maximal-
izable (along D) eDX(⇤D)-module eM⇤, we will construct a functor GfM⇤

from the
category consisting of triples (eN, c, v), where eN is strictly R-specializable along D and
supported on D, and c, v are morphisms

 g,1
eM⇤

c

%% eN

v(�1)
gg

to that of strictly R-specializable and localizable eDX -modules, so that

(a) GfM⇤
(eN, c, v)(⇤D) = eM⇤,

(b) the above diagram is isomorphic to the specialization diagram

 g,1GfM⇤
(eN, c, v)

can

))

�g,1GfM⇤
(eN, c, v)

var
(�1)
ii

.

This classifies all such eDX -modules eM0 such that eM0(⇤D) = eM⇤. A first approxi-
mation of this construction was obtained in the proof of Proposition 9.3.36.

11.2. Localization and dual localization in the strictly non-characteristic
case

In section, we fix a smooth hypersurface H of X and we simply write strictly R-spe-
cializable instead of strictly R-specializable along H. We also denote by ◆ (instead
of ◆H) the inclusion H ,! X. The coherent DX -module OX(⇤H) is generated as such
by the OX -submodule OX(H) consisting of meromorphic functions having a pole of
order at most one along H. If we interpret OX(H) as V �1OX(⇤H), we then have the
equality OX(⇤H) = DX · OX(H) = DX · V �1OX(⇤H).

11.2.a. Localization of eOX and e!X . Working with eDX -modules, we note that
eOX(⇤H) is not locally of finite type over eDX : for example, if t is a local equation
for H, the eDX -submodule generated by 1/t does not contain 1/t

2 (but contains z/t2),
that generated by 1/t, 1/t

2 does not contain 1/t
3, etc.

We then define the coherent eDX -submodule eOX [⇤H] of eOX(⇤H) as the eDX -sub-
module generated by eOX(H), that is, eDX · V �1eOX(⇤H). It is a proper coherent
submodule of eOX(⇤H), as shown above. If we equip OX(⇤H) with the increasing
filtration by the order of the pole, i.e., such that FkOX(⇤) = OX((k + 1)H) for k > 0

and FkOX(⇤H) = 0 for k < 0, then eOX [⇤H] = RFOX(⇤H). We define e!X [⇤H]

similarly, as the eDX -submodule of e!X(⇤H) generated by V0e!X .
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11.2.1. Lemma. The right eDX-module e!X [⇤H] is is isomorphic to that obtained by
side-changing from eOX [⇤H].

Proof. It is a matter of proving that e!X [⇤H] ' e!X ⌦eOX

eOX [⇤H]. This is obtained as
follows:

V0(e!X(⇤H)) · eDX = (e!X ⌦eOX

eOX(H)) · eDX

' e!X ⌦eOX

(eDX · eOX(H)) = e!X ⌦eOX

eOX [⇤H].

11.2.2. Proposition.
(1) The natural surjective morphism eDX ⌦V0

eDX

eOX(H)! eOX [⇤H] (resp. the sur-
jective morphism e!X(H)⌦

V0
eDX

eDX ! e!X [⇤H]) is an isomorphism.
(2) The coherent eDX-module eOX [⇤H] (resp. e!X [⇤H]) is strictly R-specializable and

for any k, the V -filtration is given by the formula V
�k�1eOX [⇤H]=Vk

eDX⌦V0
eDX

eOX(H)

(resp. Vke!X [⇤H] = e!X(H)⌦
V0

eDX

Vk
eDX).

(3) The cokernel of the morphism loc : eOX ,! eOX [⇤H] (resp. loc : e!X ,! e!X [⇤H])
is strictly R-specializable and isomorphic to D◆⇤(eOH)(�1) (resp. D◆⇤(e!H)(�1)).

Proof.
(1) Since this is a local question, we can assume that X = H ⇥� and use adapted

local coordinates. Then eOX(H) = (1/t)eOX = V0
eDX

��P
i
V0

eDX
e@xi

+ V0
eDX(e@tt)

�
,

so eDX ⌦V0
eDX

eOX(H) ' eDX

��P
i
eDX

e@xi
+ eDX(e@tt)

�
, and the natural morphism is

P 7! P · (1/t) 2 eOX(⇤H). For the injectivity of the morphism, we are led to showing
that P · (1/t) = 0 implies P 2

�P
i
eDX

e@xi
+ eDX(e@tt)

�
, which can be checked in a

straightforward way.
(2) A direct computation shows that the following formula define a V -filtration of

eOX [⇤H]:

V
0
(eOX [⇤H]) = V

0
(eOX(⇤H)) = eOX ,

V
�1

(eOX [⇤H]) = V
�1

(eOX(⇤H)) = eOX(H),

V
�k�1

(eOX [⇤H]) =

kX

j=0

z
j eOX((j + 1)H) (k > 1).

The graded objects read

gr
�k�1
V

(eOX [⇤H]) =

8
>><

>>:

gr
�k�1
V

eOX if k < 0,

eOX(H)/eOX if k = 0,

z
keOX((k + 1)H)/eOX(kH) if k > 0,

hence are strict, showing strict R-specializability of eO[⇤H]. Note that the Euler vector
field E acts by zero on each graded piece, hence the grV

0
eDX -module structure descends

to a eDH -module structure (see Exercise 9.4).
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(3) The filtration induced by V
•
(eO[⇤H]) on eO[⇤H]/eOX satisfies

gr
k

V
(eOX [⇤H]/eOX) '

(
0 if k > 0,

gr
k

V
(eOX [⇤H]) if k 6 �1.

Therefore, eO[⇤H]/eOX is strictly R-specializable and gr
�1
V

(eO[⇤H]/eOX) ' eOX(H)/eOX .
Similar results hold for e!X by side-changing (Lemma 11.2.1). We can regard
gr

V

0
e!X [⇤H] = e!X(H)/e!X as a right eDH -module and strict Kashiwara’s equivalence

of Proposition 9.6.2 implies

e!X [⇤H]/e!X ' D◆⇤
�
e!X(H)/e!X

�
.

11.2.3. Lemma. The residue morphism induces an isomorphism of right eDX-modules

ResH : e!X(H)/e!X

⇠�! e!H(�1).

Proof. This is easily checked in local coordinates. The twist (�1) is due to the “divi-
sion by edt”, which induces a multiplication by z.

As a consequence, we obtain the exact sequence via the residue:

0 �! e!X

loc���! e!X [⇤H] �! D◆⇤(e!H)(�1) �! 0.

Since D◆⇤ commutes with side-changing, we deduce an exact sequence

0 �! eOX

loc���! eOX [⇤H] �! D◆⇤(eOH)(�1) �! 0.

11.2.4. Example. Assume that X = H ⇥�. Then any local section of D◆⇤eOH can be
written as (see (8.7.7 ⇤⇤) with g = 0)

L
k>0

(�1)k⌘ok ⌦ e@k
t
⌦ edt_ =

L
k>0

e@k
t
(⌘ok ⌦ 1⌦ edt_)

with ⌘ok 2 eOH . One can obtain a lift of such a local section in eOX [⇤H] by the formula
X

k>0

e@k
t
(⌘k/t)

where ⌘k is a local holomorphic function on X such that ⌘k|H = ⌘ok.

11.2.b. Dual localization of eOX and e!X . We now consider a dual setting, al-
though strictly speaking the duality functor is not involved in the next construction.

We set eOX [!H] := eDX ⌦V0
eDX

eOX (resp. e!X [!H] := e!X ⌦V0
eDX

eDX), where the
right (resp. left) V0

eDX -module structure of eDX is used for the tensor product. The
trivial left (resp. right) action of eDX makes eOX [!H] (resp. e!X [!H]) a coherent left
(resp. right) eDX -module equipped with a surjective morphism dloc : eOX [!H] ! eOX

(resp. dloc : e!X [!H] ! e!X) whose kernel is supported on H. We will analyze its
kernel. Let us first check:

11.2.5. Lemma. The right eDX-module e!X [!H] is is isomorphic to that obtained by
side-changing from eOX [!H].
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Proof. Using notation similar to that of Exercise 8.19, it is a matter of showing that
[e!X ⌦V0

eDX

eDX ]triv ' [e!X ⌦eOX

(eDX ⌦V0
eDX

eOX)]tens. The proof is completely similar
to that of loc. cit.

11.2.6. Proposition.
(1) The coherent eDX-module eOX [!H] (resp. e!X [!H]) is strictly R-specializable and

for any k, the V -filtration is given by the formula V
�keOX [!H] = Vk

eDX ⌦V0
eDX

eOX

(resp. Vk�1e!X [!H] = e!X ⌦V0
eDX

Vk
eDX).

(2) The kernel of dloc : eOX [!H]! eOX (resp. dloc : e!X [!H]! e!X) is also strictly
R-specializable and isomorphic to D◆⇤(eOH) (resp. D◆⇤(e!H)).

Proof. It is a priori not clear that the formula for the V -filtration defines a filtration,
i.e., that Vk

eDX ⌦V0
eDX

eOX injects into eDX ⌦V0
eDX

eOX . We will check this by a
local computation. Let us consider the local setting with X = H ⇥�, where � has
coordinate t. Then eOH , which is a quotient sheaf of eOX on which t acts by zero,
is also regarded as a subsheaf of eOX (functions which do not depend on t). Then

Vk
eDX ⌦V0

eDX

eOX = Vk
eDX

�⇥P
i
Vk

eDX
e@xi

+ Vk
eDX(te@t)

⇤

admits the local decomposition

Vk
eDX ⌦V0

eDX

eOX ' eOX �
k�1L
i=0

eOH · e@i+1

t
,

which makes clear the injectivity property, as well as the strict R-specializability of
the kernel of Ker[dloc : eOX [!H] ! eOX ], whose V

�k reads
L

k�1
i=0

eOH · e@i+1

t
. After

side-changing, we obtain similar results for e!X [!H]. In the right setting, we find the
local identification

e!X ⌦V0
eDX

Vk
eDX ' e!X �

k�1L
i=0

(e!X/e!XIH) · e@i+1

t
.

We note that Ker dloc : e!X [!H]!e!X is supported on H, so, by strict Kashiwara’s
equivalence (Proposition 9.6.2), Ker dloc ' ◆⇤(gr

V

0
Ker dloc). The first point of the

proposition yields an isomorphism of grV
0
eDX -modules

gr
V

0
(Ker dloc) = gr

V

0
(e!X [!H]) ' e!X ⌦V 0 eDX

gr
V

1
eDX ' (e!X/e!XIH)⌦

gr
V

0
eDX

gr
V

1
eDX ,

since IH acts by zero on gr
V

1
eDX . The Euler vector field E acts by zero on both

sides: this is clear by definition for the left-hand side, and for the right-hand side, in
local coordinates, the right action of e@tt sends e!X to e!XIH . Therefore, both sides
are eDH -modules by means of the identification eDH = gr

V

0
eDX/Egr

V

0
eDX , and the

isomorphism is as such.

11.2.7. Lemma (Dual residue lemma). In the right setting, we have a natural isomor-
phism of right eDH-modules:

dRes : gr
V

0
(Ker dloc) ' (e!X/e!X

eIH)⌦
gr

V

0
eDX

gr
V

1
eDX

⇠�! e!H
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given in a local decomposition X = H ⇥� by
�
a(x, t, z)edx1 ^ · · · ^ edxn�1 ^ edt

�
⌦ e@t 7�! a(x, 0, z)edx1 ^ · · · ^ edxn�1.

Proof. Note that dRes does not involve a Tate twist since edt⌦ e@t has z-degree equal
to zero. Is is a matter of showing that the formula in the lemma is independent of the
choice of the decomposition X ' H ⇥ � and of local the coordinates on H and �.
This is easily checked by considering the coordinate changes on X which preserve H,
that is, of the form x

0
i
= pi(x, t, z) and t

0
= tµ(x, t, z) (argue as in Exercise 9.4).

The lemma ends the proof of the proposition, which thus provides two exact se-
quences obtained one from the other by side-changing:

0 �! D◆⇤(eOH) �! eOX [!H] �! eOX �! 0,

0 �! D◆⇤(e!H) �! e!X [!H] �! e!X �! 0.

11.2.c. Generalization for strictly non-characteristic eDX-modules

The properties of localization and dual localization for eOX and e!X extend to arbi-
trary coherent eDX -modules provided that they are strictly non-characteristic along H

(the general case of coherent eDX -modules which are strictly R-specializable along H

will be treated in Sections 11.3.a and 11.4.a). In this section 11.2.c, we consider a
coherent right eDX -module eM for simplicity and we assume that H is strictly non-
characteristic with respect to eM. Then eM = V�1 eM is V0

eDX -coherent.

Localization. The naive localization eM(⇤H) is strictly R-specializable as a eDX(⇤H)-
module and V0

eM(⇤H) = eM ⌦eOX

eOX(H), as seen by computing in a local chart.
We then denote by eM[⇤H] the eDX -submodule V0

eM(⇤H) · eDX ⇢ eM(⇤H). The natural
morphism eM ! eM(⇤H) is injective since the action of t is injective on eM = V�1 eM.
Hence the natural morphism loc : eM! eM[⇤H] is also injective.

Let us check that eM[⇤H] ' eM⌦eOX

eOX [⇤H] (where the right-hand side is equipped
with its tensor structure of right eDX -module). We have

(11.2.8)
V0(

eM(⇤H)) · eDX = ( eM⌦eOX

eOX(H)) · eDX

' eM⌦eOX

(eDX · eOX(H)) = eM⌦eOX

eOX [⇤H].

11.2.9. Proposition. The natural morphism V0
eM(⇤H) ⌦

V0
eDX

eDX ! eM[⇤H] is an
isomorphism. Furthermore, eM[⇤H] is strictly R-specializable, as well as eM[⇤H]/ eM,
the latter being supported on H, hence isomorphic to D◆⇤

�
gr

V

0
( eM[⇤H]/ eM)

�
=

D◆⇤
�
gr

V

0
( eM[⇤H])

�
. Lastly, there exists a natural isomorphism gr

V

0
( eM[⇤H]/ eM) '

eMH(�1), where eMH = D◆
⇤
H
( eM) is the restriction of eM to H, giving rise to an exact

sequence

0 �! eM loc���! eM[⇤H] �! D◆⇤( eMH)(�1) �! 0.

Proof. For the first assertion, we replace · eDX with ⌦
V0

eDX

eDX in the sequence of
isomorphisms (11.2.8) and we use the isomorphism eDX⌦V0

eDX

eOX(H) ' eOX [⇤H]. The
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formulas for the V -filtration given in the proof of Proposition 11.2.2, when considered
in the right setting, extend in a straightforward way by replacing there e!X with eM.

Let us give details on the identification of Coker loc with D◆⇤( eMH)(�1). We con-
sider eM as obtained by side-changing: eM = e!X ⌦eOX

eMleft. Then we have a residue
morphism

(e!X ⌦eOX

eMleft
)(H)/(e!X ⌦eOX

eMleft
) = (e!X(H)/e!X)⌦eOX

eMleft

Res⌦ Id��������! e!H(�1)⌦eOX

eMleft
.

Furthermore, since e!H · IH = 0, the latter term is isomorphic to

(11.2.10) e!H(�1)⌦eOX

( eMleft
/IH eMleft

) = e!H(�1)⌦eOH

eMleft

H
= eMH(�1),

which gives the desired identification, according to Kashiwara’s equivalence.

11.2.11. Remark. If X = H ⇥�t, and if we use the V -filtrations, we have eM = V�1 eM
and gr

V

0
(Coker loc) = gr

V

0
( eM[⇤H]). We have the identification (see §9.3.24)

•⌦ edt : grV�1 eM
⇠�! eMH(�1).

The isomorphism gr
V

0
(Coker loc)

⇠�! eMH(�1) can be written as the composition of
the isomorphisms

gr
V

0
( eM[⇤H])

· t���! gr
V

�1(
eM[⇤H])

gr
V

�1(loc) �������� gr
V

�1
eM •⌦ edt������! eMH(�1).

11.2.12. Example. Let us consider the setting of Example 11.2.4. A lift of a local
section

L
k>0

e@k
t
(mok⌦ 1⌦edt_) of D◆⇤( eMH)(�1) in eMleft

[⇤H] is given by the formula
P

k>0
e@k
t
(mk/t), where mk is a lift of mok 2 eMleft

H
in eMleft.

Dual localization. We define eM[!H] = V�1 eM⌦V0
eDX

eDX = eM⌦
V0

eDX

eDX .

11.2.13. Proposition. The coherent eDX-module eM[!H] is strictly R-specializable with
V -filtration given by Vk�1( eM[!H]) = eM ⌦

V0
eDX

Vk
eDX , as well as the kernel of the

surjective morphism dloc : eM[!H] ! eM, the latter being supported on H, hence
isomorphic to D◆⇤

�
gr

V

0
(Ker dloc)

�
= D◆⇤

�
gr

V

0
( eM[!H])

�
. Lastly, there exists a natural

isomorphism gr
V

0
(Ker dloc) ' eMH giving rise to an exact sequence

0 �! D◆⇤( eMH) �! eM[!H]
dloc����! eM �! 0.

Proof. With the same argument as in the proof of Proposition 11.2.6, we find a local
decomposition

eM⌦
V0

eDX

Vk
eDX ' eM�

k�1L
i=0

( eM/ eMIH) · e@i+1

t
,

showing the first properties and the fact that eM ⌦
V0

eDX

Vk
eDX is the V -filtration

Vk�1( eM[!H]). It remains to prove the identification gr
V

0
(Ker dloc) ' eMH . In a first

step, we find

gr
V

0
(Ker dloc) = gr

V

0
( eM[!H]) ' eM⌦

V0
eDX

gr
V

1
eDX = ( eM/ eMIH)⌦eDH

gr
V

1
eDX .
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Arguing as in (11.2.10), but with the dual residue map of Lemma 11.2.7, we find
(see Exercise 8.19)

( eM/ eMIH)⌦eDH

gr
V

1
eDX ' (e!X/e!XIH)⌦eOH

( eMleft
/IH eMleft

)⌦
gr

V

0
eDX

gr
V

1
eDX

' (e!X/e!XIH)⌦
gr

V

0
eDX

gr
V

1
eDX ⌦eOH

( eMleft
/IH eMleft

)

dRes⌦ Id���������! e!H ⌦eOH

eMleft

H
= eMH .

11.2.14. Remark. In the setting of Remark 11.2.11, we have gr
V

0
(Ker dloc) =

gr
V

0
( eM[!H]). The isomorphism gr

V

0
(Ker loc)

⇠�! eMH can be written as the composi-
tion of the isomorphisms

gr
V

0
( eM[!H])

· e@t ���� gr
V

�1(
eM[!H])(1)

gr
V

�1(dloc)���������! gr
V

�1
eM(1)

•⌦ edt������! eMH .

Side-changing. For a left eDX -module eM = eMleft, the dual localized module eM[!H] is
defined as eDX⌦V0

eDX

eM. Arguing as in Lemma 11.2.5, it is obtained by side-changing
from eMright

[!H], and the V -filtration is given by V
�k eM[!H] = Vk

eDX ⌦V0
eDX

eM. It ad-
mits local decompositions

(11.2.15) Vk
eDX ⌦V0

eDX

eM ' eM�
k�1L
i=0

eMH · e@i+1

t
.

Let us make explicit the left action of eDX on eM[!H] in the local decomposition
(11.2.15). The action of eDH is the natural one on each coefficient, while

(11.2.16) e@t ·
⇣
m0 +

P
k�1
i=0

mi+1
e@i+1

t

⌘
= e@t(m0) +m0|H e@t +

P
k�1
i=0

mi+1
e@i+2

t
,

and
t ·
⇣
m0 +

P
k�1
i=0

mi+1
e@i+1

t

⌘
= tm0 �

P
k�2
i=0

(i+ 2)mi+2
e@i+1

t
.

In particular, the decomposition (11.2.15) is stable under the action of V0
eDX . Fur-

thermore, the natural morphism eM[!H]! eM is induced by the projection to eM, and
the morphism

(11.2.17)
L
i>0

eMH · e@i+1

t
�!

L
i>0

eMH · e@i
t
⌦ edt_, mi+1 · e@i+1

t
7�! mi+1 · (�e@t)i ⌦ edt_

identifies (see Example 8.7.7(2)) its kernel with the pushforward D◆⇤( eMH) (note that
the supplementary term e@t on the left-hand side adjusts the gradings).

Conclusion. It follows that, in the sequence

eM[!H]
dloc����! eM loc���! eM[⇤H],

the natural morphisms Ker dloc ! D◆⇤( eMH) and D◆⇤( eMH)(�1) ! Coker loc are iso-
morphisms. Furthermore, we have two exact sequences whose terms are strictly R-spe-
cializable along H:

(11.2.18)
0 � eM dloc ���� eM[!H] � D◆⇤( eMH) � 0,

0 �! eM loc���! eM[⇤H] �! D◆⇤( eMH)(�1) �! 0.
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11.2.d. The restriction and Gysin morphisms associated to a strictly non-
characteristic hypersurface. Let us assume that X is compact and let aX : X!pt

denote the constant map. The constant map aH : H ! pt is equal to aX � ◆, and we
denote both aX and aH by a for simplicity.

Let eM be a coherent eDX -module. We assume that H is strictly non-characteristic
with respect to eM. Let eMH denotes the pullback D◆

⇤ eM.
The exact sequences (11.2.18) give rise to two connecting morphisms

(11.2.19)
Da

(k)

⇤ eM restrH������! Da
(k+1)

⇤ eMH ' Da
(k+1)

⇤ (D◆⇤( eMH)),

Da
(k)

⇤ (D◆⇤( eMH)) ' Da
(k)

⇤ eMH

Gys
H������! Da

(k+1)

⇤ eM(1),

where the isomorphisms are given by Corollary 8.7.27.
Let us set L = OX(H), and let XL denote the Lefschetz operator on Da

(•)
⇤ eM

associated with the Tate-twisted Chern class (2⇡i)c1(L) 2 H
2
(X,Q(1)). Recall that,

if ⌘ is a closed de Rham representative of (2⇡i)c1(L) in �(X,E2

X
), then XL is induced

by the wedge product with e⌘ = ⌘/z.

11.2.20. Proposition. Under the previous assumptions, the following diagram com-
mutes:

Da
(k)

⇤ eM
XL

//

restrH

&&

Da
(k+2)

⇤ eM(1)

Da
(k�1)
⇤ eMH(�1)

Gys
H

66

XL
//

Da
(k+1)

⇤ eMH

Gys
H

66

Proof. Each term in the diagram is the hypercohomology of a de Rham complex
p

DR = DR[n]. The shift has the effect of multiplying the differentials of the complexes
by (�1)n, and it follows that the connecting morphisms restrH and Gys

H
are also

multiplied by (�1)n. For the sake of simplicity, we will then argue with the non
shifted de Rham complexes and the result for the shifted complexes will follow.

On the other hand, it will be convenient to make use of a different realization
(11.2.22) below of the complexes involved in the exact sequences (11.2.19). This is
why we make use of the logarithmic de Rham complexes (see Section 9.2.a).

Computation of logarithmic de Rham complexes. Let eM be a coherent left eDX -mod-
ule such that H is strictly non-characteristic with respect to eM, and let V

• eM de-
note the V -filtration of eM along H. Then eM = V

0 eM and V
1 eM = (V

0 eM)(�H) :=

eOX(�H)⌦eOX

V
0 eM (see Section 9.5). For a left V0

eDX -module eN, we recall (Section
9.2.a) that the (unshifted) logarithmic de Rham complex DRlog

eN is defined by means
of logarithmic forms:

DRlog
eN = {0! eN

er���! e⌦1

X
(logH)⌦ eN �! · · · �! e⌦n

X
(logH)⌦ eN! 0}.

11.2.21. Lemma. For eM and H as above, the natural morphism

DR( eM[!H]) �! DR( eM)
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is isomorphic to the natural morphism

DRlog(V
1 eM) �! DR(V

0 eM) = DR( eM)

and the natural morphism

DR( eM) �! DR( eM[⇤H])

is isomorphic to the natural morphism

DR( eM) = DR(V
0 eM) �! DRlog(V

0 eM).

Proof. Let us treat the case of eM[!H] for example. The question is local in the
neighbourhood of H, and we can assume that X = � ⇥ H, where � is a disc with
coordinate t. Then DR( eM) is realized as the total complex of the double complex

DRX/�(
eM)

e@t�! DRX/�(
eM) and DRlog(

eN) as that of DRX/�(
eN)

te@t�! DRX/�(
eN).

Since eM is strictly non-characteristic along H, we have eM = V
0 eM, so that the

complex { eM
e@t�! eM} is equal to {V 0 eM

e@t�! V
0 eM}. On the other hand, since

e@t : gr
k

V
( eM[!H]) ! gr

k+1

V
( eM[!H]) is an isomorphism for any k 6 0, the inclusion

of complexes

{V 1
( eM[!H])

e@t���! V
0
( eM[!H])} ,�! { eM[!H]

e@t���! eM[!H]}

is a quasi-isomorphism, and since t : V
0
( eM[!H]) ! V

1
( eM[!H]) is an isomorphism,

we find a quasi-isomorphism

{V 1
( eM[!H])

te@t���! V
1
( eM[!H])} ' { eM[!H]

e@t���! eM[!H]}.

Finally, note that V
k
( eM[!H]) = V

k eM for k > 0. Applying the functor DRX/�

concludes the proof.

After applying the de Rham functor DR to the exact sequences (11.2.18), we obtain
therefore two exact sequences of complexes that are quasi-isomorphic to the exact
sequences

(11.2.22)
0 �! DRlog(V

1 eM) �! DR( eM) �! ◆⇤DR( eMH) �! 0,

0 �! DR( eM) �! DRlog(
eM)

Res����! ◆⇤DR( eMH)[�1](�1) �! 0,

and we can replace restrH and Gys
H

by the connecting morphisms of the hyperco-
homology sequences attached to these exact sequences, for which we use the same
notation.

C
1 logarithmic de Rham complexes. We will also consider C

1 variants of these com-
plexes. On the one hand, the pullback of forms extends to the Dolbeault resolutions
of e⌦•

X
and e⌦•

H
. Arguing as in §8.4.13, we can realize the right terms of the first

line of (11.2.22) by the corresponding C
1 complexes, so that we have a commutative
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diagram of exact sequences of complexes in which the last two vertical morphisms are
quasi-isomorphisms, hence so is the first one:

(11.2.23)

0 // DRlog(V
1 eM) //

✏✏

DR( eM) //

o
✏✏

◆⇤DR( eMH) //

o
✏✏

0

0 //
eK•
1

// DR
1
( eM) // ◆⇤DR

1
( eMH) // 0

where eK•
1

is defined as the kernel of the horizontal morphism of complexes.
On the other hand, we introduce the sheaf eE1

X
(logH) of C1 logarithmic 1-forms,

having as local basis near a point of H the forms edt/t, dt, edxi, dxi. The C1 logarithmic
de Rham complex (eE•

X
(logH), ed) contains (eE•

X
, ed) as a subcomplex, and the corre-

sponding inclusion is quasi-isomorphic to the inclusion (e⌦•
X
, ed) ,! (e⌦•

X
(logH), ed).

There is also a residue morphism

Res : (eE•
X
(logH), ed) �! (◆⇤eE•�1

H
,�ed)(�1) = (◆⇤eE•

H
, ed)[�1](�1)

that is compatible with the holomorphic one. We choose the latter for constructing
the C

1 exact sequence below, leading to a commutative diagram:

(11.2.24)

0 // DR( eM) //

✏✏

DRlog(
eM)

Res
//

o
✏✏

◆⇤DR( eMH)[�1](�1) //

o
✏✏

0

0 //
eK•
2

// DR
1
log

( eM)
Res
// ◆⇤DR

1
( eMH)[�1](�1) // 0

where eK•
2

is defined as the kernel of the horizontal morphism of complexes and the
left vertical morphism is thus a quasi-isomorphism.

We can instead define the complex eC• by replacing the commutative diagram
(11.2.23) with

(11.2.25)

0 // DRlog(V
1 eM) //

o
✏✏

DR( eM) //

o
✏✏

◆⇤DR( eMH) //

✏✏

0

0 // DR
1
log

(V
1 eM) // DR

1
( eM) //

eC•
// 0

and deduce that the right vertical arrow is a quasi-isomorphism. Explicitly, we have
eCk

= [eEk

X
⌦ eM/eEk

X
(logH)(�H)] ⌦ eM. The restriction T

⇤
◆ factorizes through eCk.

We denote by ◆
⇤ the natural morphism eEk

X
⌦ eM ! eCk and by T

0⇤
◆ the morphism

eCk ! ◆⇤eEk

H
, so that T

⇤
◆ = T

0⇤
◆ � ◆⇤. Then T

0⇤
◆ : eC• ! ◆⇤DR

1
( eMH) is a quasi-

isomorphism.
For the corresponding diagram (11.2.24), we define the morphism

Res : eEk

X
(logH)⌦ eM �! eCk
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by sending a local section ((edt/t) ^  + µ) ⌦ m to ◆
⇤
( ⌦ m). We then obtain the

commutative diagram

(11.2.26)

0 // DR( eM) //

o
✏✏

DRlog(
eM)

Res
//

o
✏✏

◆⇤DR( eMH)[�1](�1) //

o
✏✏

0

0 // DR
1
( eM) // DR

1
log

( eM)
Res

//
eC•
[�1](�1) // 0

A representative of the Chern class. Let ✓ 2 �(X,E1

X
(logH)) be any C

1 logarithmic
1-form on X that can be locally written as dt/t + ' for some C

1
1-form ', where

t = 0 is a local equation for H. Then ⌘ := d✓ 2 �(X,E2

X
(logH)) belongs to the

subspace �(X,E2

X
) and is closed.

Let U = (U↵) be an open covering of X by charts in which H \ U↵ is defined by
the equation t↵ = 0, where t↵ is part of a local coordinate system in U↵. If (�↵) is a
partition of unity adapted to this covering, then ✓ =

P
�↵dt↵/t↵ satisfies the above

hypothesis.

11.2.27. Lemma. For ✓ as above, the cohomology class of ⌘ = d✓ in H
2
(X,E•

X
) '

H
2
(X,C) is equal to the complexified Chern class (2⇡i)c1(OX(H)).

Proof. We can realize H2
(X,C) as the cohomology of total complex of the Čech double

complex C•
(U,E•

X
), with Čech differential � and de Rham differential d. We consider

the cochain (✓↵) 2 �(U,E1

X
(logH)) = C0

(U,E1

X
(logH)) defined as ✓↵ = dt↵/t↵.

We have d✓↵ = 0 and the class of �(✓↵) in H
2
(X,C) is (2⇡i)c1(OX(H)). So the class

of (� + d)(✓↵) is equal to (2⇡i)c1(OX(H)).
On the other hand, let us consider the cochain (✓|U↵

)2�(U,E1

X
(logH)). Its �-dif-

ferential is zero, and the class of (� + d)(✓|U↵
) in H

2
(X,C) is equal to that of d✓.

We end the proof by noting that the difference (�+d)
�
(✓|U↵

)�(✓↵)
�

is a coboundary
in the total complex, since ✓|U↵

� ✓↵ 2 �(U↵,E
1

X
).

End of the proof of Proposition 11.2.20. Let us start with the right triangle. We will
make use of the complexes in (11.2.23) and (11.2.24). Let m 2 �(X, eEk

X
⌦ eM)

be a closed global section of eEk

X
⌦ eM and let [m] denote its cohomology class.

Then restrH([m]) is the cohomology class of the image restrH(m) of m by the re-
striction morphism induced by the lower line of (11.2.23). In order to compute
Gys

H
(restrH([m])), one has to make explicit the connecting morphism coming from

the lower line of (11.2.24). One has to choose a lift µ of restrH(m) in the space
�(X, eEk+1

X
(logH)⌦ eM), differentiate is as Dµ, where D is the differential of the com-

plex DR
1
log

eM; then Dµ belongs to �(X, eKk+2

2
) and is closed there, defining thus a

class in H
k+2

(X, eK•
2
) 'H

k+2
(X,DR eM).

Let us make explicit this process. We set e✓ = ✓/z with ✓ as in Lemma 11.2.27. One
can take µ = e✓ ^m as a lift of restrH(m). Since m is closed, we have Dµ = ede✓ ^m =

e⌘ ^m, whose cohomology class is XL([m]), according to Lemma 11.2.27, as desired.
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Let us consider now the left triangle, for which we will make use of the complexes
in (11.2.25) and (11.2.26). Let [m] be a cohomology class in H

k�1
(X, eC•

). We also
denote by [m] a representative in �(X, eCk�1

). Let m 2 �(X, eEk�1
X
⌦ eM) be a lift

of [m], that is, such that ◆⇤m = [m]. A lift of [m] by Res can be represented as
e✓ ^ m and the composition restrH �Gys

H
([m]) is the class of ◆⇤(D(e✓ ^ m)). Since

the class of ◆⇤(ede✓ ^m) is the desired class XL([m]), it remains to show that the class
of ◆⇤(e✓ ^Dm) is zero. Since [m] is closed, Dm is a section of eEk

X
(logH)(�H) ⌦ eM.

It follows that e✓^Dm is a section of eEk+1

X
⌦ eM which is locally a multiple of edt. As a

consequence, the class of T ⇤◆((e✓ ^Dm)) = T
0⇤
◆ � ◆⇤((e✓ ^Dm)) is zero and since T

0⇤
◆

is a quasi-isomorphism, the class of ◆⇤(e✓ ^Dm) is zero.

11.2.e. The weak Lefschetz property. Although we cannot assert in such gen-
erality that the diagram of Proposition 11.2.20 defines an X-sl2-quiver with Hk =L

k Da
(k)

⇤ eM, Gk = Da
(k)

⇤ eMH , c = restrH , v = Gys
H

(see Remark 3.1.9), we give a
criterion for the weak Lefschetz property of this quiver to hold (see Definition 3.1.13).
It will be used in the proof of the Hodge-Saito theorem 14.3.1.

11.2.28. Proposition (A criterion for the weak Lefschetz property)
Let f : X ! Y be a morphism between smooth projective varieties, and let H be

a smooth hypersurface of X.
(1) Assume that H is a divisor of the line bundle OX(1).
(2) Assume that eM is coherent, strict, and that H is strictly non-characteristic

with respect to eM.
Let restrH : Df

(k)

⇤ eM ! Df
(k+1)

⇤ eMH (resp. Gys
H

: Df
(k)

⇤ eMH ! Df
(k+1)

⇤ eM(1)) be the
connecting morphisms obtained by applying Df⇤ to the exact sequences (11.2.18).

(3) Lastly, assume that, for all k 2 Z, restrH (resp. Gys
H

) is a strict morphism.
Then restrH : Df

(k)

⇤ eM ! Df
(k+1)

⇤ eMH (resp. Gys
H

: Df
(k)

⇤ eMH ! Df
(k+1)

⇤ eM(1)) is an
isomorphism if k > 1 and is onto if k = 0.

Proof. According to the long exact sequence deduced from the first (resp. second) line
(11.2.18), it is a matter of proving that Df

(k)

⇤ ( eM[⇤H]) = 0 for k > 1. The strictness
assumption (3) implies that Df

(k)

⇤ ( eM[⇤H]) is strict for any k. It is then enough to
prove that the DY -module underlying Df

(k)

⇤ ( eM[⇤H]) is zero for k > 1. This module is
nothing but the pushforward of the DX -module underlying eM[⇤H], that is, M(⇤H).

For the final part of the argument, it will be convenient to express the pushforward
complex Df⇤M(⇤H) as a complex in nonnegative degrees. We will thus make use of
Formula (8.52 ⇤) with no shift. Furthermore, we recall that, since X rH is affine, for
any coherent OX -module eF, the pushforward R

n+k
f⇤eF(⇤H) vanishes for k > 1.(1)

(1)Let us recall the proof: by considering the order of the pole along H, eF(⇤H) is the inductive limit
of OX -coherent submodules eF(⇤H)` and, since f is proper, R

n+k
f⇤eF(⇤H) = lim�!`

R
n+k

f⇤eF(⇤H)`;
by GAGA, each eF(⇤H)` is the analytification of a coherent O

Xalg -module, and the pushforward,
as well as its inductive limit, can be computed with the Zariski topology; the latter is then equal
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Since eM is strict, M admits a coherent filtration F•M (Proposition 8.8.5(2)). To-
gether with the filtration of DY by the order of differential operators, we obtain a
filtration of e⌦k

X
⌦( eMleft⌦

f�1eOY

f
�1 eDY ) by OX -coherent modules for any k, by means

of which we derive a filtration FpC
• of the complex

C
•
:= e⌦•

X
⌦ ( eMleft

(⇤H)⌦
f�1eOY

f
�1 eDY )

whose terms take the form eF(⇤H) with eF being OX -coherent (see 8.4.9). This complex
is in nonnegative degrees (we did not shift it as in (8.52 ⇤)) and R

n+k
f⇤ of each of its

terms vanishes for k > 1. Therefore, Rn+k
f⇤(FpC

•
) = 0 for each p and each k > 1.

Passing to the inductive limit (f is proper), we conclude that R
n+k

f⇤(C
•
) = 0 for

k > 1, which is the desired assertion.

11.3. Localization of eDX-modules

Our aim in this section is to define, for any effective divisor D in X, a localization
functor with values in the category of strictly R-specializable eDX -modules along D.
In the case of DX -modules, the localization coincides with the naive localization,
but we will present the localization in a uniform way for DX -modules and graded
eDX = RFDX -modules with our usual convention for the meaning of eDX and of
strictness.

11.3.a. Localization along a smooth hypersurface for eDX-modules

If eM is a coherent graded eDX = RFDX -module which is strictly R-specializable,
we cannot assert that eM(⇤H) is coherent. However, the natural morphism V<0

eM!
eM(⇤H) is injective since V<0

eM has no IH -torsion. For ↵2 [�1, 0) and k>1, let us set

V↵+k
eM(⇤H) = V↵

eMt
�k ⇢ eM(⇤H),

where t is any local reduced equation of H. Each V�
eM(⇤H) is a coherent V0

eDX -
submodule of eM(⇤H), which satisfies V�

eM(⇤H)t = V��1 eM(⇤H) and V�
eM(⇤H)e@t ⇢

V�+1
eM(⇤H) (multiply both terms by t). Lastly, each gr

V

�
eM(⇤H) is strict, being

isomorphic to gr
V

��[�]�1
eM if � > 0.

11.3.1. Definition (Localization of strictly R-specializable eDX -modules)
For a coherent eDX -module which is strictly R-specializable along H, the localized

module is (see 9.3.25(b))
eM[⇤H] = V0(

eM(⇤H)) · eDX ⇢ eM(⇤H).

11.3.2. Remark. The construction of eM[⇤H] only depends on the eDX(⇤H)-module
eM(⇤H), provided it is strictly R-specializable in the sense given in the introduction of
this chapter. In Proposition 11.3.3 below, we could have started from such a module.

to R
n+k

f
alg
⇤ eFalg

|XrH
, whose germ in y 2 Y is the inductive limit, taken on the affine open neighbor-

hoods V of y, of the cohomologies H
n+k(f�1

|XrH
(V ), eFalg

|XrH
); since f

�1
|XrH

(V ) is affine, each such
cohomology vanishes if k > 1.
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11.3.3. Proposition (Properties of the localization along H). Assume that eM is eDX-cohe-
rent and strictly R-specializable along H. Then we have the following properties.

(1) eM[⇤H] is eDX-coherent and strictly R-specializable along H.
(2) The natural morphism eM ! eM(⇤H) factorizes through eM[⇤H], so defines a

morphism loc : eM! eM[⇤H] and induces an isomorphism

V<0
eM �! V<0(

eM[⇤H]),

and in particular
gr

V

�
loc : gr

V

�
eM ⇠�! gr

V

�
( eM[⇤H]) for any � 2 [�1, 0).

Moreover, if X ' H ⇥ �t, the complex eM loc�! eM[⇤H] is quasi-isomorphic to the
complex �t,1 eM

vart�!  t,1
eM.

(3) For every �, we have V�
eM[⇤H] = V�

eM(⇤H) \ eM[⇤H] and, for � 6 0, we have
V�

eM[⇤H] = V�
eM(⇤H).

(4) We have, with respect to a local product decomposition X ' H ⇥�t,

V�
eM[⇤H] =

8
>>>>><

>>>>>:

V�
eM if � < 0,

V0
eM(⇤H) = V�1 eM · t�1 if � = 0,

V��[�]�1 eMe@[�]+1

t
+

[�]X

j=0

V0
eM(⇤H)e@j

t
in eM(⇤H), if � > 0.

(5) ( eM[⇤H]/(z � 1) eM[⇤H])=( eM/(z � 1) eM)(⇤H), and eM[⇤H][z
�1

]= eM(⇤H)[z
�1

].
(6) If t is a local generator of IH , the multiplication by t induces an isomorphism

gr
V

0
eM[⇤H]

⇠�! gr
V

�1
eM[⇤H].

(7) eM[⇤H] = V0(
eM(⇤H))⌦

V0
eDX

eDX .
(8) Assume eM ! eM0 is a morphism between strictly R-specializable coherent

eDX-modules which induces an isomorphism eM(⇤H) ! eM0(⇤H) (i.e., whose restric-
tion to V<0 is an isomorphism). Assume moreover that eM0 satisfies (6), i.e., the
multiplication by t induces an isomorphism gr

V

0
eM0 ⇠�! gr

V

�1
eM0. Then eM0 ' eM[⇤H].

More precisely, the induced morphism eM[⇤H] ! eM0[⇤H] is an isomorphism, as well
as eM0 ! eM0[⇤H].

(9) Let eM, eM0 be as in (8). Then any morphism eM0 ! eM[⇤H] factorizes through
eM0[⇤H]. In particular, if eM0 is supported on H, such a morphism is zero.

(10) If eM is strict, then so is eM[⇤H].
(11) Let 0 ! eM0 ! eM ! eM00 ! 0 be an exact sequence of coherent strictly

R-specializable eDX-modules. Then the sequence
0 �! eM0[⇤H] �! eM[⇤H] �! eM00[⇤H] �! 0

is exact.

Proof. The eDX -coherence of eM[⇤H] is clear, by definition. Let us set U↵
eM[⇤H] =

V↵(
eM(⇤H)) \ eM[⇤H] as in (3). Our first goal is to show both that eM[⇤H] is strictly

R-specializable and that U•
eM[⇤H] is its Kashiwara-Malgrange filtration.
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Note that U↵
eM[⇤H] is a coherent V0

eDX -submodule of eM[⇤H] (locally, eM[⇤H] has
a coherent V -filtration, which induces on V↵(

eM(⇤H)) a filtration by coherent V0
eDX -

submodules, which is thus locally stationary since V↵(
eM(⇤H)) is V0

eDX -coherent).
It satisfies in an obvious way the following local properties:

• U↵
eM[⇤H]t ⇢ U↵�1 eM[⇤H],

• U↵
eM[⇤H]e@t ⇢ U↵+1

eM[⇤H],
• gr

U

↵
eM[⇤H] ⇢ gr

V

↵
eM(⇤H) is strict.

Since by definition V0
eM(⇤H) ⇢ eM[⇤H], it is clear that U↵

eM[⇤H] = V↵
eM(⇤H) for

↵ 6 0, and thus U↵
eM[⇤H]t = U↵�1 eM[⇤H] for such an ↵. To prove our assertion,

we will check that U↵
eM[⇤H] = U<↵

eM[⇤H] + U↵�1 eM[⇤H]e@t for ↵ > 0, i.e., e@t :

gr
U

↵�1
eM[⇤H] ! gr

U

↵
eM[⇤H] is onto. We will prove the following assertion, which is

enough for our purpose:

11.3.4. Assertion. For every ↵ 2 [�1, 0) and k > 1, if m :=
P

N

j=0
mj

e@j
t
2 V↵+k

eM(⇤H)

with mj 2 V0
eM(⇤H) (j = 0, . . . , N), then one can re-write m as a similar sum with

N 6 k and mk 2 V↵
eM(⇤H).

Let us first reduce to N 6 k. If N > k, we have mN
e@N
t
2 VN�1 eM(⇤H), which

is equivalent to mN
e@N
t
t
N 2 V�1 eM(⇤H) by definition. We note that, by strictness,

e@N
t
t
N is injective on gr

V

�
eM(⇤H) for � > �1. We conclude that mN 2 V�1 eM(⇤H).

We can set m0
N�1 = mN�1+mN

e@t 2 V0
eM(⇤H) and decrease N by one. We can thus

assume that N = k.
If mk 2 V�

eM(⇤H) with � > ↵, we argue as above that mkt
ke@k

t
2 V↵

eM(⇤H), hence
mk 2 V<�

eM(⇤H) by the same argument as above, and we finally find mk2V↵
eM(⇤H).

Now, (1) and (3) are proved, and (2) is then clear (according to Proposition 9.3.38 for
the last statement), as well as (4). Then (5) means that, for DX -modules, there is no
difference between eM[⇤H] and eM(⇤H), which is true since eM(⇤H) is R-specializable,
so DX -generated by V0

eM(⇤H).
For (6), we note that, by (3), gr

V

0
eM[⇤H] = gr

V

0
eM(⇤H) and gr

V

�1
eM[⇤H] =

gr
V

�1
eM(⇤H), and by definition t : gr

V

0
eM(⇤H)

⇠�! gr
V

�1
eM(⇤H) is an isomorphism.

Let us now prove (7). Set eM0 = V0(
eM(⇤H))⌦

V0
eDX

eDX . By definition, we have a
natural surjective morphism eM0 ! eM[⇤H] and the composition V0(

eM(⇤H))! eM0 !
eM[⇤H] is injective, where the first morphism is defined by m 7! m⌦ 1. We thus have
V0(

eM(⇤H)) ⇢ eM0 and we set Vk
eM0 =

P
k

j=0
V0

eM(⇤H)e@j
t

for k > 0. Let us check that,
for k > 1, e@k

t
: gr

V

0
eM0 ! gr

V

k
eM0 is injective. We have a commutative diagram (here

gr
V

k
means Vk/Vk�1)

gr
V

0
eM0

e@k
t

//

o
✏✏

gr
V

k
eM0

✏✏

gr
V

0
eM[⇤H]

e@k
t

⇠ // gr
V

k
eM[⇤H]

where the lower horizontal isomorphism follows from strict R-specializability of eM[⇤H]

and Proposition 9.3.25(d). Therefore, the upper horizontal arrow is injective. Note
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that it is onto by definition. As a consequence, all arrows are isomorphisms, and it
follows, by taking the inductive limit on k, that eM0 ! eM[⇤H] is an isomorphism.

For (8) we notice that, since V0
eM(⇤H)

⇠�! V0
eM0(⇤H) and according to (7), we have

eM[⇤H]
⇠�! eM0[⇤H]. Since eM0 is strictly R-specializable and satisfies (6), we have

eM0 ⇢ eM0(⇤H) and V0
eM0 = V0

eM0(⇤H). Still due to the strict R-specializability, eM0 is
generated by V0

eM0, hence we conclude by Definition 11.3.1.
For (9), we remark that a morphism eM0 ! eM[⇤H] induces a morphism eM0(⇤H)!

eM[⇤H](⇤H) = eM(⇤H) and thus V0
eM0(⇤H) ! V0

eM(⇤H), hence the first assertion
follows (7). The second assertion is then clear, since eM0[⇤H] ⇢ eM0(⇤H).

(10) holds since, if eM is strict, then eM(⇤H) is also strict, and thus so is eM[⇤H].
It remains to prove (11). By flatness of eOX(⇤H) over eOX , the sequence

0 �! eM0(⇤H) �! eM(⇤H) �! eM00(⇤H) �! 0

is exact, and by Exercise 9.20(2), the sub-sequence
0 �! V�1 eM0 �! V�1 eM �! V�1 eM00 �! 0

is also exact. It follows that the sequence
0 �! V0

eM0(⇤H) �! V0
eM(⇤H) �! V0

eM00(⇤H) �! 0

is exact. By (7) we conclude that the sequence
eM0[⇤H] �! eM[⇤H] �! eM00[⇤H] �! 0

is exact. Since eM[⇤H] ⇢ eM(⇤H), the injectivity of eM0[⇤H]! eM[⇤H] is clear.

11.3.5. Remark (strict R-specializability of loc). The kernel of loc : eM ! eM[⇤H]

is strictly R-specializable along H and supported on H. Indeed, by Proposition
11.3.3(2), in any local setting X = H⇥�t, it is equal to the pushforward by ◆H of the
kernel of var : �t,1 eM !  t,1

eM(�1), which is strict. In particular, loc : eM ! eM[⇤H]

is injective if and only if, in any local setting, vart is injective.
On the other hand, Coker loc, which is also supported on H, may not be strictly

R-specializable along H without any further hypothesis. It is so if and only if, in any
local setting, Coker vart is strict, i.e., the morphism vart is strictly R-specializable. For
example, it is so if eM is strongly strictly R-specializable along H (Definition 9.3.27).

11.3.6. Remark (Side-changing and localization). If eM is a left eDX -module, we de-
fine eM[⇤H] as the submodule of eM(⇤H) generated by V

�1 eM. We will check that
eMright

[⇤H] ' ( eM[⇤H])
right. This relation clearly holds for the naive localization, i.e.,

if we replace [⇤H] with (⇤H). Then the morphism eMright ! ( eM[⇤H])
right

= eM0
obtained by side-changing from the natural morphism eM ! eM[⇤H] satisfies the as-
sumptions of Proposition 11.3.3(8), proving the desired isomorphism. If H is strictly
non-characteristic with respect to eM, we then have eM[⇤H] ' eOX [⇤H]⌦eOX

eM.

11.3.7. Remark (The de Rham complex of eM[⇤H]). Since multiplication by t is injective
on V0(

eM(⇤H)), we can apply Proposition 9.2.2 to eM[⇤H] because of the expression
11.3.3(7), and obtain a logarithmic expression of p

DR( eM[⇤H]):
p

DR( eM[⇤H]) ' p

DRlog(V0(
eM(⇤H))).
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11.3.8. Remark (Restriction to z = 1). Let eM be as in Proposition 11.3.3 and let us
set M = eM/(z � 1) eM. Then M is R-specializable along H (see Exercise 9.24) and
V•M = V•

eM/(z � 1)V•
eM. Furthermore, since Proposition 11.3.3 also holds in the

setting of DX -modules, we have M[⇤H] = V0M(⇤H)⌦V0DX
DX .

On the other hand, by using Exercise 9.24, one also checks that, from Definition
11.3.1 in the setting of DX -modules, M[⇤H] = M(⇤H).

11.3.b. Localization along an effective divisor

Let g : X ! C be a holomorphic function. Let eM be a coherent eDX -module
which is strictly R-specializable along (g). We say that eM is localizable along (g) if
there exists a coherent eDX -module eN such that ( eMg)[⇤H] = eNg. Recall indeed that
Kashiwara’s equivalence is not strong enough in the filtered case in order to ensure
the existence of eN. Nevertheless, by full faithfulness, if eN exists, it is unique, and we
denote it by eM[⇤g]. At this point, some checks are in order.

• Assume that g is smooth. Then one can check (Exercise 11.1) that eM[⇤g] as
defined by 11.3.1 satisfies the defining property above, so there is no discrepancy
between Definition 11.3.1 and the definition above.

• By uniqueness, the local existence of eM[⇤g] implies its global existence.
• Let u be an invertible holomorphic function on X. We denote by 'u : X ⇥ C!

X ⇥C the isomorphism defined by (x, t) 7! (x, u(x)t), so that ◆ug = 'u � ◆g. We con-
tinue to set H = X ⇥ {0}, so that 'u induces the identity on H.

Let eM be a coherent eDX -module which is strictly R-specializable along (g). If eM
is localizable along (g), then it is so along (ug) and we have eM[⇤g] = eM[⇤ug]. Indeed,
one checks that

D'u⇤
�
( eMg)[⇤H]

�
= (D◆ug⇤ eM)[⇤H],

and this implies (D◆ug⇤ eM)[⇤H] = D◆ug⇤( eM[⇤g]), hence the assertion by uniqueness.

11.3.9. Definition (Localization along an effective divisor). Let D be an effective divisor
on X. We then say that eM is localizable along D if eM is a coherent eDX -module
which is strictly R-specializable along D (see Definition 9.4.1) and such that eM[⇤g]
exists locally for some (or any) local reduced equation g defining the divisor D. The
localized module, obtained by gluing the various local eM[⇤g], is denoted by eM[⇤D],
and the complex eM! eM[⇤D] is denoted by R�[D]

eM.

11.3.10. Corollary (Properties of the localization along (g)). Let g : X ! C be a holo-
morphic function and let eM be eDX-coherent and strictly R-specializable along (g).
Set H = X ⇥ {0} ⇢ X ⇥ C. Assume moreover that eM is localizable along (g).

(1) The eDX-module eM[⇤g] is strictly R-specializable along (g) and

var : �g,1

� eM[⇤g]
�
�!  g,1

� eM[⇤g]
�
(�1)

is an isomorphism.



432 CHAPTER 11. LOCALIZATION, DUAL LOCALIZATION AND MAXIMAL EXTENSION

(2) There exists a natural morphism loc : eM! eM[⇤g]. This morphism induces an
isomorphism

eM(⇤g) ⇠�!
� eM[⇤g]

�
(⇤g),

and isomorphisms
 g,�

eM ⇠�! g,�

� eM[⇤g]
�

for every �.
Moreover, we have a commutative diagram

�g,1
eM

�g,1loc
//

varfM
✏✏

�g,1

� eM[⇤g]
�

o varfM[⇤g]
✏✏

 g,1
eM(�1) ⇠

 g,1loc
//  g,1

� eM[⇤g]
�
(�1)

and Ker loc (resp. Coker loc) is identified with Ker varfM (resp. Coker varfM).
(3) Given a short exact sequence of coherent eDX-modules which are strictly R-spe-

cializable and localizable along (g), the [⇤g] sequence is exact.

Proof. This follows from Proposition 11.3.3 by using full faithfulness of D◆g⇤ (Propo-
sition 9.6.2) and Proposition 9.6.6.

11.3.11. Remark. The proof gives in particular that D◆g⇤locg = loct.

11.3.12. Remark (Remark 11.3.2 continued). One easily checks that D◆g⇤( eM(⇤g)) =

( eMg)(⇤H), so that, in Corollary 11.3.10, we could start from a coherent eDX(⇤g)-
module eM⇤ which is strictly R-specializable. One deduces that the construction eM[⇤g]
only depends on the naively localized module eM(⇤D). Similarly, for an effective
divisor D, eM[⇤D] (when it exists) only depends on eM(⇤D).

11.3.13. Remark (Restriction to z = 1). Assume that eM is eDX -coherent and is strictly
R-specializable and localizable along (g). Then, setting M = eM/(z � 1) eM,

( eMg)(⇤H)/(z � 1)( eMg)(⇤H) = (Mg)(⇤H),

the same holds for V0 (see Remark 11.3.8), and thus

( eMg)[⇤H]/(z � 1)( eMg)[⇤H] = (Mg)(⇤H).

As a consequence,
eM[⇤g]/(z � 1) eM[⇤g] = M(⇤g).

11.3.14. Example (The case of holonomic DX -modules). The main example of special-
izable coherent DX -modules are the holonomic DX -modules. This is the origin of
the theory of the Bernstein-Sato polynomial. The roots of the Bernstein polynomials
are not necessarily real, but a similar theory applies. For such a DX -module, the
localized module M(⇤D) is DX -holonomic (see e.g. [Bjö93, Prop. 3.2.14]). As a con-
sequence, if M is smooth on X r D, M(⇤D) is coherent over OX(⇤D). Indeed, the
assertion is local, so we can assume that M has a coherent filtration F•M such that
F0M|XrD = M|XrD. For k > 0, the inclusion F0M ,! FkM has an OX -coherent
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cokernel supported on D, hence it induces an isomorphism F0M(⇤D)
⇠�! FkM(⇤D).

Passing to the limit k !1, we find F0M
⇠�!M(⇤D).

11.4. Dual localization

In this section, we treat simultaneously the case of DX -modules and that of graded
RFDX -modules, so eDX means either of these sheaves. The Kashiwara-Malgrange fil-
tration enables one to give a comprehensive definition of the dual localization functor,
which should be thought of as the adjoint of the localization functor by the eDX -mod-
ule duality functor. We will give a direct definition and we will not need the duality
functor.

11.4.a. Dual localization along a smooth hypersurface

11.4.1. Definition (Dual localization along a smooth hypersurface)
Let H ⇢ X be a smooth hypersurface and let eM be a coherent right eDX -mod-

ule which is strictly R-specializable along H. The dual localization of eM along H is
defined as

eM[!H] := V<0
eM⌦

V0
eDX

eDX .

11.4.2. Proposition (Properties of the dual localization along H)
Assume that eM is eDX-coherent and strictly R-specializable along H. Then the

following properties hold.
(1) eM[!H] is eDX-coherent and strictly R-specializable along H.
(2) The natural morphism dloc : eM[!H]! eM induces an isomorphism

V<0
eM[!H]

⇠�! V<0
eM,

and in particular
gr

V

�1dloc : gr
V

�1
eM[!H]

⇠�! gr
V

�1
eM.

(3) With respect to a local decomposition X ' H ⇥�t,
e@t : grV�1 eM[!H] �! gr

V

0
eM[!H](�1)

is an isomorphism, and Ker gr
V

0
dloc (resp. Coker grV

0
dloc) is isomorphic to the kernel

(resp. cokernel) of e@t : grV�1 eM(1) ! gr
V

0
eM. Furthermore, the complex eM[!H]

dloc�! eM
is quasi-isomorphic to the complex  t,1

eM cant�! �t,1
eM.

(4) Assume eM0 ! eM is a morphism between strictly R-specializable coherent
eDX-modules which induces an isomorphism eM0(⇤H) ! eM(⇤H) (i.e., whose restric-
tion to V<0 is an isomorphism). Assume moreover that eM0 satisfies (3), i.e., the
action of e@t induces an isomorphism gr

V

�1
eM0 ⇠�! gr

V

0
eM0(�1). Then eM0 ' eM[!H].

More precisely, the induced morphism eM0[!H] ! eM[!H] is an isomorphism, as well
as eM0[!H]! eM0.

(5) Let eM, eM0 be as in (4). Then any morphism eM[!H] ! eM0 factorizes through
eM0[!H]. In particular, if eM0 is supported on H, such a morphism is zero.

(6) If eM is strict, then so is eM[!H].
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(7) Let 0 ! eM0 ! eM ! eM00 ! 0 be an exact sequence of coherent strictly R-spe-
cializable eDX-modules. Then the sequence

0 �! eM0[!H] �! eM[!H] �! eM00[!H] �! 0

is exact.

Proof. We first locally construct a eDX -module eM! which satisfies all properties
described in Proposition 11.4.2, and we then identify it with the globally defined
eDX -module eM[!H]. The question is therefore local on X and we can assume that
X ' H ⇥�t. We will use the notation and results of Section 9.3.39.

Step 1. We search for eM! with a morphism eM! ! eM inducing an isomorphism
V<0

eM! ! V<0
eM, hence  t,�

eM!

⇠�!  t,�
eM for every � 2 S

1, and such that �t,1 eM!

is naturally identified to the graph of canfM :  t,1
eM ! �t,1

eM, hence to  t,1
eM, so

that  t,1
eM! !  t,1

eM is the identity, while �t,1 eM! !  t,1
eM is induced by the second

projection  t,1
eM� �t,1 eM! �t,1

eM, hence can be identified with canfM.
We use the identification analogous to that of 9.3.39(3) of eM/V�1 eM withL
↵2(�1,0] gr

V

↵
eM[s]. On the other hand, we introduce a similar V0

eDX -module
structure on gr

V

�1
eM(1)[s] by setting

µ
(j)

�1s
j · t =

(
0 if j = 0,
�
µ
(j)

�1(E+(j � 1)z)
�
s
j�1 if j > 1,

(µ
(j)

�1s
j
)te@t =

�
µ
(j)

�1(E+(j � 1)z)
�
s
j
.

One checks similarly that this is indeed a V0
eDX -module structure (i.e., [te@t, t] acts

as zt), but the action of e@t, defined as the multiplication by s, does not extend this
structure as a eDX -module structure (see Section 9.3.39(4)). We then notice that the
morphism

⇢ : gr
V

�1
eM(1)[s] �! gr

V

0
eM[s] ⇢ eM/V�1 eM

µ
(j)

�1s
j 7�! (µ

(j)

�1
e@t)sj

is V0
eDX -linear.

Given a local section m of eM, we denote by [m] its class in eM/V�1 eM =L
↵2(�1,0] gr↵

eM[s], and by [m]0 =
P

j>0
[m]

(j)

0
s
j the component of this class in

gr
V

0
eM[s]. Let us consider the V0

eDX -submodule eM! ⇢ eM � gr
V

�1
eM(1)[s] consisting

of pairs (m,µ�1) of local sections such that [m]0 = ⇢(µ�1) (since the maps ⇢ and
m 7! [m]0 are V0

eDX -linear, eM! is indeed a V0
eDX -submodule). We will extend

the V0
eDX -module structure on eM! to a eDX -module structure so that the natural

morphism eM! ! eM induced by the first projection is eDX -linear.
We have a decomposition eM/V<�1 eM ' gr

V

�1
eM �

L
↵2(�1,0] gr

V

↵
eM[s] and, for a

local section m of eM, we can write

[me@t]0 = canfM[m]
(0)

�1 +
X

j>1

[m]
(j�1)
0

s
j
= canfM[m]

(0)

�1 + [m]0s,
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where [m]
(0)

�1 obviously denotes the component of m mod V<�1 eM in gr
V

�1
eM. For any

local section (m,µ�1) of eM! we define

(m,µ�1)e@t := (me@t, [m]
(0)

�1 + µ�1s).

The right-hand term is easily checked to belong to eM!. We now check that
(m,µ�1)[e@t, t] = z(m,µ�1). On the one hand, we have

(m,µ�1)e@tt =
�
me@tt, ([m]

(0)

�1 + µ�1s)t
�
=

⇣
me@tt,

P
j>0

(N + jz)µ
(j)

�1s
j

⌘

= (me@tt, µ�1e@tt),

and, on the other hand,

(m,µ�1)te@t =
⇣
mt,

P
j>1

(N + (j � 1)z)µ
(j)

�1s
j�1

⌘
e@t

=

⇣
mte@t, [mt]

(0)

�1 +
P

j>1
(N + (j � 1)z)µ

(j)

�1s
j

⌘
.

Moreover, we have [mt]
(0)

�1=varfM[m]
(0)

0
=varfM(canfM µ

(0)

�1)=Nµ
(0)

�1. As a consequence,

(m,µ�1)[e@t, t] = (zm, zµ�1 + varfM[m]
(0)

0
�Nµ

(0)

�1) = z(m,µ�1).

Since eM is eDX -coherent and gr
V

�1
eM is eDH -coherent, one concludes easily that eM! is

eDX -coherent.
We set

V↵

� eM� gr
V

�1
eM(1)[s]

�
:= V↵

eM�
[↵]L
j=0

gr
V

�1
eM(1)s

j
.

The induced filtration V↵
eM! :=

eM! \ V↵

� eM � gr
V

�1
eM(1)[s]

�
satisfies V↵

eM!

⇠�! V↵
eM

for ↵ < 0 and

gr
V

↵
eM! =

8
>><

>>:

gr
V

↵
eM if ↵ 62 N,

�
([m]

(j)

0
, µ

(j)

�1) 2 gr
V

0
eM� gr

V

�1
eM(1) | [m]

(j)

0
= canfM µ

(j)

�1
 
· sj if ↵ = j

' gr
V

�1
eM(1)s

j
.

It is clear that this is a coherent V -filtration and that eM! satisfies 11.4.2(1)–(3).

Identification between eM[!H] and eM!. Since V<0
eM!

⇠�! V<0
eM, the natural morphism

eM![!H]! eM[!H] is an isomorphism, and we will prove that the natural morphism

(11.4.3) eM![!H] = V<0
eM! ⌦V0

eDX

eDX �! eM!

is an isomorphism. For any coherent eDX -module eN which is strictly R-specializable
along H, the natural morphism V0

eN ⌦
V0

eDX

eDX ! eN is onto, and if caneN is onto,
then V<0

eN ⌦
V0

eDX

eDX ! eN is also onto. Since canfM!

is an isomorphism, (11.4.3) is
onto.

The composition V<0
eM! ' V<0

eM![!H] ! eM![!H] ! eM!, so (11.4.3) is injec-
tive when restricted to the V<0 part. We V -filter eM![!H] by setting U<k

eM![!H] =
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P
j6k

V<0
eM!
e@j
t
, so that U<0

eM![!H] = V<0
eM!. For k > 1 we have a commutative

diagram

(U<0/U<�1) eM![!H]
⇠

//

e@k
t
✏✏

(V<0/V<�1) eM!

e@k
t

o
✏✏

(U<k/U<k�1) eM![!H](�k) // (V<k/V<k�1) eM!(�k)

The left down arrow is onto by definition, and since the right down arrow is an
isomorphism by the properties of eM!, the left down arrow is also an isomorphism, as
well as the lower horizontal arrow, showing by induction on k that eM![!H] ! eM! is
an isomorphism, so eM![!H] = eM[!H] satisfies 11.4.2(1)–(3).

We now prove (4). Since V<0
eM0 ⇠�! V<0

eM, Definition 11.4.1 implies eM0[!H]
⇠�!

eM[!H]. It remains to check that eM0[!H]! eM0 is an isomorphism. Since the question
is local, it is enough to check that the morphism eM0

!
! eM0 is an isomorphism, which

is straightforward from the construction of eM0
!
, with the assumption that canfM0 is an

isomorphism.
For (5), we remark that the morphism eM[!H] ! eM0 restricts to a morphism

V<0
eM[!H] = V<0

eM ! V<0
eM0, so the first assertion follows from Definition 11.4.1.

The second one is then obvious since V<0
eM0 = 0 if eM0 is supported on H.

Let us now check (6), that is, the strictness of eM[!H]. One check it locally for eM!,
for which it is clear since eM! ⇢ eM� gr

V

�1
eM(1)[s].

It remains to prove (7). The argument is the same as for 11.3.3(11) except for
the injectivity of eM0[!H] ! eM[!H]. In order to prove this property, we notice that
V<0

eM0[!H]! V<0
eM[!H] is injective, according to (2). It is then enough to check the

injectivity of grV
↵
eM0[!H] ! gr

V

↵
eM[!H] for every ↵ > 0. Due to the strict R-speciali-

zability of eM0[!H], eM[!H], injectivity holds for every ↵ /2 Z since gr
V

↵
eM0 ! gr

V

↵
eM is

injective. Similarly, if ↵ is a non-negative integer, the injectivity at ↵ holds if and
only if it holds at ↵ = 0. Now, (3) reduces this check to the case ↵ = �1, where the
injectivity holds since gr

V

�1
eM0 ! gr

V

�1
eM is injective.

11.4.4. Remark (Remark 11.3.2 continued). Clearly, eM[!H] only depends on eM(⇤H), so
that, in Proposition 11.4.2, we could start from a coherent eDX(⇤H)-module eM which
is strictly R-specializable.

11.4.5. Remark (Uniqueness of the morphism dloc). Let dloc
0
: eM[!H] ! eM be a mor-

phism whose naive localization dloc
0
(⇤H)

: eM[!H](⇤H) ! eM(⇤H) coincides with the
naive localization dloc(⇤H) of dloc. Then dloc

0
= dloc. Indeed, the assumption implies

that dloc
0 coincides with dloc when restricted to V<0

eM[!H] = V<0
eM. Both induce

then the same morphism eM[!H] = V<0
eM⌦

V0
eDX

eDX ! eM.

11.4.6. Remark. The kernel of the morphism dloc : eM[!H]! eM is strictly R-speciali-
zable along H and supported on H. Indeed, in any local setting X = H ⇥�t, it is
identified with the pushforward by ◆H of Ker[can :  t,1

eM! �t,1
eM], which is strict.
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On the other hand, Coker[dloc : eM[!H]! eM], which is supported on H, need not
be strictly R-specializable without any further assumption. It is so if and only if, in
any local setting, Coker can is strict, i.e., can :  t,1

eM ! �t,1
eM is strictly R-speciali-

zable along H.

11.4.7. Remark (Side-changing and dual localization). If eM is a left eDX -module, we de-
fine eM[!H] = eDX ⌦V0

eDX

V
>�1 eM. Let us check that eMright

[!H] ' ( eM[!H])
right. This

relation clearly holds for the naive localization, i.e., if we replace [!H] with (⇤H).
Then the morphism eM0 = ( eM[!H])

right ! eMright obtained by side-changing from the
natural morphism eM[!H] ! eM satisfies the assumptions of Proposition 11.4.2(4),
proving the desired isomorphism.

11.4.8. Remark (The de Rham complex of eM[!H]). Since multiplication by t is injec-
tive on V<0(

eM), we can apply Proposition 9.2.2 to eM[!H] and obtain a logarithmic
expression of p

DR( eM[!H]):
p

DR( eM[!H]) ' p

DRlog(V<0(
eM)).

11.4.b. Dual localization along an arbitrary effective divisor

We keep the same notation as in Section 11.3.b. Let D be an effective divisor on X

and let eM be eDX -coherent and strictly R-specializable along D. We say that eM is
dual-localizable along D if for some (or any) local reduced equation g defining D, there
exists a coherent eDX -module eM[!g] such that D◆g⇤( eM[!g]) = ( eMg)[!H]. The various
checks done in Section 11.3.b can be done similarly here in order to fully justify this
definition.

11.4.9. Corollary (Properties of the dual localization along (g))
Let g : X ! C be a holomorphic function and let eM be eDX-coherent, strictly

R-specializable and dual-localizable along (g). Set H = X ⇥ {0} ⇢ X ⇥ C.
(1) The eDX-module eM[!g] is strictly R-specializable along (g) and

can :  g,1

� eM[!g]
�
�! �g,1

� eM[!g]
�

is an isomorphism.
(2) There is a natural morphism dloc : eM[!g] ! eM. This morphism induces an

isomorphism � eM[!g]
�
(⇤g) ⇠�! eM(⇤g),

and therefore isomorphisms
 g,�

� eM[!g]
� ⇠�!  g,�

eM for every �.

Moreover, we have a commutative diagram

 g,1

� eM[!g]
�  g,1dloc

⇠ //

canfM[!g] o
✏✏

 g,1
eM

canfM
✏✏

�g,1

� eM[!g]
� �g,1dloc

// �g,1
eM

and Ker dloc (resp. Coker dloc) is identified with Ker canfM (resp. Coker canfM).
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(3) Given a short exact sequence of coherent eDX-modules which are strictly R-spe-
cializable and dual-localizable along (g), the [!g] sequence is exact.

Proof. Similar to that of Corollary 11.3.10.

11.4.10. Remark. Denoting by dloc
g resp. dloct the morphism given by 11.4.9(2)

resp. the same for t, the proof gives in particular that D◆g⇤(dloc
g
) = dloc

t.

11.4.11. Remark (Remark 11.3.2 continued). In Corollary 11.4.9, we could start from a
coherent eDX(⇤g)-module eM which is strictly R-specializable and, globally, we could
start from a coherent eDX(⇤D)-module eM which is strictly R-specializable.

11.4.12. Remark (Restriction to z = 1). One proves as in Remark 11.3.13 that dual
localization behaves well with respect to the restriction z = 1.

11.5. D-localizable eDX-modules and middle extension

Let D be an arbitrary effective divisor.

11.5.1. Definition (D-localizable eDX -modules). Assume that eM is strictly R-speciali-
zable along D. We say that it is D-localizable if it is localizable and dual-localizable
along D. The localized (resp. dual localized) module eM[?D] (? = ⇤, resp. ? = !) is
then well-defined and is strictly R-specializable along D.

Recall that, if D = H is smooth, any eM which is eDX -coherent and strictly R-spe-
cializable along D is D-localizable. On the other hand, for DX -modules, R-speciali-
zability implies D-localizability, whatever D is.

11.5.2. Definition (Middle extension). Assume that eM is eDX -coherent, strictly R-spe-
cializable and localizable along an effective divisor D. The image of the composed
morphism eM[!D] ! eM ! eM[⇤D] is called the middle extension of eM along D and
denoted by eM[!⇤D].

Note however that we do not assert that eM[!⇤D] is strictly R-specializable along D.
Nevertheless, if D = (g), D◆g⇤( eM[!⇤D]) is the image of D◆g⇤( eM[!D]) ! D◆g⇤( eM[⇤D]),
that is, the image of ( eMg)[!H] ! ( eMg)[⇤H], and it is R-specializable along H with
strict V -graded objects, according to Exercise 9.23(2). We will still use the no-
tation  g,�

eM[!⇤D] and �g,1
eM[!⇤D] for gr

V

↵

�
D◆g⇤( eM[!⇤D])

�
(1) for ↵ 2 [�1, 0) and

gr
V

0

�
D◆g⇤( eM[!⇤D])

�
respectively.

11.5.3. Example. Assume that D = (g) and that eM is strictly R-specializable and
localizable along D (if D = H is smooth, the latter condition holds if the former
holds). Assume moreover that can is onto and var is injective, that is, eM is a middle
extension along (g). Then, according to Remarks 11.3.5 and 11.4.6, eM[!D] ! eM is
onto and eM! eM[⇤D] is injective, so eM = eM[!⇤D], and in particular eM[!⇤D] is strictly
R-specializable along D. (See also Remark 3.3.12.) This property holds for example
if eM is strictly non-characteristic along H.
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11.5.4. Proposition (A criterion for the strict R-specializability of eM[!⇤g])
Assume that eM is eDX-coherent, strictly R-specializable and localizable along (g).

If N = var � can :  g,1
eM !  g,1

eM(�1) is a strict morphism, then eM[!⇤g] is strictly
R-specializable along (g).

Proof. This follows from Exercise 11.4.

11.5.5. Remark (Restriction to z = 1). If eM satisfies the assumptions in Definition
11.5.2, then the restriction to z = 1 of the middle extension eM[!⇤D] is equal to
the DX -module middle extension M(!⇤D). Indeed, by tensoring over eC with eC[z�1]
we obtain that eM[!⇤D][z

�1
] is the image of eM[!D][z

�1
] in eM[⇤D][z

�1
]. According

to Remarks 11.4.12 and 11.3.13 we have eM[!D][z
�1

] = M(!D) ⌦C C[z, z
�1

] and
eM[⇤D][z

�1
] = M(⇤D) ⌦C C[z, z

�1
], and there exists a DX -module M0 such that

eM[!⇤D][z
�1

] = M0 ⌦C C[z, z
�1

]. Restricting to z = 1 shows that M0 is the image of
M(!D) in M(⇤D), that is, M(!⇤D).

11.6. Beilinson’s maximal extension and applications

In this section, we continue working with right eDX -modules.

11.6.1. Remark (The case of left eDX -modules). The same changes as in Remark 11.0.1
have to be made for left eDX -modules.

11.6.a. Properties of Beilinson’s maximal extension. Let g : X ! C be a
holomorphic function. Let eM be a coherent eDX -module which is strictly R-speciali-
zable along D := (g). When D is not smooth, we also assume that eM is D-localizable,
and maximalizable (see Definition 11.6.14 below). We aim at constructing a coherent
eDX -module ⌅g

eM, called Beilinson’s maximal extension of eM along D, which is also
strictly R-specializable along D. It comes with two exact sequences

0 �! eM[!g]
a��! ⌅g

eM b��!  g,1
eM(�1) �! 0,(11.6.2 !)

0 �!  g,1
eM b

_

���! ⌅g
eM a

_

���! eM[⇤g] �! 0,(11.6.2 ⇤)

such that b�b_ = �N and a
_�a = loc�dloc, where dloc, loc are the natural morphisms

(see Corollaries 11.3.10(2) and 11.4.9(2))

eM[!g]
dloc����! eM and eM loc���! eM[⇤g].

The construction and the exact sequences only depend on the naively localized module
eM(⇤D) (recall also that eM[!g] and eM[⇤g] only depend on eM(⇤D)). It can be done for
any coherent eDX(⇤D)-module eM⇤ which is strictly R-specializable along D and gives
rise nevertheless to a coherent eDX -module which is strictly R-specializable along D.
The usefulness of Beilinson’s maximal extension comes from Corollary 11.6.5 below,
which enables one to treat some questions on eDX -modules which are strictly R-spe-
cializable along D by reducing to the case of eDX(⇤D)-modules strictly R-specializable
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along D on the one hand, and to the case of eDX -modules supported on D and strict-
ly R-specializable along D on the other hand, the latter case being subject to an
induction argument.

11.6.3. Theorem (Gluing construction). Let eM⇤ be a coherent eDX(⇤D)-module which is
strictly R-specializable, D-localizable and maximalizable along D = (g). Let (eN, c, v)

be a triple consisting of a coherent eDX-module supported on D and strictly R-specia-
lizable along D, and a pair morphisms c :  g,1

eM⇤ ! eN and v : eN!  g,1
eM⇤(�1) such

that v � c = N. Then the complex

(11.6.3 ⇤)  g,1
eM⇤

b
_ � c������! ⌅g

eM⇤ � eN b+ v�����!  g,1
eM⇤(�1)

has nonzero cohomology in degree one at most, its H
1 is a coherent eDX-module

G( eM⇤, eN, c, v) which is strictly R-specializable along D and we have an isomorphism
of diagrams
2

664  g,1G( eM⇤, eN, c, v)

can
++

�g,1G( eM⇤, eN, c, v)

var
(�1)
jj

3

775 '

2

64  g,1
eM⇤

c
))

eN
v(�1)

jj

3

75 .

11.6.4. Remarks.
(1) We obviously have G( eM⇤, eN, c, v)(⇤D) = (⌅g

eM⇤)(⇤D) = eM⇤.
(2) If D = H is smooth and g is a projection, the conditions “D-localizable” and

“maximalizable” along D follow from the condition “strictly R-specializable along D”.

Set D = (g) and consider the category Glue(X,D) whose objects consist of data
( eM⇤, eN, c, v) satisfying the properties as in the theorem, and whose morphisms are
pairs of morphisms eM⇤ ! eM0⇤ and eN ! eN0 which are naturally compatible with c, v

and c
0
, v
0.

We have a natural functor
eM 7�! G( eM(⇤D),�g,1

eM, can, var).

from the category of eDX -coherent modules which are strictly R-specializable, localiz-
able and maximalizable along D, to the category Glue(X,D).

11.6.5. Corollary. This functor is an equivalence of categories.

The proof will occupy Sections 11.6.b–11.6.c, where we consider the case of a pro-
jection t : X ' H ⇥�t ! �t, and 11.6.d for the case of a principal divisor. Before
starting, we give some examples.

11.6.6. Example (Local identification of R�[D]
eM). Assume that D = (g) and eM corre-

sponds to the object G( eM(⇤D),�g,1
eM, can, var), then we have the correspondences

eM[⇤D] 7�! G( eM(⇤D), g,1
eM(�1),N, Id),

eM[!D] 7�! G( eM(⇤D), g,1
eM, Id,N).
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The morphisms eM[!D] ! eM resp. eM ! eM[⇤D] corresponds to the pairs (Id, can)

resp. (Id, var). The inclusion of horizontal complexes

G(0,�g,1
eM, 0, 0)

(0, var)
//

(0, Id)
✏✏

G(0, g,1
eM(�1), 0, 0)

(0, Id)
✏✏

G( eM(⇤D),�g,1
eM, can, var)

(Id, var)
// G( eM(⇤D), g,1

eM(�1),N, Id)

is a quasi-isomorphism. It follows that we have a quasi-isomorphism

R�[D]
eM ' {�g,1 eM

var����!  g,1
eM(�1)}.

We recover in this example the result obtained with V -filtrations in Proposition 9.3.38.
If we add to the assumptions on eM made in Theorem 11.6.3 the assumption of

strong strict R-specializability (see Definition 9.3.27), then R�[D]
eM is strict.

Similarly, the complex eM[!D]! eM is quasi-isomorphic to  g,1
eM can�! �g,1

eM.

11.6.b. A construction of  t,1 starting from localization. We will give another
construction of  t,1

eM⇤ for a strictly R-specializable eDX(⇤H)-module eM⇤ (see the
introduction of this chapter for this notion).

Let k be a non-negative integer and let J(k) denote the upper Jordan block of size k,
that is, the filtered vector space Ce0 � · · · � Cek�1, where ei 2 F

i (i > 0), so J(k) is
in fact graded, with the nilpotent endomorphism

J(k)
J
(k)

����! J(k)(�1)
ei 7����! ei�1 (convention: e�1 = 0).

Similarly, we denote by J(k) the lower Jordan block Ce0 � · · · � Cek�1 increasingly
filtered (in fact graded) so that ei 2 Fi, with the nilpotent endomorphism

J(k)
J(k)����! J(k)(�1)

ei 7����! ei+1 (convention: ek = 0).

Following Beilinson, we interpret these Jordan blocks as subquotients of the ring
C[s, s

�1
], with the nilpotent endomorphisms induced by the multiplication by the new

variable s. We consider the rings

A = C[s] ⇢ C[s, s
�1

] and B = C[s, s
�1

]/sC[s] ' C[s
�1

]

together with their natural action of s (which is nilpotent on B) related by the C-linear
pairing

(11.6.7) h•, •i : A⌦C B �! C,
⌦
a(s), b(s

�1
)
↵
= Ress=0

⇣
a(s)b(s

�1
)
ds

s

⌘
,

which satisfies

(11.6.8)
⌦
sa(s), b(s

�1
)
↵
=
⌦
a(s), sb(s

�1
)
↵
.
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For k > 0, we set A(k) = A/s
k
A, B(k)

= B/s
�k

B and we identify (J(k), J(k)) with
(A(k), s) and (J(k), J(k)) with (B

(k)
, s). The pairing h•, •i descends as a nondegenerate

C-linear pairing
A(k) ⌦C B

(k) �! C

satisfying (11.6.8). The increasing filtration of C[s, s�1] by the degree in s induces
an increasing filtration on A,B and A(k), B

(k). Let us set es = zs, eA = eC[es] and
eB = eC[es, es�1]/es eC[es]. Then the associated Rees modules eA(k),

eB(k) can be identified
respectively with eA/esk eA and eB/es�k eB.

We have natural morphisms (graded of degree zero and compatible with the nilpo-
tent endomorphisms induced by es):

(11.6.9)
eAk�1(1) ,

es��! eA(k)  � � eAk+1,

eBk�1
(�1) es � � eB(k)

,�! eBk+1
.

The second line can be made explicit in terms of the eC-basis (es�i)i=0,...,k�1: the
inclusion sends the class of es�j in eB(k) to that of es�j in eBk+1, while the projection
sends it to the class es�j+1 in eBk�1.

Let eM⇤ be a strictly R-specializable left eDX(⇤H)-module. We set
eM⇤(k) = eM⇤ ⌦eC

eA(k)

with the action of te@t given by
te@t(m⌦ a(es)) := (te@tm)⌦ a(es) + m⌦ esa(es),

and we define eM(k)

⇤ similarly. To make clear the action of te@t, we write eM⇤(k) =

t
es/z

( eM⇤ ⌦eC
eA(k)) = t

s
( eM⇤ ⌦eC

eA(k)), and similarly for eM(k)

⇤ .
Both are strictly R-specializable, according to Exercise 11.8.

11.6.10. Proposition. Assume that eM⇤ is strictly R-specializable along H.
(1) The morphisms

(loc � dloc)(k) : eM(k)

⇤ [!H] �! eM(k)

⇤ [⇤H]

(loc � dloc)(k) : eM⇤(k)[!H] �! eM⇤(k)[⇤H]and

are strictly R-specializable for k large enough, locally on H.
(2) We have functorial isomorphisms

lim�!
k

Ker(loc � dloc)(k) '  t,1
eM⇤ ' lim �

k

Coker(loc � dloc)(k),

and the limits are achieved for k large enough, locally on H. Furthermore, we have
lim�!
k

Coker(loc � dloc)(k) = 0 = lim �
k

Ker(loc � dloc)(k).

(3) The composed natural morphisms
eM(k)

⇤ [!H] �! eM(k)

⇤ [⇤H]
es��! eM(k�1)

⇤ [⇤H](�1)

eM⇤(k�1)[!H](1) ,
es��! eM⇤(k)[!H] �! eM⇤(k)[⇤H]and

are strictly R-specializable for k large enough, locally on H.
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Proof.
(1) Since the morphisms considered induce isomorphisms on V<0, it is enough to

check that their �t,1 are strict for k large enough (Proposition 9.3.38). By Exercise
11.4(3), this amounts to the strictness of N

(k)
:  t,1

eM(k)

⇤ !  t,1
eM(k)

⇤ (�1) and, by
Exercise 11.8, to the strictness of N(k)

: ( t,1
eM⇤)(k) ! ( t,1

eM⇤)(k)(�1), and similarly
for N(k). For k large enough locally on H, the cokernel of N

(k) is identified with
 t,1

eM⇤(�k), and similarly for N(k), according to Exercise 11.6, hence the strictness.
(2) By Exercises 11.4(1) and 11.8, we have

Ker(loc � dloc)(k) ' Ker
⇥
N

(k)
: ( t,1

eM⇤)(k) ! ( t,1
eM⇤)(k)(�1)

⇤
,

which is identified with  t,1
eM⇤ for k large enough, according to Exercise 11.6. The

vanishing assertion is obtained similarly and we argue similarly for the lower case.
(3) Arguing as above, we are reduced to checking the strictness of �t,1 of the

composed morphisms. The upper one reads

( t,1
eM⇤)(k)

N
(k)

����! ( t,1
eM⇤)(k)(�1)

es��! ( t,1
eM⇤)(k�1)(�2)

and, according to Exercise 11.7(1), coincides with the composed morphism

( t,1
eM⇤)(k)

es��! ( t,1
eM⇤)(k�1)(�1)

N
(k�1)

������! ( t,1
eM⇤)(k�1)(�2)

whose cokernel, which is the cokernel of N(k�1) since the first morphism is onto, is
identified with  t,1

eM⇤(�k � 1) for k large, hence the strictness. The argument for
the lower one is similar.

11.6.c. The maximal extension along H ⇥ {0}
11.6.11. Definition (Maximal extension along H). Let eM⇤ be a coherent eDX(⇤H)-
module which is strictly R-specializable along H. We set

⌅t
eM⇤ := lim�!

k

Ker
⇥ eM(k)

⇤ [!H]
es��! eM(k�1)

⇤ [⇤H](�1)
⇤
.

11.6.12. Proposition (The basic exact sequences). The limit in the definition of ⌅t
eM⇤ is

achieved for k large enough, locally on H, and ⌅t
eM⇤ is a coherent eDX-module which

is strictly R-specializable along H. We have two functorial exact sequences

0 �! eM⇤[!H]
a��! ⌅t

eM⇤
b��!  t,1

eM⇤(�1) �! 0,(11.6.12 !)

0 �!  t,1
eM⇤

b
_

���! ⌅t
eM⇤

a
_

���! eM⇤[⇤H] �! 0,(11.6.12 ⇤)

with b � b_ = �N and a
_ � a = loc � dloc (see Corollaries 11.3.10(2) and 11.4.9(2)).

Moreover, we also have

⌅t
eM⇤ := lim �

k

Coker
⇥ eM⇤(k�1)[!H](1)

es��! eM⇤(k)[⇤H]
⇤
.
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Proof of Proposition 11.6.12. Arguing as in Proposition 9.3.31, one checks that the ker-
nel of the morphism eM(k)

⇤ [!H]! eM(k�1)
⇤ [⇤H](�1) is strictly R-specializable along H.

We decompose this morphism either as

eM(k)

⇤ [!H]
es��! eM(k�1)

⇤ [!H](�1) �! eM(k�1)
⇤ [⇤H](�1)

or as
eM(k)

⇤ [!H] �! eM(k)

⇤ [⇤H]
es��! eM(k�1)

⇤ [⇤H](�1).
In the first case, its kernel is the middle term of a short exact sequence having the
kernel of the right-hand morphism as right-hand term, that is,  t,1

eM⇤(�1) for k

large enough locally, according to Proposition 11.6.10, and the kernel of the left-hand
morphism as left-hand term, that is, eM⇤[!H], according to Proposition 11.4.2(7). The
kernel is thus independent of k if k is large enough locally, and we have thus obtained
(11.6.12 !).

In the second case, its kernel is the middle term of a short exact sequence having
the kernel of the right-hand morphism as right-hand term, that is, eM⇤[⇤H], according
to Proposition 11.3.3(11), and the kernel of the left-hand morphism as left-hand term,
that is,  t,1

eM⇤ for k large enough locally, according to Proposition 11.6.10. We have
thus obtained (11.6.12 ⇤).

The composed morphism a
_ � a is the composition

eM⇤[!H] ' eM⇤[!H]⌦ 1 ,�! eM(k)

⇤ [!H]
dloc

_(k) � dloc(k)��������������! eM(k)

⇤ [⇤H]

�! eM⇤[⇤H]⌦ 1 ' eM⇤[⇤H],

which is equal to loc � dloc. On the other hand, the morphism b � b_ :  t,1
eM⇤ !

 t,1
eM⇤(�1) is identified with the natural morphism

Ker(dloc
_(k) � dloc(k)) �! Ker(dloc

_(k�1) � dloc(k�1))

for k large enough locally. It is identified with the natural morphism

Ker
⇥
N

(k)
: ( t,1

eM⇤)(k) ! ( t,1
eM⇤)(k)(�1)

⇤

�! Ker
⇥
N

(k�1)
: ( t,1

eM⇤)(k�1) ! ( t,1
eM⇤)(k�1)(�1)

⇤
,

which is identified, as in Exercise 11.6, to the morphism (k large enough locally)
�N : KerN

k+1 '  t,1
eM⇤ �! KerN

k
(�1) '  t,1

eM⇤(�1).

11.6.13. Proposition (Nearby and vanishing cycles of the maximal extension)
(1) The morphisms a : eM⇤[!H]! ⌅t

eM⇤ and a
_
: ⌅t

eM⇤ ! eM⇤[⇤H] induce isomor-
phisms when restricted to V<0, and thus isomorphisms of the  t,� objects.

(2) The exact sequence �t,1(11.6.12 !) is isomorphic to the naturally split exact
sequence 0 !  t,1

eM⇤
i1�!  t,1

eM⇤ �  t,1
eM⇤(�1)

p2�!  t,1
eM⇤(�1) ! 0. With respect

to this isomorphism, the exact sequence �t,1(11.6.12 ⇤) reads

0 �!  t,1
eM⇤

(Id,�N)
��������!  t,1

eM⇤ �  t,1
eM⇤(�1)

N + Id������!  t,1
eM⇤(�1) �! 0.
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Proof.
(1) We notice that, since all modules in (11.6.12 !) and (11.6.12 ⇤) are strictly R-spe-

cializable, the morphisms a and a
_ are strictly R-specializable, in the sense of Defi-

nition 9.3.29. The result follows from Proposition 9.3.31, since  t,1
eM⇤ is supported

on H.
(2) This follows from Exercise 11.7.

Proof of Theorem 11.6.3 for the function t. The complex C
• considered in the theorem

has nonzero cohomology in degree one only, since b_ is injective and b is onto. We show
that  t,�C

• and �t,1C
• are strict. We have  t,�C

•
= {0 !  t,�⌅t

eM ! 0}, so
the strictness follows from Proposition 11.6.12. On the other hand, according to
Proposition 11.6.13, �t,1C• is identified with the complex

 t,1
eM //  t,1

eM�  t,1
eM(�1)� eN //  t,1

eM(�1)

e
�

// (e,�Ne, ce)

(e,m, ")
�

// m+ v".

Its cohomology in degree one is then identified with eN. Since eN is assumed to be
strict, H1

�t,1C
• is strict, and we clearly have H

j
�t,1C

•
= 0 for j 6= 1. We deduce

from Corollary 9.3.32 that H1
C

• is strictly R-specializable along H and  t,�H
1
C

•
=

H
1
 t,�C

•, and �t,1H1
C

•
= H

1
�t,1C

•.

Proof of Corollary 11.6.5 for the function t. The construction G of Theorem 11.6.3
gives a right inverse of the functor considered in Corollary 11.6.5, implying that the
latter is essentially surjective. That it is fully faithful now follows from Proposition
9.3.36.

11.6.d. The maximal extension along a holomorphic function

11.6.14. Definition. Let g : X ! C be a holomorphic function and let eM⇤ be eDX(⇤D)-
coherent and strictly R-specializable along D. Set H = X ⇥ {0} ⇢ X ⇥ C. We say
that eM⇤ is maximalizable along (g) if, for each k > 1, there exist coherent eDX(⇤D)-
modules eN(k)

⇤ and eN⇤(k) such that (eN(k)

⇤ )g = (( eM⇤)g)(k) and (eN⇤(k))g = (( eM⇤)g)(k)
(see also Definition 11.5.1).

11.6.15. Proposition. Assume that eM⇤ is maximalizable along (g). Set

⌅g
eM⇤ := lim�!

k

Ker
� eM(k)

⇤ [!g]! eM(k�1)
⇤ [⇤g](�1)

�
,

⌅g
eM⇤ := lim �

k

Coker
� eM⇤(k�1)[!g](1)! eM⇤(k)[⇤g]

�
.equivalently,

Then the analogues of Propositions 11.6.12 and 11.6.13 hold for ⌅g
eM⇤.

Sketch of proof. One first checks that the analogue of Proposition 11.6.10 holds,
by checking that it holds after applying D◆g⇤. This follows from the fact that the
morphisms dloc and loc behave well under D◆g⇤ (see Remarks 11.4.10 and 11.3.11).
The remaining part of the proof is done with similar arguments.
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11.6.16. Remark. If we denote by ag, a
_
g
, bg, b

_
g

and at, a
_
t
, bt, b

_
t

the morphisms
a, a

_
, b, b

_ given by (11.6.2 !), (11.6.2 ⇤) and Proposition 11.6.12 respectively, we have
at = D◆g⇤ag, etc.

Proof of Theorem 11.6.3 and Corollary 11.6.5. Let us apply the exact functor D◆g⇤ to
(11.6.3 ⇤)g. Since eM⇤ is maximalizable along D, this produces (11.6.3 ⇤)t, to which we
apply the theorem. Since D◆

(j)

g⇤ (11.6.3 ⇤)
g
' D◆g⇤H

j(11.6.3 ⇤)
t
, we deduce the theorem

for (11.6.3 ⇤)g, and thus the functor of Corollary 11.6.5 is essentially surjective. It
is fully faithful because it is so when g = t and D◆g⇤ is fully faithful by Proposition
9.6.2.

11.6.17. Proposition (Recovering �g,1 from localization and maximalization)
Let eM be as above and set eM⇤ = eM(⇤D). Then the complex

(11.6.17 ⇤) �
•
g
eM :=

n
eM⇤[!g]

a� dloc��������! ⌅g
eM⇤ � eM a

_ � loc�������! eM⇤[⇤g]
o

satisfies H
k
�

•
g
eM = 0 for k 6= 1 and H

1
�

•
g
eM ' �g,1 eM.

Proof. We first consider the case of X = H ⇥ C and g = t. Injectivity of a � dloc

follows from that of a, and surjectivity of a_ � loc follows from that of a_. Since, for
every � 2 S

1,  t,�a and  t,�a
_ are isomorphisms inverse one to the other, and the

same property holds for  t,�dloc and  t,�loc, it follows that  t,��
•
t
eM ' 0. On the

other hand, the complex �t,1�•
t
eM is isomorphic to the complex

0 //  t,1
eM //  t,1

eM�  t,1
eM(�1)� �t,1 eM //  t,1

eM(�1) // 0

e
�

// (e, 0, can e)

(e, n, ")
�

// Ne+ n� var "

so H
1
�t,1�

•
t
eM ' ( t,1

eM��t,1 eM)/ Im(Id� can), and therefore the projection  t,1
eM�

�t,1
eM! �t,1

eM induces an isomorphism H
1
�t,1�

•
t
eM ⇠�! �t,1

eM. As a consequence of
Corollary 9.3.32, the cohomology of complex �•

t
eM is strictly R-specializable along H

and in particular �t,1H1
�

•
t
eM ' H

1
�t,1�

•
t
eM. The first part of the proof also shows

that H
1
�

•
t
eM ' �t,1H1

�
•
t
eM, so H

1
�

•
t
eM ' �t,1 eM.

The general case is obtained by using the exactness of D◆g⇤.

11.7. Localizability, maximalizability and pushforward

Let us keep the notation and assumptions of Corollary 9.8.9.

11.7.1. Corollary.
(1) Assume moreover that eM is localizable along (g). Then Df

(i)

⇤ eM are so along (g
0
)

for all i, we have (Df
(i)

⇤ eM)[?g
0
] ' Df

(i)

⇤ ( eM[?g]) (? = ⇤, !) and the morphisms dloc, loc

behave well under Df
(i)

⇤ .
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(2) Assume moreover that eM is maximalizable along (g). Then Df
(i)

⇤ eM are so
along (g

0
) for all i, we have ⌅g0(Df

(i)

⇤ eM) ' Df
(i)

⇤ (⌅g
eM), and the exact sequences

(11.6.2 !) and (11.6.2 ⇤) behave well under Df
(i)

⇤ .

Proof.
(1) Assume first that f takes the form fH ⇥ Id : H ⇥�t ! H

0 ⇥�t. Then from
Theorem 9.8.8 one deduces that Df

(i)

⇤ ( eM[?H]) satisfies the characteristic properties
11.3.3(8) or 11.4.2(4) for (Df

(i)

⇤ eM)[?H
0
], so the statement holds in this case.

For the general case, we note that we have a Cartesian diagram

X

f

✏✏

� �
◆g
// X ⇥�t

f ⇥ Id

✏✏

X
0 � � ◆g

0
// X
0 ⇥�t

and we set H = X ⇥ {0}, H 0 = X
0 ⇥ {0}. Then

(D(f ⇥ Id)
(i)

⇤ eM)[?H
0
] ' D(f ⇥ Id)

(i)

⇤
�
( eMg)[?H]

�

' D(f ⇥ Id)
(i)

⇤
�
D◆g⇤( eM[?g])

�
' D◆g0⇤(Df

(i)

⇤ ( eM[?g])),

and the assertion holds according to the first case.
(2) Let us indicate the proof in the case where f = fH ⇥ Id, as above. We first

notice that Df
(i)

⇤ ( eM(",k)
) ' (Df

(i)

⇤ eM)
(",k), and since f is proper, we can locally on X

0

choose k big enough so that the limits involved are already obtained for k. Let us
denote by 'k the morphism eM(0,k)

[!H] ! eM(1,k)
[⇤H]. We have a natural morphism

Df
(i)

⇤ Ker'k ! Ker Df
(i)

⇤ 'k and, according to (1), it induces a morphism between
sequences

Df
(i)

⇤
�
(11.6.12 !)( eM)

�
�! (11.6.12 !)(Df

(i)

⇤ eM),

Df
(i)

⇤
�
(11.6.12 ⇤)( eM)

�
�! (11.6.12 ⇤)(Df (i)

⇤ eM).

The right-hand sequences are short exact, while the left-hand ones are a priori only
exact in the middle. Moreover, the extreme morphisms between these sequences are
isomorphisms, by the previous results. Let us show that the left-hand sequences are
indeed short exact and that the morphisms (in the middle) are isomorphisms. We will
treat (11.6.12 !) for example. The composed (diagonal) morphism

Df
(i)

⇤ ( eM[!H])
Df

(i)

⇤ a
//

((

o
✏✏

Df
(i)

⇤ ⌅g(
eM)

✏✏

(Df
(i)

⇤ eM)[!H
0
]
� � a

// ⌅g0
Df

(i)

⇤ eM

is injective by assumption, hence so is Df
(i)

⇤ a, and by applying this with i+1, we find
that Df

(i)

⇤ ⌅g(
eM) ! Df

(i)

⇤ ( t,1
eM) is onto, so that the sequence Df

(i)

⇤
�
(11.6.12 !)( eM)

�

is short exact. Now, it is clear that it is isomorphic to (11.6.12 !)(Df
(i)

⇤ eM).
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11.8. The Thom-Sebastiani formula for the vanishing cycles

The Thom-Sebastiani formula for the vanishing cycle functor is analogous to the
Künneth formula for the pushforward functor of Section 8.8.f. The setting is as
follows. We are given, for i = 1, 2, a holomorphic function gi : Xi ! C and a strict-
ly R-specializable eDXi

-module eMi along gi. We consider the Thom-Sebastiani sum
g : X := X1 ⇥X2 ! C defined by g(x1, x2) = g1(x1) + g2(x2). In other words, g is
the composition of the map (g1, g2) : X1⇥X2 ! C⇥C with the sum map C⇥C! C

defined by (t1, t2) 7! t1 + t2. In order to state this formula in a uniform way, we will
set �g,� =  g,� as defined by (9.4.3 ⇤⇤) if � 6= 1 (and we keep the notation �g,1 as
it is). Moreover, given � with |�| = 1, we set � = exp 2⇡i↵ with ↵ 2 (�1, 0].

11.8.1. Theorem (Thom-Sebastiani formula). Assume that eMi (i = 1, 2) are strict and
strictly R-specializable along gi. Then, if eM := eM1 ⇥eD

eM2 is strictly R-specializable
along g, we have

�g,�
eM '

L
↵12(�1,↵][{0}

(�g1,�1

eM1 ⇥eD �g2,�/�1

eM2)

�
L

↵12(↵,0)
(�g1,�1

eM1 ⇥eD �g2,�/�1

eM2)(�1).

We will denote by eNi the pushforward D◆gi⇤
eMi and set similarly eN := eMg. Recall

that eNi = eMi ⌦eC
eC[e@ti ] with a suitable right action of eD

Xi⇥eC (see Example 8.7.7).
We will regard it as a eDXi

[ti]he@tii-module.

11.8.2. Lemma. The following sequence of eDX-modules is exact:

0 �! ◆
�1
(g1,g2)

(eN1 ⇥eD
eN2)(1)

e@t1 ⇥ 1� 1⇥ e@t2��������������! ◆
�1
(g1,g2)

(eN1 ⇥eD
eN2) �! ◆

�1
g

eN �! 0,

and the right action of e@t on ◆
�1
g

eN is the action naturally induced by that of e@t1 ⇥ 1

and that of 1⇥ e@t2 .

Proof. Let us first make precise that eN1 ⇥eD
eN2 is supported on the image of ◆(g1,g2),

and similarly for eN, so that the functors dloc�1 only serve to identify the supports of
all the terms to X = X1 ⇥X2. In the following, we will neglect to write them down.

Considering only the eC[e@t1 , e@t2 ]-module structure, the sequence is written

eM[e@t1 , e@t2 ](1)
e@t1 � e@t2��������! eM[e@t1 , e@t2 ] �! eM[e@t],

where the second map is obtained by sending e@ti to e@t (i = 1, 2). This obviously forms
a short exact sequence. One then checks, by using Exercise 8.46, that the sequence
is compatible with the eDX -actions.

11.8.a. Naive algebraic microlocalization. In order to understand the behaviour
of the V -filtrations, we will need to invert e@t. We first make clear the corresponding
framework. We will work in the setting of eDX [t]he@ti-modules. The ring eDX [t]he@t, e@�1t

i
is obtained by inverting e@t (so that the degree of e@`

x
e@k
t

is |`|+ k for every ` 2 N
dimX
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and k 2 Z, and the grading of eDX [t]he@t, e@�1t
i is indexed by Z). The only possible

way to define it as a ring containing eDX [t]he@ti as a subring is to impose that e@�1
t

commutes with eDX , to set

[e@k
t
, t] = kze@k�1

t
, k 2 Z,

(extending thus the formula for k 2 N) and to define [e@�k
t

, t
`
] by similar (more com-

plicated) formulas. For example, we have

te@k
t
= (te@t)e@k�1t

= e@k�1
t

((te@t)� (k � 1)z) = e@k
t
t� ke@k�1

t
, k 2 Z.

Note that working with eDX⇥C instead of eDX [t]he@ti would have led us to introduce
(non convergent) series in e@�1

t
, and this justifies our choice of keeping the variable t

algebraic. Note also that, if instead of inverting the action of e@t we invert that of t,
we recover the notion of naive localization of the introduction of this chapter.

We will write eDX [t]he@t, e@�1t
i = eDX [e@t, e@�1t

]hte@ti, so that we consider e@�1
t

as the
“variable” in the t-direction. In such a way, we set

V0
eDX [e@t, e@�1t

]hte@ti = eDX [e@�1
t

]hte@ti,

Vk
eDX [e@t, e@�1t

]hte@ti = e@k
t
V0

eDX [e@t, e@�1t
]hte@ti = V0

eDX [e@t, e@�1t
]hte@tie@kt .

We clearly have tVk
eDX [e@t, e@�1t

]hte@ti ⇢ Vk�1 eDX [e@t, e@�1t
]hte@ti. For a eDX [e@t, e@�1t

]hte@ti-
module

µeN, a coherent V -filtration U•
µeN indexed by A + Z for A ⇢ (�1, 0] finite, is

an exhaustive filtration such that U↵+k

µeN = U↵

µeN(k)e@k
t

(k 2 Z, ↵ 2 A) and each
U↵

µeN is V0
eDX [e@t, e@�1t

]hte@ti-coherent. We say that
µeN is strictly R-specializable along

(e@�1
t

) if there exists a coherent V -filtration U•
µeN indexed by A+Z such that te@t�↵z

is nilpotent on gr
U

↵

µeN (↵ 2 A) and each gr
U

↵

µeN is strict.

11.8.3. Remark. Let us denote by ✓ the ‘variable’ e@�1
t

. The commutation relations
above show that t behaves like ✓2e@✓. Then ✓e@✓ is identified with e@tt = te@t + z. The
setting is then completely similar to that of Section 9.2.

11.8.4. Lemma. If
µeN is strictly R-specializable along (e@�1

t
), such a filtration U•

µeN is
unique.

This filtration is then denoted by V•
µeN.

Proof. Assume we are given two such filtrations U,U
0, that we can assume to be

indexed by the same index set A + Z, by taking the union of both index sets. Fix
↵ 2 A. We will prove that U 0

↵

µeN ⇢ U↵

µeN and the reverse inclusion is proved similarly.
There exists � > ↵ (locally on X) such that

U
0
↵

µeN ⇢ U�

µeN, U
0
<↵

µeN ⇢ U<�

µeN.

Let m be a local section of U
0
↵

µeN. It satisfies m(te@t � �z)N 2 U<�

µeN on the one
hand, and m(te@t � ↵z)M 2 U

0
<↵

µeN ⇢ U<�

µeN on the other hand. Therefore, the class
[m] of m in gr

U

�

µeN is annihilated by a power of z(↵� �). If � > ↵, it is thus zero by
strictness of grU

�

µeN. We conclude that U
0
↵

µeN ⇢ U<�

µeN and, by induction, we obtain
U
0
↵

µeN ⇢ U↵

µeN.
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11.8.5. Definition (Naive algebraic microlocalization). Let eN be a eDX [t]he@ti-module.
The associated microlocalized module is

µeN := eN ⌦eDX [t]he@ti
eDX [t]he@t, e@�1t

i.

11.8.6. Lemma. Assume that eN = eMg ' eM ⌦eC
eC[e@t] and that eN is strictly R-spe-

cializable along (t). Then
µeN is strictly R-specializable along (e@�1

t
) and we have

gr
V

↵

µeN ' gr
V

↵
eN for ↵ > �1.

Proof. With the first assumption, we have a natural inclusion eN ,! µeN since
µeN '

eM⌦eC
eC[e@t, e@�1t

] as a eDX -module. We define a V -filtration U•
µeN by

(11.8.7) U↵

µeN =

X

i>0

V↵+i
eN · e@�i

t
, 8↵ 2 R.

(See Exercise 11.9.) It is straightforward to check that it is a coherent V -filtration of
µeN as defined before Lemma 11.8.4.

(1) We claim that the morphism eN ,! µeN is strictly compatible with the filtrations
V>�1eN and U>�1

µeN, i.e., we have V↵

µeN\ eN = V↵
eN for every ↵ > �1. Let

P
k

i=0
ni
e@�i
t

be a local section of U↵

µeN for some fixed ↵ > �1. In particular, nk is a section of
V↵+k

eN. Assume that it belongs to eNe@�k+1. We claim that nk = n
0
k�1

e@t, where n
0
k�1

is a local section of V↵+k�1eN. This claim implies that the sum above can be rewritten
with i running from 0 to k � 1. Arguing inductively, we find that the sum can be
rewritten with i = 0 only, i.e., belongs to V↵

eN.
In order to prove the claim, we note that nk

e@�k
t

also belongs to eNe@�k+1 and nk

belongs to V↵+k
eN \ eN · e@t. Let us write nk = n

0
�
e@t with n

0
�
2 V�

eN. If � > ↵ +

k � 1, we deduce that n�
e@t = 0 in gr

�+1
eN. By the strict R-specializability of eN and

Proposition 9.3.25(d) we conclude that n� 2 V<�
eN, and by induction this implies

that n� 2 V↵+k�1eN, as wanted.
(2) We claim that the filtration U•(

µeN/eN) naturally induced by U•
µeN satisfies

gr
U

↵
(
µeN/eN) = 0 for ↵ > �1. Indeed, this amounts to proving that U↵

µeN = U<↵

µeN+ eN
for ↵ > �1. This immediately follows from the property that, for ↵ > �1 and k > 1,
V↵+k

eN = V↵+k�1eN · e@t + V<↵+k
eN (Proposition 9.3.25(b)).

We conclude from (1) and (2) that, for every ↵ > �1, gr
V

↵
eN ! gr

U

↵

µeN is an
isomorphism. As a consequence, gr

U

↵

µeN is strict, and
µeN is strictly R-specializable

along (e@�1
t

) with U•
µeN as V -filtration. This concludes the proof.

11.8.b. External product of eDX [t]he@t, e@�1t
i-modules. We consider in this section

coherent eDXi
[e@ti , e@�1ti

]-modules
µeNi (i = 1, 2) equipped with a compatible action of

ti
e@ti , that we denote Ei for short. This covers the case considered in Lemma 11.8.6.

Then
µeNi are also eDXi

[ti]he@ti , e@�1ti
i-coherent. We denote by

µeN the cokernel of

(11.8.8)
µeN1 ⇥eD

µeN2

e@t1 ⇥ 1� 1⇥ e@t2��������������!
µeN1 ⇥eD

µeN2.
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It is a eDX -module, that we equip with the structure of a eDX [e@t, e@�1t
]-module by

defining the action of e@t as induced by that of e@t1 ⇥ 1 or, equivalently, that of 1⇥ e@t2 .
Then

µeN is eDX [e@t, e@�1t
]-coherent (as this is already true if

µeNi =
eDXi

[e@ti , e@�1ti
]
ki).

We now neglect to write the ⇥ symbol. From the relations Ei
e@ti = e@ti(Ei�z) and

Ei
e@tj = e@tj Ei if i 6= j, we deduce that (E1 +E2)(

e@t1� e@t2) = (e@t1� e@t2)(E1 +E2�z),
and E1 +E2 induces a well-defined action on

µeN in a way compatible with the
eDX [e@t, e@�1t

]-action.

11.8.9. Lemma. Assume that, for i = 1, 2,
µeNi are strict and strictly R-specializable

along (e@�1
ti

). Let us set

U↵(
µeN1 ⇥eD

µeN2) =

X

↵1+↵2=↵

(V↵1

µeN1 ⇥eD V↵2

µeN2).

Then we have for every ↵ 2 R

gr
U

↵
(
µeN1 ⇥eD

µeN2) =
L

↵1+↵2=↵

(gr
V

↵1

µeN1 ⇥eD gr
V

↵2

µeN2).

Proof. Same proof as in Exercise 15.4(4), by replacing the F -filtration there with the
V -filtration here.

11.8.10. Lemma. The morphism (11.8.8) is strictly filtered of degree one with respect
to the filtration U•(

µeN1 ⇥eD
µeN2).

Proof. For ↵ 2 (�1, 0] and ` 2 Z, we have, due to Lemma 11.8.9,

(11.8.11) gr
U

↵+`
(
µeN1 ⇥eD

µeN2) '
L
k2Z

L
↵12(�1,0]

(gr
V

↵1

µeN1
e@�k
t1

⇥ gr
V

↵�↵1

µeN2
e@k+`

t2
).

The graded morphism at the level ↵+ `

gr
U

↵+`�1(
µeN1 ⇥eD

µeN2)

e@t1 � e@t2��������! gr
U

↵+`
(
µeN1 ⇥eD

µeN2)

is then clearly injective. Let m be a local section of Im (11.8.8) \ U↵+`. Let us write
m = n(e@t1 � e@t2) for n 2 U��1 for � big enough. Assume that � > ↵+ ` and [n] 6= 0

in gr
U

��1. Then the class [n] of n in gr
U

��1 satisfies [n](e@t1 � e@t2) = 0 in gr
U

�
, hence

is zero, a contradiction. This shows that Im (11.8.8) \ U↵+` = U↵+`�1(e@t1 � e@t2), as
wanted (see Exercise 5.2(7)).

11.8.12. Remark. Let us keep the assumptions of Lemma 11.8.9 and let us equip
µeN

with the filtration U•
µeN naturally induced by U•(

µeN1 ⇥eD
µeN2). We then have

gr
U

↵

µeN = Coker

h
gr

U

↵�1(
µeN1 ⇥eD

µeN2)

e@t1 � e@t2��������! gr
U

↵
(
µeN1 ⇥eD

µeN2)

i
.

Formula (11.8.11) leads to
(11.8.12 ⇤) gr

U

↵

µeN '
L

↵12(�1,0]
(gr

V

↵1

µeN1 ⇥ gr
V

↵�↵1

µeN2).

In particular, each gr
U

↵

µeN is strict, and U•
µeN satisfies all properties of the V -filtration

except possibly the eDX [t]he@�1
t
i-coherence, so we cannot infer that

µeN is strictly R-spe-
cializable along (e@�1

t
).
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Nevertheless, if ↵1 2 (�1,↵), we have ↵ � ↵1 2 (0,↵ + 1) and we replace isomor-
phically gr

V

↵�↵1
with gr

V

↵�↵1�1(1) so that all indices belong to (�1, 0] and (11.8.12 ⇤)
reads

gr
U

↵

µeN '
L

↵12(�1,↵)
(gr

V

↵1

µeN1 ⇥ gr
V

↵�↵1�1
µeN2(1))�

L
↵12[↵,0]

(gr
V

↵1

µeN1 ⇥ gr
V

↵�↵1

µeN2).

If we write �� for gr
U

↵
(1) if � = exp 2⇡i↵ 6= 1 and �1 = gr

U

0
, we find

��

µeN '
L

↵12(�1,↵][{0}
(��1

µeN1 ⇥ ��/�1

µeN2)�
L

↵12(↵,0)
(��1

µeN1 ⇥ ��/�1

µeN2)(�1).

11.8.c. Proof of Theorem 11.8.1. We take up the notation of Lemma 11.8.2 and
we will apply the results of Section 11.8.b. From the exact sequence of Lemma 11.8.2
we obtain, by tensoring over eC[e@t1 , e@t2 ] with eC[e@t1 , e@t2 , e@�1t1

, e@�1
t2

] (and since the latter
is flat over the former), the exact sequence

0 �! eN1µ ⇥eD
eN2µ

e@t1 � e@t2��������! eN1µ ⇥eD
eN2µ �!

µeN �! 0.

By the assumptions in the Theorem and Lemma 11.8.6, eN1µ, eN2µ and
µeN are strict

and strictly R-specializable along (e@�1
t1

), (e@�1
t2

) and (e@�1
t

) respectively. In view
of Lemmas 11.8.6 and 11.8.10 and of Remark 11.8.12, we are reduced to proving
that U•(

eN1µ ⇥eD
eN2µ) induces V•

µeN, that is, the image of each U↵(
eN1µ ⇥eD

eN2µ) is
eDX [t]he@�1

t
i-coherent.

The finiteness on eN1µ⇥eD
eN2µ a priori involves the independent actions of t1 and t2,

while we can only use the action of t1 + t2 on
µeN. We will thus prove that finiteness

for V↵

µeNi already holds without taking into account the action of Ei, that is, V↵i

µeNi

is eDX [e@�1
ti

]-coherent. This will imply that each U↵(
eN1µ ⇥eD

eN2µ) is eDX [e@�1
t1

, e@�1
t2

]-
coherent and thus the module U↵

µeN induced on
µeN is eDX [e@�1

t
]-coherent. As noticed

in Remark 11.8.12, Formula (11.8.12 ⇤) gives then the Thom-Sebastiani formula in
the theorem.

Let us therefore show the eDX [e@�1
t

]-coherence of V↵

µeN, if eN = eM[e@t] is strict and
strictly R-specializable along (t). By Proposition 10.7.3, these two properties imply
that each V↵

eN is eDX [t]-coherent. But eN is supported on the graph of g, hence t� g

acts in a nilpotent way on any section of eN. This implies that V↵
eN is eDX -coherent.

The formula of Exercise 11.9 gives the eDX [e@�1
t

]-coherence of V↵

µeN if ↵ > �1, hence
that of V↵

µeN for any ↵.

11.9. The Kodaira-Saito vanishing property

Let X be a complex projective manifold of dimension n and let aX : X!pt denote
the constant map. Let eM be a strict coherent eDX -module and let (M, F•M) be
the corresponding filtered DX -module. Recall that the de Rham complex p

DRM is
naturally filtered (see §8.4.9).
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11.9.1. Definition. We say that eM satisfies the Kodaira-Saito vanishing property if for
any ample line bundle L on X,

H
k
(X,L

�1 ⌦ gr
F p

DRM) = 0 for k < 0,(⇤)

H
k
(X,L⌦ gr

F p

DRM) = 0 for k > 0.(⇤⇤)

The aim of this section is to give a criterion on eM to ensure that it satisfies the
Kodaira-Saito vanishing property (Theorem 11.9.5). We will see in Chapter 16 that,
if eM underlies a pure Hodge module, or a W -filtered Hodge module, then eM satisfies
these criteria, hence the Kodaira-Saito vanishing property.

11.9.a. A criterion for the Kodaira-Saito vanishing property. For an ample
line bundle L on X, we choose a positive integer m such that L⌦m defines an embed-
ding X ,! P

N for some N and let ◆H : H ,! X be a smooth hyperplane section of X.
In the following, we assume that m > 2 in order to regard the line bundle L

�1 as a
direct summand of a bundle obtained by the following geometric construction.

11.9.2. Cyclic coverings. Classical constructions of coverings (see [Laz04, §4.b] and
[EV86, §2]) produce a finite morphism f : X

0 ! X satisfying the following properties:
(1) the source X

0 is smooth, as well as H
0
:= f

�1
(H),

(2) the restriction f : H
0 ! H is an isomorphism,

(3) setting U = X rH and U
0
= f

�1
(U) = X

0
rH

0, the restriction f : U
0 ! U is

a degree m covering, and f is cyclically ramified along H,
(4) the bundle f

⇤
L is very ample, H 0 := f

�1
(H) ' H is a corresponding hyper-

plane section of X 0, and U
0 is affine,

(5) there exists a canonical isomorphism f⇤OX0 '
L

m�1
i=0

L
�i (with L

0
:= OX).

We will prove the next proposition in Section 11.9.b.

11.9.3. Proposition. Let f : X
0 ! X be such a cyclic covering. Then the pushforward

Df⇤e!X0 of the right eDX0-module e!X0 has nonzero cohomology in degree zero only,
Df

(0)

⇤ e!X0 is strict and decomposes as
L

m�1
i=0

e!(i)

X
with e!(0)

X
' e!X . Furthermore, for

i = 1, . . . ,m� 1, we have e!(i)

X
' e!(i)

X
[⇤H] ' e!(i)

X
[!⇤H].

11.9.4. Notation. We write Df
(0)

⇤ e!X0 = e!X � e!0
X

with e!0
X

=
L

m�1
i=1

e!(i)

X
, and we use

the corresponding notation Df
(0)

⇤ !X0 = !X � !0X for the underlying DX -modules.

11.9.5. Theorem. Let eM be a left eDX-module which is strictly holonomic (so that
D eM is concentrated in degree zero and is strictly holonomic, see Proposition 8.8.38).
Assume that there exists a hyperplane section H (relative to L

⌦m) which is strictly
non-characteristic for eN = eM or D( eM) such that

(1) with respect to the associated cyclic covering f : X
0 ! X, the pushforward

C[z]-modules DaX⇤(e!0X ⌦ eN) are strict (i.e., torsion-free);
(2) the non-characteristic restriction D◆H⇤eNH := D◆H⇤(D◆

⇤
H
eN) satisfies the Kodai-

ra-Saito vanishing property.
Then eM and D eM satisfy the Kodaira-Saito vanishing property.
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11.9.6. Remark (A condition which is almost equivalent to 11.9.5(1))
We can replace Condition 11.9.5(1) by the stronger condition:

(10) the pushforward complex DaX0⇤(Df
(0)⇤eN) is strict.

Indeed, by the adjunction formula of Example 8.7.31, we have an isomorphism

Df⇤(Df
(0)⇤eN)

right ' Df⇤(Df
(0)⇤eOX)

right ⌦eOX

eN ' Df⇤e!X0 ⌦eOX

eN.

According to Proposition 11.9.3, the latter term reads (e!X � e!0
X
) ⌦ eN. Therefore,

Condition (10) is equivalent to the strictness of DaX⇤((e!X � e!0
X
) ⌦ eN), in view of

Theorem 8.7.23.

11.9.b. Cyclic coverings and D-modules. We fix a morphism f : X
0 ! X as

in §11.9.2 in the sequel. The bundle f⇤OX0 is naturally equipped with a logarithmic
connection with poles along H extending from U to X the natural pushforward bundle
with connection f⇤(OU 0 , d), each L

�i is equipped with a logarithmic connection with
poles along H and residue equal to (i/m) Id, and the isomorphism is compatible with
the connections. In other words, if V•DX denotes the V -filtration relative to H, then
each L

�i is equipped with a left V0DX -module structure. We set L
0
:=

L
m�1
i=1

L
�i.

For i = 1, . . . ,m � 1, L
�i
(⇤H) is a holonomic DX -module and we have L

�i
=

V
i/m

(L
�i
(⇤H)). We rather consider L

�i
(H) = V

�i(L
�i
(⇤H)) with �i = �1 + i/m 2

(�1, 0), so that the V -filtration of L�i(⇤H) is defined, for ` 2 Z, by

V
�i+`

(L
�i
(⇤H)) = L

�i
((1� `)H).

The F -filtration of L�i(⇤H) is then defined by setting FpL
�i
(⇤H) = FpDX · L�i(H)

(p > 0). Let us consider the strict eDX -module eL(i)
= RF (L

�i
(⇤H)). We define a

V -filtration of eL(i) by the expected formula, for ` > 0,
V

�i+`eL(i)
= L

�i
((1� `)H)⌦C C[z],

V
�i�`eL(i)

= (L
�i
(H)⌦ 1)� (L

�i
(2H)⌦ z)� · · ·� (L

�i
(`H)⌦ z

`�1
)

� (L
�i
((`+ 1)H)⌦ z

`
C[z]).

This formula shows that eL(i) is strictly R-specializable along H and that eL(i)
=

eL(i)
[⇤H] = eL(i)

[!⇤H].
Let us now turn right. The OX -module f⇤!X is also OX -locally free. Side-changing

from left to right the V0DX -module structure is made explicit by the next lemma.

11.9.7. Lemma. The locally free OX-module f⇤!X is naturally endowed with a right
V0DX-module structure. As such, it decomposes as the direct sum of rank-one bundlesL

m�1
i=0

!
(i)

X
, with !

(0)

X
= !X and !

(i)

X
' !X ⌦OX

L
�i
(H) for each i = 1, . . . ,m � 1,

equipped with its natural right V0DX-module structure induced by that of !X and the
left one on L

�i
(H).

Sketch of proof. We consider the exact sequence of coherent sheaves

0 �! !X0 �! !X0(H
0
)

ResH0������! !H0 �! 0.
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On the one hand, the cotangent map to f induces a commutative diagram, with
fH0 := f|H0 ' Id,

f
⇤
!X(H)

f
⇤
ResH

//

oT
⇤
f

✏✏

f
⇤
H0!H

o T
⇤
fH0

✏✏

0 // !X0 // !X0(H
0
)

mResH0
// !H0 // 0

from which one deduces an exact sequence

0 �! f⇤!X0 �! !X(H)⌦ f⇤OX0
f⇤f
⇤
ResH���������! fH⇤!H0 = !H �! 0.

From the splitting !X(H)⌦ f⇤OX0 = !X(H)� (!X(H)⌦L
0
) and the exact sequence

for ResH , we deduce the splitting

f⇤!X0 ' !X � !0X , with !
0
X

:= !X(H)⌦ L
0
= !X ⌦ L

0
(H).

We consider the corresponding properties for right eDX -modules. For i=1, . . . ,m�1,
we set e!(i)

X
= e!X ⌦ eL(i). Then e!(i)

X
= e!(i)

X
[⇤H] = e!(i)

X
[!⇤H]. Setting ↵i = �i/m,

we obtain, for ` > 0,

(11.9.8)

8
>><

>>:

V↵i�`(e!
(i)

X
) = !

(i)

X
(�`H)⌦C C[z],

V↵i+`(e!(i)

X
) = (!

(i)

X
⌦ 1)� (!

(i)

X
(H)⌦ z)� · · ·

� (!
(i)

X
((`� 1)H)⌦ z

`�1
)� (!

(i)

X
(`H)⌦ z

`
C[z]),

and gr
V

↵
(e!(i)

X
) = 0 for ↵ /2 ↵i + Z.

11.9.9. Lemma. For each i = 1, . . . ,m� 1 and each ` 2 Z, V↵i+`(e!(i)

X
) is eOX-flat.

Proof. This is clear if ` 6= 0, since V↵i+`(e!(i)

X
) is eOX -locally free in that case. If ` > 1

and eF ,! eG is an inclusion of eOX -modules, we have

V↵i+`(e!(i)

X
)⌦eOX

eF =
L̀
j=0

(!
(i)

X
(jH)⌦OX

z
jeF),

and V↵i+`(e!(i)

X
)⌦eOX

eF ! V↵i+`(e!(i)

X
)⌦eOX

eG remains injective since !(i)

X
(jH) is OX -lo-

cally free of rank one, so the assertion follows.

Proof of Proposition 11.9.3. According to (8.52 ⇤) in Exercise 8.52, we have, setting
n = dimX = dimX

0,

Df⇤e!X0 = f⇤(e⌦n+•
X0 ⌦

f�1eOX

f
�1 eDX).

The first assertion is a local question near a point of H, so that we can assume that
there exist local coordinates (x

0
1
, x2, . . . , xn) on X

0 and coordinates (x1, x2, . . . , xn)

on X such that f(x
0
1
, x2, . . . , xn) = (x

0m
1
, x2, . . . , xn). By the external product opera-

tion, one is reduced to the case where X
0 is a disc with coordinate x

0 and f(x
0
) = x

0m.
The complex e⌦1+•

X0 ⌦
f�1eOX

f
�1 eDX is the complex of right f

�1 eDX -modules

eOX0 ⌦
f�1eOX

f
�1 eDX

�er����! e⌦1

X0 ⌦
f�1eOX

f
�1 eDX ,
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with er : (g ⌦ P ) 7! edg ⌦ P + gedf ⌦ e@xP , that is, factoring out dx
0,

(g ⌦ P ) 7�! g
0 ⌦ P +mgx

0m�1 ⌦ e@xP.

By using the standard basis (e@k
x
)k>0 of eDX , f⇤ of this morphism writes

L
k>0

f⇤eOX0 ⌦ e@k
x

'��!
L
k>0

f⇤eOX0 ⌦ e@k
x

X

k>0

gk ⌦ e@k
x
7��!

X

k>0

(g
0
k
+mgk�1x

0m�1
)e@k

x
,

and the right action of eOX is obtained by the formula

(gk(x
0
, z)⌦ e@k

x
) · h(x, z) =

kX

j=0

k!

j!(k � j)!
gk(x

0
, z)(e@k�j

x
h)(x

0m
, z)⌦ e@j

x
,

while the right action of e@x is the obvious one. By considering the highest degree
terms, one checks that ' is injective, as this amounts to the injectivity of g 7! mgx

0m�1

from f⇤eOX0 to itself, which is clear. This implies the first assertion of the proposition.
In a similar way one checks that z acts in an injective way on Coker', which implies
the strictness of Coker f⇤ er.

We will now check that Coker f⇤ er has no x-torsion. First, the formula for ' shows
that an element of Coker' has a unique representative

P
k>0

gk(x
0
, z)⌦ e@k

x
such that,

for k > 1, gk(x0, z) = x
0akuk(x

0
, z) with u(0, z) 6⌘ 0 and ak < m� 1. For such a term

gk(x
0
, z)⌦ e@k

x
(k > 1), we have

(gk(x
0
, z)⌦ e@k

x
) · x = x

0m
gk ⌦ e@k

x
+ kzgk

e@k�1
x

⇠ (�@(x0gk/m)/@x
0
+ kzgk)⌦ e@k�1

x

=

h⇣
ak + 1

m
+ kz

⌘
uk +

1

m
x
0 @uk

@x0

i
x
0ak ⌦ e@k�1

x
,

which has the normal form as above, since the coefficient of x0ak does not vanish at
x = 0. Assume thus that (

P
k>0

gk(x
0
, z) ⌦ e@k

x
) · x = 0, and that the first term is

written in normal form.
• If gk 6= 0 for some k > 2, then the above computation shows a contradiction with

the assumption.
• If gk 6= 0 only for k = 0, 1, then the previous computation and the assumption

imply

x
0m
g0 +

h⇣
a1 + 1

m
+ z

⌘
u1 +

1

m
x
0 @u1

@x0

i
x
0a1 = 0,

which also leads to a contradiction since either g1 6= 0 and then a1 < m�1, or g1 = 0

and g0 6= 0.

Returning now to the general situation, these results in dimension one imply the
strictness assertion of the proposition, so that Df

(0)

⇤ e!X0 corresponds to a coherent fil-
tered DX -module (Df

(0)

⇤ !X0 , F•), and Df
(0)

⇤ !X0 , as well as Df
(0)

⇤ e!X0 , has no H-torsion.
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The filtration Fk(Df
(0)

⇤ !X0) is obtained as the image of the zero-th cohomology of
the filtered complex f⇤(⌦

n+•
X0 ⌦f

�1
Fk�nDX) to Df

(0)

⇤ !X0 . The filtration is thus given
by the formula

(11.9.10) Fp�n(Df
(0)

⇤ !X0) =

8
>><

>>:

0 if p < 0,

image[f⇤!X0 ⌦ 1! Df
(0)

⇤ !X0 ] if p = 0,

F�n(Df
(0)

⇤ !X0) · FpDX if p > 0.

Since f⇤!X0 is OX -locally free and since the map above is an isomorphism away from
H, it is thus injective and we can identify F�n(Df

(0)

⇤ !X0) with f⇤!X0 . In particular,
Df

(0)

⇤ !X0 is DX -generated by f⇤!X0 , and its filtration is that induced by F•DX by
means of this action. Let us consider the filtered DX -submodule of Df

(0)

⇤ !X0 generated
by !(i)

X
for i = 0, . . . ,m� 1.

• If i = 0, this is nothing but !X with its standard filtration jumping at �n only.
• If i > 1, since Df

(0)

⇤ !X0 has no H-torsion, this submodule is contained, hence
equal, to the middle extension !(i)

X
(⇤H), and the filtrations coincide, so that e!(i)

X
is a

eDX -submodule of Df
(0)

⇤ e!X0 .
We obtain a natural morphism

L
m�1
i=0

e!(i)

X
! Df

(0)

⇤ e!X0 which is an isomorphism away
from H, and since the left-hand side is a middle extension, it is injective. Lastly, For-
mula (11.9.10) together with Lemma 11.9.7 imply its surjectivity, thereby concluding
the proof.

11.9.c. A vanishing result for holonomic DX-modules. The setting is as above
(in particular, Properties (1)–(4) of §11.9.2 are assumed to hold). We will make use
of the following basic vanishing result.

11.9.11. Lemma. Let N be a holonomic having a coherent filtration. Then

H
k
(X
0
,
p

DR(N(⇤H 0)) = 0 8 k > 0.

Sketch of proof. That a holonomic N on any complex manifold admits a coherent filtra-
tion is known to be true (see [Mal04, Th. II.3.1]). Our assumption allows us not to re-
fer to this complicated result. In any case, as we mainly work with eD-modules, we only
deal with such holonomic DX0 -modules N. The assumption implies that the localized
module N(⇤H 0) also has a coherent filtration, being isomorphic to OX0(⇤H 0)⌦O

X0 N.
The GAGA property for each step FpN(⇤H 0) of the coherent filtration F•N(⇤H 0)

extends to N(⇤H 0) and, denoting with the exponent alg the sheaves in the Zariski
topology, it is enough to prove that H

k
(X
0alg

,
p

DR(Nalg
(⇤H 0)) for k > 0. Almost by

definition, we have

H
k
(X
0alg

,
p

DR(Nalg
(⇤H 0)) = H

k
(U
0alg

,
p

DR(Nalg|U 0alg).

Since U
0 is affine, we have H

i
(U
0alg

,⌦
j

U 0alg⌦FpN
alg|U 0alg) = 0 for any i > 0, any j and

any p and, passing to the limit with respect to p (as we work in a Noetherian space),
we find H

i
(U
0alg

,⌦
j

U 0alg ⌦ Nalg|U 0alg) = 0 for any i > 0 and any j > 0. It follows
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that H
k
(U
0alg

,
p

DR(Nalg|U 0alg) is the cohomology of the complex of global sections
⌦

n+•
(U
0alg

)⌦Nalg
(U
0alg

), and the assertion of the lemma follows.

Let M be a holonomic left DX -module having a coherent filtration and let M0

be the left DX -module associated with the right DX -module !0
X
⌦OX

M (see Nota-
tion 11.9.4).

11.9.12. Lemma. Under this assumption, we have H
k
(X,

p

DRM0) = 0 for k > 0.

Proof. Since f is flat, we have Df
⇤M = Df

⇤(0)M. Furthermore, the adjunction mor-
phism of Proposition 8.7.30 induces an isomorphism (see Example 8.7.31):

Df⇤(Df
⇤(0)M) ' Df

(0)

⇤ (Df
⇤(0)M) ' (Df

(0)

⇤ !X0 ⌦OX
M)

left
,

so that, by Lemma 11.9.7,

(11.9.13) Df
(0)

⇤ (Df
⇤(0)M) 'M�M0.

Similarly, we have

Df⇤(Df
⇤(0)M(⇤H)) = Df

(0)

⇤ (Df
⇤(0)M(⇤H)) ' (Df

(0)

⇤ !X0(⇤H)⌦OX
M)

left
.

Since !0
X

= !
0
X
(⇤H) is a direct summand of Df

(0)

⇤ !X0(⇤H), it is enough to prove the
vanishing of Hk

(X,
p

DR[Df⇤Df
⇤(0)M(⇤H)]) for k > 0. This hypercohomology is equal

to H
k
(X
0
,
p

DR[Df
⇤(0)M(⇤H)]). Since Df

⇤(0)
[M(⇤H)] = [Df

⇤(0)M](⇤H 0) and since this
holonomic DX0 -module clearly admits a coherent filtration obtained from that of M,
we can apply Lemma 11.9.11 to it and conclude the proof.

11.9.14. Proposition. Assume moreover that H is non-characteristic for M. Then we
have H

k
(X,

p

DRM0) = 0 for k 6= 0.

Proof. The assumption on H implies that f is non-characteristic for M and duality of
D-modules commutes with the pullback Df

⇤ (see e.g. [HTT08, Th. 2.7.1(ii)]). Since f
is flat, we have we have Df

⇤(0)
= Df

⇤ (Remark 8.6.7). We conclude that we have a
functorial isomorphism of DX0 -modules

Df
⇤(0)

(M_
) ' (Df

⇤(0)M)
_
.

On the other hand, the pushforward Df⇤ commutes with duality (see e.g. [Kas03,
Prop. 4.39]), so that, functorially with respect to M,

Df⇤
⇥
(Df
⇤(0)M)

_
⇤
' Df⇤

⇥
(Df
⇤(0)M)

⇤_
,

and taking cohomology in degree zero we obtain

Df
(0)

⇤
⇥
(Df
⇤(0)M)

_
⇤
' Df

(0)

⇤
⇥
(Df
⇤(0)M)

⇤_
,

and finally
Df

(0)

⇤ Df
⇤(0)

(M_
) ' (Df

(0)

⇤ Df
⇤(0)M)

_
.

This isomorphism is compatible with the decomposition (11.9.13), hence we find an
isomorphism (M0)_ ' (M_

)
0. By applying the result above to the dual M_ of M

(which is also non-characteristic along H), we find H
k
(X,

p

DR(M_
)
0
) = 0 for k > 0,
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that is, Hk
(X,

p

DR(M0)_) = 0 for k > 0, hence H
�k

(X,
p

DRM0)_ = 0 for k > 0, as
was to be proved.

11.9.d. Proof of Theorem 11.9.5. Let M be a coherent left DX -module equipped
with a coherent FDX -filtration F•M. We set eM = RFM.

Synopsis of the proof. We assume that eM is strictly holonomic and satisfies the
assumptions of Theorem 11.9.5.

(a) A duality argument (Lemma 11.9.15) together with the assumptions for eM and
D eM reduces the proof to that of 11.9.1(⇤) for eM and D eM. We then argue for eM.

(b) Strictness of DaX⇤(e!0X⌦ eM) (Assumption 11.9.5(1)) together with the vanishing
result of Proposition 11.9.14 imply the vanishing of Hk

(X, gr
F p

DR(!
0
X
⌦M)) for any

k 6= 0.
(c) That H is strictly non-characteristic with respect to eM implies that e!0

X
⌦ eM =

(e!0
X
⌦ eM)[⇤H] and we can compute p

DR(e!0
X
⌦ eM) by means of a logarithmic de Rham

complex (see Remark 11.3.7). This enables us to identify gr
F p

DR(!
0
X
⌦ M) with

L
0 ⌦ gr

F p

DR(M[⇤H]), that is, to neglect the action of the connection on L
0. From

the previous step we conclude that Hk
(X,L

0⌦ gr
F p

DR(M[⇤H])) = 0—and therefore
H

k
(X,L

�1 ⌦ gr
F p

DR(M[⇤H])) = 0 since L
�1 is a direct summand of L0—for any

k 6= 0.
(d) Assumption 11.9.5(2) yields the vanishing of Hk

(X,L
�1⌦gr

F p

DR(D◆H⇤MH))

for k < 0.
(e) From the exact sequence (see Proposition 11.2.9)

0 �! eM �! eM[⇤H] �! D◆H⇤ eMH(�1) �! 0

and the strictness of each term, we obtain an exact sequence of complexes

0 �! gr
F p

DR(M) �! gr
F p

DR(M[⇤H]) �! gr
F p

DR(D◆H⇤MH)(�1) �! 0

which remains exact after tensoring by the locally free OX -module L
�1. The asso-

ciated long exact sequence for H
k
(X,L

�1 ⌦ gr
F p

DR(•)), together with (c) and (d),
yields the vanishing of Hk

(X,L
�1 ⌦ gr

F p

DR(M)) for k < 0, which is the conclusion
of Theorem 11.9.5 for eM.

We provide below the proof of (a) and (c), and the remaining parts of the synopsis
are straightforward.

Proof of (a)
11.9.15. Lemma. Assume that eM is strictly holonomic. Then, for any line bundle L

on X, we have an isomorphism

H
k
(X,L⌦ gr

F p

DR eM) 'H
�k

(X,L
�1 ⌦ gr

F p

DR(D eM))
_
.

It follows that 11.9.1(⇤) for eM (resp. D eM) assuming 11.9.5(1) and (2) for eM
(resp. D eM) yields 11.9.1(⇤⇤) for D eM (resp. eM).
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Proof. Let us consider the right setting for simplicity, so that grF p

DR eM = gr
F
Sp eM.

Grothendieck-Serre duality for the bounded complex L ⌦ gr
F
Sp eM of eOX -modules

with coherent cohomology (see Lemma 8.8.40) yields an isomorphism

H
k
(X,L⌦ gr

F
Sp eM) 'H

�k
(X,D(L⌦ gr

F
Sp eM))

_
.

We conclude with the identifications (the first one is clear)

D(L⌦ gr
F
Sp eM) ' L

�1 ⌦D(gr
F
Sp eM) ' L

�1 ⌦ (gr
F
Sp(D eM)),

where the latter isomorphism is provided by Proposition 8.8.41.

Proof of (c). For L and the embedding X ,! P
N as above, assume that there exists

a hyperplane section ◆H : H ,! X of X which is strictly non-characteristic with
respect to eM. Notice that a non-characteristic hyperplane section always exist (this
follows from the holonomicity property of eM). On the other hand, such a hyperplane
section is strictly non-characteristic as soon as eM is strictly R-specializable along H

(see Proposition 9.5.2(2)). In particular, such a strictly non-characteristic hyperplane
section always exists for polarizable Hodge modules defined in Chapter 14.

11.9.16. Lemma. Assume that the left eDX-module eM is strictly holonomic and that H
is a hyperplane which is strictly non-characteristic with respect to eM. Then

(1) e!0
X
⌦ eM is strictly R-specializable along H;

(2) V•(e!0X ⌦ eM) = V•(e!0X)⌦ eM;
(3) e!0

X
⌦ eM = (e!0

X
⌦ eM)[⇤H].

Proof. The question is local on X, so we assume that X = H⇥�t. For i = 1, . . . ,m�1,
if we set U↵i+`(e!(i)

X
⌦ eM) = V↵i+`(e!(i)

X
)⌦ eM, we have (see Lemma 11.9.9)

U↵i+`(e!(i)

X
⌦ eM) =

(
!
(i)

X
(`H)⌦OX

eM for ` 6 0,
L

`

j=1
(!

(i)

X
(jH)⌦OX

z
j eM) for ` > 1.

It is then straightforward to show that U↵i+`(e!(i)

X
⌦ eM) satisfies the characteristic

properties of the canonical V -filtration, and strictness of gr
U

↵i+`
(e!(i)

X
⌦ eM) follows

from the strictness of eM/t eM. We conclude that e!(i)

X
⌦ eM is strictly R-specializable

along H, and
V0(e!(i)

X
⌦ eM) = V↵i

(e!(i)

X
⌦ eM) = !

(i)

X
⌦OX

eM.

Let us now check (3). We recall Definition 11.3.1. We use that, for j > 0, we have
!
(i)

X
(jH)@t = !

(i)

X
((j + 1)H) (check this on the left V0DX -module L

�i
(H)). We then

find

(!
(i)

X
(jH)⌦OX

z
j eM) · e@t = (!

(i)

X
((j + 1)H)⌦OX

z
j+1 eM) mod V↵i+j(e!(i)

X
⌦ eM),

which implies e!(i)

X
⌦ eM = V0(e!(i)

X
⌦ eM) · eDX , according to the above formula for

V•(e!(i)

X
⌦ eM).



11.10. EXERCISES 461

We can now end the proof of (c). The idea is to express the de Rham complex
p

DR(e!0
X
⌦ eM) in terms of the logarithmic de Rham complex, for which it can be

readily seen that the connection on L
0 can be neglected on the graded complex.

By Proposition 11.3.3(7) and (3) above, we have

e!0
X
⌦ eM = V0(e!0X ⌦ eM)⌦

V0
eDX

eDX ,

and Proposition 9.2.2 yields p

DR(e!0
X
⌦ eM) ' p

DRlog(V0(e!0X ⌦ eM)). We also have,
recalling that eM = V

0 eM by strict non-characteristicity,

V0(e!0X ⌦ eM) = !
0
X
⌦OX

eM = !X ⌦OX
L
0
(H)⌦OX

eM

= !X ⌦OX
L
0 ⌦OX

eM(H) = !X ⌦OX
L
0 ⌦OX

V
�1

( eM(⇤H)).

By side-changing, we conclude that
p

DRlog(V0(e!0X ⌦ eM)) ' p

DRlog(L
0 ⌦OX

V
�1

( eM(⇤H))).

Modulo z, the left-hand side becomes gr
F p

DRlog(V0(!
0
X
⌦M)). The connection on

the right-hand side reads
er(`0 ⌦m) = zr(`0)⌦m+ `

0 ⌦ er(m),

so that, modulo z, it reads `0⌦m 7! `
0⌦ [er(m) mod z]. We deduce the identification

gr
F p

DRlog(L
0 ⌦OX

V
�1

(M(⇤H))) ' L
0 ⌦OX

gr
F p

DRlog(V
�1

(M(⇤H))).

Applying Propositions 9.2.2 and 11.3.3(7) once more yields

gr
F p

DRlog(V
�1

(M(⇤H))) ' gr
F p

DR(M[⇤H]).

In conclusion, grF p

DR(e!0
X
⌦ eM) ' L

0⌦ gr
F p

DR(M[⇤H]). This ends the proof of (c),
and thereby that of Theorem 11.9.5.

11.10. Exercises

Exercise 11.1. In the setting of Section 11.3.b, assume that g is smooth and set D =

g
�1

(0) = (g). Let ◆g : X ,! X ⇥ C be the graph inclusion and set H = X ⇥ {0}.
Show that eM[⇤D] as defined by 11.3.1 satisfies

D◆⇤ eM[⇤|D|] = ( eMg)[⇤H].

Conclude that eM[⇤g] exists and is equal to eM[⇤|D|].

Exercise 11.2. In the proof of Proposition 11.4.2, show however that the action of e@t
induces a eDX -module structure on Ker ⇢ and on Coker ⇢, and identify these eDX -mod-
ules with Ker canfM and Coker canfM respectively. [Hint : Argue as in Proposition
9.3.38.]

Exercise 11.3. We work within the full subcategory of eDX -modules which are strictly
R-specializable and localizable along D.

(1) Show that eM[⇤D] and eM[!D] are localizable along D and
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(a) the morphisms ( eM[!D])[⇤D]! eM[⇤D] and ( eM[!D])[!D]! eM[!D] induced
by eM[!D]! eM are isomorphisms,

(b) the morphisms eM[!D] ! ( eM[⇤D])[!D] and eM[⇤D] ! ( eM[⇤D])[⇤D] in-
duced by eM! eM[⇤D] are isomorphisms.

(2) Let g be a local equation of D. Show that there are isomorphisms of diagrams
(see Definition 9.7.3)

 g,1
eM[⇤g]

can
**

�g,1
eM[⇤g]

var
(�1)

⇠ii

'  g,1
eM

N

))

 g,1
eM(�1)

Id
(�1)
ii

and

 g,1
eM[!g]

can

⇠ **

�g,1
eM[!g]

var
(�1)
ii

'  g,1
eM

Id
**

 g,1
eM.

N
(�1)
ii

Exercise 11.4. We keep the assumptions as in Definition 11.5.2 and we also assume
also that D = (g). Recall that loc (resp. dloc) have been defined in 11.3.3(2)
(resp. 11.4.2(2)).

(1) Show that the kernel and cokernel of the natural morphism
loc � dloc : eM[!g] �! eM[⇤g]

are equal respectively to the kernel and cokernel of
�g,1(loc � dloc) : �g,1 eM[!g] �! �g,1

eM[⇤g],

and also to the kernel and cokernel of
N :  g,1

eM �!  g,1
eM(�1).

[Hint : Show that loc�dloc induces an isomorphism on V<0 and argue as in Proposition
9.3.38 for D◆g⇤( eM[⇤g]).]

(2) Identify  g,�
eM[!⇤g] with  g,�

eM and �g,1 eM[!⇤g] with image(N).
(3) Show that if N :  g,1

eM!  g,1
eM(�1) is strict, then loc � dloc : eM[!g]! eM[⇤g]

is strictly R-specializable.

Exercise 11.5. With the assumptions of Proposition 11.5.4, show similarly that the
morphism eM! eM[⇤g] (resp. eM[!g]! eM) is strictly R-specializable along (g) if and
only if the morphism var : �g,1

eM !  g,1
eM(�1) (resp. can :  g,1

eM ! �g,1
eM) is

strict.

Exercise 11.6 (Linear algebra 1). Let (M,N) be a graded C-vector space with a nilpo-
tent endomorphism N : M !M(�1). For " = 0, 1, set M (",k)

= M ⌦C J(",k) (J(",k) as
in Section 11.6.b) with nilpotent endomorphism

N
(",k)

:= N⌦ Id+ Id⌦J(",k) : M (",k) �!M
(",k)

(�1)

and similarly for N(",k). Show the following properties.
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(1) The morphism

M �!M
(",k)

m 7�!
P

k

i="
(�N)

i�"
m⌦ ei

induces an isomorphism KerN
k+1�" ⇠�! KerN

(",k) with respect to which the
natural morphism KerN

(",k) ! KerN
(",k+1) correspond to the natural morphism

KerN
k+1�"

,! KerN
k+2�" and the natural morphism KerN

(0,k) ! KerN
(1,k)

(�1)
correspond to the natural morphism KerN

k+1 �N�! KerN
k
(�1). In particular, if N

has finite order on M , show that have natural commutative diagrams

lim�!k
KerN

(0,k)

✏✏

lim�!k
KerN

k+1⇠
oo

�N
✏✏

⇠
// M

�N
✏✏

lim�!k
KerN

(1,k)
(�1) lim�!k

KerN
k
(�1)⇠

oo

⇠
// M(�1)

and the limits are achieved for k > ord(N).
(2) Show that the morphism

M
(",k) �!M("� k)

kX

i="

mi ⌦ ei 7�!
kX

i="

(�N)
k�i

mi

induces an isomorphism

CokerN
(",k)

:= M
(",k)

(�1)/ ImN
(",k) ⇠�!M("� (k + 1))/ ImN

k+1�"
,

and thus, if k > ord(N),
CokerN

(",k) 'M("� (k + 1)).

Identify the map CokerN
(",k)!CokerN

(",k+1) with N : M("�(k+1))!M("�(k+2))

and deduce that lim�!k
CokerN

(",k)
= 0.

(3) Show similar properties for the lower Jordan block. Note that the previous
diagram becomes

M
⇠

//

�N
✏✏

lim �k
CokerN

k

�N
✏✏

lim �k
CokerN(1,k)

⇠
oo

✏✏

M(�1) ⇠
// lim �k

CokerN
k+1

(�1) lim �k
CokerN(0,k)(�1)

⇠
oo

Exercise 11.7 (Linear algebra 2). We keep the notation as in Exercise 11.6.
(1) Show that the two composed natural maps

M
(0,k) �!M

(1,k)
(�1) N

(1,k)

������!M
(1,k)

(�2)

M
(0,k) N

(0,k)

������!M
(0,k)

(�1) �!M
(1,k)

(�2)and

coincide. Let ⌅k
M denote their kernel. In particular, N (0,k) induces a map

N
(0,k)

|⌅kM
: ⌅

k
M �! Ker

⇥
M

(0,k)
(�1)!M

(1,k)
(�2)

⇤
' (M ⌦ e0)(�1) 'M(�1).
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(2) Show that the map
M �KerN

k
(�1) �!M

(0,k)

(n,m) 7�! n⌦ e0 +
P

k

i=1
(�N)

i�1
m⌦ ei

induces an isomorphism onto ⌅k
M .

(3) Show that, under this isomorphism, N(0,k)

|⌅kM
: ⌅

k
M !M(�1) is identified with

(n,m) 7! Nn+m.
(4) Conclude that, if ord(N) is finite and k > ord(N), then the exact sequence

0 �! Ker
⇥
M

(0,k) !M
(1,k)

(�1)
⇤
�! ⌅

k
M �! KerN

(1,k) �! 0

is isomorphic to the naturally split sequence 0 ! M ! M �M(�1) ! M(�1) ! 0

with respect to which the exact sequence

0 �! KerN
(0,k) �! ⌅

k
M �! Ker

⇥
M

(0,k)
(�1)!M

(1,k)
(�2)

⇤
�! 0

corresponds to

0 �! Ker(N + Id) �!M �M(�1) N + Id������!M(�1) �! 0.

(5) Show similar properties for the lower Jordan block.

Exercise 11.8. Show that, if eM⇤ is strictly R-specializable along H, then so are eM(",k)

⇤
and eM⇤(",k), we have V•

eM(",k)

⇤ = (V•
eM⇤)(",k) and the lower similar equalities, and for

every �,  t,�(
eM(",k)

⇤ ) ' ( t,�
eM⇤)(",k), and other similar equalities with �t,1, together

with the lower similar equalities.

Exercise 11.9. Show that, for ↵ > �1, U↵

µeN defined by (11.8.7) is equal to V↵
eN +P

i>1
V0
eN · e@�i

t
. [Hint : Use that, for such an ↵ and for k > 1, V↵+k

eN = V<↵+k
eN +

V↵+k�1eN · e@t, see Proposition 9.3.25(b).]

11.11. Comments

The property that the localization along a hypersurface of holonomic DX -module
remains coherent and, better, holonomic, is one of the main applications of the the-
ory of the Bernstein polynomial (see [Ber72, Kas76, Kas78], see also [Bjö79] and
[Ehl87]).

The notion of localizable filtered DX -module has been introduced (with a differ-
ent terminology) by M. Saito in [Sai90] as an essential step for the theory of mixed
Hodge modules. The approach given here follows that of T. Mochizuki in [Moc15].
In particular, the parallel way to present localization and dual localization is due to
him. The proof of Proposition 11.2.20 owes much to that of [Voi02, Prop. 8.34].

The gluing construction for perverse sheaves goes back to the work of Verdier
[Ver85] and Beilinson [Bei87]. It plays an important role in M. Saito’s theory of
mixed Hodge modules [Sai90], where the construction of the maximal extension is
given in a geometric way. The approach given here is closer to that of Beilinson,
and has been much inspired by the treatment made by T. Mochizuki in [Moc15],
where this gluing construction is also fundamental for the theory of mixed twistor
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D-modules. Section 11.2.d is also much inspired from the treatment in [Moc11a,
§17.3].

The Thom-Sebastiani formula proved in Section 11.8 is due to M. Saito. An initial
proof had been given in an unpublished preprint dated 1990 [Sai11]. A simpler
proof has been given in [MSS20]. The proof of Theorem 11.8.1 is much inspired by
the latter. The proof of the Kodaira-Saito vanishing property is also much inspired
from that of [Sai90] (see also [Pop16]), but the need of using logarithmic de Rham
complexes is not explicit in these references, so we have adapted the proof in [Sch16];
lastly, we avoid arguing with perverse sheaves in Section 11.9.c.





CHAPTER 12

THE CATEGORY OF TRIPLES OF eDX-MODULES

Summary. The category of triple of filtered eDX -modules has been considered
in dimension one as a suitable abelian category containing the category of polar-
izable Hodge modules as a full subcategory (see Section 7.4.a). Our aim in this
chapter is to extend the notion of triples in any dimension. For that purpose,
we are led to extend the notion of (r,r)-flat sesquilinear pairing, used for the
definition of a polarized variation of C-Hodge structure (see Definition 4.1.4), to
the case where the flat bundle is replaced with a D-module. Such a sesquilinear
pairing takes values in the sheaf of distributions or of currents of maximal degree.
We also make precise its behaviour with respect to functors like pushforward,
smooth pullback, nearby and vanishing cycles and localization.

In this chapter, we keep Notation 9.0.1. In the first sections, we will only consider
OX -modules and DX -modules, as coherent filtrations will not play any role here.
We will use the constructions and results of Chapter 9 in this framework. We come
back to the filtered case in Section 12.7.

12.1. Introduction

One of the ingredients of a polarized variation of Hodge structure is a flat Hermitian
pairing (that we have denoted by S), which is (�1)w�p-definite on Hp,w�p. In this
chapter, we introduce the notion of sesquilinear pairing between holonomic DX -mod-
ules. It takes values in the sheaf of distributions (in fact a smaller sheaf, but we are
not interested in characterizing the image). This notion will not be used directly as
in classical Hodge theory to furnish the notion of polarization. Instead, we will take
up the definition of a C-Hodge structure as a triple (see Section 5.2) and mimic this
definition in higher dimension. Our aim is therefore to define a category of D-triples
(an object consists of a pair of DX -modules and a sesquilinear pairing between the
underlying DX -modules) and to extend to this abelian category the various functors
considered in Chapter 9.
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12.2. Distributions and currents on a complex manifold

12.2.a. Distributions and currents. Let X denote the complex manifold conju-
gate to X, i.e., with structure sheaf O

X
defined as the sheaf of anti-holomorphic

functions OX . Correspondingly is defined the sheaf of anti-holomorphic differential
operators D

X
. The sheaf of C1 functions on X is acted on by DX and D

X
on the

left and both actions commute, i.e., C1
X

is a left DX ⌦C D
X

-module. Similarly, the
sheaf of distributions DbX is a left DX⌦CDX

-module: by definition, on any open set
U ⇢ X, DbX(U) is dual to the space E2n

c
(U) of C1 2n-forms with compact support,

equipped with a suitable topology, and the presheaf defined in this way is a sheaf. On
the other hand, the space of CX(U) of currents of degree 0 on X is dual to C

1
c
(U)

with suitable topology. Then CX is the right DX ⌦C D
X

-module obtained from DbX

by the left-to-right transformation for such objects, i.e.,

CX = (!X ⌦C !X
)⌦(OX⌦OX

) DbX .

12.2.1. Notation. From now on, the notation A
X,X

will mean AX⌦CAX
(A = O or D).

De Rham complex. One can easily adapt Exercise 8.22 to prove that the C
1-de Rham

complex E2n+•
X

⌦C1
X

D
X,X

= E•
X
[2n] ⌦O

X,X
D

X,X
, where the differential is obtained

from the standard differential on C
1

k-forms and the universal connection rX +rX

on D
X,X

, is a resolution of En,n

X
= E2n

X
as a right D

X,X
-module.

We denote by Db
n�p,n�q
X

= En�p,n�q
X

⌦C1
X
DbX or DbX,p,q the sheaf of currents of

degree (p, q) (we also say of type (n � p, n � q)), that is, continuous linear forms on
C
1
c

differential forms of degree p, q.
The distributional de Rham complex yields then a resolution of CX as a right

D
X,X

-module:

(12.2.2) Db
•
X
[2n]⌦O

X,X
D

X,X

⇠�! CX .

Let us make precise that the morphism is induced by

Db
n,n

X
⌦D

X,X
= CX ⌦DX,X

�! CX , u⌦ P 7�! u · P.

The Poincaré and Dolbeault lemmas for distributions and for L2

loc
forms. Here, the com-

plex structure of X is not needed. It could be any differentiable manifold. The
Poincaré lemma for distributions, due to deRham [dR73, dR84], asserts that the
complex (Db

•
X
, d) is quasi-isomorphic to its subcomplex (E•

X
, d), which is itself, by the

standard Poincaré lemma, quasi-isomorphic to the constant sheaf CX . The notion of
current is important in the proof since it involves integration of currents (see Definition
12.2.9 below). The basic regularization procedure is given by the following lemma.

12.2.3. Lemma (Regularization lemma, [dR73, dR84]). Let U be an open subset of Rm.
For each " 2 (0, 1) and each integer p, there exist C-linear morphisms R" : Db

p
(U)!

Db
p
(U) and S" : Db

p�1
(U)! Db

p
(U) such that

(1) R" takes values in Ep
(U),

(2) R"(u)� u = dS"(u)� S"(du) for any u 2 Db
p
(U),

(3) R"(du) = dR"(u) and lim"!0 R"(u) = u weakly.
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On the other hand, the L
2 de Rham complex (L•

(2),X
, d) on X is the subcomplex of

(Db
•
X
, d) such that Lp

(2),X
consists of p-forms with coefficients in L

2

loc
in some (or any)

basis (dxI)#I=p and whose differentials are also L
2

loc
. The construction of R" and S"

also gives:

12.2.4. Lemma. If u has L
2

loc
coefficients, then so does S"(u).

12.2.5. Corollary (Poincaré lemmas). The inclusions of complexes

(CX , 0) ,�! (E
•
X
, d) ,�! (L

•
(2),X

, d) ,�! (Db
•
X
, d)

are quasi-isomorphisms.

Proof. That the first inclusion is a quasi-isomorphism is the standard Poincaré lemma.
Let us check the second inclusion for example. Let u be a local section of Lp

(2),X

which is d closed. Then (for any " 2 (0, 1)) S"(u) has L
2

loc
coefficients, and so does

dS"(u) = u � R"(u), so that S"(u) is a local section of Lp�1
(2),X

. It follows that u is
cohomologous to R"(u) in Lp

(2),X
, showing surjectivity Hp

(E•
X
, d) ! Hp

(L•
(2),X

, d),
hence the latter is zero for p > 0, by the standard Poincaré lemma. For p = 0, we use
that a distribution all of whose derivatives are zero is a locally constant function.

One defines in a similar way the Dolbeault complexes (Ep,•
X

, d
00
), (Lp,•

(2),X
, d
00
) and

(Db
p,•
X

, d
00
).

12.2.6. Theorem (Dolbeault lemmas). The inclusion of complexes

(⌦
p

X
, 0) ,�! (Ep,•

X
, d
00
) ,�! (Lp,•

(2),X
, d
00
) ,�! (Db

p,•
X

, d
00
)

are quasi-isomorphisms.

We refer e.g. to [GH78, p. 382–385] for the Dolbeault-Grothendieck theorem, i.e.,
(Db

p,•
X

, d
00
) is a resolution of ⌦p

X
, and to [Hör66, Th. 4.2.2] for the L

2-Dolbeault
lemma (the result proved in loc. cit. is stronger).

Distributions and currents depending continuously on a parameter. We wish to define
the notion of distribution depending continuously on the parameter s 2 S. We will
define such a sheaf on X ⇥ S by DbX⇥S/S .

Let S be a C
1 real manifold (we will mainly use S = Cs). Let E(n,n)

X⇥S/S,c
the sheaf

of C1 relative (with respect to the projection X⇥S ! S) (n, n) forms with compact
support. The sheaf on X ⇥S of distributions which are continuous with respect to S

is defined as follows. Given any open set W of X ⇥S, an element of DbX⇥S/S(W ) is
a C

1
(S)-linear map E

(n,n)

X⇥S/S,c
(W )! C

0

c
(S) which is continuous with respect to the

usual sup norm on C
0

c
(S) and the family of semi-norms on E

(n,n)

X⇥S/S,c
(W ) obtained

by taking the sup on some compact set of W of the module of partial derivatives up
to some order with respect to X. Given a compact set in W , the smallest order in @x
which is needed is called the order of u.
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Currents of maximal degree which are continuous with respect to S are defined sim-
ilarly. A section on W of CX⇥S/S is a continuous C

1
(S)-linear map C1

X⇥S,c
(W ) !

C
0

c
(S).

12.2.7. Lemma. Let u 2 DbX⇥S/S(U ⇥ V ). Then, for every so 2 V , its restriction to
s = so is well-defined as a distribution on U , and similarly for currents.

Proof. Let ⌘o 2 E
(n,n)

c (U) and let � be a C
1 function with compact support on V

such that �(so) = 1. Then u(⌘o ·�) is a continuous function on S that we can evaluate
at s = so. The correspondence ⌘o 7! u(⌘o · �)|s=so

obviously defines a distribution
on U , because |u(⌘o ·�)|s=so

| 6 supS |u(⌘o ·�)|. If �(s) is another such function on S

we have, by C
1
(S)-linearity,

u(⌘o · ��) = �u(⌘o · �) = �u(⌘o · �),

hence both take the same value at so.

12.2.b. Pushforward of currents. Let ⌘ be a C
1 form of maximal degree on X.

If f : X ! Y is a proper holomorphic map which is smooth, then the integral of ⌘ in
the fibers of f is a C

1 form of maximal degree on Y , that one denotes by
R
f
⌘.

If f is not smooth, then
R
f
⌘ is only defined as a current of degree 0 on Y , and the

definition extends to the case where ⌘ is itself a current of degree 0 on X (see Section
8.3.5 for the notion of current).

12.2.8. Remark. The definitions and properties below extend to the case when f is
only assumed to be proper on the support of the currents involved, see Exercise 12.4.

12.2.9. Definition (Integration of currents of degree (p, q)). Let f : X ! Y be a proper
holomorphic map and let u be a current of degree (p, q) on X. The current

R
f
u of

degree (p, q) on Y is defined by

(12.2.9 ⇤)
DZ

f

u, ⌘

E
= hu, ⌘ � fi, 8 ⌘ 2 Ep,q

c
(Y ).

This definition extends in a straightforward way if f is only assumed to be proper on
the support of u.

We continue to assume that f is proper. We will now show how the integration
of currents is used to defined a natural D

Y,Y
-linear morphism D,Df⇤ CX ! CY . The

simpler case of a closed embedding is treated in Exercise 12.2.
The integration of currents is a morphism

Z

f

: f⇤DbX,p,q �! DbY,p,q,

which is compatible with the d
0 and d

00 differentials of currents on X and Y . In other
words, taking the associated simple complex, it is a morphism of complexes

Z

f

: f⇤Db
•
X
[2n] �! Db

•
Y
[2m].
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Let us notice that the integration of currents is compatible with conjugation. Namely,
given a current up,q 2 �(X,Db

n�p,n�q
X

), its conjugate up,q 2 �(X,Db
n�q,n�p
X

) is
defined by the relation

hup,q, ⌘
q,pi := hup,q, ⌘

q,pi

for any test form ⌘
q,p. Then we clearly have

(12.2.10)
Z

f

up,q =

Z

f

up,q.

The notion of pushforward of a D
X,X

-module is modeled on that of a DX -module
in an obvious way (see Section 8.7.e). Since CX = (DbX)

right,right as a right D
X,X

-
module, we can apply the D

X,X
-variant of Exercise 8.52(5) (more precisely, (8.52 ⇤))

to get, since f is proper,

(12.2.11) D,Df⇤ CX ' f⇤(Db
•
X
[2n]⌦f�1O

Y,Y
f
�1D

Y,Y
) = f⇤Db

•
X
[2n]⌦O

Y,Y
D

Y,Y
.

The integration of currents
R
f

induces then a D
Y,Y

-linear morphism of complexes

(12.2.12) D,Df⇤ CX

R •

f���! Db
•
Y
[2m]⌦O

Y,Y
D

Y,Y
' CY ,

where we recall that the differential on the complex Db
•
Y
[2m] ⌦O

Y,Y
D

Y,Y
uses the

universal connection rY
+ rY on D

Y,Y
, and the isomorphism with CY is given by

(12.2.2).
On the left-hand side of (12.2.12), the term of degree zero reads f⇤ CX ⌦O

Y,Y
D

Y,Y

and, for a current u of degree zero on X and a differential operator P on Y , the
morphism (12.2.12) sends u⌦P to the current (

R
f
u)·P of degree zero on Y . It descends

to a morphism H0
(D,Df⇤ CX)! CY .

If we start from DbX , considered as a left D
X,X

-module, we have similarly by the
D

X,X
-variant of Exercise 8.52(5) (more precisely, (8.52 ⇤⇤)):

D,Df⇤DbX ' HomO
Y,Y

(!
Y,Y

, f⇤Db
•
X
[2n]⌦O

Y,Y
D

Y,Y
)

and the integration of currents induces a D
Y,Y

-linear morphism

(12.2.13) D,Df⇤DbX

R
f���! HomO

Y,Y
(!

Y,Y
,CY ) = DbY .

12.2.14. Remark (Proper support). One can relax the assumption that f is proper
on X. If f is only proper on a closed analytic subset Z ⇢ X, one replaces CX

resp. DbX in the previous arguments with the sheaves CX,Z resp. DbX,Z of currents
resp. distributions supported on Z, i.e., vanishing when applied to any test function
resp. form with compact support in X r Z (see Exercise 12.4).

More generally, considering the functor D,Df! instead of D,Df⇤, by replacing f⇤
with f!, enables one to only take into account currents with f -proper support, on
which

R
f

is defined, so that (12.2.12) and (12.2.13) are well defined on D,Df! CX and
D,Df! DbX .
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12.2.c. Moderate distributions. We refer to [Mal66, Chap. VII] for the results
in this subsection.

Let D be a reduced divisor in X, let OX(⇤D) be the sheaf of meromorphic func-
tions on X with poles along D, and let DbX,D be the subsheaf of DbX consisting of
distributions supported on D.

On the other hand, let j : X rD ,! X denote the open inclusion. By definition,
there is an exact sequence of left D

X,X
-modules

0 �! DbX,D �! DbX �! j⇤DbXrD .

The image of the latter morphism is the sheaf on X of distributions on X rD which
are extendable as distributions on X. It can be characterized as the subsheaf of
j⇤DbXrD consisting of distributions which can be tested along C

1 forms of maximal
degree on X rD having rapid decay along D. It is denoted by Db

modD

X
(sheaf on X

of distributions having moderate growth along D). It can be characterized more
algebraically. Indeed, we have

Db
modD

X
= OX(⇤D)⌦OX

DbX = O
X
(⇤D)⌦O

X
DbX .

In other words, DbX,D is equal to the subsheaf of DbX consisting of local sections
annihilated some power of g (or f), and we have a short exact sequence

0 �! DbX,D �! DbX �! Db
modD

X
�! 0.

The previous results apply to currents of degree 0 as well, and we keep similar notation.

12.2.15. Example (The case where D is smooth). If D is smooth, so that we denote it by
H, the sheaf DbX,H is identified with the push-forward, in the sense of D

X,X
-modules,

of DbH . If for example X = H ⇥ C, then, according to Exercise 12.2, we find exact
sequences

0 �! ◆⇤DbH [@t, @t] �! DbX �! DbX [1/t] �! 0,

0 �! ◆⇤ CH [@t, @t] �! CX �! CX [1/t] �! 0.

12.3. Sesquilinear pairings between DX-modules

The naive conjugation functor M 7! M transforms OX -modules (resp. DX -mod-
ules) into O

X
-modules (resp. D

X
-modules): let us regard O

X
as an OX -module by

setting f ·g := fg, and similarly let us regard D
X

as a DX -module; for an OX -module
(resp. a DX -module) M we then define M as O

X
⌦OX

M (resp. D
X
⌦DX

M). In other
words, for a local section m of M, we denote by m the same local section, that we act
on by f 2 O

X
(resp. D

X
) with the formula f ·m := fm.

12.3.1. Definition (Left sesquilinear pairing).
(1) A sesquilinear pairing s between left DX -modules M0,M00 is a D

X,X
-linear

morphism s : M0 ⌦C M00 ! DbX . When M0 = M00 = M, we speak of a sesquilinear
pairing on M.
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(2) The Hermitian adjoint of a left sesquilinear pairing s is s⇤ : M00 ⌦C M0 ! DbX

defined by s
⇤
(m
00
,m0) = s(m0,m00), that is,

h⌘, s⇤(m00,m0)i := h⌘, s(m0,m00)i

for any test form of maximal degree ⌘ (see (8.3.0 ⇤)).

12.3.2. Definition (Right sesquilinear pairing).
(1) A sesquilinear pairing s between right DX -modules M0,M00 is a D

X,X
-linear

morphism s : M0 ⌦C M00 ! CX . When M0 = M00 = M, we speak of a sesquilinear
pairing on M.

(2) The Hermitian adjoint of a right sesquilinear pairing s is s⇤ : M00 ⌦C M0 ! CX

defined by s
⇤
(m
00
,m0) = s(m0,m00), that is,

hs⇤(m00,m0), ⌘i := hs(m0,m00), ⌘i

for any test function ⌘ (see (8.3.0 ⇤)).

12.3.3. Side-changing. If s = s
left

: M0⌦CM00 ! DbX is a sesquilinear pairing between
left DX -modules M0,M00, then it determines in a canonical way a sesquilinear pairing
(recall Sgn(n) := "(n+ 1)/(2⇡i)

n, see Notation (0.2 ⇤))

(12.3.3 ⇤) (!X ⌦M0)⌦C (!X ⌦M00)
s
right

�����! !X ⌦ !X ⌦DbX = CX

(!
0 ⌦m

0
,!00 ⌦m00) 7�! Sgn(n)(!

0 ^ !00)⌦ s
left

(m
0
,m00).

Conversely, from a sesquilinear pairing between right DX -modules one recovers one
for left DX -modules.

The compatibility with Hermitian adjunction is given by the following relation:

(12.3.3 ⇤⇤) (s
right

)
⇤
= (s

left⇤
)
right

,

since Sgn(n)(!00 ^ !0) = Sgn(n)(!
0^!00). In both left and right cases we have s

⇤⇤
= s.

12.3.4. Extension to C
1 coefficients. Let us consider the right case for example. Let

us define a right action of D
X,X

on M⌦OX
C1
X

by setting

(m⌦ ⌘) · @xi
= m@xi

⌦ ⌘ �m⌦ @⌘/@xi and (m⌦ ⌘) · @xi
= �m⌦ @⌘/@xi.

Then s extends in a unique way as a C1
X

-linear morphism

(M0 ⌦OX
C1
X
)⌦C1

X
(M00 ⌦OX

C1
X
) �! CX

which satisfies, for any local section ⇠ of ⇥X or ⇥X ,

s(µ
0
, µ00)⇠ = s(µ

0
⇠, µ00) + s(µ

0
, µ00⇠),

by setting
s(m

0 ⌦ ⌘0,m00 ⌦ ⌘00) := s(m
0
,m00)⌘0⌘00.

Conversely, given such a pairing, one recovers the original s by restricting to M0⌦CM00.
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12.3.5. Example.
(1) Assume M0 = M00 = OX with dimX = n. We have a standard sesquilinear

pairing sn = s
left

n
defined by

(12.3.5 ⇤) s
left

n
(1, 1) = 1.

(2) If M0 = M00 = !X , then sn = s
right

n
is defined by

(12.3.5 ⇤⇤) s
right

n
(!
0
,!00) = Sgn(n)(!

0 ^ !00),

in such a way that s
right

n
= (s

left

n
)
right.

Let us notice the following.

12.3.6. Lemma. If M0 and M00 are OX-coherent (hence OX-locally free of finite rank),
the pairing s takes values in C

1 functions (resp. forms of maximal degree).

Proof. We know (see Example 8.3.2) that M0,M00 are OX -generated by their flat local
sections. For such local sections m

0
,m
00, the distribution (resp. current) s(m

0
,m00) is

annihilated by d
0 and d

00, hence is locally a constant. It follows that, for any local
sections m

0
,m
00, s(m0,m00) is real-analytic, so in particular C

1. More precisely, for
local horizontal sections µ

0
, µ
00 and holomorphic functions h

0
, h
00, we can write

(12.3.7) s(µ
0 ⌦ h

0
, µ00 ⌦ h00) = h

0
h00 · sr(µ0, µ00),

where s
r
: M0r⌦M00r ! C is the sesquilinear pairing induced by s on the underlying

local systems. In other words, with respect to the above identification, we have
s = s

r · sn.

12.3.8. Proposition (Uniqueness across a non-characteristic divisor)
Let M0,M00 be coherent DX-modules and let H be a hypersurface which is non-

characteristic for them. If two sesquilinear pairings s1, s2 : M0⌦CM00 ! CX (or DbX)
coincide when restricted to the open set X rH, then they coincide.

Proof. We will treat the case of right DX -modules. The question is local, so we can
assume that X = H ⇥ �t and we can shrink �t if needed. Set s = s1 � s2 and let
m
0
,m
00 be local sections of M0,M00 defined on some neighbourhood nb(xo) = nbH⇥�t

of xo 2 H ⇥ {0}. Let ⌘ 2 C
1
c
(nb(xo)), and let p be the order of s(m0,m00) on the

compact set Supp ⌘. We aim at proving that hs(m0,m00), ⌘i = 0.
We consider the current s(m

0
,m00)⌘ on �t defined by

� 7�! hs(m0,m00)⌘,�i := hs(m0,m00),� · ⌘i for � 2 C
1
c
(�t).

It is enough to prove that s(m0,m00)⌘ = 0 (by choosing � ⌘ 1 on the projection to �t

of Supp ⌘). This current has order 6 p and is supported at the origin, hence can be
written in a unique way, by using the Dirac current �0 at the origin, as

s(m
0
,m00)⌘ =

X

06a+b6p

ca,b(⌘)�0@
a

t
@
b

t
, ca,b(⌘) 2 C.
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We will prove that all the coefficients ca,b(⌘) vanish. This is obvious if ⌘ = t
q
t
r
⌘q,r with

q + r > p for some C
1 function ⌘q,r. We can thus assume that ⌘ =

P
p+q6p

t
q
t
r
⌘q,r,

where ⌘q,r is a test function H, and we are finally reduced to treating the case where ⌘
is equal to such an ⌘q,r, i.e., does not depend on t, t.

We claim that there exists N large enough such that m
0 satisfies an equation of

the form

m
0 · b(t@t) := m

0 ·
NY

k=1

(t@t + k) = m
0 · tp+1

X

j

Pj(t, x, @x)(t@t)
j
,

where x is a local coordinate system on H. Indeed, H is also non-characteristic for
the coherent sub-module m

0 ·DX , and the filtration m
0 ·VkDX is comparable with the

V -filtration V•(m
0·DX), so there exists N such that V�N�1(m0·DX) ⇢ m

0·V�(p+1)DX .
Since m

0
@
N

t
2 (m

0 ·DX) = V�1(m
0 ·DX), we have m

0
@
N

t
t
N 2 V�N�1(m

0 ·DX), hence
the assertion.

It follows that s(m
0
,m00)⌘ · b(t@t) = 0. Since �0@at @bt · (t@t + k) = (a + k)�0@

a

t
@
b

t
,

we conclude that for every a, b, we have ca,b(⌘) ·
Q

N

k=1
(a+ k) = 0, so ca,b(⌘) = 0.

We also have an analogue of Corollary 9.7.16 for sesquilinear pairings.

12.3.9. Proposition. Let M0,M00 be two holonomic DX-modules which are S-decompo-
sable and let (Si)i2I be the family of their pure components. Then any sesquilinear
pairing s : M0

Si
⌦C M00

Sj
! CX resp. DbX vanishes identically if Si 6= Sj.

This is reminiscent of Example 7.3.9(1). We will first prove a similar result related
to the S-decomposition along a function.

12.3.10. Lemma. Let g : X ! C be a holomorphic function and let M0,M00 be two
coherent DX-modules which are R-specializable along (g). Assume that one of them,
say M0, is a middle extension along (g), and the other one, say M00, is supported on
g
�1

(0). Then any sesquilinear pairing s : M0 ⌦M00 ! CX vanishes identically.

Proof. By Kashiwara’s equivalence (Proposition 12.4.7 below and Exercise 12.8),
we can assume that g is the projection X0⇥C! C, and we choose a coordinate t on
C. We work locally near xo 2 X0. Consider s as a morphism M0 ! HomD

X
(M00,CX).

Fix local DX -generators m00
1
, . . . ,m

00
`

of M00
xo

. By Kashiwara’s equivalence 9.6.1, there
exists q > 0 such that m

00
k
t
q
= 0 for all k = 1, . . . , `. Let m

0 2 M0
xo

and let p be the
maximum of the orders of the currents s(m

0
)(m

00
k
) on some neighbourhood of xo. As

t
p+1+q

/t
q is C

p, we have, for every k = 1, . . . , `,

s(m
0
)(m

00
k
)t

p+1+q
= s(m

0
)(m

00
k
)t

q · t
p+1+q

t
q = s(m

0
)(m

00
k
tq) · t

p+1+q

t
q = 0,

hence s(m
0
)t

p+1+q ⌘ 0. Applying this to generators of M0
xo

shows that all local
sections of s(M0

xo
) are killed by some power of t.

As M0 is a middle extension along (t), we know from Proposition 9.7.2(2) that
V<0M

0
xo

generates M0
xo

over DX . It is therefore enough to show that s(V<0M
0
xo
) = 0.

Let us fix a finite set of V0DX -generators m
0
i

of V<0M
0
xo

, and let N be such that
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s(m
0
i
)t

N
= 0 for all i. Since t@t · tN = t

N
(t@t +N), we conclude that t

N annihilates
s(V<0M

0
xo
). It follows that s(V<�NM0

xo
) = 0, since V<�NM0

xo
= V<0M

0
xo
t
N .

Let now ↵ < 0 be such that s(V<↵M
0
xo
) = 0, and let m

0 be a section of V↵M
0
xo

;
there exists ⌫↵ > 0 such that, setting b(s) = (s� ↵)⌫↵ , we have m

0
b(t@t) 2 V<↵M

0
xo

,
hence s(m

0
)b(t@t) = 0; on the other hand, we have seen that there exists N such that

s(m
0
)t

N
= 0, hence, putting B(s) =

Q
N�1
`=0

(s � `), it also satisfies s(m
0
)B(t@t) = 0;

notice now that b(s) and B(s) have no common root, so s(m
0
) = 0.

Proof of Proposition 12.3.9. The assertion is local on X, so we fix xo 2 X and we work
with germs at xo. Assume for example that Si is not contained in Sj and consider
a germ g of analytic function, such that g ⌘ 0 on Sj and g 6⌘ 0 on Si. Then we can
apply Lemma 12.3.10 to M0

Si
and M00

Sj
.

12.4. Pushforward of sesquilinear pairings

We have already seen various occurrences of the pushforward of a sesquilinear pair-
ing (Formulas (2.4.8), (4.2.17) and Definition 7.3.22). In this section, we take up the
question in a general setting. The first observation is that considering sequilinear
pairings between right DX -modules makes formulas simpler: this is explained with
details in Section A.5. One reason is that the pushforward functor is simpler when
expressed in the right setting. There is nevertheless a sign "(k) that has to be intro-
duced in front of the natural formula for the kth pushforward of a right sesquilinear
pairing. Various reasons lead to this sign. One is to obtain a definition which com-
mutes with taking the Hermitian adjoint. Also, such a sign allows for compatibility
with the Lefschetz morphism (12.4.13 ⇤), in a way analogous to 2.4.13. Another one
is of a cohomological nature and is explained in Section 12.7.d. Lastly, a detailed
analysis for the sign is developed in Section A.5. In the left setting, sign changing as
defined in 12.3.3 leads to formulas obtained in (2.4.8), (4.2.17) and Definition 7.3.22.

12.4.a. General definition. Let M0,M00 be coherent DX -modules and let f :X!Y

be a holomorphic map which is proper when restricted to S := SuppM0 \ SuppM00.
Let s : M0 ⌦C M00 ! CX or DbX be a sesquilinear pairing. Note that it takes values
in currents or distributions supported on Z. Our aim is to define, for every k 2 Z,
sesquilinear pairings:

D,Df
(k,�k)
⇤ s : (Df

(k)

⇤ M0)⌦C (Df
(�k)
⇤ M00) �! CY resp. DbY .

Of course, the sesquilinear pairing for left DX -modules is expected to be obtained
from the one for right DX -modules by side-changing at the source and the target and
conversely. We call D,Df

(k,�k)
⇤ s the k-th pushforward of the sesquilinear pairing s.

It is easier to start with right DX -modules. So, let M0,M00 be coherent right
DX -modules and let s : M0 ⌦C M00 ! CX,S be a sesquilinear pairing between them.
We set (see Section 8.7.e)

(12.4.1) Sp
X,X!Y,Y

:= Sp
X!Y

(DX)⌦C Sp
X!Y

(DX),
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which is a complex of left D
X,X

-modules. Therefore, s yields a morphism of complexes

�
M0⌦DX

Sp
X!Y

(DX)
�
⌦C

�
M00 ⌦DX

Sp
X!Y

(DX)
�
' (M0⌦CM00)⌦D

X,X
Sp

X,X!Y,Y

�! CX,S ⌦D
X,X

Sp
X,X!Y,Y

.

By applying Rf⇤, we thus obtained a morphism in D
b
(D

Y,Y
):

Rf⇤
�
M0 ⌦DX

Sp
X!Y

(DX)
�
⌦C Rf⇤

�
M00 ⌦DX

Sp
X!Y

(DX)
�

�! Rf⇤

⇣
(M0 ⌦C M00)⌦D

X,X
Sp

X,X!Y,Y

⌘

�! Rf⇤(CX,S ⌦D
X,X

Sp
X,X!Y,Y

) = D,Df⇤ CX,S

R
f���! CY

(see Exercise 12.1 and (12.2.12)), and thus, for each k 2 Z, a morphism

(12.4.2) D,Df
(k,�k)
⇤ s : (Df

(k)

⇤ M0)⌦C Df
(�k)
⇤ M00 �! D,Df

(0)

⇤ CX,S

R
f���! CY .

12.4.3. Definition.

(1) The sesquilinear pairing D,Df
(k,�k)
⇤ s is the k-th pushforward of s. The k-th

pushforward of s in the left setting is obtained by side-changing at the source and
target of f .

(2) The signed right k-th pushforward of s is defined as (see Notation 0.2)

Tf
(k,�k)
⇤ s := "(k) D,Df

(k,�k)
⇤ s

and the signed left k-th pushforward of s is obtained from the latter by side-changing
at the source and target of f .

12.4.4. Pushforward and Hermitian adjunction. For sections ⇠0
k
, ⇠
00
`

of ⇥X,k and ⇥X,`

respectively, we have the relation ⇠00
`
^ ⇠0

k
= (�1)k`⇠0

k
^ ⇠00

`
. It follows that

(D,Df
(�k,k)
⇤ s)

⇤
= (�1)kD,Df

(k,�k)
⇤ (s

⇤
).

The relation "(k) = (�1)k "(�k) enables us to absorb the sign, so it yields

(12.4.4 ⇤) (Tf
(�k,k)
⇤ s)

⇤
= Tf

(k,�k)
⇤ (s

⇤
).

12.4.5. C
1 Computation of the pushforward of a sesquilinear pairing. Let us use the

notation of Exercise 8.51, in particular Sp
1,k

X
=
L

`
⇥X,` ⌦ E

(0,k+`)

X
. We set

K
0•
= f!(M

0 ⌦OX
Sp
1,•
X
⌦f�1OY

f
�1DY ) ' f!(M

0 ⌦OX
Sp
1,•
X

)⌦OY
DY

and similarly for K 00•, both equipped with the differentials (d0, d00)=(f!�
1
M0,Y , f!�

1
M00,Y )

obtained by applying f! to �1M,Y
= �
01
M,Y

+ d
00 defined in Exercise 8.28. Furthermore,

we can replace f! with f⇤ if f is assumed to be proper on S = SuppM0 [ SuppM00.
The sesquilinear pairing s enables us to define termwise a pairing

Sp
1
(s) : (M0 ⌦OX

Sp
1,k

X
)⌦C (M00 ⌦OX

Sp
1,�k
X

) �! CX,S
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defined on local sections as

(m
0 ⌦ ⇠0

`
⌦ ⌘0

k+`
)⌦ (m00 ⌦ ⇠00

k+j
⌦ ⌘00

j
)

7�!
(
0 if ` 6= j,

(�1)`s(m0,m00) · ⌘00
`
(⇠
0
`
) · ⌘0

k+`
(⇠
00
k+`

), if ` = j.

We extend in a natural way this pairing as an f
�1D

Y,Y
-sesquilinear pairing

Sp
1
Y
(s) : (M0 ⌦OX

Sp
1,k

X
⌦f�1OY

f
�1DY )⌦C (M00 ⌦OX

Sp
1,�k
X

⌦f�1OY
f�1DY )

�! CX,S ⌦f�1O
Y,Y

f
�1D

Y,Y
.

One checks that this defines a morphism of complexes. Applying f! (or f⇤), yields a
D

Y,Y
-sesquilinear pairing

f⇤ Sp
1
Y
(s) : K

0• ⌦C K 00• �! f⇤ CX,S ⌦O
Y,Y

D
Y,Y

.

Integrating along f we finally obtain

(12.4.5 ⇤) D,Df⇤s =
R
f⇤ Sp

1
Y
(s) : K

0• ⌦C K 00• �! CY ⌦O
Y,Y

D
Y,Y
�! CY ,

where the second morphism is the right action of D
Y,Y

on CY .

12.4.b. Pushforward of a sesquilinear pairing by a closed embedding

Assume that ◆ : X ,! Y is a closed immersion and let M = M0,M00 be right
DX -modules. We then have D◆⇤M = D◆⇤M = ◆⇤(M ⌦DX

DX!Y ). Let 1 denote the
canonical section of DX!Y = OX ⌦◆�1OY

◆
�1DY . It is a generator of DX!Y as

a right ◆�1DY -module. Any sesquilinear pairing sY : D◆⇤M
0 ⌦ D◆⇤M00 ! CY takes

values in CY,X (i.e., has support in X) and, by D
Y,Y

-linearity, is determined by its
restriction to ◆⇤(M0 ⌦ 1) ⌦ ◆⇤(M00 ⌦ 1). Hence, for local sections m

0
,m
00 of M0,M00,

sY (m
0 ⌦ 1,m00 ⌦ 1) must be the pushforward of some current on X. Conversely,

given sX , we define the sesquilinear pairing T◆⇤sX = D,D◆⇤s
(0,0)

X
in such a way that(1)

(12.4.6) T◆⇤sX(m
0 ⌦ 1,m00 ⌦ 1) =

Z

◆

sX(m
0
,m00),

that is, for any test function ⌘ on Y ,
⌦
(T◆⇤sX)(m

0 ⌦ 1,m00 ⌦ 1), ⌘
↵
=
⌦
sX(m

0
,m00), ⌘|X

↵
,

and we extend it by D
Y,Y

-linearity.

12.4.7. Proposition (Kashiwara’s equivalence for sesquilinear pairings)
Let Z ,

◆�! X be the inclusion of a closed submanifold and let M0,M00 be cohe-
rent DZ-modules. There is a one-to-one correspondence between sesquilinear pairings
sZ : M0 ⌦M00 ! CZ and sesquilinear pairings s : D◆⇤M

0 ⌦ D◆⇤M00 ! CX . In one

(1)Since
D,D

◆⇤s
(k,�k)
X

= 0 for k 6= 0 and "(0) = 1, we do not distinguish between
D,D

◆⇤s
(0,0)
X

and

T◆⇤s
(0,0)
X

.



12.4. PUSHFORWARD OF SESQUILINEAR PAIRINGS 479

direction, s = T◆⇤sZ . In the other direction, sZ is the pairing defined from s by the
formula

hsZ(m0,m00), ⌘Zi = hs((m0 ⌦ 1), (m00 ⌦ 1)), ⌘i
for any test function ⌘ on X such that ⌘|Z = ⌘Z .

Proof. See Exercise 12.8.

According to (12.2.10), the behaviour by Hermitian adjunction is expressed by

(T◆⇤sX)
⇤
= T◆⇤(s

⇤
X
).

The pushforward for a left sesquilinear pairing is defined by side-changing:

T◆⇤(s
left

X
) := (T◆⇤s

right

X
)
left

.

12.4.8. Example (Pushforward of a left sesquilinear pairing by a closed embedding)
Let us denote by ◆g : X ,! X⇥C the graph embedding attached to a holomorphic

function g : X ! C. Let M0,M00 be left DX -modules and let s be a sesquilinear pairing
between them. Let us identify Mg with ◆g⇤M⌦C C[@t]⌦ dt

_ (see Example 8.7.7(2)).
Let m

0 2 M0
xo

and m
00 2 M00

xo
be local sections and let ⌘ be a test form of maximal

degree on a neighbourhood of (xo, 0) in X ⇥ C where m
0
,m
00 are defined. Set

⌘ = ⌘1 ^ i

2⇡
(d(t� g) ^ d(t� g)),

where ⌘1 is a relative form of degree (n, n), and set ⌘o = ◆
⇤
g
⌘1. Then we have

⌦
⌘, (T◆g⇤s)(m

0 ⌦ 1,m00 ⌦ 1)
↵
=
⌦
⌘o, s(m

0
,m00)

↵

Indeed, let us write ⌘1 = 'dx^ dx in local coordinates, so that ⌘o = 'odx^ dx, with
'o = '|X⇥{0}. Then, identifying m

0 with m
0 ⌦ 1 in ◆g⇤M0[@t] and similarly with m

00,
it yields

h⌘, (T◆g⇤s)(m0 ⌦ dt
_
,m00 ⌦ dt_)i

= (�1)n i

2⇡
h'(dx⌦ dt) ^ (dx⌦ dt), (T◆g⇤s)(m

0 ⌦ dt
_
,m00 ⌦ dt_)i

= (�1)n i

2⇡
Sgn(n+ 1)

�1

· h(T◆g⇤sright)
�
(dx⌦ dt)⌦ (m

0 ⌦ dt
_
), (dx⌦ dt)⌦ (m00 ⌦ dt_)

�
,')i

= (�1)n i

2⇡
Sgn(n+ 1)

�1hsright(dx⌦m
0
, dx⌦m00),'oi

= (�1)n i

2⇡
Sgn(n+ 1)

�1
Sgn(n)h⌘o, s(m0,m00)i.

The conclusion follows from the identity (�1)n i

2⇡
Sgn(n+1)

�1
Sgn(n) = 1 (see Nota-

tion 0.2).

12.4.c. Pushforward of a sesquilinear pairing with differential forms

Let us now return to the general case of a map f : X ! Y which is proper on
S = SuppM0 [ SuppM00. We will use the formulas of Exercise 8.52 (i.e., (8.52 ⇤)
and (8.52 ⇤⇤)) for computing the direct image, as they happen to be more convenient
at some place. Note that we already used them when expressing the integration
morphism (12.2.12).
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Starting from a left sesquilinear pairing, we aim at giving the formula for its di-
rect images as right sesquilinear pairings, that is defined by side-changing at the
source from D,Df

(k,�k)
⇤ s

right, and that we denote by (D,Df
(k,�k)
⇤ s

left
)
right. Similarly,

(Tf
(k,�k)
⇤ s

left
)
right is defined by side-changing at the source from Tf

(k,�k)
⇤ s

right, and
in Proposition 12.4.12 we make precise the sign in the formula for (Tf

(k,�k)
⇤ s

left
)
right.

Starting from a left DX -module Mleft, let us consider the complex of right DY -mod-
ules (we only indicate the shift of the complex, the sign change in the differential is
understood)

K
•
:= Rf⇤⌦

n+•
X

(Mleft ⌦f�1OY
f
�1DY ).

If Mright is the right DX -module associated with Mleft, we thus have

Df⇤(M
right

) ' K
• and Df⇤(M

left
) ' (K

•
)
left

,

where the isomorphisms are induced termwise by the morphisms in Lemma 8.4.7.
Moreover, it will be convenient to compute the direct image Rf⇤ by using flabby
sheaves more adapted to the computation than the Godement sheaves, so we will use
the formula

Rf⇤⌦
n+•
X

(Mleft ⌦f�1OY
f
�1DY )⌦OY

C1
Y

⇠�! f⇤E
n+•
X

(Mleft ⌦f�1OY
f
�1DY ),

obtained from the Dolbeault resolution ⌦i

X

⇠�! (E(i,•)
, d
00
) and by taking the associ-

ated simple complex. Lastly, we identify each term of this complex with

(12.4.9) K
n+•
1 := f⇤(E

n+•
X
⌦OX

Mleft
)⌦OY

DY

and, with this identification, the differential is given by the formula

(�1)n ·
⇣⇥

(d⌦ IdMleft)⌦ Id
⇤
+
⇥
(Id⌦r)⌦ Id

⇤
+
⇥
(Id⌦ Id)⌦ f⇤f

⇤rY
⇤⌘

,

where rY is the universal connection on DY .
Let s = s

left
: M0 ⌦C M00 ! DbX be a sesquilinear pairing between left DX -mod-

ules, and let s1 denote its C
1 extension (that suffices for our purpose, according to

Remark 12.3.4). We first aim at defining a graded sesquilinear pairing whose degree k

term (k 2 Z) is a pairing

(12.4.10) Hk
(K
0n+•

)⌦H�k(K 00n+•
) �! CY .

The C
1 extension s1 of s induces a morphism

(12.4.11) s
k,`

1 : (En+k

X
⌦OX

M0)⌦C1
X

(En+`

X
⌦OX

M00) �! Db
2n+k+`

X,S

by the formula

(⌘
0n+k ⌦m

0
)⌦ ⌘00n+` ⌦m00 7�! ⌘

0n+k ^ ⌘00n+` s(m
0
,m00),

and by applying f⇤,

(f⇤s1)
k,`

: f⇤(E
n+k

X
⌦OX

M0)⌦f⇤C1
X

f⇤(E
n+`

X
⌦OX

M00) �! f⇤Db
2n+k+`

X,S
,
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so, by right D
Y,Y

-linearity, a morphism

(f⇤s1)
k,`

:
⇥
f⇤(E

n+k

X
⌦OX

M0)⌦OY
DY

⇤
⌦C1

Y
f⇤(E

n+`

X
⌦OX

M00)⌦OY
DY

�! f⇤(Db
2n+k+`

X,S
)⌦O

Y,Y
D

Y,Y
.

The compatibility of s with the connections on M0,M00 implies that this morphism
is compatible with the differentials, so that, with respect to the identifications above
and according to (12.2.11), we get a morphism of complexes of right D

Y,Y
-modules

(f⇤s1)
•,•

: (K
0n+•
1 ⌦OY

C1
Y
)⌦C1

Y
(K
00n+•
1 ⌦OY

C1
Y
) �! D,Df⇤ CX,S .

Composing with the integration of currents (see Exercise 12.4)
Z

f

: D,Df⇤ CX,S �! CY

we finally get a morphism of complexes of right D
Y,Y

-modules (where CY is regarded
as a complex having a single term in degree zero) that we denote by the same symbol:

(
R
f⇤s1)

•,•
: (K

0n+•
1 ⌦OY

C1
Y
)⌦C1

Y
(K
00n+•
1 ⌦OY

C1
Y
) �! CY .

At the cohomology level, we regard H0
R
f⇤s1 as a graded pairing, the degree k term

being the induced pairing

(H0
R
f⇤s1)

(k,�k)
:
�
Hk

(K
0n+•
1 ⌦OY

C1
Y

�
⌦
�
H�k(K 00n+

•
1 ⌦OY

C1
Y
)
�
�! CY .

The natural morphism Hj
(K

n+•
)! Hj

(K
n+•
1 ) is an isomorphism and Hj

(K
n+•

) is
thus an OY -submodule of Hj

(K
n+•
1 )⌦OY

C1
Y

. We can hence restrict (H0
R
f⇤s1)

(k,�k)

to obtain a graded sesquilinear pairing whose degree k term is

(H0
R
f⇤s1)

(k,�k)
: Hk

(K
0n+•

)⌦
�
H�k(K 00n+•

)
�
�! CY .

We finally adjust the sign in order to ensure compatibility with (12.4.2) (Recall
Sgn(n, k) = (�1)n "(n+ k)/(2⇡i)

n, see Notation (0.2 ⇤)).

12.4.12. Proposition. The following equality holds between right sesquilinear pairings:

(Tf
(k,�k)
⇤ s

left
)
right

= Sgn(n, k)(H0
R
f⇤s1)

(k,�k)

For example, if Y is a point, we recover Formula (2.4.8) for the case where M0 =

M00 = OX , and Formula (4.2.17) for the more general case where M0 = M00 underlies a
polarized variation of Hodge structure. We also make explicit the case of a projection
in Exercise 12.9.
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Proof. We prove sign-commutativity, up to a precise constant in each bi-degree, of
the following diagram:

(M0right ⌦ Sp
X!Y

)

⌦
(M00right ⌦ Sp

X!Y
)

9
>=

>;
⇠

//

✏✏

8
><

>:

(⌦
n+•
X
⌦M0left ⌦ f

�1DY )

⌦

(⌦
n+•
X
⌦M00left ⌦ f�1DY )

✏✏

(M0right ⌦M00right)⌦ Sp
X,X!Y,Y

s
right

✏✏

(⌦
n+•,n+•

X,X
⌦ (M0left ⌦M00left)⌦ f

�1D
Y,Y

s
left

✏✏

CX ⌦ Sp
X,X!Y,Y

⇠
// ⌦

n+•,n+•

X,X
⌦DbX ⌦f�1DY,Y

Let us consider local sections !0⌦m
0 of M0right and !00⌦m

00 of M00right, where m
0
,m
00

are local sections of M0left,M00left, and let ⇠0
k
, ⇠
00
`

be poly-vector fields of respective
degree k, ` > 1. Following the arrows downward for the local sections !0⌦m0⌦⇠0

k
⌦1Y

and !00 ⌦m00 ⌦ ⇠00
`
⌦ 1Y of the upper left terms, we obtain

(!
0 ⌦m

0 ⌦ ⇠0
k
⌦ 1Y )⌦ (!00 ⌦m00 ⌦ ⇠00

`
⌦ 1Y )

7�! (!
0 ⌦ !00)⌦ (m

0 ⌦m00)⌦ (⇠
0
k
⌦ ⇠00

`
)⌦ 1

Y,Y

7�! s
right

�
(!
0 ⌦ !00)⌦ (m

0 ⌦m00)
�
⌦ (⇠

0
k
⌦ ⇠00

`
)⌦ 1

Y,Y

and the image by the lower horizontal isomorphism of the last term above is, by mim-
icking Lemma 8.4.7,

Sgn(n)(!
0 ⌦ !00)⌦ s

left
(m
0 ⌦m00)⌦ (⇠

0
k
⌦ ⇠00

`
)⌦ 1

Y,Y

= Sgn(n)(�1)nk((⇠0
k

!
0
)⌦ (⇠

00
`

!00))⌦ 1
Y,Y

,

where the sign (�1)nk comes from the commutation of ⇠0
k

with !00.
On the other hand, the image of the first term above by the first horizontal iso-

morphism is, according to Lemma 8.4.7,
�
(⇠
0
k

!
0
)⌦m

0 ⌦ 1Y

�
⌦
�
(⇠
00
`

!00)⌦m00 ⌦ 1Y

�

=
�
(⇠
0
k

!
0
)⌦m

0 ⌦ 1Y

�
⌦
�
(⇠
00
`

!00)⌦m00 ⌦ 1Y

�
,

and the image of the latter term by the right vertical morphisms is

((⇠
0
k

!
0
) ^ (⇠

00
`

!00))⌦ s
left

(m
0
,m00)⌦ 1

Y,Y
.

Therefore, in bi-degree k, `, the diagram commutes up to (�1)nk Sgn(n).
The computation of (H0

R
f⇤s1)

(k,�k) makes use of the morphism of complexes de-
duced from the right vertical arrows, from the upper right term to the lower right one,
while the computation of (D,Df

(k,�k)
⇤ s

left
)
right uses the morphism obtained by com-

posing the arrows between the same terms in the other path. It follows that

(D,Df
(k,�k)
⇤ s

left
)
right

= (�1)nk Sgn(n)(H0
R
f⇤s1)

(k,�k)
,
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and the desired equality follows from the relation (�1)nk "(k) "(n) = "(n+ k).

12.4.13. The Lefschetz morphism. The left-to-right pushforward of a sesquilinear pair-
ing is best suited to analyze the action of the Lefschetz morphism, i.e., the action of
the external product by a closed (1, 1)-form.

In the previous setting, let ⌘ be a closed (1, 1)-form on X which is real, i.e., such
that ⌘ = ⌘. This condition is satisfied if the cohomology class of ⌘ is equal to c1 of
some line bundle on X. The corresponding Lefschetz morphism L⌘ : Df⇤M! Df⇤M[2]

with M = M0,M00 (see Definition 8.7.20) satisfies
Z

f

f⇤
�
s
k,�k
1 (L⌘m

0k�2
1 ,m

00�k
1 )

�
=

Z

f

f⇤
�
s
k�2,�k+2

1 (m
0k�2
1 ,L⌘m

00�k
1 )

�
,

according to the definition of sk,`1 in (12.4.11), and therefore, by Proposition 12.4.12,
since Sgn(n, k � 2) = � Sgn(n, k),

Tf
(k,�k)
⇤ s(L⌘m

0
,m00) = �Tf

(k�2,�k+2)

⇤ s(m
0
,L⌘m

00),

if m0 (resp. m00) is a local section of Df
k�2
⇤ M0 (resp. of Df

�k
⇤ M00). In order to eliminate

the sign, we work as in (2.4.12) with

X⌘ := (2⇡i)L⌘,

so that

(12.4.13 ⇤) Tf
(k,�k)
⇤ s(X⌘m

0
,m00) = Tf

(k�2,�k+2)

⇤ s(m
0
,X⌘m

00).

12.4.14. Composition with a closed embedding. Let us consider a composition

X
f��! Y

f
0

���! Z,

where X,Y, Z are complex manifolds. Let M0,M00 be right DX -modules such that
f
0 � f is proper on S = SuppM0 [ SuppM00 (or S = SuppM0 \ SuppM00 if M0,M00

are DX -coherent, see Remark 8.7.26), and let s : M0 ⌦M00 ! CX,S be a sesquilinear
pairing. Let us assume that f or f

0 is a closed embedding. We will prove that there
is a natural identification for any k 2 Z:

(12.4.14 ⇤) T(f
0 � f)(k,�k)⇤ s =

(
Tf
0(k,�k)
⇤

�
Tf⇤s

�
if f is a closed embedding,

Tf
0
⇤
�
Tf

(k,�k)
⇤ s

�
if f 0 is a closed embedding.

Using Notation (12.4.1) and arguing as in Theorem 8.7.23 with D
X,X

-modules,
we find, for any right D

X,X
-module N, a natural isomorphism

D,D(f
0 � f)!(N) ' D,Df

0
!
(D,Df!N).

We consider the case where and f
0 � f is proper on SuppN. For example, let us

assume that f is a closed embedding, the other case being treated in a similar way
(a more general situation will be treated in Section 12.7.d). Then the isomorphism
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reads as follows:

D,D(f
0 � f)⇤(N) ' R(f

0 � f)⇤(N ⌦D
X,X

D
X,X!Y,Y

⌦f�1D
Y,Y

f
�1

Sp
Y,Y!Z,Z

)

' Rf
0
⇤(f⇤((N ⌦D

X,X
D

X,X!Y,Y
)⌦D

Y,Y
Sp

Y,Y!Z,Z
))

' D,Df
0
⇤(D,Df⇤N).

Taking cohomology in degree zero yields a functorial isomorphism

D,D(f
0 � f)(0)⇤ (N) ' D,Df

0(0)
⇤ (D,Df⇤N).

We apply this to N = M0 ⌦M00 and to N = CX,S . By functoriality, we get a commu-
tative diagram

D,D(f
0 � f)(0)⇤ (M0 ⌦M00)

⇠
//

D,D(f
0 � f)(0)⇤ (s)

✏✏

D,Df
0(0)
⇤ (D,Df⇤(M

0 ⌦M00))

D,Df
0(0)
⇤ (D,Df⇤(s))

✏✏

D,D(f
0 � f)(0)⇤ (CX,S)

⇠
//

D,Df
0(0)
⇤ (D,Df⇤ CX,S)

On the one hand, we can complete this commutative diagram from above by adding
the line

D(f
0 � f)(k)⇤ (M0)⌦ D(f

0 � f)(�k)⇤ M00)
⇠�! Df

0(k)
(Df⇤(M

0
))⌦ Df

0(�k)(Df⇤(M00))

with the natural morphisms to the upper line of the diagram. On the other hand,
we claim that the following diagram is commutative:

D,D(f
0 � f)(0)⇤ (CX,S)

⇠
//

R
f 0�f

✏✏

D,Df
0(0)
⇤ (D,Df⇤ CX,S)

D,Df
0(0)
⇤ (

R
f
)

✏✏

D,Df
0(0)
⇤ (D,Df⇤ CY,f(S))

R
f 0

✏✏

CZ CZ

This follows from the property that
R
f 0(

R
f
up,q) =

R
f 0�f up,q for a current up,q such

that f
0 � f is proper on Suppup,q. All together, we obtain the commutativity corre-

sponding to the first line of (12.4.14 ⇤). The second line of (12.4.14 ⇤) is obtained in
a similar way.

12.4.d. An adjunction formula. We will verify the compatibility of the mor-
phism of adjunction adj

f
of Section 8.7.d with sesquilinear pairings. We consider

a proper holomorphic map f : X ! Y between complex manifolds of the same
dimension m = n. In order to avoid any delicate question concerning the pullback of
a sesquilinear pairing, we will assume that s is a sesquilinear pairing between the left
DY -modules M0,M00 that takes values in C1

Y
. The main example is the case where

M0,M00 are holomorphic bundles with flat connection (Lemma 12.3.6). In such a
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case, since Df
⇤M is the OX -pullback module equipped with the pullback connection,

we have a well-defined pullback sesquilinear pairing D,Df
⇤
s which satisfies

D,Df
⇤
s(1⌦m

0
, 1⌦m00) = f

⇤
s(m

0
,m00) := s(m

0
,m00) � f,

which is a C
1 function on X. We can then consider the pushforward

Tf
(0,0)

⇤ (D,Df
⇤
s) : Df

(0)

⇤ (Df
⇤M0)⌦ Df

(0)

⇤ (Df
⇤M00) �! DbY .

12.4.15. Proposition. The following diagram is commutative:

M0 ⌦M00

adj
f
✏✏

adj
f

✏✏

s
// DbY

Df
(0)

⇤ (Df
⇤M0)⌦ Df

(0)

⇤ (Df
⇤M00)

Tf
(0,0)

⇤ (D,Df
⇤
s)
// DbY

Proof. It will be more convenient to work in the right setting. Extending the proof of
Proposition 8.7.30 to the case of right D

Y,Y
-modules, we obtain a functorial morphism

adj : M0 ⌦M00 �! D,Df
(0)

⇤ (D,Df
⇤
(M0 ⌦M00)),

which factorizes as

M0⌦M00
adj

f
⌦ adj

f����������! Df
(0)

⇤ (Df
⇤M0)⌦ Df

(0)

⇤ (Df
⇤M00) �! D,Df

(0)

⇤
�
D,Df

⇤
(M0⌦M00)

�
.

We therefore obtain, by functoriality of adj, a commutative diagram

M0 ⌦M00

adj
✏✏

s
// En,n

Y

adj
✏✏

D,Df
(0)

⇤
�
D,Df

⇤
(M0 ⌦M00)

� D,Df
(0)

⇤ (D,Df
⇤
s)
//

D,Df
(0)

⇤
�
D,Df

⇤
(En,n

Y
)
�

We have a natural morphism

D,Df
⇤
(C1

Y
) = O

X,X
⌦f�1O

Y,Y
f
�1

(C1
Y
) �! C1

X
,

so that, by side-changing, a natural morphism

D,Df
⇤
(En,n

Y
) �! En,n

X
,

and thus a composed morphism

(12.4.16) D,Df
(0)

⇤
�
D,Df

⇤
(En,n

Y
)
�
�! D,Df

(0)

⇤ (En,n

X
) �! D,Df

(0)

⇤ (CX)

R
f���! CY .

In order to prove the proposition, it is enough to check that the composition on the
left of (12.4.16) with adj is the natural inclusion En,n

Y
,! CY . Let us describe this

morphism. Starting from a local section ⌘ of En,n

Y
, we lift it as the section ⌘ ⌦ 1 of

En,n

Y
⌦O

Y,Y
D

Y,Y
, then we consider its image in (f⇤E

n,n

X
)⌦O

Y,Y
D

Y,Y
, that we integrate

along f . We are thus left with checking that, for such an ⌘, the integral of u = f
⇤
⌘ as
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a current is equal to ⌘. This follows from the property that, for any test function �

on Y and any (n, n)-form u on X, we have
⌦
(
R
f
u),�

↵
= hu,� � fi =

Z

X

(� � f)u,

so that, if u = f
⇤
⌘,

⌦
(
R
f
u),�

↵
=

Z

X

f
⇤
(�⌘) =

Z

Y

�⌘ = h⌘,�i.

12.4.17. Example. In the setting of Example 8.7.31, the diagram of Proposition 12.4.15
can be completed as a commutative diagram

M0 ⌦M00

Id

�� ��

adj
f
✏✏

adj
f

✏✏

s
// DbY

Df
(0)

⇤ (Df
⇤M0)⌦ Df

(0)

⇤ (Df
⇤M00)

Trf
✏✏

Trf
✏✏

Tf
(0,0)

⇤ (D,Df
⇤
s)
// DbY

M0 ⌦M00
s

// DbY

The proof of commutativity of the lower diagram is very similar to that for the upper
diagram. We define the trace Trf for D

Y,Y
-modules and commutativity follows from

identifying Trf : D,Df
(0)

⇤
�
D,Df

⇤
(En,n

Y
)
�
! En,n

Y
with the morphism (12.4.16). This

identification follows from that of Exercise 12.7.

12.5. Pullback, specialization and localization of sesquilinear pairings

12.5.a. Pullback by a smooth morphism. The case of left DX -modules is easier
to treat first. Let f : X ! Y be a smooth holomorphic map (i.e., everywhere of
maximal rank). Let s : M0 ⌦C M00 ! DbY be a sesquilinear pairing between left
DY -modules. The pullback left DX -modules Df

⇤M0, Df
⇤M00 (we use the notation Df

⇤

instead of Df
⇤(0) for the sake of simplicity) are defined in Section 8.6.a, and are equal

to the derived pullback modules, since f is smooth (see Remark 8.6.7).
On the other hand, let ⌘ be a C

1 form of maximal degree and compact support
on X. It can be integrated along the fibers of f , to give rise, since f is smooth, to
a C

1 form
R
f
⌘ of maximal degree and compact support on Y . This is a particular

case of the pushforward of currents of maximal degree, as seen in Section 12.2.b: if '
is a C

1 function on Y with compact support, we have
DZ

f

⌘,'

E
=

Z

X

(' � f) · ⌘.

Given a distribution u on Y , the pullback D,Df
⇤
u is the distribution on X defined by

h⌘, D,Df
⇤
ui :=

DZ

f

⌘, u

E
, ⌘ 2 En,n

c
(X).
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12.5.1. Definition (Pullback of a sesquilinear pairing by a smooth morphism)
The pullback D,Df

⇤
s : Df

⇤M0⌦C Df
⇤M00 ! DbX of a sesquilinear pairing between

left DX -modules is defined as the morphism
�
OX ⌦f�1OY

f
�1M0

�
⌦C

�
OX ⌦f�1OY

f�1M00
�
�! DbX

('
0 ⌦m

0
)⌦ ('00 ⌦m00) 7�! '

0 · '00 · D,Df
⇤
(s(m

0
,m00)).

The pullback of right sesquilinear pairings is obtained by the side-changing procedure,
according to Remark 8.6.8:

D,Df
⇤
(s

right
) := (D,Df

⇤
s
left

)
right

.

One checks that the above formulas define a sesquilinear pairing between Df
⇤M0

and Df
⇤M00.

12.5.2. Lemma (Pullback and Hermitian adjunction). The pullback by a smooth mor-
phism commutes with Hermitian adjunction:

D,Df
⇤
(s
⇤
) = (D,Df

⇤
s)
⇤
.

Proof. By definition and according to (12.3.3 ⇤⇤), it is enough to check the lemma for
left sesquilinear pairings. We have

⌦
⌘, D,Df

⇤
(s
⇤
)(1⌦m

00
, 1⌦m0)

↵
=

DZ

f

⌘, s
⇤
(m
00
,m0)

E
=

DZ

f

⌘, s(m0,m00)
E

=

DZ

f

⌘, s(m0,m00)
E
=

DZ

f

⌘, s(m0,m00)
E

by (12.2.10)

=
⌦
⌘, (D,Df

⇤s)(1⌦m0, 1⌦m00)
↵

=
⌦
⌘, (D,Df

⇤
s)
⇤
(1⌦m

00
, 1⌦m0)

↵
.

12.5.3. Example (Pullback of sm by a smooth morphism).
(1) Assume M0=M00=OY and s= s

left

m
(see Example 12.3.5). Then Df

⇤OY =OX

and
D,Df

⇤
s
left

m
= s

left

n
.

(2) If M0 = M00 = !Y and s = s
right

m
, then Df

⇤
!Y = !X and

D,Df
⇤
s
right

m
= s

right

n
.

12.5.b. Specialization of a sesquilinear pairing. Let g : X ! C be a holo-
morphic function on X and let M0,M00 be DX -modules which are R-specializable
along (g). Assume that s is a sesquilinear pairing between M0 and M00 with values
in CX (right case) or DbX (left case). We wish to define sesquilinear pairings between
the DX -modules  g,�M

0 and  g,�M
0 with values in CX resp. DbX .

We start with the case where g = t is the projection of a product X = H ⇥ �t,
and M0,M00 are R-specializable DX -modules along H, equipped with a sesquilinear
pairing s. In order to define a sesquilinear pairing on nearby cycles, we will use a
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Mellin transform device by considering the residue of s(m0,m00)|t|2s at various values
of s.

It is important to notice that, while we need to restrict the category of coherent
DX -modules in order to define nearby and vanishing cycles (i.e., to consider R-spe-
cializable coherent DX -modules only), the specialization of a sesquilinear pairing be-
tween them does not need any new restriction: any sesquilinear pairing between such
DX -modules can be specialized.

We assume that M0,M00 are right DX -modules which are R-specializable along H,
and we denote by V•M

0
, V•M

00 their V -filtration. Let s : M0 ⌦C M00 ! CX be a
sesquilinear pairing. Fix xo 2 H. For local sections m

0
,m
00 of M0,M00 defined in

some open neighbourhood nbX(xo) of xo in X, the current s(m0,m00) of degree 0 has
finite order on any compact subset of nbX(xo). Let us shrink the neighbourhood
nb(X,xo) so that s(m

0
,m00) has finite order p on nb(X,xo). Let ⌘ be a test function

with compact support in nbX(xo). For 2Re s > p, the function x 7! |t(x)|2s is C
p as

well as its s-derivative 2s|t|2s log |t|, so for every such s, the function

s 7�!
⌦
s(m

0
,m00)|t|2s, ⌘

↵
:=

⌦
s(m

0
,m00), |t|2s⌘

↵

is well-defined and holomorphic on the half-plane Sp := {2Re s > p}.
We also claim that, if we let ⌘ depend on s in such a way that ⌘ 2 C1

c
(W ) for

some W ⇢ nb(X,xo) ⇥ Sp, then the correspondence ⌘ 7!
⌦
s(m

0
,m00), |t|2s⌘

↵
defines

a current depending continuously on Sp (see Section 12.2.a). This is obvious since
derivatives up to order p of |t|2s⌘ introduce polynomials of degree at most p in s.

12.5.4. Proposition. Let M0,M00, s be as above. Let xo 2 H and let ↵0,↵00 2 R. There
exist L > 0 and a finite set of real numbers ↵ satisfying

(12.5.4 ⇤) gr
V

↵
M0

xo
, gr

V

↵
M00

xo
6= 0, and ↵ 6 min(↵

0
,↵
00
),

such that, for any sections m
0 2 V↵0M0

xo
and m

00 2 V↵00M00
xo

defined on nb(X,xo),
and any test function ⌘ on nb(X,xo), the function

(12.5.4 ⇤⇤) s 7�!
⌦
s(m

0
,m00)|t|2s, ⌘

↵
,

which is holomorphic on some half-plane 2Re s > p, extends as a meromorphic func-
tion on C⌧ of the form h(s)

Q
↵
�(s� ↵)L, with h(s) 2 O(C⌧ ).

Moreover, the correspondence ⌘ 7!
Q

↵
�(s�↵)�L

⌦
s(m

0
,m00), |t|2s⌘

↵
defines a cur-

rent depending continuously on S = C⌧ .

Proof. Let bm0(E) denote the Bernstein polynomial of m0 (see Definition 9.3.7) and
let R(m

0
) denote the set of its roots, so that we can write

bm0(E) =

Y

↵2R(m0)

(E�↵)⌫(↵),

with ⌫(↵) bounded by the nilpotency index L of E�↵. It is enough to prove that
the product

Q
↵2R(m0) �(s� ↵)�⌫(↵) of � factors can be used to make (12.5.4 ⇤⇤) an

entire function (recall that the � function has no zeros and has simple poles at the
non-positive integers, and no other poles). Indeed, arguing similarly for m00 and using
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that the set of roots R(m
00
) of bm00(E) is real, one obtains that the product of � factors

indexed by R(m
0
)\R(m

00
) can also be used to make (12.5.4 ⇤⇤) an entire function. It is

then easy to check that Conditions (12.5.4 ⇤) are satisfied by any ↵ 2 R(m
0
)\R(m

00
).

We note first that, for every germ of operator Q 2 V0DX,xo
and any test function ⌘

on nbX(xo), the function Q · (|t|2s⌘) is C
p with compact support if 2Re s > p. Ap-

plying this to the Bernstein operator Q = bm0(E) � P for m
0 (see Definition 9.3.7),

one gets

(12.5.5)

0 =
⌦
s(m

0
,m00) · [bm0(E)� P ], |t|2s⌘

↵

=
⌦
s(m

0
,m00), [bm0(E)� P ] · (|t|2s⌘)

↵

= bm0(s)
⌦
s(m

0
,m00), |t|2s⌘

↵
+
⌦
s(m

0
,m00), |t|2st⌘1

↵

for some ⌘1, which is a polynomial in s with coefficients being C
1 with compact

support contained in that of ⌘. As |t|2st is C
p for 2Re s + 1 > p, we can argue by

induction to show that, for every ⌘ and k 2 N,

(12.5.6) s 7�! bm0(s+ k � 1) · · · bm0(s)
⌦
s(m

0
,m00)|t|2s, ⌘

↵

extends as a holomorphic function on {s | 2Re s > p� k}, and thus, letting k !1,

s 7�!
Y

↵2R(m0)

�(s� ↵)�⌫(↵) ·
⌦
s(m

0
,m00)|t|2s, ⌘

↵

extends as an entire function.
Let q denote the order of Q. Then (12.5.5) also shows that bm0(s)

⌦
s(m

0
,m00), |t|2s⌘

↵

defines a current of order 6 p+q depending continuously on Sp�1, since the derivatives
of order 6 p of ⌘1 can be expressed in terms of derivatives of order 6 p + q of ⌘.
By iterating this reasoning, we obtain the last part of the proposition.

12.5.7. Remark. The previous proof also applies if we only assume that s is D
X,X

-linear
away from H. Indeed, this implies that s(m

0
,m00) · [bm0(E) � P ] is supported on H,

and (12.5.5) only holds for Re s big enough, maybe� p. Then (12.5.6) coincides with
a holomorphic current of degree 0 defined on {s | 2Re s > p � k} only for Re s � 0.
But, by uniqueness of analytic extension, it coincides with it on Re s > p.

12.5.8. Corollary. With the assumptions of Proposition 12.5.4, assume moreover that
↵
0
= ↵

00
=: ↵. Let [m

0
] (resp. [m00]) be a germ of section of gr

V

↵
M0 (resp. grV

↵
M00)

at xo. Fix local liftings of m0,m00 of [m0], [m00] defined on nb(X,xo). Then every polar
coefficient at s = ↵ of the meromorphic function s 7!

⌦
s(m

0
,m00), |t|2s⌘

↵
is the value

of a well-defined current on H \nb(X,xo) applied to the restriction ⌘|H . This current
only depends on [m

0
], [m

00
]. It defines a sesquilinear pairing

gr
V

↵
M0 ⌦C grV

↵
M00 �! CH .

Proof. Any other local lifting of m
0 can be written as m

0
+ µ

0, where µ
0 is a germ

of section of V<↵M
0. By the previous proposition,

⌦
s(µ
0
,m00), |t|2s⌘

↵
is holomorphic

at s = ↵. If ⌘ vanishes on H, we have ⌘ = t⌘1 + t⌘2 for some test functions ⌘1, ⌘2,
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and we conclude similarly. The last part of Proposition 12.5.4, together with Lemma
12.2.7, shows each polar coefficient is a current on nb(X,xo).

For the D
H,H

-linearity, recall that grV
↵
M0, grV

↵
M00 are DH [E]-modules (see Remark

9.2.9). We can choose ⌘ of the form ⌘o · �(t), where ⌘o is a test function on H and �
is a cut-off function on �t. Then the D

H,H
-linearity of the pairing given by a polar

coefficient is clear.

12.5.9. Remark (The left case). Assume that M0,M00 are R-specializable left DX -mod-
ules equipped with a sesquilinear pairing s : M0 ⌦M00 ! DbX between them. Up to
replacing X with a neighbourhood of H such that t has no critical point on X rH,
any test form ⌘ on X, we can write ⌘ = ⌘t ^ i

2⇡
(dt ^ dt) for some relative differential

form ⌘t on X. In particular, ⌘t restricts to a test form ⌘o on H. We consider the
meromorphic function

s 7�!
⌦
|t|2s⌘, s(m0,m00)

↵
,

and we link ⌘ to ⌘t by the previous relation. Then (left analogue of Corollary 12.5.8)
the coefficients of the polar parts at ↵ are the value of a distribution on H applied
to ⌘o.

12.5.10. Definition (V -grading of a sesquilinear pairing).
(1) (Left case) For every � 2 (�1, 0], the sesquilinear pairing

gr
�

V
s : gr

�

V
M0 ⌦ gr

�

V
M00 �! DbH

is well-defined by the formula

(12.5.10 ⇤)
⌦
⌘o, gr

�

V
s([m

0
], [m00])

↵
:= Ress=���1

⌦
|t|2s⌘, s(m0,m00)

↵
,

where m
0
,m
00 are local liftings of [m0], [m00] and ⌘ is any test form of maximal degree

such that ⌘ = ⌘1 ^ i

2⇡
(dt ^ dt) with ⌘1|H = ⌘o.

(2) (Right case) For ↵ 2 [�1, 0), the sesquilinear pairing

gr
V

↵
(s) : gr

V

↵
M0 ⌦C grV

↵
M00 �! CH

is well-defined by the formula

(12.5.10 ⇤⇤) ([m
0
], [m00]) 7�!

h
⌘o 7! Ress=↵

⌦
s(m

0
,m00), |t|2s⌘

↵i
,

where m0,m00 are local liftings of [m0], [m00] and ⌘ is a test function such that ⌘|H = ⌘o.

12.5.11. Lemma (Side-changing). With the previous definition, we have

gr
V

↵
s
right

= (gr
�

V
s
left

)
right

(↵ = �� � 1).

Proof. Let ⌘ be a test function. We have
⌦
s
right

(!
0 ⌦m

0
,!00 ⌦m00), |t|2s⌘

↵
= Sgn(n)

⌦
|t|2s⌘!0 ^ !00, sleft(m0,m00)

↵
,
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hence, setting !0 = !
0
o
^ dt and !00 = !

00
o
^ dt, since Sgn(n� 1) = (�1)n�1 Sgn(n) 2⇡

i
,

Ress=↵

⌦
s
right

(!
0 ⌦m

0
,!00 ⌦m00), |t|2s⌘

↵

= Sgn(n)Ress=���1
⌦
|t|2s⌘ !0 ^ !00, sleft(m0,m00)

↵

= (�1)n�1 Sgn(n)Ress=���1
⌦
|t|2s⌘ !0

o
^ !00

o
^ (dt ^ dt), s

left
(m
0
,m00)

↵

= Sgn(n� 1)
⌦
⌘o !

0
o
^ !00

o
, gr

�

V
s
left

([m
0
], [m00])

↵

=
⌦
(gr

�

V
s
left

)
right

([!
0 ⌦m

0
], [!00 ⌦m00]), ⌘o

↵
.

12.5.12. Lemma (N is self-adjoint). The nilpotent operator N := �(E��) is self-adjoint
with respect to the pairing (12.5.10 ⇤), in the sense that

(12.5.12 ⇤) gr
�

V
(s)(N[m

0
], [m00]) = gr

�

V
(s)([m

0
],N[m00]).

Proof. The question is local, so we can assume X=H⇥�t and ⌘=e⌘o^�(t) i

2⇡
(dt^dt)

with �(t) ⌘ 1 near t = 0. Then the statement is a consequence of the following
properties (recall that [|t|2s�(t) i

2⇡
(dt ^ dt)] · (�t@t) = @tt(|t|2s�(t)) i

2⇡
(dt ^ dt)):

• � is real,
• t@

t
|t|2s = t@t|t|2s,

• t@
t
�(t) and t@t�(t) are zero in a neighbourhood of t = 0.

12.5.13. Lemma (Adjunction and V -grading). We have

gr
V

↵
(s
⇤
) = (gr

V

↵
s)
⇤
.

Proof. Since ↵ is real, we have [m] = [m] in gr
V

↵
M and we can compute the residue

by assuming that s varies in R. We compute using Definition 12.3.2(2):

hgrV
↵
(s
⇤
)([m

00
], [m0]), ⌘oi = Ress=↵

⌦
s
⇤
(m
00
,m0), |t|2s⌘

↵

= Ress=↵

⌦
s(m0,m00), |t|2s⌘

↵

= Ress=↵

⌦
s(m0,m00), |t|2s⌘

↵
=
⌦
grV

↵
s([m0], [m00]), ⌘

o

↵

=
⌦
(gr

V

↵
s)
⇤
([m
00
], [m0]), ⌘o

↵
.

12.5.14. Remark (Properties for left sesquilinear pairings). Due to Lemma 12.5.11, the
previous properties also hold for right sesquilinear pairings.

We now consider the general case of nearby cycles along any holomorphic func-
tion g, for which the functor  g is needed.

12.5.15. Definition (Sesquilinear pairing on nearby cycles). Let g : X ! C be any
holomorphic function. Assume that M0,M00 are R-specializable along (g). For a
sesquilinear pairing s : M0⌦M00 ! CX resp. DbX and for every � 2 S

1 and ↵ 2 [�1, 0)
such that � = exp(2⇡i↵), we define

(12.5.15 ⇤)  g,�s := gr
V

↵
(T◆g⇤s) :  g,�M

0 ⌦  g,�M00 �! CX
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resp. for every � 2 (�1, 0] such that � = exp(� 2⇡i�),

(12.5.15 ⇤⇤)  g,�s := gr
�

V
(T◆g⇤s) :  g,�M

0 ⌦  g,�M00 �! DbX .

12.5.16. Properties of  g,�s. The following properties are obviously obtained from sim-
ilar properties for gr

V

↵
(T◆⇤s).

(1)  g,�s(Nm
0
,m00) =  g,�s(m

0
,Nm00) (m0 2  g,�M

0
xo

, m00 2  g,�M
00
xo

).
(2) As in 3.4.c, the previous property enables us to define induced pairings

gr
M

`
 g,�s : gr

M

`
 g,�M

0 ⌦ gr
M

�` g,�M00 �! CX resp. DbX ,

and, for every ` > 0, we olso obtain the pairing

P` g,�s : P` g,�M
0 ⌦ P` g,�M00 �! CX resp. DbX ,

induced by gr
M

`
 g,�s(•,N

`•).
(3)  g,�(s

⇤
) = ( g,�s)

⇤, according to Section 12.4.b and Lemma 12.5.13.
(4) Recall that Mg 'M⌦CC[@t]. Assume that m0⌦ 1 is a local section of V↵(M

0
g
)

and m
00 ⌦ 1 is a local section of V↵(M

00
g
) (1 6 ↵ < 0). In such a case, the pairing

 g,�s([m
0 ⌦ 1], [m00 ⌦ 1]) is given by a formula similar to (12.5.10 ⇤⇤), for any test

function ⌘ on an open set of X where m
0
,m
00 are defined:

(12.5.16 ⇤)
⌦
 g,�s([m

0 ⌦ 1], [m00 ⌦ 1]), ⌘
↵
= Ress=↵

⌦
s(m

0
,m00), |g|2s⌘

↵
.

Indeed, the left-hand term is equal to

Ress=↵

⌦
T◆g⇤s([m

0 ⌦ 1], [m00 ⌦ 1]), |t|2s⌘1
↵

if ⌘1(x, t) satisfies ⌘1(x, 0) = ⌘. This is also written as

Ress=↵

⌦
s(m

0
,m00), |g|2s⌘1(x, g(x))

↵

and by developing ⌘1 with respect to powers of t, t, one checks by the same argument
as that of Proposition 12.5.4 that only ⌘1(x, 0) = ⌘(x) contributes to the residue.

12.5.17. Remark (Independence of the embedding). We now take up the setting of
Proposition 9.6.6. Let ◆ : X ,! X1 be a closed inclusion of complex manifolds, and
let g1 be a holomorphic function on X1. Let us set g = g1 � ◆.

Let N0,N00 be coherent right DX -modules which are R-specializable along (g) and
let s : N0⌦N00 ! CX be a sesquilinear pairing between them. We deduce a sesquilinear
pairing T◆⇤s between M0 = D◆⇤N

0 and M00 = D◆⇤N
00. We will prove the equality, for

all � 2 S
1,

(12.5.17 ⇤)  g1,�
(T◆⇤s) = T◆⇤( g,�(s)).

Recall that (Section 12.4.b), if ⌘ is any test function on X1 and n
0
, n
00 are local

sections of N0,N00, so that n
0 ⌦ 1, n

00 ⌦ 1 are local sections of M0,M00, then

hT◆⇤s(n0 ⌦ 1, n00 ⌦ 1), ⌘i := hs(n0, n00), ⌘|Xi.
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For n
0
, n
00 in V↵N

0
, V↵N

00, ⌘ a test function on X1 as above, we thus have, due to
Formula (12.5.16 ⇤) (arguing for Re s� 0 first and then using analytic continuation),

hgrV
↵
(T◆⇤s)([n

0 ⌦ 1],[n00 ⌦ 1]), ⌘|H1
i = Ress=↵hT◆⇤s(n0 ⌦ 1, n00 ⌦ 1), |g1|2s⌘i

= Ress=↵hs(n0, n00), |g|2s⌘|Xi by definition (12.4.6)

= hgrV
↵
s([n

0
], [n00]), ⌘|Hi

= h(T◆⇤grV↵ s)([n0 ⌦ 1], [n00 ⌦ 1]), ⌘|H1
i.

12.5.c. Non-characteristic restrictions

12.5.18. Pullback in the case of smooth DX -modules. Assume that the left DY -mod-
ules M0,M00 are OY -locally free of finite rank, and let s : M0 ⌦C M00 ! DbY be a
sesquilinear pairing. Recall (Lemma 12.3.6) that s takes values in the sheaf of C1

functions. If f : X ! Y is any holomorphic map between complex manifolds, the
pullback DX -modules Df

⇤M0, Df
⇤M00 are equal to the OX -pullbacks equipped with

their natural pullback flat connection, hence are also OX -locally free of finite rank,
and there is a natural pullback of s as taking values in C1

X
, that we denote by D,Df

⇤
s,

defined such that
D,Df

⇤
s(1⌦m

0
, 1⌦m00) = s(m

0
,m00) � f.

For example, if M0 = M00 = OY , then

D,D◆
⇤
sm = sn.

This definition is compatible with the general one when f is a smooth morphism
(Section 12.5.1). We will check that it coincides with that of 12.5.19 when f is the
inclusion ◆ : H ,! X of a smooth hypersurface, and M0,M00 are OX -locally free of
finite rank.

Assume that X = H ⇥�t. Then M = V
0M, gr�

V
VM = 0 for � 62 N, and gr

0

V
M =

M/tM. Denoting by h
0
o

etc. the restriction to H, we obtain from Exercise 6.13,
by choosing �(t) = e�(|t|2), the expected formula analogous to (12.3.7):

(gr
0

V
s)(µ

0
o
⌦ h
0
o
, µ00

o
⌦ h00

o
) = (s

r
(µ
0
, µ00) · h0h00)|H ,

that is, gr0
V
(s
r · sn) = s

r|H · sn�1. Indeed, let ⌘ be a test form of maximal degree
written as ⌘ = ⌘t ^ �(t) i

2⇡
(dt ^ dt) (see Remark 12.5.9). Then

Ress=�1
⌦
⌘t ^ �(t) i

2⇡
(dt ^ dt), s(h

0 ⌦ µ
0
, µ00 ⌦ h00)|t|2s

↵

= Ress=�1 s
r
(µ
0
, µ00)|H

Z

X

|t|2sh0h00 · ⌘t ^ �(t) i

2⇡
(dt ^ dt)

= s
r
(µ
0
, µ00)|H

Z

H

h
0
o
h00
o
⌘o (Exercise 6.13).

12.5.19. Non-characteristic restriction of a sesquilinear pairing along a smooth divisor
Let H be a smooth hypersurface of X and let M0,M00 be coherent left DX -modules

such that H is non-characteristic for them (see Section 8.8.d). Then gr
�

V
M are zero

except for � 2 N, and E acts by zero on gr
0

V
M = M/tM, so that gr0

V
M is naturally a

DH -module. Let s : M0 ⌦C M00 ! DbX be a sesquilinear pairing and let g be a local
smooth function defining H.
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We note that, if m
0
,m
00 are local sections of M0,M00 and ⌘ = ⌘g ^ i

2⇡
dg ^ dg

is a test form on an open set on which both sections are defined, the meromorphic
function s 7! h|g|2s⌘, s(m0,m00)i has poles at most at �1,�2, . . . , and the pole at
�1 is simple. Indeed, this is a local question and we can assume that g = t is part
of a local coordinate system (t, x). Since m

0
,m
00 are sections of V

0, the poles of
h|t|2s⌘, s(tm0,m00)i are at most integers 6 �2, and similarly for h|t|2s⌘, s(m0, tm00)⌘i,
so that, if ⌘x is a local C1 form in the variable x only whose restriction to H is equal
to ⌘o := ⌘g|H , it is enough to prove the assertion for h|t|2s⌘x ^ i

2⇡
dt ^ dt, s(m

0
,m00)i.

Let us check that (s+ 1)h|t|2s⌘x ^ i

2⇡
dt ^ dt, s(m

0
,m00)i is holomorphic at s = �1.

We have, since ⌘o is independent of t,

(s+ 1)h|t|2s⌘x ^ i

2⇡
dt ^ dt, s(m

0
,m00)i = �h(|t|2s⌘x ^ i

2⇡
dt ^ dt)@t, s(m

0
,m00)i

= �h|t|2s⌘x ^ i

2⇡
dt ^ dt, s(@tm

0
,m00)i,

and since @tm
0 also belongs to V�1M

0, the poles of this function are at most for
s+ 1 = �1,�2, . . . , hence the assertion.

We claim that the formula

⌘o 7�! Ress=�1h|g|2s⌘, s(m0,m00)i, ⌘o = ⌘g|H ,

similar to (12.5.10 ⇤) with � = 0, is independent of the function g. Indeed, assume
that g

0
= hg, where h is an invertible holomorphic function. Then modulo g, g we

have dg
0 ^ dg0 = |h|2dg ^ dg and thus ⌘0

o
:= ⌘g0|H = |h|H |�2⌘o. The distributions

⌘o 7�! Ress=�1h|g|2s⌘, s(m0,m00)i and ⌘o 7�! Ress=�1h|g0|2s|h|2⌘, s(m0,m00)i

coincide, as claimed. The formula above thus defines globally a sesquilinear pairing
between gr

0

V
M0 = D◆

⇤M0 and gr
0

V
M00 = D◆

⇤M00. We set

(12.5.19 ⇤) D,D◆
⇤
s := gr

0

V
s : D◆

⇤M0 ⌦C D◆
⇤M00 �! DbH .

12.5.20. Non-characteristic restriction of a sesquilinear pairing along a submanifold
Let Y be a closed submanifold of X of any codimension and let U be an open chart

in X. Let u 2 Db(U) be a distribution on U . We say that u can be restricted to U \Y
if there exists v 2 Db(U \ Y ) such that, for any sequence 'j 2 C1

c
(U) which tends

to u in Db(U), the sequence 'j |Y 2 C1
c
(U \ Y ) tends to v in Db(U \ Y ). We then

set v = D,D◆
⇤
Y
u.

Let M0,M00 be coherent left DX -modules which are non-characteristic along Y

(see Section 8.8.d) and let s : M0 ⌦C M00 ! DbX be a sesquilinear pairing.

Claim. For any sections m
0 2 M0(U) and m

00 2 M00(U), the distribution s(m
0
,m
00
) 2

Db(U) can be restricted to U \ Y . If codimY = 1, its restriction D,D◆
⇤
s(m

0
,m
00
)

coincides with that defined by (12.5.19 ⇤).

Proof. The question is local as the restriction is unique if it exists. We can thus assume
that U = Y ⇥�r with coordinates t1, . . . , tr on�r. We argue by induction on r. Let us
assume that the claim holds if r = 1. Set H = {t1 = 0}. According to Remark 8.8.19,
H is non-characteristic for M0,M00, and Y is non-characteristic for D◆

⇤
H
M0, D◆

⇤
H
M00.
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By the case r = 1, s(m0,m00) can be restricted to H in some neighborhood of Y , and
by induction D,D◆

⇤
H
s(m

0
,m
00
) can be restricted to Y . It follows that s(m

0
,m
00
) can be

restricted to Y and D,D◆
⇤
Y
s(m

0
,m
00
) = D,D◆

⇤
Y

�
D,D◆

⇤
H
s(m

0
,m
00
)
�
.

It is thus enough to prove the last assertion of the claim. Let 'j 2 C1
c
(U) be

a sequence that converges to s(m
0
,m
00
) in Db(U). By the computation of Section

12.5.18, we have for each test form ⌘ of maximal degree on U the equality

Ress=�1h|t|2s⌘,'ji = h⌘o,'j |Hi =
Z

H

('j |H)⌘o.

Let �s be a disc of radius < 1/2 centered at �1. For any j, the correspondences
⌘ 7! (s + 1)h|t|2s⌘,'ji and ⌘ 7! (s + 1)h|t|2s⌘, s(m0,m00)i define distributions on
U ⇥ �s depending continuously on s 2 �s and the latter is the limit of the family
defined by the formers. Arguing as in Lemma 12.2.7, one checks that the same result
holds after restricting to s = �1. In other words, limj Ress=�1h|t|2s⌘,'ji exists
and is equal to Ress=�1h|t|2s⌘, s(m0,m00)i. We conclude that the limit 'j |H exists in
Db(U \Y ) and is equal to D,D◆

⇤
H
s(m

0
,m
00
) as defined by (12.5.19 ⇤). In particular, this

limit is independent of the choice of the sequence ('j) converging to s(m
0
,m
00
).

12.5.d. Examples

12.5.21. Specialization along a non-characteristic divisor with normal crossings
We take up the setting of Section 9.9.b and analyze how the isomorphisms (9.9.3 ⇤)

are compatible with sesquilinear pairings. Assume thus that the right DX -modules
M0,M00 are non-characteristic along D1, D1, D12 and let s : M0 ⌦M00 ! CX be a
sesquilinear pairing between them. We work in the local setting of Proposition 9.9.3.

Complementing Lemma 9.9.2, we note that, if ⌘o is a C
1 function on X,

(a) the two-variable Mellin transform (s1, s2) 7! hs(m0,m00), |x1|2s1 |x2|2s2⌘oi has
only simple poles along the lines s1 = �1� k1, s2 = �1� k2, with k1, k2 2 N, and no
other poles,

(b) gr
V

(1)

�1 gr
V

(2)

�1 s = gr
V

(2)

�1 gr
V

(1)

�1 s.
We will prove that, under the isomorphisms (9.9.3 ⇤),

P0 g,1s = gr
M

0
 g,1s =  x1,1

s�  x2,1
s,(12.5.21 ⇤)

P1 g,1s =  x1,1
 x2,1

s =  x2,1
 x1,1

s.(12.5.21 ⇤⇤)

Let m
0 be a local section of M0, let m

0 ⌦ 1 its image in ◆g⇤M
0
[@t] = V�1(M

0
g
) and

let [m
0 ⌦ 1] its class in gr

V

�1(M
0
g
). Similar notation for m

00. We have
⌦
(gr

V

�1T◆g⇤s)([m
0 ⌦ 1], [m00 ⌦ 1]), ⌘o

↵

= Ress=�1
⌦
T◆g⇤s(m

0 ⌦ 1,m00 ⌦ 1), |t|2s⌘o�(t)
↵

= Ress=�1
⌦
s(m

0
,m00), |x1x2|2s⌘o�(g)

↵
(by (12.5.16 ⇤)).

Let us consider the morphism '1 : N1 = D◆1⇤gr
V

(1)

�1 M ! gr
M

0
gr

V

�1(Mg) as described
in (9.9.11). It sends m⌦ 1 to mx2 ⌦ 1 (m = m

0
,m
00), so that

⌦
(gr

M

0
gr

V

�1T◆g⇤s)('1[m
0 ⌦ 1],'1[m

00 ⌦ 1]), ⌘o

↵
= Ress=�1

⌦
s(m

0
x2,m

00x2), |x1x2|2s⌘o
↵
.
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On the other hand, we have

h(D◆1⇤grV
(1)

�1 s)([m
0
], [m00]), ⌘oi = Ress=�1hs(m0,m00), |x1|2s⌘oi

(⇤)
= Ress=�1hs(m0,m00), |x1|2s|x2|2s+2

⌘oi

= Ress=�1hs(m0x2,m
00x2), |x1x2|2s⌘oi.

The equality (⇤) is obtained by using that the two-variable Mellin transform
hs(m0,m00), |x1|2s1 |x2|2s2+2

⌘oi has no pole along s2 = �1. We argue similarly by
changing the roles of x1 and x2, and we obtain (12.5.21 ⇤) in this way, according to
(12.5.15 ⇤).

For (12.5.21 ⇤⇤), we wish to compute  g,1s([m
0 ⌦ 1],N[m00 ⌦ 1]) for

[m
0 ⌦ 1] 2 gr

M

1
gr

V

�1(M
0
g
), [m

00 ⌦ 1] 2 gr
M

1
gr

V

�1(M
00
g
).

By using the isomorphisms (9.9.9) and (9.9.8), we find
⌦
(gr

V

�1T◆g⇤s)([m
0 ⌦ 1],N[m00 ⌦ 1]), ⌘o

↵
= Ress=�1(s+ 1)

⌦
s(m

0
,m00), |x1x2|2s⌘o

↵
,

since N = @tt. One notices that, for a meromorphic function '(s1, s2) on C
2 as in (a)

above, we have

Ress=�1(s+ 1)'(s, s) = Ress1=�1 Ress2=�1 '(s1, s2)

= Ress2=�1 Ress1=�1 '(s1, s2).

Then (12.5.21 ⇤⇤) follows.

12.5.22. Nearby cycles along a monomial function of a smooth D-module
We take up the setting of Section 9.9.c. Since the question is local, we set X = C

n.
Let us assume that M0,M00 are smooth left DX -modules and let s : M0 ⌦ M00 !
DbX be a sesquilinear pairing. We know that s takes values in C1

X
(Lemma 12.3.6).

In particular, the restriction D,D◆
⇤
I
s is a well-defined sesquilinear pairing between D◆

⇤
I
M0

and D◆
⇤
I
M00. We will show that, under the isomorphism of Proposition 9.9.12(3),

we have

(12.5.22 ⇤) P` g,1s =
L

J2J`+1

T◆I⇤(D,D◆
⇤
I
s) (I = J

c
).

We will restrict to the case where M0 = M00 = OX and s = sn, the general case being
similar (see Example 12.5.18). By the D-linearity of the isomorphism in Lemma
9.9.21, it is enough to compute, for J 0, J 00 2 J`+1, P` g,1sn(x

1
I0

I0 �, x
1
I00

I00 �) and to show
that

• it is zero if J 0 6= J
00,

• if J 0 = J
00
= J , it is equal to D,D◆I⇤sI(�J , �J), where sI = D,D◆

⇤
I
sn is the standard

pairing on OI .
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By definition, for a test form of maximal degree ⌘(x) and a cutoff function �(t),
⌦
⌘,P` g,1sn(x

1
I0

I0 �,x
1
I00

I00 �)i =
⌦
⌘, g,1sn(x

1
I0

I0 �,N
`x

1
I00

I00 �)
↵

= Ress=�1
⌦
⌘�(t)|t|2s( i

2⇡
dt ^ dt), (�t@t)`D,D◆g⇤sn(x

1
I0

I0 �, x
1
I00

I00 �)i

= Ress=�1(s+ 1)
`
⌦
⌘�(t)|t|2s( i

2⇡
dt ^ dt), D,D◆g⇤sn(x

1
I0

I0 �, x
1
I00

I00 �)i,

where we have used, for the third equality, the property that the expression
h⌘@

t
�|t|2s · · · , · · · i is an entire function of s. By a computation already done, the

last term can be expressed as

Ress=�1(s+1)
`
⌦
⌘�(g)|g|2s, sn(x1

I0
I0 , x

1
I00

I00 )i = Ress=�1(s+1)
`

Z

�
n

r

x
1
I0

I0 x
1
I00

I00 �(g)|g|2s⌘,

where �r ⇢ C is a disc of radius r > 0 large enough so that �n

r
contains the compact

support of ⌘. Let us forget �(g), which plays no role, and let us assume that p = n,
since the variables xp+1, . . . , xn do not play any important role here. Due to the
formula (obtained by computing with polar coordinates)

Z

�r

|t|2stptq i

2⇡
dt ^ dt =

8
><

>:

0 if p 6= q,

r
2(s+p+1)

s+ p+ 1
if p = q,

we find that, for a monomial ⌘p,q = x
p
x
q Q

i
(

i

2⇡
dxi ^ dxi) (pi, qi > 0),

Z

�
n

r

x
1
I0

I0 x
1
I00

I00 |g|2s⌘p,q =

8
><

>:

0 if 9 i, (p+ 1I0)i 6= (q + 1I00)i,

Q
i

r
2(s+1+(p+1

I0 )i)

s+ 1 + (p+ 1I0)i
if 8 i, (p+ 1I0)i = (q + 1I00)i.

A pole at s = �1 can occur only if J 0 = J
00, that we denote by J (hence I

0
= I

00)
and pJ = qJ = 0J . It is then of order ` + 1. We conclude that the residue above is
nonzero only if I 0 = I

00, that we denote by I, and if we set ⌘ = ⌘I

Q
j2J(

i

2⇡
dxj ^dxj),

we obtain
Ress=�1(s+ 1)

`

Z

�
n

r

x
1
I0

I0 x
1
I00

I00 |g|2s⌘ =

Z

�
I

r

⌘I|XI
,

where XI = {xj = 0 | 8 j 2 J}. According to Example 12.4.8, this is nothing but
h⌘, (D,D◆I⇤sI)(�J , �J)i.

12.5.e. Sesquilinear pairing on vanishing cycles. If M0,M00 are supported on
g
�1

(0), the residue formulas (12.5.10 ⇤) or (12.5.10 ⇤⇤) with kernel |g|2s return the
value zero since any local section m of M is annihilated by some power of g and, for
Re(s) � 0, the function (12.5.6) is identically zero (see Exercise 12.10). Therefore,
these formulas do not lead to a definition of an interesting sesquilinear pairing

�t,1s : �t,1M
0 ⌦ �t,1M00 �! CX resp. DbX

for every M0,M00 which are coherent and R-specializable along t = 0.
On the other hand, the Thom-Sebastiani formula for vanishing cycles (Section 11.8)

led us to interpret vanishing cycles in terms of the algebraic microlocalized modules,
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by introducing the operator @�1
t

as a new variable ✓. Since, by definition, ✓ acts in an
invertible way on the microlocalized module, we could try to apply a residue formula
with kernel |✓|2s in order to define �t,1s. Interpreting the variable ⌧ = ✓

�1 as the
Fourier dual of the variable t, we will apply a residue formula with the kernel obtained
by inverse Fourier transform from |✓|2(s�1) (a similar shift by �1 having been already
observed in Remark 11.8.3). We will use the properties of the functions Ib�(t, s) and
bI�(⌧, s) introduced in Exercises 7.21 and 7.22, in order to extend Definition 7.3.15
and the properties of �t,1s in dimension one.

12.5.23. The function s 7!
⌦
s(m

0
,m00), Ib�(g, s)⌘

↵
. We take up the setting and notation

of Proposition 12.5.4 with right DX -modules M0,M00. The properties of the functions
Ib�,k,k obtained in Exercise 7.21 enable us to apply arguments similar to those of
Proposition 12.5.4 and Corollary 12.5.8 to obtain that, for xo 2 X, for local sections
m
0 2 V0M

0
xo

and m
00 2 V0M

00
xo

, and for any test function on nb(X,xo), the function

s 7�!
⌦
s(m

0
,m00), Ib�(g, s)⌘

↵

extends as a meromorphic function on the plane C with possible poles contained in
R60. The correspondence

⌘o 7�! Ress=0

⌦
s(m

0
,m00), Ib�(g, s)⌘

↵
,

for any test function ⌘ with ⌘|H = ⌘o, well-defines a current on H, which only depends
on the classes [m

0
], [m

00
] in gr

V

0
M0, grV

0
M00. There is a left analogue, as in Remark

12.5.9.
We can now mimic Definition 12.5.10.

12.5.24. Definition (V -grading of a sesquilinear pairing, continued)
(1) (Left case) The sesquilinear pairing

gr
�1
V

s : gr
�1
V

M0 ⌦ gr
�1
V

M00 �! DbH

is well-defined by the formula

(12.5.24 ⇤)
⌦
⌘o, gr

�1
V

s([m
0
], [m00])

↵
:= Ress=0

⌦
Ib�(g, s)⌘, s(m

0
,m00)

↵
,

where m
0
,m
00 are local liftings of [m0], [m00] and ⌘ is any test form of maximal degree

such that ⌘ = e⌘o ^ i

2⇡
(dg ^ dg) with e⌘o|H = ⌘o.

(2) (Right case) The sesquilinear pairing

gr
V

0
(s) : gr

V

0
M0 ⌦C gr

V

0
M00 �! CH

is well-defined by the formula

(12.5.24 ⇤⇤) ([m
0
], [m00]) 7�!

h
⌘o 7! Ress=0

⌦
s(m

0
,m00), Ib�(g, s)⌘

↵i
,

where m0,m00 are local liftings of [m0], [m00] and ⌘ is a test function such that ⌘|H = ⌘o.
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12.5.25. Some properties of gr�1
V

s and gr
V

0
s. The proof of Lemma 12.5.11 extends to

the present case and shows that

gr
V

0
s
right

= (gr
�1
V

s
left

)
right

.

The proofs of Lemmas 12.5.12, 12.5.13 and of (12.5.17 ⇤) also extend to the present
case, due to the properties of Ib� given in Exercise 7.22. We conclude that N is self-
adjoint for gr

�1
V

s and gr
V

0
s, that the functors gr

�1
V

and gr
V

0
on sesquilinear forms

commute with Hermitian adjunction and they do not depend on the embedding.

12.5.26. Definition (Vanishing cycles of a sesquilinear pairing)
Let g : X ! C be any holomorphic function and let M0,M00 be R-specializable.

If s is a sesquilinear pairing between them, we set

�g,1s := gr
�1
V

(T◆g⇤s) resp. grV
0
(T◆g⇤s),

which is a sesquilinear pairing between �g,1M0 and �g,1M00.

12.5.27. Remark (Properties of �g,1s). The properties of Remark 12.5.16 extend to
similar properties for �g,1s. In particular, 12.5.16(4) reads, for m

0 ⌦ 1 2 V0(D◆⇤M
0
)

and m
00 ⌦ 1 2 V0(D◆⇤M

00
),

(12.5.27 ⇤)
⌦
�g,1s([m

0 ⌦ 1], [m00 ⌦ 1]), ⌘
↵
= Ress=0

⌦
s(m

0
,m00), Ib�(g, s)⌘

↵
.

12.5.28. Proposition (Behaviour with respect to can and var)
The following equalities holds for [m

0
] in  g,1M

0 and [m
00
] 2 �g,1M00, resp. [m0] in

�g,1M
0 and [m

00
] 2  g,1M

00:

(�g,1s)(can[m
0
], [m00]) = �( g,1s)([m

0
], var[m00])

(�g,1s)([m
0
], can[m00]) = �( g,1s)(var[m

0
], [m00]).resp.

Proof. Let us show the first equality in the right setting for example. We choose a test
function ⌘ on X ⇥ C of the form ⌘ = ⌘o�(t), where ⌘o is C

1 with compact support
on X, � is a cut-off function near t = 0. We need to show

(12.5.29) � Ress=0

⌦
s(m

0
,m00), @t

�
Ib�(t, s)�(t)

�
⌘o(x)

↵

= Ress=�1
⌦
s(m

0
,m00), t|t|2s�(t)⌘o(x)

↵
,

where m
0 2 V�1(M

0
g
)(xo,0)

and m
00 2 V0(M

00
g
)(xo,0)

are respective liftings of [m0] and
[m
00
], and we have written s instead of D,D◆g⇤s. Let us consider the left-hand side. By

Exercise 7.21(6), the function s 7!
⌦
s(m

0
,m00), Ib�(t, s)@t(�(t))⌘o(x)

↵
is holomorphic.

The left-hand side is thus equal to

�Ress=0

⌦
s(m

0
,m00), @t(Ib�(t, s))�(t)⌘o(x)

↵

and, using Exercise 7.21(7) and arguing for Re s > 1 first, it is equal to

(12.5.30) Ress=0

⌦
s(m

0
,m00), Ib�,�1,0(t, s)�(t)⌘o(x)

↵
.

Let us denote by T the one-variable current with compact support (by definition of �)

C1(C) 3 '(t) 7�! hs(m0,m00),'(t)�(t)⌘oi.
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Its Fourier transform FT := hT, et⌧�t⌧ i is a C
1 function of ⌧ , which has moderate

growth, as well as all its derivatives, when ⌧ ! 1. The function whose residue is
taken in (12.5.30) is then written as

(12.5.31)
Z
⌧
�1 |⌧ |�2(s+1) b�(⌧)FT (⌧) i

2⇡
(d⌧ ^ d⌧).

On the other hand, up to replacing � with �2 in (12.5.29), which does not change
the residue, as previously remarked, the function in the RHS of (12.5.29) is

(12.5.32)
hT, t|t|2s�(t)i =

⌦
FT i

2⇡
(d⌧ ^ d⌧),F�1(t|t|2s�(t))

↵

=

Z
bI�,1,0(⌧, s) · FT (⌧) i

2⇡
(d⌧ ^ d⌧),

where we have set
bI�,k,`(⌧, s) := F�1(|t|2stkt`�(t)),

and the properties we need for the function bI�,1,0(⌧, s) are made precise in Exercise
7.22. Using the function b�(⌧) as above, we conclude from Exercise 7.22(7) that the
integral

(12.5.33)
Z

FT (⌧) · bI�,1,0(⌧, s) · (1� b�(⌧)) i

2⇡
d⌧ ^ d⌧

is holomorphic with respect to s for Re s > �3/2. It can thus be neglected when
computing the residue at s = �1. The question reduces therefore to the comparison
between bI�,1,0(⌧, s) and ⌧�1 |⌧ |�2(s+1) when ⌧ !1.

Let us set bJ�,1,0(⌧, s) = ⌧ |⌧ |2(s+1) bI�,1,0(⌧, s). Then, by (7.7.0 ⇤⇤), we have

⌧
@ bJ�,1,0
@⌧

= � bJ@�/@t,2,0, ⌧
@ bJ�,1,0
@⌧

= � bJ
@�/@t,1,1

,

and both functions bJ@�/@t,2,0 and bJ
@�/@t,1,1

can be extended as C
1 functions, in-

finitely flat at ⌧ =1 and holomorphic with respect to s 2 C.

12.5.34. Lemma. For s in the strip Re(s+1)2(�1,�1/4), the function ⌧ 7! bJ�,1,0(⌧, s)
satisfies

lim
⌧!1

bJ�,1,0(⌧, s) = �
�(s+ 2)

�(�s) .

Proof. We can assume that � is a C
1 function of |t|2. For simplicity, we assume that

� ⌘ 1 for |t| 6 1. Then the limit of bJ�,1,0 is also equal to the limit of the integral

J(⌧, s) =

Z

|t|61

e
�t⌧+t⌧

t⌧ |t⌧ |2(s+1) i

2⇡

dt

t
^ dt

t
.

By a simple change of variables, we have

J(⌧, s) =

Z

|u|6|⌧ |
e
2i Imu

u |u|2s i

2⇡
du ^ du.
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Using the Bessel function J±1(x) =
1

2⇡

R
2⇡

0
e
�ix sin y

e
±iy

dy, we can write

J(⌧, s) = 2

Z

⇢6|⌧ |
J�1(2⇢)⇢

2(s+1)
d⇢

= �2�2(s+1)

Z

⇢62|⌧ |
J1(⇢)⇢

2(s+1)
d⇢, as J1 = �J�1.

For Re(s + 1) 2 (�1,�1/4), the limit when |⌧ | of the previous integral is equal to
2
2(s+1)

�(s+ 2)/�(�s) (see [Wat22, §13.24, p. 391]).

Let us set

bK�(⌧, s) = �
Z

1

0

⇥ bJ@�/@t,1,0(�⌧, s) + bJ
@�/@t,0,1

(�⌧, s)
⇤
d�.

Then bK� is also C
1, infinitely flat at ⌧ =1 and holomorphic with respect to s 2 C.

According to Lemma 12.5.34, we can write, on the strip Re(s+ 1) 2 (�1/2,�1/4),

(12.5.35) bI�,1,0(⌧, s) = �⌧�1 |⌧ |�2(s+1) �(s+ 2)

�(�s) +K�(⌧, s)

where K�(⌧, s) = �⌧�1 |⌧ |�2(s+1) bK�(⌧, s) is C
1 on C ⇥ C, infinitely flat at ⌧ = 1

and holomorphic with respect to s. For any p > 0, let us apply (@⌧@⌧ )
p to the

previous equality restricted to ⌧ 6= 0 (where both sides are C
1 in ⌧ and holomorphic

with respect to s; preferably, multiply both sides by b�(⌧)), to get, for s in the same
strip,

bI�,1,0(⌧, s+ p) = �⌧�1 |⌧ |�2(s+p+1) �(s+ p+ 2)

�(�s� p)
+ (@⌧@⌧ )

p
K�(⌧, s)

where the last term remains infinitely flat at ⌧ =1. It follows that (12.5.35) remains
true on any strip Re(s+1) 2 (p�1/2, p�1/4) with p > 0 and a function K

(p)

� instead
of K�.

Choose p such that the two the meromorphic functions considered in (12.5.29) are
holomorphic on the strip Re(s + 1) 2 (p � 1/2, p � 1/4). The difference between
�(s+2)/�(�s) times the function in the LHS and the function in the RHS coincides,
on this strip, with the restriction of a holomorphic function defined on the half-plane
{s | Re s > �3/2} (taking into account (12.5.33) and K

(p)

� ). It is then equal to it on
this whole half-plane, hence has residue 0 at s = �1.

12.5.36. Corollary.
(1) Assume that M0,M00 are middle extensions along g

�1
(0) (see Definition 9.7.3),

so that �g,1M ' Im[N :  g,1M !  g,1M] for M = M0,M00. Then, for [µ
0
] 2 �g,1M0

and [µ
00
] 2 �g,1M00, and [µ

0
] = N[m

0
], [µ00] = N[m

00
], we have

�g,1s([µ
0
], [µ00]) = � g,1s([m

0
],N[m00]) = � g,1s(N[m

0
], [m00]).

(2) Assume that M0,M00 are supported on g
�1

(0), so that M = �g,1M for M =

M0,M00. Then s = �g,1s.
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Proof.
(1) The second equality is due to Remark 12.5.16(1). The identification of �g,1M

with ImN implies precisely that [µ
0
] = can[m

0
] and [µ

00
] = can[m

00
]. Then, according

to Proposition 12.5.28,

�g,1s([µ
0
], [µ00]) = �g,1s(can[m

0
], can[m00])

= � g,1s([m
0
], var can[m00]) = � g,1s([m

0
],N[m00]).

(2) We can assume that X = H⇥C and g is the projection (x, t) 7! t (x is the vari-
able in H) and we set ◆ : H⇥{0} ,! X. We can assume that we are given DH -modules
M0

o
,M00

o
and a sesquilinear pairing between them. For local sections m

0
o
,m
00
o
, we have

to identify gr
V

�1(T◆⇤so)([m
0
o
⌦1], ([m00

o
⌦ 1]) with so([m

0
o
], ([m00

o
]). Setting ⌘ = ⌘o(x)�(t),

we have, since �(0) = 1,
⌦
(T◆⇤so)((m

0
o
⌦ 1), ((m00

o
⌦ 1)), ⌘oIb�(t, s)�(t)

↵
=
⌦
so(m

0
o
, (m00

o
), ⌘o

↵
· Ib�(0, s).

The assertion follows since Ress=0 Ib�(0, s) = 1 (see Exercise 7.21(2)).

12.5.37. Remark (Kashiwara’s equivalence and gr
V

0
s). Let H ,

◆�! X be the inclusion of
a smooth hypersurface (not necessarily defined by a global equation). If M = M0,M00

are coherent DH -modules, we have V0(D◆⇤M) = M ⌦ 1 (notation of Section 12.4.b)
and, for a sesquilinear pairing sH between M0 and M00, we recover sH from D,D◆⇤sH
by Formula (12.5.24 ⇤⇤) for any local equation of H, which therefore does not depend
on the choice of such a local equation. We then denote sH = gr

V

0
(T◆⇤sH).

12.5.f. (Dual) localization of a sesquilinear pairing. Let s : M0 ⌦C M00 ! CX

be a sesquilinear pairing between right DX -modules, and let D be an effective divisor
in X. Recall that localization and dual localization are defined for DX -modules which
are R-specializable along D and that we have natural morphisms (see Corollaries
11.3.10(2) and 11.4.9(2))

M(!D)
dloc����!M

loc���!M(⇤D).

According to the results recalled above, s defines a moderate sesquilinear pairing by
localization:

s
modD

: M0(⇤D)⌦C M00(⇤D) �! C
modD

X
.

Our aim is to refine it as a pairing taking values in CX . We note that smodD naturally
induces sesquilinear pairings

(12.5.38)
s
(⇤D)

: M0(⇤D)⌦C M00(!D) �! C
modD

X
,

s
(!D)

: M0(!D)⌦C M00(⇤D) �! C
modD

X
,

by setting

s
(⇤D)

(•, •) = s
modD

(•, loc
00 � dloc00(•)), s

(!D)
(•, •) = s

modD
(loc

0 � dloc0(•), •).

Moreover, the second one is obtained by adjunction of the first one, that is,

s
(!D)

=
⇥
s
⇤(⇤D)

⇤⇤
,

since (s
⇤
)
modD

= (s
modD

)
⇤.
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12.5.39. Proposition. Assume that M0,M00 are R-specializable along D. Then s
(⇤D)

and s
(!D) take values in CX and are compatible with s, in the sense that the following

diagram commutes:

(12.5.39 ⇤)

M0(⇤D)⌦C M00(!D)
s
(⇤D)

//

dloc
00

✏✏

CX

M0 ⌦C M00
s

//

loc
0

OO

loc
00

✏✏

CX

M0(!D)⌦C M00(⇤D)
s
(!D)

//

dloc
0

OO

CX

that is, for any local sections m
0
,m
00 of M0,M00 and m

0
!
,m
00
!

of M0(!D),M00(!D), the
following equalities hold:

s
(⇤D)

(loc
0
(m
0
),m

00
!
) = s(m

0
, dloc

00
(m
00
!
)), s

(!D)
(m
0
!
, loc

00
(m00)) = s(dloc

0
(m
0
!
),m00).

Furthermore, if s1, s2 are two such sesquilinear pairings which coincide when re-
stricted to X rD, then s

(⇤D)

1
, s

(⇤D)

2
, resp. s(!D)

1
, s

(!D)

2
, coincide.

12.5.40. Remark ((Dual) localization for left pairings). The pairings s(⇤D) and s
(!D) are

defined by side-changing (12.3.3 ⇤) from their right analogues.

Proof of Proposition 12.5.39. The question is local, and we can reduce to the case where
D = H is smooth and X = H⇥C. The V -filtration is then well-defined for an R-spe-
cializable DX -module. Furthermore, it is enough to construct s

(⇤H) and s
(!H) such

that the diagram (12.5.39 ⇤) commutes, as these pairings will then coincide with those
defined by (12.5.38). Since the morphisms M(!H)!M and M!M(⇤H) have kernels
and cokernels supported in H, they induce isomorphisms between the V<0 of these
modules. In particular, since s takes values in CX , so does the restriction of smodH

to V<0M
0 ⌦C V<0M00. We will construct s

(⇤H), the case of s(!H) being similar.

An unsuccessful tentative. Since loc : V<0M
0 ! V<0(M

0
(⇤H)) is an isomorphism,

we expect that the restriction of s(⇤H) to V<0(M
0
(⇤H))⌦C M00(!H) is given by

s
(⇤H)

(m
0
⇤<0

,m
00
!
) = s

(⇤H)
(loc(m

0
<0

),m
00
!
) = s(m

0
<0

, dloc(m
00
!
)).

Since any m
0
⇤ can be written as m

0
⇤<0

t
�k for some k > 0 and m

0
⇤<0

2 V<0M
0,

it would be natural to define s
(⇤H)

(m
0
⇤,m

00
!
) as the result of the division of the current

s(m
0
<0

, dloc(m
00
!
)) by t

k. However, this result is not unique, and is determined only
up to a current supported on H, so this method does not lead to a well-defined result.

An successful tentative. We will proceed the other way round, starting by extending s

to M(⇤H)⌦C V<0M00. For every ` > 1, we extend s as a sesquilinear pairing

s` : (V<0M
0 · t�`)⌦C V<0M00 �! CX .

We argue exactly as in the proof of Proposition 12.5.4 by extending, for every test
function ⌘ on nb(xo) and each local section m

0 of V<0M
0 and m

00 of V<0M
00, the
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holomorphic function (for Re s� 0)

s 7�!
⌦
s(m

0
,m00)|t|2(s�`)t`, ⌘

↵
= s(m

0
,m00t`)|t|2(s�`), ⌘

↵

as a meromorphic function on C. Since m
00
t
` is a local section of V<`M

00, it has no
pole at s� ` = �`, that is, at s = 0. Taking the value of this function at s = 0 gives
the desired extension of s, since |t|2(s�`)t` = |t|2st�`. Moreover, one checks that s`

restricts to s`�1 on (V<0M
0 · t�`+1

)⌦C V<0M00, and thus defines a sesquilinear pairing

s
(⇤H)

: M0(⇤H)⌦C V<0M00 �! CX .

This pairing can be extended in at most one way as a pairing

s
(⇤H)

: M0(⇤H)⌦C M00(!H) �! CX ,

due to the D
X

-linearity and the equality M00(!H) = V<0M
00 ⌦V0DX

DX . However,
since DX is not locally free as a V0DX -module, the existence of such an extension is not
a priori obvious. Such an extension will exist near xo if, for any finite family (m

00
j
) of el-

ements of V<0M
00
xo

, any finite family (Pj)j of germs of differential operators at xo, and
any m

0 2M(⇤H)xo
, the condition

P
j
m
00
j
⌦Pj = 0 implies

P
j
s
(⇤H)

(m
0
,m
00
j
) · P j = 0.

This holds by definition if all Pj belong to V0DX,xo
. Therefore, one can reduce to the

case where j = 0, . . . , N and Pj = @
j

t
.

We argue by induction on N , the case where N = 0 being clear. We thus assume
that

P
j
m
00
j
⌦@j

t
= 0 and we first claim that m00

N
⌦@t 2 V<0M

00
(!H). Indeed, M00(!H)

has the property that @t : grV↵M00(!H)! gr
V

↵+1
M00(!H) is an isomorphism if ↵ = �1,

and on the other hand it is an isomorphism for any other ↵ (this holds for any R-spe-
cializable coherent DX -module). This implies that

@
N

t
: V<0M

00
(!H)/V<�1M

00
(!H) �! V<NM00(!H)/V<N�1M

00
(!H)

is an isomorphism. Since

m
00
N
⌦ @N

t
= �

N�1X

j=0

m
00
j
⌦ @j

t
2 V<N�1M

00
(!H)xo

,

we conclude that m
00
N
⌦ 1 2 V<�1M

00
(!H)xo

, hence the assertion.
By induction, we thus have

N�1X

j=0

s
(⇤H)

(m
0
,m
00
j
) · @j

t
+ s

(⇤H)
(m
0
,m
00
N
⌦ @t) · @N�1

t
= 0 2 CX .

It is therefore enough to check that, for m0 2M0(⇤H)xo
and m

00 2 V<�1M
00
xo

, we have

s
(⇤H)

(m
0
,m00 ⌦ @t) = s

(⇤H)
(m
0
,m00) · @

t
.

Notice now that t : V<0M
00
xo
! V<�1M

00
xo

is an isomorphism, hence m
00
= n

00
t for

some n
00 2 V<0M

00
xo

. We thus have

s
(⇤H)

(m
0
,m00 ⌦ @t) = s

(⇤H)
(m
0
, n00t⌦ @t) = s

(⇤H)
(m
0
, n00 ⌦ t@t)

= s
(⇤H)

(m
0
, n00t@t ⌦ 1) = s

(⇤H)
(m
0
, n00 ⌦ 1) · t@

t

= s
(⇤H)

(m
0
, n00t⌦ 1) · @

t
= s

(⇤H)
(m
0
,m00 ⌦ 1) · @

t
.
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The relation
s
(⇤H)

(loc
0
(m
0
),m

00
!
) = s(m

0
, dloc

00
(m
00
!
))

is not obvious with this method and we will check it. For the sake of simplicity,
we assume that m

0
= m

0
0
2 V0M

0 and we write m
00
!
=
P

j
m
00
j
⌦ @j

t
with m

00
j
2 V<0M

00

(any such writing leads to the same result). We have loc
0
(m
0
0
) = (m

0
0
t) ⌦ t

�1 and
dloc

00
(m
00
!
) =

P
j
m
00
j
@
j

t
. Then (the restriction at s = 0 is justified by the fact that

m
00
j
2 V<0(M

00
))

⌦
s
(⇤H)

(loc
0
(m
0
0
),m

00
!
), ⌘

↵
=

X

j

⌦
s
(⇤H)

(loc
0
(m
0
0
),m

00
j
), @

j

t
⌘
↵

=

X

j

⌦
s(m

0
0
t,m

00
j
), |t|2(s�1)t@j

t
⌘
↵��

s=0

=

X

j

⌦
s(m

0
0
,m
00
j
), |t|2s@j

t
⌘
↵��

s=0

=

X

j

⌦
s(m

0
0
,m
00
j
), @

j

t
⌘
↵
= s(m

0
0
, dloc

00
(m
00
!
)).

Let us end with the question of uniqueness. Clearly, it is enough to prove that
if s1, s2 coincide on X r D, then s

modD

1
, s

modD

2
coincide. This is tautological, since

for an open subset U of X, Db
modD

(U) is by definition equal to the image of the
restriction morphism Db(U)! Db(U rD).

12.5.41. Corollary. To any sesquilinear pairing s between DX-modules M0, M00 which
are R-specializable along D is associated a sesquilinear pairing s

(!⇤) between M0(!⇤D)

and M00(!⇤D), which is uniquely determined from s|XrD. Furthermore, any sesquilin-
ear pairing between M0(!⇤D) and M00(!⇤D) is uniquely determined from its restriction
to X rD.

Proof. Recall that M(!⇤D) is the image of the natural morphism loc�dloc : M(!D)!
M(⇤D). For the first point, it is enough to check that, for m

00
!
2 Ker(loc

00 � dloc00) ⇢
M00(!D) and m

0
!
2 M0(!D), we have s

(⇤D)
(loc

0 � dloc0(m0
!
),m

00
!
) = 0. But (12.5.39 ⇤)

shows that the left-hand side is equal to s
(!D)

(m
0
!
, loc

00 � dloc00(m00
!
), which is equal to

zero by assumption on m
00
!
.

For the last assertion, we can assume, due to Kashiwara’s equivalence, that X =

H ⇥ �t. Then M(!⇤H) is DX -generated by V<0M(!⇤D). Let (m
0
i
), (m

00
j
) be a finite

family of local DX -generators in V<0M
0
(!⇤D), V<0M

0
(!⇤D). Assume that a sesquilin-

ear pairing s vanishes on XrH. Then there exist k > 1 such that s(m0
i
,m
00
j
)t

k
= 0 for

any i, j. It follows that s vanishes on V�kM
0
(!⇤D)⌦ V<0M0(!⇤D). Since V�kM

0
(!⇤D)

also generates M0(!⇤D) as a DX -module, this implies that s = 0.

12.5.g. (Dual) localization in the non-characteristic case. We keep the setting
of Section 12.5.f and we moreover assume that D = H is a smooth hypersurface which
is non-characteristic with respect to M0,M00. In such a case, loc is injective and dloc is
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surjective. Due to the commutative diagram of Proposition 12.5.39, we have natural
sesquilinear pairings

s
0
: Coker loc

0 ⌦C Ker dloc
00 �! CX and s

00
: Ker dloc

0 ⌦C Coker loc
00 �! CX .

Since these DX -modules are supported on H, Kashiwara’s equivalence (Proposition
12.4.7), together with the identification of Propositions 11.2.9 and 11.2.13, yields that
s
0
, s
00 are the pushforwards of sesquilinear pairings

s
0
H

: M0
H
⌦C M00

H
�! CH , s

00
H

: M0
H
⌦C M00

H
�! CH .

12.5.42. Proposition. The pairings s
0
H
, s
00
H

are equal and correspond, by side-changing,
to the pairing D,D◆

⇤
s defined by (12.5.19 ⇤).

Proof. We will treat the case of s
0, that of s

00 being similar. The question is local,
and we can assume that X = H ⇥ �t. After the identifications of Remarks 11.2.11
and 11.2.14, the right version of D,D◆

⇤
s defined by (12.5.19 ⇤) is nothing but gr

V

�1(s) :

gr
V

�1(M
0
)⌦ gr

V

�1(M
00)! CH , and we use the isomorphisms grV

0
(M0(⇤H))

⇠�! gr
V

�1M
0

and gr
V

0
(M00(!H))

⇠�! gr
V

�1M
00 defined resepctively as grV�1loc

�1�t and gr
V

�1dloc�@�1t
.

On the other hand, s0
H

is nothing but grV
0
(s
0
). Since gr

V

0
M = 0 for M = M0,M00 (non-

characteristicity of H), grV
0
(s
0
) is equal to

gr
V

0
(s

(⇤H)
) : gr

V

0
(M0(⇤H))⌦ gr

V

0
(M00(!H)) �! CH .

Let m0⇤0 be a local section of V0M
0
(⇤H) and m

00
!0

a local section of V0M
00
(!H). We can

write m
00
!0
= m

00
�1 ⌦ @t +m

00
<0
⌦ 1 and we will neglect m

00
<0

which does not contribute
to gr

V

0
(s

(⇤H)
)([m

0
⇤0], [m

00
!0
]). We can also write m

0
⇤0 = loc(m

0
�1)t

�1. We have
⌦
gr

V

0
(s

(⇤H)
)([m

0
⇤0], [m

00
!0
]), ⌘o

↵
= Ress=0

⌦
s
(⇤H)

(m
0
⇤0,m

00
!0
), |t|2s⌘

↵
with ⌘|H = ⌘o

= Ress=0

⌦
s
(⇤H)

(loc(m
0
�1)t

�1
,m
00
�1 ⌦ @t), |t|2s⌘

↵

= Ress=0

⌦
s
(⇤H)

(loc(m
0
�1),m

00
�1 ⌦ @t), |t|2st�1⌘

↵

= Ress=0

⌦
s(m

0
�1,m

00
�1@t), |t|2st�1⌘

↵

= Ress=0

⌦
s(m

0
�1,m

00
�1@tt), |t|2(s�1)⌘

↵

=
⌦
gr

V

�1(s)([m
0
�1], [m

00
�1]), ⌘o

↵
,

where the last equality follows from the fact that @tt = Id+E acts as the identity on
gr

V

�1M
00, due to non-characteristicity of H.

12.5.h. Maximal extension of a sesquilinear pairing. We take up the notation
of Sections 11.6.b–11.6.d, omitting the F -filtration however. The conjugation that we
consider on C[s, s

�1
], A,B,A(k), B

(k) is the conjugation of the coefficients. In other
words, we consider s as a real variable. Let g : X ! C be a holomorphic function
and let D be the reduced divisor underlying (g). Let M⇤ be a left DX(⇤g)-module.
In the absence of a filtration, we can directly define M⇤(k) = g

s
(M⇤ ⌦C A(k)) (with

connection r⌦ Id+(dg/g)⌦ s) and M⇤(k) = g
s
(M⇤ ⌦C B

(k)
).
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Let s : M0 ⌦ M00 ! DbX be a sesquilinear pairing between left DX -modules.
It induces a sesquilinear pairing s⇤ : M

0
⇤ ⌦M00⇤ ! Db

modD

X
, where we have set M⇤ =

M(⇤g). We deduce sesquilinear pairings

M0⇤(k) ⌦C M
00(k)
⇤

s⇤(k)�����! Db
modD

X
,

g
s
(m
0 ⌦ a(s))⌦ gs(m00 ⌦ b(s�1)) 7�����! Ress=0

⇣
|g|2sa(s)b(s�1)ds

s

⌘
s⇤(m

0
,m00)

and

M
0(k)
⇤ ⌦C M00⇤(k)

s
(k)

⇤����! Db
modD

X
,

g
s
(m
0 ⌦ b(s

�1
))⌦ gs(m00 ⌦ a(s)) 7����! Ress=0

⇣
|g|2sb(s�1)a(s)ds

s

⌘
s⇤(m

0
,m00).

Expressing |g|2s as exp(s log |g|2), we note that the residue in the right-hand sides is
equal, up to a constant, to some power of log |g|2, hence is a multiplier on Db

modD

X
.

By means of Proposition 12.5.39, we obtain sesquilinear pairings

s
(!g)

⇤(k) : M
0
⇤(k)(!g)⌦C M

00(k)
⇤ (⇤g) �! DbX ,

s
(⇤g)
⇤(k) : M

0
⇤(k)(⇤g)⌦C M

00(k)
⇤ (!g) �! DbX .

12.5.43. Proposition. The pairings s
(!g)

⇤(k) and s
(⇤g)
⇤(k) are compatible, in a natural way,

with the natural morphisms dloc � loc : (!g)! (⇤g).
• They define on Ker(dloc � loc), resp. Coker(dloc � loc), for k large enough lo-

cally on D, the same pairing, which also coincides with  g,1s via the identification of
Proposition 11.6.10(2).

• They define on Ker(s · dloc � loc), resp. Coker(dloc � loc · s), for k large enough
locally on D, the same pairing ⌅gs : ⌅gM

0⌦⌅gM00 ! DbX (see Proposition 11.6.12).

Proof. It is left as an exercise.

12.6. Compatibility between functors on sesquilinear pairings

In this section, we consider the following setting. Let f : X ! X
0 be a holomorphic

map between complex manifolds and let h : X
0 ! C be a holomorphic function. Set

g = h � f . Let M0,M00 be right DX -modules which are R-specializable along (g). Let
s : M0⌦M00 ! CX be a sesquilinear pairing. Assume that f is proper on the support
of M0,M00. Recall that Theorem 9.8.8 implies:

• for every k 2 Z, Df
(k)

⇤ M is R-specializable along (h),
• for every ↵ 2 R, the natural morphism Df

(k)

⇤ V↵M! Df
(k)

⇤ M is injective and its
image is equal to V↵(Df

(k)

⇤ M).

12.6.a. Pushforward and specialization of sesquilinear pairings

12.6.1. Theorem. With respect to the previous natural morphism, we have

Tf
(k,�k)
⇤  g,�s =  h,�(Tf

(k,�k)
⇤ s), Tf

(k,�k)
⇤ �g,1s = �h,1(Tf

(k,�k)
⇤ s).
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Proof. We start with the case of a map f ⇥ Id : X ⇥C! X
0 ⇥C and we take for the

function h : X
0 ⇥ C ! C the second projection. We assume that M0,M00 are right

DX⇥C-modules.

12.6.2. Lemma. With these assumptions, for every ↵ 2 [�1, 0] and k 2 Z,

Tf
(k,�k)
⇤ (gr

V

↵
s) = gr

V

↵

�
T(f ⇥ Id)

(k,�k)
⇤ s

�
.

Proof. Set � = �↵� 1 and let

m
0k
1 2 �(U, f⇤(En+1+k

X⇥C ⌦OX⇥C V
�M0left)),

m
00�k
1 2 �(U, f⇤(En+1�k

X⇥C ⌦OX⇥C V
�M00left)).

The cohomology classes [m0k1] and [m
00�k
1 ] can be regarded as sections of the modules

V↵(Df
(k)

⇤ M0)⌦OY
C1
Y

and V↵(Df
(�k)
⇤ M00)⌦OY

C1
Y

respectively, according to the result
recalled above. We can then compute with these classes. Let us also denote by [m]↵

the class of m 2 V↵ modulo V<↵. Let us assume ↵ 2 [�1, 0) (the case of ↵ = 0 is
similar by using the function Ib�). We have, for ⌘ 2 C1

Y
(U),

D
gr

V

↵

�
T(f⇥ Id)

(k,�k)
⇤ s

�
([m
0k
1]↵, [m

00�k
1 ]↵), ⌘(y)

E

= Ress=↵

D�
T(f ⇥ Id)

(k,�k)
⇤ s

�
([m
0k
1], [m

00�k
1 ]), ⌘(y)|t|2s�(t)

E

= Ress=↵

D
s(m

0k
1,m

00�k
1 ), ⌘ � f(x)|t|2s�(t)

E

=

D
gr

V

↵
s((m

0k
1)↵, (m

00�k
1 )↵), ⌘ � f(x)

E

=

D
(Tf

(k,�k)
⇤ gr

V

↵
s)
�
[(m
0k
1)↵], [(m

00�k
1 )↵]

�
, ⌘(y)

E
,

and we obtain the desired equality since, as recalled, [m
±k

1 ]↵ = [(m
±k

1 )↵] in
�(U, gr

V

↵
[D(f ⇥ Id)

(±k)

⇤ M]) = �(U, Df
(±k)

⇤ gr
V

↵
M).

We can now end the proof of Theorem 12.6.1. We have

Tf
(k,�k)
⇤  g,�s = Tf

(k,�k)
⇤ gr

V

↵
(T◆

0

g⇤s) (see (12.5.15 ⇤))

= gr
V

↵
(T(f ⇥ Id)

(k,�k)
⇤ (T◆

0

g⇤s)) (Lemma 12.6.2)

= gr
V

↵
(T◆

0

h⇤(Tf
(k,�k)
⇤ s)) (after (12.4.14 ⇤))

=  h,�(Tf
(k,�k)
⇤ s).

12.6.b. Pushforward and localization of sesquilinear pairings

Let D
0 be an effective divisor in X

0, locally equal to (h) for some holomorphic
function h, and set D = f

⇤
(D
0
). Assume that M is R-specializable along D. Then

we have natural morphisms (see Corollary 11.7.1(1))

(Df
(k)

⇤ M)(!D
0
) �! Df

(k)

⇤ M(!D)) and Df
(k)

⇤ (M(⇤D)) �! (Df
(k)

⇤ M)(⇤D0).

12.6.3. Proposition. With respect to the previous natural morphism, the sesquilinear
pairings Tf

(k,�k)
⇤ (s

(?D)
) and (Tf

(k,�k)
⇤ s)

(?D
0
) coincide (? = ⇤, !).
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Proof. One first considers the naive localization, and recall that C
modD

X
= CX(⇤D).

One then easily checks that Tf
(k,�k)
⇤ (s(⇤D)) = (Tf

(k,�k)
⇤ s)(⇤D0) with values in

CX0(⇤D0). By definition and from the commutativity above, (Tf
(k,�k)
⇤ s)

(⇤D0
) is the

restriction of the latter to Df
(k)

⇤ (M(⇤D)) ⌦ Df
(�k)
⇤ M(!D)), and the assertion follows

for ? = ⇤. The case ? = ! is similar.

12.6.c. Pushforward and Beilinson extension of sesquilinear pairings

12.6.4. Corollary. Via the isomorphisms of Corollary 11.7.1, the sesquilinear pairings
Tf

(k,�k)
⇤ (⌅gs) and ⌅h(Tf

(k,�k)
⇤ s) coincide.

12.7. The category eD-Triples and its functors

We now come back to the filtered setting, and consider eDX -modules, with eDX =

RFDX . Given a eDX -module eM, we denote by M := eM/(z � 1) eM the associated
DX -module.

12.7.a. The category of eD-triples. We extend to arbitrary dimensions the con-
structions of Section 7.4.a. The category eD-Triples(X) is an abelian category, and
possesses the basic functors we need for studying pure Hodge modules. For example,
the pushforward functor will be denoted by Tf⇤, etc.

12.7.1. Definition. The category eD-Triples(X) has

• objects consisting of triples eT = ( eM0, eM00, s), where eM0, eM00 are eDX -modules
and s is a sesquilinear pairing between M0 and M00 (with values in DbX in the left
case, and in CX in the right case),

• morphisms ' : eT1 ! eT2 consisting of pairs ' = ('
0
,'
00
), where '0 : eM0

1
! eM0

2

and '
00
: eM00

2
! eM00

1
are eDX -linear, such that for all local sections m

0
1

of M0
1

and m
00
1

of M00
2
,

(12.7.1 ⇤) s1(m
0
1
,'00(m00

2
)) = s2('

0
(m
0
1
),m

00
2
).

In particular, eD-Triples(X) is an abelian subcategory of Mod(eDX)⇥Mod(eDX)
op.

We say that an object eT of eD-Triples(X) is coherent, resp. strictly R-specializable,
resp. smooth, if its components eM0, eM00 are eDX -coherent, resp. strictly R-specializable,
resp. eOX -locally free of finite rank. The support of eT is Supp eT = Supp eM0[Supp eM00.

12.7.2. Complexes in eD-Triples(X). A complex (eT•
, d) consists of a graded object eT•

=L
k
eTk of eD-Triples(X) together with a differential d : eTk ! eTk+1 such that d

2
= 0.

We write eTk
= ( eM0k, eM00�k, sk) and d = (d

0
, d
00
), so that ( eM0•, d0) and ( eM00•, d00)

are complexes and sk : M0k ⌦M00�k ! DbX (left case) satisfies sk(d
0
m
0
k�1,m

00
�k) =

s(m
0
k�1, d

00m00�k).
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12.7.3. Side-changing in eD-Triples(X). Let eT = ( eM0, eM00, s) be a left eDX -triple. We set
eTright

:= ( eM0right, eM00right, sright),

where s
right is defined by (12.3.3 ⇤). The right-to-left side changing is defined corre-

spondingly, so that the composition of both is the identity.

12.7.4. Hermitian duality. The Hermitian dual of an object eT = ( eM0, eM00, s) of
eD-Triples(X) is the object eT⇤ := ( eM00, eM0, s⇤), where s

⇤ is the Hermitian adjoint
sesquilinear pairing (see Definitions 12.3.1(2) and 12.3.2(2)). The Hermitian adjoint
of a morphism ' = ('

0
,'
00
) is the morphism '

⇤
:= ('

00
,'
0
). We clearly have eT⇤⇤ = eT

and '⇤⇤ = '.

12.7.5. Side-changing and Hermitian duality in eD-Triples(X). With the previous defi-
nitions, Hermitian duality commutes with side-changing, because of (12.3.3 ⇤⇤).

12.7.6. Hermitian dual of a graded triple. Let eT•
=

L
k
eTk be a graded object in

eD-Triples(X). We write eTk as ( eM0k, eM00�k, sk). The Hermitian dual object is then

(eT⇤)• =
L
k

(eT⇤)k :=
L
k

(eT�k)⇤.

12.7.7. Tate twist. The definition of the twist follows the general definition 5.2.2(7),
and the Tate twist is as in Notation 5.2.3:

eT(`) = ( eM0, eM00, s)(`) := ( eM0(`), eM00(�`), s).

12.7.8. Pre-polarization and Hermitian pairs. A pre-polarization of weight w of eT is
an isomorphism S : eT! eT⇤(�w) which is Hermitian. Tate twist acts as (eT, S)(`) =

(eT(`), (�1)`S). Any pre-polarized triple of weight w is isomorphic to a triple
( eM0, eM0(w), S) with pre-polarization (Id, Id). Hence, giving a pre-polarized triple
(eT, S) of weight w is equivalent to giving the Hermitian pair ( eM0, S) and the weight w.
Tate twist acts as

( eM0, S, w)(`) = ( eM0(`), (�1)`S, w � 2`).

12.7.9. Two basic examples. Let us keep the notation of Examples 5.4.4 and 12.3.5.
(1) (Left case) The triple H

eOX = (eOX , eOX(n), sn) is the smooth left triple with
sn(1, 1) = 1. It satisfies (H

eOX)
⇤
(�n) = H

eOX .
(2) (Right case) The triple He!X = (e!X , e!X(n), sn) is the smooth right triple with

sn(!
0
,!00) = Sgn(n)(!

0 ^ !00).
In both cases we have s

⇤
n
= sn.

12.7.10. Smooth triples. We say that eT is smooth if its components eM0, eM00 are eOX -lo-
cally free of finite rank. Then the corresponding sesquilinear pairing reads s

er · sn
(see Lemma 12.3.6).

12.7.11. Lefschetz triples. The notion of Lefschetz structure (eT,N) in the abelian cat-
egory eD-Triples(X), or that of sl2-structure (eT•,X,Y), is obtained, as in Section 5.3.
Using Hermitian duality in eD-Triples(X), we obtain as in Definition 5.3.2 the notion
of Hermitian duality for a Lefschetz eD-triple (eT,N). Therefore, if eT = ( eM0, eM00, s),
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the nilpotent endomorphism N = (N
0
,N
00
) consists of nilpotent endomorphisms

N
0
: eM0 �! eM0 and N

00
: eM00 �! eM00

such that s(N
0•, •) = s(•,N00•) (see also Section 5.3.a). The notion of pre-polarization

of weight w is defined as in §5.3.1.

12.7.b. Pullback, specialization and localization in eD-Triple

12.7.12. Pullback by a smooth morphism. Let f : X ! Y be a smooth holomorphic
map of relative dimension p, as in Definition 12.5.1, and let eT = ( eM0, eM00, s) be a left
eDX -triple. We set

Tf
⇤eT = (Df

⇤ eM0, Df
⇤ eM00(p), D,Df

⇤
s).

For a right eDX -triple, we use side-changing at the source and target to define Tf
⇤eT,

i.e.,
Tf
⇤
(eTright

) := (Tf
⇤eTleft

)
right

.

If S is a pre-polarization of weight w of eT, we regard f
⇤
S as a pre-polarization of

weight w + p of Tf
⇤eT and we set

Tf
⇤
(eT, S) = (Tf

⇤eT, (�1)pf⇤S).

12.7.13. Pullback of a smooth triple. Formulas similar to those in 12.7.12 hold if, in-
stead of assuming f smooth and eT arbitrary, we assume f arbitrary but eT smooth.

12.7.14. Specialization in eD-Triples. An object eT = ( eM0, eM00, s) of eD-Triples(X) is said
to be strictly R-specializable along (g) if eM0, eM00 are so. In a way similar to 7.4.2,
we then define, for � 2 S

1,
 g,�

eT := ( g,�
eM0, g,�

eM00(�1), g,�s),

�g,1
eT := (�g,1

eM0,�g,1 eM00,�g,1s).
(12.7.14 ⇤)

Then  g,�,�g,1 are functors from the full subcategory of strictly R-specializable
objects of eD-Triples(X) to the category of objects supported on g

�1
(0). From Propo-

sition 9.7.1 and Corollary 12.5.36(2) we deduce:

12.7.15. Proposition. Assume eT is eDX-coherent and strictly R-specializable along (g).
(1) For every � 2 S

1, dimSupp g,�
eT < dimSupp eT.

(2) If Supp eT ⇢ g
�1

(0), then  g,�
eT = 0 for any � 2 S

1 and eT ' �g,1eT.

According to Remark 12.5.16(3) and Remark 12.5.27, these functors commute with
Hermitian duality 12.7.4 as follows:

 g,�(
eT⇤) = ( g,�

eT)⇤(�1),

�g,1(
eT⇤) = (�g,1

eT)⇤.
(12.7.15 ⇤)

If S is a pre-polarization of eT of weight w, then
•  g,�S is a pre-polarization of  g,�

eT of weight w � 1,
• �g,1S is a pre-polarization of �g,1eT of weight w,
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and we set

 g,�(
eT, S) = ( g,�

eT, g,�S),

�g,1(
eT, S) = (�g,1

eT,�g,1S).
(12.7.15 ⇤⇤)

12.7.16. Properties of N, can and var. The properties analogous to those of a Hodge-
Lefschetz quiver explained in §5.3.6 also hold in the present setting, as follows from
Remark 12.5.16(1), Remark 12.5.27 and Proposition 12.5.28. Let us denote by
N
0
, can

0
var
0 resp. N00, can00 var00 the morphisms relative to eM0 resp. eM00. Then

(1) N := (N
0
,N
00
) is a nilpotent morphism

 g,�
eT �!  g,�

eT(�1) and �g,1
eT �! �g,1

eT(�1),

(2) can = (can
0
,� var

00
) is a morphism  g,1

eT ! �g,1
eT commuting with the mor-

phisms  g,1',�g,1' associated with any morphism ' between strictly R-specializable
objects of eD-Triples(X),

(3) var = (var
0
,� can

00
) is a morphism �g,1

eT !  g,1
eT(�1) with the same commu-

tation property as above,
(4) N = var � can on  g,1

eT and can � var on �g,1
eT, that is, on  g,1

eT for example,
N
0
= var

0 � can0 and N
00
= var

00 � can00,
(5) can(eT)⇤ = � var(eT⇤) and var(eT)⇤ = � can(eT⇤), so that N(eT⇤) = N(eT)⇤ (where

var(eT), etc. means var relative to eT, etc.),
(6) If S is a morphism eT ! eT⇤(�w) (e.g. a pre-polarization), then the following

diagram commutes:

�g,1
eT

�g,1S
//

var

✏✏

(�g,1
eT)⇤(�w)

� can
⇤

✏✏

 g,1
eT(�1)

 g,1S
// ( g,1

eT)⇤(�w)

This is seen by interpreting
• (�g,1

eT)⇤(�w) as �g,1(eT⇤(�w)),
• ( g,1

eT)⇤(�w) as  g,1(
eT(�1)⇤(�w))

• and can
⇤ as � var(eT⇤),

and by applying the commutation relations above to ' = S.

In particular, ImN = (ImN
0
,CoimN

00
, s| ImN0⌦CoimN00). We also define the near-

by/vanishing Lefschetz quiver of eT as the diagram:

 g,1
eT

can

**

�g,1
eT

var

jj

(�1)
jj

Notice also that Propositions 9.7.2 and 9.7.5 extend to the present setting, up to
replacing “injective” with “monomorphism” and “onto” with “epimorphism”.
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12.7.17. The sl2-triples attached to ( g,�
eT,N) and (�g,1

eT,N)

The monodromy filtration of N exists in the abelian category eD-Triples(X), and
we have, according to Remark 12.5.16(2) (and similarly for �g,1eT without the twist),

gr
M

`
 g,�

eT = (gr
M

`
 g,�

eM0, grM�` g,�
eM00(�1), grM

`
 g,�s),

P` g,�
eT = (P` g,�

eM0,P` g,�
eM00(�1),P` g,�s) (` > 0).

If S : (eT,N) ! (eT,N)
⇤
(�w) := (eT⇤,N⇤)(�w) is a pre-polarization of weight w,

we define for any ` > 0, as in Section 3.4.c, the morphisms

P` g,�S : P` g,�
eT �! (P` g,�

eT)⇤(�(w � 1 + `))

P`�g,1S : P`�g,1
eT �! (P`�g,1

eT)⇤(�(w + `)),

which are pre-polarizations of respective weights (w � 1 + `) and (w + `), and we set

P` g,�(
eT, S) = (P` g,�

eT, (�1)`P` g,�S),

P`�g,1(
eT, S) = (P`�g,1

eT, (�1)`P`�g,1S),

(` > 0, see 3.2.11).(12.7.17 ⇤)

12.7.18. Middle extension of a strictly R-specializable eD-triple. Assume that eT is strictly
R-specializable along (g). We say that it is a middle extension along (g) if eM0, eM00
are so (see 9.7.3).

If eT is a middle extension along (g), then �g,1
eT ' ImN in the abelian category

eD-Triples(X).

12.7.19. S-decomposable eD-triples. We say that a coherent eD-triple eT is S-decomposa-
ble along (g) resp. S-decomposable if its components eM0, eM00 are so.

• If eT is S-decomposable along (g), it has a decomposition eT = eT1 � eT2, where eT1

is a middle extension along (g) and eT2 is supported on g
�1

(0).
• If eT is S-decomposable, then eT =

L
i
eTZi

with eTZi
having pure support the

irreducible closed analytic subset Zi ⇢ X (see Proposition 12.3.9).

12.7.20. Proposition (Criterion for S-decomposability along (g))
Assume that eT is strictly R-specializable along (g). Then eT is S-decomposable

along (g) if and only if �g,1eT = Imcan�Ker var.

Proof. This follows from Proposition 9.7.5 and Lemma 12.3.10.

12.7.21. Properties along (g
r
). If eT is an object of eD-Triples(X) which is strictly R-spe-

cializable along (g), a middle extension along (g), S-decomposable along (g), then it
satisfies the corresponding properties along (g

r
) for any r > 2. This follows from

Proposition 9.9.1 and Exercise 12.12.

12.7.22. Non-characteristic restriction of a eD-triple along a closed submanifold
Let eT be an object of eD-Triples(X) such that the closed submanifold ◆ : Y ,!

X is strictly non-characteristic for its eD-module components (see Section 8.8.d).
Then T◆

⇤eT := (D◆
⇤(0) eM0, D◆

⇤(0) eM00, D,D◆
⇤
s) (see §12.5.19) is a well-defined object of

eD-Triples(Y ), called the non-characteristic restriction of eT along Y .
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If Y = H has codimension one, then gr
�

V
eT are zero except for � 2 N and T◆

⇤eT =

(gr
0

V
eM0, gr0

V
eM00(�1), gr0

V
s). We will see another definition in §12.7.25.

12.7.23. Specialization along a strictly non-characteristic divisor with normal crossings
We take up the setting of Sections 9.9.b and 12.5.21 with g = x1x2. As a conse-

quence, we obtain the following property.
Let eT be an object of eD-Triples(X) which is holonomic, strictly non-characteristic

with respect to D1, D2, D12, hence strictly R-specializable along (g). Then eT is a
middle extension along (g) and we have  g,�

eT = 0 for � 6= 1. Assume that eT is
equipped with a pre-polarization S of weight w. Then there are isomorphisms

(12.7.23 ⇤)

P0 g,1(
eT, S) '  x1,1

(eT, S)�  x2,1
(eT, S),

P1 g,1(
eT,�S) '  x1,1

 x2,1
(eT, S)(�1) =  x2,1

 x1,1
(eT, S)(�1),

P0 g,1(
eT, S) = 0 if ` > 2.

Because of the pre-polarization, we can reduce the question to the case of a Hermitian
pair ( eM, S) of weight w. Let us check the middle line for example. For the Hermitian
pair, according to (9.9.3 ⇤) and (12.5.21 ⇤⇤), we only need to check the sign of the
pre-polarization. On the left-hand side, we introduce a minus sign (which is the sign
that enters in front of P1S in §3.2.11), while on the right-hand side, the Tate twist
(�1) introduces a minus sign, as wanted. Let us end by checking the weights. That
of the left-hand side is, since ` = 1, 1 + w � 1 = w, while that of the right-hand side
is 0 + w � 2 + 2 = w, since it is equal to P0 x1,1

P0 x2,1
(�1)(•), so the weights also

match.

12.7.24. Nearby cycles along a monomial function of a smooth eD-module
We take up the setting of Sections 9.9.c and 12.5.22. As a consequence, we obtain

the following property.
Let eT be a smooth object of eD-Triples(X), where X is an open set in C

n with
coordinates x1, . . . , xn, and set g = x1 · · ·xr. Recall that, for ` 6 r, we denote by
J`+1 the set of subsets J ⇢ {1, . . . , r} with #J = `+ 1.

We have seen in Proposition 9.9.12 that eT is strictly R-specializable and a mid-
dle extension along (g) and the morphisms N, can, var are strict. Assume that eT is
equipped with a pre-polarization S of weight w. Then, for each ` > 0 there is an
isomorphism

(12.7.24 ⇤) P` g,1(
eT, (�1)`S) '

L
J2J`+1

T◆I⇤(T◆
⇤
I
(eT, S))(�`) (I = J

c
).

The proof is similar to that of the previous example (one can identify T◆I⇤(T◆
⇤
I
(eT, S)

with the result of the iteration of  xj ,1
, for j varying in J , applied to (eT, S)).

12.7.25. Localization, dual localization and middle extension in eD-Triples(X). Let D be
an effective divisor in X and let eT=( eM0, eM00, s) be an object of eD-Triples(X) which is
strictly R-specializable and localizable along D (i.e., its components eM0, eM00 are so).
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We then set

eT[⇤D] := ( eM0[⇤D], eM00[!D], s
(⇤D)

),

eT[!D] := ( eM0[!D], eM00[⇤D], s
(!D)

).

These functors satisfy obvious identities with respect to Hermitian duality 12.7.4.
By Proposition 12.5.39, there are natural morphisms

eT[!D]
dloc����! eT loc���! eT[⇤D].

The image of loc � dloc is equal to (Im(loc
0 � dloc0), eM00[!D]/Ker(loc

00 � dloc00), s),
where s is induced by s

(⇤D) (this is well-defined according to (12.5.39 ⇤)). The co-
image of loc�dloc is equal to ( eM0[!D]/Ker(loc

0 �dloc0), Im(loc
00 �dloc00), s), where s is

induced by s
(!D), and both coincide according to the same argument. We denote this

object by eT[!⇤D]. As noticed in Section 11.5, it is possibly not strictly R-specializable
along D, and we have given criteria for this property to hold.

In particular, if eT is strictly R-specializable and a middle extension along D, then
eT = eT[!⇤D], dloc is an epimorphism and loc is a monomorphism.

12.7.26. Beilinson extension of a eD-triple. Let g : X ! C be a holomorphic func-
tion, set D = (g) and let eT be an object of eD-Triples(X) as in 12.7.25. We set
(see Propositions 11.6.15 and 12.5.43)

⌅g
eT = (⌅g

eM0,⌅g
eM00,⌅gs).

The exact sequences (11.6.2 !) and (11.6.2 ⇤) exist at the level of eD-triples and the
gluing construction of Theorem 11.6.3 together with the equivalence of Corollary
11.6.5 hold at the level of eD-triples.

12.7.27. Non-characteristic restriction of a eD-triple (second version). We revisit §12.7.22.
If D = H is smooth and strictly non-characteristic with respect to eM0, eM00, then,
according to Propositions 11.2.9, 11.2.13 and 12.5.42, there are natural identifications
Ker dloc ' T◆⇤(T◆

⇤eT) and T◆⇤(T◆
⇤eT)(�1) ' Coker loc, where ◆ : H ,! X denotes

the inclusion. In such a way, we have two exact sequences extending (11.2.18) to
eD-Triples(X):

(12.7.27 ⇤)
0 � eT dloc ���� eT[!H] � T◆⇤(T◆

⇤eT) � 0,

0 �! eT loc���! eT[⇤H] �! T◆⇤(T◆
⇤eT)(�1) �! 0.

12.7.c. Pushforward in the category eD-Triples(X)

12.7.28. Definition (Proper pushforward). Let eT be an object of eD-Triples(X)coh sup-
ported on Z and let f : X ! Y be a holomorphic map which is proper on Z. Then
the k-th pushforward Tf

(k)

⇤ eT is the object

Tf
(k)

⇤ eT := (Df
(k)

⇤ eM0, Df
(�k)
⇤ eM00, Tf

(k,�k)
⇤ s)
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of eD-Triples(Y )coh. It satisfies (see (12.4.4 ⇤))

(12.7.28 ⇤) (Tf
(k)

⇤ eT)⇤ = Tf
(�k)
⇤ (eT⇤).

It is convenient to consider the pushforward as a graded object Tf
(•)
⇤ eT =L

k Tf
(k)

⇤ eT. Then a pre-polarization S : eT ⇠�! eT⇤(�w) of weight w induces a
pre-polarization

Tf
(•)
⇤ S : Tf

(•)
⇤ eT ⇠�! (Tf

(•)
⇤ eT)⇤(�w),

which is graded, by taking the grading considered in §12.7.6 for (Tf
(•)
⇤ eT)⇤. More

specifically, each Tf
(k)

⇤ S is an isomorphism Tf
(k)

⇤ eT ⇠�! (Tf
(�k)
⇤ eT)⇤(�w).

If we represent (eT, S) by a Hermitian pair ( eM, S) of weight w with S = (Id, Id), then
Tf

(•)
⇤ (eT, S) = (Tf

(•)
⇤ eM, Tf

(•)
⇤ S), where Tf

(k)

⇤ S := Tf
(k,�k)
⇤ S pairs Df

(k)

⇤ M and Df
(�k)
⇤ M.

12.7.29. Kashiwara’s equivalence. Let ◆ : Z ,! X denote the inclusion of a closed
submanifold. The functor T◆⇤ from eD-Triples(Z) into itself is fully faithful. Moreover,
if Z = H is smooth of codimension one in X, the functor T◆⇤ induces an equivalence
between the full subcategory of eD-Triples(H) whose objects are strict, and the full
subcategory of eD-Triples(X) whose objects are strictly R-specializable along H and
supported on H. An inverse functor is then eT 7! gr

V

0
eT (see Remark 12.5.37 for grV

0
s).

Indeed, this follows from Propositions 9.6.2 and 12.4.7.

12.7.30. The Lefschetz morphism for triples. From Definition 8.7.20 and (12.4.13 ⇤)
we can define the Lefschetz morphism attached to a real (1, 1)-form ⌘ by the for-
mula

X⌘ = (X
0
⌘
,X
00
⌘
) : Tf

(k)

⇤ eT �! Tf
(k+2)

⇤ eT(1).

It is functorial with respect to eT and satisfies X
⇤
⌘
= X⌘. Moreover, the graded object

(Tf
(•)
⇤ eT,X⌘) is an sl2-structure on the category A = eD-Triples(X) with X⌘ corre-

sponding to X, in the sense of Definition 3.3.3 (together with Remark 3.3.4 for the
twist).

12.7.31. Adjunction and trace in the case of a finite morphism. We consider the setting
of Example 8.7.31, with a finite morphism f : X = C

n ! Y = C
n defined by

fi(x1, . . . , xn) = x
ri

i
, i = 1, . . . , n, and ri > 2 for i = 1, . . . , `, and ri = 1 for i =

`+1, . . . , n. Furthermore, we assume that the object eT = ( eM0, eM00, s) of eD-Triples(Y )

is such that s takes values in eC1
Y

. We deduce from Examples 8.7.31 and 12.4.17 two
morphisms

fadj
f
= (adj

0
f
,Tr
00
f
) : eT �! Tf

(0)

⇤ (Tf
⇤eT), fTrf = (Tr

0
f
, adj

00
f
) : Tf

(0)

⇤ (Tf
⇤eT) �! eT,

whose composition is the identity, making eT a direct summand of Tf
(0)

⇤ (Tf
⇤eT) in

eD-Triples(Y ).

12.7.32. Pushforward and specialization of eD-triples. Let eT be an object of eD-Triples(X)

which is coherent and strictly R-specializable along (g) = (g
0 � f), where f : X ! Y

is proper. Let h : Y ! C be a holomorphic function and set g = h � f . Let us assume
that, for each k and �, Tf

(k)

⇤ ( g,�
eT) and Tf

(k)

⇤ (�g,1
eT) are strict.
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It follows from Corollary 9.8.9 and Theorem 12.6.1 that there are natural isomor-
phisms of eD-Triples(X)-Lefschetz structures

Tf
(k)

⇤ ( g,�
eT,N) '  h,�(Tf

(k)

⇤ (eT,N)),

Tf
(k)

⇤ (�g,1
eT,N) ' �h,1(Tf (k)

⇤ (eT,N)),

and of of nearby/vanishing eD-Triples(X)-Lefschetz quivers

Tf
(k)

⇤ (
�
 g,1

eT,N), (�g,1
eT,N), can, var

�
'(

�
 g,1(Tf

(k)

⇤ eT),N), (�g,1(Tf
(k)

⇤ eT),N), can, var
�
.

12.7.d. The pushforward functor as a cohomological functor

12.7.33. Complexes and double complexes in eD-Triples. Let us start with a general re-
mark which explains the introduction of a sign in Definition 12.4.3(2). Let ( eK 0•, d0)
and ( eK 00•, d00) be bounded complexes of right eDY -modules and let s : K 0•⌦eCK

00• ! CY

be a D
Y,Y

-linear morphism to the right D
Y,Y

-module CY (i.e., a complex with CY as
its only nonzero term, placed in degree zero). We wish to transform this set of data
to a complex in D

b
(eD-Triples(Y )).

Let m
0
k
, resp. m00

`
, be a local section of K 0k, resp. K 00`. The differential d of the

simple complex associated to K
0• ⌦eC K 00• satisfies

d(m
0
k
⌦m

00
`
) = d

0
m
0
k
⌦m

00
`
+ (�1)km0

k
⌦ d00m00

`
.

Since s is a morphism of complexes, it is compatible with d, and since the differential
of the complex CY is zero, we obtain the relation

s(d
0
m
0
k
,m
00
`
) = (�1)k�1s(m0

k
, d00m00

`
)

for every k, `. Let sk : K
0k⌦K 00�k ! CY denote the pairing induced by s. The above

relation implies that (recall that "(k) = (�1)k(k�1)/2)

(d
0
, d
00
) : ( eK 0k, eK 00�k, "(k)sk) �! ( eK 0k+1

, eK 00�k�1, "(k + 1)sk+1)

is a morphism in eD-Triples(Y ). In this way we obtain a differential complex in
D

b
(eD-Triples(Y )):

( eK•
, d) =

L
k

( eKk
, d), eKk

= ( eK 0k, eK 00�k, "(k)sk), d = (d
0
, d
00
).

For double complexes, the argument is similar. Given double complexes
�
( eK 0i,j)i,j , d01, d02

�
,

�
( eK 00k,`)k,`, d001 , d002

�

of eDY -modules and a sesquilinear pairing s with values in CY whose components are
sij : K

0i,j ⌦K 00�i,�j ! CY and s is zero from K
0i,j ⌦K 00k,` if i+ k 6= 0 or j + ` 6= 0,

we obtain a double complex in eD-Triples(Y ) as

( eK•,•
, d1, d2) =

L
i,j

( eKi,j
, d1, d2),

eKi,j
= ( eK 0i,j , eK 00�i,�j , "(i+ j)si,j),

da = (d
0
a
, d
00
a
), a = 1, 2.
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12.7.34. We interpret the functors Tf
(k)

⇤ as cohomology functors of a pushforward
functor Tf⇤ : D

b
(eD-Triples(X)) ! D

b
(eD-Triples(Y )). This will enable us to treat

the Leray spectral sequence for the composition of maps. In order to do so, it is
convenient to work with a flabby resolution of Sp

X!Y
( eM) ( eM = eM0, eM00). We will

use the resolution Sp
1
X!Y

( eM) by the relative C
1 Spencer complex (Exercise 8.51).

Recall that we set Sp
1,k

X
=
L

`
e⇥X,` ⌦ eE(0,k+`)

X
.

Let eT = ( eM0, eM00, s) be an object of eD-Triples(X). We represent the pushforward
complex of each component of eT as eK•

= eK 0•, eK 00• with

eK•
= f!(

eM⌦eOX

Sp
1,•
X
⌦

f�1eOY

f
�1 eDY ) ' f!(

eM⌦eOX

Sp
1,•
X

)⌦eOY

eDY ,
eM = eM0, eM00,

and the pushforward sesquilinear pairing as given by (12.4.5 ⇤).

12.7.35. Definition. The pushforward triple Tf⇤eT is the complex whose k-th term is
⇣
K
0k
,K
00�k

, "(k)(
R
f⇤ Sp

1
Y
(s))k

⌘
.

and whose differentials are (d
0
, d
00
) = (f⇤e�1fM0,Y

, f⇤e�1fM00,Y
).

The following is then clear.

12.7.36. Lemma. For each k 2 Z, the cohomology Hk
(Tf⇤eT) is isomorphic to Tf

(k)

⇤ eT
of Definition 12.7.28.

In a way similar to that of Corollary 8.7.18, we deduce:

12.7.37. Corollary. The pushforward triple Tf⇤eT can be represented by a complex of
amplitude n. If eT has a finite filtration W•

eT in the abelian category eD-Triples(X),
then there exists a spectral sequence, functorial with respect to eT:

E
�`,k+`

1
= Tf

(k)

⇤ (gr
W

`
eT) =) gr

W

` Tf
(k)

⇤ (eT),

where W•(Tf
(k)

⇤ (eT)) is the image filtration image[Tf
(k)

⇤ (W•
eT)! Tf

(k)

⇤ (eT)].

We can now extend Corollary 8.7.28 to the case of the categories eD-Triples.

12.7.38. Corollary (The Leray spectral sequence for the composition of maps)
Let f : X!Y and f

0
: Y ! Z be holomorphic maps and let eT be an object of

eD-Triples(X). We assume that f 0 � f is proper on S = Supp eT (hence so is f , and f
0

is proper on f(Supp eT)). Then there exists a bounded spectral sequence with E
p,q

2
=

Tf
0(p)
⇤ (Tf

(q)

⇤ eT) which converges to T(f
0 � f)(p+q)

⇤ eT.

The Leray filtration Ler
•
T(f
0 � f)(k)⇤ eT satisfies

gr
p

Ler

�
T(f
0 � f)(p+q)

⇤ eT
�
= E

p,q

1 .

In particular, since E
p,q

1 is a subquotient of Ep,q

2
, grp

Ler

�
T(f
0 � f)(k)⇤ eT

�
vanishes unless

p 2 [� dimY, dimY ] (see Remark 8.7.13).
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Proof of Corollary 12.7.38. Step 1. Arguing as in the proof of Theorem 8.7.23, we find
a natural quasi-isomorphism

(12.7.39) Sp
X,X!Y,Y

(D
X,X

)⌦f�1D
Y,Y

f
�1

Sp
Y,Y!Z,Z

(D
Y,Y

)

⇠�! Sp
X,X!Z,Z

(D
X,X

),

leading to a quasi-isomorphism

f
0
⇤

⇣
f⇤
�
CX,S ⌦D

X,X
Sp

X,X!Y,Y
(D

X,X
)
�
⌦D

Y,Y
Sp

Y,Y!Z,Z

⌘

⇠�! f
0
⇤
�
CX,S ⌦D

X,X
Sp

X,X!Z,Z
(D

X,X
)
�
.

The integration morphism (12.2.12)
R•

f
: f⇤

�
CX,S ⌦D

X,X
Sp

X,X!Y,Y
(D

X,X
)
�
�! CY,f(S)

can be composed with that for f
0 to yield

R•

f 0 � (
R•

f
⌦ Id) : f

0
⇤

⇣
f⇤
�
CX,S ⌦D

X,X
Sp

X,X!Y,Y
(D

X,X
)
�
⌦D

Y,Y
Sp

Y,Y!Z,Z

⌘
�! CZ .

On the other hand, we have the integration morphism
R•

f 0�f : f
0
⇤
�
CX,S ⌦D

X,X
Sp

X,X!Z,Z
(D

X,X
)
�
�! CZ .

We claim that, through the above quasi-isomorphism, both integration morphisms
coincide. It is enough to prove that their restrictions to the degree-zero terms of the
complexes coincide, on noting that these complexes have nonzero terms only on non-
positive degrees. In degree zero, the inverse of the isomorphism (12.7.39) is induced
by the natural morphism

O
X,X
⌦(f 0�f)�1O

Z,Z
(f
0 � f)�1D

Z,Z

⇠�! (O
X,X
⌦f�1O

Y,Y
f
�1D

Y,Y
)⌦f�1D

Y,Y
(f
�1O

Y,Y
⌦(f 0�f)�1O

Z,Z
(f
0 � f)�1D

Z,Z
)

defined by '⌦Q 7! ('⌦ 1)⌦ (1⌦Q) (see Exercise 8.37).
We are thus led to checking that the following diagram commutes:

(f
0 � f)⇤ CX,S ⌦O

Z,Z
D

Z,Z
//

R
f 0�f ⌦ Id

((

f
0
⇤(f⇤ CX,S ⌦O

Y,Y
D

Y,Y
)⌦O

Z,Z
D

Z,Z

R
f 0

R
f
⌦ Id

tt

CZ ⌦O
Z,Z

D
Z,Z

This follows from the obvious commutation (Fubini)
R
f 0�f =

R
f 0

R
f

on currents.

Proof of Corollary 12.7.38. Step 2. To compute the iterated pushforward Tf
0
⇤(Tf⇤(

eT)),
we consider the double complexes

eK 0•,• = f
0
⇤

h
f⇤
� eM0 ⌦eDX

Sp
1
X!Y

(eDX)
�
⌦eDY

Sp
1
Y!Z

(eDY )

i

eK 00•,• = f
0
⇤

h
f⇤
� eM00 ⌦eDX

Sp
1
X!Y

(eDX)
�
⌦eDY

Sp
1
Y!Z

(eDY )

i
,
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and the morphism defined from the sesquilinear pairing s with values in the double
complex

f
0
⇤

h
f⇤
�
CX,S ⌦eD

X,X

Sp
1
X,X!Y,Y

(eD
X,X

)
�
⌦eD

Y,Y

Sp
1
Y,Y!Z,Z

(eD
Y,Y

)

i

' f
0
⇤

h
f⇤
�
CX,S ⌦eD

X,X

Sp
X,X!Y,Y

(eD
X,X

)
�
⌦eD

Y,Y

Sp
Y,Y!Z,Z

(eD
Y,Y

)

i

with Sp
1
X,X!Y,Y

(eD
X,X

) := Sp
1
X!Y

(eDX)⌦eC Sp
1
X!Y

(eD
X
). Composing with the dou-

ble integration morphism in Step 1 yields a morphism s : K
0i,j ⌦ K

00k,` ! CZ of
double complexes, which is thus zero if i + k 6= 0 or j + ` 6= 0. As explained in
Section 12.7.33, we obtain a double complex in eD-Triples(eDZ). The computation of
Step 1 shows that the associated simple complex in eD-Triples(eDZ) is quasi-isomorphic
to the complex computing T(f

0 � f)⇤(eT). We conclude that the spectral sequence of
the double complex, with E

p,q

2
= Tf

0(p)
⇤ (Tf

(q)

⇤ eT), converges to T(f
0 � f)(p+q)

⇤ eT.

12.7.40. The restriction and Gysin morphisms in eD-Triples. We take up the setting of
Section 11.2.d, in which H is a smooth hypersurface in the compact manifold X.
We consider an object eT = ( eM0, eM00, s) of eD-Triples(X) and we assume that H is
strictly non-characteristic with respect to eM0, eM00.

We denote by aX the constant map on X. Recall that

Ta
(k)

X⇤
eT = (Da

(k)

X⇤
eM0, a(�k)

X⇤
eM00, Ta

(k,�k)
X⇤ s).

By applying Ta
(•)
X⇤ to the exact sequences (12.7.27 ⇤) and noticing the identification

Ta
(•)
X⇤T◆H⇤ ' Ta

(•)
H⇤ following from (12.4.14 ⇤) (a special case of Corollary 12.7.38),

we define

restrH : Da
(k)

X⇤
eT �! Da

(k+1)

H⇤
eTH and Gys

H
: Da

(�k�1)
H⇤

eTH(�1) �! Da
(�k)
X⇤

eT

as the connecting morphisms in the corresponding long exact sequences in eC-Triples.

12.7.41. Proposition. We have a commutative diagram

Ta
(k)

X⇤
eT

XL
//

restrH

%%

Ta
(k+2)

X⇤
eT(1)

Ta
(k�1)
H⇤

eTH(�1)

Gys
H

88

XL
//

Ta
(k+1)

H⇤
eTH

Gys
H

88

Proof. We notice that the “prime” component of this diagram is the diagram of Propo-
sition 11.2.20, while the “double-prime” component is the similar diagram after chang-
ing the exponents and the Tate twists to their opposite value, taking the arrows in
the other direction and exchanging restrH and Gys

H
, and this is a diagram shifted

from that of Proposition 11.2.20. Commutativity follows then from the commuta-
tivity proved in that proposition (since the sesquilinear pairing is not concerned for
commutativity).
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12.8. Exercises

Exercise 12.1 (Pushforward of the sheaf of currents as a right D
X,X

-module)
Using the definition of Section 8.7.e, show that

D,Df! CX = f!(CX ⌦D
X,X

Sp
X,X!Y,Y

(D
X,X

)).

Exercise 12.2. Assume that X is a closed submanifold of Y and denote by ◆ : X ,! Y

the embedding (which is a proper map). Denote by 1 the canonical section of
D

X,X!Y,Y
. Show that the natural map

D,D◆⇤ CX = ◆⇤
�
CX ⌦D

X,X
D

X,X!Y,Y

�
�! CY , u⌦ 1 7�!

Z

◆

u

induces an isomorphism of the right D
Y,Y

-module D,D◆⇤ CX with the submodule of CY

consisting of currents supported on X. [Hint : Use a local computation.]
For example, consider the case ◆ : X = X ⇥ {0} ,! X ⇥C, with coordinate t on C

and identify D,D◆⇤ CX with ◆⇤ CX [@t, @t].

Exercise 12.3. Extend the result of Exercise 8.54 to the case of right D
X,X

-modules
and show that the composed map

f⇤ CX �! D,Df⇤ CX �! CY

is the integration of currents of Definition 12.2.9.

Exercise 12.4. Let f : X ! Y be a holomorphic map and let Z ⇢ X be a closed subset
on which f is proper.

(1) Define the sub-D
X,X

-module CX,Z of CX consisting of currents supported on Z.
(2) Show that the integration of currents

R
f

induces a D
Y,Y

-linear morphism of
complexes Z

f

: D,Df⇤ CX,Z �! Db
•
Y
[2m]⌦O

Y,Y
D

Y,Y
' CY .

[Hint : In Formula (12.2.9 ⇤), let K be the compact support of ⌘; choose a compact
neighbourhood K

0 of f
�1

(K) \ Z, and use a partition of the unity relative to the
covering made by the complement of K 0 in X and the interior of K 0.]

Exercise 12.5. If f is a a projection X = Y ⇥ T ! Y with dimT = p = n�m, show
that there exists a morphism

(12.5 ⇤) D,Df! CX �! CY

which does not make use of the integration morphism (more precisely, it only uses
integration of constant functions).

(1) Consider the morphism

⇥
X/Y,X/Y ,• := ⇥X/Y,• ⌦C ⇥X/Y ,•.

and, following the same line as for (8.7.10 ⇤), show that

D,Df! CX ' Rf!(CX ⌦O
X,X
⇥

X/Y,X/Y ,•).



522 CHAPTER 12. THE CATEGORY OF TRIPLES OF DX -MODULES

(2) By applying an argument similar to that of Exercise 8.26(1), prove that

CX ⌦O
X,X
⇥

X/Y,X/Y ,• ' f
�1Em,m

Y
⌦f�1C1

Y
E

•
X/Y

⌦C1
X

DbX [2p].

(3) Note that a distribution on X annihilated by dX/Y is locally a distribution
on Y , and deduce that the complex E•

X/Y
⌦C1

X
DbX is a resolution of f�1 DbY .

(4) Deduce an isomorphism

CX ⌦O
X,X
⇥

X/Y,X/Y ,• ' f
�1

CY [2p],

and thus
D,Df! CX ' Rf!f

�1
CY [2p].

(5) Since f is smooth of relative real dimension 2p, there exists a natural morphism

Rf!f
�1

CY [2p] = Rf!f
!
CY ' Rf!f

!
CX ⌦CY

CY �! CY ,

according to Verdier duality (see e.g. [KS90, Chap. 3]). Conclude the existence of
(12.5 ⇤).

(6) Compare with the morphism (12.2.12).

Exercise 12.6 (Trace of a C
1 function). We consider the setting of Example 8.7.31

with the finite map f : X = C
n ! Y = C

n defined by fi(x1, . . . , xn) = x
ri

i
, ri 2 N

⇤

and ri > 2, 1 6 i 6 `. The goal of this exercise is to prove that the trace Trf (') of
a C

1 function ' on X is a C
1 function on Y .(2)

(1) Use the Malgrange preparation theorem to show that the germ C1
X,0

is a module
of finite type over C1

Y,0
generated by monomials x

a
x
b with 0 6 ai, bi 6 ri � 1 for all

i = 1, . . . , n.
(2) Show that Trf (xa

x
b
)=0 if there exists i such that ai�bi is not a multiple of ri.

(3) Show that, otherwise, Trf (xa
x
b
) is a monomial in yi, yi, i = 1, . . . , n.

(4) Conclude that, for any C
1 function ' on X, Trf (') is a C

1 function on Y .
(5) Show that, for any test function ' on X, we have the equality

Z

X

' · f⇤(dy ^ dy) =

Z

Y

Trf (') · dy ^ dy.

[Hint: Use the Fubini theorem.]

Exercise 12.7 (Trace of a C
1 form of maximal degree and integral of currents)

We keep the setting of Exercise 12.6. In analogy with the trace of holomorphic
forms of maximal degree (Exercise 8.57), we define the trace of a form of maximal
degree h dx ^ dx as

Trf (h dx ^ dx) :=
1Q
i
r
2

i

·
Trf

�
(
Q

i
|xi|2)h

�
Q

i
|yi|2

· dy ^ dy.

Show that Trf (h dx^dx) is C1 on Y and is equal to the current
R
f
(h dx^dx). [Hint :

Use Exercise 12.6(5).]

(2)This property is specific to the finite map we consider; it would not be true for a general finite
map; see [Bar83].
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Exercise 12.8 (Kashiwara’s equivalence). We keep notation of Proposition 12.4.7. Let
s : D◆⇤M

0 ⌦ D◆⇤M00 ! CX be a sesquilinear pairing.
(1) Show that s takes values in CX,Z .
(2) Show that s is determined by its values on ◆⇤(M0 ⌦ 1)⌦ ◆⇤(M00 ⌦ 1).
(3) Show that, for a test function ⌘ on X, hs((m0 ⌦ 1), (m00 ⌦ 1)), ⌘i only depends

on ⌘|Z . [Hint : Write locally X = Z ⇥ Cr with coordinates x1, . . . , xr on C
r and use

that s((m
0 ⌦ 1), (m00 ⌦ 1))@xi

= s((m
0 ⌦ 1), (m00 ⌦ 1))@xi

= 0.]
(4) Deduce that the correspondence ⌘Z 7! hs((m0 ⌦ 1), (m00 ⌦ 1)), ⌘i, for some

(or any) ⌘ with ⌘|Z = ⌘Z , defines a current of maximal degree on Z.
(5) Conclude the proof of Proposition 12.4.7.

Exercise 12.9 (Pushforward of a sesquilinear pairing by a projection)
Let s : M0 ⌦ M00 ! DbX be a sesquilinear pairing between left DX -modules.

Assume that X = Y ⇥ T and that the projection f : X = Y ⇥ T ! Y is proper on
SuppM0 \ SuppM00. Set p = dimT = n�m.

(1) Let U be an open set in Y , and let

n
0k
1 2 �(U, f⇤(E

p+k

X/Y
⌦OX

M0)), n
00�k
1 2 �(U, f⇤(Ep�k

X/Y
⌦OX

M00)).

Show that f⇤s(n
0k
1, n

00�k
1 ) is a section on U of f⇤(E2p

X/Y
⌦C1

X
DbX).

(2) Deduce that the integration of currents produces a section in �(U,DbY ):

E2m

Y
(U) 3 ⌘ 7

R
f
f⇤s(n

0k
1, n

00�k
1 )

��������������!
Z

f

f⇤

⇣
⌘ ^ s(n

0k
1, n

00�k
1 )

⌘
.

(3) Show that the signed pushforward

(�1)m(p+k)
Sgn(p, k)

Z

f

f⇤s(n
0k
1, n

00�k
1 ) 2 �(U,DbY )

corresponds, via side-changing, to the pushforward (Tf
(k,�k)
⇤ s

left
)
right of Proposition

12.4.12. [Hint : Use Formula (0.2 ⇤⇤).]

Exercise 12.10. Show that, if M0 or M00 is supported on H, the right-hand side of
(12.5.4 ⇤⇤) is always zero, and the residue formula (12.5.10 ⇤⇤) returns the value zero
for every ↵ 2 R.

Exercise 12.11 (see Remark 9.4.9). Show that gr
V

↵
(s) induces pairings (` 2 Z):

gr
M

`
gr

V

↵
(s) := gr

M

`
gr

V

↵
M0 ⌦C gr

M

�`gr
V
↵
M00 �! CH

P`gr
V

↵
(s) := P`gr

V

↵
M0 ⌦C P`gr

V
↵
M00 �! CHand, for ` > 0,

by composing with N
` on any side.

Exercise 12.12. In the setting of Proposition 9.9.1, show that, with respect to the
corresponding isomorphisms,

 h,�s =  g,�rs and �h,1s = �g,1s.

[Hint : Use (12.5.16 ⇤) and (12.5.27 ⇤).]
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12.9. Comments

Complex conjugation of a locally constant sheaf of C-vector spaces can be de-
fined in a straightforward way by considering the conjugate vector space of each fiber.
Complex conjugation of a constructible complex of C-vector spaces can be defined sim-
ilarly, and the complex conjugate of a constructible complex remains a constructible
complex. Assume that this complex takes the form of the de Rham complex of a
holonomic DX -module M. Is it possible to define another holonomic DX -module N

whose de Rham complex is the complex conjugate of that of M? A solution to this
question has been given by M.Kashiwara [Kas86a] when M is a regular holonomic
DX -module, and by T. Mochizuki [Moc11b, §4.4] (see also [Sab00, §II.3.1]) for any
holonomic DX -module. However, the idea of M.Kashiwara is that it is easier to find N

whose de Rham complex is the Verdier dual of the complex conjugate of the de Rham
complex of M. Namely, N is defined as the complex conjugate (in the sense of passing
from D

X
-modules to DX -modules) of the D

X
-module HomDX

(M,DbX). In other
words, when working with DX -modules, it is easier to handle the Hermitian dual
DX -module than the conjugate DX -module, since the duality functor is not needed.

This explains why, when considering complex Hodge structures and having in mind
the extension to DX -modules, instead of considering pairs of vector spaces together
with an isomorphism of one space with the complex conjugate of the other one,
we consider pairs of vector spaces together with an isomorphism of one space with
the Hermitian dual of the other one, that is, pairs of vector spaces together with a
non-degenerate sesquilinear pairing between them. Furthermore, the notion of non-
degeneracy is difficult to manipulate under various operations on DX -modules, and
this explains why this property is relaxed in the definition of the category D-Triples.

The idea of considering poles of Mellin transforms with kernel |f |2s for some
holomorphic function f , in order to analyze its nearby cycles and the monodromy
on them, goes back to the work of D. Barlet ([Bar82] and the subsequent works
[Bar84, Bar85, Bar86, BM87, BM89]). It has been instrumental in order to define
nearby cycles in the theory of twistor D-modules ([Sab05]), where the idea of taking
a residue of such Mellin transforms has been introduced. Many aspects of this theory
have then been much improved in the works of T. Mochizuki [Moc11a, Moc15] and
we have taken advantage of these improvements in the presentation of this chapter.
Such an approach has recently been used in Representation theory by Davis and Vilo-
nen [DV22], who have emphasized the use of sesquilinear pairings with the Beilinson
functor.



CHAPTER 13

DUALITY, REAL STRUCTURES AND
PERVERSE SHEAVES: AN OVERVIEW

Summary. The duality functor acts nicely on strictly holonomic eDX -mod-
ules. In this chapter, we are concerned with its action on sesquilinear pairings
between DX -modules, in order to obtain a duality functor for strictly holonomic
eD-Triples. For that purpose, we visit the category of perverse sheaves via the
de Rham functor and we make use of the Hermitian duality functor introduced
by Kashiwara. Duality combined with Hermitian duality yields the notion of
a real structure on an object of eD-Triples. We compare it with the notion of
real structure coming from that on a perverse sheaf via the Riemann-Hilbert
correspondence.

13.1. Introduction

All functors considered in Chapter 12 on the category eD-Triples are obtained by
mixing functor on the category of eDX -modules and by analyzing the behaviour of
their restriction at z = 1 with respect to sesquilinear pairings. The duality functor of
Section 8.8.g is an exception. We define it on holonomic(1) D-Triples, which consist of
a pair of holonomic DX -modules and a sesquilinear pairing with values in DbX or CX

between them, by means of a similar functor on the category of triples of perverse
sheaves via the de Rham functor. Its definition has thus a topological origin, and not
a purely analytic one. In order to understand this fact, let us compare with what
happens with (regular) holonomic DX -modules.

For such a module M, we directly define its dual DM in D-module theory
(see Section 8.8.g). However, the notion of complex conjugate of M as a DX -module
cannot just be defined by the naive conjugation functor, as the latter transforms a
DX -module into a D

X
-module. In order to obtain the conjugate DX -module c(M)

(that is characterized by the property that p

DRX(c(M)) =
p

DRM), we first define
the Hermitian dual M⇤ in the sense Kashiwara (see Section 13.3), and we realize
conjugation as the composition, in any order, of duality and Hermitian duality.

(1)For the sake of simplicity, and because Hodge modules are regular holonomic, we in fact restrict
to the case of regular holonomic DX -modules.
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On the other hand, by definition, on the category of D-Triples we have at our
disposal the Hermitian duality functor, so that duality is the functor that needs
a finer definition. Combining Hermitian duality with the putative duality functor,
we may obtain a conjugation functor.

We provide in Section 13.2 a necessarily very short review on the theory of perverse
sheaves on complex analytic manifolds and on the Riemann-Hilbert correspondence.
A more precise presentation of the theory can be found in [Dim04] and [MS22], and
complete references include [BBDG82] and [KS90].

13.2. Perverse sheaves and the de Rham functor

13.2.a. A short reminder on perverse sheaves. Let k be a field. A k-cons-
tructible sheaf on X is a sheaf F for which there exists a locally finite stratification
(Xi)i2I by submanifolds whose closure is a closed analytic subset of X, such that
F|Xi

is a locally constant sheaf of finite-dimensional k-vector spaces. The bounded
derived category D

b

C-c(kX) of complexes with k-constructible cohomology is equipped
with a natural t-structure (

p

D
b,60

C-c (kX),
p

D
b,>0

C-c (kX)), whose heart is the abelian full
subcategory Perv(kX) of k-perverse sheaves on X. The Poincaré-Verdier duality
functor DPV(•) = RHomkX

(•,kX [2n]) on D
b

C-c(kX) exchanges both terms of the
t-structure and thus preserves Perv(kX).

To each bounded complex in D
b

C-c(kX) is associated a characteristic cycle, which
consists of the formal linear combination of homogeneous irreducible closed analytic
Lagrangian subvarieties of the cotangent bundle T ⇤X with coefficients in Z. For a per-
verse sheaf, the coefficients are non-negative. The characteristic cycle behaves addi-
tively with respect to distinguished triangles in D

b

C-c(kX) and with respect to short
exact sequences in Perv(kX). Furthermore, the characteristic cycle of a k-perverse
sheaf is zero if and only if the perverse sheaf is zero. We then deduce:

13.2.1. Lemma. Let 0 ! G ! F ! H ! 0 be an exact sequence of perverse sheaves.
If G is isomorphic to F, then H = 0 and the morphism G! F is an isomorphism.

13.2.2. Pairings. Let F,G be objects of D
b
(kX). We have a natural isomorphism

(see [KS90, (2.6.8)])

Hom(F ⌦ G,kX [2n]) ' Hom(F,DPVG) ' Hom(G,DPVF).

Giving a pairing ' : F⌦G! kX [2n] amounts thus to giving a morphism F !DPVG,
or as well a morphism G ! DPVF (the latter being obtained from the former by
duality, taking into account the biduality isomorphism DPVDPV ' Id). We say that
the pairing ' is perfect or nondegenerate if the corresponding morphism F ! DPVG

(or as well G!DPVF) is an isomorphism.

13.2.3. Conjugation, Hermitian duality and real structure. Let C denote the C-vector
space R + iR with action defined by c · (a + i b) := c(a + i b). Given any C-vector
space V , we denote by V the conjugate vector space C ⌦C V . Given a sheaf F or
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a complex of C-vector spaces on X, we similarly set F := C ⌦C F. Then F = F as
sheaves of R-vector spaces. The Hermitian dual F⇤ of F is the dual conjugate of F:

F⇤ := DPV(F).

A real structure on F is a C-linear isomorphism  : F
⇠�! F such that  �  = Id.

If F is a sheaf of C-vector spaces or an object of Perv(CX), giving a real structure is
equivalent to giving a subsheaf FR of R-vector spaces, or a subobject in Perv(RX) such
that the natural morphism C⌦R FR ! F is an isomorphism: indeed, one defines FR
in the corresponding abelian category as Ker(� Id), where  and Id are considered
as R-linear isomorphisms.

13.2.4. Triples of perverse sheaves. In order to mimic the construction for DX -modules
and to make clear the Riemann-Hilbert correspondence in this context, we consider
the abelian category PervTriples(CX) whose objects consist of triples p

T = (F0,F00, s),
where s is a pairing F0 ⌦C F00 ! CX [2n], that we call a sesquilinear pairing between
F0 and F00. Giving s is equivalent to giving one of the morphisms s

0
: F0 ! DPV(F00)

or s
00
: F00 ! DPV(F0), related by s

00
= DPV(s

0) modulo the biduality isomorphism.
Morphisms are defined as in Section 5.2.b. A triple is said to be nondegenerate if s0,
equivalently s

00, is an isomorphism, and the full subcategory PervTriples
nd
(CX) of

nondegenerate perverse triples is equivalent, via the functor

F 7�! (F,DF, s),

where s : F ⌦DF ! CX [2n] is the tautological pairing F ⌦DF ! CX [2n].
The Hermitian dual (

p

T)⇤ of a triple p

T = (F0,F00, s) is the triple (F00,F0, s⇤),
where s

⇤ satisfies (s
⇤
)
0
= s

00, equivalently (s
⇤
)
00
= s

0, and the dual DPV(
p

T) of a
nondegenerate triple is defined by

DPV(
p

T) = (DPVF
0
,DPVF

00
,DPVs),

with (DPVs)
0
= DPV(s

00)�1, equivalently (DPVs)
00
= DPV(s

0)�1. Duality and Hermi-
tian duality commute.

The conjugation functor (2)
c :

p

T ! c(
p

T) acting on nondegenerate perverse triples
is the composition, in any order, of duality and Hermitian duality. The formula is

c(F0,F00, s) = (DF00,DF0, c(s)), c(s)
0
= DPV(s

0)�1, c(s)00 = DPV(s
00)�1.

A real structure on a nondegenerate triple p

T is an isomorphism  :
p

T ! c(
p

T)

such that c() �  = Id.

13.2.5. Remark. It is easy to check that the equivalence Perv(CX) ' PervTriples
nd
(CX)

transforms the various functors and notions (duality, Hermitian duality, conjugation,
real structure) on the source category to the corresponding ones on the target category.

(2)We avoid the notation pT in order not to confuse with the naive conjugation.
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13.2.b. The de Rham and the solution functor of a holonomic DX-module

Let M be a holonomic left DX -module. As recalled at the beginning of Sec-
tion 8.8.h, the de Rham functor p

DR attaches to a holonomic DX -module a bounded
C-constructible complex on X. That this complex satisfies the perversity condition
follows from the local duality theorem that we review now.

The contravariant functor Sol(M) = RHomDX
(M,OX) also attaches to a holo-

nomic DX -module a C-constructible complex on X. In order to deal with perversity,
we rather consider the shifted complex

p

Sol(M) = RHomDX
(M,OX)[n].

In a symmetric way, we recall that (see Remark 8.4.4(2))
p

DR(M) ' RHomDX
(OX ,M)[n].

The canonical morphism

⌘X : RHomDX
(OX ,M)[n]⌦CX

RHomDX
(M,OX)[n]

�! RHomDX
(OX ,OX)[2n] ' CX [2n]

can be regarded as a morphism

⌘X :
p

Sol(M) �!DPV

p

DR(M).

The local duality theorem already referred to in Section 8.8.h asserts that ⌘X is an
isomorphism in the derived category D

b

C-c(CX) of bounded complexes with C-cons-
tructible cohomology:

13.2.6. Theorem. The morphisms

⌘X :
p

Sol(M) �!DPV

p

DR(M) = RHomCX
(
p

DR(M),CX [2n]),

DPV(⌘X) :
p

DR(M) �!DPV

p

Sol(M) = RHomCX
(
p

Sol(M),CX [2n])

are isomorphisms.

This topological duality theorem is completed with an analytic one. There exists
a canonical bi-functorial isomorphism in D

b
(CX), for M,N 2 D

b

coh
(DX) (see [Kas03,

(3.14)]):
RHomDX

(N,M)
⇠�! RHomDX

(DM,DN).

Since DOX ' OX , we deduce a functorial isomorphism in D
b

C-c(CX) when M is
holonomic:

(13.2.7) p

DR(M)
⇠�! p

Sol(DM).

Together with Theorem 13.2.6 and biduality DDM 'M for M holonomic, we ob-
tain a functorial isomorphism for such an M:

(13.2.8) p

DRDM ' p

Sol(M) 'DPV

p

DRM.

A well-known consequence of (13.2.8) is the perversity of p

DR(M) and p

Sol(M)

when M is holonomic. Indeed, by construction, p

DR(M) is an object of p

D
b,60

C-c (CX),
and (13.2.8) implies that so does DPV

p

DRM, since DM also belongs to Modhol(DX).
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At this point we can also recall:

13.2.9. Lemma. Let M be a holonomic DX-module. We have the following equivalences:
p

DR(M) = 0 () p

Sol(M) = 0 () M = 0.

13.2.c. The Riemann-Hilbert correspondence. We have recalled the notion of
regularity of a holonomic DX -module in Section 10.7.b. We denote by Modholreg(DX)

the abelian full subcategory of Modhol(DX) whose objects are regular holonomic. The
fundamental theorem for these objects is:

13.2.10. Theorem (Riemann-Hilbert correspondence). The functor DRX induces an
equivalence of categories

Modholreg(DX)
⇠�! Perv(CX).

As an application, we obtain a characterization of semi-simple regular holonomic
DX -modules, by applying the criterion of semi-simplicity for C-perverse sheaves of
[BBDG82, Th. 4.3.1].

Let Z be a closed irreducible analytic subset of X and let M be a holonomic
DX -module supported on Z. There exists a Zariski dense open subset Z

o of Z such
that the restriction of M to Z

o is a vector bundle with flat connection Mo.

13.2.11. Corollary. Assume that M is regular holonomic and has no nonzero submodule
or quotient module supported on a proper closed analytic subset of Z. Then M is semi-
simple (as a holonomic DX-module) if and only if Mo is semi-simple (as a vector
bundle with flat connection).

13.3. The Hermitian duality functor for holonomic DX-modules

Let M be a holonomic (left, say) DX -module. We denote by M its naive con-
jugate, which is a D

X
-module (see Section 12.3). The sheaves Ext iD

X

(M,DbX) are
naturally equipped with a DX -module structure by using that on DbX , since the
latter commutes with the D

X
-module structure used for Ext i.

13.3.1. Theorem. The D
X

-modules Ext iDX
(M,DbX) vanish for i 6= 0 and the D

X
-mod-

ule CX(M) := HomDX
(M,DbX) is holonomic.

The proof of [Kas86a] only applies to regular holonomic DX -modules, which are
in fact the only ones of interest for us (see Theorem 14.7.1), and the conclusion also
provides a regular holonomic DX -module. However, the theorem holds true for any
holonomic DX -module.

13.3.2. Definition. The Hermitian dual M⇤ is the holonomic DX -module CX(M) =

C
X
(M).
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13.3.3. Corollary. For M holonomic, the natural DX-linear morphism

(13.3.3 ⇤) M �! HomD
X
(HomDX

(M,DbX),DbX) = C
X
� CX(M) = (M⇤)⇤

is an isomorphism, and Hermitian duality induces an equivalence of categories
Modhol(DX)

⇠�! Modhol(DX)
op.

13.3.4. Lemma. For M holonomic, there exists a functorial isomorphism in D
b

C-c(CX):
p

DR
X
(CX(M)) ' p

SolX(M);

We deduce from (13.2.8) a functorial isomorphism in Perv(CX) for M holonomic:

(13.3.5) p

DRX(M⇤) ' p

DRX(DM) 'DPV

p

DRX(M) =
p

DRX(M)
⇤
.

Proof of Lemma 13.3.4. Let I• be a D
X,X

-resolution of DbX by DX -injective modules.
For a coherent DX -module M we can write

DR
X
(RHomDX

(M,DbX)) ' HomD
X
(Sp(D

X
),HomDX

(M, I
•
))

' HomDX
(M,HomD

X
(Sp(D

X
), I

•
))

and each term of the double complex HomD
X
(Sp(D

X
), I•) is still DX -injective, so

that the last term reads

RHomDX
(M,DR

X
(DbX)) ' RHomDX

(M,OX),

according to the Dolbeault-Grothendieck lemma, that we write as

OX

⇠�! DR
X
(DbX),

and Remark 8.4.4(2). For M holonomic, we thus find the desired isomorphism.

Proof of Corollary 13.3.3. We first show that this morphism is injective. From Theo-
rem 13.3.1 we deduce that CX is an anti-exact functor Modhol(DX)! Modhol(DX

)
op.

Let m be a local section of M and let us assume that, for any ' 2 HomDX
(M,DbX),

we have '(m)=0. This implies that the injective morphism

CX(M/DXm) �! CX(M)

is also surjective. Therefore, CX(DXm) = 0. Let us denote by SolX(M) the complex
RHomDX

(M,OX). Lemma 13.3.4 implies
p

SolX(DXm) =
p

DR
X

�
CX(DXm)

�
= 0.

Therefore, DXm = 0, according to Lemma 13.2.9.
Let us now show surjectivity. Let Q denote the quotient module C

X
� CX(M)/M.

Then Q is also a holonomic DX -module. We thus obtain a short exact sequence of
perverse sheaves

0 �! p

DRX(M) �! p

DRX(C
X
� CX(M)) �! p

DRX(Q) �! 0
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and it is enough to show that p

DRX(Q) = 0, according to Lemma 13.2.9. But there
exists an isomorphism p

DRX(M) ' p

DRX(C
X
� CX(M)): indeed, one shows that

p

DRX(C
X
� CX(M)) ' Sol

X

�
CX(M)

�
by Lemma 13.3.4

' RHomCX

�
p

DR
X
�CX(M),CX) by Theorem 13.2.6

' RHomCX

�
SolX(M),CX

�
by Lemma 13.3.4

' p

DRX(M) by Theorem 13.2.6.

The desired vanishing is thus a direct consequence of Lemma 13.2.1, which ends the
proof of the corollary.

13.3.6. Proposition (Behaviour with respect to (dual) localization)
Let g : X ! C be a holomorphic function and let M be a holonomic DX-module.

Then the Hermitian dual of the natural morphism M ! M(⇤g) is the natural mor-
phism M⇤(!g) ! M⇤ and conversely. Furthermore, the property of being a minimal
extension is preserved by Hermitian duality, that is, (M(!⇤g))⇤ = M⇤(!⇤g).

Let us first emphasize some properties of the localization and the dual localization
of holonomic DX -modules. The localized DX -module M(⇤g) and the dual localized
one M(!g) correspond to the restriction to z = 1 of those considered in Chapter 11.
Furthermore, M(⇤g) is also the naive localization of M. There is a natural morphism
M(!g) ! M(⇤g) whose kernel and cokernel are supported on the divisor (g). It is
known (according to [Kas78]) that M(⇤g) is holonomic. In order to see that M(!g),
as defined in Section 11.4.b, is also holonomic, one can argue as follows. Firstly,
one reduces to the case of the dual localization along a smooth hypersurface H⇢X.
By construction, M(!H) is R-specializable along H and is characterized by the prop-
erty that cant is an isomorphism, while M(⇤H) is characterized by the property that
vart is an isomorphism. The behaviour of the V -filtration by duality (see Remark
10.7.16) shows that the natural morphism M ! M(⇤H) is transformed by duality
to the natural morphism (DM)(!H) ! DM and conversely. In particular, we have
D(M(⇤H)) ' (DM)(!H), showing holonomicity of the latter.

Let also emphasize that, from the definitions in Chapter 11, the natural morphisms
below are isomorphisms, for M holonomic:

M(!g) �! [M(⇤g)](!g), [M(!g)](⇤g) �!M(⇤g).

Furthermore, if ' : N ! M is a morphism between holonomic DX -modules which is
an isomorphism when restricted to X r g

�1
(0), then ' induces isomorphisms

'(⇤g) : N(⇤g) ⇠�!M(⇤g), '(!g) : N(!g)
⇠�!M(!g).

Indeed, the kernel and cokernel of '(⇤) are localized along g
�1

(0) and supported on
g
�1

(0), therefore vanish. For '(!), one argues by duality.
If there exists a morphism ' : N!M(⇤g) which induces an isomorphism after re-

stricting to Xrg
�1

(0), then it induces an isomorphism after localization, it is unique,
and there exists a unique morphism  : M(!g) ! N which induces an isomorphism
after localization; furthermore, ' �  : M(!g) ! M(⇤g) is the natural morphism.
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A similar statement holds by exchanging the roles of ' and  . Let us check the first
statement:

• since the kernel and cokernel of ' are supported on g
�1

(0), ' induces an isomor-
phism after localization;

• for the existence of  , as '(⇤g) is invertible, we obtain an invertible morphism
['(⇤g)�1](!g) : M(!g) ! N(!g) and  is obtained by composing with the natural
morphism N(!g)! N;

• for the uniqueness of ' (that of  is obtained similarly), we assume that ⌘ : N!
M(⇤g) induces zero after localization; then the following commutative diagram yields
the conclusion:

N
⌘

//

loc

✏✏

M(⇤g)

N(⇤g) 0

⇠ // M(⇤g)

Lastly, if there exists a morphism ' : N(⇤g) ! M which is an isomorphism after
localization, then M = N(⇤g)�P with P supported on g

�1
(0): indeed, the morphism

 := '(⇤g)�1 � loc : M! N(⇤g) satisfies  � ' = Id.

Proof of Proposition 13.3.6. Let us set N=M(⇤g)⇤. We have trivially N(⇤g)'M⇤(⇤g)
because this holds away from g

�1
(0). By applying Hermitian duality to N! N(⇤g),

we obtain a morphism N(⇤g)⇤ !M(⇤g) which is an isomorphism away from g
�1

(0).
There exists thus a unique morphism M(!g)! N(⇤g)⇤ which is an isomorphism away
from g

�1
(0), which yields a morphism N(⇤g)!M(!g)

⇤ which is an isomorphism away
from g

�1
(0). It follows that M(!g)

⇤ ' N(⇤g) � P with P supported on g
�1

(0). Ap-
plying Hermitian duality once more, we find that P⇤ is a quotient of M(!g) supported
on g

�1
(0), hence is zero. Therefore, M(!g)

⇤ ' N(⇤g) ' M⇤(⇤g). The isomorphism
M(⇤g)⇤ 'M⇤(!g) is obtained similarly.

We now restrict to the category of regular holonomic DX -modules in order to make
full use of the Riemann-Hilbert correspondence 13.2.10.

13.3.7. Proposition. There exists a canonical isomorphism of functors Modholreg(DX)!
Modholreg(DX

):

CX �DX 'D
X
� CX .

Proof. By definition, we have DR
X
(M) = DRX(M) in Perv(CX). By the Riemann-

Hilbert correspondence (for regular holonomic D
X

-modules), it suffices thus to show
that both functors p

DR
X
(CX �DX(•)) and p

DR
X
(D

X
� CX(•)) are canonically iso-

morphic to the same functor DRX(•).
On the one hand, we have, by (13.3.5),

p

DR
X
(CX �DX(•)) ' p

DRX(DX �DX(•)) ' Id(•).
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On the other hand, we have, by (13.3.5) and (13.2.8),
p

DR
X
(D

X
� CX(•)) 'DPV(

p

DR
X
CX(•))

'DPV(
p

DRX DX(•)) ' p

DRX(DXDX(•)) ' Id(•).

We deduce an isomorphism of functors Modholreg(DX)! Modholreg(DX):

(13.3.8) (DX(•))
⇤ 'DX((•)

⇤
).

13.3.9. Definition (Conjugation and real structure). The conjugation functor

c : Modholreg(DX) �! Modholreg(DX)

is the composition
c(M) = D(M⇤) ' (DM)

⇤
.

A real structure on M 2 Modholreg(DX) is an isomorphism  : M
⇠�! c(M) such that

c() �  = Id.

13.3.10. Proposition. The Riemann-Hilbert correspondence DRX : Modholreg(DX) !
Perv(CX) is compatible with duality, Hermitian duality, conjugation, and transforms
real structures to real structures.

Proof. Compatibility with duality has been seen in (13.2.8), with Hermitian duality
in (13.3.5), and the remaining assertions follow.

13.4. Duality for nondegenerate regular holonomic triples

13.4.a. Nondegenerate sesquilinear pairings. Let s : M0 ⌦C M00 ! DbX be
a sesquilinear pairing between holonomic DX -modules. It induces two DX -linear
morphisms

(13.4.1) s
0
: M0 �! (M00)⇤, s

00
: M00 �! (M0)⇤.

13.4.2. Corollary (of Corollary 13.3.3). The morphism s
0 is an isomorphism if and only

if s00 is so.

Proof. Let us assume that s0 is an isomorphism. Then we have a commutative diagram

((M00)⇤)⇤

(s
0
)
⇤

✏✏

M00
s
00
//

(13.3.3 ⇤)
;;

(M0)⇤

Therefore, s00 is also an isomorphism. The converse is proved similarly.

13.4.3. Definition. Let T = (M0,M00, s) be an object of D-Triples(X). We say that T

is holonomic if both M0 and M00 are holonomic. We then say that T is nondegenerate
if one of the morphisms s

0 or s
00 is an isomorphism (hence so is the other one).
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The full subcategory D-Triplesnd(X) whose objects are the nondegenerate holo-
nomic objects of D-Triples(X) is abelian. The functors defined for eD-Triples(X)

in Section 12.7 obviously descend, by restriction to z = 1, to similar functors on
D-Triples(X), and we use similar notations. For the sake of simplicity, we implicitly
assume that the holonomic DX -modules we consider are R-specializable along any
function (in general they are specializable, but the eigenvalues of monodromies may
not belong to S

1). When considering pushforward, we also implicitly assume that each
component M0,M00 of a holonomic triple admits (globally) a coherent F -filtration.(3)

13.4.4. Corollary (of Proposition 13.3.6). Let g : X ! C be a holomorphic function, set
D = (g), and let T = (M0,M00, s) be a holonomic object of D-Triples(X). If T|XrD is
nondegenerate, then so are T(⇤D), T(!D) and T(!⇤D).

Proof. Recall that localization, dual localization and middle extension of objects of
D-Triples(X) is defined in §12.7.25. The sesquilinear pairing s

(⇤D) yields the mor-
phisms

s
(⇤D)0

: M0(⇤D) �!M00(!D)
⇤
, s

(⇤D)00
: M00(!D) �!M0(⇤D)

⇤
,

which read

s
(⇤D)0

: M0(⇤D) �! (M00)⇤(⇤D), s
(⇤D)00

: M00(!D) �! (M0)⇤(!D).

In other words, s
(⇤D)0

= s
0
(⇤D) and s

(⇤D)00
= s

00
(!D). The assumption that

s
0|XrD, s

00|XrD are isomorphisms implies that so are s
(⇤D)0 and s

(⇤D)00.
We argue similarly for T(!D). For the case of T(!⇤D), we interpret the commutative

diagram (12.5.39 ⇤) as the commutative diagram

M0(!D)
s
(!D)0

//

loc
0 � dloc0

✏✏

M00⇤(!D)

loc
00⇤ � dloc00⇤

✏✏

M0(⇤D)
s
(⇤D)0

// M00⇤(⇤D)

13.4.5. Proposition (Kashiwara’s equivalence). Let ◆ : Z ,! X be the inclusion of a
smooth submanifold and let T be a holonomic object of D-Triples(Z). Then T belongs
to D-Triplesnd(Z) if and only if T◆⇤T belongs to D-Triplesnd(X).

Proof. Since the question is local, we can assume, by induction on dimX, that Z is
a smooth hypersurface that we denote by H. We first check that there is a natural
isomorphism of functors from Modhol(DH) to Modhol(DX

):

(13.4.6) CX ⌦ D◆⇤ ' D◆⇤ � CH .

(3)This follows from a theorem of Malgrange [Mal04], but for our purpose, we only consider those
holonomic DX -modules which come from a holonomic eDX -module by restriction to z = 1, and we
do not need to use this theorem.
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The integration morphism for a closed inclusion is an isomorphism, so we have an
isomorphism

CH ⌦D
H,H

D
(H,H)!(X,X)

⇠�! CX .

We note that

RHomDX
(D◆⇤M,CX(⇤H)) ' RHomDX(⇤H)((D◆⇤M)(⇤H),CX(⇤H)) = 0,

and thus (see Section 12.2.c), we have a natural isomorphism

RHomDX
(D◆⇤M,CX,H) ' RHomDX

(D◆⇤M,CX).

We also note that, by adjunction and Kashiwara’s equivalence, we have

R◆⇤RHom◆�1DX
(M⌦DH

Sp
H!X

,CH ⌦DH
Sp

H!X
) ' RHomDX

(D◆⇤M, D◆⇤ CH)

' R◆⇤RHomDH
(M,CH).

It follows that, for M holonomic on H,

HomDX
(D◆⇤M,CX) ' RHomDX

(D◆⇤M,CX,H)

' RHomDX
(R◆⇤(M⌦DH

Sp
H!X

),R◆⇤(CH ⌦D
H,H

Sp
H,H!X,X

))

' R◆⇤RHom◆�1DX
(M⌦DH

Sp
H!X

,CH ⌦D
H,H

Sp
H,H!X,X

)

' RHom◆�1DX
(M⌦DH

Sp
H!X

,CH ⌦DH
Sp

H!X
)⌦D

H
R◆⇤ SpH!X

' RHomDH
(M,CH)⌦D

H
R◆⇤ SpH!X

' D◆⇤CH(M),

hence (13.4.6) holds true. We can read it as D◆⇤(M)
⇤ ⇠�! (D◆⇤M)

⇤.
Let T = (M0,M00, s) be an object of D-Triples(X). The composition

D◆M
0 D◆⇤(s

0
)

������! D◆⇤(M
00
)
⇤ ⇠�! (D◆⇤M

00
)
⇤

defines a new sesquilinear pairing s1 between D◆M
0 and D◆M

00 which restricts to s on H.
Kashiwara’s equivalence (§12.7.29) implies that s1 = D,D◆⇤s. Then s is nondegenerate
iff s

0 is an isomorphism iff D◆⇤(s
0
) is an isomorphism iff s1 is nondegenerate iff D,D◆⇤s

is nondegenerate.

13.4.b. Duality and real structure on D-Triplesnd
reg

(X). The dual object of a
holonomic triple T = (M0,M00, s) of D-Triples(X) should be an object

DT := (DM0,DM00,Ds),

provided we are able to define the sesquilinear pairing Ds. For the sake of simplic-
ity, we restrict to the category of Modholreg(DX) of regular holonomic DX -modules.
In such a case, we can use the isomorphism (13.3.8).

13.4.7. Definition. Let T = (M0,M00, s) be an object of D-Triplesnd
reg

(X) (i.e., M0,M00

are regular holonomic). The sesquilinear pairing Ds : DM0 ⌦DM00 ! DbX (or CX)
is defined by the data of (Ds)

0
, (Ds)

00, which are the composition

(Ds)
0
: DM0

D(s
0
)
�1

�������!D((M00)⇤)
⇠�! (DM00)⇤
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and

(Ds)
00
: DM00

D(s
00
)
�1

��������!D((M0)⇤)
⇠�! (DM0)⇤.

13.4.8. Remark (Linear pairings). We took advantage of the DX ⌦C D
X

structure of
DbX (or CX) to define the notion of a sesquilinear pairing between a DX -module
and the naive conjugate of another one. We proceed similarly in order to define the
notion of a linear pairing between two DX -modules. For that purpose, we use both
left and right DX -module structures of DX . For the sake of simplicity, we consider a
left holonomic DX -module M0left and a right one M00right. A linear pairing between
them is a DX ⌦C DX -linear morphism in the derived category D

b
(DX ⌦C DX):

q : M0left ⌦C M00right �! DX [n],

that we regard as a morphism of left DX -modules

q
0
: M0left �! RHomDX

(M00right,DX)[n] ' ExtnDX
(M00right,DX),

or as a morphism of right DX -modules

q
00
: M00right �! RHomDX

(M0left,DX)[n] ' ExtnDX
(M0left,DX).

If we compose with side-changing, we regard q
0 and q

00 as morphisms

q
0
: M0 �!DM00, q

00
: M00 �!DM0

which are related, up to the biduality isomorphism, by D(q
0
) = q

00.

13.4.9. Conjugation and real structure of an object of D-Triplesnd
reg

(X). The conjugation
functor c : D-Triplesnd

reg
(X) ! D-Triplesnd

reg
(X), T 7! c(T) is composed of the duality

functor D of Definition 13.4.7 and the Hermitian duality functor T 7! T⇤, with
T⇤ = (M00,M0, s⇤) (see Definition 12.7.4).

13.4.10. Lemma. Duality and Hermitian duality commute on D-Triplesnd
reg

(X).

It follows that the conjugation functor c satisfies c � c ' Id.

Proof. This amounts to proving the equality (Ds)
⇤
= D(s

⇤
). We note that s⇤ satisfies,

by definition, (s⇤)0 = s
00 and (s

⇤
)
00
= s
0. The assertion follows.

A real structure on an object T of D-Triplesnd
reg

(X) is an isomorphism

 : T �! c(T)

satisfying

c() �  = Id .

We can extend the Riemann-Hilbert correspondence of Proposition 13.3.10 to
triples.
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13.4.11. Proposition. We have a commutative diagram of equivalences of categories,
compatible with duality, Hermitian duality and conjugation, which transforms real
structures to real structures:

Modholreg(DX)

p

DRX o
✏✏

⇠
// D-Triplesnd

reg
(X)

o
✏✏

Perv(CX)
⇠
// PervTriples

nd
(CX)

13.4.c. Duality and real structure on eD-Triplesnd
reg

(X). We now switch back to
the filtered setting. For an object eT = ( eM0, eM00, s) of eD-Triples(X) we denote by
T = (M0,M00, s) the associated object of D-Triples(X). We denote by eD-Triplesnd

reg
(X)

the full subcategory of eD-Triples(X) consisting of objects eT = ( eM0, eM00, s) such that
• eM0, eM00 are strictly holonomic,
• T is an object of D-Triplesnd

reg
(X).

The dual object DeT is defined as (D eM0,D eM00,Ds), where D eM0,D eM00 are defined
in Section 8.8.g, and Ds is such that (DM0,DM00,Ds) = DT. The conjugate object
c(eT) is defined as D(eT⇤) = (DeT)⇤, and a real structure is an isomorphism  : eT ! c(eT)
such that c() �  = Id.

13.5. Comments

The notion of Hermitian duality and conjugation for regular holonomic eDX -mod-
ules has been introduced by Kashiwara in [Kas86a], where Theorem 13.3.1 is
proved (see also [Bjö93]). The condition of regularity can be relaxed, as proved
by T.Mochizuki [Moc11b, Cor. 4.19] (see also [Sab13, Th. 12.20] and [Sab00,
Th. II.3.1.2]), relying on a difficult structure theorem for meromorphic connections
of Kedlaya [Ked11] and Mochizuki [Moc11a] (see also [Sab00]). The content of
Sections 13.4.a and 13.4.b, together with compatibility between various functors,
is treated with details in the holonomic (possibly non regular) case in [Moc15,
Chap. 12].
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CHAPTER 14

POLARIZABLE HODGE MODULES AND
THEIR DIRECT IMAGES

Summary. This chapter contains the definition of polarizable Hodge modules.
The actual presentation justifies the introduction of the language of triples. The
main properties are abelianity and semi-simplicity of the category of polarizable
pure Hodge modules of weight w. It is convenient to also introduce polarizable
Hodge-Lefschetz modules, as they appear in many intermediate steps of various
proofs, due to the very definition of a polarizable Hodge module. We also give
the proof of one of the two main important results concerning polarizable Hodge
modules, namely, the decomposition theorem. The proof of the structure the-
orem will be given in Chapter 16. Here, we will use the machinery of filtered
eD-module theory and sesquilinear pairings to reduce the proof to the case of
the map from a compact Riemann surface to a point, that we have analyzed in
Chapter 7, according to the results of Schmid and Zucker developed in Chap-
ter 6. This strategy justifies the somewhat complicated and recursive definition
of the category pHM(X,w) of polarizable Hodge modules.

14.1. Introduction

Polarizable Hodge modules on a complex analytic manifold X are supposed to play
the role of polarizable Hodge structures with a multi-dimensional parameter. These
objects can acquire singularities. The way each characteristic property of a Hodge
structure is translated in higher dimension of the parameter space is given by the
table below.

dimension 0 dimension n > 1

H a C-vector space M a holonomic D-module
F

•H a filtration F•M a coherent filtration
eH = RFH a strict graded eM = RFM a strict graded
C[z]-module RFD-module
H = ( eH0, eH00, s) a triple M = ( eM0, eM00, s) a triple
with sesquilinear pairing s with sesquilinear pairing s

S : H ! H
⇤
(�w) a polarization S : M !M

⇤
(�w) a polarization

Why choosing holonomic D-modules as analogues of C-vector space? The reason
is that the category of holonomic D-modules is Artinian, that is, any holonomic
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D-module has finite length (locally on the underlying manifold). A related reason is
that its de Rham complex has constructible cohomology, generalizing the notion
of local system attached to a flat bundle. Moreover, the property of holonomicity
is preserved by various operations (proper pushforward, pullback by a holomor-
phic map), and the nearby/vanishing cycle theory (the V -filtration) is well-defined
for holonomic D-modules without any other assumption, so that the issue con-
cerning nearby/vanishing cycles of filtered holonomic D-modules only comes from
the filtration.

In order to define the Hodge properties, we use the same method as in dimension 1

(see Chapter 7):

• as in Section 7.4.a, we work in the ambient abelian category eD-Triples(X), which
has been defined in Section 12.7;

• the definition of the category pHM(X,w) of polarizable Hodge modules of
weight w is obtained by induction on the dimension of the support of the triples
entering the definition; contrary to dimension 1, many steps may be needed before
reaching the case of polarizable Hodge structures.

The definition of a polarizable Hodge module can look frightening: in order to
check that an object M = ( eM0, eM00, s) belongs to pHM(X,w), we have to consider in
an inductive way nearby cycles with respect to all germs of holomorphic functions.

That the category of polarizable Hodge modules is non-empty is a non trivial fact.
Already, it is not obvious at all that OX underlies a polarizable Hodge module when
dimX > 2. The reason is that the definition involves considering nearby and vanishing
cycles along any germ of holomorphic function, whose singularities can be arbitrarily
complicated. In dimension 1, holomorphic functions are just powers of coordinates,
and this explains why the property is easier to check. The higher-dimensional case
will be proved in Theorem 14.6.1.

The question should however be considered the other way round. Once we know
at least one polarizable Hodge module (e.g. a polarizable variation of Hodge struc-
ture, according to Theorem 14.6.1), we automatically know an infinity of them, by
considering (monodromy-graded) nearby or vanishing cycles with respect to any holo-
morphic function and pushforward by any projective morphism, by the Hodge-Saito
theorem 14.3.1.

In the same vein, due to this inductive definition, the proof of many properties of
polarizable Hodge modules can be done by induction on the dimension of the support,
and this reduces to checking the property for polarizable Hodge structures.

14.2. Definition and first properties of polarizable Hodge modules

The notion of a polarizable Hodge module will be defined by induction on the
dimension of the support, and we will make extensive use of the properties of the
abelian category eD-Triples(X) introduced in Section 12.7, in particular the definitions
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relative to nearby/vanishing cycles (Section 12.7.14). We mimic the definitions in
dimension 1.

14.2.1. Definition (of a polarizable Hodge module of weight w)
The category pHM(X,w) of polarizable Hodge modules of weight w on X is the

full subcategory of eD-Triples(X) whose objects eT are holonomic and for which there
exists a morphism S : eT ! eT⇤(�w) such that (eT, S) is a polarized Hodge module of
weight w on X in the sense of Definition 14.2.2 below.

We will denote by M a triple which is a polarizable Hodge module and by
pHM(X,w) the full subcategory of the category of holonomic eDX -triples whose
objects are polarizable Hodge modules of weight w. Objects of pHM(X,w) can be
represented either by left or right triples, by using the corresponding definition for
the functors in the left or right case. The definition below has to be understood in
an inductive way, with respect to the dimension of the support of a triple.

14.2.2. Definition (of a polarized Hodge module of weight w)
Let eT be an object of eD-Triples(X) which is holonomic, and let S : T ! eT⇤(�w)

be a morphism (w 2 Z).
(0) If dimSupp eT = 0 and ◆ denotes the inclusion Supp eT ,! X, we say that (eT, S)

is a polarized Hodge module of weight w on X if

(eT, S) '
L

x2Supp eT
T◆⇤(Hx, Sx),

where each (Hx, Sx) is a polarized Hodge structure of weight w.
(>0) For d > 1, assume we have defined polarized Hodge module of weight w

having support of dimension < d, and let (eT, S) be such that dimSupp eT = d. We say
that (eT, S) is a polarized Hodge module of weight w on X if eT is strict and for any
open set U ⇢ X and any holomorphic function g : U ! C,

(1)g eT is strictly R-specializable along (g);
(2)g if moreover g

�1
(0) \ Supp eT has everywhere codimension 1 in Supp eT,

then for every ` > 0 and every � 2 S
1,

(a) P` g,�(
eT, S) is a polarized Hodge module of weight w+ `� 1 on U ,

(b) P`�g,1(
eT, S) is a polarized Hodge module of weight w + ` on U .

(See (12.7.17 ⇤) for the objects considered in (2)g.) Note that, by the strict-
ness assumption, eM0, eM00 correspond to coherently F -filtered holonomic DX -modules
(M0, F•M

0
) and (M00, F•M

00
).

14.2.3. Remarks. Let us already emphasize some properties that will be proved in
Theorem 14.2.17 below, or are a consequence of this theorem.

(1) The restriction on g in (2)g can be relaxed, and in fact (2)g holds for any g.
(2) The morphism S, that we call a polarization of eT is in fact a pre-polarization

of weight w of the triple eT, that is, a Hermitian isomorphism.
(3) If Properties 14.2.2(1)g and (2)g are satisfied, then so are 14.2.2(1)gr and (2)gr

for any r > 2. This follows from §12.7.21.
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(4) If (eT, S) satisfies (1)g, (2a)g and is a middle extension along (g), then it also
satisfies (2b)g. This follows from the vanishing cycle theorem 14.2.22.

14.2.a. First properties of pHM(X,w)

14.2.4. Hermitian duality. Hermitian duality in eD-Triples(X) exchanges pHM(X,w)

with pHM(X,�w)op.

14.2.5. Tate twist. The Tate twist (`) in eD-Triples(X) sends the category pHM(X,w)

to pHM(X,w + 2`). More precisely, if S is a polarization of M , then (�1)`S is a
polarization of M(`).

14.2.6. Strictness of N. We also note that, for an object M of pHM(X,w) and for
any function g : U ! C such that g

�1
(0) \ SuppM has everywhere codimension 1 in

SuppM , the morphism N is strict on  g,�M and �g,1M : this follows from Proposi-
tion 9.4.10. We will relax below the restriction on g.

14.2.7. Stability by direct sums and isomorphisms. The category pHM(X,w) is stable by
direct sums in eD-Triples(X): this is clear for polarizable Hodge structures of weight w
in the category eC-Triples (see Section 5.2), and the general case follows by induction
on the dimension of the support. Similarly, we obtain that any object of eD-Triples(X)

which is isomorphic of an object of pHM(X,w) is an object of pHM(X,w).

14.2.8. Stability by direct summands. The category pHM(X,w) is stable by direct sum-
mand in eD-Triples(X). More precisely, if eT1 � eT2 = M is in pHM(X,w) and if S is
a polarization of M , then eT1,

eT2 are in pHM(X,w) and S induces a polarization on
each of them. Indeed, the property of coherence and holonomicity restricts to direct
summands, as well as strictness and the property of strict R-specializability along
any g (see Exercise 9.20(1)). We then argue by induction on the dimension of the
support, the case of dimension zero reducing to Lemma 5.2.8 and Exercise 2.12(1).
If the support has dimension > 1, let S1 the morphism eT1 ! eT⇤

1
(�w) induced by S.

Then, for any g such that g�1(0)\SuppM has everywhere codimension 1 in SuppM ,
P` g,�S induces P` g,�S1 on P` g,�M1, and this is a polarization by the induction
hypothesis. A similar property holds for �g,1, showing that (eT1, S1) satisfies (2)g.

14.2.9. Proposition (Kashiwara’s equivalence). Let Y ,
◆�! X be a closed analytic sub-

manifold of the analytic manifold X. The functor T◆⇤ induces an equivalence between
pHM(Y,w) and pHM

Y
(X,w) (objects supported on Y ).

Proof. Full faithfulness follows from §12.7.29. It follows that essential surjectivity is a
local question, and more precisely, if essential surjectivity holds locally for polarized
objects (M, S), it holds globally. In the local setting, we can argue by induction
and assume that Y = H is a smooth hypersurface. Then Proposition 9.6.6 (and its
obvious variant for sesquilinear pairings, hence for objects in eD-Triples(X)), implies
the assertion by induction on dimX.
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14.2.10. Proposition (Generic structure of polarizable Hodge modules)
Let M be an object of pHM(X,w) with support on an irreducible closed analytic set

Z ,
◆�! X. Then there exists an open dense set Zo ⇢ S and a smooth Hodge triple H

of weight w on Z
o, such that M|Zo = T◆⇤H. In particular, if Z = X, then M|Xo is a

smooth Hodge triple of weight w.

Note that we use Definition 5.4.7 for a smooth Hodge triple, in order to have an
object similar to the object M . By definition, it corresponds to a polarizable variation
of Hodge structure of weight w � dimZ on Z

o.

Proof. Set M = ( eM0, eM00, s) and let S be a polarization. We first restrict to the
smooth locus of S and apply Kashiwara’s equivalence 14.2.9 to reduce to the case
when S = X. By Corollary 9.7.13 (that we can apply since M is strict), there exists
a dense open subset X

o of X such that eM0|Xo and eM00|Xo are eOXo -locally free of finite
rank. Then s|Xo takes values in eC1|Xo (see Lemma 12.3.6). We now restrict to X

o and
argue by induction on dimX. It will be convenient to use the left setting.

Let t be a local coordinate and set H = {t = 0}. We have seen in the proof of
Proposition 9.7.10 that gr

0

V
eM = eM/t eM for eM = eM0, eM00. After Remark 12.5.19 and

Example 12.5.18, gr0
V
s is the restriction of s to t = 0 as a C

1 function. We conclude
that  t,1M is the pushforward T◆

�1
⇤ M|t=0. It is also pure of weight w � 1 since N is

easily seen to be zero. Therefore, M|t=0 is pure of weight w� 1 and, by induction on
dimX, is a smooth Hodge triple of weight w�1. Since this holds for any H and since
eM0, eM00 are eOX -locally free, it is clear that M is a smooth Hodge triple of weight w.
A similar argument shows that S is a polarization of this smooth Hodge triple.

14.2.11. Caveat. At this point, we do not know the converse property that a polar-
izable smooth Hodge triple of weight w on X is an object of pHM(X,w), since we
have not checked that (2)g holds for any nonzero g for such a triple. This will be
done in Theorem 14.6.1.

14.2.b. Abelianity and the S-decomposition theorem

Before proving the main properties of pHM(X,w), we introduce other categories
which will prove useful at some intermediate steps.

14.2.12. The category of W -filtered Hodge modules. As a first approximation of the
category of mixed Hodge modules, we consider the category WHM(X): this is the full
subcategory of WeD-Triples(X) (see Section 2.6.b) such that, for each object (eT,W•

eT),
the graded object gr

W

`
eT belongs to pHM(X, `). We denote the objects of WHM(X)

as (M,W•M). We can regard each pHM(X,w) as a full subcategory of WHM(X) by
considering on M the filtration W• which jumps at w only.

14.2.13. The category of polarizable Hodge-Lefschetz modules. We also consider the
category pHLM(X,w) of polarizable Hodge-Lefschetz modules with central weight w.
An object in this category consists of a Lefschetz triple (eT,N) (see §12.7.11), that is, eT
is an object of eD-Triples(X) and N is a nilpotent endomorphism of eT, such that there



546 CHAPTER 14. POLARIZABLE HODGE MODULES AND THEIR DIRECT IMAGES

exists a pre-polarization S : (eT,N)! (eT,N)
⇤
(�w) of weight w satisfying (see Section

5.3)
• (P`

eT, (�1)`P`S) is a polarized Hodge module of weight w + ` for every ` > 0,
where P`S is the morphism P`S : P`

eT ! (P`
eT)⇤(�(w + `)) defined in a way similar

to that of Sections 3.2.11 and 3.4.c.
We denote an object of pHLM(X,w) as (M,N) and we also say that (M,N, S) is a
polarized Hodge-Lefschetz module with central weight w. From the Lefschetz decom-
position, we deduce that, setting WkM := Mk�wM (i.e., M` = Ww+`), (M,W•) is
an object of WHM(X) (but pHLM(X,w) is not a full subcategory of WHM(X), since
morphisms have to commute with N).

14.2.14. Caveat. We do not claim that objects and morphisms in WHM(X) or
pHLM(X,w) are strictly specializable along any (g). On the other hand, objects and
morphisms in the graded category psl2HM(X,w) defined below are so, since they are
graded with respect to the weight or monodromy filtration.

14.2.15. The category of polarizable Hodge-Lefschetz quivers. In a way similar to that
of Definition 3.4.19, we also define the notion of polarized/polarizable Hodge-Lefschetz
quiver with central weight w, starting from a Lefschetz quiver in eD-Triples(X) (de-
fined in a way similar to what is done in §5.3.6): such an object consists of the data�
(M,N, S), (M1,N1, S1), c, v

�
, where the first terms are polarized Hodge-Lefschetz

modules of weight w � 1 and w respectively, and c : M !M1 and v : M1 ! M(�1)
are morphisms in eD-Triples(X) such that v � c = N, c � v = N1 and the following
diagram commutes (see (3.2.14)):

M1

S1
//

v
✏✏

M
⇤
1
(�w)
�c⇤
✏✏

M(�1) S
// M
⇤
(�w)

The corresponding category is denoted by pHLQ(X,w).
We can rephrase Condition (2)g of Theorem 14.2.2 as follows:
(20)g if moreover g

�1
(0) \ Supp eT has everywhere codimension 1 in Supp eT, then

for every ` > 0 and every � 2 S
1,

(a) for each � 2 S
1
r {1}, ( g,�

eT,N, g,�S) is an object of pHLM(X,w � 1),
(b) the set of data

�
( g,1

eT, g,1S), (�g,1
eT,�g,1S), can, var

�
is a polarized ob-

ject of pHLQ(X,w).
Indeed, the only properties which need a check are those for can and var, and they

have been proved in 12.7.16.

14.2.16. The category of polarizable sl2-Hodge modules. The category psl2HM(X,w) of
polarizable sl2-Hodge modules with central weight w consists of objects of pHLM(X,w)

which are graded with respect to their monodromy filtration M•. Morphisms should
also be graded. A polarization of an object (M•,N) of psl2HM(X,w) is by definition
a polarization of (M•,N) as an object of pHLM(X,w) which is graded. This is not a
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restrictive condition since the conditions on the polarization S in pHLM(X,w) concern
grS (see Section 3.4.c).

Therefore, given an object (M,N) of pHLM(X,w), the graded object (grM• M, grN)

is an object of psl2HM(X,w) and, conversely, any object of psl2HM(X,w) is an ob-
ject of pHLM(X,w) (by forgetting the grading). On the other hand, morphisms in
psl2HM(X,w) are graded with respect the given grading. So, by definition, there is a
functor gr

M from pHLM(X,w) to psl2HM(X,w). We denote by (M•, ⇢) an object of
psl2HM(X,w), where ⇢ is meant for the corresponding sl2-representation with ⇢(H)

defined by means of the grading and ⇢(Y) = N.
One can set H = ` Id on M` and, due to Proposition 3.1.6 applied with the category

A = eD-Triples(X), one can extend uniquely Y = N,H as an sl2-triple X,Y,H. Then X

induces morphisms M` !M`+2(1) in eD-Triples(X).
On the other hand, given a finitely Z-graded object M• of eD-Triples(X) endowed

with an endomorphism X which satisfies the Lefschetz property, there is a unique
action of Y defining a representation ⇢ of sl2 on M• such that H is defined by means
of the grading. We then say that (M•,X) is an object of psl2HM(X,w) if (M•, ⇢)

is so.
We set (M⇤)` = (M�`)

⇤. Then M
⇤
(�w) is also an object of psl2HM(X,w). By def-

inition, a polarization S of M is a (graded, by definition) morphism S : M !M
⇤
(�w)

such that (�1)`P`S is a polarization of P`M for every ` > 0.

14.2.17. Theorem (Main properties of polarizable Hodge modules)

(1) Any object M = ( eM0, eM00, s) of pHM(X,w) is S-decomposable in pHM(X,w),
and the components of the pure support of eM0 and eM00 are the same.

(2) There is no nonzero morphism (in eD-Triples(X)) from an object in pHM(X,w1)

to an object in pHM(X,w2) if w1 > w2.
(3) Property 14.2.2(2)g holds without any restriction on g.
(4) The category pHM(X,w) is abelian. Any morphism is strict and strictly spe-

cializable along any (g).
(5) Any polarization of an object of pHM(X,w) or pHLM(X,w) is a Hermitian

isomorphism (i.e., a pre-polarization of weight w of the corresponding triple).
(6) If M1 is a subobject of M in pHM(X,w), then it is a direct summand and a

polarization S of M induces a polarization on each summand.
(7) The category psl2HM(X,w) is abelian. Any morphism is strict and strictly

specializable along any (g). Any sub-object of an object (M•, ⇢) in psl2HM(X,w) is a
direct summand and a polarization of (M•, ⇢) induces a polarization on it.

(8) The category WHM(X) is abelian, and any morphism is strict and strictly
compatible with W•.

(9) The category pHLM(X,w) is abelian. Any morphism is strict and strictly com-
patible with the monodromy filtration M•.

(10) Any polarizable Hodge-Lefschetz quiver
�
M,M1, c, v

�
with central weight w

satisfies (M1,N1) = Im c�Ker v in pHLM(X,w).
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Let us emphasize some direct consequences of the theorem.

14.2.18. Notation. If Z ⇢ X is a closed irreducible analytic subset, we denote by
pHM

Z
(X,w) the full sub-category of pHM(X,w) whose objects have pure support Z.

By the S-decomposition property 14.2.17(1), Any object of pHM(X,w) resp. any
morphism between objects of pHM(X,w) decomposes as the direct sum of objects
resp. morphisms in of pHM

Zi
(X,w) for a suitable locally finite family of closed irre-

ducible analytic subsets Zi ⇢ X.

14.2.19. Corollary. Given two objects M1,M2 in pHM(X,w), any morphism between
them (as objects of eD-Triples(X)) has kernel, image and cokernel in pHM(X,w); and
a corresponding statement for pHLM(X,w) and psl2HM(X,w).

14.2.20. Corollary (S-decomposition theorem and semi-simplicity for pHM(X,w))
(1) Each object M decomposes uniquely into the direct sum of objects in pHM(X,w)

having pure support a closed irreducible analytic subset of X.
(2) The category pHM(X,w) is semi-simple (all objects are semi-simple and mor-

phisms between simple objects are zero or isomorphisms).
(3) The category psl2HM(X,w) is semi-simple.

14.2.21. Corollary. If M is an object of pHM(X,w) with polarization S, then for every
open subset U ⇢ X and every holomorphic function g : U ! C,

(1) for every ` > 1, N`
:  g,�M !  g,�M(�`) and �g,1M ! �g,1M(�`) are strict

and strictly shift M•(N) by 2`, and a similar property holds for grN
`,

(2) can :  g,1M ! �g,1M and var : �g,1M !  g,1M(�1) are strict and strictly
shift M• by 1.

14.2.22. Corollary (The vanishing cycle theorem). Let (M,N, S) be a polarized object of
pHLM(X,w � 1). Let us endow (ImN,N| ImN) with the morphism

S1 : (ImN,N| ImN) �! (ImN,N| ImN)(�w)

such that the following diagram commutes:

ImN

incl.
✏✏

S1
// (ImN)

⇤
(�w)

N
⇤

✏✏

M(�1) S
// M
⇤
(�w)

Then (ImN,N| ImN, S1) a polarized object of pHLM(X,w).

Proof. We use the same argument as in the proof of Proposition 3.4.20. Strictness of
can = N : M ! ImN, var = incl. : ImN ! M(�1), can⇤ = N

⇤, and S (according
to 14.2.17(9)) enables us to reduce the problem to the graded case. We note that,
arguing as in (3.2.16), for ` > 0, the isomorphism can : P`+1M

⇠�! P`M1 transports
the polarization (�1)`+1

P`+1S to (�1)`P`S1.
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14.2.23. Corollary. Given any morphism ' : M1 !M2 between objects of pHM(X,w)

and any germ g of holomorphic function on X, then, the specialized morphisms  g,�'

(� 2 S
1) and �g,1' are strictly compatible with the monodromy filtration M• and,

for every ` 2 Z, gr
M

`
 g,�' (and similarly gr

M

`
�g,1') decomposes with respect to the

Lefschetz decomposition, i.e.,

gr
M

`
 g,�' =

(L
k>0

N
k
P`+2k g,�' (` > 0),

L
k>0

N
k�`

P�`+2k g,�' (` 6 0).

In particular we have
gr

M

`
 g,� Ker' = Ker gr

M

`
 g,�'

and similarly for Coker, where, on the left side, the filtration M• is that induced
naturally by M• g,�M1 or, equivalently, the monodromy filtration of N acting on
 g,� Ker' = Ker g,�'.

14.2.24. Corollary. If M is in pHM(X,w), then the Lefschetz decomposition for
gr

M

`
 g,�M (� 2 S

1) resp. grM
`
�g,1M holds in pHM(X,w�1+ `) resp. pHM(X,w+ `).

Proof. Indeed, N : gr
M

`
 g,�M ! gr

M

`�2 g,�M(�1) is a morphism in the category
pHM(X,w � 1 + `), which is abelian, so the primitive part is an object of this cate-
gory, and therefore each term of the Lefschetz decomposition is also an object of this
category.

Similarly to Proposition 7.4.9, we can simplify the data of a polarizable Hodge
module.

14.2.25. Proposition (Simplified form for an object of pHM(X,w) or pHLM(X,w))
Any object M of pHM(X,w) resp. (M,N) of pHLM(X,w), resp. (M•,N) of

psl2HM(X,w), is isomorphic to an object of the form
�
(M, F

•
M), (M, F

•
M)(w), S

�

(resp. ...) such that S⇤ = S and with polarization (Id, Id) : M !M
⇤
(�w).

We call the data
�
(M, F

•M), S
�

a Hodge-Hermitian pair of weight w (resp. Hodge-
Lefschetz Hermitian pair with central weight w, resp. sl2-Hodge Hermitian pair with
central weight w) if the corresponding triple

�
(M, F

•M), (M, F
•M)(w), S

�
with polar-

ization (Id, Id) is polarized Hodge module of weight w (resp. ...).

14.2.26. Example (of filtered Hermitian pairs). We consider the following corresponding
filtered Hermitian pairs (see Example 12.3.5)

HOX := ((OX , F•OX), s
left

n
), H!X := ((!X , F•!X), s

right

n
).

We will prove in Theorem 14.6.1 that they are Hodge-Hermitian pairs of weight n.
The case where n = 1 is a consequence of the results in Chapter 7 (see Exercise 14.1).
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Proof of Theorem 14.2.17. It is done by induction on the dimension of the support.
By the point (0) in Definition 14.2.2, the categories of objects with support equal to
a point as considered in the theorem are equivalent to the corresponding categories
for X = pt. In such a case, the assertions of the theorem are proved in Chapters 2
and 3.

We will thus fix d > 1 and assume that the assertions are proved for the subcate-
gories consisting of objects having support of dimension < d, in order to prove them
when the dimension of the support of M is d.

(10)
<d

=) (1)
d
. Let xo 2 SuppM and let g be a germ of holomorphic function

at xo such that g
�1

(0) \ SuppM has everywhere codimension 1 in M . By Condi-
tion 14.2.13(20)g, the nearby/vanishing quiver of M along (g) satisfies the assumption
of (10)

<d
, hence its conclusion, so M is S-decomposable along (g) in eD-Triples(X).

By (14.2.8), the summands also belong to pHM(X,w). This proves S-decomposability
in pHM(X,w).

We assume that there is a pure component Z
0 of Supp eM0 which is not a pure

component of Supp eM00. Then we have a summand ( eM0
Z0 , 0, 0) of M in pHM(X,w),

according to the previous argument. We wish to show that eM0
Z0 = 0, and it is enough,

by the condition of the pure support, to show the vanishing on the smooth locus of
Z
0. We can thus reduce to the case where Z

0
= X, according to Proposition 9.7.10.

We now argue by induction on dimX, the case dimX = 0 reducing to the case
of Hodge structures, which is easy. Let t be a local coordinate on X. Arguing as
in Corollary 9.7.11, one checks that eM0

X
/t eM0

X
=  t,1

eM0
X

, and that  t,�
eM0

X
= 0 for

� 2 S
1
r {1}, as well as �t,1 eM0X = 0. It follows that N = 0, so  t,1

eM0
X

is S-decom-
posable, according to Condition 14.2.2(2)t. By induction, the object  t,1(

eM0
X
, 0, 0) is

zero. Hence eM0
X
/t eM0

X
= 0, and by applying Nakayama’s lemma as in Corollary 9.7.11,

we obtain eMX = 0.

(1)
d

=) (2)
d
. Since any morphism between S-decomposable objects decomposes

correspondingly, it is enough to consider a morphism ' : M1 ! M2 between polar-
izable Hodge modules of respective weights w1, w2 having pure support. Since the
result is clear for polarizable variations of Hodge structure (see Proposition 2.5.6(2)),
it follows from Proposition 14.2.10 that the support of Im' is strictly smaller than Z.
By definition of the pure support (see Definition 9.7.9), this implies that Im' = 0.

(1)
d

=) (3)
d
. The question is local at xo and by assumption we can assume that

Mxo
has pure support a closed irreducible subset Zxo

⇢ Xxo
. Let g : Xxo

! C be a
germ of holomorphic function. If g is non-constant on Zxo

, it satisfies the constraint
in Definition 14.2.2(2)g. Otherwise, SuppMxo

⇢ |g�1(0)| and Proposition 12.7.15
implies that Mxo

= �g,1Mxo
(and similarly S = �g,1S). Moreover,  g,�Mxo

= 0 for
any � 2 S

1, and N = 0. Hence, if Mxo
is an object of pHM((X,xo), w), 14.2.2(2)g

obviously holds.

(4)
<d

, (6)
<d

& (8)
<d

=) (4)
d
. The question is local. Let ' : M1 ! M2 be a

morphism in pHM(X,w) between objects having support in dimension d. Then, by
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(8)<d applied to  g,�',�g,1', for any germ g satisfying the constraint of Definition
14.2.2(2)g, ' : M1 ! M2 is strictly R-specializable along (g) and Corollary 10.7.6
implies that it is strict. Moreover,  g,�' and �t,1' are strict with respect to the
monodromy filtrations, since these are weight filtrations up to a shift.

It remains to check that Ker', Im'; Coker' belong to pHM(X,w). Let us check
this for Ker' for example. It follows from the M-strictness above that

gr
M

`
 g,� Ker' = Ker gr

M

`
 g,�'

and thus, for any ` > 0, P` g,� Ker' = KerP` g,�'. Since P` g,�' is a morphism in
pHM(X,w�1+`) between objects having support in dimension < d, (4)<d implies that
KerP` g,�' is an object of pHM(X,w � 1 + `) and, according to (6)<d, is a direct
summand of P` g,�M1. If S is a polarization of M1, let S' denote the morphism
induced by S on Ker'. On the one hand, the morphism induced by �P` g,�S on
KerP` g,�' is a polarization, according to 14.2.8. On the other hand, it is equal to
�P` g,�S'. We can argue similarly with �g,1, by assumption on g. This shows that
(Ker', S') satisfies 14.2.2(2)g.
(4)

d
& (5)

<d
=) (5)

d
. A polarization S of M is a morphism M ! M

⇤
(�w), hence

it is strict and strictly specializable along any (g). Let g be a holomorphic function
such that g

�1
(0) \ SuppM has everywhere codimension 1 in SuppM . (5)

<d
implies

that P` g,�S and P`�g,1S are isomorphisms for every ` > 0, which implies the same
property for grM

`
 g,�S and gr

M

`
�g,1S and thus for  g,�S and �g,1S. By strict R-specia-

lizability,  g,� and �g,1 commute with taking Ker and Coker on S. We conclude that
 g,� Ker S = 0 and �g,1 Ker S = 0, and similarly with Coker. Since Ker S and Coker S

are in pHM(X,w) by (4)
d
, we can apply to them the regularity property along (g) of

Corollary 10.7.5, which implies they both are zero.
That S is Hermitian is obtained similarly by applying the argument to Im(S�S

⇤
).

(1)
d

=) (6)
d
. A polarization of M decomposes with respect to the S-decomposition

of M , and it is clear that it induces a polarization on each summand. We can thus
restrict to considering objects M with pure support a closed irreducible analytic
subset Z of X.

If dimZ = 0, we apply Exercise 2.12. If dimZ > 1, we consider the exact sequences
(defining S1)

0 M
⇤
1
(�w)oo M

⇤
(�w)i

⇤
oo M

⇤
2
(�w)oo 0oo

0 // M1

i
//

S1

OO

M //

S o
OO

M2
// 0

where M2 is the cokernel, in the abelian category pHM(X,w), of M1 ,!M . We first
show that S1 is an isomorphism. It is enough to prove it on an open dense sub-
set Z

o of Z. By Kashiwara’s equivalence 14.2.9 and the generic structure 14.2.10,
we are reduced to considering the case of polarizable variations of Hodge struc-
ture, which is follows from Exercise 4.2. We conclude that we have a projection
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p = S
�1
1
� i⇤ � S : M !M1 such that p � i = Id, and a decomposition M = M1 �

S
�1

M
⇤
2
(�w). By construction, S splits correspondingly, and it is then clear that each

summand is a polarization.

(4)
d
& (6)

d
=) (7)

d
. Abelianity and strictness resp. strict R-specializability of

morphisms follow from (4)
d

in a straightforward way by the grading property. In the
same way, (6)

d
implies the similar property for psl2HM(X,w).

(4)
d
& (2)

d
=) (8)

d
. We note first that, since objects of pHM(X,w) are strict,

Lemma 5.1.9(1) implies that the eDX -modules which are components of an object in
WHM6d(X) are strict. According to (2)

d
and Proposition 2.6.3, (4)

d
implies that the

category WHM6d(X) is abelian and that morphisms are strictly compatible with W .
Using Lemma 5.1.9(2), we conclude that all morphisms are strict.

(8)
d

=) (9)
d
. Since pHLM(X,w) is a subcategory of WHM(X) with the weight

filtration given by the shifted monodromy filtration, strictness of morphisms and
strict compatibility with W• follow from (8)

d
.

(7)
d
, (8)

d
& (10)

<d
=) (10)

d
. Since c, v are morphisms in WHM(X), they are

strictly compatible with the weight filtration, due to (8)
d
, hence strictly shift by �1

the monodromy filtrations. We then denote by gr c, gr v the corresponding morphisms,
graded of degree �1 with respect to M•. We then have gr

M
Im c = Imgr c and

gr
M
Ker v = Ker gr v. Moreover, the natural morphism Im c�Ker v!M1 is strict

with respect to the weight filtration, hence to the monodromy filtrations. It follows
that, if the graded morphism Im gr c � Ker gr v ! gr

M
M1 is an isomorphism, then

M1 = Imc � Ker v, as wanted. We are therefore reduced to proving the assertion in
the category of polarizable graded Hodge-Lefschetz quivers.

In such a case, M,M1, c, v are strict and strictly R-specializable along any (g),
according to (7)

d
, and by the regularity property (Corollary 10.7.5), it is enough to

prove locally, for any holomorphic germ g, the decompositions

 g,�M1 = Im g,�c�Ker g,�v, 8� 2 S
1
,

�g,1M1 = Im�g,1c�Ker�g,1v.

Let us argue with �g,1 for example. Recall that M =
L

`
M` and M1 =

L
`
M1,`,

with M` 2 pHM(X,w � 1 + `) and M1,`�1 2 pHM(X,w + ` � 1), and that �g,1c is a
morphism �g,1M` ! �g,1M1,`�1. It is strictly compatible with the weight filtration
on these spaces, which is nothing but Mw+`�1+•(Ng), hence with the monodromy
filtration of Ng. The same argument holds for v. It is thus enough to prove

gr
M

j
�g,1M1,`�1 = Imgr

M

j
�g,1c�Ker gr

M

j
�g,1v.

We can therefore apply (10)
<d

to the quiver

(gr
M

j
�g,1M`, gr

M

j
�g,1M1,`�1, gr

M

j
�g,1c, gr

M

j
�g,1v),

with central weight w + `� 1 + j.
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14.2.27. The category of polarizable sl
k

2
-Hodge modules

In the presence of k commuting nilpotent endomorphisms, we can extend the def-
inition of the category psl2HM(X,w) of sl2-Hodge modules to that of the category
psl

k

2
HM(X,w) of sl

k

2
-Hodge modules. The objects of psl

k

2
HM(X,w) are Z

k-graded
polarizable Hodge modules M =

L
`2Zk M` such that

• for each `, M` is an object in pHM
�
X,w +

P
i
`i

�
,

• M is endowed with actions ⇢i of sl2 (i = 1, . . . , k) such that, for each i, Hi = `i Id

on M` and Yi : M` ! M`�21i
(�1), Xi : M` ! M`+21i

(1) satisfy the isomorphism
property for an sl2-Hodge module, so that there is a Lefschetz k-decomposition (argue
as in Exercise 3.9),

• M can be endowed with a polarization S, that is, a (multi) graded morphism
S : M !M

⇤
(�w) (i.e., S sends M` to M

⇤
` (�w) = (M�`)

⇤
(�w)), such that each Yi,Xi

is skew-adjoint with respect to S (i.e., S is a morphism (M,Y)! (M,Y)
⇤
(�w)) and

that, for every ` = (`1, . . . , `k) with non-negative components, the induced morphism
(see Section 3.4.c)

X
⇤`1
1

· · ·X⇤`k
k
� S : M�` �! (M�`)

⇤
(�w � `)

induces a polarization of the object P�`M�` :=
T

k

i=1
KerX

`i+1

i
of HM(X,w�`). (One

can also use the Yi’s or use alternatively Yi’s and Xj ’s with an obvious modification
of the twists and the signs, e.g. (�Y1)

⇤`1 · · · (�Yk)
⇤`k �S should induce a polarization

on P`M`.)

Morphisms should be compatible with the slk
2
-structure, hence k-graded of k-degree

zero. The category is abelian, and any morphism is strict and strictly R-specializable
(this is proved as 14.2.17(7)).

14.2.28. Lemma. Let (M,X,Y,H) be an object of the category psl
k

2
HM(X,w) and let g

be a germ of holomorphic function. Then, for every � 2 S
1, the graded nearby cycle

object
�
gr

M

•  g,�M, (gr
M

•  g,�Y,Ng)
�

is an object of pslk+1

2
HM

�
X,w � 1

�
and for each

` 2 Z
k and ` 2 Z, P`gr

M

`
 g,�Mj = gr

M

`
 g,�P`Mj , where P` denotes the multi-

primitive part. A similar statement holds with �g,1 and psl
k+1

2
HM

�
X,w

�
.

Proof. The lemma is a direct consequence of the strict compatibility of  t,�Xi, t,�Yi

with the monodromy filtration M(Ng), as follows from 14.2.17(9) applied to the mor-
phisms Xi,Yi.

14.2.29. Lemma. The category psl
k

2
HM(X,w) has an inductive definition as in Defini-

tion 14.2.2. Furthermore, Properties 14.2.17(5)–(7) hold for this category.

Proof. This directly follows from the commutativity of P` and gr
M

`
 g,� and gr

M

`
�g,1

shown in Lemma 14.2.28.
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14.3. Introduction to the direct image theorem

The theory of polarizable Hodge modules was developed in order to give an analytic
proof, relying on Hodge theory, of the decomposition theorem of the pushforward by a
projective morphism of the intersection complex attached to a local system underlying
a polarizable variation of Hodge structure. Two questions arise in this context:

• to relate polarizable variations of Hodge structure on a smooth analytic Zariski
open subset of a complex analytic set with a polarizable Hodge module on a com-
plex manifold containing this analytic set as a closed analytic subset (the structure
theorem),

• to prove the Hodge-Saito (i.e., direct image) theorem for the pushforward by a
projective morphism of a polarizable Hodge module.

Recall Definition 12.7.28 for the pushforward functor in the category eD-Triples(X),
and the corresponding definition of the pushforward of a pre-polarization S. In par-
ticular, we consider the pushforward Tf

(•)
⇤ eT as a graded object in eD-Triples(Y ). The

Hodge-Saito theorem describes the behaviour by projective pushforward of an object
of pHM(X,w). The case of the constant map X ! pt and of the Hodge module HOX

corresponds to the results of Section 2.4.
The proof of the Hodge-Saito theorem is obtained by reducing to the case of a

constant map, by using the nearby cycle functor and its compatibility with pushfor-
ward. In the case of the constant map, one can reduce to the case where the Hodge
module is a polarizable variation of Hodge structure on the complement of a normal
crossing divisor in a complex manifold by using Hironaka’s theorem on resolution of
singularities, and the decomposition theorem already proved (by induction) for the
resolution morphism. One can use a Lefschetz pencil to apply an inductive process,
after having blown up the base locus of the pencil. In such a way, one is reduced to
the case of the constant map on a smooth projective curve, where one can apply the
Hodge-Saito theorem 7.4.19.

Another approach in the case of a constant map would make full use of the higher
dimensional analogues of the results proved in Chapter 6 for polarized variations of
Hodge structure, but this would need to include in the inductive process the structure
theorem for polarizable Hodge modules in the normal crossing case.

The Hodge-Saito theorem enables us to give a proof of a simple case of the structure
theorem, namely, that a variation of Hodge structure of weight w on a complex
manifold X is a polarizable Hodge module of weight w+dimX. It is indeed difficult
to check the behaviour along an arbitrary holomorphic function g (e.g. strict R-spe-
cializability), but the case where the function is a monomial can be reduced to the
case where the function is a product of coordinates, and in that case Example 12.7.24
provides the result by induction on the dimension. The pushforward theorem 12.7.32
enables us to obtain the result for an arbitrary holomorphic function, according to
Hironaka’s resolution of singularities of holomorphic functions.
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14.3.1. Theorem (Hodge-Saito theorem). Let f : X ! Y be a projective morphism be-
tween complex analytic manifolds and let M be a polarizable Hodge module of weight w
on X. Let L be an ample line bundle on X and let XL = (2⇡i)LL be the corresponding
Lefschetz operator. Then

�
Tf

(•)
⇤ M,XL

�
is an object of psl2HM(Y,w).

A special case of the Hodge-Saito theorem is the case where f is a closed embedding,
which is a consequence of Kashiwara’s equivalence 14.2.9.

Let us make explicit the statement of Theorem 14.3.1. Let us choose a polar-
ization S on M = ( eM0, eM00, s). It induces an isomorphism eM00 ' eM0(w) and we can
assume that M corresponds to a Hodge-Hermitian pair ( eM, S), i.e., M = ( eM, eM(w), S)

with polarization S = (Id, Id).

14.3.2. Theorem (Reformulation of the Hodge-Saito theorem)
For f and ( eM, S) as above, the following properties hold.

(1) Df⇤ eM, regarded as an object of Db

hol
(eDY ), is strict, that is, for every k, Df

(k)

⇤ eM
is a strict eDY -module (see Proposition 8.8.23). Moreover, Df

(k)

⇤ eM is S-decomposable.
(2) Each Tf

(k)

⇤ M is a polarizable Hodge module of weight w + k on Y .
(3) (Relative hard Lefschetz theorem) For each k > 0, the Lefschetz operator XL

induces isomorphisms in pHM(Y,w + k):

X
k

L : Tf
(�k)
⇤ M

⇠�! Tf
(k)

⇤ M(k),

so that
�
Tf

(•)
⇤ M,XL

�
is an object of psl2HM(Y,w), that is, a graded Hodge-Lefschetz

Hermitian pair with central weight w.
(4) The object (Tf

(•)
⇤ eM, Tf

(•)
⇤ S),XL) (see Section 12.4.a for Tf⇤S) is an sl2-Hodge-

Hermitian pair.

One of the most notable consequences of the Hodge-Saito theorem is the decom-
position theorem.

14.3.3. Theorem (Decomposition theorem). Let f : X ! Y be a projective morphism
of complex manifolds. Let eM be a eDX-module underlying a polarizable Hodge mod-
ule. Then the complex Df⇤ eM in D

b

hol
(eDY ) decomposes (in a non-canonical way) asL

k Df
(k)

⇤ eM[�k]. Similarly, if M = eM/(z � 1) eM is the underlying DX-module, then
there exists a (non canonical) decomposition Df⇤M '

L
k Df

(k)

⇤ M[�k] in D
b

hol
(DY ).

Proof. This is a direct consequence of Deligne’s criterion 3.3.8 for a spectral sequence
to degenerate at E2. We apply this theorem to Df⇤ eM as an object of D

b
(eDY ), by

using the Hard Lefschetz theorem furnished by the Hodge-Saito theorem.

14.3.4. Sketch of the proof of Theorem 14.3.1. That holonomicity is preserved by proper
pushforward is recalled in Remark 8.8.31. We will now focus on the other proper-
ties defining a polarizable Hodge module. The proof of Theorem 14.3.1 is done by
induction on the pair

(n,m) = (dimSuppM, dimSupp Tf⇤M)

ordered lexicographically. Note that the pairs occurring satisfy 0 6 m 6 n.
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(a) In the case where n = 0, the assertion of Theorem 14.3.1 is easily obtained:
we can assume that M is supported on a point xo, hence is equal the pushforward
by ◆ : {xo} ,! X of a polarizable Hodge structure, and Tf⇤M is equal to this Hodge
structure.

(b) In the case where dimX = 1 with X smooth, and m = 0, it is straightforward
to reduce to the case where X is also connected, so that f factorizes as X ! pt ,! Y .
As already remarked for the case of a closed embedding, we are left with considering
the case of the constant map aX : X ! pt from a compact Riemann surface, which has
been treated in Chapter 7 (see Corollary 7.4.14 and the Hodge-Saito theorem 7.4.19
in dimension 1, i.e., the Hodge-Zucker theorem 6.11.1).

Both (a) and (b) provide the property [(14.3.1)
(61,0)

with SuppM smooth].
(c) (14.3.1)

(n,m)
=) (14.3.1)

(n+1,m+1)
is proved in Section 14.4. In such a case,

the behaviour of f⇤M with respect to nearby and vanishing cycles for a function g on
the base is controlled by the behaviour of M with respect to nearby and vanishing
cycles for the function g � f on the source, plus a good behaviour of these by the
pushforward Tf⇤ relying on 12.7.32. The main point is provided by Proposition 14.4.2.

(d) (14.3.1)
(6n�1,0) & [(14.3.1)

(61,0)
with SuppM smooth] =) (14.3.1)

(n,0)
for

n>1 is proved in Section 14.5 by using the method of Lefschetz pencils. In this case,
f is the constant map and we factor it through a map to P

1 (up to taking a blowing-up
along the axis of the pencil). If such a blow-up is not needed, i.e., a factorization of f
exists, the proof relies on the analysis of the corresponding Leray spectral sequence.
The general case follows the same strategy.

Conclusion. Let us check that the statements (a)–(d) lead to the proof of Theorem
14.3.1.

Given a pair (n,m) 2 N
2 with m 6 n, let us assume that the theorem is proved

for every pair (n
0
,m
0
) < (n,m). If m > 1, (c) gives the theorem by induction since

(n � 1,m � 1) < (n,m). We can thus assume that m = 0. By (a), it is enough to
consider the case n > 1. Then (d), together with (a) and (b), reduces the proof to
that of (14.3.1)

(n�1,0), which is also true by induction.

14.4. Behaviour of the Hodge module properties by projective pushfor-
ward

In this section we fix n and we assume that (14.3.1)
(n0,m0) holds for any n

0 6 n

and any m
0 6 n

0. We aim at proving that (14.3.1)
(n+1,m+1)

holds for any m 6 n.
Let f : X ! Y be a projective morphism between complex manifolds, let h be a

holomorphic function on Y and set g = h � f : X ! C. Let L be a relatively ample
line bundle on X. In other words, we choose a relative embedding

(14.4.1)

X

g

::

� �
//

f $$

Y ⇥ P
N

✏✏

Y
h
// eC
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so that L comes by pullback from an ample line bundle on P
N . We aim at proving

that the properties 14.2.2(1) and (2) relative to the given g are preserved (in some
sense) under pushforward by f under weak assumptions on (M, S), and a support
condition that allows the application of the induction hypothesis (14.3.1)

(n,m)
.

14.4.2. Proposition. Let eT = ( eM0, eM00, s) be a an object of eD-Triples(X)hol and let S be
a pre-polarization of eT of weight w. We assume

(a) dim(Supp eT \ g
�1

(0)) 6 n,
(b) (eT, S) satisfies 14.2.2(1)g and (2)g. In other words, we assume that the objects

(gr
M

•  g,�
eT, grN, gr• g,�S) and (gr

M

• �g,1
eT, grN, gr•�g,1S) are respectively polarized

sl2-Hodge triples with central weight w � 1 and w (grN of type Y in both cases and
denoted Yg).

Then, if Theorem 14.3.1 holds for pairs (n
0
,m
0
) with n

0 6 n, the following holds.

(1) Tf
(k)

⇤ eT is strictly R-specializable and S-decomposable along (h) for every k2Z.
(2)

�L
k,`

gr
M

`
 h,�(Tf

(k)

⇤ eT), (XL,Yg), gr
M

`
 h,�(Tf

(k)

⇤ S)
�

is a polarized bi-sl2 Hodge
triple with central weight w � 1.

(3)
�L

k,`
gr

M

`
�h,1(Tf

(k)

⇤ eT), (XL,Yg), gr
M

`
�h,1(Tf

(k)

⇤ S)
�

is a polarized bi-sl2 Hodge
triple with central weight w.

Before giving the proof of this proposition, we will introduce the technical tools
that are needed for it.

14.4.a. bi-sl2 Hodge modules

14.4.3. Proposition. The conclusions of Propositions 3.2.26 and 3.2.27 remain valid
for polarizable bi-sl2 Hodge modules.

Proof.
(1) Let us start with Proposition 3.2.27. Let

�
(Mj2Z2 , ⇢1, ⇢2

�
be an object of

psl
2

2
HM(X,w) with a polarization S. We assume that it comes equipped with a bi-

graded differential d : M• ! M•�(1,1)(�1) which commutes with Y1 and Y2 and is
self-adjoint with respect to S. In particular, d is strict and strictly specializable and
we have, for any germ g of holomorphic function, any � 2 S

1 and any ` > 0,

P` g,�(Ker d/ Im d) = Ker(P` g,�d)/ Im(P` g,�d)

(see Corollary 14.2.23). By induction on the dimension of the support, we can assert
that

�
P` g,�(Ker d/ Im d),P` g,�⇢1,P` g,�⇢2

�
is an object of psl

2

2
HM(X,w � 1 + `)

with polarization P` g,�S, and we conclude with Lemma 14.2.29. The case where the
dimension of the support is zero is obtained from Proposition 3.2.27.

(2) The analogue of Proposition 3.2.26 is proved similarly.

14.4.4. Corollary (Degeneration of a spectral sequence). Let (eT•
, d) be a bounded com-

plex in eD-Triples(X), with d : eTj ! eTj+1
(1) and d � d = 0. Let us assume that it is

equipped with the following data:
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(a) a morphism of complexes S : (eT•
, d)! (eT•

, d)
⇤
(�w) which is (�1)w-Hermitian,

that is, for every k, a morphism S : eTk ! (eT�k)⇤(�w) which is compatible with d

and d
⇤, and such that S⇤ = (�1)wS,

(b) a morphism X
0
: (eT•

, d)!(eT•+2
(1), d) which is self-adjoint with respect to S,

(c) a morphism N : (eT•
, d)! (eT•

(�1), d) which is nilpotent, commutes with X
0,

and self-adjoint with respect to S, with monodromy filtration of M•(N).
Let us consider the spectral sequence associated to the filtered complex (M�`eT•

, d)

with E
`,j�`
1

= H
j
gr

M

�`
eT•. We set Y = grN. We assume that

L
j,`

⇣
E

`,j�`
1

= H
j
(gr

M

�`
eT•

), (H
j
gr

M

�`X
0
, H

j
Y), H

j
gr

M

�`S
⌘

is a polarized object of psl2
2
HM(X,w). Then

(1) the spectral sequence degenerates at E2,
(2) the filtration W`H

j
(eT•

) := image[H
j
(M`

eT•
) ! H

j
(eT•

)] is equal to the mon-
odromy filtration M•H

j
(eT•

) associated to H
j
N : H

j
(eT•

)! H
j
(eT•

),
(3) the object

L
j,`

⇣
gr

M

�`H
j
(eT•

), (gr
M

�`H
j
X
0
, grH

j
N), gr

M

�`H
j
S

⌘

is a polarized object of psl2
2
HM(X,w).

Proof. Let us first make clear the statement. Since d and X
0 commute with N,

d and X
0 are compatible with the monodromy filtration M•(N), hence for each `

we have a graded complex (gr
M

�`
eT•

, d), and X
0 induces for every ` a morphism

gr
M

�`X
0
: (gr

M

�`
eT•

, d) ! (gr
M

�`
eT•+2

(1), d), and thus a morphism H
j
gr

M

�`X
0
: E

`,j�`
1

!
E

`,j+2�`
1

(1). Similarly, Hj
Y is a morphism E

`,j�`
1

! E
`+2,j�`�2
1

(�1). We consider
the bi-grading such that E

`,j�`
1

is in bi-degree (j, `).
The differential d1 : H

j
(gr

M

�`
eT•

) ! H
j+1

(gr
M

�`�1
eT•

)(1) is a morphism in
HM(X,w + j � `) that commutes with H

j
gr

M

�`X
0 and H

j
Y. We will check

below that d1 is self-adjoint with respect to H
j
gr

M

�`S. From the analogue of
Proposition 3.2.27 (see Proposition 14.4.3), we deduce that

L
j,`

E
`,j�`
2

is part
of an object of psl

2

2
HM(X,w). Now, one shows inductively that, for r > 2,

dr : E
`,j�`
2

! E
`+r,j�`�r+1

2
is a morphism of pure Hodge modules, the source having

weight w + j � ` and the target w + j � `� r + 1 < w + j � ` and thus, by applying
14.2.17(2), that dr = 0. This proves 14.4.4(1).

In order to prove (2), we notice that, due to the degeneration property above,
we have an identification

gr
W

`
H

j
(eT•

) ' E
`,j�`
2

,

and the action of grN on the left-hand side is that induced by H
j
Y on the right-hand

side. By the sl2 property of E2 relative to H
j
Y, we deduce that grN satisfies the

Lefschetz property on gr
W

• H
j
(eT•

). In other words, (2) holds.
Lastly, due to the above identification, (3) amounts to the bi-sl2 Hodge property

of E2.
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Proof that d1 is self-adjoint. We regard gr
M

�`S as a morphism gr
M

�`M
j ! (gr

M

`
M
�j

)
⇤.

It is compatible with d and d
⇤ on these complexes, since N commutes with d. Then,

H
j
gr

M

�`S is a morphism H
j
gr

M

�`M
• ! (H

�j
gr

M

`
M
�•

)
⇤. Since d1 is obtained by a

standard formula from d on the filtered complex, the equality S � d = d
⇤ � S implies

H
j
gr

M

�`S � d1 = (d1)
⇤ �Hj

gr
M

�`S.

14.4.b. Proof of Proposition 14.4.2 and of 14.3.4(c)

Proof of Proposition 14.4.2. One of the points to understand is the way to pass from
properties of Tf

(k)

⇤ gr
M

�` g,�
eT to properties of gr

M

�` h,�(Tf
(k)

⇤ eT), and similarly with
�g,1. Although we know that  t,�(Tf

(k)

⇤ eT) is isomorphic to Tf
(k)

⇤  g,�
eT if the latter is

strict, according to 12.7.32, we have to check the strictness property. Moreover, we are
left with the question of passing from Tf

(k)

⇤ gr
M

�` to gr
M

�`Tf
(k)

⇤ . Here, we do not have a
commutation property, but we will use Corollary 14.4.4 to analyze the corresponding
spectral sequence. At this point, the existence of a polarization is essential. The
S-decomposability is not obvious either, and the polarization also plays an essential
role for proving it.

Since we assume that Theorem 14.3.1 holds for objects in pHM6n
(X) and since

dim(Supp eT \ g
�1

(0)) 6 n, we deduce that, for every � 2 S
1,

⇣L
k,`

Tf
(k)

⇤ gr
M

�` g,�
eT, (XL, Tf

(k)

⇤ grN), Tf
(k)

⇤ gr
M

�` g,�S

⌘

is a polarized object of psl2
2
HM(Y,w� 1) if we keep here the grading convention used

in Corollary 14.4.4. This corollary implies that
⇣L
k,`

gr
M

�` Tf
(k)

⇤  g,�
eT, (XL, gr Tf

(k)

⇤ N), gr
M

�` Tf
(k)

⇤  g,�S

⌘

is a polarized object of psl2
2
HM(Y,w�1). In particular, each gr

M

�` Tf
(k)

⇤  g,�
eT is strict,

and therefore so is Tf
(k)

⇤  g,�
eT. We argue similarly for �g,1.

We can now apply Corollary 9.8.9 to conclude that Tf
(k)

⇤ eT is strictly R-specializable
along (g) for every k. We also conclude from 12.7.32 that

( h,� Tf
(k)

⇤ eT,N) = Tf
(k)

⇤ ( g,�
eT,N), (�h,1 Tf

(k)

⇤ eT,N) = Tf
(k)

⇤ (�g,1
eT,N).

We have thus proved that
⇣L
k,`

gr
M

�` h,� Tf
(k)

⇤ eT, (XL, grN), gr
M

�` h,� Tf
(k)

⇤ S

⌘

is a polarized object of psl2
2
HM(Y,w� 1), and a corresponding assertion for �h,1.

Proof of 14.3.4(c), i.e., (14.3.1)
(n,m)

=) (14.3.1)
(n+1,m+1)

. Let f : X ! Y be
a projective morphism and let (M, S) be a polarized object of pHM

S
(X,w), where

S is an irreducible analytic subset of X of dimension n + 1. We can assume that
(M, S) is represented as a Hodge-Hermitian pair ( eM, S) of weight w, and we will
omit S = (Id, Id) in the notation. Assume that f(S) has dimension m + 1 and that
(14.3.1)

(n,m)
holds. Since Theorem 14.3.1 is a local statement on Y , we can work in

an open neighbourhood of a point yo 2 f(S), that we can take as small as needed.
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By the S-decomposability of ( eM, S) on X, we can therefore assume that S and f(S)

are irreducible when restricted to a fundamental basis of neighborhoods of f�1(yo)
and yo respectively.

Let h be a holomorphic function on some nb(yo) and set g = h � f . We distinguish
two cases. We note that strictness of Tf

(k)

⇤ M on nb(yo) is obtained by choosing any h

as in Case (1) below.

(1) h
�1

(0) \ f(S) has codimension 1 in f(S). Then g
�1

(0) \ S has codimension 1

in S. We can thus apply Proposition 14.4.2. It follows that each Tf
(k)

⇤ M is strict and
satisfies 14.2.2(1)h and (2)h.

(2) The function h vanish identically on the closed irreducible subset f(S)\nb(yo)
of nb(yo). We now omit referring to nb(yo). We denote by

◆g : X ,�! X ⇥ Ct and ◆ : X ⇥ {0} ,�! X ⇥ Ct

the respective graph and trivial inclusions, and similarly on Y . The only property to
be checked relative to h is that Df

(k)

⇤ eM is strictly R-specializable along (h), that is,
14.2.2(1)h: indeed, in such a case, Proposition 12.7.15 implies �g,1(Df

(k)

⇤ eM) = Df
(k)

⇤ eM
and  g,�(Df

(k)

⇤ eM) = 0 for any � 2 S
1, so 14.2.2(2)h is trivially satisfied. Since Df

(k)

⇤ eM
is strict, D◆⇤(Df

(k)

⇤ eM) is strictly R-specializable along (t) and it is enough to prove

D◆h⇤(Df
(k)

⇤ eM) = D◆⇤(Df
(k)

⇤ eM) 8 k.

The left-hand term is equal to Df
(k)

⇤ eMg, if we still denote by f the map f ⇥ IdC.
Similarly the right-hand term is equal to Df

(k)

⇤ D◆⇤ eM, with obvious abuse of notation.
Since g ⌘ 0 on S and eM is assumed to be strictly R-specializable along (g), we have
eMg = D◆⇤ eM, hence the desired assertion.

14.5. End of the proof of the Hodge-Saito theorem

Recall that we wish to prove
(d)

(14.3.1)
(6n�1,0) & [(14.3.1)

(1,0)
with SuppM smooth] =) (14.3.1)

(n,0)
for n>1.

We thus fix n > 1 in this section and assume that both properties of the left term
hold true. It follows then from the results of Section 14.4 that (14.3.1)

(6n,m)
is true

for any m > 1. As already noticed in the case 14.3.4(b), we only have to consider the
case of the constant map aX : X ! pt.

Let (M, S) be a polarized Hodge module of weight w on a smooth complex pro-
jective variety X and let L be an ample line bundle on X. We can assume that
S = (Id, Id) and consider the Hodge-Hermitian pair ( eM, S) for M as in Proposition
14.2.25. We can also assume that M has pure support Z, which is an irreducible
closed n-dimensional algebraic subset of X (n > 1). It is not restrictive to assume
that L is very ample, so that, by Kashiwara’s equivalence (Proposition 14.2.9), we can
further assume that X = P

N and L = OPN (1).
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14.5.a. The case where X maps to a curve

In order to emphasize the main steps, we start with the simpler case where we
assume that there exists a morphism f from X to a curve C which is non-constant
on the irreducible pure support Z = SuppM , that we decompose as in (14.4.1) with
Y = C. We use the corresponding notations for the ample line bundles L on P

N

and L0 on C. We decompose the constant map aX on the projective manifold X of
dimension n as X

f�! C
aC�! pt and we consider the Leray spectral sequence for this

decomposition (see Corollary 12.7.38).
Our induction hypothesis implies that Theorem 14.3.1 holds for both maps f

and aC : indeed, (14.3.1)
(6n,1)

holds true, and thus
�
Tf

(•)
⇤ (M, S),XL

�
is a polarized

sl2-Hodge module with central weight w; furthermore, by (14.3.1)
(1,0)

, the push-
forward

�
Ta

(•)
C⇤(Tf

(•)
⇤ (M, S)),XL,XL0

�
by the constant map aC on the curve C is a

polarized bi-sl2 Hodge structure with central weight w. We are thus led to analyz-
ing the Leray spectral sequence in order to get that

�
Ta

(•)
X⇤(M, S), (XL + XL0)

�
is a

polarized sl2-Hodge structure.
According to Corollary 12.7.38, there exists a spectral sequence in eD-Triples(pt)

whose E2 term is E
p,q

2
= Ta

(p)

C⇤(Tf
(q)

⇤ M). Since dimC = 1, we have E
p,q

2
= 0 unless

p = �1, 0, 1. By our induction hypothesis, we can apply the decomposition theorem
14.3.3 to f and (M, S), and the spectral sequence degenerates at E2.

Furthermore, our induction hypothesis implies that ((E•,•
2

, S),XeL,XeL0) is a polar-
ized sl

2

2
-Hodge structure with central weight w. We set E

k

2
=
L

p+q=k
E

p,q

2
. We ap-

ply Proposition 3.2.26 to deduce a polarized sl2-Hodge structure ((E
•
2
, S),XeL +XeL0)

with central weight w. It follows that
�
Ta

(•)
X⇤M, (XL+XL0)

�
has a filtration Ler

• (the
Leray filtration attached to the spectral sequence) whose graded term is an sl2-Hodge
structure polarized by the pre-polarization induced from Ta

(•)
X⇤S. From this property

one deduces at once that
�
Ta

(•)
X⇤M, (XL + XL0)

�
is an sl2-Hodge structure of central

weight w and that S induces a pre-polarization of it. However, at this step, we cannot
assert that S is a polarization (i.e., that the positivity property holds), since it is only
a successive extension of polarizations.

In order to overcome this difficulty, we will make use of the criterion provided by
Theorem 3.2.20, which relies on the weak Lefschetz property. Since we have at our
disposal a pre-polarization, we will work with the Hodge Hermitian pair ( eM, S, w)

attached to (M, S) (see Proposition 14.2.25).
The operator XL+XL0 is the Lefschetz operator attached to the ample line bundle

L⇥L0 and, up to multiplying XL⇥L0 by some positive integer, we can assume that it
is very ample. It defines an embedding X ,! P

N
0

and its restriction to X takes the
form eOX(H) for a general hyperplane of PN

0
that we can assume to be non-character-

istic with respect eM. Since, by Definition 14.2.2(1)g for any local equation g of H, eM
is strictly R-specializable along H, it follows from Proposition 9.5.2 that H is strictly
non-characteristic with respect to eM.
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For each k 2 Z, we consider the X-sl2-Hodge quiver with center w � 1, with
(H•,X) = (Ta

(•)
X⇤(

eM, S, w),XL⇥L0),

(G•,X) = (Ta
(•+1)

H⇤ ( eMH , SH , w � 1),XL⇥L0),

can = restrH , var = Gys
H
.

Our induction hypothesis yields that (G•,X) is a polarized sl2-Hodge-Hermitian
pair of weight w � 1. Furthermore, Gys

H
: Da

(k)

H⇤
eMH ! Da

(k+1)

X⇤
eM(1), being induced

by a morphism of Hodge structures, is a strict morphism for each k. We can
therefore apply the criterion of Proposition 11.2.28 to deduce that the X-sl2-Hodge
quiver ((H•,X), (G•,X), can, var) satisfies the weak Lefschetz property. According to
Theorem 3.2.20, we are left with proving the positivity of P(Ta

(0)

X⇤S) on P(Ta
(0)

X⇤M)

in order to deduce the desired positivity property for the pre-polarization of�
Ta

(•)
X⇤M, (XL +XL0)

�
.

14.5.1. Lemma. The pure Hodge structure P(Ta
(0)

X⇤M) is a Hodge sub-structure of
Ta

(0)

C⇤
�
P(f

(0)

⇤ MH)
�

and the pre-polarization P(Ta
(0)

X⇤S) is induced by Ta
(0)

C⇤
�
P(f

(0)

⇤ SH)
�
.

The proof of (d) is achieved with this lemma, according to Exercise 2.12.

Proof of Lemma 14.5.1. We can assume that S and SH are of the form (Id, Id), so that
we only need to show the first part.

We first check that P(Ta
(0)

X⇤M) ⇢ Ler
0
(Ta

(0)

X⇤M). Due to the weak Lefschetz
property, we have P(Ta

(0)

X⇤M) = Ker[restrH : Ta
(0)

X⇤M ! Ta
(1)

H⇤MH ] (see Remark
3.1.14(2)). Since the Leray filtration has only three terms 0 ⇢ Ler

1 ⇢ Ler
0 ⇢ Ler

�1,
we are reduced to showing that gr

�1
Ler

restrH is injective. This is the restriction
morphism Ta

(�1)
C⇤ (Tf

(1)

⇤ M) ! Ta
(�1)
C⇤ (Tf

(2)

⇤ MH) induced by the restriction morphism
Tf

(1)

⇤ M ! Tf
(2)

⇤ MH relative to f : the latter is the connecting morphism in the long
exact sequence in pHM(C) obtained as in (11.2.19) by applying Tf⇤ to the exact
sequence (12.7.27 ⇤). Since any morphism in pHM(C) is strict, we can apply the cri-
terion for the weak Lefschetz property in Proposition 11.2.28 and deduce that this
morphism is an isomorphism, hence in particular the desired injectivity.

We then claim that it is enough to check that P(Ta
(0)

X⇤M) does not intersect
Ler

1
(Ta

(0)

X⇤M), hence injects into gr
0

Ler
(Ta

(0)

X⇤M) = Ta
(0)

C⇤(Tf
(0)

⇤ M). Indeed, having
proved this, we note that the action of XL0 on this space is zero since Ta

(2)

C⇤(•) = 0.
Therefore,

P(Ta
(0)

X⇤M) ⇢ Ker
⇥
(XL +XL0) : gr

0

Ler
(Ta

(0)

X⇤M) �! gr
0

Ler
(Ta

(2)

X⇤M)
⇤

= Ker
⇥
Ta

(0)

C⇤(XL) : Ta
(0)

C⇤(Tf
(0)

⇤ M) �! Ta
(0)

C⇤(Tf
(2)

⇤ M)
⇤
.

Due to the Lefschetz decomposition of Tf
(•)
⇤ M with respect to XL, Tf

(0)

⇤ M de-
composes as P(Tf

(0)

⇤ M) � XL(Tf
(�2)
⇤ M), and XL : XL(Tf

(�2)
⇤ M) ! Tf

(2)

⇤ M is an
isomorphism. Then Ta

(0)

C⇤(XL) : Ta
(0)

C⇤
�
XL(Tf

(�2)
⇤ M)

�
! Ta

(0)

C⇤(Tf
(2)

⇤ M) is also an
isomorphism, hence P(Ta

(0)

X⇤M) does not intersect its source, that is, P(Ta
(0)

X⇤M) ⇢
Ta

(0)

C⇤
�
P(Tf

(0)

⇤ M)
�
, which is the desired inclusion.
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For the claim, we have Ler
1
(Ta

(0)

X⇤M) = gr
1

Ler
(Ta

(0)

X⇤M) = Ta
(1)

C⇤(Tf
(�1)
⇤ M), and the

action of XL+XL0 reduces to that of XL. By the Lefschetz decomposition of Tf
(•)
⇤ M

with respect to XL, the morphism XL : Tf
(�1)
⇤ M ! Tf

(1)

⇤ M is an isomorphism,
hence so is the morphism Ta

(1)

C⇤(XL) : Ta
(1)

C⇤(Tf
(�1)
⇤ M) ! Ta

(1)

C⇤(Tf
(1)

⇤ M). It follows
that Ler

1
(Ta

(0)

X⇤M) \ P(Ta
(0)

X⇤M) = 0.

14.5.b. The general case. In general however, we do not have such a decompo-
sition X

f�! C
aC�! pt of the constant map as in §14.5.a, and the usual trick is

to consider a Lefschetz pencil instead, a procedure that introduces a supplementary
complication due to the base locus of the pencil, that we can choose as generic as we
want nevertheless.

Let us choose a pencil of hyperplanes in X = P
N with axis A ' P

N�2. It defines a
map X rA! P

1, whose graph is contained in (X rA)⇥ P
1. Let XA be the closure

of this graph in X ⇥ P
1 with projection ⇡ to X, and let AA be the pullback ⇡�1(A).

By definition, XA is the blow-up space of X along the axis A of the pencil, and AA

is a smooth divisor in it. We have the following commutative diagram:

(14.5.2)

A⇥ P
1 �
�

// X ⇥ P
1

//

p

⌧⌧

AA

✏✏

� �
// XA

� ?
◆

OO

⇡

✏✏

f

// P
1

aP1

✏✏

A
� �

// X
aX

// pt

The restriction of ⇡ to any fiber f
�1

(t) is an isomorphism onto the corresponding
hyperplane in X and, conversely, the pullback by ⇡ of this hyperplane is the union of
f
�1

(t) and AA = A ⇥ P
1, whose intersection f

�1
(t) \ AA = A ⇥ {t} is transversal.

Similarly, the pullback ⇡
�1

Z of the support Z of M consists of the union of the
strict transform SA of Z by ⇡, i.e., the blow-up space of S along the ideal IAOS , and
(A \ Z)⇥ P

1.
We set L0 = OP1(1), and we consider the ample line bundle L ⌦ L0 on X ⇥ P

1.
We will simply denote by X,X

0 the Lefschetz operators XL,XL0 , so that X+X
0 is the

Lefschetz operator that is to be considered on X ⇥ P
1.

We consider the pullback (T⇡
⇤
M, S). Although we cannot assert, at this stage of

the theory, that it is a polarized Hodge module, we will prove that it enjoys a similar
behaviour along the divisors (f � t) when t varies in P

1. This will enable us, by
decomposing aXA

as aP1 � f , to obtain for TaXA⇤(T⇡
⇤
M, S) the same results as in the

simple case 14.5.a.
On the other hand, we consider the decomposition of aXA

as aX � ⇡. We will
show (with the induction hypothesis at hand) that the pushforward T⇡⇤(T⇡

⇤
M)

decomposes as the direct sum of its cohomology objects, and that M is a direct
summand of T⇡

(0)

⇤ (T⇡
⇤
M). It follows that

�L
k Ta

(k)

X⇤M,X
�

is a direct summand of�L
k Ta

(k)

XA⇤(T⇡
⇤
M),X+X

0�. Then, according to the previous step, the result follows
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from stability of polarizable sl2-Hodge modules by direct summand (see Lemma 5.2.8
and Exercise 2.12(1), as already used in 14.2.8).

The detailed proof will take various steps.

Step 1. We define T⇡
⇤ as the composition T◆

⇤ � Tp
⇤. This first step aims at showing

that, under a non-characteristic condition,
• the pullback T⇡

⇤
(M, S) is well-defined, is strict and satisfies 14.2.2(1)f�t and

(2)f�t, for every t 2 P
1.

The smooth pullback Tp
⇤
M is well-defined as an object of eD-Triples(X ⇥ P

1
)

(see §12.7.12). In order to define T◆
⇤
(Tp
⇤
M), we will prove strict R-specializability

of Tp
⇤
M along the graph ◆(XA). Note however that we do not know that the

pullback Tp
⇤
M satisfies Hodge properties along every germ of holomorphic function

on X ⇥ P
1. Non-characteristic properties obtained by choosing the axis of the pencil

generic enough will help us to overcome this difficulty.
More precisely, let us choose the pencil generic enough so that the axis A of the

pencil is non-characteristic with respect to eM (see Section 8.8.d). If the characteristic
variety of eM is contained in ⇤⇥Cz with ⇤ Lagrangian in T

⇤
X, there exists a complex

stratification of the support of eM by locally closed sub-manifolds Z
o

i
with analytic

closure Zi, such that ⇤ ⇢
F

i
T
⇤
Z

o

i

X. Then A is chosen to be transversal to every
stratum S

o

i
. In particular, since the axis A has codimension two, it does not intersect

any zero- and one-dimensional stratum. Moreover, for every i, the blow-up ZiA of Zi

contains (A \ Zi)⇥ P
1. This implies that ZiA = ⇡

�1
(Zi).

14.5.3. Lemma.
(1) The inclusion ◆ : XA ,! X ⇥ P

1 is strictly non-characteristic with respect
to Dp

⇤ eM.
(2) We have D⇡

⇤ eM = D⇡
⇤(0) eM.

(3) The eDXA
-module D⇡

⇤ eM is holonomic, strict and strictly R-specializable along
each divisor (f � t).

According to this lemma, the pullback functor T◆
⇤ is defined as in §12.7.22.

Proof.
(1) We first prove the non-characteristic property. We postpone the proof of strict

R-specializability after the proof of (3). Since p is a projection, the characteristic
variety of Dp

⇤ eM is contained in the union of the sets T
⇤
Si⇥P1(X ⇥ P

1
)⇥ Cz.

• Away from AA = A⇥ P
1, ◆ is the graph inclusion of a map to P

1 and, in a local
setting, we are reduced to proving the claim for the inclusion ◆ : U = U⇥{0} ,! U⇥C
and the projection p : U ⇥ C! C, where the claim is obviously true.

• Let us now consider the neighbourhood of a point of AA = A ⇥ P
1 in X ⇥ P

1.
Since A is non-characteristic with respect to each Si, so is AA with respect to each
Si ⇥ P

1 — and therefore so is XA near any point of AA, since in such a point the
space T

⇤
XA

(X ⇥ P
1
) is contained in T

⇤
AA

(X ⇥ P
1
). The non-characteristic property is

then also true along AA.



14.5. END OF THE PROOF OF THE HODGE-SAITO THEOREM 565

(2) We now prove that L
k
D⇡
⇤ eM = 0 for k 6= 0. Since XA is of codimension 1 in

X⇥P1, this amounts to the property that Dp
⇤ eM has no local section supported on XA.

Notice that Dp
⇤ eM is strict, since eOX⇥P1 is eOX -flat. Any coherent eDX⇥P1 -submodule

of Dp
⇤ eM is then also strict, and it is supported on XA if and only if the associated

DX⇥P1 -module is so. But such a coherent DX⇥P1 -module is a submodule of D⇡
⇤M,

hence is holonomic with characteristic variety contained in ⇤ ⇥ T
⇤
P1P

1. This cannot
be the characteristic variety of a holonomic DX⇥P1 -module with support on XA.

(3) Note that, as a consequence of Theorem 8.8.16, the characteristic variety of
D⇡
⇤ eM = D◆

⇤
Dp
⇤ eM is contained in the union of sets (T

⇤
SiA

XA) ⇥ Cz. Hence D⇡
⇤ eM is

holonomic.
We also claim that, for every t 2 P

1, the inclusion A ⇥ {t} ,! XA is non-charac-
teristic with respect to D⇡

⇤ eM. Indeed, by the choice of A, for every Si as above, the
intersection of T ⇤

A⇥{t}(X ⇥ P
1
) with T

⇤
Si⇥P1(X ⇥ P

1
) is contained in the zero-section

of T ⇤(X ⇥ P
1
). As we have T

⇤
A⇥{t}(X ⇥ P

1
) = (T

⇤
◆)
�1

(T
⇤
A⇥{t}XA), it follows that

T
⇤
A⇥{t}XA \ T

⇤
SiA

XA ⇢ T
⇤
XA

XA.
This implies that, for every t 2 P

1, the inclusion f
�1

(t) ,! XA is non-characteristic
for D⇡

⇤ eM near any point (xo, t) 2 A⇥ {t} since A⇥ {t} is contained in f
�1

(t).
Let us fix a point xo 2 A and let g = 0 be a local equation of the hyperplane f = t

of X near xo. We will prove strict R-specializability of D⇡
⇤ eM along (f�t) and we will

identify  f�t(T⇡
⇤
M) near (xo, t) 2 AA with  gM .

Since f is smooth, we can locally consider good V -filtrations along (f�t) in order to
compute  f�t(D⇡

⇤ eM). Arguing as in the beginning of the proof of Proposition 9.5.2,
one obtains that D⇡

⇤ eM is specializable along f = t and that there exists a good
V -filtration for which gr

V

�1(D⇡
⇤ eM) = D◆

⇤
f�1(t)

(D⇡
⇤ eM). The latter module is equal to

D◆
⇤
g�1(0)

eM, which itself is equal to  g,1
eM, as eM is strictly R-specializable along (g)

according to 14.2.2(1)g; it follows that D⇡
⇤ eM is strictly R-specializable along (f � t),

hence strictly non-characteristic along (f � t) (see Proposition 9.5.2(2)).
(1) Let us end the proof of the first statement. The strict R-specializability property

for Dp
⇤ eM amounts to strictness of D⇡

⇤ eM. A local section of D⇡
⇤ eM which is of z-torsion

is supported on A ⇥ P
1 since eM is strict. It is thus a local section of the coherent

submodule of D⇡
⇤ eM supported on the divisor (f � t), for every t. Since D⇡

⇤ eM is
strictly R-specializable along (f � t) by (3), this submodule is strict, according to
Exercise 9.21.

End of the proof of Step 1. A similar argument is used to identify the sesquilinear pair-
ings. The identification of the pre-polarizations S is straightforward, as they all both
equal to (Id, Id).

Using the identification above near the axis, and the properties assumed for (M, S)

on and out of the axis, we get all properties asserted for T⇡
⇤
(M, S) with respect to

(f � t) for any t. This concludes the first step.

Step 2. Let us set (MA, SA) = T⇡
⇤
(M, S) that we consider as a pre-polarized object

of eD-Triples(XA) since we do not yet know that it is a polarized Hodge module of
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weight w. Nevertheless, we aim at showing that, for the constant map aXA
: XA ! pt

and the object (MA, SA),

•
�
Ta

(•)
XA⇤(MA, SA),X+X

0� is a polarized sl2-Hodge structure of weight w.

The support of MA is ⇡�1Z, which is equal to the blow-up ZA of Z as we have
seen above, and the fibers of f|ZA

all have dimension n�1 (n = dimZ). According to
Step 1 and to Assumption (14.3.1)

(n�1,0), the assumptions of Proposition 14.4.2 are
satisfied by the pre-polarized triple (MA, SA), and the conclusion of this proposition
yields that

�
Tf

(•)
⇤
�
(MA, SA),X

�
is a polarized sl2-Hodge module of weight w. From

this point, the arguments developed for the simple case of §14.5.a apply with no
change to the present situation, and they yield the desired assertion.

Step 3. We now prove that

• the pushforward T⇡
(0)

⇤ (MA) decomposes as a direct sum in eD-Triples(X), one
summand being M .

Let us first check that this is a local statement on X. If such a decomposition exists
locally, then T⇡

(0)

⇤ (MA) = M �M1 locally, with M1 supported on A. We need to
prove that this decomposition is unique, in order to glue it along X (along A in fact,
since ⇡ is an isomorphism away from A). Let g be a local equation for the hyperplane
f = t near a point xo 2 A. We claim that D⇡

(0)

⇤ ( eMA) is strictly R-specializable
along (g). Indeed, we have seen in Step 1 that eMA is strictly R-specializable along
(f � t) and we have identified locally  f�t( eMA) with  g

eM (and we have a strict
non-characteristic property, so that �f�t,1( eMA) is zero). We have also used that
⇡ : {f = t}! {g = 0} is an isomorphism. By the pushforward theorem 9.8.8 or 10.5.4,
we conclude that D⇡

(0)

⇤ ( eMA) is strictly R-specializable along (g). Since eM has pure
support S, if D⇡

(0)

⇤ ( eMA) decomposes locally as eM� eM1 with eM1 supported in A, hence
in {g = 0}, we can apply Proposition 9.7.2 to conclude that there does not exist any
non-zero morphism eM ! eM1 and eM1 ! eM, and thus the local decomposition of eM
is unique. Similarly, according to Lemma 12.3.10, any sesquilinear pairing between
M and M1 is zero, hence D,D⇡

(0)

⇤ (D,D⇡
⇤
s) decomposes uniquely as s� s1.

Let us then consider the local statement near (xo, to), that we can assume to
belong to A ⇥ P

1, as ⇡ is an isomorphism outside of A. Let g be a local equation of
a hyperplane containing A.

We claim that eMA is strictly non-characteristic along both components of g � ⇡ = 0

and their intersection. The components consist of

• the germ at xo of the hyperplane f = to containing A, for which the assertion
has been proved in Step 1,

• the germ at (xo, to) of A ⇥ P
1; by considering the left square in (14.5.2), the

assertion follows from the property that eM is strictly non-characteristic along A,
since AA ! A is smooth;

• the germ at (xo, to) of A ⇥ {to}, for which we apply the same argument as the
previous one.
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We can therefore apply the results of Section 12.7.23 together with Remark
14.2.3(4). They show that (MA, SA) satisfies 14.2.2(1)g�⇡ and (2)g�⇡.

Arguing as in Proposition 14.4.2 (this is permissible due to the inductive hypothesis
(14.3.1)

(6(n�1),0), as the fibers of ⇡ : SA ! S have dimension 6 n� 1), we conclude
that

�L
k T⇡

(k)

⇤ (MA),X
0� is strict and satisfies 14.2.2(1)g and (2)g in the sense of

Lemma 14.2.29. We can cover A by finitely many open sets where the previous
argument applies.

Let us set M0 := T⇡
(0)

⇤ (MA). We note that, as X
02

= 0, M0 = P
0
0T⇡

(0)

⇤ (MA)

is strict and satisfies 14.2.2(1)g and (2)g. By applying 14.2.17(10) to the quiver
( g,1M0,�g,1M0, c, v) and arguing as in the proof of ((10)

<d
) (1)

d
), we find that M0

is S-decomposable along (g). We will identify M with a direct summand of it.
Let us set M0 = ( eM0, S0). It decomposes therefore as M1�M2, with M2 supported

on g
�1

(0) and M1 being a middle extension along (g). By Proposition 8.7.30, there is
an adjunction morphism eM! eM0. This morphism is an isomorphism away from A,
hence from g

�1
(0), and is injective, as eM has no coherent submodule supported on

g
�1

(0). Its image is thus contained in eM1.
At this point, we cannot assert that the image is equal to eM1, since the middle

extension property 9.7.2(2) of eM1 only implies the vanishing of some quotient modules,
and not all of them a priori. Nevertheless, the morphism M ! M1 between the
underlying DX -modules is an isomorphism (since no restriction occurs in 9.7.2(2)
for DX -modules). It follows then from Proposition 12.3.8 applied to any germ of
hyperplane containing A that S = S1. It also follows that the cokernel of eM! eM1 is
of z-torsion.

We thus have a monomorphism of Hermitian pairs M ! M1. It is strictly R-spe-
cializable along (g), since the associated nearby and vanishing cycle morphisms are
morphisms in pHLM(X,w � 1) or pHLM(X,w). Therefore, this morphism is strict,
according to Corollary 10.7.6. The cokernel, being strict and of z-torsion, must then
vanish, and M 'M1, as wanted.

Step 4. As X
0 vanishes on M , we conclude from Step 3 that (TaX,⇤M,N) is a direct

summand of (TaXA⇤MA,X+X
0
). From Step 2 and [Del68] we have a (non canonical)

decomposition TaXA⇤MA '
L

k Ta
(k)

XA⇤(MA)[�k]. Therefore, this decomposition can
be chosen to induce a decomposition TaX,⇤M '

L
k Ta

(k)

X,⇤(M)[�k]. In particular,
�L

k Ta
(k)

X,⇤(M),X
�

is an sl2-Hodge structure with central weight w, being a direct
summand of the sl2-Hodge structure

�L
k Ta

(k)

XA⇤(MA),X+X
0� with central weight w.

Step 5. It remains to show the polarization property. By the result of Step 2,�L
k Ta

(k)

XA⇤(MA),X + X
0� is polarized by (Id, Id), which induces the desired pre-

polarization on
�L

k Ta
(k)

X,⇤(M),X
�
. That the latter is a polarization is a particular

case of Proposition 3.4.18(2). This concludes the proof of 14.3.4(d), hence that of
the Hodge-Saito theorem 14.3.1.
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14.6. Variations of Hodge structure are Hodge modules

The first non trivial example of a polarizable Hodge module is given by a polar-
izable variation of Hodge structure. The following theorem is a partial converse of
Proposition 14.2.10.

14.6.1. Theorem. Let X be a complex manifold of dimension n and let HH be a smooth
Hodge triple of weight w, that is, a polarizable variation of pure Hodge structure
of weight w � n (see Definition 5.4.7). Then HH is a polarizable Hodge module of
weight w.

14.6.2. Example. The two basic examples H
eOX and He!X of 12.7.9 are the left and

the right Hodge module representatives of the trivial variation of Hodge structure of
weight 0. They belong to pHM(n).

From Theorem 14.6.1 and the Hodge-Saito theorem 14.3.1, we deduce:

14.6.3. Corollary. Let (H,r) be vector bundle with connection on X underlying a vari-
ation of polarizable Hodge structure of weight w. Then its direct image (in the category
of eD-modules) by a projective morphism f : X ! Y decomposes non-canonically in
D

b
(DY )

Df⇤(H,r) '
L
k

Df
(k)

⇤ (H,r),

and each Df
(k)

⇤ (H,r) underlies a polarizable Hodge module of weight w + dimX + k.

Proof of Theorem 14.6.1. This assertion is not trivially satisfied since one has to check
in an iterative way that nearby cycles and vanishing cycles along any germ of holo-
morphic function are polarizable Hodge modules. We assume that the polarization is
S = (Id, Id), i.e., we realize HH as a Hermitian pair ( eH, S).

We first note that 14.2.2(1)g and (2)g hold for (HH, (Id, Id)) if g is a local coordinate
on X. According to Remark 14.2.3(3), these properties also hold when g is a power
of a local coordinate on X. As a consequence, the assertion of the theorem holds if
dimX = 1.

If dimX > 2, the proof is by induction on dimX. We thus assume that the theorem
holds for dimX < n (n > 2), and we assume dimX = n. We wish to prove that, for
any germ of holomorphic function g on X, 14.2.2(1)g and (2)g hold for (HH, (Id, Id)).

Step 1: reduction to the case where D := (g) is a normal crossing divisor
We assume that 14.2.2(1)g and (2)g hold for (HH, (Id, Id)) if g defines a normal

crossing divisor in X. Let us then take any germ g on X centered at x 2 X. We simply
denote by X the germ (X,x) and by D the germ of the reduced divisor defined by g.
Let f : X

0 ! X be a projective modification which is an isomorphism X
0
rf
�1

(D)!
X rD such that g

0
:= g � f defines a normal crossing divisor D

0 in X
0.

The pullback (HH
0
, (Id, Id)) := Tf

⇤
(HH, (Id, Id)) is also a polarized variation of pure

Hodge structure of weight w�n (see 12.7.13) and is strict as an object of eD-Triples(X 0).
Furthermore, by our assumption, 14.2.2(1)g0 and (2)g0 hold for (HH

0
, (Id, Id)). It fol-

lows from Proposition 14.4.2 that (Tf
(0)

⇤ HH
0
, (Id, Id)) satisfies 14.2.2(1)g and (2)g,
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that it is S-decomposable along (g) as an object of eD-Triples(X) and Corollary 10.7.8
yields that it is strict.

Let us denote by (HH
0
0
, (Id, Id)) the component of (Tf

(0)

⇤ HH
0
, (Id, Id)) with pure

support X. It also satisfies 14.2.2(1)g and (2)g, is strict, and is a middle extension
along (g). It corresponds to a coherently filtered DX -module (H0

0
, F•H

0
0
). We will

show that (HH
0
0
, (Id, Id)) is isomorphic to (HH, (Id, Id)), concluding thereby the first

step.
We start with identifying the eDX -module components. Composing the adjunction

morphism eH ! Df
(0)

⇤ eH0 of Proposition 8.7.30 with the projection (coming from the
S-decomposition) Df

(0)

⇤ eH0 ! eH0
0

yields a morphism eH! eH0
0

which is an isomorphism
on the complement of D. Since eH is eOX -locally free, this morphism is injective. On the
other hand, H0

0
is a middle extension along (g) (Example 11.5.3 and Remark 11.5.5).

Therefore, H! H0
0

is an isomorphism (see Exercise 9.35(1)).
What about the Hodge filtrations? We know that the morphism FpH! FpH

0
0
=:

F
0
p
H is injective and is an isomorphism on XrD, so F

0
p
H/FpH is supported in D. On

the other hand, H/FpH is OX -locally free, being a successive extension of OX -locally
free modules grF

q
H. Since we have an inclusion F

0
p
H/FpH ,! H/FpH, it follows that

F
0
p
H/FpH = 0, that is, F 0

p
H = FpH, as desired.

What about the sesquilinear pairing S on H and S0 on H0
0
' H? Both take values

in C1
X

(Lemma 12.3.6) and coincide on X rD, hence they coincide.

Step 2: reduction to the case where (g) is a reduced normal crossing divisor. According
to Step 1, we can assume that g is a monomial xr1

1
· · ·xr`

`
in a local coordinate system

(x1, . . . , xn). We still denote by X the corresponding local coordinate chart. There
exists a multi-cyclic ramified covering f : X

0 ! X such that h := g � f is a power of
a product of local coordinates (x

0
1
· · ·x0

`
)
r. Set h

0
= x

0
1
· · ·x0

`
and let us assume that

14.2.2(1)h0 and (2)h0 hold for (HH
0
, (Id, Id)) := Tf

⇤
(HH, (Id, Id)). Then 14.2.2(1)h

and (2)h hold for (HH
0
, (Id, Id))), according to Remark 14.2.3(3). We wish to prove

that 14.2.2(1)g and (2)g hold for (HH, (Id, Id)). We argue in a way similar to that of
Step 1 and take the same notation. In particular, (HH 00, (Id, Id)) is the component of
Tf

(0)

⇤ (HH
0
, (Id, Id))) with pure support X, and 14.2.2(1)g and (2)g hold for it.

According to 12.7.31, (HH, (Id, Id)) is a direct summand of (HH 00, (Id, Id)). Since
14.2.2(1)g and (2)g are stable by direct summand in eD-Triples(X), as follows from
14.2.8, they hold for (HH, (Id, Id)).

Step 3: case where (g) is a reduced normal crossing divisor. Assume now that g is a
product of distinct coordinates of a local coordinate system. We are thus in the
setting of Example 12.7.24. We then know that HH is strictly R-specializable and a
middle extension along (g), so we only need to check 14.2.2(2a)g, according to Remark
14.2.3(4).

We are therefore led to showing that the right-hand side in (12.7.24 ⇤) is a polarized
Hodge module of weight w+`�1 (` > 0), where each ◆I occurring there is the inclusion
of a codimension (` + 1) submanifold in X. By induction on dimX, each variation
T◆
⇤
I
(HH, S) for J = I

c 2 J`+1 is a polarized Hodge module of weight w�(`+1), since its
support has dimension n� (`+1). Hence, by Kashiwara’s equivalence of Proposition
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14.2.9, (T◆I⇤(T◆⇤IHH), (Id, Id)) is a polarized Hodge module of weight w� (`+1), and
(T◆I⇤(T◆

⇤
IHH), (Id, Id))(�`) is a polarized Hodge module of weight w + `� 1.

14.7. Some properties of the category of W -filtered Hodge modules

In this section, we consider the category WHM(X) of W -filtered Hodge modules
introduced in §14.2.12. In Sections 14.7.a and 14.7.b, we prove regularity and strict
holonomicity of the holonomic eDX -modules underlying an object of WHM(X). In
particular, these properties hold true for polarizable Hodge modules. In Section 14.7.f,
relying on the Hodge-Saito theorem 14.3.1, we partially extend it in the sense that
we prove stability of WHM by projective pushforward and we analyze the behavior of
nearby and vanishing cycles by such a pushforward.

14.7.a. Regularity

14.7.1. Theorem. Let (M,W•M) be an object of WHM(X). Then the underlying
DX-modules M0,M00 of M are regular holonomic.

Proof. According to Proposition 10.7.13 we can use Definition 10.7.12 for the notion
of regularity. Furthermore, it is enough to prove the theorem for each graded object
gr

W

`
M , which is pure polarizable. We argue by induction on the dimension of the

support. Since the definition of pHM(X) and that of regularity are inductive, we are
left with checking the property 10.7.12(1), which follows from Corollary 10.7.10, as
by definition eM0, eM00 are strict.

14.7.b. Strict holonomicity. We refer to Section 8.8.g for the notion of strict
holonomicity and to Proposition 8.8.38 for various consequences.

14.7.2. Theorem. Let (M,W•M) be an object of WHM(X). Then the underlying
eDX-modules eM0, eM00 are strictly holonomic.

Proof. As for Theorem 14.7.1, we can assume that M is pure polarizable. Then,
in view of the inductive definition of pHM(X), the result is a direct consequence of
Theorem 10.7.14, the case where the support of M is punctual being clear.

14.7.c. Nondegeneracy. Let (M,W•M) be an object of WHM(X). Each compo-
nent eM0, eM00 is strictly holonomic by Theorem 14.7.2, and the underlying DX -modules
are regular holonomic by Theorem 14.7.1. In order to apply the duality functor of
Section 13.4.c, we only need to check that the underlying object of D-Triples(X)

is nondegenerate (see Definition 13.4.3). That the dual object is also an object of
WHM(X) is a stronger property that will be addressed in Chapter 16.

14.7.3. Lemma. The underlying triple T = (M0,M00, s) of an object M of WHM(X) is
nondegenerate.
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Proof. By induction on the length of the filtration W•M , we only need to consider
the case of an object of pHM(X,w) having pure support on a closed irreducible sub-
variety Z of X. Since the question is local, we can assume that there exists a holo-
morphic function g : X ! C which is not identically zero on Z, such that M is a
middle extension along H and its restriction to X r g

�1
(0) is the pushforward by

◆ : Z r g
�1

(0) ,! X r g
�1

(0) of a polarizable variation of Hodge structure of some
weight w. It is immediate to check that a polarizable variation of Hodge structure
is nondegenerate when considered as a triple, and Proposition 13.4.5 implies that its
pushforward by ◆ is nondegenerate. Then Corollary 13.4.4 yields the conclusion.

14.7.d. Localization and dual localization

14.7.4. Proposition. Let H be a smooth hypersurface of X. If M is an object of
pHM(X), then both M [⇤H] and M [!H] underlie objects of WHM(X).

Proof. The assertion is local, so we can assume that X = H⇥�t. We can also assume
that M has strict support a closed irreducible analytic subset Z ⇢ X. If Z ⇢ H, the
assertion is trivial. Since M is a minimal extension along H, we have exact sequences
in eD-Triples(X):

0 �!M �!M [⇤H] �! Coker vart �! 0

0 �! Ker cant �!M [!H] �!M �! 0,

and we have

Coker vart ' Coker[N :  tM �!  tM(�1)]
Ker cant ' Ker[N :  tM �!  tM(�1)].

We can then apply Lemma 3.3.7.

14.7.e. Non-characteristic restriction

14.7.5. Proposition. Let (M,W•M) be an object of WHM(X) and let Y be a closed
submanifold of X which is non-characteristic with respect to each eDX-module compo-
nent eM of M . Then it is strictly non-characteristic with respect to each eDX-module
component of grW

`
M for every ` 2 Z, and the restriction (T◆

⇤
Y
M, T◆

⇤
Y
W•M) as defined

by 12.7.22, is an object of WHM(Y ).

Proof. The question is local on X. We argue by induction on the codimension of Y .
If H is a smooth hypersurface containing Y , then H is non-characteristic with respect
to each eDX -module component eM of M , hence to each gr

W

`
eM. As gr

W

`
eM is strictly

R-specializable along H, it follows that H is strictly non-characteristic with respect
to each gr

W

`
eM (see Proposition 9.5.2(2)). Furthermore, T◆

⇤
H
gr

W

`
M = T◆

⇤(0)
H

gr
W

`
M .

Setting H = {t = 0}, we have T◆H⇤(T◆
⇤
H
gr

W

`
M) =  t,1gr

W

`
M , which is an object

of pHM(H), so by induction Y is strictly non-characteristic with respect to each
eDX -module component of T◆

⇤(0)
H

gr
W

`
M . By Remark 8.8.19(2), Y is strictly non-char-

acteristic with respect to each W`
eM. Hence, T◆

⇤
Y
W`M has cohomology in degree
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zero at most for each `, so that (T◆
⇤
Y
W`M)` defines a filtration of T◆

⇤
Y
(M,W•M) in

WHM(X).

14.7.f. Stability by projective pushforward

14.7.6. Theorem. Let f : X ! Y be a projective morphism and let M be an object of
WHM(X). Then, for each k 2 Z, the pushforward Tf

(k)

⇤ M , together with the shifted
image filtration W [k]•(Tf

(k)

⇤ M), is an object of WHM(X). Furthermore, the spectral
sequence attached to W• degenerates at E2.

Proof. The term E
�`,k+`

1
of the spectral sequence of Corollary 12.7.37 is an object of

pHM(Y, k + `), according to the Hodge-Saito theorem 14.3.1, and the differential d1
is a morphism in pHM(Y, k + `), so that E

�`,k+`

2
is also an object of pHM(Y, k + `),

due to the abelianity of this category (Theorem 14.2.17(4)). Then, for r > 2, dr = 0

since the weight of E�`+r,k+`�r+1

r
is k + `� r + 1 < k + ` (Theorem 14.2.17(2)).

14.7.g. Semi-simplicity

Any polarizable Hodge module of weight w is semi-simple in the category
pHM(X,w) (Corollary 14.2.20). If X is a projective complex manifold, semi-
simplicity also holds for the underlying holonomic eDX -module, that is, the analogue
of Theorem 4.3.3 holds for polarizable Hodge modules.

14.7.7. Theorem (Semi-simplicity). Assume X is projective. Let M be a polarized Hodge
module of weight w (so that eM0 ' eM00 by means of a polarization). Then the under-
lying DX-module M is semi-simple.

Proof. By the S-decomposition theorem (Corollary 14.2.20), we can assume that M

has pure support an irreducible variety Z ⇢ X. If dimZ = 0, the result is clear
by Definition 14.2.2(0). If dimZ > 1, the restriction of (M, S) to a suitable smooth
Zariski dense open subset Zo of Z is a polarized variation of Hodge structure of weight
w � dimZ (Proposition 14.2.10).

We claim that M has no submodule and no quotient module supported on ZrZ
o.

Indeed, let g be any local holomorphic function at x 2 Z r Z
o. As eM is a middle

extension along (g), so is M (Exercise 9.35(4)), so that M does not have any submodule
supported on g

�1
(0). As g is arbitrary, this proves the claim.

Since M is regular holonomic (Theorem 14.7.1), we can apply the criterion of
Corollary 13.2.11, and we are led with proving that the underlying local system on Z

o

is semi-simple.
• If dimZ

o
= 1, the underlying local system is semi-simple (Corollary 6.4.2).

• If dimZ
o > 2, we fix a projective embedding of Z. The Zariski-Lefschetz the-

orem [HL85, Th. 1.1.3(ii)] implies that, for a generic hyperplane H, the inclusion
H \ Z

o
,! Z

o induces a surjective morphism of fundamental groups. By induction
and according to Remark 4.3.2(2), we conclude that the local system underlying M|Zo

is semi-simple.
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When both X and Y are projective, we can combine Theorems 14.3.3, 14.3.1 and
14.7.7 to obtain:

14.7.8. Corollary. Let f : X ! Y be a morphism between projective complex man-
ifolds and let M be a semi-simple holonomic DX-module underlying a polarizable
Hodge module. Then Df⇤M decomposes non-canonically as

L
k Df

(k)

⇤ M[�k], and each
Df

(k)

⇤ M is itself a semi-simple holonomic DY -module.

14.8. Exercises

Exercise 14.1. Show that if the conditions in Definition 14.2.2 hold for a function g,
they hold for g

r for any r 2 N
⇤. [Hint : Use the example of Section 9.9.a.] Conclude

that, if n = 1, Definition 14.2.2 reduces to Definition 7.4.7.

14.9. Comments

The relation between Hodge theory and the theory of nearby or vanishing cycles
in dimension bigger than one starts with the work of Steenbrink [Ste76, Ste77].
It concerns 1-parameter families of projective varieties, regarded as proper functions
from a complex manifold to a disc. A canonical Hodge structure is constructed on the
cohomology of the nearby fiber of a singular fiber of the family by means of replacing
the special fiber with a divisor with normal crossings and by computing the nearby or
vanishing cohomology in terms of a logarithmic de Rham complex, in order to apply
Deligne’s method in [Del71b]. This gives a geometric construction of Schmid’s limit
mixed Hodge structure in the case of a variation of geometric origin. The need of
passing from the assumption of unipotent monodromy, as used in the work of Schmid
[Sch73] to the assumption of quasi-unipotent monodromy is justified by this geomet-
ric setting. This leads Steenbrink [Ste77] to developing the notion of logarithmic
de Rham complex in the setting of V-manifolds. Steenbrink also obtains, as a conse-
quence of this construction, the local invariant cycle theorem and the Clemens-Schmid
exact sequence. We can regard this work as the localization of Hodge theory in the
analytic neighbourhood of a projective variety.

The work of Varchenko [Var82] and others on asymptotic Hodge theory has loca-
lized even more Hodge theory. This work is concerned with an isolated singularity
of a germ of holomorphic function and it constructs a Hodge-Lefschetz structure on
the space of vanishing cycles of this function, by taking advantage that the vanishing
cycles are supported at the isolated singularity, which is trivially a projective vari-
ety. The construction of Varchenko has been later analyzed in terms of eD-modules
by Pham [Pha83], Saito [Sai83b, Sai83a, Sai84, Sai85] and Scherk-Steenbrink
[SS85]. It is then natural to consider the cohomology of the vanishing cycle sheaf of
a holomorphic function on a complex manifold whose critical locus is projective, but
possibly not the special fiber of the function, and to ask for a mixed Hodge structure
on it.

The theory of polarizable Hodge modules, as developed by Saito in [Sai88], em-
phasizes the local aspect of Hodge theory, by constructing a category defined by
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local properties in a way similar, but much more complicated, to the definition of
a the category of variations of Hodge structure. It can then answer the question
above. This idea has proved very efficient, eventually allowing to use the formalism
of Grothendieck’s six operations in Hodge theory. Many standard cohomological re-
sults, like the Clemens-Schmid exact sequence and the local invariant cycle theorem,
can be read in this functorial way. The proofs given in this chapter follow those of
[Sai88, Sai90] by adapting them to the setting of triples.

The definition of complex Hodge modules as developed here, not relying on a
Q-structure and on the notion of a perverse sheaf, is inspired by the extension of
the notion of polarizable Hodge module to twistor theory, as envisioned by Simp-
son [Sim97], and achieved by Sabbah [Sab05] and Mochizuki [Moc07, Moc15],
although the way the sesquilinear pairing is used on both theories is not exactly the
same. We refer to the comments of Chapter 12 for the idea of using sesquilinear
pairings in the framework of holonomic eD-modules.



CHAPTER 15

eD-MODULES OF NORMAL CROSSING TYPE
PART 1: DISTRIBUTIVE FILTRATIONS AND STRICTNESS

Summary. This chapter, although somewhat technical, is nevertheless essential
to understand the behaviour of Hodge modules when the singularities form a nor-
mal crossing divisor. It analyzes the compatibility properties, on a given R-spe-
cializable D-module, between the F -filtration and the V -filtrations attached to
various functions, when these functions form part of a coordinate system. The re-
sults of this chapter will therefore be of a local nature. In this part, we introduce
the general notion of distributivity or compatibilty of a family of filtrations, and
we relate it to flatness properties of the associated multi-Rees modules. These
will be our main tools for Parts 2 and 3.

We recall:

10.2.1. Convention. We work in the abelian category A of sheaves of vector spaces
(over some fixed field, that will be the field of complex numbers for our purposes) on
some topological space T . In such a category, all filtered direct limits exist and are
exact. Given an object A in this category, we only consider increasing filtrations F•A

that are indexed by Z and satisfy lim�!k
FkA = A. We write a filtered object in A as

(A,F ), where F = (FkA)k2Z.

15.1. Distributive filtrations

The results of this section being well-known, complete proofs will not be given and
we refer to Sections 1.6 and 1.7 of [PP05] and Section 1 of [Kas85] (for the case of
finite filtrations) for details.

Suppose that A is an object of our category A, and A1, . . . , An ✓ A are finitely
many subobjects. When n = 3, the inclusion

(A1 \A2) + (A1 \A3) ⇢ A1 \ (A2 +A3)

is strict in general. For example,
• assume that the three non-zero objects A1, A2, A3 behave like three lines in C

2

having zero pairwise intersections, i.e., Ai \Aj = 0 for all i 6= j, and A = Ai +Aj for
all i 6= j; then the above inclusion is strict;

• on the other hand, if A2 ⇢ A1 or A3 ⇢ A1, this inclusion is an equality.
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When this inclusion is an equality, we say that A1, A2, A3 form a distributive family
of objects of A, i.e., the equivalent equalities, or any other obtained by permuting
A1, A2, A3, are satisfied (see [PP05, Lem. 6.1]):

(15.1.1)
(A1 \A2) + (A1 \A3) = A1 \ (A2 +A3),

(A1 +A2) \ (A1 +A3) = A1 + (A2 \A3).

We will interpret the distributivity property in terms of exact sequence. For one
subobject A1 of A, we have a short exact sequence of the form

A1 �! A �! ⇤

where ⇤ is of course just an abbreviation for the quotient A/A1. For two subobjects
A1, A2, we similarly have a commutative diagram of the form

(15.1.2)

⇤ // ⇤ // ⇤

A2
//

OO

A //

OO

⇤

OO

⇤ //

OO

A1
//

OO

⇤

OO

in which all rows and all columns are short exact sequences. (For example, the entry
in the upper-right corner is A/(A1 +A2), the entry in the lower-left corner A1 \A2.)
For three subobjects A1, A2, A3, such a diagram no longer exists in general; if it does
exist, one says that A1, A2, A3 define a compatible family of objects of A.

15.1.3. Lemma. A family of three subobjects of A is distributive if and only if it is
compatible.

Proof. We consider a cubical diagram having vertices in {�1, 0, 1}3 ⇢ R
3, and we

identify each vertex with a subquotient object of A such that

A = (0, 0, 0), A1 = (�1, 0, 0), A2 = (0,�1, 0), A3 = (0, 0,�1).

We assume that all rows and columns are exact (compatibility). One first easily
checks, as in the case of two objects, that the vertices with i entries �1 and 3 � i

entries 0 (i = 1, 2, 3) are the intersections of the corresponding vertices with only one
entry �1 and two entries 0. We then find (�1,�1,�1) = A1 \ A2 \ A3 and, since
(A2 \ A3)/(A1 \ A2 \ A3) = (A1 + (A2 \ A3))/A1 the exact sequence (1,�1,�1) !
(1, 0,�1)! (1, 1,�1) reads

(A1 + (A2 \A3))/A1 �! (A1 +A3)/A1 �! (A1 +A3)/(A1 + (A2 \A3)),

while the exact sequence (1,�1, 0)! (1, 0, 0)! (1, 1, 0) reads

(A1 +A2)/A1 �! A/A1 �! A/(A1 +A2).

The morphism (1, 1,�1)! (1, 1, 0), that is,

(A1 +A3)/(A1 + (A2 \A3)) �! A/(A1 +A2)

should be injective, that is, the second equality in (15.1.1) should hold.
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Conversely, assuming distributivity, we obtain similarly the exactness of the rows
and the columns of the cubical diagram.

When n > 4, the definition uses the case n = 3 for many 3-terms subfamilies
obtained from A1, . . . , An.

15.1.4. Definition (Distributivity). A family A1, . . . , An of subobjects of A is distributive
if for any partition {1, . . . , n} = I1 t I2 t I3, the subobjects

A
0
1
=

X

i2I1

Ai, A
0
2
=

X

i2I2

Ai, A
0
3
=

T
i2I3

Ai

form a distributive family (with the convention that the sum over the empty set is
zero and the intersection over the empty set is A), i.e.,
⇣
(
P

i2I1 Ai) \ (
P

i2I2 Ai)

⌘
+

⇣
(
P

i2I1 Ai) \ (
T

i2I3 Ai)

⌘

= (
P

i2I1 Ai) \
⇣
(
P

i2I2 Ai) + (
T

i2I3 Ai)

⌘
,

equivalently,
⇣
(
P

i2I1 Ai) + (
P

i2I2 Ai)

⌘
\
⇣
(
P

i2I1 Ai) + (
T

i2I3 Ai)

⌘

= (
P

i2I1 Ai) +

⇣
(
P

i2I2 Ai) \ (
T

i2I3 Ai)

⌘
.

It is equivalent to asking, for any partition (I1, I2, I3) of {1, . . . , n}, distributivity of
the three objects

A
00
1
=

X

i2I1

Ai, A
00
2
=

T
i2I2

Ai, A
00
3
=

T
i2I3

Ai.

Let us state a few main properties.

15.1.5. Proposition (see [PP05, Cor. 6.4 & 6.5]).
(1) A family A1, . . . , An is distributive if and only if any subfamily containing no

pair Ai, Aj with Ai ⇢ Aj is distributive.
(2) A family A0, . . . , An is distributive if and only if

(a) the induced families on A0 and A/A0 are distributive, equivalently, the
families A0 \A1, . . . , A0 \An and A0 +A1, . . . , A0 +An are distributive, and

(b) any three objects A0, Ai, Aj are distributive.
(3) A family A0, . . . , An is distributive if and only if

• the families A1, . . . , An and A0 \ A1, . . . , A0 \ An are distributive and the
following identity holds for any subset I ⇢ {1, . . . , n}:

A0 \
⇣X

i2I
Ai

⌘
=

X

i2I
(A0 \Ai),

• or the similar condition obtained by exchanging everywhere + and \.

15.1.6. Example. Let A1, . . . , An be a distributive family and let I1, . . . , Ir be subsets
of {1, . . . , n}. Then the following families are distributive:
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• A1, . . . , An, (
T

k2I1 Ak), . . . , (
T

k2Ir Ak);
• (A1 \

T
k2Ij Ak), . . . , (An \

T
k2Ij Ak) for any j 2 {1, . . . , r};

•
�P

j
(Ai \

T
k2Ij Ak)

�
i=1,...,n

=
�
Ai \

P
j
(
T

k2Ij Ak)
�
i=1,...,n

.

Let us now consider increasing filtrations F
(1)

• A, . . . , F
(n)

• A of A.

15.1.7. Definition (Distributive filtrations). Given finitely many increasing filtrations
F

(1)

• A, . . . , F
(n)

• A of an object A in the abelian category, we call them distributive if

F
(1)

k1
A, . . . , F

(n)

kn
A ✓ A

are distributive sub-objects for every choice of k1, . . . , kn 2 Z.

15.1.8. Remark. Assume that F
(1)

• A, . . . , F
(n)

• A is a distributive family of filtrations
of A.

(1) As a consequence of Definition 15.1.4, any sub-family of filtrations of a distribu-
tive family remains distributive. Moreover, any finite family of sub-objects consisting
of terms of the filtrations F

(1)

• A, . . . , F
(n)

• A is distributive, and Proposition 15.1.5(2)
implies that the induced filtrations F

(1)

• , . . . , F
n�1
• on each gr

F
(n)

`
A are distributive.

(2) Let B = F
(1)

j1
A\ · · ·\F (n)

jn
A for some j1, . . . , jn. Then the family of filtrations

F
(1)

• B, . . . , F
(n)

• B naturally induced on B is distributive, as follows from the distribu-
tivity of the family of 2n sub-objects F (1)

k1
A, . . . , F

(n)

kn
A,F

(1)

j1
A, . . . , F

(n)

jn
A and that of

the induced family on B.
(3) One can interpret distributivity of filtrations as distributivity of subobjects as

in Definition 15.1.4. For that purpose, we consider the ring eR = C[z
±1

1
, . . . , z

±1

n
] of

Laurent polynomials in n variables. Recall (see Convention 10.2.1) that A is a sheaf
of C-vector spaces on some topological space T . We consider the object eA = eR⌦C A.
To each filtration F

(i)

• A we associate the subobject of eA:

eAi = C[z
±1

1
, . . . ,

d
z
±1

i
, . . . , z

±1

n
]⌦C

⇣L
k2Z

F
(i)

k
A · zk

i

⌘
.

Then the distributivity of F (1)

• A, . . . , F
(n)

• A is equivalent to that of eA1, . . . ,
eAn.

15.2. Distributivity and flatness

15.2.a. Reformulation of distributivity in terms of flatness. Let A be an
object with n filtrations F

(1)

• A, . . . , F
(n)

• A. As usual, we can pass from filtered to
graded objects by the Rees construction. Let R = C[z1, . . . , zn] denote the polynomial
ring in n variables, with the Z

n-grading that gives zi the weight 11 = (0, . . . , 1, . . . , 0).
For k 2 Z

n, we define

Mk = Mk1,...,kn
= F

(1)

k1
A \ · · · \ F

(n)

kn
A ✓ A.

We then obtain a Z
n-graded sheaf of modules M over the constant sheaf of rings RT

on the topological space T (recall Convention 10.2.1) by taking the direct sum

RF (1),...,F (n)A := M =
L

k2Zn

Mk,
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with the obvious Z
n-grading: for m 2Mk, the product zim is simply the image of m

under the inclusion Mk ✓ Mk+11
. From now on, we use the term “graded” to mean

“Zn-graded”.

15.2.1. Dictionary. There is a dictionary between operations on RT -modules and oper-
ations on filtrations. Let us keep the notation of Remark 15.1.8(3) (see also Exer-
cise 15.1).

(a) We consider the graded components Mk as forming a directed system, indexed
by k 2 Z

n, with morphisms given by multiplication by z1, . . . , zn. Since we are
working in an abelian category in which all filtered direct limits exist and are exact,
we can define

A = lim�!
k2Zn

Mk.

Then M and A are related by
eR⌦R M ' eA := eR⌦C A and A 'M/(z1 � 1, . . . , zn � 1)M.

(b) Let I be a subset of {1, . . . , n} and let I
c denote its complementary subset.

If we hold, for each i 2 I, the i-th index fixed, the resulting direct limit determines
a Z

I -graded object M
(I), which is a Z

I -graded module over the ring RI = C[zI ] =

R/((zi � 1)i2Ic)R:

M
(I)

=
L

kI2ZI

M
(I)

kI
, with M

(I)

kI
= lim�!

kIc2ZIc

Mk.

We then have
M

(I) ' RI ⌦R M.

Let eRI ⇢ eR be the subring of Laurent polynomials whose zi-degree is non-negative
for i 2 I. Then M and M

(I) are also related by
fM (I)

:= eRI ⌦R M ' C[z
±1

Ic ]⌦C M
(I)

.

15.2.2. Theorem. A graded RT -module comes from an object with n distributive filtra-
tions if and only if it is flat over RT .

We note that both the distributivity property and the flatness property for sheaves
of C-vector spaces or of R-modules can be checked stalkwise on the topological
space T , so that the statement concerns multi-filtered C-vector spaces and R-modules.
This remark will be used implicitly in the following.

Before giving the proof, we recall a few general facts about flatness. For any
commutative ring R, flatness of an R-module M is equivalent to the condition that

Tor
R

1
(M,R/I) = 0

for every finitely generated ideal I ✓ R; when R is Noetherian, it is enough to check
this for all prime ideals P ✓ R. In our setting, the ring R is graded, and by a similar
argument as in the ungraded case, flatness is equivalent to

Tor
R

1
(M,R/P ) = 0
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for every graded prime ideal P ✓ R. Of course, there are only finitely many graded
prime ideals in R = C[z1, . . . , zn], namely those that are generated by the 2

n possible
subsets of the set {z1, . . . , zn}. Moreover, the quotient R/P always has a canonical
free resolution given by the Koszul complex.

We conclude:

15.2.3. Proposition. A graded R-module is R-flat if and only if, for any subset J of
{1, . . . , n}, the Koszul complex K(M ; (zj)j2J) is exact in negative degrees, i.e., is a
resolution of M/

P
j2J zjM .

15.2.4. Example. For n = 1, a graded R-module M is flat if and only if z1 : M ! M

is injective. For n = 2, a graded R-module M is flat if and only if z1 : M ! M and
z2 : M !M are both injective and the Koszul complex K(M ; z1, z2):

M
(�z2, z1)��������!M �M

z1• + z2•
��������!M

is exact in the middle. (Here we are ignoring the grading in the notation.) The Koszul
complex is just the simple complex associated to the double complex

M
z1
//

z2

✏✏

M

z2

✏✏

M
z1
// M

with Deligne’s sign conventions, and the right-most term is in degree zero. The
exactness of the Koszul complex in the middle can be read on each graded term as
Mk1�1,k2

\Mk1,k2�1 = Mk1�1,k2�1. In this way, it is clear that two filtrations give
rise to a flat R-module, illustrating thereby Theorem 15.2.2.

Exactness of the Koszul complex is closely related to the concept of regular se-
quences. Recall that z1, . . . , zn form a regular sequence on M if multiplication by z1

is injective on M , multiplication by z2 is injective on M/z1M , multiplication by z3 is
injective on M/(z1, z2)M , and so on.

15.2.5. Corollary (A flatness criterion). A graded R-module M is flat over R if and only
if any permutation of z1, . . . , zn is a regular sequence on M .

Proof. This is one of the basic properties of the Koszul complex. The point is that
multiplication by z1 is injective on M if and only if the Koszul complex

M
z1���!M

is a resolution of M/z1M . If this is the case, multiplication by z2 is injective on
M/z1M if and only if the Koszul complex

M
(�z2, z1)��������!M �M

z1• + z2•
��������!M

is a resolution of M/(z1, z2)M , etc. In general, the equivalence is obtained in Exercise
15.2 together with the flatness criterion of Proposition 15.2.3.
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15.2.6. Proposition (Another flatness criterion). Let M be an R-graded module. Assu-
me that

(1) z1 : M !M is injective and M/z1M is flat over R/z1R,
(2) Mk = 0 if k1 < 0.

Then M is R-flat.

Proof. We apply the criterion of Proposition 15.2.3. Let J be a subset of {2, . . . , n}
and set I = {1} [ J . On the one hand, since z1 is injective on M , we have an exact
sequence of complexes

0 �! K(M ; (zj)j2J)
z1���! K(M ; (zj)j2J) �! K(M/z1M ; (zj)j2J) �! 0.

On the other hand, by definition, K(M ; (zi)i2I) is the cone of the morphism
K(M ; (zj)j2J)

z1�! K(M ; (zj)j2J). We deduce a quasi-isomorphism K(M ; (zi)i2I) '
K(M/z1M ; (zj)j2J), and thus the cohomology of K(M ; (zi)i2I) is zero in negative
degrees.

Let us now consider KJ := K(M ; (zj)j2J) with differential denoted by � and show
that its cohomology vanishes in negative degrees. The long exact sequence attached to
the short exact sequence above shows that z1 : H

k
(KJ)! H

k
(Kj) is an isomorphism

for k < 0. Let m 2 K
k

J
be such that �m = 0. Modulo a coboundary �m00 it is thus

divisible by z1, that is, m = z1m
0
+ �m

00, and �m
0
= 0. Considering the graded

components, this reads mk = z1m
0
k�11

+ (�m
00
)k. Continuing this way, we write

mk = z
N

1
µ
0
k�N11

+(�µ
00
)k for N large enough so that all nonzero graded components

mk of m satisfy k1 < N . The second assumption implies that µ0k�N11
= 0 for each k,

and thus the class of m in H
k
(KJ) is zero, as desired.

Under certain conditions on the graded R-module M , one can deduce flatness from
the vanishing of the single R-module

Tor
R

1

�
M,R/(z1, . . . , zn)R

�
.

In the case of local rings, this kind of result is usually called the “local criterion for
flatness”. The simplest example is when M is finitely generated as an R-module,
which is to say that all the filtrations are bounded from below.

15.2.7. Proposition. If M is a finitely generated graded R-module, then the vanishing
of TorR

1

�
M,R/(z1, . . . , zn)R

�
implies that M is flat.

Proof. This is a general result in commutative algebra. To show what is going on, let
us give a direct proof in the case n = 2. By assumption, the Koszul complex

M
(�z2, z1)��������!M �M

z1• + z2•
��������!M

is exact in the middle. It follows quite easily that multiplication by z1 is injective.
Indeed, if there is an element m 2 Mi,j with z1m = 0, then the pair (m, 0) is in the
kernel of the differential (z1, z2), and therefore m = �z2m0 and 0 = z1m

0 for some
m
0 2 Mi,j�1. Continuing in this way, we eventually arrive at the conclusion that

m = 0, because Mi,j = 0 for j ⌧ 0. For the same reason, multiplication by z2 is
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injective; but now we have checked the condition in the definition of flatness for all
graded prime ideals in R.

Proof of Theorem 15.2.2. Let us first show that if F
(1)

• A, . . . , F
(n)

• A are distributive
filtrations, then the associated Rees module M is flat over R. Because of the inherent
symmetry, it is enough to prove that zn, . . . , z1 form a regular sequence on M .
Because M comes from a filtered object, multiplication by zn is injective and

M/znM =
L

k2Zn

Mk1,...,kn
/Mk1,...,kn�1,kn�1.

This is now a Z
n-graded module over the polynomial ring C[z1, . . . , zn�1]. We remar-

ked, after Definition 15.1.7, that for every ` 2 Z, the n� 1 induced filtrations on
A` = gr

F
(n)

`
A = F

(n)

`
A/F

(n)

`�1A

are still distributive, and by definition,
F

(1)

k1
A` \ · · · \ F

n�1
kn�1

A` 'Mk1,··· ,kn�1,`
/Mk1,...,kn�1,`�1.

By induction, this implies that zn�1, . . . , z1 form a regular sequence on M/znM ,
which is what we wanted to show.

For the converse, suppose that M is now an arbitrary graded R-module that is flat
over R. We need to construct from M an object A with n distributive filtrations.
We take A = lim�!k2Zn

Mk as defined by the dictionary 15.2.1(a). Setting I = {i} in
15.2.1(b), we obtain a graded Ri-module M

(i) which is Ri-flat (flatness is preserved
by base change), hence of the form RF (i)A for some filtration F

(i)

• A. We will also use
the flatness of M to prove that these n filtrations are distributive, and that

(15.2.8) Mk1,...,kn
= F

(1)

k1
A \ · · · \ F

(n)

kn
A,

as subobjects of A. We will argue by induction on n, by checking the criterion of
Proposition 15.1.5(2) for the objects eAi (notation of Remark 15.1.8(3)). The case
n = 1 is clear, and the case n = 2 is reduced to checking (15.2.8): the diagram of
exact sequences (15.1.2) exists for the subobjects eR1,

eR2 of eR with lower left corner
equal to R = eR1 \ eR2; all sequences remain exact after tensoring by M over R, and
the lower left corner is M = fM (1) \ fM (2), as desired. We now assume n > 3.

Let us start with 15.1.5(2b). If n = 3, the family ( eRi)i=1,2,3 of subobjects of eR is
clearly distributive. Since M is R-flat, each eRi ⌦R M is a subobject of eR⌦R M = eA
and the criterion of Lemma 15.1.3 implies that the family ( eRi ⌦R M) of subobjects
of eA is also distributive. As seen in 15.2.1(b) and since M

(i)
= RF (i)A, this is nothing

but the family ( eAi), so that 15.1.5(2b) holds if n = 3. If n > 4, we apply the previous
result to M

(I) for any subset of three elements in {1, . . . , n}. This is possible since
M

(I) is RI -flat, as flatness is preserved by base change. Therefore, 15.1.5(2b) holds
for all n > 3.

For 15.1.5(2a), we set z0 = (z2, . . . , zn). We regard R
0
:= C[z

0
] as a subalgebra of R

and M as an R
0-module, that we write as the direct sum of R0-modules

L
k12Z M

0
k1

.
As such, it is still flat, and therefore each M

0
k1

=
L

k02Zn�1 Mk1,k0 is also R
0-flat. The

limit lim�!k02Zn�1
Mk1,k0 is M (1)

k1
that we have identified with F

(1)

k1
A. For i > 2, we write
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(M
0
k1
)
(i)

= RF (i)(F
(1)

k1
A). By induction, the family (F

(i)

• (F
(1)

k1
A))i>2 is distributive

and for each k
0 2 Z

n�1, we have

Mk1,k0 = F
(2)

k2
(F

(1)

k1
A) \ · · · \ F

(n)

kn
(F

(1)

k1
A).

On the other hand, we have for each ki 2 Z the equality (M
0
k1
)
(i)

ki
= M

{1,i}
k1,ki

and, by
the case n = 2 treated above, we conclude that F

(i)

ki
(F

(1)

k1
A) = (F

(i)

ki
A) \ (F

(1)

k1
A),

so that the first part of 15.1.5(2a) holds, as well as (15.2.8).
The second part of 15.1.5(2a) amounts to asking that, for any k1 2 Z, the induced

filtrations F
(i)

• (A/F
(1)

k1
A) (i > 2) form a distributive family. We set z

0
= (z2, . . . , zn)

and R
0
= C[z

0
] that we regard as R/z1R. Since M is R-flat, R

0 ⌦R M is R
0-flat.

We write
R
0 ⌦R M =

L
k12Z

L
k02Zn�1

Mk1+1,k0/Mk1,k0 ,

so that
L

k02Zn�1 Mk1+1,k0/Mk1,k0 is R
0-flat for any k1. By induction on ` > 0,

we deduce that
L

k02Zn�1 Mk1+`,k0/Mk1,k0 is R0-flat for any k1, ` and taking inductive
limit on ` leads to the R

0-flatness of M 0k0/Mk1,k0 for any k1. By induction on n, the
filtrations on lim�!k0 M

0
k0/Mk1,k0 = A/F

(1)

k1
A obtained by taking inductive limit with ki

fixed are distributive. They read, for i > 2, M (i)

ki
/M

({1,i})
k1,ki

. By the first part of the
proof of 15.1.5(2a), this expression writes F (i)

ki
A/(F

(1)

k1
A\F (i)

ki
A), so that the desired

distributivity is obtained.

15.2.9. Remark (Interpretation of flatness in terms of multi-grading)
Corollary 15.2.5 has the following practical consequence: for distributive filtrations

F
(1)

• A, . . . , F
(n)

• A, the n-graded object obtained by inducing iteratively the filtrations
on the j-graded object grF

(ij)

kij

· · · grF (i1)

ki1

A (j = 1, . . . , n) does not depend on the order
{i1, . . . , in} = {1, . . . , n}, and is equal to

F
(1)

k1
A \ · · · \ F

(n)

kn
A

P
j
F

(1)

k1
A \ · · · \ F

(j)

kj�1A \ · · · \ F
(n)

kn
A

.

When one filtration is bounded from below, the inductive property of Proposition
15.1.5(2) takes a more accessible form.

15.2.10. Proposition (Distributivity by induction). Let (A,F
(1)

• A, . . . , F
(n)

• A) be a multi-
filtered object of A. Assume the following properties:

(a) F
(1)

p A = 0 for p⌧ 0;
(b) for each p, the induced filtrations F

(2)
, . . . , F

(n) on gr
F

(1)

p
A are distributive;

(c) for each p, the natural morphism RF 0(F
(1)

p A) ! RF 0(gr
F

(1)

p
A) is an epimor-

phism.
Then the filtrations F

(1)
, F

(2)
, . . . , F

(n) on A are distributive.

Proof. We will apply Proposition 15.2.6 to the Rees module M = RFA. It is clear
that multiplication by z1 is injective on M , so we only need to check the C[z2, . . . , zn]-
flatness of M/z1M .
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Set p
0
= (p2, . . . , pn), F 0p0A =

T
n

i=2
F

(i)

pi
A and, for each p,

F
0
p0(gr

F
(1)

p
A) =

nT
i=2

F
(i)

pi
gr

F
(1)

p
A =

T
n

i=2

�
(F

(i)

pi
A \ F

(1)

p A) + F
(1)

p�1A
�

F
(1)

p�1A
.

Then (c) amounts to

(15.2.11) (F
0
p0A \ F

(1)

p A) + F
(1)

p�1A =
T

n

i=2

�
(F

(i)

pi
A \ F

(1)

p A) + F
(1)

p�1A
�
8 p.

On the other hand, M/z1M is the direct sum indexed by p of the terms

(F
0
p0A \ F

(1)

p
A) + F

(1)

p�1A/F
(1)

p�1A = (F
0
p0A \ F

(1)

p
A)/(F

0
p0A \ F

(1)

p�1A).

Therefore, (c) amounts to the equality

M/z1M = RF 0gr
F

(1)

A,

and (b) yields it C[z2, . . . , zn]-flatness.

15.2.12. Remark (Multi-filtered morphisms). Given two multi-filtered objects

(A, (F
(i)

• A)i=1,...,n) and (B, (F
(i)

• B)i=1,...,n)

in A, let ' : A ! B be a morphism compatible with the filtrations. It induces var-
ious morphisms gr

F
(ij)

kij

· · · grF (i1)

ki1

'. Assume that the filtrations in A and in B are
distributive. Then the source and the target of these morphisms are independent
of the order of multi-grading, as remarked above. We claim that the morphisms
gr

F
(ij)

kij

· · · grF (i1)

ki1

' are also independent of the order of multi-grading. Indeed, ' in-
duces a graded morphism RF' : M ! N between the associated Rees objects, and
due to the distributivity assumption, we are led to checking that the restriction of
RF' to M/(zki1

, . . . , zkij
)M is independent of the order, which is clear.

15.2.b. Application of the flatness criterion. We will make more explicit the
general notion of distributive filtrations in the case of xi-adic filtrations on a coherent
OX -module. For such a module E, assume we are given, for each i = 1, . . . , n, an
increasing filtration V

(i)

• E indexed by [�1, 0) by coherent submodules, such that E =S
↵i2[�1,0) V

(i)

↵i
E and the set of jumps Ai ⇢ [�1, 0) is finite. We extend the filtration

as a filtration indexed by Ai + Z by setting

V
(i)

↵i+k
E =

(
x
�k
i

V
(i)

↵i
E if k 6 0,

V
(i)

↵i
E if k > 0.

We define V
(n)

a E =
T

i
V

(i)

ai
E for any a 2

Q
i
(Ai + Zi).

15.2.13. Example (Rank-one objects). Assume that E is OX -locally free of rank 1.
Then, for each i, Ai is reduced to one element ↵i 2 [�1, 0) and we have for any
a 2

Q
i
(Ai + Z)

V
(n)

a E = E(
P

i|ai6↵i
[ai � ↵i]Di).

We claim that the family (V
(1)

• E, . . . , V (n)

• E) is distributive. Indeed, the multi-Rees
module RV E (see Section 15.2.a) reads

L
k2Zn

x
kEz�k, with x

ki

i
:= 1 if ki 6 0.
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We have to check that each permutation of (z1, . . . , zn) is a regular sequence on
RV (n)E. This is obtained by induction, noticing that zi is injective on RV (n)E and
RV (n)E/ziRV (n)E is the Rees module of grV

(i)

• E equipped with the similar filtrations
V

(j)

• gr
V

(i)

• E (j 6= i).

15.2.14. Proposition. Let E be a coherent OX-module and let (V
(1)

• E, . . . , V (n)

• E) be
filtrations as defined above. Let us assume that, for each a 2

Q
i
(Ai + Z),

(1) the OX-module V
(n)

a E is locally free,
(2) if ai < 0, then xiV

(n)

a E = V
(n)

a�1i
E.

Then the filtrations (V
(1)

• E, . . . , V (n)

• E) are distributive.

Proof. Note that the assumption implies that E itself is OX -locally free. The multi-
Rees module RV (n)E is the direct sum over ↵ 2

Q
i
Ai of multi-Rees modules asso-

ciated with the multi-filtrations V (n)

↵+ZE. To check its C[z1, . . . , zn]-flatness, it is enough
to check that of each summand. We can therefore assume that

Q
i
Ai = {↵}. We then

simply write V
(n)

↵+kE = V
(n)

k E. By (2),

V
(n)

k E = E(
P

i|ki60
kiDi)

and we argue as in the example to conclude.

15.3. Strictness of morphisms

Let A and B be two objects in our abelian category A, each with n distributive
filtrations

F
(1)

• A, . . . , F
(n)

• A, respectively F
(1)

• B, . . . , F
(n)

• B.

Denote by M and N the graded R-modules that are obtained by the Rees construction;
both are flat by Theorem 15.2.2. Now consider a filtered morphism ' : A ! B.
It induces an R-linear morphism RF' : M ! N between the two Rees modules.

15.3.1. Definition. We say that ' : A ! B is n-strict if CokerRF' is again a flat
R-module.

Flatness of CokerRF' also implies that KerRF' and ImRF' are flat: the reason
is that we have two short exact sequences

0 �! KerRF' �!M �! ImRF' �! 0

0 �! ImRF' �! N �! CokerRF' �! 0,and

and because M and N are both flat, flatness of CokerRF' implies that of ImRF',
which implies that of KerRF'. Note that Ker' and Coker' are equipped with filtra-
tions F (1)

• Ker', . . . , F
(n)

• Ker', respectively F
(1)

• Coker', . . . , F
(n)

• Coker' naturally
induced from those on A, respectively B. On the other hand, Im' has two possi-
ble natural families of filtrations: those induced from M and those from N . If ' is
n-strict, both coincide and we have

KerRF' = RF Ker', ImRF' = RF Im', CokerRF' = RF Coker'.
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Indeed, we know by Theorem 15.2.2 that the graded modules KerRF', ImRF' and
CokerRF' are attached to distributive filtrations, and (for Coker' for example) the
term in degree k 2 Z

n is (F
(1)

k1
B \ · · ·\ F (n)

kn
B) + Im'/ Im', so that the distributive

filtrations on Coker' given by the theorem are nothing but the filtrations induced
by F

i

•B.
For example, in the case of two filtrations F 0, F 00 as considered in Definition 10.2.4,

the last equality in bi-degree k, ` gives

F
0
k
F
00
`
B/'(F

0
k
F
00
`
A) = (F

0
k
B + Im') \ (F

00
`
B + Im')/ Im',

which corresponds to the condition of Definition 10.2.4.

15.3.2. Caveat. The strictness of ' implies that the induced filtrations (on Ker', Im'

and Coker') are distributive. However, the latter condition is not enough for ensuring
strictness of '. For example, two filtrations are always distributive, while a morphism
between bi-filtered objects need not be strict.

15.3.3. Example (Strict inclusions). The composition of strict morphisms need not
be strict in general. However, the composition of strict monomorphisms i1, i2

between objects with distributive filtrations remains a strict monomorphism since
CokerRF (i2 � i1) = Coker(RF i2 �RF i1) is an extension of CokerRF i2 by CokerRF i1,
and flatness is preserved by extensions.

Given n distributive filtrations F
(1)

• A, . . . , F
(n)

• A, they induce distributive filtra-
tions on Ak := F

(1)

k1
A \ · · · \ F

(n)

kn
A for every k = (k1, . . . , kn) 2 Z

n (see Remark
15.1.8). Moreover, for k 6 ` 2 Z

n (i.e., ki 6 `i for all i = 1, . . . , n), the inclusion
Ak ,! A` is n-strict. Indeed, by the preliminary remark, it is enough to show that
the inclusion Ak�1i

,! Ak is strict for all i. This has been explained in the first part
of the proof of Theorem 15.2.2.

15.3.4. Proposition (A criterion for strictness of inclusions). Let (A,F
(1)

• A, . . . , F
(n)

• A)

and (B,F
(1)

• B, . . . , F
(n)

• B) be multi-filtered objects of A with distributive filtrations,
and let ' be a multi-filtered monomorphism between them. Assume the following
properties:

(a) F
(1)

p B = 0 for p⌧ 0;
(b) ' is F

(i)-strict for i = 1, . . . , n (i.e., F (i)

p A = F
(i)

p B \A),
(c) for each p, grF

(1)

p
' : gr

F
(1)

p
A! gr

F
(1)

p
B is an (n� 1)-strict monomorphism.

Then ' is an n-strict monomorphism.

Proof. We consider the exact sequence 0 ! RFA
RF'�! RFB ! M ! 0 and we wish

to show the R-flatness of M , where R = C[z1, . . . , zn]. We will apply the criterion of
Proposition 15.2.6 to M .

It is clear that multiplication by z1 is injective on RFA and RFB. On the other
hand, (c) means that the sequence

0 �! RFA/z1RFA �! RFB/z1RFB �!M/z1M �! 0,
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is exact and that M/z1M is R/z1R-flat. The snake lemma implies that z1 : M !M

is injective, so, because of (a), the flatness criterion of Proposition 15.2.6 applies
to M .

15.3.5. Definition (Strictness of a multi-filtered complex). If we have a complex of
objects with n distributive filtrations and differentials that preserve the filtrations,
we consider the associated complex of flat graded R-modules; if all of its cohomology
modules are again flat over R, we say that the original filtered complex is strict.

The interpretation of distributivity in term of flatness yields the following criterion
(see Definition 15.3.1).

15.3.6. Proposition. A complex of objects with n distributive filtrations and differentials
that preserve the filtrations, and which is bounded from above, is strict if and only if
each individual differential is an n-strict morphism.

15.4. Appendix. Compatible filtrations

The definition of compatibility of three subobjects of A given before Lemma 15.1.3
has a natural extension for n subobjects. We will see that it is equivalent to the
notion of distributivity, but sheds a new light on other properties.

More precisely, the condition is the following: there should exist an n-dimensional
commutative diagram C(A1, . . . , An;A), consisting of 3n objects placed at the points
{�1, 0, 1}n and 2n · 3n�1 morphisms corresponding to the line segments connect-
ing those points, such that A sits at the point (0, . . . , 0), each Ai sits at the point
(0, . . . ,�1, . . . , 0) on the i-th coordinate axis, and all lines parallel to the coordinate
axes form short exact sequences in the abelian category. It is easy to see that the
objects at points in {�1, 0}n are just intersections: if the i-th coordinate of such a
point is �1 for i 2 I ⇢ {1, . . . , n} and 0 for i 62 I, then the exactness of the diagram
forces the corresponding object to be

T
i2I

Ai,

with the convention that the intersection equals A when I is empty. In particular,
the object A1 \ · · · \An always sits at the point with coordinates (�1, . . . ,�1).

On the other hand, given a subset I ⇢ {1, . . . , n}, fixing the coordinate "
o

i
2

{�1, 0, 1} for every i 2 I produces a sub-diagram of size n�#I, hence n�#I com-
patible sub-objects of the term placed at ("o

i2I , 0i/2I), that we denote by A("
o

i2I , 0i/2I).
For example, fixing "

o

i
= 0 for each i 2 I shows that the sub-family (Ai)i/2I is a

compatible family.
As another example, fix "o

n
= �1. Then the induced family (Ai\An)i2{0,...,n�1} of

sub-objects of An is also compatible. In the definition of compatibility, the object A

does not play a relevant role and one can replace it by a sub-object provided that all
Ai are contained in it. Similarly one can replace it by a sup-object. This is shown in
Exercise 15.6. So the induced family (Ai \An)i2{0,...,n�1} is also compatible in A.
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As still another example, let us fix "o
n
= 1. We have an exact sequence

An = A(0, . . . , 0,�1) �! A = A(0, . . . , 0) �! A/An = A(0, . . . , 0, 1).

Our new diagram has central term A/An and the term placed at (0, . . . , (�1)i, . . . , 0, 1)
is Ai/Ai \An = (Ai +An)/An: the induced family

�
(Ai +An)/An

�
i2{0,...,n�1} is also

compatible.
The definition of a compatible family of filtrations is similar to Definition 15.1.7 by

replacing the word “distributive” with the word “compatible”. Then any sub-family
of filtrations of a compatible family remains compatible. Moreover, any finite family
of sub-objects consisting of terms of the filtrations F

(1)

• A, . . . , F
(n)

• A is compatible,
and Lemma 15.4.1 below, whose proof is postponed at the end of this section, implies
that the induced filtrations F

(1)

• , . . . , F
n�1
• on each gr

F
(n)

`
A are compatible.

15.4.1. Lemma. Let A1, . . . , An ⇢ A be a family of sub-objects of A. Assume the
following properties:

(1) A1 ⇢ A2.
(2) Both sub-families A1, A3, . . . , An and A2, A3, . . . , An are compatible.

Then the family A1, . . . , An is compatible. Moreover, the family (Ai \A2)/(Ai \A1)

(i = 3, . . . , n) of sub-objects of A2/A1 is also compatible.

Lemma 15.1.3 extends to any n > 4:

15.4.2. Proposition. A family of n subobjects of A is distributive if and only if it is
compatible.

Proof. We show that Theorem 15.2.2 holds when compatibility replaces distributivity.
The proof that compatibility implies flatness is similar to that of Theorem 15.2.2 in
the case of distributive filtrations, in view of the remark above.

The proof of the converse is simpler than in the case of distributive filtrations. Fix
k, ` 2 Z

n. Observe that because R is graded, the graded submodules z
`1

1
R, . . . , z

`n
n
R

are trivially distributive; in fact, the required n-dimensional commutative diagram
exists in the category of graded R-modules. If we tensor this diagram by M , it
remains exact everywhere, due to the fact that M is flat. Take the graded piece of
degree k + ` everywhere; for n = 2, for example, the result looks like this:

⇤ // ⇤ // ⇤

Mk1+`1,k2

//

OO

Mk1+`1,k2+`2
//

OO

⇤

OO

Mk1,k2

//

OO

Mk1,k2+`2
//

OO

⇤

OO
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Apply the direct limit over ` 2 Z
n; this operation preserves exactness. For n = 2, for

example, the resulting n-dimensional commutative diagram looks like this:

⇤ // ⇤ // ⇤

F
2

k2
A //

OO

A //

OO

⇤

OO

Mk1,k2

//

OO

F
(1)

k1
A //

OO

⇤

OO

The existence of such a diagram proves that F (1)

k1
A, . . . , F

(n)

kn
A are compatible subob-

jects of A, and also that (15.2.8) holds.

Proof of Lemma 15.4.1. We wish to define a diagram with vertices A("1, "2, . . . , "n)

("i 2 {�1, 0, 1}) satisfying the properties above. The second assumption means that
we have the diagrams with vertices A("1, 0, "3, . . . , "n) and A(0, "2, . . . , "n). On the
other hand, if the diagram we search for exists, the inclusion A1 \ A2 = A1 ⇢ A2 is
satisfied for all terms of the diagram, namely

(15.4.3) A(�1,�1, ">3) = A(�1, 0, ">3) ⇢ A(0,�1, ">3).

We are thus forced to set

A(1,�1, ">3) := A(0,�1, ">3)/A(�1,�1, ">3)

A(1, 1, ">3) := A(0, 1, ">3).
(15.4.4)

In such a way, we obtain a commutative diagram where the columns are exact se-
quences (by assumption for the middle one, by our setting for the left and right ones),
as well as the middle horizontal line

(15.4.5)

A(1,�1, ">3)
// A(1, 0, ">3)

// A(1, 1, ">3)

A(0,�1, ">3)

OO

OO

� �
// A(0, 0, ">3)

OO

OO

// // A(0, 1, ">3)

A(�1,�1, ">3)

?�

OO

A(�1, 0, ">3)

?�

OO

// A(�1, 1, ">3) = 0

OO

It is then easy to check that the upper horizontal line is exact. This shows that, in the
diagram of size n, the lines where "1 varies in {�1, 0, 1} and all other "i fixed, as well
as the lines where "2 varies and all other "i are fixed, are exact. Let us now vary "3,
say, by fixing all other "i and let us omit "i for i > 4 in the notation. From the
diagram above, we see that the only possibly non-obvious exact sequence has terms
A(1,�1, "3)"3=�1,0,1. We now consider the commutative diagram where the columns
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are exact and only the upper horizontal line is possibly non-exact:

(15.4.6)

A(1,�1,�1) // A(1,�1, 0) // A(1,�1, 1)

A(0,�1,�1)

OO

OO

� �
// A(0,�1, 0)

OO

OO

// // A(0,�1, 1)

OO

OO

A(�1,�1,�1)
?�

OO

� �
// A(�1,�1, 0)

?�

OO

// // A(�1,�1, 1)
?�

OO

But the snake lemma shows its exactness. We conclude that the family A1, A2, . . . , An

is compatible. We now remark that

A2/A1 = A2/(A1 \A2) = A(1,�1, 0, . . . , 0).

The compatibility of the family (Ai \ A2/Ai \ A1)i=3,...,n will be proved if we prove
(A3 \A2)/(A3 \A1) = A(1,�1,�1, 0, . . . , 0), and similarly for i > 4. Let us consider
the previous diagram when fixing "i = 0 for i > 4. The left vertical inclusion reads
A1 \A2 \A3 ,! A2 \A3, hence the desired equality.

15.5. Exercises

Exercise 15.1 (Basics on Rees modules). We take up the notation of Section 15.2.a. Set
C[z] = C[z1, . . . , zn]. Let M =

L
k2Zn Mk be a Z

n-graded C[z]-module.

(1) Show that the subset TmM ⇢M consisting of elements m 2M annihilated by
a monomial in z1, . . . , zn is a graded C[z]-submodule of M . Conclude that M/Tm is
a graded C[z]-module.

(2) Let T ⇢ M be the C[z]-torsion submodule of M . Show that T = Tm. [Hint :
Assume that Tm = 0 by working in M/Tm; if pm = 0 with p =

P
pjz

j 2 C[z] and
m =

P
k mk 2 M , choose a linear form L with non-negative coefficients such that

max{L(j) | pj 6= 0} is achieved for a unique index j = j
o

and similarly for k and ko;
show that z

j
omko

= 0 and conclude that m = 0.]
(3) Show that M is C[z]-torsion free if and only if the natural morphism M !

M [z
�1

] := M ⌦C[z] C[z�1] is injective.
(4) Set A = M/

P
i
(zi � 1)M . Show that M is C[z]-torsion free if and only if

there exists an exhaustive Z
n-filtration F•A such that M = RFA :=

L
k2Zn(FkA)z

k.
[Hint : Show first that A = M [z

�1
]/
P

i
(zi � 1)M [z

�1
] and M [z

�1
] = A⌦C C[z, z

�1
];

consider then the graded inclusion M ,! A⌦C C[z, z
�1

].]
(5) Omitting indices. Let (A,F•A) be a multi-filtered vector space, let I ⇢

{1, . . . , n} be a subset and denote by I
c its complement. Let F

(I)

• A be the Z
I -

filtration defined by F
(I)

kI
A :=

S
kIc2ZIc F

(I)

(kI ,kIc )
A. Show that

RF (I)A =
�
RFA/

P
i2Ic(zi � 1)RFA

� �
C[zI ]-torsion.

Conclude that if RFA is C[z]-flat, then RF (I)A is C[zI ]-flat. [Hint : Use that flatness
is preserved by base change.]
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(6) Grading. Set

F
(I)

�kI

A =

X

i2I
F

(I)

kI�1i
A, gr

F
(I)

kI
A = F

(I)

kI
A/F

(I)

�kI

A, F(�kI ,kIc )
A =

X

i2I
F(kI�1i,kIc )

A,

F
(I

c
)

kIc
gr

F
(I)

kI
A = F(kI ,kIc )

A
� ⇥

F(kI ,kIc )
A \ F

(I)

�kI

A
⇤
.

Show that there exist isomorphisms as Z
n-graded modules:

RFA/
P

i2I ziRFA '
L

(kI ,kIc )2Zn

F(kI ,kIc )
A/F(<kI ,kIc )

A · zkIc

and L
kI2ZI

RF (Ic)gr
F

(I)

kI
A '

�
RFA/

P
i2I ziRFA

� �
C[zIc ]-torsion.

Identify RF (Ic)gr
F

(I)

kI
A with the term of I-degree kI in the right-hand side. Con-

clude that if RFA is C[z]-flat, then RF (Ic)gr
F

(I)

kI
A is C[zIc ]-flat. [Hint : Use that

flatness is preserved by base change.] Conclude that, if RFA is C[z]-flat, the inclusion
F(�kI ,kIc )

A ⇢ F(kI ,kIc )
A \ F

(I)

�kI

A is an equality.

(7) Show that if RFA is C[z]-flat, then FkA =
T

n

i=1
F

(i)

ki
A. [Hint : Argue by

induction on n and prove FkA = F
(1)

k1
A \ F

{1}c

k{1}c
A by using the last result of (6).]

Exercise 15.2 (Regular sequences and the Koszul complex). We keep the notation as in
Proposition 15.2.3.

(1) Show that the sequence z1, . . . , zn is a regular sequence on M if and only if
for every k = 1, . . . , n, the Koszul complex K(M ; z1, . . . , zk) is a graded resolution of
M/(z1, . . . , zk)M .

(2) Deduce that the following properties are equivalent:
(a) any permutation of z1, . . . , zn is a regular sequence on M ,
(b) any subsequence of z1, . . . , zn is a regular sequence on M ,
(c) for every subset J ⇢ {1, . . . , n} the Koszul complex K(M ; (zj)j2J) is a

graded resolution of M/(zj)j2JM .

Exercise 15.3 (Applications of the flatness criterion).
(1) Let A be an object with n distributive filtrations F

(1)

• A, . . . , F
(n)

• A and let
F

(n+1)
A be a filtration which jumps at one index at most, for example F

(n+1)

�1 A = 0

and F
(n+1)

0
A = A. Show that the family F

(1)

• A, . . . , F
(n+1)

• A is still distributive.
[Hint : Show that the new Rees module is obtained from the old one by tensoring
over C with C[zn+1].]

(2) Let A be an object with n distributive filtrations F (1)

• A, . . . , F
(n)

• A. Show that
any family of filtrations G(1)

• A, . . . , G
(m)

• A where each G
(i)

• A is obtained by convolution
of some of the filtrations F

j

• A, i.e.,

G
(i)

p
A =

X

q1+···+qk=p

F
(j1)

q1
A+ · · ·+ F

(jk)

qk
A,

(also denoted by G
i

•A = F
(j1)

• A ? · · · ? F (jk)

• A) is also a distributive family. [Hint :
Express the Rees module R

i

G
A as obtained by base change from R

F (j1),...,F
(j

k
)A and,
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more generally express RG(1),...,G(m)A as obtained by base change from RF (1),...,F (n)A;
conclude by using that flatness is preserved by base change.]

(3) Let F
(1)

• A, . . . , F
(n)

• A be filtrations on A. Let B be a sub-object of A and let
F

(i)

• B and F
(i)

• (A/B) be the induced filtrations. Assume that
(a) the families (F

(i)

• B)i and (F
(i)

• (A/B))i are distributive,
(b) for all k1, . . . , kn, the following sequence is exact:

0 �!
nT

i=1

F
(i)

ki
B �!

nT
i=1

F
(i)

ki
A �!

nT
i=1

F
(i)

ki
(A/B) �! 0.

Then the family (F
(i)

• A)i is distributive. [Hint : Show that there is an exact sequence
of the associated Rees modules, and use that flatness of the extreme terms implies
flatness of the middle term.]

Exercise 15.4 (External products and flatness).

(1) Let R = C[z1, . . . , zn] and R
0
= C[z

0
1
, . . . , z

0
m
] be polynomial rings set R

00
=

R⌦CR0 = C[z1, . . . , z
0
m
]. Let M resp. M 0 be a graded flat R- resp. R0- module. Show

that M
00
:= M ⌦C M

0 is R
00-flat as a graded R

00-module. [Hint : Use the criterion of
Exercise 15.2.]

(2) Assume now that R and R
0 are polynomial rings (with variables as above) over a

polynomial ring C[z
00
1
, . . . , z

00
p
]. Let M,M

0 be as above. Show that M 00 := M⌦C[z00]M
0

is R
00-flat as a graded R

00-module. [Hint : Define M
00 in terms of M ⌦C M

0.]
(3) Reprove Lemma 8.6.10 by using the argument of (2) and that flatness commutes

with base change (in a way similar to that of Remark 15.2.9). [Hint : Set eM = RFM

and consider eMX ⇥C eMY ; show that this is a flat bi-graded C[z1, z2]-module; deduce
that restricting first to z1 = z2 and then to z = 0, or restricting to z1 = 0 and then
to z2 = 0 give the same result.]

(4) Let eMX , eMY be strict eD-modules equipped with coherent F•
eD-filtrations

F•
eMX , F•

eMY . Assume that gr
F eMX , gr

F eMY are strict. Show that

gr
F
( eMX ⇥eD

eMY ) ' gr
F eMX ⇥

grF eD gr
F eMY .

[Hint : Show with Exercise 15.2 that RF
eM :=

L
k
Fk

eMz
k

1
is C[z, z1]-flat and use (2).]

Exercise 15.5. Show as in the beginning of Section 15.4 that the object A(1i2I , 0i/2I)

is equal to A/
P

i2I Ai.

Exercise 15.6 (Some properties of compatible families).

(1) Let A1, . . . , An ⇢ A be a compatible family of sub-objects of A and let B � A.
Show that A1, . . . , An, A is a compatible family in B (in particular, A1, . . . , An is a
compatible family in B). [Hint : Note first that, for " = ("1, . . . , "n) with "i > 0 for
all i, A surjects to A(") and set A(") = A/I("), with I(0) = 0; define then B(", "n+1)
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by
B(",�1) = A(") 8 ",

B(", 0) =

(
A(") if 9 i, "i = �1,
B/I(") if 8 i, "i > 0,

B(", 1) =

(
0 if 9 i, "i = �1,
B/A if 8 i, "i > 0;

check the exactness of sequences like B(�1, "0, 0)! B(0, "
0
, 0)! B(1, "

0
, 0).]

(2) Let A1, . . . , An ⇢ A be a family of sub-objects of A which is compatible in B,
for some B � A. Then this family is compatible in A. [Hint : Set A(") = B(") if
"i = �1 for some i, and if "i > 0 for all i, set A(") = A/I("), where B(") = B/I(")

and show first that I(") ⇢
P

i
Ai by using Exercise 15.5.]

(3) Let A0, A1, . . . , An ⇢ A be a family of sub-objects of A. Assume that
A1, . . . , An�1 ⇢ An. Show that the family A0, A1, . . . , An is compatible if and only
if the family A0 \ An, A1, . . . , An of sub-objects of An is compatible. [Hint : If the
diagram C(A0, . . . , An;A) exists, there should be an exact sequence

0! C(A0 \An, . . . , An;An)! C(A0, . . . , An;A)! C

⇣
A0

A0 \An

, 0, . . . , 0;
A

An

⌘
! 0,

corresponding to exact sequences

0 �! A("0, "
0
,�1) �! A("0, "

0
, 0) �! A("0, "

0
, 1);

show that A("0, "
0
, 1) = 0 if "0

i
= �1 for some i = 1, . . . , n� 1; set thus A("0, "

0
, 0) :=

A("0, "
0
,�1) for such an "

0; to determine A("0, "
0
, 0) for "0

i
> 0 for all i, use Exercise

15.5 if "0 > 0 and deduce the case "0 = �1; end by checking that all possibly exact
sequences are indeed exact.]





CHAPTER 15

eD-MODULES OF NORMAL CROSSING TYPE
PART 2: FUNDAMENTAL PROPERTIES

Summary. Starting from the simple model of a monodromic DX -module,
we first introduce the notion of DX -module of normal crossing type, obtained
by analytifying a monodromic one. The notion of a filtered DX -module, or a
eDX -module, of normal crossing type needs a different approach, as in general
such an object does not come by analytification from a monodromic filtered
DX -module. The notion of distributivity or compatibility of filtrations, intro-
duced in Part 1, is essential in the definition. On the other hand, as sesquilinear
pairings do not involve the F -filtration, they can be analyzed from the simple
monodromic setting, and the results are higher dimensional analogues of those
of Section 7.3 in dimension one.

15.6. Introduction

15.6.1. Notation. In this chapter, the setting is as follows. The space X = �
n is

a polydisc in C
n with analytic coordinates x1, . . . , xn, we fix ` 6 n and we denote

by D the divisor {x1 · · ·x` = 0}. We also denote by Di (i = 1, . . . , `) the smooth
components of D and by D(`) their intersection D1 \ · · · \ D`. We will shorten the
notation C[x1, . . . , x`] into C[x] and C[x1, . . . , x`]h@x1

, . . . , @x`
i into C[x]h@xi. We will

set I = {1, . . . , `}.
We will mainly consider right D-modules.

15.6.2. Simplifying assumptions. All over this part, we will consider the simpler case
where ` = n, that is, D(`) is reduced to the origin in X = �

n, in order to make the
computations clearer. We then have I = {1, . . . , n}. The general case ` 6= n brings
up objects which are OD(`)

-locally free and the adaptation is straightforward.

In higher dimensions, similarly to what was done in Section 7.2, the theory of
vector bundles on X with meromorphic integrable connections with poles along D

starts with the simplest objects, namely those with regular singularities [Del70]. One
first extends naturally these objects as locally free OX(⇤D)-modules with integrable
connection and the regularity property amounts to the existence of locally free OX -
module of maximal rank on which the connection has logarithmic poles. The category
of such objects is equivalent to that of locally constant sheaves on X r D, that is,
of finite dimensional representations of ⇡1(X rD) ' Z

n. These objects behave like
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products of meromorphic bundles with connection having a regular singularity in
dimension 1. We say that these objects are of normal crossing type.

Our first aim is to extend this notion to other holonomic DX -modules. We mainly
have in mind the middle extension of such meromorphic connections. In terms of
general D-module theory—that we will not use—we could characterize such D-mod-
ules as the regular holonomic D-modules whose characteristic variety is adapted to
the natural stratification of the divisor D. In other words, these are the simplest
objects in higher dimension.

We can settle the problem as follows. Let M be a coherent DX -module. Assume
that M is R-specializable along each component Di of D. How do the various V -filtra-
tions interact? The notion of normal crossing type aims at reflecting that these
V -filtrations behave independently, i.e., without any interaction. In other words,
the transversality property of the components of D is extended to the transversality
property of the V -filtrations. This is first explained in Section 15.7.a for the simpler
“algebraic case” and then in Section 15.7.b for the general holomorphic case.

Sesquilinear pairings between coherent D-modules of normal crossing type have
then a simple expression in terms of basic distributions or currents (Section 15.8).

When thinking in terms of characteristic varieties, one can expect that the notion
of “normal crossing type” is stable with respect to taking nearby or vanishing cycles
along a monomial function in the given coordinates. However, obtaining an explicit
expression of the various monodromies in terms of the original ones leads to a delicate
combinatorial computation, which is achieved in Section 15.12 both for the simpler
“monodromic case” and the general holomorphic case.

We are mainly interested in the previous results in the presence of an F -filtration
and, for a coherently F -filtered D-module (M, F•M), we will express the independence
of the V -filtrations in the presence of F•M. By looking in dimension 1, one first realizes
that (M, F•M) should be R-specializable along any component Di of D. But adding
an F -filtration to the picture also leads us to take much care of the behaviour of this
filtration with respect to the various V -filtrations along the components Di of the
divisor D. The compatibility property (Definition 15.1.7) is essential in order to have
a reasonable control on various operations on these filtered D-modules.

An important question, given a filtered D-module (M, F•M) such that M is of
normal crossing type along D, is to have an effective criterion on the F -filtration for
(M, F•M) to be of normal crossing type. We give such a criterion in terms of parabolic
bundles (Section 15.9.c) by applying the criterion of Section 15.2.b.

15.6.3. Notation for logarithmic modules. The V -filtration of DX along Di, or that of
a DX -module Mwhich is R-specializable along Di, will be denote by V

(i)

• , where •

runs in Z or R. We will then set (when the simplifying assumption 15.6.2 holds)

V
(n)

a DX :=

nT
i=1

V
(i)

ai
DX , V

(n)

a M :=

nT
i=1

V
(i)

ai
M, a := (a1, . . . , an),

which are modules over the sheaf V (n)

0 DX of logarithmic differential operators with
respect to the divisor D. We use the notation

DX(logD) := V
(n)

0 DX = OXhx1@x1
, . . . , xn@xn

i.
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For the DX -modules of normal crossing type that we will consider in this chapter, the
V

(n)

0 DX -modules V
(n)

a M are OX -coherent and V
(n)

0 M contains most of the informa-
tion on M, and more importantly, the same property applies to filtered objects. For
multi-indices, we use the following notation:

(15.6.3 ⇤)

8
>>>><

>>>>:

a 6 b if ai 6 bi 8 i 2 {1, . . . , n},
a � b if a 6 b and a 6= b

i.e., ai 6 bi 8 i 2 {1, . . . , n} and 9 i, ai < bi,

a < b if ai < bi 8 i 2 {1, . . . , n}.

It is thus natural to introduce the notation

M60 = V
(n)

0 M.

For the DX -modules which are middle extension along each component Di of D, that
will be of most importance for us, we will consider instead

M<0 = V
(n)

<0 M :=

X

a<0

V
(n)

a M.

In the algebraic setting, we consider the Weyl algebra An := C[x]h@xi of differential
operators in n variables with polynomial coefficients, and correspondingly (right)
DX -modules with (right) An-modules, that we denote by a capital letter like M .
Similarly, we set An(logD) = C[x]hx@xi.

15.7. Normal crossing type

15.7.a. Monodromic An-modules. In this section, we consider the algebraic set-
ting. Let M be an An-module and let us consider, for every a 2 R

n, the subspace Ma

of M defined by
Ma =

T
i2I

S
k

Ker(xi@xi
� ai)

k
.

This is a C-vector subspace of M . The endomorphism xi@xi
acting on Ma will be

denoted by Ei and (xi@xi
� ai) by Ni. The family (N1, . . . ,Nn) forms a commuting

family of endomorphisms of Ma, giving Ma a natural C[N1, . . . ,Nn]-module structure,
and every element of Ma is annihilated by some power of each Ni. Moreover, for
i 2 I, the morphism xi : M !M (resp. @xi

: M !M) induces a C-linear morphism
xi : Ma !Ma�1i

(resp. @xi
: Ma !Ma+1i

). For each fixed a 2 R
n, we have

Ma \
✓ X

a0 6=a

Ma0

◆
= 0 in M.

Indeed, for m =
P

a0 6=a ma0 , if m 2Ma, then m�
P

a
0
1
=a1

ma0 is annihilated by some

power of x1@x1
� a1 and by a polynomial

Q
a
0
1
6=a1

(x1@x1
� a
0
1
)
k
a
0
1 , hence is zero, so we

can restrict the sum above to a
0
1
= a1. Arguing similarly for i = 2, . . . , n yields finally

m = 0. It follows that

(15.7.1) M
0
:=

L
a2Rn

Ma ⇢M
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is a An-submodule of M . The actions of xi and @xi
satisfy, for each i 2 {1, . . . , n}:

• xi : Ma !Ma�1i
is an isomorphism if ai < 0,

• @xi
: Ma !Ma+1i

is an isomorphism if ai > �1.
(See Exercise 15.7.)

15.7.2. Definition (Monodromicity). Let M be an An-module. We say that M is mon-
odromic if the following properties are satisfied.

(a) There exists a finite subset A ⇢ [�1, 0)n, called the set of exponents of M ,
such that Ma = 0 for a /2 A+ Z

n.
(b) Each Ma (a 2 R

n) is finite-dimensional.
(c) The natural inclusion (15.7.1) is an equality.

15.7.3. Proposition. Let M be a monodromic An-module. Then
(1) M is R-specializable along each Di and

V
(i)

bi
M =

L
a2Rn

ai6bi

Ma, gr
V

(i)

bi
M =

L
a2Rn

ai=bi

Ma, V
(n)

b M =
L

a2Rn

a6b

Ma;

(2) The An-module M is uniquely determined, up to isomorphism, from the
An(logD)-module M60;

(3) Each V
(n)

a M is an An(logD)-module of finite type and, if ai < 0 for all i, it
is a free C[x]-module of finite rank;

(4) Decomposing the set of variables as (x
0
, x
00
) = (x1, . . . , xn0 , xn0+1, . . . , xn0+n00)

with n
0
+ n

00
= n, then for any a

00
o
2 R

n00
, the C[x

0
]h@x0i-module M(•,a00

o
) =L

a02Rn0 M(a0,a00
o
) is monodromic.

(5) With the decomposition as in (4), for any a
0 2 (R<0)

n
0
, the C[x

0
]-module

V
(n0

)

a0 M is flat.

Proof.
(1) The first equality follows from the characterization of the V -filtration, and the

other ones are immediate consequences.
(2) For ai > 0 set k = daie and a

0
i
= ai � k 2 (�1, 0]. Set also a

0
j
= aj if

j 6= i. Then @k
xi

: Ma0 !Ma is an isomorphism which, composed with x
k

i
, yields the

endomorphism
Q

k�1
`=0

(ai � ` + Ni) of Ma0 . By replacing each such Ma with Ma0 in
M and defining the action of @xi

as the identity and that of xi as (ai � (k � 1) +Ni)

leads to a monodromic An-module isomorphic to M . This argument applied for each
i 2 {1, . . . , n} yields the conclusion.

(3) For every ↵ 2 A, let us set

M↵+Zn =
L

k2Zn

M↵+k,

so that M =
L

↵2A M↵+Zn . Then M↵+Zn is an An-module. In such a way, M

is the direct sum of monodromic An-modules having a single exponent, and it is
enough to prove the statement in this case. Then one checks that, for each a 2 R

n,
V

(n)

a M = V
(n)

↵+kM where k 2 Z
n is such that, for each i, ai 2 (↵i + ki � 1,↵i + ki],
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i.e., ki = dai � ↵ie. The condition ai < 0 for all i is equivalent to ki 6 0 for all i and
we find in such a case

V
(n)

a M = M↵+k ⌦C C[x],

hence the assertion.
(4) We can assume that a

00
o

belongs to the projection of A + Z
n to R

n
00
, other-

wise M(•,a00
o
) is zero. Then the conditions for being monodromic are clearly satisfied

for M(•,a00
o
), whose set A0+Z

n
0
is the pullback of a00

o
by the projection A+Z

n ! R
n
00
.

(5) We can assume, as in (3), that A has only one element ↵. We argue by induction
on n

00 and we only treat the case where n
00
= 1 and y1 = xn. By (3), V (n)

(a0,↵n)
M is

C[x]-free of finite rank, hence C[x
0
]-flat. We show by increasing induction on kn 2 N

that V
(n)

(a0,↵n+kn)
M is C[x

0
]-flat, and the desired assertion is obtained at the limit

kn =1. We have

V
(n)

(a0,↵n+kn)
M/V

(n)

(a0,↵n+kn�1)M = V
(n0

)

a0 (gr
(V

(n)

↵n+kn
M),

which is C[x
0
]-free, hence C[x

0
]-flat, according to (4). By induction on kn,

V
(n)

(a0,↵n+kn)
M is thus C[x

0
]-flat.

The category of monodromic An-modules is, by definition, the full subcategory of
that of An-modules whose objects are monodromic.

15.7.4. Proposition. Every morphism between monodromic An-modules is graded with
respect to the decomposition (15.7.1), and the category of monodromic An-modules is
abelian.

Proof. By An-linearity and using Bézout’s theorem, one checks that any morphism
' : M1 ! M2 sends M1,a to M2,a, and has a zero component from M1,a to M2,b if
b 6= a.

15.7.5. Proposition (Description by quivers). Let us fix ↵ 2 [�1, 0)n and let us set
I(↵) = {i 2 I | ↵i = �1}. Then the category of monodromic An-modules with
exponent ↵, that is, of the form M↵+Zn , is equivalent to the category of I(↵)-quivers
having the vertex M↵+k equipped with its C[N1, . . . ,Nn]-module structure at the place
" 2 {0, 1}I(↵) and arrows

cani : M↵+" �!M↵+"+1i
,

vari : M↵+"+1i
�!M↵+",

if "i = 0,

subject to the conditions
(
vari � cani = Ni : M↵+" �!M↵+",

cani � vari = Ni : M↵+"+1i
�!M↵+"+1i

,

if "i = 0.

(It is understood that if I(↵) = ?, then the quiver has only one vertex and no arrows.)

Proof. It is straightforward, by using that, for k 2 Z
n, @xi

: M↵+k !M↵+k+1i
is an

isomorphism if i /2 I(↵) or i 2 I(↵) and "i > 0, while xi : M↵+k ! M↵+k�1i
is an

isomorphism if i /2 I(↵) or i 2 I(↵) and "i 6 �1.
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15.7.6. Remark. In order not to specify a given exponent of a monodromic An-mod-
ule, it is convenient to define the quiver with vertices indexed by {0, 1}I instead of
{0, 1}I(↵). We use the convention that, for a fixed ↵ 2 [�1, 0)n and for i /2 I(↵),
vari=Id and cani=↵i Id+Ni=Ei (hence both are isomorphisms). Then the category
of monodromic An-modules is equivalent to the category of such quivers.

For i 2 {1, . . . , n}, the definition of the localization, dual localization and middle
extension of M along Di of Chapter 11 can be adapted in a straightforward way in
the present algebraic setting.

15.7.7. Proposition (Localization, dual localization and middle extension along one com-
ponent of D)

Let M be a monodromic An-module. Then, for each i 2 I, the An-modules
M(⇤Di), M(!Di) and M(!⇤Di) := image[M(!Di) ! M(⇤Di)] are monodromic. Fur-
thermore, M is localized, resp. dual localized, resp. a middle extension) along Di, that
we denote by M = M(⇤Di), resp. M = M(!Di), resp. M = M(!⇤Di), if and only if
vari is bijective, resp. cani is bijective, resp. cani is onto and vari is injective.

Proof. The case of M = M(⇤Di) is treated in Exercise 15.9. The other cases are done
similarly.

15.7.8. Definition. We say that M is a middle extension along Di2I if for each i 2 I,
every cani is onto and every vari is injective.

See Exercises 15.10–15.11.

15.7.9. Example (The case of a simple An-module). Let M be a monodromic An-mod-
ule which is simple (i.e., has no non-trivial such sub or quotient module). By Exercise
15.11, it must be a middle extension along Di2I with support in D. Moreover, every
nonzero vertex of its quiver has dimension 1, so that Ei acts as ai on Ma and Ni acts
by zero.

15.7.10. Remark (Suppressing the simplifying assumptions 15.6.2)
If ` < n, every Ma (a 2 R

`) has to be assumed OD(`)
-coherent in Definition

15.7.2(b) (or C[x`+1, . . . , xn]-Noetherian if we remain in the algebraic setting). Since
it is a DD(`)

-module, it must be OD(`)
-locally free of finite rank. All the previous

results extend in a straightforward way to this setting by replacing C[x] with OD(`)
[x]

(where x := (x1, . . . , x`)) and C[x]h@xi with DD(`)
[x]h@xi. The subset A is contained

in [�1, 0)` and M decomposes as M =
L

↵2A M↵+Z` .
In such a way, the notion of monodromic module is stable by restriction to strata

of D. Indeed, let J be a subset of {1, . . . , `}, let J
c denote its supplementary subset,

and let us consider the stratum

D
�
J
=

T
i2J

Di r
S

i2Jc

Di.
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Algebraically, restricting M to the complement of
S

i2Jc Di means tensoring with
C[x, (x

�1
i

)i2Jc ]. Denoting by M(J) the restriction of M , by ⇡J the projection A! R
J

to the J-components and setting AJ = ⇡J(A), we find the decomposition of M(J) as
M(J) =

L
↵J2AJ

L
kJ2ZJ

M(J)↵J+kJ
,

M(J)↵J+kJ
=

L

↵2⇡�1

J
(↵J )

⇣ L

kJc2ZJc

M↵+(kJ ,0)
x
kJc

⌘
with

being OD(`)
[(x

±1

i
)i2Jc ]-coherent, and after analytification, OD

�
J
-coherent.

15.7.b. Coherent DX-modules of normal crossing type. Given a monodromic
An-module M , its analytification M

an is the OX -module defined so that, for each
open set U ⇢ X,

M
an
(U) = M ⌦C[x] OX(U) = M ⌦An

DX(U).

For each x 2 X, due to C[x]-flatness of the ring OX,x of germs at x of holomorphic
functions, the correspondence M 7!M

an

x
is an exact functor.

This is the prototype of a DX -module of normal crossing type. More precisely:

15.7.11. Definition. Let M be a coherent DX -module. We say that M is of normal
crossing type along D if there exists a monodromic An-module M such that

(15.7.11 ⇤) M 'M
an

=

⇣ L
a2RI

Ma

⌘an

.

The monodromic An-module M can be recovered from M. Let M0 denote the
germ of M at the origin, and for every a 2 R

n let us consider the sub-space M0,a of
M0 defined by

M0,a =
T
i2I

S
k

Ker(xi@xi
� ai)

k
.

This is a C-vector subspace of M0. We have C-linear morphisms xi : M0,a !
M0,a�1i

(resp. @xi
: M0,a !M0,a+1i

) as in the algebraic setting, so that
L

a M0,a

is an An-module. If M = M
an for some monodromic An-module M , then it is easily

checked that (M
an
)0,a = Ma. In conclusion, if M is of normal crossing type, the

An-module
L

a M0,a is monodromic and the natural morphism

(15.7.12) (
L
a
M0,a)⌦C[x] OX = (

L
a
M0,a)⌦An

DX �!M

is an isomorphism.
In the next proposition, we use Notation 15.6.3.

15.7.13. Proposition. Let M be a coherent DX-module which is of normal crossing type
along D. Then the following properties are satisfied.

(1) M is R-specializable along each Di (i 2 I), giving rise to V -filtrations V
(i)

• M.
In particular, all properties of Definition 9.3.18 hold for each filtration V

(i)

• M.
(2) The V -filtrations V

(i)

• M (i 2 I) are distributive, in the sense of Definition
15.1.7 (see also Theorem 15.2.2);
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(3) The DX-module M is uniquely determined, up to isomorphism, from the
DX(logD)-module M60;

(4) For any i 2 I and any ai 2 R, gr
V

(i)

ai
M is of normal crossing type on

(Di,
S

j 6=i
Dj) and V

(j)

• gr
V

(i)

ai
M is the filtration naturally induced by V

(j)

• M on
gr

V
(i)

ai
M, that is,

V
(j)

• gr
V

(i)

ai
M =

V
(j)

• M \ V
(i)

ai
M

V
(j)
• M \ V

(i)

<ai
M

.

(5) For a = (a1, . . . , an) 2 R
n, V (n)

a M is a V
(n)

0 DX-module which is OX-coherent,
and OX-locally free if ai < 0 for all i 2 I.

(6) For any decomposition X = X
0 ⇥ X

00 with projection p
0
, p
00 to X

0
, X
00, and

n = n
0
+ n

00 as in Proposition 15.7.3(4), if a
0 belongs to (R<0)

n
0
, then V

(n0
)

a0 M is
p
0�1OX0-flat.

(7) For any multi-index a 2 R
n, the natural morphism of C[N1, . . . ,Nn]-modules

Ma �! gr
V

(n)

a M := gr
V

(1)

a1
· · · grV

(n)

an
M

is an isomorphism (see Remark 15.2.9 for the multi-grading).
(8) In the setting of (6), for any a

0 in R
n
0
, grV

(n0
)

a0 M is of normal crossing type on
(X
00
,
S

n
00

j=1
D
00
j
), and the natural morphism (

L
a00 M(a0,a00))⌦C[x00] OX00 ! gr

V
(n0

)

a0 M is
an isomorphism.

15.7.14. Caveat. In order to apply Definition 15.1.7, one should regard V
(i)

• M as
a filtration indexed by Z, by numbering the sequence of real numbers ai such
that gr

V
(i)

ai
M 6= 0. See also Section 5.1.d and the setup in Section 10.6.a. Setting

(see Notation (15.6.3 ⇤))

V
(n)

�a
M :=

X

b�a

V
(n)

b M,

the distributivity implies gr
V

(n)

a M = V
(n)

a M/V
(n)

�a
M.

Proof of Proposition 15.7.13.

(1) For each i and ai 2 R, we define

(15.7.15) V
(i)

ai
M = V

(i)

ai
M ⌦

V
(i)

0
C[x]h@xi

V
(i)

0
DX .

Then this filtration satisfies the characteristic properties of the Kashiwara-Malgrange
filtration along Di of a DX -module, since V (i)

• M is the Kashiwara-Malgrange filtration
along Di of M as a C[x]h@xi-module. In such a way, we get the R-specializability of M
along Di.

(2) Let us set M6a = V
(n)

a M and a = (aI ,aJ ,aK) and let us choose a
0
I
6 aI

and a
0
J

6 aJ . We will check the compatibility property, which is equivalent to
distributivity, and amounts to complete the star in any diagram as below in order to
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produce exact sequences:
M6(a0

I
,aJ ,aK)

M6(a0
I
,a0

J
,aK)

//

M6(aI ,aJ ,aK)

M6(aI ,a0
J
,aK)

// ?

M6(a0
I
,aJ ,aK)

OO

// M6(aI ,aJ ,aK)

OO

//

M6(aI ,aJ ,aK)

M6(a0
I
,aJ ,aK)

OO

M6(a0
I
,a0

J
,aK)

OO

// M6(aI ,a0
J
,aK)

OO

//

M6(aI ,a0
J
,aK)

M6(a0
I
,a0

J
,aK)

OO

The order 6 is the partial natural order on R
n: a

0 6 a () a
0
i
6 ai, 8 i. Let us set

R
n
(aI ,a

0
I
,aJ ,a

0
J
,aK) = {a00 2 R

n | a0
I
66 a

00
I
6 aI , a

0
J
66 a

00
J
6 aJ , a

00
K

6 aK}.

Then a natural choice in order to complete the diagram is
? =

L
a002Rn(aI ,a0

I
,aJ ,a0

J
,aK)

Ma00 .

By flatness of V (n)

0 DX over V (n)

0 C[x]h@xi = C[x]hx@xi, the similar diagram for M is
obtained by tensoring by V

(n)

0 DX , and is thus also exact, leading to the compatibility
property of V (i)

• M (i 2 I).
(3) The assertion follows from Proposition 15.7.3(2) and the fact that the isomor-

phism (15.7.12) identifies M60 with M60 ⌦OX
V

(n)

0 DX , as seen in the proof of (1).
(4) Due to the isomorphism (15.7.12), it is enough to prove the result for the

multi-graded module M := gr
V

(n)

M, for which all assertions are clear.
(5) The relation in (1) reduces the proof of (5) to the case of a monodromic M ,

which has been obtained in Proposition 15.7.3(3).
(6) We argue by a double induction exactly as in Proposition 15.7.3(5), by making

use of (4) for the induction.
(7) This is now obvious from the previous description, since gr

V
(n)

a M = gr
V

(n)

a M .
(8) The proof of (8) is also straightforward and left as an exercise.

Morphisms between DX -modules of normal crossing type can also be regarded as
being of normal crossing type, as follows from the next proposition.

Let ' : M1 !M2 be a morphism between coherent DX -modules of normal crossing
type. Then ' is compatible with the V -filtrations V (i)

• and, for every a 2 R
n, its multi-

graded components gr
V

(n)

a M1 ! gr
V

(n)

a M2 do not depend on the order of grading
(according to the compatibility of the V -filtrations and Remark 15.2.12). We denote
this morphism by gr

V
(n)

a '. On the other hand, regarding Ma as a C-submodule of M,
we note that ' sends M1,a to M2,a, due to D-linearity, and has no component from
M1,a to M2,b if b 6= a. We denote by 'a the induced morphism M1,a ! M2,a. The
following is now obvious.

15.7.16. Proposition. The morphism ' is the morphism induced by
L

a 'a by means
of the isomorphism (15.7.12) and, with respect to the isomorphism Ma

⇠�! gr
V

(n)

a M

of Proposition 15.7.13(7), 'a coincides with gr
V

(n)

a '. In particular, ' is uniquely
determined from '60.
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15.7.17. Corollary. The category of DX-modules of normal crossing type along D is
abelian and each morphism is n-strict with respect to V

(1)

• M, . . . , V
(n)

• M.

(See Definition 15.3.1 for the notion of n-strictness.)

Proof. It is quite obvious that the morphism
L

a 'a : M ! N is n-strict with respect
to the V -filtrations of M and N . Due to formula (15.7.15) for the V -filtrations
of M and N, and to flatness of V (i)

0
DX over V

(i)

0
C[x]h@xi, we deduce the n-strictness

of '.

15.7.18. Remarks.
(1) Let us fix i 2 I and set a = (a

0
, ai). By R-specializability along Di we have

isomorphisms

xi : V
(i)

ai
M

⇠�! V
(i)

ai�1M, (ai < 0) and @xi
: gr

V
(i)

ai
M

⇠�! gr
V

(i)

ai+1
M, (ai > �1).

One checks on M , and then on M due to (15.7.12) and 15.7.13(8), that they induce
isomorphisms

xi : V
(n)

a M
⇠�! V

(n)

a�1i
M, (ai < 0)

@xi
: V

(n00
)

a00 gr
V

(i)

ai
M

⇠�! V
(n00

)

a00 gr
V

(i)

ai+1
M, (ai > �1),

(15.7.18 ⇤)

where we have set a
00
= (aj)j 6=i.

(2) For any a 2 (R<0)
n, we can thus regard (V

(n)

a M)
left as an OX -locally free

module of finite rank equipped with a flat D-logarithmic connection. Moreover, for
any a 2 R

n, V
(n)

a MXrD is OXrD locally free, and more precisely V
(n)

a M(⇤D) is
OX(⇤D)-locally free.

15.7.c. Behaviour with respect to localization, dual localization and middle
extension along one component of D

15.7.19. Proposition. Let M be a DX-module of normal crossing type and let io 2 I.
Then

• M(⇤Dio
) and M(!Dio

) are of normal crossing type;
• M = M(⇤Dio

) (resp. M = M(!Dio
)) if and only if vario is bijective (resp. canio

is bijective);
• M(!⇤Dio

) := image[M(⇤Dio
)!M(!Dio

)] is of normal crossing type.
• M = M(!⇤Dio

) if and only if canio is onto and vario is injective.

Proof. This is obtained from Proposition 15.7.7 by flat tensorization with OX .

15.7.20. Definition. We say that M is a middle extension along Di2I if for each i 2 I,
every cani is onto and every vari is injective.

15.7.21. Remark (Suppressing the simplifying assumptions 15.6.2)
If ` < n, we apply the same changes as in Remark 15.7.10. All the previous results

extend in a straightforward way to this setting.
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15.8. Sesquilinear pairings of normal crossing type

In this section, we take up the setting of Section 15.7.b. In the setting of this
chapter (see Section 15.6), we consider the category D-Triples(X).

15.8.1. Definition (Triples of eDX -modules of normal crossing type)
We say that an object eT = ( eM0, eM00, s) of eD-Triples(X) is of normal crossing type

along D if its components eM0, eM00 are strict and the corresponding filtered DX -mod-
ules (M0, F•M

0
), (M00, F•M

00
) are of normal crossing type along D.

We will perform, in higher dimension, an analysis similar to that of Section 7.3.

15.8.a. Basic distributions. The results of §7.3.a in dimension 1 extend in a
straightforward way to X = �

n. We will present them in the same context of left
D-modules. We continue using the simplifying assumptions 15.6.2.

15.8.2. Proposition. Fix b
0
, b
00 2 [�1,1)

n and k 2 N, and suppose a distribution
u 2 Db(�

n
) solves the system of equations

(15.8.2 ⇤) (xi@xi
� b
0
i
)
k
u = (xi@xi

� b
00
i
)
k
u = @xj

u = @xj
u = 0 (i 2 I, j /2 I).

for an integer k > 0.
(a) If b0, b00 2 (�1,1)

n, we have u = 0 unless b
0 � b

00 2 Z
n.

(b) If b0 = b
00
= b, then, up to shrinking �n, u is a C-linear combination of the

basic distributions

(15.8.2 ⇤⇤) ub,p =

Y

i2I
bi>�1

|xi|2bi
L(xi)

pi

pi!

Y

i2I
bi=�1

@xi
@xi

L(xi)
pi+1

(pi + 1)!
,

where 0 6 p1, . . . , pn 6 k � 1. These distributions are C-linearly independent.

Proof. Assume first b
0
, b
00 2 (�1,1)

n. If Suppu ⇢ D, then x
m
u = 0 for some

m 2 N
n and, arguing as in the proof of Proposition 7.3.2, we find u = 0.

Otherwise, set xi = e
⇠i and pullback u as eu on the product of half-planes Re ⇠i > 0.

Set v = e
�b0⇠

e
�b00⇠eu. Then v is annihilated by (@⇠i@⇠

i

)
k for every i = 1, . . . , n —there-

fore by a suitable power of the n-Laplacian
P

i
@⇠i@⇠

i

— and a suitable k > 1, and
by @xj

and @xj
, that we will now omit. By the regularity of the Laplacian, v is C

1

and, arguing with respect to each variable as in Proposition 7.3.2, we find that v is
a polynomial P (⇠, ⇠) and thus eu = e

b0⇠
e
b00⇠

P (⇠, ⇠). We now conclude (a), as well as
(b) for b

0
, b
00 2 (�1,1)

n, as in dimension 1.
In the general case for (b), we will argue by induction on #{i 2 I | bi = �1},

assumed to be > 1. Up to renaming the indices, we write b = (�1,bb) and we
decompose correspondingly p 2 N

n as p = (p1, bp).
By induction we find

|x1|2u =

X

p

cp1+2,p0 · u
(0,bb),p, cp 2 C,
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for pi = 0, . . . k � 1 (i = 1, . . . , n), and this is also written as

|x1|2@x1
@x1

X

q

cqu(0,bb),q,

with qi = 0, . . . k � 1 for i 6= 1 and q1 = 2, . . . , k + 1. Let us set

v = u� @x1
@x1

X

q

cqu(0,bb),q,

so that |x1|2v = 0. A computation similar to that in §7.3.a shows that the basic
distributions u

(0,bb),q satisfy the equations (15.8.2 ⇤) (with respect to the parameter b)
except when q1 = k + 1, in which case we find

(@x1
x1)

k
@x1

@x1
u
(0,bb),(k+1,bq) = (�1)k+1

ubb,bq �(x1),

and similarly when applying (@x1
x1)

k. Here, �(x1) is the distribution � in the vari-
able x1 (see Exercise 7.19): for a distribution w depending on the variables 6= x1, and
for a test form ⌘ of maximal degree, written as ⌘ = ⌘

(1)

o ^ i

2⇡
(dx1 ^ dx1), we set

⌦
⌘, w · �(x1)

↵
:=
⌦
⌘
(1)

o|D1

, w
↵
.

On the other hand, according to Exercise 12.2 and as in Proposition 7.3.3, the
equation |x1|2v = 0 implies

v = v0�(x1) +

X

j>0

�
@
j

x1
(v
0
j
�(x1)) + (@

j

x1
(v
00
j
�(x1))

�
,

where v0, v
0
j
, v
00
j

are sections of DbD1
on a possibly smaller �n�1. Applying (@x1

x1)
k

and its conjugate to

u = @x1
@x1

X

q

cqu(0,bb),q + v0�(x1) +

X

j>0

�
@
j

x1
(v
0
j
�(x1)) + (@

j

x1
(v
00
j
�(x1))

�

yields

0 = (�1)k+1
ck+1,bq · ubb,bq �(x1) +

X

j>1

(�j)k@j
x1
(v
0
j
�(x1)),

0 = (�1)k+1
ck+1,bq · ubb,bq �(x1) +

X

j>1

(�j)k@j
x1
(v
00
j
�(x1)),

By the uniqueness of the decomposition in DbD1
[@x1

, @x1
], we conclude that

ck+1,bq = 0, v
0
j
= v
00
j
= 0 (j > 1),

and finally u =
P

q cqub,q + v0�(x1), up to changing the notation for cq in order
that qi varies in 0, . . . , k � 1 for all i. Now, v0 has to satisfy Equations (15.8.2 ⇤)
on D1, so has a decomposition on the basic distributions (15.8.2 ⇤⇤) on D1 by the
induction hypothesis, and we express v0�(x1) as a basic distribution by using the
formula proved in Exercise 7.19 with respect to the variable x1.
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15.8.b. Sesquilinear pairings between holonomic DX-modules of normal
crossing type

We make explicit the expression of a sesquilinear pairing between holonomic
DX -modules of normal crossing type, by extending to higher dimensions Proposi-
tion 7.3.6. Due to the simplifying assumptions 15.6.2, the modules M

b considered
below are finite dimensional C-vector spaces.

15.8.3. Proposition. Let s be a sesquilinear pairing between M0,M00 of normal crossing
type.

(1) The induced pairing s : M
0b0 ⌦M 00b

00 ! Db�n vanishes if b0 � b
00
/2 Z

n.
(2) If m0 2M

0b and m
00 2M

00b with b > �1, then the induced pairing s(b)(m
0
,m00)

is a C-linear combination of the basic distributions ub,p (p 2 N
n).

As in dimension 1 (see Section 7.3.b), we find a decomposition

s(b) =

X

p2Nn

s
(b)

gp · ub,p,

where s
(b)

gp : M
0b ⌦C M

00b ! C is a sesquilinear pairing (between finite-dimensional
C-vector spaces) and, setting s

b
= s

(b)
g0, we can write in a symbolic way (recall

(7.3.8))

s(b)(m
0
,m00) =

Y

i|bi=�1

@xi
@xi

s
(b)

g

✓ Y

i|bi>�1

|xi|2(bi Id�Ni)
Y

i|bi=�1

|xi|�2Ni � 1

Ni

m
0
,m00

◆
,

where Ni = �(xi@i � bi). As a corollary we obtain:

15.8.4. Corollary. With the assumptions of the proposition, we have

xi@xi
s(m

0
,m00) = xi@xi

s(m
0
,m00).

Notice also that the same property holds for �(xi@xi
�bi) since bi is real. Therefore,

with respect to the nilpotent operator Ni, s : M 0b ⌦M 00b ! DbX satisfies

s(Nim
0
,m00) = s(m

0
,Nim

00).

15.8.5. Remark. In the context of right D-modules, we consider currents instead of
distributions. We denote by ⌦n the (n, n)-form dx1 ^ · · ·^dxn ^dx1 ^ · · ·^dxn, that
we also abbreviate by dx^dx. In order to state similar results, we set a = �b�1 and we
consider the basic currents ⌦nub,p. Given a sesquilinear pairing s : M0⌦CM00 ! C�n ,
the induced pairing s : M

0
a0 ⌦M

00
a00 ! C�n vanishes if a0�a

00
/2 Z

n, and for m0 2M
0
a

and m
00 2M

00
a with a 6 0, the induced pairing s(a)(m

0
,m00) can be written as

s(a)(m
0
,m00) = ⌦nsa

✓
m
0
Y

i|ai<0

|xi|�2(1+ai+Ni)
Y

i|ai=0

|xi|�2Ni � 1

Ni

,m00
◆
·
Y

i|ai=0

@xi
@xi

,

where Ni = (xi@i � ai). Similarly, Ni is self-adjoint with respect to s.
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15.9. Filtered normal crossing type

15.9.a. Coherent filtrations of normal crossing type. We now extend the no-
tion of “normal crossing type” to filtered coherent D-modules. Of course the under-
lying D-module should be of normal crossing type, but the isomorphism (15.7.12),
together with the decomposition (15.7.11 ⇤), is not expected to hold at the filtered
level. This would be a too strong condition.(1) On the other hand, the properties
in Proposition 15.7.13 can be naturally extended to the filtered case. We keep the
simplifying assumptions 15.6.2.

15.9.1. Definition. Let (M, F•M) be a coherently F -filtered DX -module. We say that
(M, F•M) is of normal crossing type along D if

(1) M is of normal crossing type along D (see Definition 15.7.11),
(2) (M, F•M) is R-specializable along Di for every component Di of D (see Sec-

tion 10.5),
(3) the filtrations (F•M, V

(1)

• M, . . . , V
(n)

• M) are distributive (or compatible) (see
Definition 15.1.7 or Section 15.4).

15.9.2. Remarks.
(a) Condition (3) implies that gr

F

p
gr

V
(n)

a M does not depend on the way gr
V

(n)

a M

is computed.
(b) Note that (2) implies 15.7.13(1) for M, and similarly (3) implies 15.7.13(2).

So the condition that M is of normal crossing type along D only adds the existence
of the isomorphism (15.7.12).

(c) Let us recall that V
(n)

a M is OX -coherent for every a 2 R
n (see Proposition

15.7.13(5)). Since FpM is OX -coherent, it follows that FpV
(n)

a M := FpM \ V
(n)

a M

(see §10.5) and gr
F

p
V

(n)

a M are also OX -coherent and therefore the filtration F•V
(n)

a M

is locally finite, hence is a coherent F•V
(n)

0 DX -filtration.
(d) Since each gr

V
(n)

a M is finite dimensional, the induced filtration F•gr
V

(n)

a M is
finite, and there exists a (non-canonical) splitting compatible with F•:

Fpgr
V

(n)

a M '
L
q6p

gr
F

q
gr

V
(n)

a M.

(e) There are a priori two ways for defining the filtration F•Ma, namely, either by
inducing it on Ma ⇢ M, or by inducing it on gr

V
(n)

a M and transport it by means of
the isomorphism Ma

⇠�! gr
V

(n)

a M. We always consider the latter one. The filtration
F•M is a priori not isomorphic to

L
a
F•gr

V
(n)

a M by means of the isomorphism M '
L

a
gr

V
(n)

a M induced by 15.7.13(7) and (15.7.12). Using the compatibility of the
filtrations, we have

FpMa = Ma \ (FpV
(n)

a M+ V
(n)

<a M) ⇢M.

(1)Such a filtered decomposition holds however for monodromic mixed Hodge modules, see [Sai22]
and [CD23].



15.9. FILTERED NORMAL CROSSING TYPE 609

The graded filtered module (
L

a Ma,
L

a F•Ma) is obviously of normal crossing
type if (M, F•M) is so.

As the category of coherently filtered DX -modules is not abelian, one cannot ex-
pect, in contrast with Corollary 15.7.17, that the category of filtered DX -modules of
normal crossing type is abelian. However, some morphisms have kernel and cokernel
in this category.

15.9.3. Proposition. Let ' : (M1, F•M1)! (M2, F•M2) be a morphism between filtered
DX-modules of normal crossing type. Assume that ' is (n+ 1)-strict (see Definition
15.3.1), i.e., CokerRFV ' is C[z, z1, . . . , zn]-flat. Then Ker', Im' and Coker',
equipped with the induced F - and V -filtrations, are filtered DX-modules of normal
crossing type.

Proof. That Property 15.9.1(1) holds for Ker', Im' and Coker' follows from Corol-
lary 15.7.17, and 15.9.1(3) holds by assumption. On the other hand, (n+1)-strictness
of ' implies its 2-strictness for each i, that is, CokerRFV (i)' is C[z, zi]-flat: indeed,
CokerRFV (i)' is obtained by base change zj = 1 for all j 6= i, and flatness is pre-
served by base change. By a similar argument (restricting to zi = 0), we obtain
that for each ai, grV

(i)

ai
(RF') is strict, which means that RF' is strictly R-speciali-

zable along Di, and this implies 15.9.1(2) for Ker', Im' and Coker', according to
Proposition 9.3.31.

15.9.b. Behaviour with respect to specialization, localization, dual local-
ization and middle extension along one component of D

The properties (1) and (2) of Proposition 15.7.13 have been taken as a model for
defining the notion of a filtered DX -module of normal crossing type. We now deduce
the analogues of the stability and flatness properties (4)–(6) of Proposition 15.7.13.

15.9.4. Proposition (Stability by specialization and flatness). Let (M, F•M) be a coher-
ently F -filtered DX-module of normal crossing type along D.

(1) For any i 2 I and any ai 2 R, (gr
V

(i)

ai
M, F•gr

V
(i)

ai
M) is of normal crossing

type on (Di,
S

j 6=i
Dj), where F•gr

V
(i)

ai
M is the filtration naturally induced by F•M on

gr
V

(i)

ai
M.

(2) For a = (a1, . . . , an) 2 R
n and each p 2 Z, grF

p
V

(n)

a M is a coherent OX-module
which is OX-locally free in the neighborhood of D if ai < 0 for all i 2 I.

(3) For any decomposition X = X
0 ⇥ X

00 with projection p
0
: X ! X

0 and n =

n
0
+ n

00 as in Proposition 15.7.3(4), if a
0 belongs to (R<0)

n
0
, then for each p 2 Z,

gr
F

p
V

(n0
)

a0 M is p
0�1OX0-flat in the neighborhood of D.

Proof.
(1) We know by Proposition 15.7.13(4) that gr

V
(i)

ai
M is of normal crossing type

on (Di,
S

j 6=i
Dj), and that the filtrations V

(j)

• on gr
V

(i)

ai
M are naturally induced

by V
(j)

• M. It follows that the family (F•gr
V

(i)

ai
M, (V

(j)

• gr
V

(i)

ai
M)j 6=i) is distributive
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(see Remark 15.1.8). We know, by Proposition 10.7.3, that (gr
V

(i)

ai
M, F•gr

V
(i)

ai
M)

is coherent as a filtered DDi
-module. Note also that, setting a

0
= (aj)j 6=i and

n
0
= (nj)j 6=i, we have

gr
F

p
gr

V
(n0

)

a0 gr
V

(i)

ai
M = gr

F

p
gr

V
(n)

a M

(since, by the distributivity property, we can take graded objects in any order).
The strict R-specializability property along each Dj (j 6= i) remains to be shown,

namely,

xj : FpV
(j)

aj
gr

V
(i)

ai
M

⇠�! FpV
(j)

aj�1gr
V

(i)

ai
M, 8 p, 8 j 6= i, 8 aj < 0,

@xj
: Fpgr

V
(j)

aj
gr

V
(i)

ai
M

⇠�! Fp+1gr
V

(j)

aj+1
gr

V
(i)

ai
M, 8 p, 8 j 6= i, 8 aj > �1.

Let us first show that, by applying gr
V

(i)

ai
, we get isomorphisms

xj : gr
V

(i)

ai
FpV

(j)

aj
M

⇠�! gr
V

(i)

ai
FpV

(j)

aj�1M, 8 p, 8 j 6= i, 8 aj < 0,(15.9.5)

@xj
: gr

V
(i)

ai
Fpgr

V
(j)

aj
M

⇠�! gr
V

(i)

ai
Fp+1gr

V
(j)

aj+1
M, 8 p, 8 j 6= i, 8 aj > �1.(15.9.6)

By the strict R-specializability of (M, F•M) along Dj and since M is of normal crossing
type, so that (15.7.18 ⇤) holds, we have isomorphisms under the conditions of (15.9.5):

FpV
(j)

aj
M

xj���!
⇠

FpV
(j)

aj�1M,

8
<

:
V

(i)

ai
V

(j)

aj
M

V
(i)

<ai
V

(j)

aj
M

xj���!
⇠

8
<

:
V

(i)

ai
V

(j)

aj�1M

V
(i)

<ai
V

(j)

aj�1M,

hence isomorphisms
8
<

:
V

(i)

ai
FpV

(j)

aj
M

V
(i)

<ai
FpV

(j)

aj
M

xj���!
⇠

8
<

:
V

(i)

ai
FpV

(j)

aj�1M

V
(i)

<ai
FpV

(j)

aj�1M,

and thus the isomorphisms (15.9.5). We argue similarly for the isomorphisms (15.9.6).
Now, the desired assertion follows from the compatibility property 15.9.1(3) which
enables us to switch FpV

(j)

aj
or Fpgr

V
(j)

aj
with gr

V
(i)

ai
.

By the same argument as above, the filtered analogue of (15.7.18 ⇤) holds (any
a
0 2 R

n�1, p 2 Z):

FpV
(n0

)

a0 V
(i)

ai
M

xi���!
⇠

FpV
(n0

)

a0 V
(j)

ai�1M if ai < 0,

FpV
(n0

)

a0 gr
V

(i)

ai
M

@xi����!
⇠

Fp+1V
(n0

)

a0 gr
V

(i)

ai+1
M if ai > �1.

(15.9.7)

(2) Coherence has already been noticed (Remark 15.9.2(c)), and we will show
local freeness at the origin, the case of other points of D being similar (and needs to
avoid the simplifying assumption 15.6.2). Therefore, X will denote a small enough
neighbourhood of the origin. Let i0 : 0 ,! X denote the inclusion. From the first
line of (15.9.7) one deduces that i

⇤
0
gr

F

p
V

(n)

a M = gr
F

p
(V

(n)

a M/V
(n)

a�1M). Let us denote
by rk the generic rank on X of a coherent OX -module. By local OX -freeness of
V

(n)

a M, we have rkV
(n)

a M = dim i
⇤
0
V

(n)

a M, and on the other hand, by OX -coherence,
for each p, rk grF

p
V

(n)

a M 6 dim i
⇤
0
gr

F

p
V

(n)

a M with equality if and only if grF
p
V

(n)

a M is
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OX -locally free. It follows that both sums over p of the latter terms are equal, and
therefore these terms are equal for each p.

(3) Iterating the argument in (1) shows that, for any a
00 2 R

n
00
, the coherently

filtered DX0 -module (gr
V

(n00
)

a00 M, F•gr
V

(n00
)

a00 M) is of normal crossing type on (X
0
, D
0
),

with D
0
= {

Q
n
0

i=1
xi = 0}. Therefore, by (2), if ai < 0 for i = 1, . . . , n

0, the O0
X

-module
gr

F

p
V

(n0
)

a0 gr
V

(n00
)

a00 M is locally OX0 -free, hence OX0 -flat. Since gr
F

p
V

(n0
)

a0 V
(n00

)

a00 M is also
OX0 -flat (being OX -locally free) if moreover aj < 0 for all j = n

0
+1, . . . , n

0
+n
00
= n,

it follows by an easy induction that it is also OX0 -flat for any a
00. Passing to the limit

with respect to a
00 yields the OX0 -flatness of grF

p
V

V
(n0

)

a0 M.

The following lemma is similar to Exercise 15.14, but weaker when considering
surjectivity for canio .

15.9.8. Lemma. Assume that (M, F•M) is of normal crossing type along D. Let us fix
i 2 I and let bn be n with i omitted. Then, for every ba 2 R

n�1, each of the following
properties

cani : FpV
(bn)

ba gr
V

(i)

�1 M �! Fp+1V
(bn)

ba gr
V

(i)

0
M is bijective,

vari : FpV
(bn)

ba0 gr
V

(i)

0
M �! FpV

(bn)

ba gr
V

(i)

�1 M is

(
injective,
resp. bijective,

(15.9.8 ⇤)

holds for all p as soon as it holds when omitting V
(bn)

ba .

15.9.9. Remark. As a consequence, if vari is injective, then the first line of (15.9.7)
with j = i also holds for aj = 0. That the lemma does not a priori hold when cani is
only onto leads to the definition below.

15.9.10. Definition (Middle extension along Di2I ). Let (M, F•M) be a coherently
F -filtered DX -module of normal crossing type along D. We say that (M, F•M) is a
middle extension along Di2I if M is a middle extension independently along each Di

(i 2 I) and moreover, for each i 2 I, and every ba 2 R
n�1 (equivalently, every

ba 2 [�1, 0]n�1),

cani : FpV
(bn)

ba gr
V

(i)

�1 M �! Fp+1V
(bn)

ba gr
V

(i)

0
M is onto, 8 p.

If n = 1 this notion is equivalent to that of Definition 9.7.3, but if n > 2 it is a priori
stronger than the condition of filtered middle extension along each Di independently
(see Definition 10.5.1).

15.9.c. Logarithmic filtered normal crossing type. It is easier to deal with
coherent O-modules instead of coherent D-modules. We will focus on the coherent
OX -modules M60 := V

(n)

0 M and M<0 := V
n
<0M =

T
i2I V

(i)

<0
M, the latter being

locally free (Proposition 15.7.13(5)).
Our aim is to deduce properties on F•M from properties on F•M60 and, in the

case of a middle extension along Di2I , from F•M<0. Both are modules over the sheaf
V

(n)

0 DX of logarithmic differential operators. We first explain which properties should
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be expected on the latter V
(n)

0 DX -module, in order to recover the normal crossing
property of (M, F•M) from them. We will then give a criterion to check whether they
are satisfied.

15.9.11. Proposition (Properties of FpV
(n)

a M). Let (M, F•M) be a coherently F -filtered
DX-module of normal crossing type along D. Set M60 := V

(n)

0 M. For a 2 R
n, let

us set FpV
(n)

a M := FpM \ V
(n)

a M. Then

(1) for any a 2 R
n, F•V

(n)

a M is a coherent F•V
(n)

0 DX-filtration;
(2) we have FpM<0 = j⇤(FpM|XrD)\M<0 for any p, where j : XrD is the open

inclusion;
(3) the filtrations (F•M60, V

(1)

• M60, . . . , V
(n)

• M60) are distributive and

FpM =

X

q>0

(Fp�qM60) · FqDX .

Proof. The first point has been seen in Remark 15.9.2(c). For the second point, the
inclusion ⇢ is clear; on the other hand, let m be a local section of j⇤(FpM|XrD)\M<0;
it is also a local section of FqM<0 for q large enough; if q > p, then the class of m in
the locally free OX -module gr

F

q
M<0 (Proposition 15.9.4(2)) is supported on D, hence

is zero.
The distributivity property of the filtrations on M60 clearly follows from that

on M, as noted in Remark 15.1.8(2). By the same argument we have distributivity
for the family of filtrations on each V

(n)

a M (a 2 R
n).

It remains to justify the expression for FpM. We have seen in the proof of Proposi-
tion 15.9.4 that, for k > 0 and any i 2 I, setting k = (k

0
, ki), we have an isomorphism

@xi
: Fp�1V

(n0
)

k0 gr
V

(i)

ki
M

⇠�! FpV
(n0

)

k0 gr
V

(i)

ki+1
M,

and thus
FpV

(n)

k+1i
M = Fp�1V

(n)

k M · @xi
+ FpV

(n)

k M,

which proves (3) by an easy induction.

The property 15.9.11(3) can be made more precise. For ↵ 2 [�1, 0]n and p 2 Z,
let us choose a finite C-vector space E↵,p of sections of FpV

(n)

↵ M which maps bijec-
tively to gr

F

p
gr

V
(n)

↵ M. Given any a 2 R
n, we decompose it as (a

0
,0,a00), where each

component ai of a0 (resp. a00) satisfies ai < 0 (resp. ai > 0). When a is fixed, any
↵ 2 [�1, 0]n decomposes correspondingly as (↵0,↵o

,↵
00
), of respective sizes n0, no, n00.

15.9.12. Proposition. With these assumptions and notation, for every a 2 R
n and

p 2 Z,
• if a < 0, i.e., ai < 0 for all i (i.e., n0 = n), then FpV

(n)

a M is locally OX-free and
decomposes as

FpV
(n)

a M '
L
q6p

L
↵2[�1,0)n

E↵,q ⌦C x
e(↵,a)OX ,

where e(↵,a) 2 N
n is defined by ei(↵,a) = max(0, d↵i � aie);
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• if a = (a
0
,a

o
) with a

o
= 0 (i.e., n00 = 0), then taking the sum in M, we have

FpV
(n)

a M '
X

e↵02[�1,0)no

FpV
(n)

(a0,e↵0
)
M+

X

q6p

X

↵02[�1,0)n0

E(↵0,0),q ⌦ x
e(↵0

,a0
)OX ,

where each FpV
(n)

(a0,e↵0)M is described in the first point;
• In general, we have

FpV
(n)

a M =

X

↵002(�1,0]n00

X

b002Nn
00

8 i, bi+↵i6ai

Fp�|b00|V
(n)

(a0,0,↵00)M · @b
00

x
,

where all terms are described in the previous points.

Proof. The last point is obtained by induction from the second line of (15.9.7), and
the first point comes from the first line of (15.9.7) together with the local OX -freeness
of FpV

(n)

a M if a < 0. The second point is then straightforward.

15.9.13. Remark (The case of a middle extension along Di2I )
In that case (Definition 15.9.10), Proposition 15.9.11 holds with the replacement

of M60 with M<0, and Proposition 15.9.12 reads as follows. We now decompose a

as (a
0
,a
00
), where each component ai of a0 (resp. a00) satisfies ai < 0 (resp. ai > 0),

and correspondingly n = n
0
+ n

00. Then

FpV
(n)

a M =

X

↵2[�1,0)n

X

b002Nn
00

8 i, bi+↵i6ai

E↵,p�|b00| · xe(↵,a�b00
)
@
b00

x
OX ,

where we have set a� b
00
= (a

0
,a
00 � b

00
) and e is as in Proposition 15.9.12.

As the proposition below shows, it is much easier to check R-specializability of
(M, F•M) and distributivity of the filtrations (F•M, V

(1)

• M, . . . , V
(n)

• M) on V
(n)

0 M,
since one does not need to check strictness of the derivations @xi

.

15.9.14. Proposition (From M60 to M). Let M be a coherent DX-module of normal
crossing type along D. Set M60 := V

(n)

0 M. Denote by V
(i)

• M60 the filtration natu-
rally induced by V

(i)

• M and let F•M60 be any coherent F•V
(n)

0 DX-filtration such that
(F•M60, V

(1)

• M60, . . . , V
(n)

• M60) are compatible filtrations and that (M60, F•M60)

is R-specializable along each Di, in the sense that FpV
(i)

ai
M60 · xi = FpV

(i)

ai�1M60 for
every i and ai < 0, and @xi

sends FpV
(i)

�1M60 to Fp+1V
(i)

0
M60. Set

FpM :=

X

q>0

(Fp�qM60) · FqDX .

Then
(1) (M, F•M) is R-specializable along each Di, and for ↵ 2 [�1, 0]n,

FpV
(n)

↵ M60 := FpM60 \ V
(n)

↵ M60 = FpM \ V
(n)

↵ M60,

(2) and (F•M, V
(1)

• M, . . . , V
(n)

• M) are compatible filtrations.
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Before entering the proof of Proposition 15.9.14, let us emphasize a useful criterion
for R-specializability.

15.9.15. Corollary. Let (M, F•M) be a coherently F -filtered DX-module. Assume that
• M is of normal crossing type along D,
• FpM :=

P
q>0

(Fp�qM60) · FqDX ,
• (F•M, V

(1)

• M, . . . , V
(n)

• M) are compatible filtrations.
Then (M, F•M) is of normal crossing type along D if and only if xiFpV

(i)

ai
M60 =

FpV
(i)

ai�1M60 for every i and ai < 0.

Proof. The condition is necessary by definition. Let us show it is sufficient. The
coherent F -filtration F•M induces a coherent F -filtration F•M60 and the family of
induced filtrations (F•M60, V

(1)

• M60, . . . , V
(n)

• M60) on M60 remains distributive.
The assumptions of Proposition 15.9.14 are thus satisfied and the conclusion follows.

15.9.16. Remark. We can replace the above condition with the condition that
xiFpV

(i)

ai
M = FpV

(i)

ai�1M for every i and ai < 0. Indeed, the main point in Proposi-
tion 15.9.14 concerns the behaviour of @xi

, and the latter property is obtained as a
consequence of the condition in the corollary, which is not used otherwise, so we may
as well assume this property.

Proof of Proposition 15.9.14. For every a 2 R
n, there is a natural way to define a

filtration on V
(n)

a M from that on M60 by refining the formula for FpM and setting

(15.9.17) Gp(V
(n)

a M) :=

X

c60, j>0

c+j6a

Fp�|j|V
(n)

c M · @j
x
.

For example, this formula yields Gp(V
(n)

a M) = FpV
(n)

a M if a 6 0, i.e., ai 6 0 for all i.
Similarly, if a00 = (ai)i|ai>0 denotes the “positive part” of a and a

0 the non-positive
part, we have, with obvious notation,

(15.9.18) Gp(V
(n)

a M) =

X

c0060, j00>0

c00
+j006a00

Fp�|j00|V
(n)

(a0,c00)M · @j
00

x00 .

As a consequence, if ai 6 0, we find the relation

(15.9.19) Gp(V
(n)

a M) · xi = Gp(V
(n)

a�1i
M)

and, if ai > �1,

(15.9.20) Gp+1(V
(n)

a+1i
M) = Gp(V

(n)

a M) · @xi
+Gp(V

(n)

a M).

We also note that

lim�!
a

Gp(V
(n)

a M) =

X

c60, j>0

Fp�|j|V
(n)

c M · @j
x
=

X

j>0

Fp�|j|M60 · @j
x
=: FpM.

We set V (i)

• V
(n)

a M = V
(i)

• M\V (n)

a M. We will prove the following properties under
the assumptions in the proposition.
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(a) Let b < a (i.e., bi 6 ai for all i and b 6= a). Then Gp(V
(n)

a M) \ V
(n)

b M =

Gp(V
(n)

b M).
(b) (G•(V

(n)

a M), V
(1)

• V
(n)

a M, . . . , V
(n)

• V
(n)

a M) are compatible filtrations,
(c) the following inclusion is (n+ 1)-strict for b 6 a:

(V
(n)

b M, G•(V
(n)

b M), (V
(i)

• V
(n)

b M)i2I) ,�! (V
(n)

a M, G•(V
(n)

a M), (V
(i)

• V
(n)

a M)i2I).

Let us indicate how to obtain the proposition from (a)–(c). R-specializability of
(M, F•M) along Di amounts to

(
(FpM \ V

(i)

bi
M) · xi = FpM \ V

(i)

bi�1M) if bi 6 0,

Fp+1M \ V
(i)

bi+1
M ⇢ (FpM \ V

(i)

bi
M) · @xi

+ V
(i)

<bi+1
M) if bi > �1.

By taking inductive limit on a > 0 in (a), we obtain

FpM \ V
(n)

b M = Gp(V
(n)

b M)

for every b. From (15.9.19) and (15.9.20), and by taking inductive limit bk ! 1 for
any k 6= i, we obtain that the both properties are fulfilled. The other assertions in
15.9.14 are also obtained by taking the inductive limit on a. We also note that (a)
and (b) for a imply (c) for a, according to Example 15.3.3. Conversely, (c) for a

implies (a) for a.

We will prove (a) and (b) by induction on the lexicographically ordered pair
(n,m,a) with m = |a00|. Let us first exemplify the proof of (a) and (b) in the
case n = 1. Condition (b) is empty. For (a), we can assume a > 0, and it is enough,
by an easy induction on a� b, to prove Gp(V

(1)

a M) \ V
(1)

<a M = Gp(V
(1)

<a M). For that
purpose, we notice that (15.9.20) yields

Gp(V
(1)

a
M) = Gp(V

(1)

<a M) + Fp�kV
(1)

↵
M · @k

x1
,

where k 2 N is such that ↵ := a� k 2 (�1, 0]. Hence

Gp(V
(1)

a
M) \ V

(1)

<a M = Gp(V
(1)

<a M) +
�
Fp�kV

(1)

↵
M · @k

x1
\ V

(1)

<a M
�
.

Since @k
x
: gr

V

↵
M! gr

V

a
M is injective (in fact, an isomorphism), we have the equality

(Fp�jV
(1)

↵
M) · @k

x1
\ V

(1)

<a M = (Fp�jV
(1)

<↵M) · @k
x1
,

so we obtain (a) in this case.
We now assume n > 2. Moreover, if |a00| = 0, i.e., if a 6 0, there is nothing to

prove. For induction purpose (on n), let us make precise how the filtration Gp behaves
under taking gr

V
(i)

ai
. Let us fix i 2 I and let us set

ba = (a1, . . . , ai�1, ai+1, . . . , an), bn = (1, . . . , i� 1, i+ 1, . . . , n), M(ai) = gr
V

(i)

ai
M,

the latter being a DDi
-module of normal crossing type, with the induced filtrations

(V
(j)

• )j 6=i. We set M
(ai)

0
= V

(bn)

0 M(ai), that we equip with the naturally induced
filtrations (V

(j)

• M
(ai)

0
)j 6=i.
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If ai 6 0, we also equip it with the induced filtration F•M
(ai)

0
. In such a case,

by Remark 15.1.8(1), the family (F•M
(ai)

0
, (V

(j)

• M
(ai)

0
)j 6=i) is distributive. We can

thus consider the filtration Gp(V
(bn)

ba (M(ai)).
Assume now ai > 0. We can produce an F -filtration FpM

(ai)

0
in two ways: either

by inducing Gp(V
(n)

b0,ai

M) on M
(ai)

0
= V

(n)

b0,ai

M/V
(n)

b0,<ai

M (by distributivity of the family
(V

(j)

• M)j2I) or, setting ai = ↵i + ki with ↵i 2 (�1, 0] and ki 2 N, by considering
the image of Fp�ki

M
(↵i)

0
by the isomorphism @

ki

xi
: M

(↵i)

0

⇠�! M
(ai)

0
(once more by

distributivity). We claim that both filtrations coincide: indeed, we have by definition

Gp(V
(n)

b0,ai

M) =

X

ci60, ji>0

ci+ji6ai

Fp�ji(V
(n)

b0,ci
M) · @ji

xi
,

which implies

Gp(V
(n)

b0,ai

M) + V
(n)

b0,<ai

M = Fp�ki
(V

(n)

b0,↵i

M) · @ki

xi
+ V

(n)

b0,<ai

M,

as desired. By the second definition, the family (F•M
(ai)

0
, (V

(j)

• M
(ai)

0
)j 6=i), which is the

image by the isomorphism @
ki

xi
of the family (F•M

(↵i)

0
, (V

(j)

• M
(↵i)

0
)j 6=i), is distributive.

For any ba, we can produce the filtration Gp(V
(bn)

ba M(ai)) by a formula similar to
(15.9.18):

Gp(V
(bn)

ba (M(ai)) =

X

bc0060,bj00>0

bc00
+bj006ba00

F
p�|bj00|V

(bn)

(ba0
,bc00

)
M(ai) · @bj

00

x00 .

This filtration is the image by the isomorphism @
ki

xi
, of Gp�ki

(V
(bn)

ba M(↵i)).

15.9.21. Lemma. For any ai, the filtration Gp(V
bn)

ba (M(ai)) is the image of Gp(V
(n)

a M)

by the natural morphism V
(n)

a M! V
(bn)

ba M(ai) = V
(n)

a M/V
(n)

ba,<ai

M.

Proof. Assume first that ai 6 0. By the distributivity assumption in the propo-
sition, the OX -module Fp�|j00|V

(n)

(a0,c00)M induces Fp�|j00|V
(n0

)

( ba0,c00)
M(ai), which implies

that Gp(V
(bn)

ba M(ai)) is the filtration induced by Gp(V
(n)

a M) on M(ai), since @xi
does

not occur in (15.9.18).
If ai > 0, both filtrations considered in the lemma are the images by the isomor-

phism @
ki

xi
of the corresponding filtrations with ai replaced by ↵i: we have noted this

property just above for the first one, and the property for the second one follows from
(15.9.20). Since the latter coincide, according to the first part of the proof, so do the
former.

We now fix (n,m,a) with m = |a00| > 1, and we assume that (a)–(c) holds for
strictly smaller triples.

In order to prove (a), we can argue by decreasing induction on b with b < a, and
we are reduced to the case where b is the predecessor in one direction, say 1, of a,
that is, bi = ai for i 6= 1 and b1 is the predecessor of a1.
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• Assume first that a1 > 0. We will set a1 = ↵1+k1, with ↵1 2 (�1, 0] and k1 2 N.
We then have

Gp(V
(n)

a M) = Gp�1(V
(n)

a�11
M) · @x1

+Gp(V
(n)

b M),

and we are reduced to proving

Gp�1(V
(n)

a�11
M) · @x1

\ V
(n)

b M ⇢ Gp(V
(n)

b M).

Since a1 > 0 and M is of normal crossing type, the morphism

@x1
: V

(bn)

ba�11

M/V
(bn)

bb�11

M
⇠�! V

(bn)

ba M/V
(bn)

bb
M

is injective, so that

Gp�1(V
(n)

a�1i
M) · @xi

\ V
(n)

b M =
⇥
Gp�1(V

(n)

a�1i
M) \ V

(n)

b�1i
M
⇤
· @xi

.

By induction on (m,a), the latter term is contained in Gp�1(V
(n)

b�1i
M) · @xi

, hence in
Gp(V

(n)

b M).
• Let us now assume that a1 6 0. Since |a00| > 1, there exists an index, say i 6= 1,

such that ai > 0. To prove Gp(V
(n)

a M) \ V (n)

b M = Gp(V
(n)

b M) for all p, it is enough
to prove Gp(V

(n)

a M) \ Gp+1(V
(n)

b M) = Gp(V
(n)

b M) for all p, and (replacing p with
p� 1), this amounts to proving for all p the injectivity of

gr
G

p
V

(n)

b M �! gr
G

p
V

(n)

a M.

Set a = (a1, . . . , an) = (ba, ai), and b = (<a1, a2, . . . , an�1, an) = (bb, ai). We will also
consider (ba, <ai) and (bb, <ai). The induction hypothesis on n implies that(a)–(c)
hold for V

(bn)

ba M(ai). Note that V
(bn)

ba M(ai) = V
(n)

(ba,ai)
M/V

(n)

(ba,<ai)
M.

Lemma 15.9.21 provides an exact sequence

(15.9.22) 0 �! GpV
(n)

(ba,<ai)
M �! GpV

(n)

a M �! GpV
(bn)

ba M(ai) �! 0,

and a similar one with b, thus a commutative diagram with horizontal exact sequences:

0 // gr
G

p
V

(n)

(bb,<ai)
M //

✏✏

gr
G

p
V

(n)

b M //

✏✏

gr
G

p
V

(bn)

bb
M(ai) //

✏✏

0

0 // gr
G

p
V

(n)

(ba,<ai)
M // gr

G

p
V

(n)

a M // gr
G

p
V

(bn)

ba M(ai) // 0

By the induction hypothesis on n and |a00|, both extreme vertical arrows are injective
(because |ba00| < |a00| for the left one, and |bn| < n for the right one). We conclude
that the middle vertical arrow is injective, which finishes the proof of (a).

Let us now prove (b). We consider the exact sequence (15.9.22). The induction
hypothesis implies that (b) holds for V

(n)

(ba,<ai)
M and for V

(bn)

ba M(ai). We can apply

Exercise 15.3(3a) to conclude that (b) holds for V
(n)

a M.

15.9.23. Remark (The case of a middle extension along Di2I )
Assume moreover that, in Proposition 15.9.14, M is a middle extension along

each Di (i 2 I). Then we can replace everywhere M60 with M<0 :=
T

i2I V
(i)

<0
M and



618 CHAPTER 15. D-MODULES OF NC TYPE. PART 2: FUNDAMENTAL PROPERTIES

we can moreover conclude that (M, F•M) is a middle extension along Di2I (Definition
15.9.10). In the proof, we modify the definition (15.9.17) of Gp(V

(n)

a M) as follows:
we set

Gp(V
(n)

a M) :=

X

c<0, j>0

c+j6a

Fp�|j|V
(n)

c M · @j
x
.

For example, we have Gp(V
(n)

a M) = FpV
(n)

a M if a < 0, i.e., ai < 0 for all i. As an-
other example, setting c = (c

0
,000) if c 6 0, with c

0
< 00, and correspondingly

n = n
0
+ n

00, we have

Gp(V
(n)

0 M) =

X

c=(c0
,000

)

c0
<00

Fp�n00V
(n)

(c0,�100)M · @x00 .

A useful example. Let M be a D-module of normal crossing type which is a middle
extension along each Di (i 2 I) and let us consider the locally free O-module M<0 =

V
(n)

<0 M, equipped with the induced filtrations V
(i)

• M<0 (which are thus compatible).
For a < 0, we have

V
(n)

a M<0 :=
T
i

V
(i)

ai
M<0 = V

(n)

a M \M<0.

Let F•M|XrD be a coherent (finite) D-filtration such that each gr
F

p
M|XrD is O-locally

free and let us set
F•M<0 = j⇤F•M|XrD \M<0

and
FpM =

X

q>0

Fp�qM<0 · FqDX .

15.9.24. Proposition. With these assumptions, let us moreover assume that, for each p

and a, grF
p
V

(n)

a M<0 is O-locally free and that the natural morphism

FpV
(n)

a M<0 = V
(n)

a FpM<0 �! V
(n)

a gr
F

p
M<0

is onto. Then the filtered D-module (M, F•M) is of normal crossing type and a middle
extension along Di2I .

The morphism in the proposition reads
T
i

�
V

(i)

ai
M<0 \ FpM<0

�
�!

T
i

�
(V

(i)

ai
M<0 \ FpM<0) + Fp�1M<0

� �
Fp�1M<0

and the condition amounts to the equality
T
i

�
V

(i)

ai
M<0 \ FpM<0

�
+ Fp�1M<0 =

T
i

�
(V

(i)

ai
M<0 \ FpM<0) + Fp�1M<0

�
.

Proof. We consider the filtrations F•, V
(1)

• , . . . , V
(n)

• on M<0. Except possibly com-
patibility, they satisfy the assumptions of Proposition 15.9.14 in the setting of Remark
15.9.23. We will show that they are compatible. For that purpose, we will use the cri-
terion in term of flatness of Theorem 15.2.2, and more precisely the criterion in terms
of regular sequences of Corollary 15.2.5 together with the criteria of Exercise 15.2.
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We note (see proof of Proposition 15.2.10) that the second assumption is equivalent
to the property that, for each p,a, the natural morphism

gr
F

p
V

(n)

a M<0 �! V
(n)

a gr
F

p
M<0

is an isomorphism, and the first assertion implies that the latter is O-locally free.
We consider the multi-Rees module RFV M<0, which is a C[z0, z1, . . . , zn]-module.

Exercise 15.2(2b) shows that it is flat if any subsequence of z0, z1, . . . , zn is regular.
• If the subsequence does not contain zo, then we apply Proposition 15.2.14 with

E = FpM<0 for each p. The assumption of freeness of each gr
F

p
V

(n)

a M<0 implies that
of V (n)

a FpM<0, so 15.2.14(1) is satisfied. 15.2.14(2) is also satisfied according to the
definition of FpM<0.

• If the subsequence contains zo, we are considering flatness for RV gr
FM<0.

We apply Proposition 15.2.14 once more, now with E = gr
F

p
M<0 for each p, and

freeness of each V
(n)

a gr
F

p
M<0 implies that 15.2.14(1) is satisfied. Similarly, 15.2.14(2)

is also satisfied according to the definition of FpM<0.

15.10. Exercises

Exercise 15.7. Let M be a monodromic An-module. Show that xi : Ma ! Ma�1i
is

an isomorphism if ai < 0 and @xi
: Ma !Ma+1i

is an isomorphism if ai > �1.

Exercise 15.8. Without the simplifying assumption 15.6.2, show that a monodromic
An-module is of finite type over C[x]h@xi. Moreover, show that V

(n)

b M :=
L

a6b Ma

is a C[x]hx@xi-module which is of finite type over C[x], and C[x]-free if bi < 0 for all
i 2 I. Extend similarly all results of Proposition 15.7.3.

Exercise 15.9. Let io 2 I and let M↵+Zn be a monodromic An-module with the single
exponent ↵ 2 [�1, 0)n.

(1) Show that M↵+Zn is supported on Dio
if and only if ↵io

= �1 and, for k 2 Z
n,

M↵+k = 0 if kio 6 0, that is, if and only if io 2 I(↵) and, setting k = (k
0
, kio), every

vertex M↵+(k0
,0) of the quiver of M↵+Zn is zero.

(2) Show that M↵+Zn = M↵+Zn(⇤Dio
), i.e., xio

acts in a bijective way on M↵+Zn ,
if and only if io /2 I(↵) or io 2 I(↵) and vario is an isomorphism.

(3) Show that the quiver of M↵+Zn(⇤Dio
) is that of M↵+Zn if io /2 I(↵) and,

otherwise, setting k = (k
0
, kio), is isomorphic to the quiver is obtained from that of

M↵+Zn by replacing M↵+(k0
,0) with M↵+(k0

,�1), vario with Id and canio with Nio
.

Let now M be any monodromic An-module, and consider its quiver as in Remark
15.7.6.

(4) Show that M is supported on Dio
if and only if, for any exponent ↵ 2 [�1, 0)n,

we have ↵io
= �1 and every vertex of the quiver with index k 2 {0, 1}n satisfying

kio = 0 vanishes.
(5) Show that M = M(⇤Dio

) if and only if vario is bijective.
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Exercise 15.10. Define the endofunctors (!Dio
), (!⇤Dio

) of the category of monodromic
An-modules in such a way that the quiver of M↵+Zn(!Dio

), resp. M↵+Zn(!⇤Dio
) is that

of M↵+Zn if io /2 I(↵) and, otherwise, setting k = (k
0
, kio), the quiver is obtained

from that of M↵+Zn by replacing
• M↵+(k0

,�1) with M↵+(k0
,0), vario with Nio

and canio with Id,
• resp. M↵+(k0

,0) with image[Nio
: M↵+(k0

,�1) ! M↵+(k0
,�1)], vario with the nat-

ural inclusion and canio with Nio
.

Show that there is a natural morphism M(!Dio
)!M(⇤Dio

) whose image is M(!⇤Dio
).

Exercise 15.11. Say that M is a middle extension along Di2I with support in D if, for
each i 2 I, either the source of cani is zero, or cani is onto and vari is injective. In
other words, we accept An-modules supported on the intersection of some components
of D, which are middle extension along any of the other components.

Show that any monodromic An-module M is a successive extension of such
An-modules which are middle extensions along Di2I with support in D.

Exercise 15.12 (Proof of Proposition 15.7.13(8)). Show in detail the statement of this
proposition.

Exercise 15.13. Let M be a coherent DX -module of normal crossing type along
Di2I . Show that M is a successive extension of DX -modules of normal crossing
type along Di2I , each of which being moreover a middle extension along Di2I with
support in D. [Hint : Use Exercise 15.11.]

Exercise 15.14. Assume that M is of normal crossing type along Di2I . Let us fix i 2 I

and a = (ba, ai). Show that, for every ba 2 R
n�1, each of the following properties

cani : V
(bn)

ba gr
V

(i)

�1 M �! V
(bn)

ba gr
V

(i)

0
M is onto, resp. bijective,

vari : V
(bn)

ba gr
V

(i)

0
M �! V

(bn)

ba gr
V

(i)

�1 M is injective, resp. bijective,

holds as soon as it holds when omitting V
(bn)

ba . [Hint : Work first with the monodromic
M ; show that the morphism xi : gr

V
(i)

0
M ! gr

V
(i)

�1 M decomposes as the direct sum of
morphisms xi : M(ba,0) !M(ba,�1), and similarly for @xi

; conclude that vari is injective
(resp. bijective) or cani is surjective (resp. bijective) if and only if each ba-component
is so; conclude for M by flat tensorization.]



CHAPTER 15

eD-MODULES OF NORMAL CROSSING TYPE
PART 3: NEARBY CYCLES ALONG A MONOMIAL FUNCTION

Summary. In this part, we compute the nearby cycles of a filtered holonomic
DX -module of normal crossing type along a monomial function. As in Part 2,
the case of a monodromic DX -module is simpler, while not straightforward, and
we will be able to give an explicit expression of the monodromic decomposition
of nearby cycles in this case, together with the behavior of a sesquilinear pairing.
The case of DX -modules of normal crossing type is obtained by analytification,
while the case of filtered DX -modules of normal crossing type needs more care,
as the behavior of the compatibility property of filtrations after taking nearby
cycles is delicate.

15.11. Introduction

Let (M, F•M) be a coherently filtered DX -module which is of normal crossing type
along a normal crossing divisor D. Our main objective in this part is to analyze the
nearby cycles of such a filtered D-module along a monomial function g = x

e (with
respect to coordinates adapted to D) in a way similar to that of Proposition 15.9.4,
where the function g is a coordinate. It is stated as follows, where the still undefined
notions will be explained with details below.

15.11.1. Theorem (Strict R-specializability and normal crossing type)
Let (M, F•M) be a coherently F -filtered DX-module of normal crossing type

along D. Assume that (M, F•M) is a middle extension along Di2I (Definition
15.9.10). Then (M, F•M) is R-specializable and a middle extension along (g).
Moreover, for every � 2 S

1, ( g,�M, F• g,�M) is of normal crossing type along D.

A special case of this theorem has already been proved in Section 9.9.c (Proposition
9.9.12) and used in the proof of Theorem 14.6.1 showing that polarizable variations
of Hodge structure are polarizable Hodge modules. In turn, Theorem 15.11.1 will be
one of the ingredients in the proof of the structure theorem 16.2.1 in Chapter 16.
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This theorem also clarifies the relation between the notion of middle extension
along Di2I and middle extension along D in the filtered setting. Indeed, by taking
for g a reduced equation of D, we obtain:

15.11.2. Corollary (Middle extension and localizability). Under the assumptions of The-
orem 15.11.1, (M, F•M) is a middle extension along D.

It can be noticed that Theorem 15.11.1 extends in an obvious way to triples of
normal crossing type along D, according to Definition 15.8.1.

15.11.3. Notation. We keep the notation 15.6.1, so that D = {x1 · · ·x` = 0}. We also
keep the simplifying assumption 15.6.2, so that ` = n. Given g(x) = x

e
:=

Q
i2I x

ei

i

(ei 2 N), the indices for which ei = 0 do not play an important role. Let us denote by

Ie := {i | ei 6= 0} ⇢ {1, . . . , n}

the subset of relevant indices and r = #Ie. Accordingly, we decompose the set of
variables (x1, . . . , xn) as (x

0
, x
00
), with x

0
= (xi)i2Ie . We rename the indices so that

Ie = {1, . . . , r},

with 1 6 r 6 n. We decompose correspondingly X as X = X
0 ⇥X

00. We set

�j =
xj@xj

ej
� x1@x1

e1
, j = 2, . . . , r, i.e., j 2 Ie r {1}.

We denote by ◆g the graph inclusion x 7! (x, t = g(x)), and we consider the pushfor-
ward filtered D-module (Mg, F•Mg) = D◆g⇤(M, F•M) (see Example 8.7.7). We write
Mg = ◆g⇤M⌦CC[@t] with the action of DX⇥C defined as follows, according to (8.7.7 ⇤):

(m⌦ @`
t
) · @t = m⌦ @`+1

t

(m⌦ 1) · @xi
= m@xi

⌦ 1� (eimx
e�1i)⌦ @t

(m⌦ 1) · f(x, t) = mf(x, x
e
)⌦ 1.

(15.11.3 ⇤)

As a consequence, for i 2 {1, . . . , r} we have

(15.11.3 ⇤⇤) (m⌦ 1) · t@t = (mx
e ⌦ 1) · @t =

1

ei

⇥
(mxi@xi

⌦ 1)� (m⌦ 1)xi@xi

⇤
.

Furthermore, the F -filtration is that obtained by convolution:

FpMg =

X

q+k=p

◆g⇤(FpM)⌦ @k
t
.

In the following, we omit the functor ◆g⇤ in the notation.
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15.12. Proof of Theorem 15.11.1 omitting the F -filtration

We forget about the F -filtration in this section. We set

D0
X

= OXh@x1
, . . . , @xr

i = DX0⇥X00/X00 ,

V
(r)
0

D0
X

=

rT
i=1

V
(i)

0
D0

X
,

V
(r)
↵e M =

rT
i=1

V
(i)

↵ei
M

(see Notation 15.6.3), the latter being a V
(r)
0

D0
X

-module.

15.12.a. R-specializability of M along (g). We show that M is R-specializable
along (g) by making explicit the V -filtration of Mg along (t). In the proposition below,
we regard V

(r)
↵e M⌦1 and

L
k
(V

(r)
↵e M⌦@k

t
) as OX -submodules of Mg =

L
k
(M⌦@k

t
).

15.12.1. Proposition (R-specializability of Mg along (t)). The DX⇥C-module Mg is
R-specializable along (t). Furthermore, the V -filtration of Mg is obtained from the
V -filtrations V

(i)

• M by the formula

(15.12.1 ⇤) V↵Mg = (V
(r)
↵e M⌦ 1) ·D0

X
[t@t] = (V

(r)
↵e M⌦ 1) ·D0

X
, if ↵ < 0,

and, for ↵ 2 [�1, 0) and j > 1, by the inductive formula

(15.12.1 ⇤⇤) V↵+jMg = V↵Mg · @jt + V<↵+jMg.

The second equality in (15.12.1 ⇤) follows from the expression of the action of t@t
deduced from Formula (15.11.3 ⇤⇤).

Proof. Let us denote by U•Mg the filtration defined in the proposition. We will show
that U•Mg satisfies the characteristic properties of the V -filtration along (t).

The inclusions U↵Mg · t ⇢ U↵�1Mg and U↵Mg · @t ⇢ U↵+1Mg are easily obtained
for any ↵. Furthermore, the stability by D0

X
is by definition, and if i > r, @xi

acts on
m⌦ 1 by m@xi

⌦ 1, according to Formula (15.11.3 ⇤). In other words, U↵Mg is stable
by DX⇥C/C. All this shows in particular that U↵Mg is a V0(DX⇥C)-module.

For ↵ < 0, we have U↵Mg · t = U↵�1Mg since

(V
(r)
↵e M⌦ 1) · t = V

(r)
↵e Mx

e ⌦ 1 = V
(r)
(↵�1)eM⌦ 1.

Furthermore, as V (r)
↵e M is locally finitely generated over V (r)

0
DX , it follows that U↵Mg

is locally finitely generated over V0(DX⇥C), hence coherent (argue e.g. as in Exercise
8.63(5)). In order to conclude that U•Mg is a coherent V -filtration along (t), it
remains to be proved that Mg =

S
↵
U↵Mg, and so it is enough to prove that any

local section of M⌦ 1, equivalently any local section of V (r)
a M for any a, belongs to

some U↵Mg.
If m 2 V

(r)
a M for some a 2 R

r, the middle extension property of M along Di2I
implies that m is a finite sum of terms mk · @k

x
with k = (k1, . . . , kr), ki > 0, and

mk 2 V
(r)
a(k)M with ai(k) < 0 for each i = 1, . . . , r. Therefore, there exist ↵ < 0 such
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that mk 2 V
(r)
↵e M for each k. We can thus use iteratively (15.11.3 ⇤) to write any

local section of V (r)
a M⌦1 as a sum of terms (µk,`⌦1) ·@k

x
@
`

t
, where each µk,` belongs

to V
(r)
↵e M for some ↵ < 0.

It remains to be shown that (t@t � ↵) is nilpotent on gr
U

↵
Mg if ↵ < 0.

15.12.2. Notation. In order to distinguish between the action of xi@xi
trivially coming

from that on M and the action xi@xi
on Mg, it will be convenient to denote by Di

the first one, defined by

(m⌦ @`
t
) ·Di = (mxi@xi

)⌦ @`
t
.

Then we can rewrite Di as

(m⌦ @`
t
) ·Di = (m⌦ 1) · (xi@xi

+ eit@t)@
`

t
= (m⌦ @`

t
) · (xi@xi

+ ei(t@t � `)),

a formula that can also be read

(15.12.3) (m⌦ @`
t
) · xi@xi

= (m⌦ @`
t
) · (Di � eit@t + ei`).

We first notice that there exists ↵0 < ↵ such that, for each i = 1, . . . , n, some power
of (Di�↵ei) sends (V (i)

↵eiM⌦1) to (V
(i)

↵0ei
M⌦1). Therefore, a power of

Q
i2Ie(Di�↵ei)

sends (V
(r)
↵e M⌦ 1) to (V

(r)
↵0eM⌦ 1). It is thus enough to check that

Q
i2Ie(Di � eit@t)

sends (V
(r)
↵e M⌦ 1) into U↵0(Mg) for some ↵0 < ↵. We have ↵e� 1Ie 6 ↵

0
e for some

↵
0
< ↵, so (V

(r)
↵e M⌦ 1) ·

Q
i2Ie xi ⇢ (V

(r)
↵0eM⌦ 1), and thus

(V
(r)
↵e M⌦ 1) ·

Y

i2Ie

xi@xi
⇢ (V

(r)
↵0eM⌦ 1) ·

Y

i2Ie

@xi
⇢ U↵0(Mg).

Therefore, by (15.12.3),

(V
(r)
↵e M⌦ 1) ·

Y

i2Ie

(Di � eit@t) ⇢ U↵0(Mg).

15.12.4. Corollary (Middle extension property of Mg along (t))
The DX⇥C-module Mg satisfies the equality Mg = Mg[!⇤t].

Proof. We first remark that t acts injectively on Mg: if we consider the filtration
G•Mg by the degree in @t, then the action of t on gr

GMg ' M[⌧ ] is equal to the
induced action of x

e on M[⌧ ], hence is injective by the assumption that M is a
middle extension along Di2I ; a fortiori, the action of t on Mg is injective. We thus
have Mg ⇢Mg[⇤t]. By Formula (15.12.1 ⇤⇤) and the exhaustivity of V•Mg, Mg is the
image of V<0Mg⌦V0DX⇥C DX⇥C in Mg[⇤t]. This is nothing but Mg[!⇤t] (see Definition
11.5.2 and Definition 11.4.1).

15.12.b. A resolution of V↵Mg. We continue by providing a suitable presentation
of V↵Mg for ↵ 2 R, that we will later enrich with an F -filtration. The tensor product

K0

↵
= V

(r)
↵e M⌦OX

D0
X

has the structure of a right V
(r)
0

D0
X

-module with the tensor structure and of a
right D0

X
-module with the trivial structure. This trivial structure extends as a right
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DX -module structure by setting (m ⌦ 1)@xi
= m@xi

⌦ 1 for i /2 Ie. Both structures
commute with each other (see Exercise 8.19).

Since the operators ·tens�j pairwise commute (j = 2, . . . , r) and commute with the
right DX -module structure, we can consider the Koszul complex

K
•
↵
= K

�
V

(r)
↵e M⌦OX

D0
X
, (·tens�j)j=2,...,r

�

(i.e., the simple complex associated with the (r�1)-cube with arrows in the direction j

all equal to ·tens�j).

15.12.5. Proposition (A resolution of V↵Mg). For each ↵ < 0, the Koszul complex K•
↵

is a resolution of V↵Mg via the right DX-linear surjective morphism

(15.12.5 ⇤)
K0

↵
= V

(r)
↵e M⌦OX

D0
X
�! V↵Mg

m⌦ P 7�! (m⌦ 1) · P.

Beware that the tensor products on both sides of (15.12.5 ⇤) do not have the same
meaning.

Let J be a subset of {1, . . . , r}, let Jc denote its supplementary subset, and let D�
J

be the stratum of D defined as
T

i2J Di r
S

i2Jc Di. Let AJ denote the projection
of A (see Definition 15.7.2) on the J-components and let eJ denote the J-components
of e.

15.12.6. Corollary (Jumping indices for V•Mg and resolution of grV
↵
Mg)

For ↵ < 0, gr
V

↵
Mg vanishes (in some neighborhood of the origin) unless there

exists i 2 Ie = {1, . . . , r} such that ↵ei 2 Ai + Z. Furthermore, setting K•
<↵

= K•
↵�"

for " > 0 small enough, the Koszul complex

K
�
(V

(r)
↵e M/V

(r)
(↵�")eM)⌦OX

D0
X
, (·tens�j)j=2,...,r

�
= K

•
↵
/K

•
<↵

is a resolution of grV
↵
Mg as a right DX-module.

15.12.7. Example. Assume that ei = 1 for every i 2 Ie, that is, g = x1 · · ·xr. Then
the set of �’s such that  g,�M 6= 0 is contained in the union of the sets of �’s such
that  xi,�

M 6= 0 for some i 2 Ie.

Proof of Proposition 15.12.5. For "> 0, the surjectivity of (15.12.5 ⇤) implies that of
the morphism

�
V

(r)
↵e M/V

(r)
(↵�")eM

�
⌦OX

D0
X
! gr

V

↵
Mg. If " is small enough, the source

of this morphism reads ✓ L
a2A+Zn

9 i2Ie, ai=↵ei

Ma

◆
⌦C[x] D

0
X
,

hence the first assertion, according to Remark 15.7.10. For the second assertion,
since K•

↵
, resp. K•

<↵
, is a resolution of V↵Mg, resp. V<↵Mg, and since the morphism

V<↵Mg ! V↵Mg is injective, one deduces that K•
↵
/K•

<↵
is a resolution of grV

↵
Mg.

We will make use of the next general lemma, whose proof is left as Exercise 15.15.
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15.12.8. Lemma. Let A be a commutative ring and let (a1, . . . , ar) be a finite sequence
of elements of A. Let M be an A-module. If (a2, . . . , ar) is a regular sequence on M ,
then the sequence

�
(a2 ⌦ u2 � a1 ⌦ u1), . . . , (ar ⌦ ur � a1 ⌦ u1)

�
is a regular sequence

on M ⌦A A[u1, . . . , un]. Furthermore, let fM be the quotient module
�
M ⌦A A[u1, . . . , un]

�
/
�
(aj ⌦ uj � a1 ⌦ u1)j=2,...,r

�

considered as an A[u1, u
0
]-module (with u

0
= (u2, . . . , ur)), equipped with the filtrations

F
(2)

• , . . . , F
(r)

• induced by the filtrations by the degree in u2, . . . , ur on A[u1, u2, . . . , ur].
Then the (r � 1)-graded module gr

F
(r) · · · grF (2) fM is isomorphic to

L
k2Nr�1

�
M/(a

k2

2
, . . . , a

kr

r
)
�
⌦A u

0k
A[u1],

where the action of u
0` is via the natural (injective) morphism M/(a

k2

2
, . . . , a

kr

r
) !

M/(a
k2+`2

2
, . . . , a

kr+`r
r

).

Proof of Proposition 15.12.5. It is enough to consider the algebraic case of a mon-
odromic C[x]h@xi-module since, by assumption, M = M ⌦C[x]h@xi DX and a simi-
lar property for Mg, and since this is a flat extension. We set An = C[x]h@xi and
A
0
n
= C[x]h@x1

, . . . , @xr
i. Let M be a monodromic An-module. We set Mg = D◆g⇤M '

M [@t], which is an An+1-module, with An+1 = C[x, t]h@x, @ti. Note that Mg is natu-
rally graded: Mg =

L
a,` Ma ⌦ @`t .

(1) We start with showing that the Koszul complex

K
•
↵
= K

�
V

(r)
↵e M ⌦C[x] A

0
n
, (·tens�j)j=2,...,r

�

is exact in nonzero degrees. We can simplify this complex by considering the filtration
F•A

0
n

by the degree of differential operators, so that gr
F
A
0
n
' C[x, ⇠

0
]. The differen-

tials are of F -degree one, so we can filter the complex by setting (FpK↵)
k
= Fp+k(K

k

↵
),

with Fq(V
(r)
↵e M ⌦C[x] A0n) = V

(r)
↵e M ⌦C[x] FqA

0
n
. The morphism induced by ·tens�j on

gr
F
K

0

↵
is Id⌦(xj⇠j/ej � x1⇠1/e1) and the corresponding Koszul complex reads

gr
F
K

•
↵
=
�
V

(r)
↵e M ⌦C[x] C[x, ⇠

0
], (xj⇠j/ej � x1⇠1/e1)j=2,...,r

�

' K
�
V

(r)
↵e M ⌦C C[⇠

0
], (xj ⌦ ⇠j/ej � x1 ⌦ ⇠1/e1)j=2,...,r

�
.

Since V
(r)
↵e M is C[x0]-flat by Proposition 15.7.3(5), the sequence (x2, . . . , xr) is regular

on it, and the first part of Lemma 15.12.8, together with Exercise 15.2, shows that
gr

F
K

•
↵

is exact in negative degrees. The same property holds true for K
•
↵

since the
filtration F• is bounded below.

(2) It remains to identify the kernel of the morphism (15.12.5 ⇤), which is surjective
according to the identification (15.12.1 ⇤). Note first that every element of the form

m⌦ �j �m�j ⌦ 1
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belongs to the kernel of this morphism, according to Formula (15.11.3 ⇤⇤), and the
morphism

(15.12.9)
(V

(r)
↵e M ⌦C[x] A

0
n
)
r�1 �! V

(r)
↵e M ⌦C[x] A

0
n

(mj ⌦ Pj)j=2,...,r 7�!
X

j

(mj ⌦ �jPj �mj�j ⌦ Pj)

has image contained in the kernel of the morphism (15.12.5 ⇤). We can write

V
(r)
↵e M ⌦C[x] A

0
n
=

L
k2Nr

V
(r)
↵e M ⌦ @k

x0 ,

with the (A0+Z
r
)-grading such that Ma⌦@kx0 is of degree a0+k with a

0
:= (a1, . . . , ar).

We also consider the (A
0
+Z

r
)-grading on Mg =

L
a,` Ma ⌦ @`t such that Ma ⌦ @`t is

of degree a
0
+ `e. Then (15.11.3 ⇤) shows that the morphism V

(r)
↵e M ⌦C[x] A0n !Mg

is (A
0
+ Z

r
)-graded, hence so is its kernel.

We first find a simple representative, modulo the image of (15.12.9), of any homoge-
neous element of V (r)

↵e M⌦C[x]A0n. Let µ =
P

k2Nr mk⌦@kx0 be a homogeneous element
of degree a

0o, so that 0 6= mk 2 Ma(k) with a
0
(k) 6 ↵e and a

0
(k) + k = a

0o. Let us
set ko

= max(0, da0o�↵ee) componentwise. Then mk 6= 0) k > k
o componentwise.

For each i, we have ao
i
�ko

i
6 ↵ei < 0, so that ai(k)+ki�koi < 0 and multiplication

by x
ki�ko

i

i
: Ma(k)+(ki�ko

i
)1i
! Ma(k) is bijective. We can thus divide mk by x

ki�ko

i

i

for each i = 1, . . . , r and write

mk ⌦ @kx0 = µk ⌦ (x
k�ko

@
k�ko

x0 )@
ko

x0 ,

with µk 2 Ma0o�ko since a(k) + k � k
o
= a

0o � k
o. This can be rewritten as a sum

of terms eµj ⌦ (x
0
@x0)

j
@
ko

x0 with µj 2 Ma0o�ko and each component ji varying from 0

to ki � k
o

i
. Iterating the equality

eµj ⌦ (xi@xi
)@

ko

x0 = eµj�i ⌦ @k
o

x0 +
ei

e1
eµj ⌦ (x1@x1

)@
ko

x0 mod image (15.12.9),

we see that eµj ⌦ (x
0
@x0)

j
@
ko

x0 is equivalent, modulo the image of (15.12.9), to a sum of
terms bµ`(x1@x1

)
`
@
ko

x0 with bµ` 2 Ma0o�ko for each `. In conclusion, modulo the image
of (15.12.9), µ is equivalent to an expression of the form

`
oX

`=0

⌫` ⌦ (x1@x1
)
`
@
ko

x0 ,

for some `o > 0, with ⌫` 2Ma0o�ko for each `. If the image of the above element in N

is zero, the coefficient of @|k
o|+`

o

t
, up to a nonzero constant, which is equal to

⌫`ox
0(|ko|+`

o
)e�ko

,

is thus equal to zero. We notice that each component of |ko|e � k
o is nonnegative.

Since a
o

i
� k

o

i
< 0 for each i = 1, . . . , r, multiplication by x

0(|ko|+`
o
)e�ko

is injective
on Ma0o�ko , so that this implies that ⌫`o = 0, and thus ⌫ = 0, hence the desired
surjectivity of (15.12.9) onto the kernel of the morphism in the proposition.
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15.12.c. Normal crossing type of gr
V

↵
Mg

15.12.10. Corollary (Normal crossing type of grV
↵
Mg). For each ↵ < 0, gr

V

↵
Mg is of

normal crossing type.

Proof. We prove the analogous statement for a monodromic An-module, the case of
a DX -module of normal crossing type begin obtained by tensoring with OX . Recall
that Ni (i = 1, . . . , n) denotes the action of xi@xi

� ai on Ma for a 2 A + Z
n,

and N denotes the action of t@t � ↵ on gr
V

↵
Mg. For m 2 Ma and m ⌦ 1 2 N ,

Formula (15.11.3 ⇤⇤) implies

(m⌦ 1)xi@xi
= (Ni + ai)m⌦ 1� eim⌦ t@t.

If a0 6 ↵e, (m⌦ 1) is a section of V↵Mg and its image [m⌦ 1] in gr
V

↵
Mg satisfies

(15.12.11) [m⌦ 1]xi@xi
= [(Ni + ai)m⌦ 1]� ei(N + ↵)[m⌦ 1].

Since Ni and N are nilpotent, it follows that [m⌦ 1](xi@xi
�ai+↵ei)

k
= 0 for k � 0.

As a consequence, the image of Ma⌦1 ⇢ V
(r)
↵e M ⌦C[x]A0n in gr

V

↵
Mg by the morphism

(15.12.5 ⇤) is contained in (gr
V

↵
Mg)b with b = a � ↵e. More generally, the image in

gr
V

↵
Mg of Ma ⌦ @kx0 is contained in (gr

V

↵
Mg)b with b = a+ k� ↵e (by setting ki = 0

for i > r).
Since gr

V

↵
Mg is of finite type over An, there exists a maximal finite subset

B ⇢ [�1, 0)n such that
L

b2B+Zn(gr
V

↵
Mg)b ! gr

V

↵
Mg is injective. Furthermore,

by the above argument, the morphism V
(r)
↵e M ⌦C[x] A0n ! gr

V

↵
Mg factorizes throughL

b2B+Zn(gr
V

↵
Mg)b. Since this morphism is surjective by the monodromic analogue

of Proposition 15.12.1, we deduce that
L

b2B+Zn

(gr
V

↵
Mg)b = gr

V

↵
Mg.

In order to conclude that gr
V

↵
Mg is monodromic, we are left with showing that,

for each b, (grV
↵
Mg)b is finite-dimensional. By the above argument, the direct sum of

the terms Ma ⌦ @kx0 with a varying in A+ Z
n and k in Z

r such that a+ k = b+ ↵e

maps onto (gr
V

↵
Mg)b. In particular, the components ar+1, . . . , an of a are fixed. Let

us choose ko big enough so that all components of b0 + ↵e � ko are 6 0. Then, for
i 2 {1, . . . , r}, Formula (15.12.11) implies that an element of Ma�1i

⌦ @
ko+1i

x0 has
image contained in that of Ma ⌦ @ko

x0 plus its image by N. In other words, (grV
↵
Mg)b

is equal to the sum of a finite number of finite-dimensional vector spaces (the images
of Ma ⌦ @kx0 for a+ k = b and 0 6 k 6 k0 componentwise) and their images by any
power of N. Since N is nilpotent, the finite-dimensionality of (grV

↵
Mg)b follows.

Moreover, we have an estimate for B:

B + Z
n ⇢ A� ↵e+ Z

n
,

and we recall that ↵ < 0 is such that ↵e 2 A
0
+ Z

r.

15.12.12. Corollary (R-specializability of grV
↵
Mg along Di (i 2 I))

For each i 2 I, gr
V

↵
Mg is R-specializable along Di and its V

(i)-filtration is the
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image of the filtration

V
(i)

ai

�
V

(r)
↵e M⌦OX

D0
X

�
=

X

k>0

V
(i)

ai�k(V
(r)
↵e M)⌦OX

V
(i)

k
D0

X
,

with V
(i)

ai�k(V
(r)
↵e M) := V

(i)

ai�kM \ V
(r)
↵e M, which is a V

(i)

• DX-filtration with respect to
the right trivial structure, and V

(r)
0 (gr

V

↵
Mg) (resp. V (n)

0 (gr
V

↵
Mg)) is the image of

V
(r)
↵e M⌦OX

V
(r)
0 D0

X
, resp. V (n)

↵e M⌦OX
V

(r)
0 D0

X
.

Furthermore, for every i, j 2 I, the right tensor action of �j is of order 0 with respect
to V

(i)

• .

Proof. This is a direct consequence of Corollary 15.12.10 and its proof.

15.12.d. The monodromy filtration of gr
V

↵
Mg. The nilpotent operator N

on gr
V

↵
Mg defines an increasing filtration on gr

V

↵
Mg: the monodromy filtration

M(N)•(gr
V

↵
Mg) (see Lemma 3.3.1).

15.12.13. Proposition. If M is of normal crossing type, then for each ↵ < 0 and each
` 2 Z, the DX-module gr

M

`
gr

V

↵
Mg is also of normal crossing type. Furthermore,

the filtrations M(N)• and V
(i)

• (i 2 I) are compatible and for each b 6 0, denoting
Nb = gr

V
(n)

b N, we have

gr
V

(n)

b M(N)` (gr
V

↵
Mg) = M(Nb)` gr

V
(n)

b (gr
V

↵
Mg).

Proof. We first notice that the analytification of M(N)• gr
V

↵
Mg is the monodromy

filtration M(N)• gr
V

↵
Mg: this follows from the characteristic properties of the mon-

odromy filtration, which are preserved by analytification (due to C[x]-flatness of OX).
The properties of the lemma are also preserved by analytification. It follows that we
only need to consider the case of monodromic An-modules. Since N commutes with
xi@xi

for each i 2 I, it preserves each (gr
V

↵
Mg)b and the decomposition of grV

↵
Mg.

We thus obtain a corresponding decomposition for each ` 2 Z:

M(N)`

⇣L
b
(gr

V

↵
Mg)b

⌘
=
L
b
M(Nb)`(gr

V

↵
Mg)b.

15.13. An explicit expression of nearby cycles

We restrict our computation to the case of a monodromic An-module M =L
a2A+Zn Ma. The case of a DX -module of normal crossing type can be obtained by

tensoring with OX . Compared with the presentation of Section 15.12.a, we emphasize
the nilpotent operator N induced by t@t � ↵ on gr

V

↵
Mg (↵ < 0), in relation with the

nilpotent operators Ni acting by xi@xi
� ai on Ma.

Let M be a monodromic An-module which is a middle extension along Di2I , i.e.,
satisfying the assumption of Theorem 15.11.1 in the monodromic situation.
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15.13.a. Computation of nearby cycles. We revisit Corollary 15.12.10 a little
differently. From Proposition 15.12.5 we obtain a surjective A

0
n
-linear morphism:

V
(r)
↵e M ⌦C[x] A

0
n
�! gr

V

↵
Mg.

In order to obtain an An-linear morphism, we note the natural surjective morphism

V
(n)

↵e M ⌦C[x] An �! V
(r)
↵e M ⌦C[x] A

0
n
,

since V
(r)
↵e M =

P
k002Zn�r V

(n)

↵e M · @k00

x00 , where x
00
= (xr+1, . . . , xn). Let us equip

Mb+↵e[N] := Mb+↵e ⌦C C[N] with the C[N1, . . . ,Nn,N]-module structure such that
• Ni acts by Ni ⌦ Id�ei Id⌦N, and
• N acts by Id⌦N (see (15.12.3)),

and (gr
V

↵
Mg)b with its natural C[N1, . . . ,Nn,N]-module structure (see §15.7.a). The

reason for twisting the action of Ni comes from Formula (15.11.3 ⇤⇤).

15.13.1. Proposition. For b 6 0, we have a surjective C[N1, . . . ,Nn,N]-linear morphism

Mb+↵e[N] �! (gr
V

↵
Mg)b

that takes m⌦N
k to the class of m⌦ (t@t � ↵)k 2 V↵Mg modulo V<↵Mg.

Let us start with a lemma valid for any b.

15.13.2. Lemma. For every b 2 R
n, (grV

↵
Mg)b is the image of

V↵Mg \
�L

j
Mb+(↵�j)e ⌦ @jt

�

in gr
V

↵
Mg.

Proof. Let us consider an arbitrary element of V↵Mg, expressed as a finite sum
X

a2Rn

X

j2N
ma,j ⌦ @jt ,

with ma,j 2Ma. Assume that its image in gr
V

↵
Mg belongs to (gr

V

↵
Mg)b, i.e.,

⇣ X

a2Rn

X

j2N
ma,j ⌦ @jt

⌘
· (xi@xi

� bi)
k 2 V<↵Mg

for every i 2 {1, . . . , n} and some k � 0. Our aim is to prove that, modulo V<↵Mg,
only those terms with a = b+ (↵� j)e matter.

15.13.3. Lemma. In the situation considered above, one has
X

a2Rn

X

j2N
ma,j ⌦ @jt =

X

j2N
mb+(↵�j)e ⌦ @jt mod V<↵Mg.

Proof. Let us start with an elementary lemma of linear algebra.

15.13.4. Lemma. Let T be an endomorphism of a complex vector space V , and W ⇢ V

a linear subspace with TW ⇢W . Suppose that v1, . . . , vk 2 V satisfy

T
µ
(v1 + · · ·+ vk) 2W
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for some µ > 0. If there are pairwise distinct complex numbers �1, . . . ,�k with
vh 2 E�h

(T ), then one has �hvh 2W for every h = 1, . . . , k.

Proof. Choose a sufficiently large integer µ 2 N such that (T � �h)
µ
vh = 0 for

h = 1, . . . , k, and such that T
µ
(v1 + · · · + vk) 2 W . Assume that �k 6= 0. Setting

Q(T ) = T
µ
(T � �1)µ · · · (T � �k�1)µ, we have by assumption

Q(T )(v1 + · · ·+ vk) 2W

The left-hand side equals Q(T )vk. Since Q(T ) and T � �k are coprime, Bézout’s
theorem implies that vk 2W . At this point, we are done by induction.

We now go back to the proof of Lemma 15.13.3. Let us consider an element as in
the lemma. As we have seen before,

(ma,j ⌦ @jt ) ·
�
(xi@xi

� bi) + ei(t@t � ↵)
�
= (ma,j ⌦ @jt ) ·

�
Di � bi � ei(↵� j)

�
,

and since some power of t@t � ↵ also send this element in V<↵Mg, we may conclude
that

(15.13.5)
X

a2Rn

X

j2N

⇣
ma,j ⌦ @jt ·

�
Di � bi � ei(↵� j)

�k⌘ 2 V<↵Mg

for every i 2 I and k � 0.
In order to apply Lemma 15.13.4 to our situation, let us set V = N and W =

V<↵Mg, and for a fixed choice of i = 1, . . . , n, let us consider the endomorphism

Ti = (xi@xi
� bi) + ei(t@t � ↵);

Evidently, TiW ⇢W . Since we have

Ti(ma,j ⌦ @jt ) = (ma,j ⌦ @jt ) ·
�
(Di � ai) + ai � bi � ei(↵� j)

�
,

it is clear that ma,j ⌦ @jt is annihilated by a large power of Ti � (ai � bi � ei(↵� j)).
Grouping terms according to the value of ai � bi � ei(↵� j), we obtain

X

a2Rn

X

j2N
ma,j ⌦ @jt = v1 + · · ·+ vk

with vk 2 E�k
(Ti) and �1, . . . ,�k 2 R are pairwise distinct. According to Lemma

15.13.4, we have vh 2 W whenever �h 6= 0; what this means is that the sum of all
ma,j ⌦ @jt with ai � bi � ei(↵ � j) 6= 0 belongs to V<↵Mg. After subtracting this
sum from our original element, we may therefore assume that ai = bi � ei(↵ � j)

for every term. We obtain the asserted congruence by performing this procedure
for T1, . . . , Tn. This ends the proof of Lemma 15.13.3 and at the same time that of
Lemma 15.13.2.

Proof of Proposition 15.13.1. Suppose now that b1, . . . , bn 6 0, that we shall abbreviate
as b 6 0 (recall also that we assume ↵ 2 [�1, 0)). Let j 2 N. We observe that

ei 6= 0 =) bi + (↵� j)ei = (bi + ↵ei)� jei < �jei.
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Given a vector mj 2Mb+(↵�j)e, this means that mj is divisible by x
jei

i
. Consequently,

mj = mx
je for a unique m in Mb+↵e, and therefore

mj ⌦ @jt = (m⌦ 1) · tj@j
t

is a linear combination of (m ⌦ 1)(t@t)
k for k = 1, . . . , j. Since m ⌦ 1 2 V↵Mg and

V↵Mg is stable by t@t, we conclude that
L
j

Mb+(↵�j)e ⌦ @jt = Mb+↵e[t@t] ⇢ V↵Mg,

and, by Lemma 15.13.2, (grV
↵
Mg)b is the image of Mb+↵e[t@t] mod V<↵Mg.

In order to have an explicit expression of (grV
↵
Mg)b (b 6 0), it remains to find the

kernel of the morphism in Proposition 15.13.1. For b 6 0, let us set

Ie(b) = {i | ei 6= 0 and bi = 0}.

Given m 2Mb+↵e, we have
�
m
Q

i2Ie(b) xi

�
⌦ 1 = m⌦ t 2 V<↵Mg and therefore also

(m⌦ 1)
Q

i2Ie(b) xi@xi
= (m⌦ 1) ·

Q
i2Ie(b)(Ni � eiN) 2 V<↵Mg.

In this way, we obtain a large collection of elements in the kernel.

15.13.6. Corollary. If ↵ < 0 and b 6 0, (grV
↵
Mg)b is isomorphic to the cokernel of the

injective morphism

(15.13.6 ⇤) 'b :=

Y

i2Ie(b)

((Ni ⌦ 1)/ei � (1⌦N)) 2 End(Mb+↵e[N]).

15.13.7. Remark. We have assumed, as in Theorem 15.11.1, that M is a middle ex-
tension along the normal crossing divisor Di2I . However, the previous expression
shows that, for ↵ < 0 and b 6 0, (grV

↵
Mg)b only depends on the Ma’s with ai < 0 if

i 2 {1, . . . , r}. For such an ↵, we conclude that grV
↵
Mg only depends on the localized

module M(⇤g).
Moreover, by definition, the action of Ni (resp. N) on (gr

V

↵
Mg)b is that induced by

Ni ⌦ 1� eiN (resp. N). We thus find that
Q

r

i=1
Ni acts by zero on (gr

V

↵
Mg)b.

If ↵ < 0 and b 6 0, set b = |Ie(b)|. Corollary 15.13.6 implies that the natural
C-linear morphism

(15.13.8)
b�1L
k=0

Mb+↵eN
k �! (gr

V

↵
Mg)b

is an isomorphism. Note also that the action of N on (gr
V

↵
Mg)b is easily described on

the expression (15.13.8):

mN
k ·N =

(
mN

k+1 if k < b� 1,

m
⇥
N

b �
Q

i2Ie(b)(N�Ni/ei)
⇤

if k = b� 1.
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Proof of Corollary 15.13.6. The injectivity of 'b is clear by considering the effect of
'b on the term of highest degree with respect to N. On the other hand, we already
know that every element of (grV

↵
Mg)b is the image of some m =

P
k
(mk ⌦ 1)N

k with
mk 2Mb+↵e for every k. If we expand this using N = t@t � ↵, we find

(15.13.9) m 2
L
j2N

Mb+(↵�j)e ⌦ @jt .

Now suppose that m actually lies in V<↵Mg. It can then be written as (see (15.12.1 ⇤))

(15.13.10) m =

X

a06(↵�")e
k2Nr

(ma,k ⌦ 1)@
k
x0 , ma,k 2Ma.

If we expand the expression (ma,k⌦ 1)@
k
x0 according to (15.11.3 ⇤), all the terms that

appear belong to Ma+k�je ⌦ @jt for some j 6 |k| (we identify k with (k, 0) 2 Z
n).

Comparing with (15.13.9), we can therefore discard those summands in (15.13.10)
with a+k 6= b+↵e without changing the value of the sum. The sum in (15.13.10) is
thus simply indexed by those k 2 N

r such that ki > bi for all i 2 {1, . . . , r} and the
index a is replaced with b+ ↵e� k.

Now, if ei 6= 0 then ai = (bi + ↵ei) � ki < �ki since we assume that bi 6 0 and
↵ < 0, and so ma,k is divisible by x

ki

i
. This means that we can write

ma,k = m
0
kx
0k

for some m
0
k 2Mb+↵e. Therefore, (15.13.10) reads

m =

X

k2Nr

ki>bi 8 i2{1,...,r}

(m
0
k ⌦ 1)x

0k
@
k
x0 , m

0
k 2Mb+↵e.

If m0k 6= 0, then ki > 1 for i 2 Ie(b) (since bi = 0), and consequently, x0k@k
x0 is forced

to be a multiple of
Y

i2Ie(b)

xi@xi
=

Y

i2Ie(b)

(Di � ei E),

which acts on Mb+↵e[N] as
Q

i2Ie(b)((Ni ⌦ 1)� ei(1⌦N)). As a consequence,

m 2
X

`2Nr

(Mb+↵e ⌦ 1)x
0`
@
`
x0 ·

Y

i2Ie(b)

((Ni ⌦ 1)� ei(1⌦N))

=

X

`2NIe

(Mb+↵e ⌦ 1)(D
0 � et@t)

` ·
Y

i2Ie(b)

((Ni ⌦ 1)� ei(1⌦N))

⇢Mb+↵e[E] ·
Y

i2Ie(b)

((Ni ⌦ 1)� ei(1⌦N)).

15.13.b. The quiver of gr
V

↵
Mg. We give the explicit description of the quiver

of gr
V

↵
Mg for ↵ < 0 (see Proposition 15.7.5). We thus consider the vector spaces
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(gr
V

↵
Mg)b for b 2 [�1, 0]n, and the morphisms

(15.13.11) (gr
V

↵
Mg)b�1i

cani(b)

**

(gr
V

↵
Mg)b

vari(b)

jj

for every i such that bi = 0. We know from that Corollary 15.13.6 that (grV
↵
Mg)b 6= 0

only if bi = 0 for some i 2 Ie (i.e., such that ei 6= 0). Moreover, the description of
(gr

V

↵
Mg)b given in this corollary enables one to define a natural quiver as follows.

(1) If i /2 Ie and bi = 0, we also have (b + ↵e)i = 0, and we will see that the
diagram

Mb+↵e�1i
[N]

cani⌦1
**

Mb+↵e[N]

vari⌦1
jj

commutes with 'b (which only involves indices j 2 Ie), inducing therefore in a natural
way a diagram

(gr
V

↵
Mg)b�1i

ci(b)

**

(gr
V

↵
Mg)b

vi(b)

jj

We notice moreover that the middle extension property for M is preserved for this
diagram, that is, ci(b) remains surjective and vi(b) remains injective.

(2) If i 2 Ie, we set '1i
= (Ni ⌦ 1)/ei � N so that, with obvious notation, 'b =

'1i
'b�1i

= 'b�1i
'1i

, and we can regard 'b,'1i
,'b�1i

as acting (injectively) both
on Mb+↵e[N] and Mb�1i+↵e[N]. Moreover, the multiplication by xi, which is an
isomorphism Mb+↵e

⇠�!Mb�1i+↵e, is such that xi⌦1 commutes with 'b�1i
. In such

a way, we can regard (gr
V

↵
Mg)b�1i

as the cokernel of 'b�1i
acting on Mb+↵e[N].

We can then define ci and vi as naturally induced by the following commutative
diagrams:

Mb+↵e[N]
'b�1i

// Mb+↵e[N] // //

'1i

✏✏

(gr
V

↵
Mg)b�1i

ci(b)
✏✏

Mb+↵e[N]
'b

// Mb+↵e[N] // // (gr
V

↵
Mg)b

Mb+↵e[N]
'b�1i

// Mb+↵e[N] // // (gr
V

↵
Mg)b�1i

Mb+↵e[N]

'1i

OO

'b
// Mb+↵e[N] // // (gr

V

↵
Mg)b

vi(b)

OO

resp.
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In other words, ci(b) is the natural morphism

Mb+↵e[N]/ Im'b�1i

'1i����!Mb+↵e[N]/ Im'b,

and vi(b) is the natural morphism induced by the inclusion Im'b ⇢ Im'b�1i
:

Mb+↵e[N]/ Im'b �!Mb+↵e[N]/ Im'b�1i
.

We note that vi(b) is surjective. Moreover,

15.13.12. Proposition. For ↵ < 0, the quiver of gr
V

↵
Mg has vertices (gr

V

↵
Mg)b =

Coker'b for b 2 [�1, 0]n such that

(1) b = a� ↵e for some a 2 A+ Z,
(2) bi = 0 for some i 2 Ie.

It is isomorphic to the quiver defined by the morphisms ci(b), vi(b) as described above.

15.13.c. Induced sesquilinear pairing on nearby cycles. We aim at computing
the behaviour of a sesquilinear pairing with respect to the nearby cycle functor along
a monomial function. We now consider the setting of Section 15.12 and switch back
to the right setting. Suppose we have a sesquilinear pairing s : M0 ⌦C M00 ! C�n .
We still denote by s the pushforward sesquilinear pairing Mg

0⌦Mg

00 ! C�n+1 by the
inclusion defined by the graph of g(x) = x

e.
The purpose of this section is to find a formula (see Proposition 15.13.13 below)

for the induced pairing, as defined by (12.5.10 ⇤⇤),

gr
V

↵
s : gr

V

↵
Mg

0 ⌦ grV
↵
Mg

00 �! C�n

for ↵ 2 [�1, 0) that we fix below. Since we already know that gr
V

↵
Mg

0
, gr

V

↵
Mg

00 are
of normal crossing type, grV

↵
s is uniquely determined by the pairings

(gr
V

↵
s)b : (gr

V

↵
M
0
g
)b ⌦ (grV

↵
M 00

g
)b �! C

for b 6 0. What we have to do then is to derive a formula for (gr
V

↵
s)b in terms of

the original pairing sb+↵e. Any element of (grV
↵
M
0
g
)b can be expanded as

P
j
n
0
j
N

j ,
where n

0
j

is in the image by the morphism in Proposition 15.13.1 of m0
j
2M

0
b+↵e, and

similarly with M
00
b+↵e.

15.13.13. Proposition. We have

(gr
V

↵
s)b

✓X

j>0

n
0
j
N

j
,

X

k>0

n
00
k
Nk

◆
=

X

j,k2N
sb+↵e

⇣
m
0
j
Ress=0

⇣Q
i2Ie(b)

s
j+k

Ni � eis

⌘
,m
00
k

⌘
.

The residue simply means here the coefficient of 1/s. Explicitly:

(15.13.14) Ress=0

⇣Q
i2Ie(b)

s
j+k

Ni � eis

⌘
=

Y

i2Ie(b)

(�1/ei) ·
Y

`2NIe(b)P
i
`i=j+k+1�#Ie(b)

(Ni/ei)
`i .
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Proof. Let us fix m
0 2M 0b+↵e ⇢M

0
b+↵e[N] and m

00 2M 00b+↵e ⇢M
00
b+↵e[N], and let us

consider their images n
0
, n
00 by the morphism in Proposition 15.13.1. It is enough to

prove that, for any ` > 0,

(15.13.15) (gr
V

↵
s)b

�
n
0
N

`
, n00

�
= sb+↵e

⇣
m
0
Ress=0

⇣Q
i2Ie(b)

s
`

Ni � eis

⌘
,m00

⌘
.

The induced pairing is given by the formula below, for ⌘o 2 C
1
c
(�

n
) and a cut-off

function �2C1
c
(�) (see (12.5.10 ⇤⇤)):

h(grV
↵
s)b(n

0
N

`
, n00), ⌘oi = Ress=↵hsb+↵e(m

0 ⌦ 1,m00 ⌦ 1), (t@t � ↵)`⌘o|t|2s�(t)i

= Ress=↵(s� ↵)`hsb+↵e(m
0
,m00), ⌘o|g|2s�(g)i.

Using the symbolic notation of Remark 15.8.5, the current sb+↵e(m
0
,m00) is equal to

⌦nsb+↵e

✓
m
0

Y

i|bi+↵ei<0

|xi|�2(1+bi+↵ei+Ni)
Y

i|bi=ei=0

|xi|�2Ni � 1

Ni

,m00
◆
·

Y

i|bi=ei=0

@xi
@xi

.

The factor �(g) does not affect the residue, and |g|2s = |x|2es. If we now define F (s)

as the result of pairing the current (renaming s� ↵ by s)

s
` · ⌦nsb+↵e

✓ Y

i|bi+↵ei<0

|xi|2eis�2(1+bi+Ni)
Y

i|bi=ei=0

|xi|�2Ni � 1

Ni

m
0
,m00

◆

against the test function
Q

i|bi=ei=0
@xi

@xi
⌘o(x), then F (s) is holomorphic on the

half-space Re s > 0, and

h(grV
↵
s)b(n

0
N

`
, n00), ⌘oi = Ress=0 F (s).

Recall the notation Ie = {i 2 I | ei 6= 0} and Ie(b) = {i 2 Ie | bi = 0}. Looking at
Y

i2Ie(b)

|xi|2eis�2�2Ni

Y

i2IerIe(b)

|xi|2eis�2(1+bi)�2Ni

Y

i|bi=ei=0

|xi|�2Ni � 1

Ni

,

we notice that the second factor is holomorphic near s = 0; the problem is therefore
the behavior of the first factor near s = 0. To understand what is going on, we apply
integration by parts, in the form of the identity (6.8.6 ⇤⇤); the result is that F (s) is
equal to the pairing between the current

⌦nsb+↵e

✓
s
`

Y

i2Ie(b)

|xi|2eis�2Ni � 1

(Ni � eis)
2

Y

i|bi<0

|xi|2eis�2(1+bi+Ni)
Y

i|bi=ei=0

|xi|�2Ni � 1

Ni

m
0
,m00

◆

and the test function Y

i|bi=0

@xi
@xi

⌘o(x).

The new function is meromorphic on a half-space of the form Re s > �", with a
unique pole of some order at the point s = 0. We know a priori (Proposition 15.8.3)
that Ress=0 F (s) can be expanded into a linear combination of hub,p, ⌘oi for certain
p 2 N

n, and that (gr
V

↵
s)b(n

0
N

`
, n00) is the coefficient of ub,0 in this expansion; here

ub,0 =

h
⌦n

Q
i|bi<0

|x|�2(1+bi)
Q

i2Ie(b) L(xi)

i
· @xi

@xi
.
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Throwing away all the terms that cannot contribute to hub,0, ⌘oi, we eventually arrive
at (15.13.15). In particular, we see from Formula (15.13.14) that (gr

V

↵
s)b(n

0
, n00) = 0

if #Ie(b) > 2.

15.14. End of the proof of Theorem 15.11.1

We now include the F -filtration in the picture, and we will of course make strong
use of the distributivity property of the family (F, V

(1)
, . . . , V

(n)
).

15.14.a. Strict R-specializability along (g). We first enhance the surjective mor-
phism (15.12.5 ⇤) of Proposition 15.12.5 to a filtered surjective morphism. For that
purpose, we equip K0

↵
= V

(r)
↵e M⌦OX

D0
X

with the following F•D
0
X

-filtration:

(15.14.1) FpK
0

↵
=

X

q+k=p

Fq(V
(r)
↵e M)⌦OX

FkD
0
X
,

with Fq(V
(r)
↵e M) := FqM\V (r)

↵e M, and with respect to which the operators ·tens�j are
of order one. We then set

F
0
p
V↵Mg = image

⇥
FpK

0

↵
�! V↵Mg

⇤
.

On the other hand, we set as usual

FpV↵Mg = FpMg \ V↵Mg.

15.14.2. Proposition. For ↵ < 0 and any p 2 Z, the filtrations FpV↵Mg and F
0
p
V↵Mg

coincide.

Proof. The inclusion F
0
p
V↵Mg ⇢ FpV↵Mg is clear. For the reverse inclusion, it is

enough to prove that, for any p 2 Z, we have

FpMg \ F
0
p+1

V↵Mg ⇢ F
0
p
V↵Mg.

Indeed, by an easy induction, this implies the inclusion FpMg\F 0p+`
V↵Mg ⇢ F

0
p
V↵Mg

for any ` > 1, and thus, letting `!1, FpV↵Mg ⇢ F
0
p
V↵Mg.

On the other hand, the above inclusion is equivalent to the injectivity of

(15.14.3) gr
F

0
V↵Mg �! gr

FMg.

By Proposition 15.12.5, the surjective morphism K0

↵
! V↵Mg factorizes as

(15.14.4) K0

↵
�!�! H

0
(K

•
↵
)
⇠�! V↵Mg,

and by definition the morphism FpK
0

↵
! F

0
p
V↵Mg is surjective. As the differentials

of the Koszul complex are filtered up to a shift, it follows that we have a commutative
diagram

H
0
(gr

FK•
↵
) // //

&&

gr
F

0
V↵Mg

(15.14.3)
✏✏

gr
FMg

and it is thus enough to prove:
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15.14.5. Lemma. The natural morphism H
0
(gr

FK•
↵
)! gr

FMg is injective.

Proof of Lemma 15.14.5. In order to manipulate the filtration F•K
0

↵
and its graded

objects, it is convenient to introduce the auxiliary filtration

GqK
0

↵
:= V

(r)
↵e M⌦OX

FqD
0
X
,

and correspondingly,
GqMg =

L
j6q

M⌦ @j
t

which induces in a natural way a filtration on gr
FMg, so that, denoting as usual by

GqH
0
(gr

FK•
↵
) the image of H0

(Gqgr
FK•

↵
) in H

0
(gr

FK•
↵
), it is sufficient to prove the

injectivity of
gr

G
H

0
(gr

FK
•
↵
) �! gr

G
gr

FMg.

We will prove:

15.14.6. Lemma. The complex gr
G
gr

FK•
↵

= gr
F
gr

GK•
↵

has nonzero cohomology in
degree 0 at most and the natural morphism

(15.14.6 ⇤) H
0
(gr

F
gr

GK
•
↵
) �! gr

F
gr

GMg

is injective.

From the first part of Lemma 15.14.6 we only make use of the vanishing of
H
�1

(gr
G
gr

FK•
↵
), which implies that H

0
(Gj�1gr

FK•
↵
) ! H

0
(Gjgr

FK•
↵
) is injective

for every j. Therefore (degeneration at E1 of the spectral sequence),

gr
G
H

0
(gr

FK
•
↵
) = H

0
(gr

G
gr

FK
•
↵
) = H

0
(gr

F
gr

GK
•
↵
),

so the injectivity of (15.14.6 ⇤) concludes the proof of Lemma 15.14.5 and thus that
of Proposition 15.14.2.

Proof of Lemma 15.14.6. If we omit the F -filtration, we have proved the correspond-
ing statement in Proposition 15.12.5 by reducing the proof to the monodromic case,
a strategy which does not apply in the presence of F .

In the following, we make use of the identifications, using the notation of Proposi-
tion 15.7.13(6) and omitting the functor p0�1 in the notation for the sake of simplicity,

K0

↵
= V

(r)
↵e M⌦OX

D0
X
' V

(r)
↵e M⌦O

X0 DX0 ' V
(r)
↵e M⌦C C[@x0 ],

and correspondingly for the F - and the G-filtrations.
On the one hand, we have

Fpgr
G

q
K0

↵
= Fp�qV

(r)
↵e M⌦C C[⇠

0
]q,

where C[⇠
0
]q consists of polynomials of degree 6 q in ⇠0 = (⇠i)i2Ie (class of @xi

), and
thus(2)

gr
F
gr

GK0

↵
' (gr

F
V

(r)
↵e M)⌦O

X0 OX0 [⇠
0
] ' (gr

F
V

(r)
↵e M)⌦C C[⇠

0
].

(2)In the following, we do not make precise the bi-grading of the objects and how the isomorphisms
are bi-graded, as it is straightforward.
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The bi-graded endomorphism corresponding to ·tens�j is (xj ⌦ ⇠j/ej � x1 ⌦ ⇠1/e1).
Since gr

F
V

(r)
↵e M is OX0 -flat (see Proposition 15.9.4(3)), the sequence (x2, . . . , xr) is

regular on gr
F
V

(r)
↵e M, and Lemma 15.12.8 yields the first part of the lemma.

On the other hand, grGMg = M[⌧ ], where ⌧ is the class of @t, and gr
F
gr

GMg =

(gr
FM)[⌧ ]. The morphism gr

F
gr

GK0

↵
! gr

F
gr

GMg is the morphism

(gr
F
V

(r)
↵e M)[⇠

0
] �! (gr

FM)[⌧ ]

induced by the natural morphism gr
F
V

(r)
↵e M ! gr

FM and sending ⇠i to @g/@xi · ⌧ .
It factorizes through the inclusion (gr

F
V

(r)
↵e M)[⌧ ] ! (gr

FM)[⌧ ]. Let us also recall
that the localization morphism gr

F
V

(r)
↵e M! (gr

F
V

(r)
↵e M)(g

�1
) is injective (as follows

from the first line of (15.9.7) for any i 2 {1, . . . , r}).

15.14.7. Assertion. The Koszul complex

K

⇣�
(gr

F
V

(r)
↵e M)(g

�1
)
�
(gr

F
V

(r)
↵e M)

�
[⇠
0
], (xj⇠j/ej � x1⇠1/e1)j=2,...,r

⌘

has zero cohomology in negative degrees.

Before proving the assertion, let us check that the assertion implies the injectivity
of (15.14.6 ⇤). We wish to prove the injectivity of

(15.14.8)
(gr

F
V

(r)
↵e M)[⇠

0
]
�
(xj⇠j/ej � x1⇠1/e1)j=2,...,r �! (gr

F
V

(r)
↵e M)[⌧ ]

⇠i 7�! @g/@xi · ⌧.

It is easy to see that its localization by g is an isomorphism. It is therefore enough to
prove that the localization morphism for the left-hand side of (15.14.8) is injective.
This is the natural morphism

H
0
(gr

F
gr

GK
•
↵
) �! H

0
(gr

F
gr

GK
•
↵
(⇤g)),

so it is enough to check that H
�1�

(gr
F
gr

GK•
↵
(⇤g))/(grF grGK•

↵
)
�
= 0. This in turn

follows from the assertion.
In order to end the proof of Lemma 15.14.5, we are left with proving the assertion.

Let us set h = x1 · · ·xr. Since

h
k
: (gr

F
V

(r)
↵e M)h

�k�
(gr

F
V

(r)
↵e M)h

�k+1 �! (gr
F
V

(r)
↵e M)

�
(gr

F
V

(r)
↵e M)h, k > 0

is an isomorphism, an easy induction reduces to proving that the Koszul complex
of

�
(gr

F
V

(r)
↵e M)

�
(gr

F
V

(r)
↵e M)h

�
[⇠
0
] with respect to (xj⇠j/ej � x1⇠1/e1)j=2,...,r has

zero cohomology in negative degrees. It is therefore enough to prove that the
Koszul complex of (gr

F
V

(r)
↵e M)[⇠

0
] with respect to

�
h, (xj⇠j/ej � x1⇠1/e1)j=2,...,r

�

has zero cohomology in negative degrees, and furthermore (see Exercise 15.2), it
is enough to check that

�
h, (xj⇠j/ej � x1⇠1/e1)j=2,...,r

�
is a regular sequence on

(gr
F
V

(r)
↵e M) ⌦O

X0 OX0 [⇠
0
] = (gr

F
V

(r)
↵e M)[⇠

0
]. Lastly, since gr

F
V

(r)
↵e M is OX0 -flat

(see Proposition 15.9.4(3)), it is enough to check that it is a regular sequence
on OX0 [⇠

0
], equivalently, the sequence

�
(xj⇠j/ej � x1⇠1/e1)j=2,...,r

�
is regular on

(OX0/(h))[⇠
0
].



640 CHAPTER 15. D-MODULES OF NC TYPE. PART 3: NEARBY CYCLES

For that purpose, we identify OX0/(h) with
L

r

i=1
OD

0
i

with OD
0
i
= OX0/(xi) and

we consider each term independently. Let us fix io 2 {1, . . . , r}. Then, on OD
0
i
[⇠
0
],

the sequence can be replaced with
�
(xi⇠i/ei � xio

⇠io/eio)i2{1,...,bio,...r}
�
, for which the

regularity follows from Lemma 15.12.8.

We can now prove the first part of Theorem 15.11.1, namely:

15.14.9. Corollary (R-specializability and middle extension along (g))
Let (M, F•M) be a coherently F -filtered DX-module of normal crossing type

along D. Assume that (M, F•M) is a middle extension along Di2I . Then (M, F•M)

is R-specializable and a middle extension along (g).

Proof. We refer to Definition 10.5.1 for the notion of filtered R-specializability and
middle extension of (M, F•M) along (g), that is, of (Mg, F•Mg) along (t).

We first wish to prove that the multiplication by t induces an isomorphism
FpV↵Mg

⇠�! FpV↵�1Mg if ↵ < 0. Since we already know that it is injective by
definition of the Kashiwara-Malgrange filtration, it suffices to prove that it is onto.
By the formulas (15.11.3 ⇤) and (15.12.1 ⇤), the multiplication by t is induced by g⌦1

on K0

↵
. Since g : FpV

(r)
↵e M ! FpV

(r)
(↵�1)eM is an isomorphism according to (15.9.7),

it follows that g ⌦ 1 : FpK
0

↵
! FpK

0

↵
is also an isomorphism and we deduce from

Proposition 15.14.2 that t : FpV↵Mg

⇠�! FpV↵�1Mg is onto.
We next aim at proving that, for ↵ > 0 and any p 2 Z,

FpV↵Mg := FpMg \ V↵Mg = (FpMg \ V<↵Mg) + (Fp�1V↵�1Mg) · @t,

and since we already know that Mg is an intermediate extension along (t), we are
left with proving the inclusion ⇢. By definition, FpMg =

L
`>0

Fp�kM⌦ @kt . On the
other hand,

Fp�kM =

X

`2Nn

Fp�k�|`|V
(n)

<0 M · @`
x
,

according to Proposition 15.9.11(3) and Remark 15.9.13. Then, if m =
P

k>0
mk⌦@kt

belongs to FpMg \ V↵Mg, and if we set m0 =
P

` m0,`@
`
x

with m0,` 2 Fp�|`|V
(n)

<0 M,
the second line of (15.11.3 ⇤) shows that we can write

m =

X

`

(m0,` ⌦ 1)@
`
x
+m

0
, with

(P
`(m0,` ⌦ 1)@

`
x
2 FpV<0Mg ⇢ FpV↵Mg,

m
0 2 FpMg \ V↵Mg \ (Mg · @t).

Now, by definition, FpMg \ (Mg · @t) = Fp�1Mg · @t. Moreover, since @t : grVa Mg !
gr

V

a+1
Mg is injective for a 6= �1, we deduce easily that, for ↵ > 0, V↵Mg \ (Mg ·@t) =

V↵�1Mg · @t. In conclusion,

FpMg \V↵Mg \ (Mg · @t) = (Fp�1Mg · @t)\ (V↵�1Mg · @t) = (Fp�1Mg \V↵�1Mg) · @t,

where the latter equality follows from the injectivity of @t on Mg, and so

FpV↵Mg ⇢ (FpMg \ V<0Mg) + (Fp�1V↵�1Mg) · @t,

as desired.
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15.14.b. Normal crossing properties of ( g,�M, F• g,�M) along D. In this
section, we fix ↵ 2 [�1, 0). As we already know that gr

V

↵
Mg is of normal crossing

type along D and R-specializable along each Di (i = 1, . . . , r) by Corollaries 15.12.10
and 15.12.12, it remains to prove the R-specializability of (grV

↵
Mg, F•gr

V

↵
Mg) along

each Di and the distributivity of the family (F•gr
V

↵
Mg, V

(1)

• gr
V

↵
Mg, . . . , V

(n)

• gr
V

↵
Mg).

Furthermore, as we already know that grV
↵
Mg is of normal crossing type, Proposition

15.9.14 prompts us to consider the logarithmic module (gr
V

↵
Mg)60 = V

(n)

0 (gr
V

↵
Mg)

and its induced filtrations

(F•(gr
V

↵
Mg)60, V

(1)

• (gr
V

↵
Mg)60, . . . , V

(n)

• (gr
V

↵
Mg)60).

This approach will prove effective to obtain an explicit expression of the filtration on
gr

V
(n)

b gr
V

↵
Mg in terms of the presentation of Corollary 15.13.6.

We recall the notation:
• g = x

e, r = #Ie = #{i 2 I | ei 6= 0},
• D0

X
= OXh@x1

, . . . , @xr
i,

• V
(r)
0 (D0

X
) = OXhx1@x1

, . . . , xr@xr
i.

We now emphasize V
(n)

↵e M (considering ↵e as an n-multi-index with entries equal
to 0 if i /2 Ie), which is a coherent V

(n)

0 (DX)-module and that we will also consider
as a V

(r)
0 (D0

X
)-module (by forgetting the action of xi@xi

for i /2 Ie).
In a way similar to that of Section 15.12.b, we set K0

↵,60 = V
(n)

↵e M⌦OX
V

(r)
0 (D0

X
)

that we regard with its two structures of a V
(n)

0 (DX)-module (the trivial one and the
tensor one). For each i 2 I and bi 6 0, we set

V
(i)

bi
K0

↵,60 = (V
(n)

↵e+bi1i
M)⌦OX

V
(r)
0 (D0

X
),

so that, for b 6 0,

V
(n)

b K0

↵,60 = (V
(n)

↵e+bM)⌦OX
V

(r)
0 (D0

X
),

and in particular, V (n)

0 K0

↵,60 = K0

↵,60.
According to Corollary 15.12.12, the composed morphism K0

↵
! V↵Mg ! gr

V

↵
Mg

sends K0

↵,60 onto (gr
V

↵
Mg)60 and, arguing similarly, we find that for each b 6 0,

V
(n)

b (gr
V

↵
Mg)60 is the image of V (n)

b K0

↵,60.
We denote by (V↵Mg)60 the image of K0

↵,60 in V↵Mg, so that its image in gr
V

↵
M

is nothing but (grV
↵
Mg)60. Arguing as in Corollary 15.12.12, we find that (grV

↵
Mg)60

is also equal to (V↵Mg)60/(V<↵Mg)60.
We consider the complex (K•

↵,60, (·tens�j)j=2,...,r), which is a complex of right
V

(n)

0 (DX)-modules with the trivial structure, and the quotient complex K•
[↵],60 :=

K•
↵,60/K

•
↵�",60 (" > 0 small enough). Let us first check the logarithmic analogue of

Proposition 15.12.5.

15.14.10. Lemma. The Koszul complex K•
[↵],60 is a resolution of (grV

↵
Mg)60.

Proof. It similar, but simpler, than that of Proposition 15.12.5. It is enough to prove
that for each ↵ < 0, the complex K•

↵,60 is a resolution of (V↵Mg)60.
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For the exactness in negative degree, we filter V (n)

0 D0
X

by the degree of differential
operators so that the graded complex reads

�
V

(n)

↵e M⌦C C[⌘1, . . . , ⌘n], Id⌦(⌘j/ej � ⌘1/e1)j=2,...,r

�
,

where ⌘i is the class of xi@xi
, and the sequence (⌘j/ej�⌘1/e1)j=2,...,r is clearly regular,

hence the exactness.
As in Proposition 15.12.5 we see that the image Im of K�1

↵,60 ! K0

↵,60 is con-
tained in the kernel of K0

↵,60 ! (V↵Mg)60. Passing to the monodromic setting, one
checks that K0

↵,60 = Im �
L

`>0

L
b60 M↵e+b ⌦ (x1@x1

)
`. Assume that an element

P
`o

`=0

P
b60 mb,` ⌦ (x1@x1

)
` of the second term with mb,`o 6= 0 for some b 6 0 is sent

to zero in (V↵Mg)60 ⇢ Mg. The term of maximal degree in @t of its image readsP
b60 mb,`og

`o ⌦ @`o
t

, so mb,`og
`o must be zero for each b 6 0. As ↵e+ b 6 0 and M

is a middle extension of normal crossing type along each Di, this implies mb,`o = 0

for each b 6 0, a contradiction. In conclusion, Ker[K0

↵,60 ! (V↵Mg)60] is equal to
Im[K�1

↵,60 ! K0

↵,60].

We also equip K0

↵,60 with the filtration

FpK
0

↵,60 =

X

q6p

FqV
(n)

↵e M⌦OX
Fp�qV

(r)
0 (D0

X
).

The right DX -module K0

↵
(with its trivial structure) contains K0

↵,60 and is equal to
the DX -submodule generated by it. Correspondingly we have

FpK
0

↵
=

X

q6p

FqK
0

↵,60 · Fp�qDX .

Indeed, this follows from the property that V
(r)
↵e M =

P
k2NIrIe V

(n)

↵e M · @k
x
, as a

consequence of (15.9.7).
The surjective map K0

↵,60 ! (gr
V

↵
Mg)60 sends the filtration F•K

0

↵,60 to a
coherent F -filtration that we denote F

0
•(gr

V

↵
Mg)60. By the previous consider-

ations, the latter filtration generates the filtration F
0
•gr

V

↵
Mg (i.e., F

0
p
gr

V

↵
Mg =P

q6p
F
0
q
(gr

V

↵
Mg)60 · Fp�qDX), that we know, by Proposition 15.14.2, to be equal

to the filtration F•gr
V

↵
Mg. The preceding discussion justifies that, with Proposition

15.9.14, the proof of Theorem 15.11.1 will be achieved with the next proposition.

15.14.11. Proposition. The family

(F
0
•(gr

V

↵
Mg)60, V

(1)

• (gr
V

↵
Mg)60, . . . , V

(n)

• (gr
V

↵
Mg)60)

is distributive and satisfies
• F
0
p
V

(i)

bi
(gr

V

↵
Mg)60 · xi = F

0
p
V

(i)

bi�1(gr
V

↵
Mg)60 for every i 2 I and bi < 0.

• F
0
p
V

(i)

�1 (gr
V

↵
Mg)60 · @xi

⇢ F
0
p+1

V
(i)

0
(gr

V

↵
Mg)60 for every i 2 I.

Proof of distributivity. For the sake of simplicity, we will give the proof for any family
of Z-indexed V -filtrations V

(i)

�i+Zgr
V

↵
Mg with fixed �i 2 Ai ⇢ [�1, 0) (i = 1, . . . , n),

so that we can easily interpret distributivity in terms of flatness over a polynomial
ring. The general case would need that we replace each V

(i)

�i+Zgr
V

↵
Mg by various V (i)

�ij+Z
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with �ij varying in Ai for each i = 1, . . . , n (see (9.3.5)). Distributivity amounts to
C[z0, z1, . . . , zn]-flatness of the Rees module RF 0V (gr

V

↵
Mg), which is a module over

the ring R = C[z0, z1, . . . , zn], where z0 resp. zi (i = 1, . . . , n) is the Rees variable of
the filtration F•, resp. V (i)

• .
We enhance the complexes K•

↵,60 and K•
[↵],60 by taking into account the filtra-

tions. We have already defined the filtrations (F•, (V
(i)

• )i=1,...,n) on K0

↵,60, hence
on each term of the Koszul complex K•

↵,60 and on the quotient complex K•
[↵],60 :=

K•
↵,60/K

•
↵�",60. The isomorphism

H
0
(K

•
[↵],60)

⇠�! (gr
V

↵
Mg)60

provided by Lemma 15.14.10 is strictly compatible with each of the filtrations F•,
(V

(i)

• )i=1,...,n.
With the multi-Rees construction, we focus on the complex eK•

[↵],60 = RFV (K
•
[↵],60)

of R-modules, which is a Koszul complex with respect to differentials deduced from
(·tens�j)j=2,...,r.

15.14.12. Lemma.

(1) The natural morphism RFV H
0
(K•

[↵],60) ! RF 0V (gr
V

↵
Mg)60 is an isomor-

phism.
(2) The Koszul complex eK•

[↵],60 is exact in negative degrees.
(3) The R-module H

0
(eK•

[↵],60) is flat.

We end the proof of the distributivity property by means of the flatness criterion of
Proposition 15.2.6, applied to H

0
(eK•

[↵],60). Being R-flat by (3), H0
(eK•

[↵],60) is noth-
ing but the Rees module of an (n + 1)-filtration (F•, V

(1)

• , . . . , V
(n)

• ) on H
0
(eK•

[↵],60)

(see Exercise 15.1). Furthermore, theses filtrations are those induced by the corre-
sponding ones on (eK0

[↵],60). In other words, H
0
(eK•

[↵],60) = RFV H
0
(eK•

[↵],60) and,
by the first point of the lemma, RF 0V (gr

V

↵
Mg) is thus R-flat, which is the desired

distributivity.

Proof of Lemma 15.14.12(1). According to our preliminary discussion, the natural
morphism H

0
(K•

[↵],60) ! (gr
V

↵
Mg)60 is an isomorphism, and this isomorphism is

strictly compatible with the filtrations V
(i)

• (i = 1, . . . , n) and F•, F
0
•. This yields the

first point.

Proof of Lemma 15.14.12(2). We write

K0

[↵],60 = (V
(n)

↵e M/V
(n)

(↵�")eM)⌦C C[x
0
@x0 ]

with x
0
= (x1, . . . , xr). We have RFV C[x

0
@x0 ] = R[x

0e@x0 ]. The complex of multi-Rees
modules RFV (K

•
[↵],60) has differentials given by ·tens(xj

e@xj
� x1

e@x1
) (j = 2, . . . , r).

It also comes equip with the filtration G• as in the proof of Lemma 15.14.10.
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As G is bounded below, it is enough to show the exactness in negative degrees of
the complex RFV gr

G
(K•

[↵],60), which is the Koszul complex of

RFV gr
G
(K0

[↵],60) = (RFV gr
V

(n)

↵e M)⌦R RFV (C[⌘1, . . . , ⌘r])

= (RFV gr
V

(n)

↵e M)⌦R R[e⌘1, . . . , e⌘r].

In this presentation, the induced action of ·tens�j is by 1 ⌦ e⌘j/ej � 1 ⌦ e⌘1/e1. The
complex RFV (gr

GK•
[↵],60) is thus identified with the Koszul complex

K

⇣
(RFV gr

V
(n)

↵e M)⌦R R[e⌘1, . . . , e⌘r],
�
1⌦ e⌘j/ej � 1⌦ e⌘1/e1

�
j=2,...,r

⌘
.

Since RFV gr
V

(n)

↵e M) is R-flat, due to the distributivity property of F•, (V
(i)

• )i2I on M,
this complex reads

RFV (gr
V

(n)

↵e M)⌦R K
�
R[e⌘1, . . . , e⌘r], (e⌘j/ej � e⌘1/e1)j=2,...,r

�
.

Its is straightforward to check that the Koszul complex

K
�
R[e⌘1, . . . , e⌘r], (e⌘j/ej � e⌘1/e1)j=2,...,r

�

is a resolution of R[e⌘1], hence, using flatness of RFV (gr
V

(n)

↵e M) once more, we find
that RFV (gr

GK•
[↵],60) is a resolution of RFV (gr

V
(n)

↵e M) ⌦R R[e⌘1]. In particular, its
cohomology in negative degree is zero.

Proof of Lemma 15.14.12(3). From the previous computation one deduces that

H
0
(RFV (gr

GK
•
[↵],60)) ' (RFV gr

V
(n)

↵e M)⌦C C[u1],

with the R-module structure induced from that on RFV gr
V

(n)

↵e M. By the normal
crossing type property of (M, F•M), it is thus R-flat.

The proof of (2) also shows that each complex RFV (GqK
•
[↵],60) is acyclic in neg-

ative degrees for any q, and an easy induction implies flatness of the R-module
H

0
(RFV (GqK

•
[↵],60)) for any k, hence that of H0

(RFV (K
•
[↵],60)).

We now prove the last two properties of Proposition 15.14.11.

Proof that F 0
p
V

(i)

bi
(gr

V

↵
Mg)60 ·xi = F

0
p
V

(i)

bi�1(gr
V

↵
Mg)60 if bi < 0. Due to the resolution

of RF 0V (i)(gr
V

↵
Mg)60 by RFV (i)(K•

[↵],60), it is enough to check that

xi : FpV
(i)

bi
(K0

[↵],60) �! FpV
(i)

bi�1(K
0

[↵],60)

is an isomorphism for any p, any i 2 I and any bi < 0, and it is enough to
prove the same property for K0

↵,60 for any ↵ < 0, which amount to the inclusion
FpV

(i)

bi�1K
0

↵,60 ⇢ FpV
(i)

bi
K0

↵,60 · xi.
On the one hand, by the logarithmic analogue of Corollary 15.12.12 we have, for

bi 6 0,
V

(i)

bi
K0

↵,60 = (V
(n)

↵e+bi1i
M)⌦ C[x

0
@x0 ].

On the other hand, by definition,

FpK
0

↵,60 =
L
k>0

Fp�|k|(V
(n)

↵e M)⌦OX
(x
0
@x0)

k
,
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so that, if bi 6 0,

(15.14.13) FpV
(i)

bi
K0

↵,60 =
L
k>0

Fp�|k|(V
(n)

↵e+bi1i
M)⌦OX

(x
0
@x0)

k
.

Since (M, F•M) is of normal crossing type, (15.9.7) yields, if bi < 0,

Fp�|k|(V
(n)

↵e+(bi�1)1i

M) = Fp�|k|(V
(n)

↵e+bi1i
M) · xi,

and, on noting the inclusion

�
Fp�|k|(V

(n)

↵e+bi1i
M) · xi

�
⌦ (xi@xi

)
ki ⇢

 kiX

`i=0

Fp�|k|(V
(n)

↵e+bi1i
M)⌦ (xi@xi

)
`i

�
· xi,

we deduce FpV
(i)

bi�1K
0

↵,60 ⇢ FpV
(i)

bi
K

0

↵,60 · xi, as desired.

Proof that F 0
p
V

(i)

�1 (gr
V

↵
Mg)60 · @xi

⇢ F
0
p+1

V
(i)

0
(gr

V

↵
Mg)60. As above, we argue with

K0

↵,60 which is contained in K0

↵
, and the action of @xi

is that on K0

↵
. We use

the expression (15.14.13) and we are led to checking that (Fp�|k|V
(n)

↵e�1i
M) · @xi

⇢
Fp+1�|k|V

(n)

↵e M, which is by definition of the filtrations.

15.14.c. Explicit expression of nearby cycles with filtration. We revisit the
isomorphism of Corollary 15.13.6 for (M, F•M) satisfying the assumptions of Theorem
15.11.1. For b 6 0, we replace (gr

V

↵
Mg)b of Corollary 15.13.6 with gr

V
(n)

b (gr
V

↵
Mg)

and M↵e+b with gr
V

(n)

↵e+bM. We still denote by 'b the morphism

V
(n)

↵e+bM⌦C C[t@t] �! V
(n)

↵e+bM⌦C C[t@t]

defined by (15.13.6 ⇤), with N = t@t � ↵ and Ni = Di � ↵ei. From the expression
(15.12.1 ⇤) it follows, since b 6 0, that V

(n)

↵e+bM ⌦C C[t@t] is sent into V↵Mg via the
isomorphism

V
(n)

↵e+bM⌦C C[t@t] =
L
q

V
(n)

↵e+bM⌦C t
q
@
q

t

⇠�!
◆

L
q

V
(n)

↵e+bMg
q ⌦C @

q

t
=
L
q

V
(n)

(↵�q)e+bM⌦C @
q

t

⇢M⌦C C[@t] = Mg.

From Proposition 15.13.1 we deduce that the image of V (n)

↵e+bM⌦CC[t@t] in gr
V

↵
Mg is

equal to V
(n)

b (gr
V

↵
Mg) and Corollary 15.13.6 identifies more precisely gr

V
(n)

b (gr
V

↵
Mg)

with the cokernel of

'b : gr
V

(n)

↵e+bM⌦C C[t@t] �! gr
V

(n)

↵e+bM⌦C C[t@t].

We equip V
(n)

↵e+bM⌦C C[t@t] with the filtration

Fp(V
(n)

↵e+bM⌦C C[t@t]) =
L
q>0

Fp�qV
(n)

↵e+bM⌦ t
q
@
q

t

⇠�!
◆

L
q>0

Fp�qV
(n)

(↵�q)e+bM⌦ @
q

t
⇢ FpMg \ V↵Mg = FpV↵Mg.
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The image of the induced morphism

Fp(V
(n)

↵e+bM⌦C C[t@t]) �! gr
V

↵
Mg

is thus contained in Fp(gr
V

↵
Mg) \ V

(n)

b (gr
V

↵
Mg).

15.14.14. Proposition. This inclusion is an equality.

The main application of the proposition is the next corollary, which extends the
isomorphism of Corollary 15.13.6 to the filtered setting, and thus yields an explicit
expression for the F -filtration on gr

V
(n)

b (gr
V

↵
Mg).

15.14.15. Corollary. The filtration of grV
(n)

b (gr
V

↵
Mg) naturally induced from F•(gr

V

↵
Mg)

(taking into account that (gr
V

↵
Mg, F•gr

V

↵
Mg) is of normal crossing type along D) is

equal to the image of the filtration F•(gr
V

(n)

↵e+bM⌦C C[t@t]) by the morphism

gr
V

(n)

↵e+bM⌦C C[t@t] �! Coker'b.

Proof of the corollary. Recall that grV
(n)

↵e+bM = V
(n)

↵e+bM
�P

b0�b V
(n)

↵e+b0M and similarly

gr
V

(n)

b gr
V

↵
Mg = V

(n)

b gr
V

↵
Mg

�P
b0�b V

(n)

b0 gr
V

↵
Mg.

On the one hand, the filtration Fp(gr
V

(n)

↵e+bM⌦C C[t@t]) is defined as
L
q>0

Fp�qgr
V

(n)

↵e+bM⌦ t
q
@
q

t
,

and is equal to the image of Fp(V
(n)

↵e+bM⌦C C[t@t]) in gr
V

(n)

↵e+bM⌦C C[t@t].
On the other hand, Fpgr

V
(n)

b gr
V

↵
Mg is equal, since (gr

V

↵
Mg, F•gr

V

↵
Mg) is of normal

crossing type along D, to the image of FpV
(n)

b gr
V

↵
Mg by the projection V

(n)

b gr
V

↵
Mg !

gr
V

(n)

b gr
V

↵
Mg.

The assertion then follows from the commutative diagram below, where the upper
horizontal morphism is onto according to the proposition:

Fp(V
(n)

↵e+bM⌦C C[t@t])

✏✏

✏✏

// // FpV
(n)

b gr
V

↵
Mg

✏✏

✏✏

Fp(gr
V

(n)

↵e+bM⌦C C[t@t])
// Fpgr

V
(n)

b gr
V

↵
Mg

Proof of Proposition 15.14.14. We observe that the image of Fp(V
(n)

↵e+bM ⌦C C[t@t])

in gr
V

↵
Mg, for b 6 0, is contained in (gr

V

↵
Mg)60 and is equal to the image of

Fp(V
(n)

↵e+bM ⌦OX
V

(r)
0 D0

X
) = FpV

(n)

↵e+b(V
(n)

↵e M ⌦OX
V

(r)
0 D0

X
), according to the re-

lation (15.11.3 ⇤⇤) between the action of xi@xi
and that of t@t on gr

V

↵
Mg.

By Lemma 15.14.12, RFV K
0

↵,60 surjects onto RF 0V (gr
V

↵
Mg)60, which implies in

particular that FpV
(n)

b (K0

↵,60) has image F
0
p
V

(n)

b (gr
V

↵
Mg)60, where F

0
•(gr

V

↵
Mg)60 is

the filtration used in Proposition 15.14.11. In conclusion, the image in (gr
V

↵
Mg)60 of

Fp(V
(n)

↵e+bM⌦C C[t@t]) is equal to F
0
p
V

(n)

↵e+b(gr
V

↵
Mg)60.
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We recall that the filtration F•gr
V

↵
Mg is that generated by F

0
•(gr

V

↵
Mg)60. Then,

Proposition 15.9.14(1), together with Proposition 15.14.11, implies in particular that
Fpgr

V

↵
Mg \ V

(n)

0 gr
V

↵
Mg = F

0
p
V

(n)

0 gr
V

↵
Mg. Intersecting both terms with V

(n)

b gr
V

↵
Mg

for b 6 0 yields that the image in (gr
V

↵
Mg)60 of Fp(V

(n)

↵e+bM ⌦C C[t@t]) is equal to
Fpgr

V

↵
Mg \ V

(n)

b gr
V

↵
Mg.

15.14.d. A criterion for the existence of the filtered monodromy filtration

In order to settle the question, we switch to the setting of eDX -modules as in
Chapter 9, so that eM denotes the Rees module RFM. Our previous results can be
expressed by saying that, under the filtered normal crossing type assumption, eM is
strictly R-specializable along (g). We still let N denote the nilpotent endomorphism on
gr

V

↵
eMg, which admits a monodromy filtration M(N)•. In general, one cannot ensure

that each graded module grM
`
(gr

V

↵
eMg) is strict, equivalently, each primitive submodule

P`(gr
V

↵
eMg) is strict. A criterion for strictness has been given in Proposition 9.4.10:

any power of N should be a strict endomorphism of grV
↵
eMg.

15.14.16. Proposition. Let (M, F•M) be of normal crossing type along D. Assume that
for each b 6 0 and for a fixed ↵ < 0, the filtered vector space (gr

V
(n)

↵e+bM, F•gr
V

(n)

↵e+bM)

underlies a mixed Hodge structure such that each Ni is a morphism of mixed Hodge
structures gr

V
(n)

↵e+bM ! gr
V

(n)

↵e+bM(�1). Then any power of N : gr
V

↵
eMg ! gr

V

↵
eMg is

strict.

Proof. Recall the notation Nb for gr
V

(n)

b N on gr
V

(n)

b gr
V

↵
eMg. We first claim that it is

enough to prove strictness for any power of Nb for any b 6 0. Indeed, assuming this
property, we argue by induction on #I:

Let us fix i 2 I. Since (gr
V

(i)

bi
(gr

V

↵
eMg), F•gr

V
(i)

bi
(gr

V

↵
eMg)) is of normal crossing type

on (Di,
S

j 6=i
Dj) for any bi 2 [�1, 0] (see Proposition 15.9.4(1)), we deduce from the

assumption on Nb, by induction on #I, that gr
V

(i)

bi
N

` is strict for any ` > 1. This
means, by definition, that N

` (` > 1) is strictly R-specializable along Di. Corollary
10.7.6 implies then that N

` is strict in some neighborhood of Di, as desired.
For the strictness of N

`

b, it is enough to check that Coker'b underlies a mixed
Hodge structure and that Nb (hence any N

`

b) is a morphism of mixed Hodge structures
(see Proposition 2.6.8). This is precisely Example 2.6.10(4).

15.15. Exercises

Exercise 15.15 (Proof of Lemma 15.12.8).
(1) Prove that (a2u2 � a1u1) is injective on M [u1, . . . , un] := M ⌦A A[u1, . . . , un]

by using that a2 is injective on M .
(2) Show that the natural map

F
(2)

0
M [u1, . . . , un] := M [u1, u3, . . . , un] �!M [u1, . . . , un]/(a2u2 � a1u1)

is injective.
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(3) Show inductively that

gr
F

(2)

k

�
M [u1, . . . , un]/(a2u2 � a1u1)

�
= (M/(a2))u

k

2
[u1, u3, . . . , un].

(4) Conclude the proof by induction on n.

Exercise 15.16 (Comptibility of (F, V (1)
, . . . , V

(n)
) on DX ).

(1) Consider first the ring C[x]h@xi.
(a) Show that C[x] decomposes as a C-vector space as the direct sum, indexed

by subsets I ⇢ {1, . . . , n} with complement I
c, of the spaces C[xIc ], and thus

V
(n)

0
C[x]h@xi = C[x]hx@xi =

L
I

C[xIc ]hx@xi,

V
(n)

k C[x]h@xi =
L
I

L
`I6kI

C[xIc ]hx@xi@`IxI
,

FpV
(n)

k C[x]h@xi =
L
I

L
`I6kI

L
m2Nn

|`I |+|m|6p

C[xIc ](x@x)
m
@
`I
xI
.

(b) Use this decomposition to show that the ring RFV C[x]h@xi is free over
R = C[z0, . . . , zn].

(2) Show that RFV DX = OX [z0, . . . , zn] ⌦R RFV C[x]h@xi, and conclude that
RFV DX is R-flat.

15.16. Comments

This chapter is quite technical. This is mainly due to the nature of the problems
considered. Dealing with many filtrations on an object and understanding their re-
lations is intrinsically complicated. It is intended to be an expanded version of the
part of Section 3 in [Sai90] which is concerned with filtered D-modules. As already
explained, we do not refer to perverse sheaves, so the perverse sheaf version, which is
present in loc. cit., is not considered here.

The main theme for us is the notion of “transversality” between filtrations and its
behavior under the nearby cycle functor. The notion of compatibility of filtrations
has been analyzed in a very general setting in Section 1 of [Sai88]. We have chosen
here to emphasize a more explicit approach in the framework of abelian categories,
and even in the more restrictive framework of categories of sheaves of modules on a
topological space. Furthermore, we mainly focus on the notion distributive families of
filtrations, although we relate it to that of compatible families of filtrations considered
in [Sai88]. We interpret these notions in algebraic terms, that is, in terms of flatness of
the associated multi-Rees module, which is a multi-graded module over the polynomial
ring of its parameters. This approach goes back at least to [Sab87b]. When omitting
the F -filtration, the theory mainly reduces to that of monodromic modules over the
Weyl algebra in n variables and is equivalent to that of monodromic perverse sheaves
as considered by Verdier in [Ver83].



CHAPTER 16

THE STRUCTURE THEOREM FOR
POLARIZABLE HODGE MODULES

Summary. The structure theorem proved in this chapter allows for a more
accessible approach to polarizable Hodge modules: they can be obtained from
polarizable variations of complex Hodge structures. The correspondence in one
direction has been proved in Chapter 14 and the other direction involves the
extension to arbitrary dimensions of the results of Chapter 6 together with the
detailed analysis in the normal crossing cas made in Chapter 15. Various appli-
cations follow, the Kodaira-Saito vanishing theorem among others.

16.1. Introduction

The definition of a polarizable Hodge module allows for proving various properties
by an inductive procedure, but makes it difficult to check that a given object of
eD-Triples(X) equipped with a pre-polarization is actually a polarizable Hodge module.
For example, proving that a polarizable variation of Hodge structure is a polarizable
Hodge module is already non trivial (see Theorem 14.6.1) and there is an equivalence
between such variations and smooth Hodge modules. It is therefore desirable to
provide a similar criterion for any polarizable Hodge module. This is realized by the
structure theorem 16.2.1. This new characterization of polarizable Hodge modules
allows for various applications:

• the stability of WHM by smooth pullback which, together with Proposition 14.7.5,
implies the stability of WHM by strictly non-characteristic pullback;

• the Kodaira-Saito vanishing theorem for objects of WHM(X).

16.2. The structure theorem

This is the converse of Proposition 14.2.10. Let X be a complex manifold and
let Z be an irreducible closed analytic subset of X. Let VHSgen(Z,w) the category of
“generically defined variations of Hodge structure of weight w on Z”, as defined now.

We say that a pair (Z
o
, HH) consisting of a smooth Zariski-dense open subset Z

o

of Z and of a variation of Hodge structure HH of weight w on Z
o is equivalent to a
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similar pair (Z 0o, HH
0
) if HH and HH

0 coincide on Z
o\Z 0o. An object of VHSgen(Z,w)

is such an equivalence class. Note that it has a maximal representative (by considering
the union of the domains of all the representatives). A morphism between objects of
VHSgen(Z,w) is defined similarly.

We also denote by pVHS
gen

(Z,w) the full subcategory of VHSgen(Z,w) consisting
of objects which are polarizable, i.e., have a polarizable representative.

By Proposition 14.2.10, there is a restriction functor

pHM
Z
(X,w) 7�! pVHS

gen
(Z,w � codimZ).

16.2.1. Theorem (Structure theorem). Under these assumptions, the restriction functor
pHM

Z
(X,w) 7! pVHS

gen
(Z,w � codimZ) is an equivalence of categories.

Since each polarizable Hodge module has a unique decomposition with respect to
the irreducible components of its pure support, the structure theorem gives a complete
description of the category pHM(X,w). The remaining part of this section is devoted
to the proof of the structure theorem.

16.2.a. Reduction to the normal crossing situation. We first notice that the
restriction functor pHM

Z
(X,w) ! pVHS

gen
(Z,w � codimZ) is faithful. Indeed, let

M1,M2 be objects of pHM
Z
(X,w) and let ','0 : M1 ! M2 be morphisms between

them, which coincide on some Zo. Then the image of '�'0 is an object of pHM(X,w),
according to Corollary 14.2.19, and is supported on Z r Z

o, hence is zero according
to the definition of the pure support. It follows that ' = '

0.
Due to the faithfulness, we note that the question is local: for fullness, if a mor-

phism between the restriction to some Z
o of two polarized Hodge modules locally

extends on Z, then it globally extends by uniqueness of the extension; for essential
surjectivity, we note that two local extensions as polarized Hodge modules of a po-
larized variation of Hodge structure coincide, by extending the identity morphism on
some Zo according to local fullness, and we can thus glue local extensions into a global
one.

For the essential surjectivity we start from a polarized variation of Hodge structure
on some smooth Zariski-dense open subset Zo ⇢ Z. We choose a projective morphism
⇡ : Z

0 ! X with Z
0 smooth and connected, such that ⇡ is an isomorphism Z

0o
:=

⇡
�1

(Z
o
) ! Z

o, and such that Z
0
r Z

0o is a divisor with normal crossing. Assuming
we have extended the variation on Z

0o as a polarized Hodge module on Z
0 with

pure support Z
0, we apply to the latter the direct image theorem 14.3.1 for ⇡, and

get the desired polarized Hodge module as the component of this direct image T⇡
0

⇤
having pure support Z. We argue similarly for the fullness: if any morphism defined
on some Z

o can be extended as a morphism between the extended objects on Z
0,

we push it forward by ⇡ and restrict it as a morphism between the corresponding
components. We are thus reduced to the case where Z = X and the variation exists
on X

o
:= X rD, where D is a divisor with normal crossings.
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16.2.b. The normal crossing case. We consider a normal crossing pair (X,D) and
a polarized variation of Hodge structure (HH, S) of weight w�dimX on X

o
:= XrD.

The theorem is a consequence of the next proposition.

16.2.2. Proposition. With these assumptions,
(1) the polarized variation of Hodge structure (HH, S) extends as a pre-polarized

triple (eT, S) of weight w on X, which is of normal crossing type and middle extension
on (X,D);

(2) the pre-polarized triple (eT, S) obtained in (1) satisfies the properties of Defini-
tion 14.2.2 with respect to any germ of holomorphic function g such that g�1(0) ⇢ D;

(3) the pre-polarized triple (eT, S) obtained in (1) satisfies the properties of Defini-
tion 14.2.2 with respect to any germ of holomorphic function g.

Let us start with simple observations.

16.2.3. Fullness and locality of the extension property 16.2.2(1). We first show:
Let ( eM, F•

eM) and ( eM0, F•
eM0) be coherent filtered eDX-modules of normal crossing

type and middle extension along each component of D (hence along D, by Corollary
15.11.2). Any morphism '

o
: ( eM, F•

eM)|Xo

⇠�! ( eM0, F•
eM0)|Xo extends in a unique

way as a morphism ' : ( eM, F•
eM)

⇠�! ( eM0, F•
eM0). In particular, if 'o is an isomor-

phism, then so is '.
The question is local and we can argue with coordinates (x1, . . . , xn) as in Part 2

of Chapter 15. By considering Deligne’s canonical meromorphic extension, one first
checks that 'o extends in a unique way as a morphism ' : eM(⇤D)! eM0(⇤D) which
sends V

(n)

<0
eM to V

(n)

<0
eM0. The question is to check that it is strictly compatible with

the filtrations. Then, denoting by j : X
o
,! X the open inclusion, ' induces a

morphism
j⇤j
�1

Fp
eM \ V

(n)

<0
eM �! j⇤j

�1
Fp

eM0 \ V
(n)

<0
eM0

for each p 2 Z. Then, Proposition 15.9.11 together with Remark 15.9.13 yield the
conclusion.

We now check compatibility of ' with the sesquilinear pairings in eT, eT0. For that,
we first observe that ' is compatible with the associated moderate pre-polarizations
s
modD

, s
0modD (see Section 12.5.f). As eM is a middle extension along D (see Corollary

15.11.2), it follows from Corollary 12.5.41 that ' is compatible with s, s
0. At this point,

we have shown fullness in the structure theorem.
It remains to check that, in 16.2.2(1), the extension of S is unique. This also follows

from the middle extension property of Corollary 15.11.2.

16.2.4. Property 16.2.2(2) implies 16.2.2(3). Let g be any germ of holomorphic function
at x 2 X. If the germ is taken at a point x 2 X

o, then the properties hold, since
we already know that a polarized variation of Hodge structure is a polarized Hodge
module (Theorem 14.6.1). Therefore, we only need to consider germs g at a point
x 2 D. To reduce to the case of a monomial, we argue as in the proof when (eT, S) is a
polarized variation of Hodge structure (see Step one of the proof of Theorem 14.6.1).
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Given any g, we can find a projective modification ⇡ : X
0 ! X such that D

0
:=

⇡
�1

(D [ g
�1

(0)) is a divisor with normal crossing in the complex manifold X
0, so

that g � ⇡ can be expressed in local coordinates as a monomial, and such that ⇡ is an
isomorphism above X r g

�1
(0). By the first step, we extend the variation as a pre-

polarized triple (eT0, S0) of normal crossing type and middle extension on (X
0
, D
0
) and

the properties of Definition 14.2.2 are satisfied for g�⇡. We can then apply Proposition
14.4.2 to obtain the desired properties for g with respect to T⇡

(0)

⇤ (eT0, S0), which is S-
decomposable along D[ g�1(0). Let (eT0

0
, S
0
0
) be its pure component supported on X.

On the other hand, let (eT, S) be the object obtained from (HH, S) at the first step.
Then eT also has pure support equal to X.

16.2.c. Polarized Hodge modules in the normal crossing case. Let X be a
complex manifold and let D =

S
i2I Di be a reduced divisor with normal crossings.

Let (M, S) be a polarized Hodge module with pure support X and singularities on D,
so that (M, S)|XrD is a polarized variation of Hodge structure.

16.2.5. Theorem. With these assumptions, the filtered DX-module (M, F
•M) under-

lying M is of normal crossing type and a middle extension along Di2I (Definitions
15.9.1 and 15.9.10).

We first check the property for M.

16.2.6. Lemma. With these assumptions, the underlying DX-module M is of normal
crossing type (Definition 15.7.11) and a middle extension along Di2I (Definition
15.7.8).

Let us recall the local setting of Chapter 15. The space X is a polydisc in C
n

with analytic coordinates x1, . . . , xn, we fix ` 6 n and we denote by D the divisor
{x1 · · ·x` = 0}. We also denote by Di (i 2 I) the smooth components of D and
by D(`) their intersection D1\ · · ·\D`. We will shorten the notation OD(`)

[x1, . . . , x`]

into OD(`)
[x] and DD(`)

[x1, . . . , x`]h@x1
, . . . , @x`

i into DD(`)
[x]h@xi.

Proof of Lemma 16.2.6. Since M is holonomic, and smooth on X r D, M(⇤D) is a
coherent OX(⇤D)-module, according to Example 11.3.14.

On the smooth open subset of D, we can apply the same argument as for Propo-
sition 7.4.12 and conclude that for each p, we have the equality

FpM \ V<0M = (j⇤j
�1

FpM) \ V<0M.

In particular, for p � 0 we obtain that V<0M = FpM \ V<0M is OX -coherent. This
means that the OX(⇤D)-module with flat connection M(⇤D) has regular singularities
along the smooth open subset of D. It follows from [Del70, Th. 4.1 p. 88] that M(⇤D)

is OX(⇤D)-locally free and has regular singularities along D, so M(⇤D) is of normal
crossing type along D. Moreover, M is its middle extension along Di2I , hence is also
of normal crossing type.



16.3. APPLICATIONS OF THE STRUCTURE THEOREM 653

16.2.7. Lemma. Assume there exists a coherent filtered DX-module (M0, F•M
0
) of nor-

mal crossing type along D and a middle extension along Di2I such that the restrictions
j
�1

(M, F•M) and j
�1

(M0, F•M
0
) are isomorphic. Then (M, F•M) ' (M0, F•M

0
).

This lemma reduces the proof of Theorem 16.2.5 to the construction of (M0, F•M
0
).

Proof. By Lemma 16.2.6 we have M ' M0, so we identify these modules, and we
set F•M

0
= F

0
•M. Let g be a reduced defining equation for D and let ◆g be the

corresponding graph embedding. Then (M, F
0
•M) is strictly R-specializable along (g)

and a middle extension along Di2I , according to Theorem 15.11.1. By definition, the
same property holds for (M, F•M). Applying Remark 10.5.2 to F•Mg and F

0
•Mg leads

to F•Mg = F
0
•Mg, hence F•M = F

0
•M.

According to Proposition 15.9.24, the proof of Theorem 16.2.5 will be achieved if
we prove the higher dimensional analogue of Theorem 6.7.3:

16.2.8. Theorem. If (M, S)XrD is a polarized variation of Hodge structure on X rD,
and if we set FpM<0 = j⇤FpM|XrD, then for each ↵ < 0 the sheaves gr

F

p
V

(`)
↵ M are

(coherent and) locally free OX-modules.

16.3. Applications of the structure theorem

16.3.a. Semi-simple components. Let X be a smooth projective variety and M

be a polarizable Hodge module of weight w. The underlying DX -module M is semi-
simple, according to Theorem 14.7.7.

16.3.1. Proposition (Semi-simple components). Any simple component M↵ of M un-
derlies a unique (up to equivalence) polarized Hodge module (M↵, S↵) of the same
weight w and there exists a polarized Hodge structure (H

o

↵
, S

o

↵
) of weight 0 such that

(M, S) '
L

↵
((H

o

↵
, S

o

↵
)⌦ (M↵, S↵)).

(See Section 4.3.c for the notion of equivalence.)

Proof. We can assume that M has pure support a closed irreducible analytic subset Z
of X and that the restriction of M to a Zariski dense open subset Z

o ⇢ Z is a
polarizable variation of Hodge structure.

We will apply the same argument as for Theorem 4.3.13(2). For that purpose,
we need to know that the space of global sections of a polarized variation of Hodge
structure on Z

o is a polarized Hodge structure. Since we have the choice of a com-
pactification Z

o, we can assume that Z is smooth and D = Z r Z
o is a divisor

with normal crossings. By the structure theorem, the variation extends as a polar-
izable Hodge module M with pure support Z. By the Hodge-Saito theorem 14.3.1
applied to the constant map aZ : Z ! pt, the hypercohomology H

� dimZ
HaZ⇤M

is a polarizable Hodge structure. Its underlying vector space is H
�n

(Z,
p

DRM) =

H
0
(Z,H�n(

p

DRM)) (since all differentials dr (r > 2) in the spectral sequence start-
ing with E

i,j

2
= H

i
(Z,Hj

(
p

DRM)) vanish on E
0,�n
2

). We are thus left with proving
H

0
(Z,H�n(

p

DRM)) = H
0
(Z

o
,H), with H = H�n(

p

DRM)|Zo . This amounts to the
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equality of sheaves H�n(
p

DRM) = j⇤H, where j : Z
o
,! Z denotes the inclusion,

and this is a local question in the neighbourhood of each point of D.
By Lemma 16.2.6, the DX -module M is of normal crossing type and a middle

extension along Di2I . Let us work in the local setting with the simplifying assumption
15.6.2. We will show the equality of germs H�n(

p

DRM)0 = (j⇤H)0. The germ at 0

of the de Rham complex p

DRM is the simple complex associated to the n-complex
having vertices equal to

L
↵2[�1,0)n M↵+k with k 2 {0, 1}n and arrows in the i-th

direction induced by e@xi
. The latter is an isomorphism on each M↵+k with ↵i 6= �1

and ki = 0. This complex is thus isomorphic to its subcomplex with vertices M�1+k,
so that e@xi

reads cani, and H0
(DRM)0 =

T
i
Ker can i ⇢ M�1. A similar analysis

shows that (j⇤H)0 =
T

i
KerNi ⇢ M�1. Recall now that M is a middle extension

along Di2I . This means that cani is onto and vari is injective, so KerNi = Ker cani,
and this concludes the proof.

16.3.b. Smooth and strictly non-characteristic pullbacks

16.3.2. Proposition. Let f : X ! Y be a smooth morphism of complex analytic man-
ifolds and let (M,W•M) be an object of WHM(Y ). Then (Tf

⇤
M, Tf

⇤
W•M) is an

object of WHM(X).

Proof. Since f is flat, we can reduce to the case where M is pure, and it is enough
to consider the case where it has pure support a closed irreducible analytic subset Z

of Y . The question is local, so that we can assume that f is the projection of a product
X = Y ⇥Z ! Y . The result amounts then to the property that the equivalence given
by the structure theorem 16.2.1 is compatible with the external product by H

eOZ

(see Example 14.6.2). This property is straightforward from the construction.

16.3.3. Corollary (of Propositions 14.7.5 and 16.3.2). Let (M,W•M) be an object of
WHM(Y ) and let f : X ! Y be a morphism of complex analytic manifolds which is
non-characteristic with respect to gr

W

`
M for each ` 2 Z. Then (Tf

⇤
M, Tf

⇤
W•M) is

an object of WHM(X).

16.3.c. Duality. For M underlying an object of WHM(X), the dual DM is well-
defined in eD-Triples(X), according to Sections 14.7.b and 14.7.c. The same property
applies to each W`M and M/W`M .

16.3.4. Theorem. Let (M,W•M) be an object of WHM(X). Then the W -filtered triple
(DM,W•DM), with W`DM := D(M/W�`�1M), is an object of WHM(X).

16.3.d. The Kodaira-Saito vanishing theorem

16.3.5. Theorem. Let X be a smooth projective variety, let L be an ample line bundle
on X and let eM be any of the eDX-module components of an object (M,W•M) of
WHM(X). Then eM satisfies the Kodaira-Saito vanishing property (Definition 11.9.1),
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that is

H
k
(X,L

�1 ⌦ gr
F p

DRM) = 0 for k < 0,

H
k
(X,L⌦ gr

F p

DRM) = 0 for k > 0.

Proof. We will check the criteria of Theorem 11.9.5 for eM and D eM. As D eM also
underlies an object of WHM(X) by Theorem 16.3.4, it is enough to argue with eM.

Firstly, by arguing by induction on the maximal weight, we can assume that M is
pure of weight w as we have an exact sequence

0 �!W`�1 eM �!W`
eM �! gr

W

`
eM �! 0

which leads to an exact sequence of complexes after applying gr
F p

DRX .
We then argue by induction on the dimension of the support Z of M . The case

where dimZ = 0 is clear due to Property 14.2.2(0). We can assume that Z is of
dimension d > 1, that M has support Z and that the theorem holds if dimSuppM 6
d� 1.

Instead of checking 11.9.5(1), we check (10) of Remark 11.9.6. Let H be any hyper-
plane section (with respect to the embedding defined by L

⌦m) which is non-charac-
teristic with respect to M . By Proposition 9.5.2, since by definition M is strictly
R-specializable along H, it is also strictly non-characteristic along H. The cyclic
covering morphism f : X

0 ! X considered in §11.9.2 is thus strictly non-character-
istic with respect to M . By Corollary 16.3.3, Df

⇤(0)
M belongs to pHM(X

0
, w). The

Hodge-Saito theorem 14.3.1 for the constant map aX0 implies the strictness required
in 11.9.6(10).

For 11.9.5(2), by definition of the category pHM(X,w), the object T◆H⇤(T◆
⇤(0)
H

M)

also belongs to pHM(X,w) by the strictly non-characteristic condition, and has sup-
port contained in Z \ H, hence of dimension 6 d � 1. The induction assumption
ensures that 11.9.5(2) is satisfied.

16.4. Comments

Here come the references to the existing work which has been the source of inspi-
ration for this chapter.





APPENDIX.
SIGN CONVENTIONS FOR HODGE MODULES

A.1. General principles

In this appendix, we explain how one can arrive at the correct sign conventions for
polarized Hodge modules. This is a bit of a detective story, fortunately with a happy
ending. Finding the correct signs looks difficult at the beginning, because there are
many places in the theory where one might have to choose a sign factor, and it is not
clear that all those choices can be made consistently. For example, should there be a
sign in the conversion between left and right D-modules? What are the correct signs
to use for direct images? For nearby and vanishing cycles? For the duality functor?

Before going into any details, we think it may be helpful to list a few general
principles that have turned out to be useful in the solution:

(1) Make all definitions in such a way that they do not depend on the choice of
the imaginary unit i =

p
�1.

(2) Make all constructions compatible with closed embeddings, and therefore in-
dependent of the choice of ambient complex manifold.

(3) In particular, work consistently with right D-modules and currents (instead of
with left D-modules and distributions).

(4) When defining a current, choose the sign in such a way that the resulting
current is positive, if possible.

(5) Use Deligne’s Koszul sign rule for graded objects. Under this rule, switching
two quantities x and y produces a sign factor of (�1)deg x deg y.

A.1.1. Example. The integral over a complex manifold X depends on the orientation;
the orientation is induced by the standard orientation on C, in which 1, i is a positively
oriented basis over R. To make the integral independent of the choice of i, it is better
to work with the expression

1

(2⇡i)dimX

Z

X

instead. Similarly, the Lefschetz operator L!↵ = ! ^ ↵ on the cohomology of a
compact Kähler manifold depends on the choice of i, because the Kähler form ! is
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minus the imaginary part of the Kähler metric. It is therefore better to work with
the operator (2⇡i)L! instead.

A.1.2. Example. The fundamental group of the punctured disk

�
⇤
= {t 2 C | 0 < |t| < 1}

is naturally the group Z(1) = (2⇡i)Z. Indeed, independently of the choice of i, the
universal covering space of the punctured disk is exp: H! �

⇤, where

H = {z 2 C | Re z < 0}

is the left halfplane. The group Z(1) acts on this space by translations.

A.1.3. Example. Polarizations are defined as Hermitian pairings with values in the
sheaf of currents. The following collection of basic currents on the unit disk � plays
an important role in the theory. Define L(t) = � log|t|2, with a minus sign to make
the function positive on �⇤. For ↵ < 0 and p 2 N, the formula

(A.1.4)
⌦
C↵,p,'

↵
=
"(2)

2⇡i

Z

�

L(t)
p

p!
|t|�2(1+↵)

' dt ^ dt

defines a current on �. The factor 2⇡i makes the current independent of the choice of
i =
p
�1, and the sign factor "(2) = �1 makes it positive, as suggested by the general

principles above. For different values of p 2 N, the basic currents are related by the
identity

C↵,p(t@t � ↵) = C↵,p(t@t � ↵) = C↵,p�1,

which can be proved using integration by parts. The delta function
⌦
�0,'

↵
= '(0)

can be expressed in terms of the basic currents as

(A.1.5) �0 = �C�1,1@t@t;

the proof is again by integration by parts.

A.2. Hodge structures and polarizations

The first place where a sign factor appears is in the definition of complex Hodge
structures. Let H be a finite-dimensional complex vector space. Recall that a Hodge
structure of weight k on H is a decomposition

(A.2.1) H =
L

p+q=k

H
p,q

.

A polarization of H is a Hermitian form

S: H ⌦C H �! C,

with the following two properties:
(a) The decomposition in (A.2.1) is orthogonal with respect to S.
(b) The Hermitian form ck(�1)qS is positive definite on the subspace H

p,q.
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In this definition, ck is a sign factor depending on the weight of the Hodge structure.
We will see below that there are only two choices: either ck = (�1)k, which is the
convention used in classical Hodge theory; or ck = 1, which is the convention used in
Saito’s work. We will find that ck = 1 is indeed the correct choice for the theory of
Hodge modules, but we shall give all formulas with ck for the time being, so as not
to prejudge the issue.

A.2.2. Example. On C = C
0,0, the natural Hermitian form is S(a, b) = ab. If we want

this to be a polarization, we have to use c0 = 1.

A.2.3. Example. If H is a Hodge structure of weight k, then the conjugate vector
space H inherits a Hodge structure of weight k, with Hodge decomposition

H
p,q

= Hq,p.

The Tate twist H(n) is the Hodge structure of weight k � 2n with

H(n)
p,q

= H
p+n,q+n

.

The first condition in the definition of a polarization is equivalent to saying that

S: H ⌦C H �! C(�k)

is a morphism of Hodge structures of weight 2k.

A.2.4. Example. Let HR be a finite-dimensional real vector space. Cattani, Kaplan,
and Schmid define a real Hodge structure of weight k to be a decomposition

H = C⌦R HR =
L

p+q=k

H
p,q

with the property that Hp,q = H
q,p. They say that a bilinear pairing

QR : HR ⌦R HR �! R

is a polarization if the following conditions are satisfied: QR is (�1)k-symmetric; the
Hodge decomposition is orthogonal with respect to QR; and QR(ip�qv, v) > 0 for
every nonzero v 2 H

p,q. In that case, the Hermitian pairing

S: H ⌦C H �! C, S(v, w) = ck(�1)k · (2⇡i)�kQR(v, w)

is a polarization in our sense. Indeed, for nonzero v 2 H
p,q, one gets

ck(�1)q · S(v, v) = ck(�1)kikip�q · S(v, v) = (2⇡)
�k

QR(i
p�q

v, v) > 0.

One can interpret the factor (2⇡i)
�k as saying that QR : HR ⌦R HR ! R(�k) is

a morphism of real Hodge structures of weight 2k; in classical Hodge theory, it is
therefore more natural to take ck = (�1)k.
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A.3. Cohomology of compact Kähler manifolds

We can pin down some of the signs by working out what happens for the co-
homology of compact Kähler manifolds. Let X be a compact Kähler manifold of
dimension n. For each k 2 {0, 1, . . . , 2n}, the k-th cohomology has a Hodge structure
of weight k, with Hodge decomposition

H
k
(X,C) =

L
p+q=k

H
p,q

(X).

A choice of Kähler metric h determines a polarization of the Hodge structure; it also
determines the Lefschetz operator, which makes the direct sum of all cohomology
groups into a representation of the Lie algebra sl2(C). Our goal will be to describe
all this information as concisely as possible.

Note. The advantage of this example – and the reason for putting it at the beginning
of our analysis – is that there are no choices involved in constructing a positive definite
pairing. Indeed, the Kähler metric induces a positive definite Hermitian inner product
on the space of harmonic k-forms, hence on H

k
(X,C). All we have to do is figure out

what signs appear when we compare this inner product to the pairing given by wedge
product and integration over X.

Fix a choice of i =
p
�1. The Kähler form ! = � Imh 2 A

2
(X,R) and its

cohomology class [!] 2 H
2
(X,R) depend on the choice of i, because the imaginary

part Im: C! R does. The choice of i endows the two-dimensional real vector space C

with an orientation, by declaring that 1, i is a positively-oriented basis; the induced
orientation on X has the property that

Z

X

!
n

n!
= vol(X) > 0.

We can remove the dependence on the choice of i by defining R(1) = 2⇡i ·R ✓ C,
and working with the closed two-form 2⇡i ! 2 A

2
(X,R(1)); its cohomology class is

[2⇡i !] 2 H
2
(X,R(1)). Instead of the usual integral, we use

1

(2⇡i)n

Z

X

: A
2n
(X,C) �! C.

Now all terms in the identity
1

(2⇡i)n

Z

X

(2⇡i !)
n

n!
= vol(X)

are independent of the choice of i.

A.3.1. Example. On P
1, with the Fubini-Study metric, one has

2⇡i !FS = c1

�
OP1(1)

�
2 H

2
�
P
1
,Z(1)

�
,

and the volume comes out to

vol(P
1
) =

1

2⇡i

Z

P1

2⇡i !FS = 1.
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This is the reason for including the factor 2⇡ into the definition. Some of the formulas
below would look nicer without the 2⇡, but we shall keep it for the sake of tradition.

Let A
k
(X) = A

k
(X,C) be the space of smooth complex-valued k-forms. The

Kähler metric h induces on A
k
(X) a Hermitian inner product

h↵,�i =
Z

X

↵ ^ ⇤�,

where ⇤ : Ak
(X) ! A

2n�k
(X) is the Hodge ⇤-operator. Like the integral, the Hodge

⇤-operator depends on the orientation, whereas the inner product only depends on
the Kähler metric h. We define the Lefschetz operator

L! : A
•
(X) �! A

•+2
(X)

by the formula L!↵ = ! ^ ↵, and its adjoint

⇤! : A
•
(X) �! A

•�2
(X)

by the formula hL!↵,�i = h↵,⇤!�i. The main tool for describing the polarization is
the following result, known as Weil’s identity.

A.3.2. Proposition. If ↵ 2 A
p,q

(X) is primitive, in the sense that ⇤!↵ = 0, then

(A.3.3) ⇤↵ = i
q�p

"(k)
L
n�k
!

(n� k)!
↵,

where "(k) = (�1)k(k�1)/2 and k = p+ q.

We can use Weil’s identity to express the Hodge ⇤-operator in terms of represen-
tation theory. The complex Lie algebra sl2(C) has the standard basis

H =

✓
1 0

0 �1

◆
, X =

✓
0 1

0 0

◆
, Y =

✓
0 0

1 0

◆
.

In the complex Lie group SL2(C), consider the Weil element

w =

✓
0 1

�1 0

◆
= e

X
e
�Y

e
X
.

It has the property that w
�1

= �w, and under the adjoint action of SL2(C) on its
Lie algebra, one has the identities

wHw
�1

= �H, wXw
�1

= �Y, wYw
�1

= �X.

From this, one deduces that e
X

= we
�X

e
Y

= e
Y
we

Y, which gives another way to
remember the formula for w.

The (infinite-dimensional) vector space

A
•
(X) =

2nL
k=0

A
k
(X)

becomes a representation of sl2(C) if we set

X = 2⇡i L! and Y = (2⇡i)
�1
⇤!,
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and let H act as multiplication by k � n on the subspace A
k
(X). The reason for this

(non-standard) definition is that it makes the representation not depend on the choice
of i. It is easy to see how the Weil element w acts on primitive forms. Suppose that
↵ 2 A

n�k
(X) satisfies Y↵ = 0. Then w↵ 2 A

n+k
(X), and if we expand both sides of

the identity
e
X
↵ = e

Y
we

Y
↵ = e

Y
w↵

into power series, and compare terms in degree n+ k, we get

w↵ =
X

k

k!
↵.

This formula is the reason for using w (instead of the otherwise equivalent w�1): there
is no sign on the right-hand side.

Note. One should be careful: the element

w
2
=

✓
�1 0

0 �1

◆
2 SL2(C)

acts on A
k
(X) as (�1)k�n, and not just as �1.

We deduce the following generalization of Weil’s identity, which shows again how
the Hodge ⇤-operator depends on the choice of i.

A.3.4. Proposition. For every ↵ 2 A
p,q

(X), one has

⇤ ↵ =
1

(2⇡i)n
· (�1)q "(p+ q)(2⇡)

p+q · w↵.

Proof. Suppose first that Y↵ = 0. Setting k = p+ q, we have

w↵ =
X

n�k

(n� k)!
↵.

On the other hand, Weil’s identity (A.3.3) becomes

⇤↵ = i
q�p

"(k) · (2⇡i)k�n X
n�k

(n� k)!
↵ = (2⇡i)

�n · (�1)q "(k)(2⇡)k · w↵,

as claimed. The general case follows by using the relations

⇤X = �(2⇡)2 Y ⇤ and wX = �Yw,

the Lefschetz decomposition for ↵, and the identity "(k + 2) = � "(k).

Now we can easily derive the Hodge-Riemann bilinear relations. Suppose that
↵,� 2 A

p,q
(X), and set k = p+ q. Then

↵ ^ ⇤� = ↵ ^ (⇤�) = 1

(2⇡i)n
· (�1)n+q

"(k)(2⇡)
k · ↵ ^ (w�).

If we put this into the formula for the inner product, we get

(A.3.5) h↵,�i =
Z

X

↵ ^ ⇤� = (�1)n+q
"(k)(2⇡)

k · 1

(2⇡i)n

Z

X

↵ ^ (w�).
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According to our definition, this means that the Hermitian pairing

(↵,�) 7�! (�1)nck "(k) ·
1

(2⇡i)n

Z

X

↵ ^ (w�),

polarizes the Hodge structure on H
k
(X,C).

It turns out that there is a much more concise way of describing the polarization.
Let us set Hk = H

n+k
(X,C); this has a Hodge structure of weight n + k, and its

weight with respect to the action by H is equal to k. Also set

H =
L
k2Z

Hk,

with the induced action by the Lie algebra sl2(C) and the Lie group SL2(C). For each
k 2 {�n, . . . , n}, we have a sesquilinear pairing

(A.3.6) Sk : Hk ⌦C H�k �! C, Sk(↵,�) = bk · 1

(2⇡i)n

Z

X

↵ ^ �.

Here bk is a sign factor; our goal will be to choose bk in such a way that all the
formulas become as simple as possible. We can put all of the Sk together into one big
sesquilinear pairing

S: H ⌦C H �! C, S|Hk⌦CH`
=

(
Sk if ` = �k,
0 otherwise.

The following two identities can be checked with a brief calculation:

Sk(↵,�) = (�1)kb�kbk · S�k(�,↵) and Sk(H↵,�) = �Sk(↵,H�)

for ↵ 2 Hk and � 2 H�k. Since X = 2⇡i L!, it is also not hard to show that

Sk+2(X↵,�) = �bkbk+2 · Sk(↵,X�)

for ↵ 2 Hk and � 2 H�(k+2). A slightly longer calculation, based on Proposi-
tion A.3.4, is required to prove the identity

Sk(↵,w�) = (�1)kb�kbk · S�k(w↵,�)

for every ↵,� 2 Hk. Now the fact that Y = �wXw
�1 can be used to deduce the

following more surprising identity:

Sk�2(Y↵,�) = �bkbk�2 · Sk(↵,Y�)

for every ↵ 2 Hk and every � 2 H�(k�2). We write “surprising” because it is not at
all clear, at first glance, that one can move the adjoint ⇤! of the Lefschetz operator
from one factor of the integral to the other.

Clearly, we should require bk+2 = �bk for every k 2 Z, in order to eliminate all the
sign factors from the above formulas. Let us restate the resulting identities in terms
of the sesquilinear pairing S: H ⌦C H ! C: first, S is Hermitian symmetric; second,
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one has the four identities
S � (H⌦ Id) = �S � (Id⌦H),

S � (X⌦ Id) = S � (Id⌦X),

S � (Y ⌦ Id) = S � (Id⌦Y),

S � (w ⌦ Id) = S � (Id⌦w).

(A.3.7)

Now suppose that ↵,� 2 A
p,q

(X) are harmonic forms. It will be convenient to define
k = (p+ q)� n, so that [↵], [�] 2 Hk. Then

Sk(↵,w�) = bk · 1

(2⇡i)n

Z

X

↵ ^ (w�).

Going back to (A.3.5), we can rewrite this in the form

Sk(↵,w�) = (�1)q · bk(�1)n "(n+ k) · h↵,�i
(2⇡)n+k

.

The conclusion is Hk has a Hodge structure of weight n + k, which is polarized by
the Hermitian form Sk � (Id⌦w), provided that

(A.3.8) bk = (�1)n "(n+ k)cn+k.

Note. Recall that bk+2 = �bk. Since "(k + 2) = � "(k), it follows that ck+2 = ck for
every k 2 Z; together with the normalization c0 = 1, this leaves the two values ck = 1

and ck = (�1)k as the only possibilities. We will see below that ck = 1 is the better
choice for the theory of Hodge modules.

Let us summarize our findings. Setting Hk = H
n+k

(X,C), the vector space

H =
L
k2Z

Hk

is a representation of the Lie algebra sl2(C). Each weight space Hk has a Hodge
structure of weight n+ k, and the two operators

X: Hk �! Hk+2(1) and Y: Hk �! Hk�2(�1)

are morphisms of Hodge structure. All of these Hodge structures are simultaneously
polarized by the Hermitian form S � (Id⌦w), where S: H ⌦C H ! C is assembled
from the individual sesquilinear pairings

Sk : Hk ⌦C H�k �! C, Sk(↵,�) = (�1)ncn+k "(n+ k) · 1

(2⇡i)n

Z

X

↵ ^ �,

and satisfies the identities in (A.3.7).

A.4. sl2-Hodge structures and polarizations

The cohomology of a compact Kähler manifold is both a representation of sl2(C)
and a direct sum of polarized Hodge structures, in a compatible way. Since the same
kind of structure also appears in the analysis of polarized variations of Hodge structure
on the punctured disk, it will be useful to give it a name.
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A.4.1. Definition. An sl2-Hodge structure on a finite-dimensional complex vector space
H is a representation of sl2(C) on H with the following properties:

(a) Each weight space Hk = Ek(H) has a Hodge structure of weight n + k; the
integer n is called the (central) weight of the sl2-Hodge structure.

(b) The two operators

X: Hk �! Hk+2(1) and Y: Hk �! Hk�2(�1)

are morphisms of Hodge structure.

Equivalently, an sl2-Hodge structure of weight n is a bigraded vector space

H =
L

p,q2Z
H

p,q

that is simultaneously a representation of sl2(C), in a way that is compatible with
the bigrading. This means that

X: H
p,q �! H

p+1,q+1 and Y: H
p,q �! H

p�1,q�1
,

and that H acts on the subspace H
p,q as multiplication by the integer (p + q) � n.

This makes each of the weight spaces

Hk =
L

p+q=n+k

H
p,q

into a Hodge structure of weight n+ k. In this abstract setting, we can again define
the Weil element

w = e
X
e
�Y

e
X 2 GL(H).

The Weil element induces isomorphisms w: Hk ! H�k among opposite weight spaces,
due to the fact that wHw

�1
= �H.

A.4.2. Lemma. If H is an sl2-Hodge structure, then w: Hk ! H�k(�k) is an isomor-
phism of Hodge structures (of weight n+ k).

Proof. We first prove an auxiliary formula. Suppose that b 2 H�` is primitive, in the
sense that Yb = 0 (and therefore ` > 0). From we

�X
= e

X
e
�Y, we get we

�X
b = e

X
b,

and after expanding and comparing terms in degree `� 2j, also

(A.4.3) w
X

j

j!
b = (�1)j X

`�j

(`� j)!
b.

Now any a 2 Hk has a unique Lefschetz decomposition

a =

X

j>max(k,0)

X
j

j!
aj ,

where aj 2 Hk�2j satisfies Y aj = 0. Here we only need to consider j > k in the sum
because X

2j�k+1
aj = 0, which implies that Xj

aj = 0 for j < k. Suppose further that
a 2 H

p,q, where p+ q = n+ k. Then X
i
aj 2 H

p+i,q+i, and by descending induction
on j > max(k, 0), we deduce that

aj 2 H
p�j,q�j

.
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In other words, the Lefschetz decomposition holds in the category of Hodge structures.
We can now check what happens when we apply w. Using (A.4.3),

wa =

X

j>max(k,0)

w
X

j

j!
aj =

X

j>max(k,0)

(�1)j X
j�k

(j � k)!
aj 2 H

p�k,q�k
,

and so w is a morphism of Hodge structures. Since w is bijective, it must be an
isomorphism of Hodge structures, as claimed.

We define polarizations of sl2-Hodge structures by analogy with the case of compact
Kähler manifolds.

A.4.4. Definition. A polarization of an sl2-Hodge structure H is a Hermitian form

S: H ⌦C H �! C

that satisfies the four identities

S � (H⌦ Id) = �S � (Id⌦H),

S � (X⌦ Id) = S � (Id⌦X),

S � (Y ⌦ Id) = S � (Id⌦Y),

S � (w ⌦ Id) = S � (Id⌦w),

such that S � (Id⌦w) polarizes the Hodge structure of weight n+ k on each Hk.

The relation S � (H⌦ Id) = �S � (Id⌦H) implies that

S|Hk⌦CH`
=

(
Sk if ` = �k,
0 otherwise.

and so S is actually given by a collection of sesquilinear pairings

Sk : Hk ⌦C H�k �! C,

exactly as in the previous section.

A.4.5. Example. With the exception of positivity, all the conditions in the definition
have a nice functorial interpretation. The conjugate complex vector space H is again
an sl2-Hodge structure of weight n: the action of H is unchanged, but X and Y act
with an extra minus sign. This sign change is dictated by the geometric case, where
X = 2⇡i L! and Y = (2⇡i)

�1
⇤!. Likewise, if H 0 and H

00 are sl2-Hodge structures
of weights n

0 and n
00, then the tensor product H

0 ⌦C H
00 is naturally an sl2-Hodge

structure of weight n
0
+ n

00: to be precise,
�
H
0 ⌦C H

00�
k
=

L
i+j=k

H
0
i
⌦C H

00
j
,

and the sl2(C)-action is given by the usual formulas

X(v
0 ⌦ v

00
) = Xv

0 ⌦ v
00
+ v
0 ⌦Xv

00
,

Y(v
0 ⌦ v

00
) = Yv

0 ⌦ v
00
+ v
0 ⌦Yv

00
,

H(v
0 ⌦ v

00
) = Hv

0 ⌦ v
00
+ v
0 ⌦Hv

00
.
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Lastly, we can turn C(�n) into an sl2-Hodge structure of weight 2n by letting sl2(C)

act trivially. Then all the identities in Definition A.4.4 can be summarized in one line
by saying that the Hermitian form

S: H ⌦C H �! C(�n)

is a morphism of sl2-Hodge structures of central weight 2n. This shows that the choice
of the sign factor bk in (A.3.8) is the only natural one.

A.5. Pairings on D-modules

Let us return to the cohomology of compact Kähler manifolds, in particular, to the
formula for the sesquilinear pairing

Sk : Hk ⌦C H�k �! C, Sk(↵,�) = (�1)ncn+k "(n+ k) · 1

(2⇡i)n

Z

X

↵ ^ �.

The sign factor (�1)ncn+k "(n + k) in this formula represents an interesting puzzle,
whose solution is another important step in finding the correct sign conventions for
Hodge modules, especially for direct images.

Recall that Hk = H
n+k

(X,C) is isomorphic to the (n+ k)-th hypercohomology of
the holomorphic de Rham complex DR(OX); this is the complex

0 �! OX

d��! ⌦
1

X

d��! · · · d��! ⌦
n

X
�! 0,

which naturally lives in degrees 0, . . . , n. Equivalently, Hk is the k-th hypercoho-
mology of the shifted de Rham complex DR(OX)[n]; under the Koszul sign rule, the
differential in the complex DR(OX)[n] has to be (�1)nd.

Now the left DX -module OX comes with a natural Hermitian pairing, given by
taking two local sections f, g 2 OX to the product fg. What should the corresponding
pairing on the right DX -module !X be? The correct answer to this question turns
out to be

(A.5.1) SX : !X ⌦C !X �! CX ,
⌦
SX(!

0
,!
00
),'

↵
=
"(n+ 1)

(2⇡i)n

Z

X

' · !0 ^ !00,

where CX is the sheaf of currents of maximal degree, and "(k) = (�1)k(k�1)/2. Note
that SX is a morphism of right DX ⌦C D

X
-modules. It is also Hermitian symmetric

and, with the sign factor "(n+ 1) in front, positive definite: if the test function ' is
real-valued and nonnegative, then

⌦
SX(!,!),'

↵
> 0,

and equality for every ' implies that ! = 0. Following the general principle that
currents should be defined to be positive where possible, this is clearly the most
natural choice for the pairing on !X .

Note. With this definition of SX , the induced pairing on the space H
n,0

(X) =

H
0
(X,!X) is already positive definite. If we do not want to add any additional

sign factors, then we need to use ck = 1 and not ck = (�1)k; in other words, in a
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polarized Hodge structure, the sign of the polarization on the subspace H
p,q should

be (�1)q. We will see below that this choice works well in all cases.

Back to the puzzle of the sign factor (�1)n "(n+ k). We have

(�1)n "(n+ k) = (�1)n "(n) "(k)(�1)nk = "(n+ 1) "(k)(�1)nk,

which means that we can write the sesquilinear pairing from above as

(A.5.2) Sk(↵,�) = "(k) · (�1)nk · "(n+ 1)

(2⇡i)n

Z

X

↵ ^ �.

The third factor is consistent with the pairing SX on the right DX -module !X , and
the first factor "(k) only depends on the degree of the cohomology (which is what we
need to get a pairing that is embedding-independent); the question is where the extra
factor of (�1)nk comes from. Deligne gave a technical answer in a letter to Saito
(in terms of tensor products and shifts of complexes), but a more natural answer in
our setting is that it is caused by the conversion between right and left D-modules.
Namely, in order to convert the natural pairing on the right DX -module !X into
a pairing on the de Rham complex of the left DX -module OX , some sign changes
are needed, and these sign changes nicely account for the factor (�1)nk in the above
formula.

Since this is an important issue, we shall spend the remainder of this section going
through the details. To begin with, we describe a naive way for getting a pairing on
cohomology, in the setting of right D-modules. Let M be a right DX -module, and
suppose that we have a flat Hermitian pairing

S: M⌦C M �! CX .

We use the notation Sp
X
(M) for the Spencer complex

0 �!M⌦OX
^n⇥X

���! · · · ���!M⌦OX
⇥X

���!M �! 0,

which naturally lives in degrees �n, . . . , 0. The formula for the differential is

�(m⌦ @J) =
pX

i=1

(�1)i�1(m@ji)⌦ @J\{ji},

where, given an ordered index set J = {j1, . . . , jp} with j1 < · · · < jp, we set

@J = @j1 ^ · · · ^ @jp and dxJ = dxj1
^ · · · ^ dxjp

Here and elsewhere, we always stick to the Koszul sign rule: on the i-th term in the
sum, we need to commute @ji past (i�1) other vector fields, hence the sign of (�1)i�1.
We are going to write out all the formulas involving signs in what follows, to be sure
that everything works out correctly.

Now for the definition of the naive pairing. The tensor product

Sp
X
(M)⌦C Sp

X
(M)
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is naturally a double complex, with term in bidegree (�p,�q) given by
✓
M⌦OX

^p⇥X

◆
⌦C

✓
M⌦O

X
^q⇥

X

◆
⇠=
⇣
M⌦C M

⌘
⌦O

X,X

✓
^p⇥X ⌦C ^q⇥X

◆
.

Here O
X,X

is a convenient shorthand for the sheaf of algebras OX ⌦C O
X

. The
associated simple complex, with Deligne’s sign rule for the differential, lives in degrees
�2n, . . . , 0, and its term in degree �k is

�
M⌦C M

�
⌦O

X,X
^k⇥

X,X
.

To simplify the notation, we have introduced the additional sheaf

⇥
X,X

=
�
⇥X ⌦C O

X

�
�
�
OX ⌦C ⇥X

�
,

which is locally free of rank 2n over O
X,X

; in the formula above, the wedge product
is over O

X,X
. We denote the associated simple complex by the symbol

Sp
X,X

�
M⌦C M

�
,

because the formula for the differential is exactly the same as in the usual Spencer
complex, but where M ⌦C M is now considered as a right module over D

X,X
=

DX ⌦C D
X

, and where ⇥X is replaced by ⇥
X,X

.

A.5.3. Example. Indeed, say we have a local section

m
0 ⌦m

00 ⌦ @J ⌦ @K ,

with |J | = p and |K| = q; it lives in bidegree (�p,�q) in the double complex, and in
degree �(p+ q) in the associated simple complex. Under Deligne’s sign conventions,
the differential of the simple complex takes this element to

pX

i=1

(�1)i�1(m0@ji)⌦m
00 ⌦ @J\{ji} ⌦ @K

+ (�1)p
qX

i=1

(�1)i�1m0 ⌦ (m
00
@ki

)⌦ @J ⌦ @K\{ki}.

But this is exactly the image of m0⌦m00⌦@J^@K under the differential of the Spencer
complex, and so the notation Sp

X,X
(M⌦C M) is justified.

Since our Hermitian pairing

S: M⌦C M �! CX

is a morphism of right D
X,X

-modules, it induces a morphism of complexes

Sp
X,X

�
M⌦C M

�
�! Sp

X,X
(CX),

simply by applying S termwise. The net result is that we have a morphism

(A.5.4) Sp
X
(M)⌦C Sp

X
(M) �! Sp

X,X
(CX).
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The Poincaré lemma for distributions implies that the complex Sp
X,X

(CX) is a fine
resolution of the constant sheaf C[2n]. So the morphism in (A.5.4) induces, without
any further work, sesquilinear pairings

H
k
�
X, Sp

X
(M)

�
⌦C H�k

�
X, Sp

X
(M)

�
�! H

2n
(X,C) ⇠= C

on the level of cohomology. In fact, one can be more precise about the identification
between H

2n
(X,C) and C: the isomorphism

H
0
�
X, Sp

X,X
(CX)

� ⇠=�! C

is given by evaluating currents on the constant test function 1.
Now we can formulate the answer to the puzzle in a more precise way: the Her-

mitian pairing S on the right DX -module !X induces naive pairings between the
cohomology spaces

Hk
⇠= H

k
�
X, Sp

X
(!X)

�
,

and the claim is that this procedure explains the mysterious factor (�1)nk in (A.5.2).
To understand why, we need to work through the conversion between the Spencer
complex Sp

X
(!X) and the (shifted) de Rham complex DR(OX)[n]. That is to say,

we need to a formula for the pairing on the de Rham complex, induced by the naive
pairing

Sp
X
(!X)⌦C Sp

X
(!X) �! Sp

X,X
(CX)

under the isomorphism between the de Rham complex and the Spencer complex. As
before, it is important to use the Koszul sign rule consistently.

To keep the notation simple, let us suppose more generally that N is any left
DX -module. Its de Rham complex is the complex

0 �! N
r���! ⌦

1

X
⌦OX

N
r���! · · · r���! ⌦

n

X
⌦OX

N �! 0,

which naturally lives in degrees 0, . . . , n. We shall insist on using the notation
DRX(N)[n] for the shifted de Rham complex, as a reminder that the differential
in this complex is (�1)nr. Concretely, the formula for the differential is

dxJ ⌦m 7�! (�1)n(�1)|J|
nX

j=1

dxJ ^ dxj ⌦ (@jm),

where the (�1)|J| comes from the fact that we had to move the differential in the
complex (which has degree 1) past the form dxJ .

A.5.5. Lemma. The shifted de Rham complex of N is isomorphic to the Spencer complex
of the associated right DX-module !X ⌦OX

N.

Proof. Since it matters in what follows, let us carefully write down the exact formulas
for the morphism of complexes

Sp
X
(!X ⌦OX

N) �! DRX(N)[n].
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They are determined by the condition that, in degree zero, we want the morphism
!X ⌦OX

N! ⌦
n

X
⌦OX

N to be the identity. This forces us to define

(!X ⌦OX
N)⌦OX

^p⇥X �! ⌦
n�p
X
⌦OX

N

by the following rule:

(A.5.6) ! ⌦m⌦ @J 7�! (�1)(n�j1)+···+(n�jp)dxJc ⌦m

Here J = {j1, . . . , jp} is an ordered index set, Jc
= {1, . . . , n} \ J is the complement,

with the natural ordering, and ! = dx1^ · · ·^dxn. The sign factor is explained by the
fact that we have to move @j1 past dxj1+1, . . . , dxn, before we can contract it against
dxj1

, causing a factor of (�1)n�j1 to appear, and so on.
Let us verify that (A.5.6) really defines a morphism of complexes: each square

(!X ⌦OX
N)⌦OX

^p⇥X
//

�

✏✏

⌦
n�p
X
⌦OX

N

(�1)nr
✏✏

(!X ⌦OX
N)⌦OX

^p�1⇥X
// ⌦

n�p+1

X
⌦OX

N

commutes. Starting from !⌦m⌦@J with |J | = p, and going along the arrows on the
top and right, we obtain

(�1)(n�j1)+···+(n�jp)(�1)n(�1)|J
c|

nX

j=1

dxJc ^ dxj ⌦ (@jm)

= (�1)(n+1)p
(�1)j1+···+jp

pX

i=1

dxJc ^ dxji
⌦ (@jim).

(A.5.7)

Going along the arrow on the left, we obtain
pX

i=1

(�1)i�1(! ⌦m)@ji ⌦ @J\{ji} =

pX

i=1

(�1)i! ⌦ (@jim)⌦ @J\{ji},

and the arrow on the bottom turns this into

(�1)(n�j1)+···+(n�jp)
pX

i=1

(�1)i(�1)n�jidx(J\{ji})c ⌦ (@jim)

= (�1)np(�1)j1+···+jp

pX

i=1

(�1)pdxJc ^ dxji
⌦ (@jim).

(A.5.8)

The point is that dx(J\{ji})c = (�1)(p�i)+(n�ji)dxJc ^ dxji
, because putting the

expression dxJc ^ dxji
into the correct order requires moving dxji

past a form of
degree (n� ji)� (p� i). In any case, the two expressions in (A.5.7) and (A.5.8) are
equal, and so we do have a morphism of complexes.

For the same reason, we have an isomorphism of complexes

Sp
X,X

(CX) �! DR
X,X

(DbX)[2n],
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where DbX is the sheaf of distributions on X, considered as a left module over D
X,X

,
and where the (shifted) de Rham complex is defined in the same way as for DX -
modules, but using the wedge powers of the locally free O

X,X
-module

⌦
1

X,X
=
�
⌦

1

X
⌦C O

X

�
�
�
OX ⌦C ⌦

1

X

�
,

and the differential (�1)2nr. Concretely, the morphism of complexes is defined on
the terms in degree �k, which are

CX ⌦O
X,X
^k ⇥

X,X
�! ⌦

2n�k
X,X

⌦O
X,X

DbX ,

by the following formula (dictated by the Koszul sign rule): write a given current
locally as D! ^ !, for a unique distribution D; then

�
D! ^ !

�
⌦ @J ^ @K 7�!

(�1)(j1+···+jp)+(k1+···+kq)(�1)nqdxJc ^ dxKc ⌦D

(A.5.9)

where |J | = p and |K| = q, and p+ q = k. The sign factor is again explained by the
number of swaps that are needed to move everything into the right place, which is
(2n� j1) + · · ·+ (2n� jp) + (n� k1) + · · ·+ (n� kq).

We can now derive a formula for the induced pairing

(A.5.10) DRX(OX)[n]⌦C DRX(OX)[n] �! DR
X,X

(DbX).

Take two local sections ↵ = dxJc and � = dxKc , where |J | = p and |K| = q. Under
the isomorphism DRX(OX)[n] ⇠= Sp

X
(!X) in Lemma A.5.5, the holomorphic (n�p)-

form ↵ goes to
(�1)np(�1)j1+···+jp · ! ⌦ @J ,

and the holomorphic (n� q)-form � goes to

(�1)nq(�1)k1+···+kq · ! ⌦ @K .

The naive pairing on Sp
X
(!X) takes those two sections to

(�1)n(p+q)
(�1)(j1+···+jp)+(k1+···+kq)S(!,!)⌦ @J ^ @K ,

where S is defined in (A.5.1). Now S(!,!) = D! ^ !, where D is the distribution

D =
"(n+ 1)

(2⇡i)n

Z

X

2 H
0
(X,DbX).

Under the isomorphism in (A.5.9), the section from above therefore goes to

(�1)npdxJc ^ dxKc ⌦D = (�1)n(deg↵�n)
↵ ^ � ⌦D.

The formula we have just derived also works for smooth forms. In other words, the
same formula can be used to extend (A.5.10) to a pairing on the de Rham complex of
smooth forms (which is the usual Dolbeault resolution used to compute cohomology).
The resulting pairings on cohomology

H
n+k

(X,C)⌦C Hn�k(X,C) �! C
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are of course given by the same formula

(↵,�) 7�! (�1)n(deg↵�n) "(n+ 1)

(2⇡i)n

Z

X

↵ ^ �.

Since deg↵ = n+k, we have succeeded in explaining the mysterious sign factor (�1)nk
in (A.5.2), in a very natural way!

Let us summarize the result of this rather lengthy computation. If we define the
Hermitian pairing SX on the right DX -module !X as in (A.5.1), and if we use the
naive pairing on the Spencer complex, we obtain a collection of pairings

Sk : H
k
�
X, Sp

X
(!X)

�
⌦C H�k

�
X, Sp

X
(!X)

�
�! C,

with all signs dictated by the Koszul sign rule alone. The conclusion is then that
these pairings polarize the sl2-Hodge structure of weight n = dimX on the graded
vector space

L
k2Z

H
k
�
X, Sp

X
(!X)

�
,

provided that we multiply the k-th pairing Sk by the factor "(k). This is good news,
because it describes the sl2-Hodge structure and its polarization in a way that does
not mention the dimension of the compact Kähler manifold X, a crucial point if we
want a theory that is independent of the choice of ambient complex manifold.

A.6. Direct images

It is now an easy matter to figure out the sign conventions for direct images. Since
every morphism between complex manifolds factors into a closed embedding followed
by a projection, we only need to consider those two cases.

The first case is that of a closed embedding i : X ,! Y . Suppose that M is a
coherent right DX -module, and S: M⌦C M! CX a Hermitian pairing. Let

DX!Y = OX ⌦i�1OY
i
�1DY

be the transfer module, which is a (DX , i
�1DY )-bimodule. The direct image

i+M = i⇤
�
M⌦DX

DX!Y

�

is a coherent right DY -module. There is an induced Hermitian pairing

i+S: i+M⌦C i+M �! CY ,

that can be described in a coordinate-free way as follows. Since the tensor product
over C is exact, we have a natural isomorphism

�
M⌦DX

DX!Y

�
⌦C

�
M⌦DX

DX!Y

� ⇠=
�
M⌦C M

�
⌦D

X,X
D

X!Y,X!Y
,

where D
X,X

= DX ⌦CD
X

and D
X!Y,X!Y

= DX!Y ⌦CD
X!Y

. Applying the sheaf
theoretic direct image i⇤, and composing with S: M⌦C M! CX , we get

i+M⌦C i+M �! i⇤
�
CX ⌦D

X,X
D

X!Y,X!Y

�
.
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Pushforward of currents defines a morphism i⇤ CX ! CY , according to the rule
⌦
i⇤C,'

↵
=
⌦
C, i
⇤
'
↵
.

From this, we obtain another natural morphism

i⇤
�
CX ⌦D

X,X
D

X!Y,X!Y

�
�! CY , C ⌦ (f ⌦ P )⌦ (ḡ ⌦ Q̄) 7�! i⇤(Cfḡ) · PQ̄.

After composing the two morphisms, we arrive at the desired Hermitian pairing

i+S: i+M⌦C i+M �! CY .

All of the currents in the image are supported on X; for two sections in the subsheaf
i⇤M, the current is just obtained by pushforward from X to Y , but in general, the
construction involves some derivatives in directions normal to Y .

The second case is that of a projection f : X ! Y , say with X = F⇥Y and f = p2.
Let M be a coherent right DX -module, and S: M ⌦C M ! CX a Hermitian pairing.
The direct image

f+M = Rf⇤
�
M⌦DX

DX!Y

�

is computed using the relative Spencer complex Sp
f
(M). This is the complex

0 �!M⌦
p
�1

1
OF
^rp�1

1
⇥F

���! · · · ���!M⌦
p
�1

1
OF

p
�1
1
⇥F

���!M �! 0,

which naturally lives in degrees �r, . . . , 0, where r = dimF ; the formula for the
differential is the same as in the absolute case. By a similar construction as in the
previous section, we obtain a naive pairing on the complex Sp

f
(M), which we may

write by analogy with the absolute case as

Sp
f
(M)⌦C Sp

f
(M) �! Sp

f,f
(CX).

Here the complex on the right-hand side lives in degrees �2r, . . . 0, and with similar
notation as in the previous section, the term in degree �k looks like

CX ⌦p
�1

1
O

F,F

^k p
�1
1
⇥

F,F
.

By a relative version of the Poincaré lemma for distributions, this complex is a fine
resolution of f�1 CY [2r], and and so we obtain induced sesquilinear pairings

Sk : R
k
f⇤ Spf (M)⌦C R�kf⇤ Spf (M) �! CY .

The isomorphism R
2r
f
�1

CY
⇠= CY is given, in terms of the explicit fine resolution

from above, simply by pushforward of currents.
Now for the general case. Suppose that f : X ! Y is a holomorphic mapping

between two complex manifolds. Let M be a coherent right DX -module, and S: M⌦C
M ! CX a Hermitian pairing. Suppose that f is proper, or at least proper on the
support of M. By factoring f as

X
i��! X ⇥ Y

p2���! Y

and applying the two constructions from above, we obtain a collection of induced
sesquilinear pairings

Sk : H
k
f+M⌦C H�kf+M �! CY
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The sign conventions are then easy to state: for each k 2 Z, we should multiply the
naive pairing Sk by the factor "(k) = (�1)k(k�1)/2. In the special case of a closed
embedding, this means that we simply use the pairing i+S induced by pushforward
of currents (because "(0) = 1). This convention is suggested by the analysis in the
previous section. The direct image theorem for polarized Hodge modules then takes
the following form:

A.6.1. Theorem. Let f : X ! Y be a projective morphism between two complex mani-
folds. Let M 2 HM(X,w) be a polarized Hodge module of weight w. Then

L
k2Z

H
k
f⇤M

is a polarized sl2-Hodge module of weight w; here X 2 sl2(C) acts as 2⇡i L!, and the
polarization is given by the sesquilinear pairings "(k)Sk from above.

A.7. Variations of Hodge structure and polarizations

Recall that a variation of Hodge structure of weight n on a complex manifold X is
a smooth vector bundle E with a decomposition into smooth subbundles

E =
L

p+q=n

E
p,q

,

and a flat connection d : A
0
(X,E) ! A

1
(X,E) that maps the space of sections

A
0
(X,E

p,q
) of the subbundle E

p,q into the direct sum

A
1,0

(X,E
p,q

)�A
1,0

(X,E
p�1,q+1

)�A
0,1

(X,E
p,q

)�A
0,1

(X,E
p+1,q�1

).

Note that we are describing the connection in terms of its action on the space of
smooth sections of E; equivalently, we could consider d as a morphism from the sheaf
of smooth sections of E to the sheaf of smooth 1-forms with coefficients in E. Lastly,
a polarization of E is a Hermitian form

SE : A
0
(X,E)⌦A0(X) A

0(X,E) �! A
0
(X)

that is flat with respect to d, and whose restriction to each fiber Ex polarizes the
Hodge structure of weight n on the vector space

Ex =
L

p+q=n

E
p,q

x
.

From the polarization, we obtain a smooth Hermitian metric hE on the bundle E,
called the Hodge metric, by setting

hE(v, w) = cn

X

p+q=n

(�1)qSE(vp,q, wp,q
).

Most of the results about variations of Hodge structure are, directly or indirectly,
statements about the Hodge metric.
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If we decompose the connection by type as d = d
0
+ d
00, then the (0, 1)-part d

00

gives E the structure of a holomorphic vector bundle that we denote by the symbol
E, and the (1, 0)-part d

0 defines a flat holomorphic connection

r : E �! ⌦
1

X
⌦OX

E.

The condition above says that the Hodge bundles

F
p
E = E

p,q � E
p+1,q�1 � E

p+2,q�2 � · · ·

have the structure of holomorphic subbundles F
pE ✓ E, and that the holomorphic

connection r satisfies the Griffiths transversality condition

(A.7.1) r(F pE) ✓ ⌦1

X
⌦OX

F
p�1E.

The process for converting a polarized variation of Hodge structure of weight n into
a polarized Hodge module of weight n + dimX is as follows. First, consider the
associated right DX -module

M = !X ⌦OX
E,

with the action by vector fields defined in terms of the connection as

(! ⌦ s) · ⇠ = (! · ⇠)⌦ s� ! ⌦r⇠s.

The Hodge filtration on E defines an increasing filtration

F•M = !X ⌦OX
F
�•�dimXE,

which is compatible with the DX -module structure because of (A.7.1).

Note. The shift by dimX is necessary in order to make the isomorphism in
Lemma A.5.5 between the Spencer complex Sp

X
(M) and the shifted de Rham

complex DRX(E) into a filtered isomorphism.

Finally, we should define the Hermitian pairing

SM : M⌦C M �! CX

by the following formula, suggested by (A.5.1):

(A.7.2)
⌦
SM (!

0 ⌦ s
0
,!
00 ⌦ s

00
),'

↵
=
"(n+ 1)

(2⇡i)n

Z

X

' · SE(s0, s00)!0 ^ !00

Assuming that X is compact, and that p is the largest integer such that F pE 6= 0, the
induced pairing on the space H

0
(X,!X ⌦ F

pE) is then cn(�1)n�p-positive definite
with this definition.
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A.8. Degenerating variations of Hodge structure

In this section, we are going to check our sign conventions against another real-
world example: polarized variations of Hodge structure on the punctured disk. This
is another instance where sl2-Hodge structures appear, and we will see that the sign
conventions we have developed so far also work nicely in this case.

Using the notation from the previous section, let us consider a polarized variation
of Hodge structure E of weight n on the punctured unit disk

�
⇤
= {t 2 C | 0 < |t| < 1}.

In order to have a fixed reference frame, we introduce the complex vector space V

of all multivalued flat section of (E, d); equivalently, these are the flat sections of the
pullback exp

⇤
E to the universal covering space exp: H! �

⇤. Note that the universal
covering space of �⇤ is naturally the left half plane

H = {z 2 C | Re z < 0},

and the group of deck transformations is

Z(1) = {z 2 C | ez = 1} = (2⇡i)Z ✓ C.

Translation by elements of Z(1) defines a group homomorphism

⇢ : Z(1) �! GL(V );

to be specific, Schmid’s convention is that ⇢(⇣) takes a flat section v(z) of the bundle
exp
⇤
E to the flat section v(z � ⇣). In particular, we have the (positively oriented)

monodromy transformation

T = ⇢(2⇡i) 2 GL(V ),

which depends on the choice of i =
p
�1. If we write its Jordan decomposition in the

form
T = Ts · e2⇡i N ,

with Ts 2 GL(V ) semisimple, N 2 End(V ) nilpotent, and [Ts, N ] = 0, then N is
independent of the choice of i. The polarization induces a Hermitian pairing

S: V ⌦C V �! C,

and since T preserves the pairing, one easily checks that

S � (Ts ⌦ Ts) = S and S � (N ⌦ Id) = S � (Id⌦N).

According to the monodromy theorem, all eigenvalues of the monodromy transforma-
tion T have absolute value 1. After fixing an interval [↵,↵+1) ✓ R, we can therefore
write the semisimple operator Ts uniquely as

Ts = e
2⇡i S↵ ,

where S↵ 2 End(V ) is semisimple with real eigenvalues contained in [↵,↵ + 1).
We then have T = e

2⇡i(S↵+N), and the operator S↵ + N in the exponent does not
depend on the choice of i.
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A.8.1. Example. The definition of the monodromy operator appears unmotivated – why
not use v(z+⇣) instead? – but the operator S↵+N does have a natural interpretation
in terms of the connection. Let eE↵ be the canonical extension of (E,r), characterized
by the property that r extends to a logarithmic connection

r : eE↵ �! ⌦
1

�
(log 0)⌦O

eE↵

whose residue at the origin

R↵ = Rest=0(r) 2 End
�eE↵

|0
�

has eigenvalues in the interval [↵,↵+ 1). There is a distinguished trivialization

O� ⌦C eE↵

|0
⇠= eE↵

,

depending only on the choice of coordinate t on the disk, with the property that

r(1⌦ v) =
dt

t
⌦R↵v, for v 2 eE↵

|0.

After pulling everything back to the universal covering space H, we obtain

r(1⌦ v) = dz ⌦R↵v,

where r denotes the induced flat holomorphic connection on the pullback of E. A
brief computation shows that the expression

�v(z) = e
�zR↵(1⌦ v) =

1X

j=0

(�1)j

j!
z
j ⌦R

j

↵
v

defines a global section of exp⇤E that is annihilated byr. This sets up an isomorphism
between eE↵

|0 and the space of multivalued flat sections of (E,r), and so we can describe
the canonical extension as

eE↵ ⇠= O� ⌦C V.

With this identification, the monodromy transformation is T = e
2⇡i R↵ , because

�v(z � 2⇡i) = e
2⇡i R↵�v(z).

It follows that the operator S↵ + N = R↵ is exactly the residue of the logarithmic
connection on eE↵.

The main result is that the vector space V has an sl2-Hodge structure of weight
n, polarized by the Hermitian pairing S. This is not entirely canonical, though,
because the representation of sl2(C) depends on the choice of a splitting for the
weight filtration. First, recall that the nilpotent operator N 2 End(V ) determines
the monodromy weight filtration W•, which is the unique increasing filtration with
NW` ✓W`�2 for all ` 2 Z, such that

N
`
: gr

W

`
�! gr

W

�`

is an isomorphism for every ` > 0. The weight filtration governs the asymptotic
behavior of the Hodge metric, in the sense that

v 2W` \W`�1 () h(v, v) ⇠ |Re z|`,
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at least as long as |Im z| stays bounded. These asymptotic formulas for the norm
of multivalued flat sections are known as the “Hodge norm estimates”. Looking at
these formulas, a natural idea is to rescale the Hodge metric, in order even out the
different powers of |Re z|. For that purpose, we have to choose a splitting for the
weight filtration. By this, we mean a semisimple operator H 2 End(V ) with integer
eigenvalues, such that

W` = E`(H)�W`�1 and [H,N ] = �2N.

In addition, we can easily arrange that S � (H ⌦ Id) + S � (Id⌦H) = 0 and that
[H,Ts] = 0; note that, even with these extra conditions, the splitting H is far from
unique in general. For v 2 E`(H), we now have

e
� 1

2
log|Re z|H

v = |Re z|� `

2 v.

It turns out that rescaling by the operator e
� 1

2
log|Re z|H not only removes the sin-

gular behavior of the Hodge metric, but it also makes the family of polarized Hodge
structures of weight n converge to a limit.

To describe the convergence, we need to introduce two additional pieces of notation.
The first is the period domain D. The points of D parametrize all possible Hodge
structures

V =
L

p+q=n

V
p,q

of weight n on the vector space V that are polarized by the Hermitian form S and
have the appropriate set of Hodge numbers dimV

p,q. The polarization being fixed, a
Hodge structure is uniquely determined by its Hodge filtration

F
p
V = V

p,q � V
p+1,q�1 � V

p+2,q�2 � · · · ,

and this makes D a subset of the “compact dual”
_

D, the space of all decreasing
filtrations on V by subspaces of the appropriate dimensions dimF

p
V . The compact

dual
_

D is a compact complex manifold, and a homegeneous space for the complex Lie
group GL(V ); the period domain D is an open subset, and a homogeneous space for
the real Lie group

G = {g 2 GL(V ) | S � (g ⌦ g) = S}.
The polarized variation of Hodge structure E determines a period mapping

� : H �! D,

where �(z) is the Hodge structure on V induced by the isomorphism V ⇠= Eez .

Note. For clarity, we are going to use the notation

V =
L

p+q=n

V
p,q

�(z)

for the Hodge decomposition in the Hodge structure �(z), and �p
(z) for the subspaces

in the Hodge filtration. We also write

hv, wi�(z) = cn

X

p+q=n

(�1)qS(vp,q, wp,q
) = hE(v, w)(z)
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for the resulting Hermitian inner product on V . The action by the real group G works
in such a way that hgv, gwig�(z) = hv, wi�(z).

Since T 2 G, the definition of the monodromy operator implies that

�(z + 2⇡i) = T · �(z),

This means that the expression e
�z(S↵+N)

�(z) is invariant under translation by 2⇡i,
and so it descends to a holomorphic mapping

 ↵ : �
⇤ �!

_

D,  ↵(e
z
) = e

�z(S↵+N)
�(z).

The following result is known as the “nilpotent orbit theorem”.

A.8.2. Theorem. The holomorphic mapping  ↵ extends over the origin, and the limit-
ing value  ↵(0) 2

_

D satisfies N 
p

↵
(0) ✓  p�1

↵
(0) for all p 2 Z.

Note. An equivalent formulation is that the Hodge bundles F pE extend to holomorphic
subbundles F

peE↵ of the canonical extension. Under the isomorphism

eE↵

|0
⇠= V

with the space of multivalued flat sections, the filtration  ↵(0) is then simply the
filtration induced by these subbundles,

F
peE↵

|0
⇠=  p

↵
(0),

and the second half of the nilpotent orbit theorem is asserting that the residue R↵

maps the subspace F
peE↵

|0 into the subspace F
p�1eE↵

|0.

Now we are ready to discuss the convergence properties of the period mapping. As
suggested above, we consider the rescaled period mapping

�̂H : H �! D, �̂H(z) = e
1

2
log|Re z|H

e
� 1

2
(z�z)(S↵+N)

�(z).

Since both exponential factors belong to the real group G, the rescaled period mapping
still takes values in the period domain D. It is also invariant under translation by
2⇡i, and for any multivalued flat section v 2 V , the expression

��v
��2
�̂H(z)

=
��e 1

2
(z�z)(S↵+N)

e
� 1

2
log|Re z|H

v
��
�(z)

remains bounded as Re z ! �1 (due to the Hodge norm estimates). The nice thing
is that this rescaling also makes the polarized Hodge structures converge.

A.8.3. Theorem. The rescaled period mapping �̂H converges to a limit

e
�N

FH = lim
Re z!�1

�̂H(z) 2 D.

Moreover, the filtration FH 2
_

D has the property that, for all p 2 Z,

NF
p

H
✓ F

p�1
H

, HF
p

H
✓ F

p

H
, and TsF

p

H
✓ F

p

H
.
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The filtration FH in the statement of the theorem is obtained from the filtration
 ↵(0) in the nilpotent orbit theorem in two steps. One can check that

�̂H(z) = e
�N · e 1

2
log|Re z|H

e
�|Re z|S↵ ↵(e

z
),

and since  ↵(e
z
) converges to its limit  ↵(0) at a rate |ez| = e

|Re z|, this gives

(A.8.4) FH = lim
|Re z|!1

e
1

2
log|Re z|H

e
�|Re z|S↵ ↵(0).

Let us briefly digress on the effect of the two exponential factors, since this may be
helpful for understanding where the filtration FH comes from. Suppose for a moment
that S 2 End(V ) is an arbitrary semisimple endomorphism with real eigenvalues
↵1 < ↵2 < · · · < ↵r. Then for any filtration F 2

_

D, the limit

FS = lim
x!1

e
xS

F 2
_

D

exists and is compatible with S, in the sense that SF
p

S
✓ F

p

S
for all p 2 Z. The

effect of the limit can be understood concretely as follows. Consider the filtration by
increasing eigenvalues of S, with terms

Gj = E↵1
(S)� · · ·� E↵j

(S).

The filtration F induces a filtration on each subquotient Gj/Gj�1, and under the
obvious isomorphism E↵j

(S) ⇠= Gj/Gj�1, we have

F
p

S
\ E↵j

(S) ⇠= (F
p \Gj +Gj�1)/Gj�1.

In the specific case in (A.8.4) that we care about, this means:
(1) The effect of the exponential factor e

�|Re z|S↵ is to produce a filtration

(A.8.5) Flim = lim
x!1

e
�xS↵F 2

_

D

that is compatible with the eigenspace decomposition of the semisimple operator
Ts = e

2⇡i S↵ . Because of the minus sign in the exponent, the relevant filtration is by
decreasing eigenvalues of S↵.

(2) The effect of the exponential factor e
1

2
log|Re z|H is to produce a filtration

FH = lim
x!1

e
1

2
log xH

Flim 2
_

D

that is also compatible with the eigenspace decomposition of the semisimple operator
H. The relevant filtration is the monodromy weight filtration W•, which is exactly
the filtration by increasing eigenvalues of H.

The fact that e�NFH 2 D is a polarized Hodge structure of weight n implies, after
some linear algebra, that the filtration FH is the Hodge filtration of a polarized sl2-
Hodge structure of weight n. We now describe the relevant objects. Because of the
relation [H,N ] = �2N , the two operators H,N 2 End(V ) are part of a representation
of sl2(C). With respect to the standard basis

H =

✓
1 0

0 �1

◆
, X =

✓
0 1

0 0

◆
, Y =

✓
0 0

1 0

◆
,
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we let H 2 sl2(C) act as the semisimple operator H 2 End(V ), and we let Y 2 sl2(C)

act as the nilpotent operator �N . By construction, the semisimple part Ts of the
monodromy transformation commutes with the action by sl2(C).

Note. The minus sign in Y = �N is important; we shall justify in a minute why it
has to be there and why it is the natural choice.

To match our earlier notation, let us write

V` = E`(H) ⇠= gr
W

`
V

for the weight spaces of the semisimple operator H. Recall that the Hermitian form
S: V ⌦C V ! C has the property that

S � (H⌦ Id) = �S � (Id⌦H) and S � (Y ⌦ Id) = S � (Id⌦Y),

as required by (A.3.7). The main result is then the following.

A.8.6. Theorem. With notation as above, the space of multivalued flat sections

V =
L
`2Z

V`

becomes an sl2-Hodge structure of weight n, polarized by the Hermitian form S. Its
Hodge filtration is the filtration FH , in the sense that

F
p

H
\ V` = V

p,`�p
`

� V
p+1,`�(p+1)

`
� V

p+2,`�(p+2)

`
� · · ·

for all integers p, ` 2 Z. Moreover, the operator Ts 2 End(V ) is an endomorphism of
the polarized sl2-Hodge structure.

A.8.7. Example. Here is a simple example that shows the sign conventions at work.
Consider the standard representation of sl2(C) on the vector space V = C

2, with the
standard Hermitian form

S =

✓
0 1

1 0

◆
.

If we set F
1
= C(1, 0) and F

0
= C

2, then e
Y
F is the Hodge filtration of a polarized

Hodge structure of weight 1: the Hodge decomposition is

V = V
1,0 � V

0,1
= C(1, 1)� C(1,�1),

and S is clearly positive on the first subspace and negative on the second one (in agree-
ment with our convention that cn = 1). On the other hand, the Weil element
w 2 SL2(C) satisfies

w(0, 1) = (1, 0) and w(1, 0) = �(0, 1),

and so we do get a polarized sl2-Hodge structure of weight 1, with

V1 = V
1,1

1
= C(1, 0) and V�1 = V

0,0

�1 = C(0, 1),

since for example S
�
(0, 1),w(0, 1)

�
= 2. Note that the signs do not work out properly

if we use the Hodge filtration e
�Y

F instead; this is one reason why it is necessary to
define the sl2(C)-representation using Y = �N .
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A.9. Hodge modules on the unit disk

Before we turn to the sign conventions for nearby and vanishing cycles, it may
be useful to summarize the results of the previous section in the language of Hodge
modules. The polarized variation of Hodge structure E of weight n on �⇤ determines
a polarized Hodge module M 2 HM(�, n + 1), with pure support �. Let us denote
by (M, F•M) its underlying filtered D�-module, and by SM : M ⌦C M ! C� the
Hermitian pairing giving the polarization.

We briefly review the construction of M . The various canonical extensions eE↵

and eE>↵ embed into Deligne’s meromorphic extension eE, which is naturally a left
D�-module, with @t acting through the logarithmic connection. The subsheaves eE↵

define a decreasing filtration on eE, and
eE↵

/eE↵+1
= eE↵

/teE↵eE↵

|0
⇠= V.

Under this isomorphism, the operator t@t goes to the residue R↵ = S↵ + N of the
logarithmic connection. The corresponding right D�-module !�⌦O�

eE has a unique
maximal submodule with pure support �, namely

M =
�
!� ⌦O�

eE>�1� ·D� ✓ !� ⌦O�

eE.

For ↵ < 0, the V-filtration with respect to t = 0 is given by the formula

V↵M = !� ⌦O�

eE�(↵+1)
.

In particular, this leads to a canonical isomorphism

V↵M/V↵�1M = V↵M/V↵M · t ⇠= eE�(↵+1)

|0
⇠= V,

under which right multiplication by t@t becomes left multiplication by �@tt = �(t@t+
1), hence goes to the operator �(R�(↵+1) + Id). Moreover, the induced filtration
V•M/V↵�1M becomes, on the vector space V , the filtration by decreasing eigenvalues
of S�(↵+1). For ↵ < 0, this gives

(A.9.1) gr
V

↵
M ⇠= Ee� 2⇡i↵(Ts),

and under this isomorphism, the nilpotent operator t@t � ↵ on the left-hand side
corresponds to the nilpotent operator Y = �N on the right-hand side (which is
therefore the natural choice for the sl2(C)-representation).

Note. This is another instance of the general principle that one can arrive at the
correct signs simply by working consistently with right D-modules.

The filtration F•M is constructed in such a way that

FpV↵M = FpM \ V↵M = !� ⌦O�
F
�p�1eE�↵�1

for ↵ < 0. It induces a filtration on gr
V

↵
M, with terms

Fpgr
V

↵
M =

�
FpV↵M+ V<↵M

�
/V<↵M.

Since the V-filtration corresponds, on the vector space V , to the filtration by decreas-
ing eigenvalues of S�(↵+1), this matches up nicely with our earlier discussion: under
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the isomorphism in (A.9.1), the filtration F•gr
V

↵
M becomes the limiting Hodge filtra-

tion F
�•�1
lim

, defined in (A.8.5). Consequently, after choosing a splitting H 2 End(V )

for the weight filtration, the induced filtration on

gr
W

`
gr

V

↵
M ⇠= E`(H) \ Ee� 2⇡i↵(Ts)

is precisely the filtration F
�•�1
H

. We can therefore restate Theorem A.8.6 by saying
that, for each ↵ 2 [�1, 0), the graded vector space

(A.9.2) gr
W
gr

V

↵
M =

L
`2Z

gr
W

`
gr

V

↵
M

has an sl2-Hodge structure of central weight n; here the representation by sl2(C) is
defined by letting Y act as t@t � ↵, and the Hodge filtration is the filtration

F�•�1gr
W
gr

V

↵
M

induced by the filtration F•M.

Note. This formulation of Theorem A.8.6 does not require choosing a splitting for the
weight filtration (because it is a result about the associated graded object).

Since it is instructive, let us also review how to recover the polarization on the
sl2-Hodge structure from the Hermitian pairing SM on the D-module M. Recall from
above that we have a preferred trivialization

eE>�1 ⇠= O� ⌦C V

for the canonical extension. In this frame, the polarization SE on the variation of
Hodge structure takes the form

SE(1⌦ v
0
, 1⌦ v

00
) =

X

�2(�1,0]

1X

j=0

|t|2�L(t)j · (�1)
j

j!
S
�
v
0
�
, N

j
v
00
�

�
.

Note that the expression on the right-hand side is locally integrable precisely for
� > �1. The Hermitian pairing on M is defined in such a way that, on the subsheaf
V<0M ⇠= !� ⌦C V , one has

⌦
SM (dt⌦ v

0
, dt⌦ v

00
),'

↵
=
"(2)

2⇡i

Z

�

' · SE(1⌦ v
0
, 1⌦ v

00
)dt ^ dt.

The constants in this formula are of course dictated by (A.7.2). In terms of the basic
currents C↵,p from (A.1.4), the definition of the pairing reads

(A.9.3) SM (dt⌦ v
0
, dt⌦ v

00
) =

X

�2(�1,0]

1X

j=0

(�1)jS
�
v
0
�
, N

j
v
00
�

�
· C�(�+1),j ,

From this asymptotic expansion, we can recover the restriction of the Hermitian
pairing S: V ⌦C V ! C to the subspace

gr
V

↵
M ⇠= Ee� 2⇡i↵(Ts)

by taking the coefficient of the basic current C↵,0; here ↵ = �(� + 1) 2 [�1, 0).
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Note. There are no additional signs in this description; this is due to our principle of
defining currents to be positive where possible.

So the conclusion is that sl2-Hodge structure on (A.9.2) is polarized by the Her-
mitian pairing that we get by taking the coefficient of the basic current C↵,0 in the
asymptotic expansion of the pairing SM . One can extract this coefficient, without
writing down the asymptotic expansion, by using the Mellin transform.

A.9.4. Example. Another useful example is the direct image of a polarized Hodge
structure H under the closed embedding i : {0} ,! �. If the weight of H is equal
to n, then i⇤H 2 HM(�, n). Using the notation from above, let us write

S0 : i+H ⌦C i+H �! C�

for the induced Hermitian pairing. For two vectors h
0
, h
00 2 H, we have

S0(h
0
, h
00
) = S(h

0
, h
00
) · �0,

where �0 is the delta function. So in this case, we can recover the polarization on H

from the Hermitian pairing on i+H as the coefficient in front of �0.

A.10. Nearby and vanishing cycles

In this section, we discuss the sign conventions for nearby and vanishing cycles,
taking the example in the previous section as a model. Let us begin with a brief
review of the general construction and its properties. Fix a complex manifold X.
On the product X ⇥ C, we have the holomorphic function t : X ⇥ C ! C, and the
corresponding holomorphic vector field @t. Suppose that M 2 HM(X ⇥ C, w) is a
polarized Hodge module of weight w on the product X ⇥ C. As usual, we denote by
(M, F•M) the underlying filtered right DX⇥C-module, and by

SM : M⌦C M �! CX⇥C .

the Hermitian pairing giving the polarization. Lastly, we use the notation V•M for
the V-filtration on M relative to t = 0.

(1) For every ↵ 2 [�1, 0), one has the nearby cycles  t,�M for the eigenvalue
� = e

� 2⇡i↵. This is an object on X. The underlying filtered DX -module
�
gr

V

↵
M, F•�1gr

V

↵
M
�

comes with a nilpotent operator N↵ = t@t � ↵ and a Hermitian pairing

S↵ : gr
V

↵
M⌦C grV

↵
M �! CX , S↵ � (N↵ ⌦ Id) = S↵ � (Id⌦N↵).

If we denote by W• the weight filtration of N↵, then

gr
W
( t,�M) =

L
`2Z

gr
W

`
( t,�M)

is a polarized sl2-Hodge module of weight w � 1; the element Y 2 sl2(C) acts as
N↵ = t@t � ↵, and the polarization is induced by S↵.
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(2) For ↵ = 0, one has the unipotent vanishing cycles �t,1M . This is again an
object on X. The underlying filtered DX -module

�
gr

V

0
M, F•gr

V

0
M
�

comes with a nilpotent operator N0 = t@t and a Hermitian pairing

S0 : gr
V

0
M⌦C gr

V

0
M �! CX , S0 � (N0 ⌦ Id) = S0 � (Id⌦N0).

If we denote by W• the weight filtration of N0, then

gr
W
(�t,1M) =

L
`2Z

gr
W

`
�t,1M

is a polarized sl2-Hodge module of weight w; the element Y 2 sl2(C) acts as N0 = t@t,
and the polarization is induced by S0.

Note that the Hodge filtration and the weight of the sl2-Hodge module are different
in both cases; this is forced on us by the following two examples:

A.10.1. Example. A polarized variation of Hodge structure of weight n on the punc-
tured disk �⇤ gives rise to a polarized Hodge module M 2 HM(�, n + 1), with
F•M = !� ⌦O�

F
�•�1E. In this case,  t,�M

⇠= E�(Ts), and we have seen in
the previous section that gr

W
( t,�M) is a polarized sl2-Hodge structure of weight

n = (n + 1) � 1. To get back the correct Hodge filtration, we also need to undo the
shift that is built into the definition of F•M.

A.10.2. Example. A polarized Hodge structure H of weight n gives rise to a polarized
Hodge module i⇤H 2 HM(�, n), where i : {0} ,! � is the embedding of the origin.
In this case, �t,1(i⇤H) ⇠= H clearly has weight n, and there is no shift in the Hodge
filtration.

This is the general picture, but we still need to figure what signs to use in the
construction of the pairings S↵. Let us begin by treating the nearby cycles, because
that case is slightly easier to explain. Fix a real number ↵ 2 [�1, 0). Consider local
sections m

0
,m
00 2 V↵M and the current SM (m

0
,m
00
) 2 CX⇥C. Ideally, SM (m

0
,m
00
)

would have an asymptotic expansion in t, in terms of the basic currents from (A.1.4),
and the coefficient in front of C↵,0 would be a current on X that could be used
to define the pairing between [m

0
], [m

00
] 2 gr

V

↵
M. Fortunately, we can accomplish

the same thing, without having the asymptotic expansion, by working with Mellin
transforms.

More precisely, suppose that m
0
,m
00 2 H

0
(U, V↵M). Let '(x) be a test function

on X, and let ⌘(t) be a cutoff function on C, such that the product ⌘(t)'(x) has
compact support inside U . The Mellin transform

Fm0,m00(s) =
⌦
SM (m

0
,m
00
), |t|2s⌘(t)'(x)

↵

is holomorphic for Re s � 0, and has a meromorphic extension to C with poles
contained in the interval (�1,↵]. One can show that the residue at s = ↵ depends
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continuously on ', and that the formula
⌦
S↵

�
[m
0
], [m

00
]
�
,'
↵
= Ress=↵

⌦
SM (m

0
,m
00
), |t|2s⌘(t)'(x)

↵

defines the desired Hermitian pairing S↵. Let us check in several examples that this
definition (with no extra sign factors) is the correct one.

A.10.3. Example. The first example explains how the Mellin transform can be used
to pick up individual terms in a (hypothetical) asymptotic expansion. On the unit
disk �, fix a test function '(t). Because the function |t|2s�2 = e

�(s�1)L(t) is locally
integrable for Re s > 0, the expression

F (s) =
"(2)

2⇡i

Z

C
|t|2s�2'dt ^ dt =

⌦
C�1,0, |t|2s�2'

↵

defines a holomorphic function on the halfplane Re s > 0. To understand its behavior
near s = 0, one can use integration by parts to prove the identity

s
2
F (s) =

"(2)

2⇡i

Z

�

|t|2s @
2
'

@t@t
dt ^ dt,

valid for Re s > 0. The function on the right-hand side is holomorphic for Re s > �1,
and so F (s) extends to a meromorphic function on this larger halfplane. From the
power series expansion of the exponential function, we get

s
2
F (s) =

1X

j=0

(�1)jsj "(2)
2⇡i

Z

�

L(t)
j

j!

@
2
'

@t@t
dt ^ dt =

1X

j=1

(�1)jsj
⌦
C�1,j@t@t,'

↵
.

Using the identity �0 = �C�1,1@t@t, we can rewrite this as

(A.10.4) F (s) =
'(0)

s
+

1X

j=0

(�1)jsj
⌦
C�1,j+2@t@t,'

↵
.

Differentiating under the integral sign p times gives
⌦
C�1,p, |t|2s�2'

↵
=
"(2)

2⇡i

Z

C
|t|2s�2L(t)

p

p!
'dt ^ dt =

(�1)p

p!
F

(p)
(s) ⌘ '(0)

sp+1

modulo entire functions. Consequently, the Mellin transform of the basic current
C�1,p has a pole of order exactly p + 1 at the point s = 0; the residue is '(0) for
p = 0, and trivial for p > 1.

A.10.5. Example. Now let us go back to polarized variations of Hodge structure on
�
⇤, and compute the nearby cycles with respect to t = 0, using the notation from the

previous section. Let v
0
, v
00 2 Ee� 2⇡i↵(Ts) be two multivalued flat sections, for some

↵ 2 [�1, 0). The formula for the pairing in (A.9.3) shows that

SM (dt⌦ v
0
, dt⌦ v

00
) =

1X

j=0

(�1)jS
�
v
0
, N

j
v
00� · C↵,j .

According to the calculations in the preceding example, the Mellin transform
⌦
SM (dt⌦ v

0
, dt⌦ v

00
), |t|2s'(t)

↵
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is holomorphic on the halfplane Re s > ↵, and the polar part at s = ↵ equals
1X

j=0

(�1)jS
�
v
0
, N

j
v
00� '(0)

(s� ↵)j+1
.

In particular, the residue

Ress=↵

⌦
SM (dt⌦ v

0
, dt⌦ v

00
), |t|2s'(t)

↵
= S(v

0
, v
00
) · '(0)

recovers the restriction of S to the eigenspace Ee� 2⇡i↵(Ts); we saw in the previous
section that this pairing gives the polarization on the sl2-Hodge structure.

Now we turn to the unipotent nearby cycles, which are the boundary case ↵ = 0.
The general idea is the same, but the construction needs to be modified slightly. As
before, let m0,m00 2 V0M be two local sections, and consider the current SM (m

0
,m
00
).

In the hypothetical asymptotic expansion of SM (m
0
,m
00
), we should take the coeffi-

cient of the delta function �0; recall that

h�0,'i = '(0).

The problem is that the Mellin transform of the delta function is trivial, and so a
small trick is required. It is based on the identity

�0 = �C�1,1@t@t,

that has already appeared in the example above. Because @t and @
t

are surjective on
the level of currents, we can extract the term with �0 from the hypothetical asymptotic
expansion by writing our current in the form �T@t@t, and then looking at the Mellin
transform of T .

To make this precise, let m
0
,m
00 2 H

0
(U, V0M) be two sections. Choose a current

Tm0,m00 2 H
0
(U,CX⇥C) with the property that

SM (m
0
,m
00
) = �Tm0,m00@t@t;

such a current always exists, and is unique up to adding harmonic functions. With
'(x) and ⌘(t) as above, the Mellin transform

Gm0,m00(s) =
⌦
Tm0,m00 , |t|2s�2⌘(t)'(x)

↵

is holomorphic for Re s� 0, and extends to a meromorphic function on C with poles
contained in the interval (�1, 0]. Integration by parts shows that, modulo entire
functions, one has

Fm0,m00(s) ⌘ �s2Gm0,m00(s),

and so the the quantity of interest is now the coefficient in front of 1/s2, hence the
residue of sGm0,m00(s) at s = 0. This observation suggests defining the Hermitian
pairing S0 by the formula

⌦
S0

�
[m
0
], [m

00
]
�
,'
↵
= Ress=0

⌦
Tm0,m00 , s · |t|2s�2⌘(t)'(x)

↵
.

The following example explains why this definition is the correct one.
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A.10.6. Example. For direct images along the closed embedding i : X ,! X ⇥ C, we
recover the pairing on the original DX -module. Indeed, suppose N is a coherent right
DX -module, and SN : N ⌦C N! CX a Hermitian pairing. Then

M = i+N ⇠= N ⌦C C[@t], SM = i+SN ,

and under this isomorphism, we have V0M ⇠= N ⌦ 1, hence gr
V

0
M ⇠= N. For two local

sections n
0
, n
00 2 N, the current

SM (n
0 ⌦ 1, n

00 ⌦ 1) = i⇤SN (n
0
, n
00
)

is a multiple of �0; under the isomorphism gr
V

0
M ⇠= N, the construction above therefore

recovers the original pairing: S0 = SN

We close this section with a brief discussion of the sign conventions for the “canon-
ical morphism” and the “variation morphism”,

can:  t,1M �! �t,1M and var : �t,1M �!  t,1M(�1).

The underlying morphisms of filtered DX -modules are the obvious ones:

can:
�
gr

V

�1M, F•�1gr
V

�1M
�
�!

�
gr

V

0
M, F•gr

V

0
M
�
, can(m) = m@t

var :
�
gr

V

0
M, F•gr

V

0
M
�
�!

�
gr

V

�1M, F•gr
V

�1M
�
, var(m) = mt

In particular, we have can � var = N0 and var � can = N�1. In the proof that ev-
ery polarized Hodge module admits a decomposition by pure support, the following
identity for can and var plays a crucial role:

(A.10.7) S�1 � (var⌦ Id) + S0 � (Id⌦ can) = 0

With our construction of the pairings S�1 and S0, this identity is easily proved using
integration by parts. It can be shown that both can and var reduce the index in the
weight filtration by 1; consequently,

can: gr
W

`
( t,1M) �! gr

W

`�1(�t,1M)

is a morphism of Hodge structures of weight w + `� 1, and

var : gr
W

`
(�t,1M) �! gr

W

`�1( t,1M)(�1)

is a morphism of Hodge structures of weight w + ` (for every ` 2 Z).
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