
CHAPTER 15

eD-MODULES OF NORMAL CROSSING TYPE
PART 1: DISTRIBUTIVE FILTRATIONS AND STRICTNESS

Summary. This chapter, although somewhat technical, is nevertheless essential
to understand the behaviour of Hodge modules when the singularities form a nor-
mal crossing divisor. It analyzes the compatibility properties, on a given R-spe-
cializable D-module, between the F -filtration and the V -filtrations attached to
various functions, when these functions form part of a coordinate system. The re-
sults of this chapter will therefore be of a local nature. In this part, we introduce
the general notion of distributivity or compatibilty of a family of filtrations, and
we relate it to flatness properties of the associated multi-Rees modules. These
will be our main tools for Parts 2 and 3.

We recall:

10.2.1. Convention. We work in the abelian category A of sheaves of vector spaces
(over some fixed field, that will be the field of complex numbers for our purposes) on
some topological space T . In such a category, all filtered direct limits exist and are
exact. Given an object A in this category, we only consider increasing filtrations F•A

that are indexed by Z and satisfy lim�!k
FkA = A. We write a filtered object in A as

(A,F ), where F = (FkA)k2Z.

15.1. Distributive filtrations

The results of this section being well-known, complete proofs will not be given and
we refer to Sections 1.6 and 1.7 of [PP05] and Section 1 of [Kas85] (for the case of
finite filtrations) for details.

Suppose that A is an object of our category A, and A1, . . . , An ✓ A are finitely
many subobjects. When n = 3, the inclusion

(A1 \A2) + (A1 \A3) ⇢ A1 \ (A2 +A3)

is strict in general. For example,
• assume that the three non-zero objects A1, A2, A3 behave like three lines in C

2

having zero pairwise intersections, i.e., Ai \Aj = 0 for all i 6= j, and A = Ai +Aj for
all i 6= j; then the above inclusion is strict;

• on the other hand, if A2 ⇢ A1 or A3 ⇢ A1, this inclusion is an equality.
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When this inclusion is an equality, we say that A1, A2, A3 form a distributive family
of objects of A, i.e., the equivalent equalities, or any other obtained by permuting
A1, A2, A3, are satisfied (see [PP05, Lem. 6.1]):

(15.1.1)
(A1 \A2) + (A1 \A3) = A1 \ (A2 +A3),

(A1 +A2) \ (A1 +A3) = A1 + (A2 \A3).

We will interpret the distributivity property in terms of exact sequence. For one
subobject A1 of A, we have a short exact sequence of the form

A1 �! A �! ⇤

where ⇤ is of course just an abbreviation for the quotient A/A1. For two subobjects
A1, A2, we similarly have a commutative diagram of the form

(15.1.2)

⇤ // ⇤ // ⇤

A2
//

OO

A //

OO

⇤

OO

⇤ //

OO

A1
//

OO

⇤

OO

in which all rows and all columns are short exact sequences. (For example, the entry
in the upper-right corner is A/(A1 +A2), the entry in the lower-left corner A1 \A2.)
For three subobjects A1, A2, A3, such a diagram no longer exists in general; if it does
exist, one says that A1, A2, A3 define a compatible family of objects of A.

15.1.3. Lemma. A family of three subobjects of A is distributive if and only if it is
compatible.

Proof. We consider a cubical diagram having vertices in {�1, 0, 1}3 ⇢ R
3, and we

identify each vertex with a subquotient object of A such that

A = (0, 0, 0), A1 = (�1, 0, 0), A2 = (0,�1, 0), A3 = (0, 0,�1).

We assume that all rows and columns are exact (compatibility). One first easily
checks, as in the case of two objects, that the vertices with i entries �1 and 3 � i

entries 0 (i = 1, 2, 3) are the intersections of the corresponding vertices with only one
entry �1 and two entries 0. We then find (�1,�1,�1) = A1 \ A2 \ A3 and, since
(A2 \ A3)/(A1 \ A2 \ A3) = (A1 + (A2 \ A3))/A1 the exact sequence (1,�1,�1) !
(1, 0,�1) ! (1, 1,�1) reads

(A1 + (A2 \A3))/A1 �! (A1 +A3)/A1 �! (A1 +A3)/(A1 + (A2 \A3)),

while the exact sequence (1,�1, 0) ! (1, 0, 0) ! (1, 1, 0) reads

(A1 +A2)/A1 �! A/A1 �! A/(A1 +A2).

The morphism (1, 1,�1) ! (1, 1, 0), that is,

(A1 +A3)/(A1 + (A2 \A3)) �! A/(A1 +A2)

should be injective, that is, the second equality in (15.1.1) should hold.
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Conversely, assuming distributivity, we obtain similarly the exactness of the rows
and the columns of the cubical diagram.

When n > 4, the definition uses the case n = 3 for many 3-terms subfamilies
obtained from A1, . . . , An.

15.1.4. Definition (Distributivity). A family A1, . . . , An of subobjects of A is distributive
if for any partition {1, . . . , n} = I1 t I2 t I3, the subobjects

A
0
1
=

X

i2I1

Ai, A
0
2
=

X

i2I2

Ai, A
0
3
=

T
i2I3

Ai

form a distributive family (with the convention that the sum over the empty set is
zero and the intersection over the empty set is A), i.e.,
⇣
(
P

i2I1
Ai) \ (

P
i2I2

Ai)

⌘
+

⇣
(
P

i2I1
Ai) \ (

T
i2I3

Ai)

⌘

= (
P

i2I1
Ai) \

⇣
(
P

i2I2
Ai) + (

T
i2I3

Ai)

⌘
,

equivalently,
⇣
(
P

i2I1
Ai) + (

P
i2I2

Ai)

⌘
\
⇣
(
P

i2I1
Ai) + (

T
i2I3

Ai)

⌘

= (
P

i2I1
Ai) +

⇣
(
P

i2I2
Ai) \ (

T
i2I3

Ai)

⌘
.

It is equivalent to asking, for any partition (I1, I2, I3) of {1, . . . , n}, distributivity of
the three objects

A
00
1
=

X

i2I1

Ai, A
00
2
=

T
i2I2

Ai, A
00
3
=

T
i2I3

Ai.

Let us state a few main properties.

15.1.5. Proposition (see [PP05, Cor. 6.4 & 6.5]).
(1) A family A1, . . . , An is distributive if and only if any subfamily containing no

pair Ai, Aj with Ai ⇢ Aj is distributive.
(2) A family A0, . . . , An is distributive if and only if

(a) the induced families on A0 and A/A0 are distributive, equivalently, the
families A0 \A1, . . . , A0 \An and A0 +A1, . . . , A0 +An are distributive, and

(b) any three objects A0, Ai, Aj are distributive.
(3) A family A0, . . . , An is distributive if and only if

• the families A1, . . . , An and A0 \ A1, . . . , A0 \ An are distributive and the
following identity holds for any subset I ⇢ {1, . . . , n}:

A0 \
⇣X

i2I

Ai

⌘
=

X

i2I

(A0 \Ai),

• or the similar condition obtained by exchanging everywhere + and \.

15.1.6. Example. Let A1, . . . , An be a distributive family and let I1, . . . , Ir be subsets
of {1, . . . , n}. Then the following families are distributive:
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• A1, . . . , An, (
T

k2I1
Ak), . . . , (

T
k2Ir

Ak);
• (A1 \

T
k2Ij

Ak), . . . , (An \
T

k2Ij
Ak) for any j 2 {1, . . . , r};

•
�P

j
(Ai \

T
k2Ij

Ak)
�
i=1,...,n

=
�
Ai \

P
j
(
T

k2Ij
Ak)

�
i=1,...,n

.

Let us now consider increasing filtrations F
(1)

• A, . . . , F
(n)

• A of A.

15.1.7. Definition (Distributive filtrations). Given finitely many increasing filtrations
F

(1)

• A, . . . , F
(n)

• A of an object A in the abelian category, we call them distributive if

F
(1)

k1
A, . . . , F

(n)

kn
A ✓ A

are distributive sub-objects for every choice of k1, . . . , kn 2 Z.

15.1.8. Remark. Assume that F
(1)

• A, . . . , F
(n)

• A is a distributive family of filtrations
of A.

(1) As a consequence of Definition 15.1.4, any sub-family of filtrations of a distribu-
tive family remains distributive. Moreover, any finite family of sub-objects consisting
of terms of the filtrations F

(1)

• A, . . . , F
(n)

• A is distributive, and Proposition 15.1.5(2)
implies that the induced filtrations F

(1)

• , . . . , F
n�1

• on each gr
F

(n)

`
A are distributive.

(2) Let B = F
(1)

j1
A\ · · ·\F

(n)

jn
A for some j1, . . . , jn. Then the family of filtrations

F
(1)

• B, . . . , F
(n)

• B naturally induced on B is distributive, as follows from the distribu-
tivity of the family of 2n sub-objects F (1)

k1
A, . . . , F

(n)

kn
A,F

(1)

j1
A, . . . , F

(n)

jn
A and that of

the induced family on B.
(3) One can interpret distributivity of filtrations as distributivity of subobjects as

in Definition 15.1.4. For that purpose, we consider the ring eR = C[z
±1

1
, . . . , z

±1

n
] of

Laurent polynomials in n variables. Recall (see Convention 10.2.1) that A is a sheaf
of C-vector spaces on some topological space T . We consider the object eA = eR⌦C A.
To each filtration F

(i)

• A we associate the subobject of eA:

eAi = C[z
±1

1
, . . . ,

d
z
±1

i
, . . . , z

±1

n
]⌦C

⇣L
k2Z

F
(i)

k
A · zk

i

⌘
.

Then the distributivity of F (1)

• A, . . . , F
(n)

• A is equivalent to that of eA1, . . . ,
eAn.

15.2. Distributivity and flatness

15.2.a. Reformulation of distributivity in terms of flatness. Let A be an
object with n filtrations F

(1)

• A, . . . , F
(n)

• A. As usual, we can pass from filtered to
graded objects by the Rees construction. Let R = C[z1, . . . , zn] denote the polynomial
ring in n variables, with the Z

n-grading that gives zi the weight 11 = (0, . . . , 1, . . . , 0).
For k 2 Z

n, we define

Mk = Mk1,...,kn
= F

(1)

k1
A \ · · · \ F

(n)

kn
A ✓ A.

We then obtain a Z
n-graded sheaf of modules M over the constant sheaf of rings RT

on the topological space T (recall Convention 10.2.1) by taking the direct sum

RF (1),...,F (n)A := M =
L

k2Zn

Mk,
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with the obvious Z
n-grading: for m 2 Mk, the product zim is simply the image of m

under the inclusion Mk ✓ Mk+11
. From now on, we use the term “graded” to mean

“Zn-graded”.

15.2.1. Dictionary. There is a dictionary between operations on RT -modules and oper-
ations on filtrations. Let us keep the notation of Remark 15.1.8(3) (see also Exer-
cise 15.1).

(a) We consider the graded components Mk as forming a directed system, indexed
by k 2 Z

n, with morphisms given by multiplication by z1, . . . , zn. Since we are
working in an abelian category in which all filtered direct limits exist and are exact,
we can define

A = lim�!
k2Zn

Mk.

Then M and A are related by
eR⌦R M ' eA := eR⌦C A and A ' M/(z1 � 1, . . . , zn � 1)M.

(b) Let I be a subset of {1, . . . , n} and let I
c denote its complementary subset.

If we hold, for each i 2 I, the i-th index fixed, the resulting direct limit determines
a Z

I -graded object M
(I), which is a Z

I -graded module over the ring RI = C[zI ] =

R/((zi � 1)i2Ic)R:

M
(I)

=
L

kI2ZI

M
(I)

kI
, with M

(I)

kI
= lim�!

kIc2ZIc

Mk.

We then have
M

(I) ' RI ⌦R M.

Let eRI ⇢ eR be the subring of Laurent polynomials whose zi-degree is non-negative
for i 2 I. Then M and M

(I) are also related by
fM (I)

:= eRI ⌦R M ' C[z
±1

Ic ]⌦C M
(I)

.

15.2.2. Theorem. A graded RT -module comes from an object with n distributive filtra-
tions if and only if it is flat over RT .

We note that both the distributivity property and the flatness property for sheaves
of C-vector spaces or of R-modules can be checked stalkwise on the topological
space T , so that the statement concerns multi-filtered C-vector spaces and R-modules.
This remark will be used implicitly in the following.

Before giving the proof, we recall a few general facts about flatness. For any
commutative ring R, flatness of an R-module M is equivalent to the condition that

Tor
R

1
(M,R/I) = 0

for every finitely generated ideal I ✓ R; when R is Noetherian, it is enough to check
this for all prime ideals P ✓ R. In our setting, the ring R is graded, and by a similar
argument as in the ungraded case, flatness is equivalent to

Tor
R

1
(M,R/P ) = 0
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for every graded prime ideal P ✓ R. Of course, there are only finitely many graded
prime ideals in R = C[z1, . . . , zn], namely those that are generated by the 2

n possible
subsets of the set {z1, . . . , zn}. Moreover, the quotient R/P always has a canonical
free resolution given by the Koszul complex.

We conclude:

15.2.3. Proposition. A graded R-module is R-flat if and only if, for any subset J of
{1, . . . , n}, the Koszul complex K(M ; (zj)j2J) is exact in negative degrees, i.e., is a
resolution of M/

P
j2J

zjM .

15.2.4. Example. For n = 1, a graded R-module M is flat if and only if z1 : M ! M

is injective. For n = 2, a graded R-module M is flat if and only if z1 : M ! M and
z2 : M ! M are both injective and the Koszul complex K(M ; z1, z2):

M
(�z2, z1)��������! M �M

z1• + z2•
��������! M

is exact in the middle. (Here we are ignoring the grading in the notation.) The Koszul
complex is just the simple complex associated to the double complex

M
z1
//

z2

✏✏

M

z2

✏✏

M
z1
// M

with Deligne’s sign conventions, and the right-most term is in degree zero. The
exactness of the Koszul complex in the middle can be read on each graded term as
Mk1�1,k2

\ Mk1,k2�1 = Mk1�1,k2�1. In this way, it is clear that two filtrations give
rise to a flat R-module, illustrating thereby Theorem 15.2.2.

Exactness of the Koszul complex is closely related to the concept of regular se-
quences. Recall that z1, . . . , zn form a regular sequence on M if multiplication by z1

is injective on M , multiplication by z2 is injective on M/z1M , multiplication by z3 is
injective on M/(z1, z2)M , and so on.

15.2.5. Corollary (A flatness criterion). A graded R-module M is flat over R if and only
if any permutation of z1, . . . , zn is a regular sequence on M .

Proof. This is one of the basic properties of the Koszul complex. The point is that
multiplication by z1 is injective on M if and only if the Koszul complex

M
z1���! M

is a resolution of M/z1M . If this is the case, multiplication by z2 is injective on
M/z1M if and only if the Koszul complex

M
(�z2, z1)��������! M �M

z1• + z2•
��������! M

is a resolution of M/(z1, z2)M , etc. In general, the equivalence is obtained in Exercise
15.2 together with the flatness criterion of Proposition 15.2.3.
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15.2.6. Proposition (Another flatness criterion). Let M be an R-graded module. Assu-
me that

(1) z1 : M ! M is injective and M/z1M is flat over R/z1R,
(2) Mk = 0 if k1 < 0.

Then M is R-flat.

Proof. We apply the criterion of Proposition 15.2.3. Let J be a subset of {2, . . . , n}
and set I = {1} [ J . On the one hand, since z1 is injective on M , we have an exact
sequence of complexes

0 �! K(M ; (zj)j2J)
z1���! K(M ; (zj)j2J) �! K(M/z1M ; (zj)j2J) �! 0.

On the other hand, by definition, K(M ; (zi)i2I) is the cone of the morphism
K(M ; (zj)j2J)

z1�! K(M ; (zj)j2J). We deduce a quasi-isomorphism K(M ; (zi)i2I) '
K(M/z1M ; (zj)j2J), and thus the cohomology of K(M ; (zi)i2I) is zero in negative
degrees.

Let us now consider KJ := K(M ; (zj)j2J) with differential denoted by � and show
that its cohomology vanishes in negative degrees. The long exact sequence attached to
the short exact sequence above shows that z1 : H

k
(KJ) ! H

k
(Kj) is an isomorphism

for k < 0. Let m 2 K
k

J
be such that �m = 0. Modulo a coboundary �m00 it is thus

divisible by z1, that is, m = z1m
0
+ �m

00, and �m
0
= 0. Considering the graded

components, this reads mk = z1m
0
k�11

+ (�m
00
)k. Continuing this way, we write

mk = z
N

1
µ
0
k�N11

+(�µ
00
)k for N large enough so that all nonzero graded components

mk of m satisfy k1 < N . The second assumption implies that µ0
k�N11

= 0 for each k,
and thus the class of m in H

k
(KJ) is zero, as desired.

Under certain conditions on the graded R-module M , one can deduce flatness from
the vanishing of the single R-module

Tor
R

1

�
M,R/(z1, . . . , zn)R

�
.

In the case of local rings, this kind of result is usually called the “local criterion for
flatness”. The simplest example is when M is finitely generated as an R-module,
which is to say that all the filtrations are bounded from below.

15.2.7. Proposition. If M is a finitely generated graded R-module, then the vanishing
of TorR

1

�
M,R/(z1, . . . , zn)R

�
implies that M is flat.

Proof. This is a general result in commutative algebra. To show what is going on, let
us give a direct proof in the case n = 2. By assumption, the Koszul complex

M
(�z2, z1)��������! M �M

z1• + z2•
��������! M

is exact in the middle. It follows quite easily that multiplication by z1 is injective.
Indeed, if there is an element m 2 Mi,j with z1m = 0, then the pair (m, 0) is in the
kernel of the differential (z1, z2), and therefore m = �z2m

0 and 0 = z1m
0 for some

m
0 2 Mi,j�1. Continuing in this way, we eventually arrive at the conclusion that

m = 0, because Mi,j = 0 for j ⌧ 0. For the same reason, multiplication by z2 is
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injective; but now we have checked the condition in the definition of flatness for all
graded prime ideals in R.

Proof of Theorem 15.2.2. Let us first show that if F
(1)

• A, . . . , F
(n)

• A are distributive
filtrations, then the associated Rees module M is flat over R. Because of the inherent
symmetry, it is enough to prove that zn, . . . , z1 form a regular sequence on M .
Because M comes from a filtered object, multiplication by zn is injective and

M/znM =
L

k2Zn

Mk1,...,kn
/Mk1,...,kn�1,kn�1.

This is now a Z
n-graded module over the polynomial ring C[z1, . . . , zn�1]. We remar-

ked, after Definition 15.1.7, that for every ` 2 Z, the n� 1 induced filtrations on
A` = gr

F
(n)

`
A = F

(n)

`
A/F

(n)

`�1
A

are still distributive, and by definition,
F

(1)

k1
A` \ · · · \ F

n�1

kn�1
A` ' Mk1,··· ,kn�1,`

/Mk1,...,kn�1,`�1.

By induction, this implies that zn�1, . . . , z1 form a regular sequence on M/znM ,
which is what we wanted to show.

For the converse, suppose that M is now an arbitrary graded R-module that is flat
over R. We need to construct from M an object A with n distributive filtrations.
We take A = lim�!k2Zn

Mk as defined by the dictionary 15.2.1(a). Setting I = {i} in
15.2.1(b), we obtain a graded Ri-module M

(i) which is Ri-flat (flatness is preserved
by base change), hence of the form RF (i)A for some filtration F

(i)

• A. We will also use
the flatness of M to prove that these n filtrations are distributive, and that

(15.2.8) Mk1,...,kn
= F

(1)

k1
A \ · · · \ F

(n)

kn
A,

as subobjects of A. We will argue by induction on n, by checking the criterion of
Proposition 15.1.5(2) for the objects eAi (notation of Remark 15.1.8(3)). The case
n = 1 is clear, and the case n = 2 is reduced to checking (15.2.8): the diagram of
exact sequences (15.1.2) exists for the subobjects eR1,

eR2 of eR with lower left corner
equal to R = eR1 \ eR2; all sequences remain exact after tensoring by M over R, and
the lower left corner is M = fM (1) \ fM (2), as desired. We now assume n > 3.

Let us start with 15.1.5(2b). If n = 3, the family ( eRi)i=1,2,3 of subobjects of eR is
clearly distributive. Since M is R-flat, each eRi ⌦R M is a subobject of eR⌦R M = eA
and the criterion of Lemma 15.1.3 implies that the family ( eRi ⌦R M) of subobjects
of eA is also distributive. As seen in 15.2.1(b) and since M

(i)
= RF (i)A, this is nothing

but the family ( eAi), so that 15.1.5(2b) holds if n = 3. If n > 4, we apply the previous
result to M

(I) for any subset of three elements in {1, . . . , n}. This is possible since
M

(I) is RI -flat, as flatness is preserved by base change. Therefore, 15.1.5(2b) holds
for all n > 3.

For 15.1.5(2a), we set z0 = (z2, . . . , zn). We regard R
0
:= C[z

0
] as a subalgebra of R

and M as an R
0-module, that we write as the direct sum of R0-modules

L
k12Z M

0
k1

.
As such, it is still flat, and therefore each M

0
k1

=
L

k02Zn�1 Mk1,k0 is also R
0-flat. The

limit lim�!k02Zn�1
Mk1,k0 is M (1)

k1
that we have identified with F

(1)

k1
A. For i > 2, we write
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(M
0
k1
)
(i)

= RF (i)(F
(1)

k1
A). By induction, the family (F

(i)

• (F
(1)

k1
A))i>2 is distributive

and for each k
0 2 Z

n�1, we have

Mk1,k0 = F
(2)

k2
(F

(1)

k1
A) \ · · · \ F

(n)

kn
(F

(1)

k1
A).

On the other hand, we have for each ki 2 Z the equality (M
0
k1
)
(i)

ki
= M

{1,i}
k1,ki

and, by
the case n = 2 treated above, we conclude that F

(i)

ki
(F

(1)

k1
A) = (F

(i)

ki
A) \ (F

(1)

k1
A),

so that the first part of 15.1.5(2a) holds, as well as (15.2.8).
The second part of 15.1.5(2a) amounts to asking that, for any k1 2 Z, the induced

filtrations F
(i)

• (A/F
(1)

k1
A) (i > 2) form a distributive family. We set z

0
= (z2, . . . , zn)

and R
0
= C[z

0
] that we regard as R/z1R. Since M is R-flat, R

0 ⌦R M is R
0-flat.

We write
R

0 ⌦R M =
L

k12Z

L
k02Zn�1

Mk1+1,k0/Mk1,k0 ,

so that
L

k02Zn�1 Mk1+1,k0/Mk1,k0 is R
0-flat for any k1. By induction on ` > 0,

we deduce that
L

k02Zn�1 Mk1+`,k0/Mk1,k0 is R0-flat for any k1, ` and taking inductive
limit on ` leads to the R

0-flatness of M 0
k0/Mk1,k0 for any k1. By induction on n, the

filtrations on lim�!k0 M
0
k0/Mk1,k0 = A/F

(1)

k1
A obtained by taking inductive limit with ki

fixed are distributive. They read, for i > 2, M (i)

ki
/M

({1,i})
k1,ki

. By the first part of the
proof of 15.1.5(2a), this expression writes F (i)

ki
A/(F

(1)

k1
A\F

(i)

ki
A), so that the desired

distributivity is obtained.

15.2.9. Remark (Interpretation of flatness in terms of multi-grading)
Corollary 15.2.5 has the following practical consequence: for distributive filtrations

F
(1)

• A, . . . , F
(n)

• A, the n-graded object obtained by inducing iteratively the filtrations
on the j-graded object grF

(ij)

kij

· · · grF (i1)

ki1

A (j = 1, . . . , n) does not depend on the order
{i1, . . . , in} = {1, . . . , n}, and is equal to

F
(1)

k1
A \ · · · \ F

(n)

kn
A

P
j
F

(1)

k1
A \ · · · \ F

(j)

kj�1
A \ · · · \ F

(n)

kn
A

.

When one filtration is bounded from below, the inductive property of Proposition
15.1.5(2) takes a more accessible form.

15.2.10. Proposition (Distributivity by induction). Let (A,F
(1)

• A, . . . , F
(n)

• A) be a multi-
filtered object of A. Assume the following properties:

(a) F
(1)

p A = 0 for p ⌧ 0;
(b) for each p, the induced filtrations F

(2)
, . . . , F

(n) on gr
F

(1)

p
A are distributive;

(c) for each p, the natural morphism RF 0(F
(1)

p A) ! RF 0(gr
F

(1)

p
A) is an epimor-

phism.
Then the filtrations F

(1)
, F

(2)
, . . . , F

(n) on A are distributive.

Proof. We will apply Proposition 15.2.6 to the Rees module M = RFA. It is clear
that multiplication by z1 is injective on M , so we only need to check the C[z2, . . . , zn]-
flatness of M/z1M .
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Set p
0
= (p2, . . . , pn), F 0

p0A =
T

n

i=2
F

(i)

pi
A and, for each p,

F
0
p0(gr

F
(1)

p
A) =

nT
i=2

F
(i)

pi
gr

F
(1)

p
A =

T
n

i=2

�
(F

(i)

pi
A \ F

(1)

p A) + F
(1)

p�1
A
�

F
(1)

p�1
A

.

Then (c) amounts to

(15.2.11) (F
0
p0A \ F

(1)

p A) + F
(1)

p�1
A =

T
n

i=2

�
(F

(i)

pi
A \ F

(1)

p A) + F
(1)

p�1
A
�

8 p.

On the other hand, M/z1M is the direct sum indexed by p of the terms

(F
0
p0A \ F

(1)

p
A) + F

(1)

p�1
A/F

(1)

p�1
A = (F

0
p0A \ F

(1)

p
A)/(F

0
p0A \ F

(1)

p�1
A).

Therefore, (c) amounts to the equality

M/z1M = RF 0gr
F

(1)

A,

and (b) yields it C[z2, . . . , zn]-flatness.

15.2.12. Remark (Multi-filtered morphisms). Given two multi-filtered objects

(A, (F
(i)

• A)i=1,...,n) and (B, (F
(i)

• B)i=1,...,n)

in A, let ' : A ! B be a morphism compatible with the filtrations. It induces var-
ious morphisms gr

F
(ij)

kij

· · · grF (i1)

ki1

'. Assume that the filtrations in A and in B are
distributive. Then the source and the target of these morphisms are independent
of the order of multi-grading, as remarked above. We claim that the morphisms
gr

F
(ij)

kij

· · · grF (i1)

ki1

' are also independent of the order of multi-grading. Indeed, ' in-
duces a graded morphism RF' : M ! N between the associated Rees objects, and
due to the distributivity assumption, we are led to checking that the restriction of
RF' to M/(zki1

, . . . , zkij
)M is independent of the order, which is clear.

15.2.b. Application of the flatness criterion. We will make more explicit the
general notion of distributive filtrations in the case of xi-adic filtrations on a coherent
OX -module. For such a module E, assume we are given, for each i = 1, . . . , n, an
increasing filtration V

(i)

• E indexed by [�1, 0) by coherent submodules, such that E =S
↵i2[�1,0)

V
(i)

↵i
E and the set of jumps Ai ⇢ [�1, 0) is finite. We extend the filtration

as a filtration indexed by Ai + Z by setting

V
(i)

↵i+k
E =

(
x
�k

i
V

(i)

↵i
E if k 6 0,

V
(i)

↵i
E if k > 0.

We define V
(n)

a E =
T

i
V

(i)

ai
E for any a 2

Q
i
(Ai + Zi).

15.2.13. Example (Rank-one objects). Assume that E is OX -locally free of rank 1.
Then, for each i, Ai is reduced to one element ↵i 2 [�1, 0) and we have for any
a 2

Q
i
(Ai + Z)

V
(n)

a E = E(
P

i|ai6↵i
[ai � ↵i]Di).

We claim that the family (V
(1)

• E, . . . , V (n)

• E) is distributive. Indeed, the multi-Rees
module RV E (see Section 15.2.a) reads

L
k2Zn

x
kEz�k

, with x
ki

i
:= 1 if ki 6 0.
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We have to check that each permutation of (z1, . . . , zn) is a regular sequence on
RV (n)E. This is obtained by induction, noticing that zi is injective on RV (n)E and
RV (n)E/ziRV (n)E is the Rees module of grV

(i)

• E equipped with the similar filtrations
V

(j)

• gr
V

(i)

• E (j 6= i).

15.2.14. Proposition. Let E be a coherent OX-module and let (V
(1)

• E, . . . , V (n)

• E) be
filtrations as defined above. Let us assume that, for each a 2

Q
i
(Ai + Z),

(1) the OX-module V
(n)

a E is locally free,
(2) if ai < 0, then xiV

(n)

a E = V
(n)

a�1i
E.

Then the filtrations (V
(1)

• E, . . . , V (n)

• E) are distributive.

Proof. Note that the assumption implies that E itself is OX -locally free. The multi-
Rees module RV (n)E is the direct sum over ↵ 2

Q
i
Ai of multi-Rees modules asso-

ciated with the multi-filtrations V (n)

↵+ZE. To check its C[z1, . . . , zn]-flatness, it is enough
to check that of each summand. We can therefore assume that

Q
i
Ai = {↵}. We then

simply write V
(n)

↵+kE = V
(n)

k E. By (2),

V
(n)

k E = E(
P

i|ki60
kiDi)

and we argue as in the example to conclude.

15.3. Strictness of morphisms

Let A and B be two objects in our abelian category A, each with n distributive
filtrations

F
(1)

• A, . . . , F
(n)

• A, respectively F
(1)

• B, . . . , F
(n)

• B.

Denote by M and N the graded R-modules that are obtained by the Rees construction;
both are flat by Theorem 15.2.2. Now consider a filtered morphism ' : A ! B.
It induces an R-linear morphism RF' : M ! N between the two Rees modules.

15.3.1. Definition. We say that ' : A ! B is n-strict if CokerRF' is again a flat
R-module.

Flatness of CokerRF' also implies that KerRF' and ImRF' are flat: the reason
is that we have two short exact sequences

0 �! KerRF' �! M �! ImRF' �! 0

0 �! ImRF' �! N �! CokerRF' �! 0,and

and because M and N are both flat, flatness of CokerRF' implies that of ImRF',
which implies that of KerRF'. Note that Ker' and Coker' are equipped with filtra-
tions F (1)

• Ker', . . . , F
(n)

• Ker', respectively F
(1)

• Coker', . . . , F
(n)

• Coker' naturally
induced from those on A, respectively B. On the other hand, Im' has two possi-
ble natural families of filtrations: those induced from M and those from N . If ' is
n-strict, both coincide and we have

KerRF' = RF Ker', ImRF' = RF Im', CokerRF' = RF Coker'.
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Indeed, we know by Theorem 15.2.2 that the graded modules KerRF', ImRF' and
CokerRF' are attached to distributive filtrations, and (for Coker' for example) the
term in degree k 2 Z

n is (F
(1)

k1
B \ · · ·\ F

(n)

kn
B) + Im'/ Im', so that the distributive

filtrations on Coker' given by the theorem are nothing but the filtrations induced
by F

i

•B.
For example, in the case of two filtrations F 0

, F
00 as considered in Definition 10.2.4,

the last equality in bi-degree k, ` gives

F
0
k
F

00
`
B/'(F

0
k
F

00
`
A) = (F

0
k
B + Im') \ (F

00
`
B + Im')/ Im',

which corresponds to the condition of Definition 10.2.4.

15.3.2. Caveat. The strictness of ' implies that the induced filtrations (on Ker', Im'

and Coker') are distributive. However, the latter condition is not enough for ensuring
strictness of '. For example, two filtrations are always distributive, while a morphism
between bi-filtered objects need not be strict.

15.3.3. Example (Strict inclusions). The composition of strict morphisms need not
be strict in general. However, the composition of strict monomorphisms i1, i2

between objects with distributive filtrations remains a strict monomorphism since
CokerRF (i2 � i1) = Coker(RF i2 �RF i1) is an extension of CokerRF i2 by CokerRF i1,
and flatness is preserved by extensions.

Given n distributive filtrations F
(1)

• A, . . . , F
(n)

• A, they induce distributive filtra-
tions on Ak := F

(1)

k1
A \ · · · \ F

(n)

kn
A for every k = (k1, . . . , kn) 2 Z

n (see Remark
15.1.8). Moreover, for k 6 ` 2 Z

n (i.e., ki 6 `i for all i = 1, . . . , n), the inclusion
Ak ,! A` is n-strict. Indeed, by the preliminary remark, it is enough to show that
the inclusion Ak�1i

,! Ak is strict for all i. This has been explained in the first part
of the proof of Theorem 15.2.2.

15.3.4. Proposition (A criterion for strictness of inclusions). Let (A,F
(1)

• A, . . . , F
(n)

• A)

and (B,F
(1)

• B, . . . , F
(n)

• B) be multi-filtered objects of A with distributive filtrations,
and let ' be a multi-filtered monomorphism between them. Assume the following
properties:

(a) F
(1)

p B = 0 for p ⌧ 0;
(b) ' is F

(i)-strict for i = 1, . . . , n (i.e., F (i)

p A = F
(i)

p B \A),
(c) for each p, grF

(1)

p
' : gr

F
(1)

p
A ! gr

F
(1)

p
B is an (n� 1)-strict monomorphism.

Then ' is an n-strict monomorphism.

Proof. We consider the exact sequence 0 ! RFA
RF'�! RFB ! M ! 0 and we wish

to show the R-flatness of M , where R = C[z1, . . . , zn]. We will apply the criterion of
Proposition 15.2.6 to M .

It is clear that multiplication by z1 is injective on RFA and RFB. On the other
hand, (c) means that the sequence

0 �! RFA/z1RFA �! RFB/z1RFB �! M/z1M �! 0,
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is exact and that M/z1M is R/z1R-flat. The snake lemma implies that z1 : M ! M

is injective, so, because of (a), the flatness criterion of Proposition 15.2.6 applies
to M .

15.3.5. Definition (Strictness of a multi-filtered complex). If we have a complex of
objects with n distributive filtrations and differentials that preserve the filtrations,
we consider the associated complex of flat graded R-modules; if all of its cohomology
modules are again flat over R, we say that the original filtered complex is strict.

The interpretation of distributivity in term of flatness yields the following criterion
(see Definition 15.3.1).

15.3.6. Proposition. A complex of objects with n distributive filtrations and differentials
that preserve the filtrations, and which is bounded from above, is strict if and only if
each individual differential is an n-strict morphism.

15.4. Appendix. Compatible filtrations

The definition of compatibility of three subobjects of A given before Lemma 15.1.3
has a natural extension for n subobjects. We will see that it is equivalent to the
notion of distributivity, but sheds a new light on other properties.

More precisely, the condition is the following: there should exist an n-dimensional
commutative diagram C(A1, . . . , An;A), consisting of 3n objects placed at the points
{�1, 0, 1}n and 2n · 3n�1 morphisms corresponding to the line segments connect-
ing those points, such that A sits at the point (0, . . . , 0), each Ai sits at the point
(0, . . . ,�1, . . . , 0) on the i-th coordinate axis, and all lines parallel to the coordinate
axes form short exact sequences in the abelian category. It is easy to see that the
objects at points in {�1, 0}n are just intersections: if the i-th coordinate of such a
point is �1 for i 2 I ⇢ {1, . . . , n} and 0 for i 62 I, then the exactness of the diagram
forces the corresponding object to be

T
i2I

Ai,

with the convention that the intersection equals A when I is empty. In particular,
the object A1 \ · · · \An always sits at the point with coordinates (�1, . . . ,�1).

On the other hand, given a subset I ⇢ {1, . . . , n}, fixing the coordinate "
o

i
2

{�1, 0, 1} for every i 2 I produces a sub-diagram of size n�#I, hence n�#I com-
patible sub-objects of the term placed at ("o

i2I
, 0i/2I), that we denote by A("

o

i2I
, 0i/2I).

For example, fixing "
o

i
= 0 for each i 2 I shows that the sub-family (Ai)i/2I is a

compatible family.
As another example, fix "o

n
= �1. Then the induced family (Ai\An)i2{0,...,n�1} of

sub-objects of An is also compatible. In the definition of compatibility, the object A

does not play a relevant role and one can replace it by a sub-object provided that all
Ai are contained in it. Similarly one can replace it by a sup-object. This is shown in
Exercise 15.6. So the induced family (Ai \An)i2{0,...,n�1} is also compatible in A.
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As still another example, let us fix "o
n
= 1. We have an exact sequence

An = A(0, . . . , 0,�1) �! A = A(0, . . . , 0) �! A/An = A(0, . . . , 0, 1).

Our new diagram has central term A/An and the term placed at (0, . . . , (�1)i, . . . , 0, 1)

is Ai/Ai \An = (Ai +An)/An: the induced family
�
(Ai +An)/An

�
i2{0,...,n�1} is also

compatible.
The definition of a compatible family of filtrations is similar to Definition 15.1.7 by

replacing the word “distributive” with the word “compatible”. Then any sub-family
of filtrations of a compatible family remains compatible. Moreover, any finite family
of sub-objects consisting of terms of the filtrations F

(1)

• A, . . . , F
(n)

• A is compatible,
and Lemma 15.4.1 below, whose proof is postponed at the end of this section, implies
that the induced filtrations F

(1)

• , . . . , F
n�1

• on each gr
F

(n)

`
A are compatible.

15.4.1. Lemma. Let A1, . . . , An ⇢ A be a family of sub-objects of A. Assume the
following properties:

(1) A1 ⇢ A2.
(2) Both sub-families A1, A3, . . . , An and A2, A3, . . . , An are compatible.

Then the family A1, . . . , An is compatible. Moreover, the family (Ai \A2)/(Ai \A1)

(i = 3, . . . , n) of sub-objects of A2/A1 is also compatible.

Lemma 15.1.3 extends to any n > 4:

15.4.2. Proposition. A family of n subobjects of A is distributive if and only if it is
compatible.

Proof. We show that Theorem 15.2.2 holds when compatibility replaces distributivity.
The proof that compatibility implies flatness is similar to that of Theorem 15.2.2 in
the case of distributive filtrations, in view of the remark above.

The proof of the converse is simpler than in the case of distributive filtrations. Fix
k, ` 2 Z

n. Observe that because R is graded, the graded submodules z
`1

1
R, . . . , z

`n
n
R

are trivially distributive; in fact, the required n-dimensional commutative diagram
exists in the category of graded R-modules. If we tensor this diagram by M , it
remains exact everywhere, due to the fact that M is flat. Take the graded piece of
degree k + ` everywhere; for n = 2, for example, the result looks like this:

⇤ // ⇤ // ⇤

Mk1+`1,k2

//

OO

Mk1+`1,k2+`2
//

OO

⇤

OO

Mk1,k2

//

OO

Mk1,k2+`2
//

OO

⇤

OO
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Apply the direct limit over ` 2 Z
n; this operation preserves exactness. For n = 2, for

example, the resulting n-dimensional commutative diagram looks like this:

⇤ // ⇤ // ⇤

F
2

k2
A //

OO

A //

OO

⇤

OO

Mk1,k2

//

OO

F
(1)

k1
A //

OO

⇤

OO

The existence of such a diagram proves that F (1)

k1
A, . . . , F

(n)

kn
A are compatible subob-

jects of A, and also that (15.2.8) holds.

Proof of Lemma 15.4.1. We wish to define a diagram with vertices A("1, "2, . . . , "n)

("i 2 {�1, 0, 1}) satisfying the properties above. The second assumption means that
we have the diagrams with vertices A("1, 0, "3, . . . , "n) and A(0, "2, . . . , "n). On the
other hand, if the diagram we search for exists, the inclusion A1 \ A2 = A1 ⇢ A2 is
satisfied for all terms of the diagram, namely

(15.4.3) A(�1,�1, ">3) = A(�1, 0, ">3) ⇢ A(0,�1, ">3).

We are thus forced to set

A(1,�1, ">3) := A(0,�1, ">3)/A(�1,�1, ">3)

A(1, 1, ">3) := A(0, 1, ">3).
(15.4.4)

In such a way, we obtain a commutative diagram where the columns are exact se-
quences (by assumption for the middle one, by our setting for the left and right ones),
as well as the middle horizontal line

(15.4.5)

A(1,�1, ">3)
// A(1, 0, ">3)

// A(1, 1, ">3)

A(0,�1, ">3)

OO

OO

� �
// A(0, 0, ">3)

OO

OO

// // A(0, 1, ">3)

A(�1,�1, ">3)

?�

OO

A(�1, 0, ">3)

?�

OO

// A(�1, 1, ">3) = 0

OO

It is then easy to check that the upper horizontal line is exact. This shows that, in the
diagram of size n, the lines where "1 varies in {�1, 0, 1} and all other "i fixed, as well
as the lines where "2 varies and all other "i are fixed, are exact. Let us now vary "3,
say, by fixing all other "i and let us omit "i for i > 4 in the notation. From the
diagram above, we see that the only possibly non-obvious exact sequence has terms
A(1,�1, "3)"3=�1,0,1. We now consider the commutative diagram where the columns
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are exact and only the upper horizontal line is possibly non-exact:

(15.4.6)

A(1,�1,�1) // A(1,�1, 0) // A(1,�1, 1)

A(0,�1,�1)

OO

OO

� �
// A(0,�1, 0)

OO

OO

// // A(0,�1, 1)

OO

OO

A(�1,�1,�1)

?�

OO

� �
// A(�1,�1, 0)

?�

OO

// // A(�1,�1, 1)

?�

OO

But the snake lemma shows its exactness. We conclude that the family A1, A2, . . . , An

is compatible. We now remark that

A2/A1 = A2/(A1 \A2) = A(1,�1, 0, . . . , 0).

The compatibility of the family (Ai \ A2/Ai \ A1)i=3,...,n will be proved if we prove
(A3 \A2)/(A3 \A1) = A(1,�1,�1, 0, . . . , 0), and similarly for i > 4. Let us consider
the previous diagram when fixing "i = 0 for i > 4. The left vertical inclusion reads
A1 \A2 \A3 ,! A2 \A3, hence the desired equality.

15.5. Exercises

Exercise 15.1 (Basics on Rees modules). We take up the notation of Section 15.2.a. Set
C[z] = C[z1, . . . , zn]. Let M =

L
k2Zn Mk be a Z

n-graded C[z]-module.

(1) Show that the subset TmM ⇢ M consisting of elements m 2 M annihilated by
a monomial in z1, . . . , zn is a graded C[z]-submodule of M . Conclude that M/Tm is
a graded C[z]-module.

(2) Let T ⇢ M be the C[z]-torsion submodule of M . Show that T = Tm. [Hint :
Assume that Tm = 0 by working in M/Tm; if pm = 0 with p =

P
pjz

j 2 C[z] and
m =

P
k mk 2 M , choose a linear form L with non-negative coefficients such that

max{L(j) | pj 6= 0} is achieved for a unique index j = j
o

and similarly for k and ko;
show that z

j
omko

= 0 and conclude that m = 0.]
(3) Show that M is C[z]-torsion free if and only if the natural morphism M !

M [z
�1

] := M ⌦C[z] C[z�1
] is injective.

(4) Set A = M/
P

i
(zi � 1)M . Show that M is C[z]-torsion free if and only if

there exists an exhaustive Z
n-filtration F•A such that M = RFA :=

L
k2Zn(FkA)z

k.
[Hint : Show first that A = M [z

�1
]/
P

i
(zi � 1)M [z

�1
] and M [z

�1
] = A⌦C C[z, z

�1
];

consider then the graded inclusion M ,! A⌦C C[z, z
�1

].]
(5) Omitting indices. Let (A,F•A) be a multi-filtered vector space, let I ⇢

{1, . . . , n} be a subset and denote by I
c its complement. Let F

(I)

• A be the Z
I -

filtration defined by F
(I)

kI
A :=

S
kIc2ZIc F

(I)

(kI ,kIc )
A. Show that

RF (I)A =
�
RFA/

P
i2Ic(zi � 1)RFA

� �
C[zI ]-torsion.

Conclude that if RFA is C[z]-flat, then RF (I)A is C[zI ]-flat. [Hint : Use that flatness
is preserved by base change.]
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(6) Grading. Set

F
(I)

�kI

A =

X

i2I

F
(I)

kI�1i
A, gr

F
(I)

kI
A = F

(I)

kI
A/F

(I)

�kI

A, F(�kI ,kIc )
A =

X

i2I

F(kI�1i,kIc )
A,

F
(I

c
)

kIc
gr

F
(I)

kI
A = F(kI ,kIc )

A
� ⇥

F(kI ,kIc )
A \ F

(I)

�kI

A
⇤
.

Show that there exist isomorphisms as Z
n-graded modules:

RFA/
P

i2I
ziRFA '

L
(kI ,kIc )2Zn

F(kI ,kIc )
A/F(<kI ,kIc )

A · zkIc

and L
kI2ZI

RF (Ic)gr
F

(I)

kI
A '

�
RFA/

P
i2I

ziRFA
� �

C[zIc ]-torsion.

Identify RF (Ic)gr
F

(I)

kI
A with the term of I-degree kI in the right-hand side. Con-

clude that if RFA is C[z]-flat, then RF (Ic)gr
F

(I)

kI
A is C[zIc ]-flat. [Hint : Use that

flatness is preserved by base change.] Conclude that, if RFA is C[z]-flat, the inclusion
F(�kI ,kIc )

A ⇢ F(kI ,kIc )
A \ F

(I)

�kI

A is an equality.

(7) Show that if RFA is C[z]-flat, then FkA =
T

n

i=1
F

(i)

ki
A. [Hint : Argue by

induction on n and prove FkA = F
(1)

k1
A \ F

{1}c

k{1}c
A by using the last result of (6).]

Exercise 15.2 (Regular sequences and the Koszul complex). We keep the notation as in
Proposition 15.2.3.

(1) Show that the sequence z1, . . . , zn is a regular sequence on M if and only if
for every k = 1, . . . , n, the Koszul complex K(M ; z1, . . . , zk) is a graded resolution of
M/(z1, . . . , zk)M .

(2) Deduce that the following properties are equivalent:
(a) any permutation of z1, . . . , zn is a regular sequence on M ,
(b) any subsequence of z1, . . . , zn is a regular sequence on M ,
(c) for every subset J ⇢ {1, . . . , n} the Koszul complex K(M ; (zj)j2J) is a

graded resolution of M/(zj)j2JM .

Exercise 15.3 (Applications of the flatness criterion).
(1) Let A be an object with n distributive filtrations F

(1)

• A, . . . , F
(n)

• A and let
F

(n+1)
A be a filtration which jumps at one index at most, for example F

(n+1)

�1
A = 0

and F
(n+1)

0
A = A. Show that the family F

(1)

• A, . . . , F
(n+1)

• A is still distributive.
[Hint : Show that the new Rees module is obtained from the old one by tensoring
over C with C[zn+1].]

(2) Let A be an object with n distributive filtrations F (1)

• A, . . . , F
(n)

• A. Show that
any family of filtrations G(1)

• A, . . . , G
(m)

• A where each G
(i)

• A is obtained by convolution
of some of the filtrations F

j

• A, i.e.,

G
(i)

p
A =

X

q1+···+qk=p

F
(j1)

q1
A+ · · ·+ F

(jk)

qk
A,

(also denoted by G
i

•A = F
(j1)

• A ? · · · ? F (jk)

• A) is also a distributive family. [Hint :
Express the Rees module R

i

G
A as obtained by base change from R

F (j1),...,F
(j

k
)A and,
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more generally express RG(1),...,G(m)A as obtained by base change from RF (1),...,F (n)A;
conclude by using that flatness is preserved by base change.]

(3) Let F
(1)

• A, . . . , F
(n)

• A be filtrations on A. Let B be a sub-object of A and let
F

(i)

• B and F
(i)

• (A/B) be the induced filtrations. Assume that
(a) the families (F

(i)

• B)i and (F
(i)

• (A/B))i are distributive,
(b) for all k1, . . . , kn, the following sequence is exact:

0 �!
nT

i=1

F
(i)

ki
B �!

nT
i=1

F
(i)

ki
A �!

nT
i=1

F
(i)

ki
(A/B) �! 0.

Then the family (F
(i)

• A)i is distributive. [Hint : Show that there is an exact sequence
of the associated Rees modules, and use that flatness of the extreme terms implies
flatness of the middle term.]

Exercise 15.4 (External products and flatness).

(1) Let R = C[z1, . . . , zn] and R
0
= C[z

0
1
, . . . , z

0
m
] be polynomial rings set R

00
=

R⌦CR0
= C[z1, . . . , z

0
m
]. Let M resp. M 0 be a graded flat R- resp. R0- module. Show

that M
00
:= M ⌦C M

0 is R
00-flat as a graded R

00-module. [Hint : Use the criterion of
Exercise 15.2.]

(2) Assume now that R and R
0 are polynomial rings (with variables as above) over a

polynomial ring C[z
00
1
, . . . , z

00
p
]. Let M,M

0 be as above. Show that M 00
:= M⌦C[z00]M

0

is R
00-flat as a graded R

00-module. [Hint : Define M
00 in terms of M ⌦C M

0.]
(3) Reprove Lemma 8.6.10 by using the argument of (2) and that flatness commutes

with base change (in a way similar to that of Remark 15.2.9). [Hint : Set eM = RFM

and consider eMX ⇥C eMY ; show that this is a flat bi-graded C[z1, z2]-module; deduce
that restricting first to z1 = z2 and then to z = 0, or restricting to z1 = 0 and then
to z2 = 0 give the same result.]

(4) Let eMX , eMY be strict eD-modules equipped with coherent F•
eD-filtrations

F•
eMX , F•

eMY . Assume that gr
F eMX , gr

F eMY are strict. Show that

gr
F
( eMX ⇥eD

eMY ) ' gr
F eMX ⇥

grF eD gr
F eMY .

[Hint : Show with Exercise 15.2 that RF
eM :=

L
k
Fk

eMz
k

1
is C[z, z1]-flat and use (2).]

Exercise 15.5. Show as in the beginning of Section 15.4 that the object A(1i2I , 0i/2I)

is equal to A/
P

i2I
Ai.

Exercise 15.6 (Some properties of compatible families).

(1) Let A1, . . . , An ⇢ A be a compatible family of sub-objects of A and let B � A.
Show that A1, . . . , An, A is a compatible family in B (in particular, A1, . . . , An is a
compatible family in B). [Hint : Note first that, for " = ("1, . . . , "n) with "i > 0 for
all i, A surjects to A(") and set A(") = A/I("), with I(0) = 0; define then B(", "n+1)
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by
B(",�1) = A(") 8 ",

B(", 0) =

(
A(") if 9 i, "i = �1,

B/I(") if 8 i, "i > 0,

B(", 1) =

(
0 if 9 i, "i = �1,

B/A if 8 i, "i > 0;

check the exactness of sequences like B(�1, "
0
, 0) ! B(0, "

0
, 0) ! B(1, "

0
, 0).]

(2) Let A1, . . . , An ⇢ A be a family of sub-objects of A which is compatible in B,
for some B � A. Then this family is compatible in A. [Hint : Set A(") = B(") if
"i = �1 for some i, and if "i > 0 for all i, set A(") = A/I("), where B(") = B/I(")

and show first that I(") ⇢
P

i
Ai by using Exercise 15.5.]

(3) Let A0, A1, . . . , An ⇢ A be a family of sub-objects of A. Assume that
A1, . . . , An�1 ⇢ An. Show that the family A0, A1, . . . , An is compatible if and only
if the family A0 \ An, A1, . . . , An of sub-objects of An is compatible. [Hint : If the
diagram C(A0, . . . , An;A) exists, there should be an exact sequence

0 ! C(A0 \An, . . . , An;An) ! C(A0, . . . , An;A) ! C

⇣
A0

A0 \An

, 0, . . . , 0;
A

An

⌘
! 0,

corresponding to exact sequences

0 �! A("0, "
0
,�1) �! A("0, "

0
, 0) �! A("0, "

0
, 1);

show that A("0, "
0
, 1) = 0 if "0

i
= �1 for some i = 1, . . . , n� 1; set thus A("0, "

0
, 0) :=

A("0, "
0
,�1) for such an "

0; to determine A("0, "
0
, 0) for "0

i
> 0 for all i, use Exercise

15.5 if "0 > 0 and deduce the case "0 = �1; end by checking that all possibly exact
sequences are indeed exact.]





CHAPTER 15

eD-MODULES OF NORMAL CROSSING TYPE
PART 2: FUNDAMENTAL PROPERTIES

Summary. Starting from the simple model of a monodromic DX -module,
we first introduce the notion of DX -module of normal crossing type, obtained
by analytifying a monodromic one. The notion of a filtered DX -module, or a
eDX -module, of normal crossing type needs a different approach, as in general
such an object does not come by analytification from a monodromic filtered
DX -module. The notion of distributivity or compatibility of filtrations, intro-
duced in Part 1, is essential in the definition. On the other hand, as sesquilinear
pairings do not involve the F -filtration, they can be analyzed from the simple
monodromic setting, and the results are higher dimensional analogues of those
of Section 7.3 in dimension one.

15.6. Introduction

15.6.1. Notation. In this chapter, the setting is as follows. The space X = �
n is

a polydisc in C
n with analytic coordinates x1, . . . , xn, we fix ` 6 n and we denote

by D the divisor {x1 · · ·x` = 0}. We also denote by Di (i = 1, . . . , `) the smooth
components of D and by D(`) their intersection D1 \ · · · \ D`. We will shorten the
notation C[x1, . . . , x`] into C[x] and C[x1, . . . , x`]h@x1

, . . . , @x`
i into C[x]h@xi. We will

set I = {1, . . . , `}.
We will mainly consider right D-modules.

15.6.2. Simplifying assumptions. All over this part, we will consider the simpler case
where ` = n, that is, D(`) is reduced to the origin in X = �

n, in order to make the
computations clearer. We then have I = {1, . . . , n}. The general case ` 6= n brings
up objects which are OD(`)

-locally free and the adaptation is straightforward.

In higher dimensions, similarly to what was done in Section 7.2, the theory of
vector bundles on X with meromorphic integrable connections with poles along D

starts with the simplest objects, namely those with regular singularities [Del70]. One
first extends naturally these objects as locally free OX(⇤D)-modules with integrable
connection and the regularity property amounts to the existence of locally free OX -
module of maximal rank on which the connection has logarithmic poles. The category
of such objects is equivalent to that of locally constant sheaves on X r D, that is,
of finite dimensional representations of ⇡1(X rD) ' Z

n. These objects behave like
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products of meromorphic bundles with connection having a regular singularity in
dimension 1. We say that these objects are of normal crossing type.

Our first aim is to extend this notion to other holonomic DX -modules. We mainly
have in mind the middle extension of such meromorphic connections. In terms of
general D-module theory—that we will not use—we could characterize such D-mod-
ules as the regular holonomic D-modules whose characteristic variety is adapted to
the natural stratification of the divisor D. In other words, these are the simplest
objects in higher dimension.

We can settle the problem as follows. Let M be a coherent DX -module. Assume
that M is R-specializable along each component Di of D. How do the various V -filtra-
tions interact? The notion of normal crossing type aims at reflecting that these
V -filtrations behave independently, i.e., without any interaction. In other words,
the transversality property of the components of D is extended to the transversality
property of the V -filtrations. This is first explained in Section 15.7.a for the simpler
“algebraic case” and then in Section 15.7.b for the general holomorphic case.

Sesquilinear pairings between coherent D-modules of normal crossing type have
then a simple expression in terms of basic distributions or currents (Section 15.8).

When thinking in terms of characteristic varieties, one can expect that the notion
of “normal crossing type” is stable with respect to taking nearby or vanishing cycles
along a monomial function in the given coordinates. However, obtaining an explicit
expression of the various monodromies in terms of the original ones leads to a delicate
combinatorial computation, which is achieved in Section 15.12 both for the simpler
“monodromic case” and the general holomorphic case.

We are mainly interested in the previous results in the presence of an F -filtration
and, for a coherently F -filtered D-module (M, F•M), we will express the independence
of the V -filtrations in the presence of F•M. By looking in dimension 1, one first realizes
that (M, F•M) should be R-specializable along any component Di of D. But adding
an F -filtration to the picture also leads us to take much care of the behaviour of this
filtration with respect to the various V -filtrations along the components Di of the
divisor D. The compatibility property (Definition 15.1.7) is essential in order to have
a reasonable control on various operations on these filtered D-modules.

An important question, given a filtered D-module (M, F•M) such that M is of
normal crossing type along D, is to have an effective criterion on the F -filtration for
(M, F•M) to be of normal crossing type. We give such a criterion in terms of parabolic
bundles (Section 15.9.c) by applying the criterion of Section 15.2.b.

15.6.3. Notation for logarithmic modules. The V -filtration of DX along Di, or that of
a DX -module Mwhich is R-specializable along Di, will be denote by V

(i)

• , where •

runs in Z or R. We will then set (when the simplifying assumption 15.6.2 holds)

V
(n)

a DX :=

nT
i=1

V
(i)

ai
DX , V

(n)

a M :=

nT
i=1

V
(i)

ai
M, a := (a1, . . . , an),

which are modules over the sheaf V (n)

0 DX of logarithmic differential operators with
respect to the divisor D. We use the notation

DX(logD) := V
(n)

0 DX = OXhx1@x1
, . . . , xn@xn

i.
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For the DX -modules of normal crossing type that we will consider in this chapter, the
V

(n)

0 DX -modules V
(n)

a M are OX -coherent and V
(n)

0 M contains most of the informa-
tion on M, and more importantly, the same property applies to filtered objects. For
multi-indices, we use the following notation:

(15.6.3 ⇤)

8
>>>><

>>>>:

a 6 b if ai 6 bi 8 i 2 {1, . . . , n},
a � b if a 6 b and a 6= b

i.e., ai 6 bi 8 i 2 {1, . . . , n} and 9 i, ai < bi,

a < b if ai < bi 8 i 2 {1, . . . , n}.

It is thus natural to introduce the notation

M60 = V
(n)

0 M.

For the DX -modules which are middle extension along each component Di of D, that
will be of most importance for us, we will consider instead

M<0 = V
(n)

<0 M :=

X

a<0

V
(n)

a M.

In the algebraic setting, we consider the Weyl algebra An := C[x]h@xi of differential
operators in n variables with polynomial coefficients, and correspondingly (right)
DX -modules with (right) An-modules, that we denote by a capital letter like M .
Similarly, we set An(logD) = C[x]hx@xi.

15.7. Normal crossing type

15.7.a. Monodromic An-modules. In this section, we consider the algebraic set-
ting. Let M be an An-module and let us consider, for every a 2 R

n, the subspace Ma

of M defined by
Ma =

T
i2I

S
k

Ker(xi@xi
� ai)

k
.

This is a C-vector subspace of M . The endomorphism xi@xi
acting on Ma will be

denoted by Ei and (xi@xi
� ai) by Ni. The family (N1, . . . ,Nn) forms a commuting

family of endomorphisms of Ma, giving Ma a natural C[N1, . . . ,Nn]-module structure,
and every element of Ma is annihilated by some power of each Ni. Moreover, for
i 2 I, the morphism xi : M ! M (resp. @xi

: M ! M) induces a C-linear morphism
xi : Ma ! Ma�1i

(resp. @xi
: Ma ! Ma+1i

). For each fixed a 2 R
n, we have

Ma \
✓ X

a0 6=a

Ma0

◆
= 0 in M.

Indeed, for m =
P

a0 6=a ma0 , if m 2 Ma, then m�
P

a
0
1
=a1

ma0 is annihilated by some

power of x1@x1
� a1 and by a polynomial

Q
a
0
1
6=a1

(x1@x1
� a

0
1
)
k
a
0
1 , hence is zero, so we

can restrict the sum above to a
0
1
= a1. Arguing similarly for i = 2, . . . , n yields finally

m = 0. It follows that

(15.7.1) M
0
:=

L
a2Rn

Ma ⇢ M
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is a An-submodule of M . The actions of xi and @xi
satisfy, for each i 2 {1, . . . , n}:

• xi : Ma ! Ma�1i
is an isomorphism if ai < 0,

• @xi
: Ma ! Ma+1i

is an isomorphism if ai > �1.
(See Exercise 15.7.)

15.7.2. Definition (Monodromicity). Let M be an An-module. We say that M is mon-
odromic if the following properties are satisfied.

(a) There exists a finite subset A ⇢ [�1, 0)
n, called the set of exponents of M ,

such that Ma = 0 for a /2 A+ Z
n.

(b) Each Ma (a 2 R
n) is finite-dimensional.

(c) The natural inclusion (15.7.1) is an equality.

15.7.3. Proposition. Let M be a monodromic An-module. Then
(1) M is R-specializable along each Di and

V
(i)

bi
M =

L
a2Rn

ai6bi

Ma, gr
V

(i)

bi
M =

L
a2Rn

ai=bi

Ma, V
(n)

b M =
L

a2Rn

a6b

Ma;

(2) The An-module M is uniquely determined, up to isomorphism, from the
An(logD)-module M60;

(3) Each V
(n)

a M is an An(logD)-module of finite type and, if ai < 0 for all i, it
is a free C[x]-module of finite rank;

(4) Decomposing the set of variables as (x
0
, x

00
) = (x1, . . . , xn0 , xn0+1, . . . , xn0+n00)

with n
0
+ n

00
= n, then for any a

00
o

2 R
n00

, the C[x
0
]h@x0i-module M(•,a00

o
) =L

a02Rn0 M(a0,a00
o
) is monodromic.

(5) With the decomposition as in (4), for any a
0 2 (R<0)

n
0
, the C[x

0
]-module

V
(n0

)

a0 M is flat.

Proof.
(1) The first equality follows from the characterization of the V -filtration, and the

other ones are immediate consequences.
(2) For ai > 0 set k = daie and a

0
i
= ai � k 2 (�1, 0]. Set also a

0
j
= aj if

j 6= i. Then @k
xi

: Ma0 ! Ma is an isomorphism which, composed with x
k

i
, yields the

endomorphism
Q

k�1

`=0
(ai � ` + Ni) of Ma0 . By replacing each such Ma with Ma0 in

M and defining the action of @xi
as the identity and that of xi as (ai � (k � 1) +Ni)

leads to a monodromic An-module isomorphic to M . This argument applied for each
i 2 {1, . . . , n} yields the conclusion.

(3) For every ↵ 2 A, let us set

M↵+Zn =
L

k2Zn

M↵+k,

so that M =
L

↵2A M↵+Zn . Then M↵+Zn is an An-module. In such a way, M

is the direct sum of monodromic An-modules having a single exponent, and it is
enough to prove the statement in this case. Then one checks that, for each a 2 R

n,
V

(n)

a M = V
(n)

↵+kM where k 2 Z
n is such that, for each i, ai 2 (↵i + ki � 1,↵i + ki],
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i.e., ki = dai � ↵ie. The condition ai < 0 for all i is equivalent to ki 6 0 for all i and
we find in such a case

V
(n)

a M = M↵+k ⌦C C[x],

hence the assertion.
(4) We can assume that a

00
o

belongs to the projection of A + Z
n to R

n
00
, other-

wise M(•,a00
o
) is zero. Then the conditions for being monodromic are clearly satisfied

for M(•,a00
o
), whose set A0

+Z
n
0
is the pullback of a00

o
by the projection A+Z

n ! R
n
00
.

(5) We can assume, as in (3), that A has only one element ↵. We argue by induction
on n

00 and we only treat the case where n
00
= 1 and y1 = xn. By (3), V (n)

(a0,↵n)
M is

C[x]-free of finite rank, hence C[x
0
]-flat. We show by increasing induction on kn 2 N

that V
(n)

(a0,↵n+kn)
M is C[x

0
]-flat, and the desired assertion is obtained at the limit

kn = 1. We have

V
(n)

(a0,↵n+kn)
M/V

(n)

(a0,↵n+kn�1)
M = V

(n0
)

a0 (gr
(V

(n)

↵n+kn
M),

which is C[x
0
]-free, hence C[x

0
]-flat, according to (4). By induction on kn,

V
(n)

(a0,↵n+kn)
M is thus C[x

0
]-flat.

The category of monodromic An-modules is, by definition, the full subcategory of
that of An-modules whose objects are monodromic.

15.7.4. Proposition. Every morphism between monodromic An-modules is graded with
respect to the decomposition (15.7.1), and the category of monodromic An-modules is
abelian.

Proof. By An-linearity and using Bézout’s theorem, one checks that any morphism
' : M1 ! M2 sends M1,a to M2,a, and has a zero component from M1,a to M2,b if
b 6= a.

15.7.5. Proposition (Description by quivers). Let us fix ↵ 2 [�1, 0)
n and let us set

I(↵) = {i 2 I | ↵i = �1}. Then the category of monodromic An-modules with
exponent ↵, that is, of the form M↵+Zn , is equivalent to the category of I(↵)-quivers
having the vertex M↵+k equipped with its C[N1, . . . ,Nn]-module structure at the place
" 2 {0, 1}I(↵) and arrows

cani : M↵+" �! M↵+"+1i
,

vari : M↵+"+1i
�! M↵+",

if "i = 0,

subject to the conditions
(
vari � cani = Ni : M↵+" �! M↵+",

cani � vari = Ni : M↵+"+1i
�! M↵+"+1i

,

if "i = 0.

(It is understood that if I(↵) = ?, then the quiver has only one vertex and no arrows.)

Proof. It is straightforward, by using that, for k 2 Z
n, @xi

: M↵+k ! M↵+k+1i
is an

isomorphism if i /2 I(↵) or i 2 I(↵) and "i > 0, while xi : M↵+k ! M↵+k�1i
is an

isomorphism if i /2 I(↵) or i 2 I(↵) and "i 6 �1.
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15.7.6. Remark. In order not to specify a given exponent of a monodromic An-mod-
ule, it is convenient to define the quiver with vertices indexed by {0, 1}I instead of
{0, 1}I(↵). We use the convention that, for a fixed ↵ 2 [�1, 0)

n and for i /2 I(↵),
vari=Id and cani=↵i Id+Ni=Ei (hence both are isomorphisms). Then the category
of monodromic An-modules is equivalent to the category of such quivers.

For i 2 {1, . . . , n}, the definition of the localization, dual localization and middle
extension of M along Di of Chapter 11 can be adapted in a straightforward way in
the present algebraic setting.

15.7.7. Proposition (Localization, dual localization and middle extension along one com-
ponent of D)

Let M be a monodromic An-module. Then, for each i 2 I, the An-modules
M(⇤Di), M(!Di) and M(!⇤Di) := image[M(!Di) ! M(⇤Di)] are monodromic. Fur-
thermore, M is localized, resp. dual localized, resp. a middle extension) along Di, that
we denote by M = M(⇤Di), resp. M = M(!Di), resp. M = M(!⇤Di), if and only if
vari is bijective, resp. cani is bijective, resp. cani is onto and vari is injective.

Proof. The case of M = M(⇤Di) is treated in Exercise 15.9. The other cases are done
similarly.

15.7.8. Definition. We say that M is a middle extension along Di2I if for each i 2 I,
every cani is onto and every vari is injective.

See Exercises 15.10–15.11.

15.7.9. Example (The case of a simple An-module). Let M be a monodromic An-mod-
ule which is simple (i.e., has no non-trivial such sub or quotient module). By Exercise
15.11, it must be a middle extension along Di2I with support in D. Moreover, every
nonzero vertex of its quiver has dimension 1, so that Ei acts as ai on Ma and Ni acts
by zero.

15.7.10. Remark (Suppressing the simplifying assumptions 15.6.2)
If ` < n, every Ma (a 2 R

`) has to be assumed OD(`)
-coherent in Definition

15.7.2(b) (or C[x`+1, . . . , xn]-Noetherian if we remain in the algebraic setting). Since
it is a DD(`)

-module, it must be OD(`)
-locally free of finite rank. All the previous

results extend in a straightforward way to this setting by replacing C[x] with OD(`)
[x]

(where x := (x1, . . . , x`)) and C[x]h@xi with DD(`)
[x]h@xi. The subset A is contained

in [�1, 0)
` and M decomposes as M =

L
↵2A M↵+Z` .

In such a way, the notion of monodromic module is stable by restriction to strata
of D. Indeed, let J be a subset of {1, . . . , `}, let J

c denote its supplementary subset,
and let us consider the stratum

D
�
J
=

T
i2J

Di r
S

i2Jc

Di.
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Algebraically, restricting M to the complement of
S

i2Jc Di means tensoring with
C[x, (x

�1

i
)i2Jc ]. Denoting by M(J) the restriction of M , by ⇡J the projection A ! R

J

to the J-components and setting AJ = ⇡J(A), we find the decomposition of M(J) as
M(J) =

L
↵J2AJ

L
kJ2ZJ

M(J)↵J+kJ
,

M(J)↵J+kJ
=

L

↵2⇡
�1

J
(↵J )

⇣ L

kJc2ZJc

M↵+(kJ ,0)
x
kJc

⌘
with

being OD(`)
[(x

±1

i
)i2Jc ]-coherent, and after analytification, OD

�
J
-coherent.

15.7.b. Coherent DX-modules of normal crossing type. Given a monodromic
An-module M , its analytification M

an is the OX -module defined so that, for each
open set U ⇢ X,

M
an
(U) = M ⌦C[x] OX(U) = M ⌦An

DX(U).

For each x 2 X, due to C[x]-flatness of the ring OX,x of germs at x of holomorphic
functions, the correspondence M 7! M

an

x
is an exact functor.

This is the prototype of a DX -module of normal crossing type. More precisely:

15.7.11. Definition. Let M be a coherent DX -module. We say that M is of normal
crossing type along D if there exists a monodromic An-module M such that

(15.7.11 ⇤) M ' M
an

=

⇣ L
a2RI

Ma

⌘an

.

The monodromic An-module M can be recovered from M. Let M0 denote the
germ of M at the origin, and for every a 2 R

n let us consider the sub-space M0,a of
M0 defined by

M0,a =
T
i2I

S
k

Ker(xi@xi
� ai)

k
.

This is a C-vector subspace of M0. We have C-linear morphisms xi : M0,a !
M0,a�1i

(resp. @xi
: M0,a ! M0,a+1i

) as in the algebraic setting, so that
L

a M0,a

is an An-module. If M = M
an for some monodromic An-module M , then it is easily

checked that (M
an
)0,a = Ma. In conclusion, if M is of normal crossing type, the

An-module
L

a M0,a is monodromic and the natural morphism

(15.7.12) (
L
a
M0,a)⌦C[x] OX = (

L
a
M0,a)⌦An

DX �! M

is an isomorphism.
In the next proposition, we use Notation 15.6.3.

15.7.13. Proposition. Let M be a coherent DX-module which is of normal crossing type
along D. Then the following properties are satisfied.

(1) M is R-specializable along each Di (i 2 I), giving rise to V -filtrations V
(i)

• M.
In particular, all properties of Definition 9.3.18 hold for each filtration V

(i)

• M.
(2) The V -filtrations V

(i)

• M (i 2 I) are distributive, in the sense of Definition
15.1.7 (see also Theorem 15.2.2);
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(3) The DX-module M is uniquely determined, up to isomorphism, from the
DX(logD)-module M60;

(4) For any i 2 I and any ai 2 R, gr
V

(i)

ai
M is of normal crossing type on

(Di,
S

j 6=i
Dj) and V

(j)

• gr
V

(i)

ai
M is the filtration naturally induced by V

(j)

• M on
gr

V
(i)

ai
M, that is,

V
(j)

• gr
V

(i)

ai
M =

V
(j)

• M \ V
(i)

ai
M

V
(j)
• M \ V

(i)

<ai
M

.

(5) For a = (a1, . . . , an) 2 R
n, V (n)

a M is a V
(n)

0 DX-module which is OX-coherent,
and OX-locally free if ai < 0 for all i 2 I.

(6) For any decomposition X = X
0 ⇥ X

00 with projection p
0
, p

00 to X
0
, X

00, and
n = n

0
+ n

00 as in Proposition 15.7.3(4), if a
0 belongs to (R<0)

n
0
, then V

(n0
)

a0 M is
p
0�1OX0-flat.

(7) For any multi-index a 2 R
n, the natural morphism of C[N1, . . . ,Nn]-modules

Ma �! gr
V

(n)

a M := gr
V

(1)

a1
· · · grV

(n)

an
M

is an isomorphism (see Remark 15.2.9 for the multi-grading).
(8) In the setting of (6), for any a

0 in R
n
0
, grV

(n0
)

a0 M is of normal crossing type on
(X

00
,
S

n
00

j=1
D

00
j
), and the natural morphism (

L
a00 M(a0,a00))⌦C[x00] OX00 ! gr

V
(n0

)

a0 M is
an isomorphism.

15.7.14. Caveat. In order to apply Definition 15.1.7, one should regard V
(i)

• M as
a filtration indexed by Z, by numbering the sequence of real numbers ai such
that gr

V
(i)

ai
M 6= 0. See also Section 5.1.d and the setup in Section 10.6.a. Setting

(see Notation (15.6.3 ⇤))

V
(n)

�a
M :=

X

b�a

V
(n)

b M,

the distributivity implies gr
V

(n)

a M = V
(n)

a M/V
(n)

�a
M.

Proof of Proposition 15.7.13.

(1) For each i and ai 2 R, we define

(15.7.15) V
(i)

ai
M = V

(i)

ai
M ⌦

V
(i)

0
C[x]h@xi

V
(i)

0
DX .

Then this filtration satisfies the characteristic properties of the Kashiwara-Malgrange
filtration along Di of a DX -module, since V (i)

• M is the Kashiwara-Malgrange filtration
along Di of M as a C[x]h@xi-module. In such a way, we get the R-specializability of M
along Di.

(2) Let us set M6a = V
(n)

a M and a = (aI ,aJ ,aK) and let us choose a
0
I
6 aI

and a
0
J

6 aJ . We will check the compatibility property, which is equivalent to
distributivity, and amounts to complete the star in any diagram as below in order to
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produce exact sequences:
M6(a0

I
,aJ ,aK)

M6(a0
I
,a0

J
,aK)

//

M6(aI ,aJ ,aK)

M6(aI ,a0
J
,aK)

// ?

M6(a0
I
,aJ ,aK)

OO

// M6(aI ,aJ ,aK)

OO

//

M6(aI ,aJ ,aK)

M6(a0
I
,aJ ,aK)

OO

M6(a0
I
,a0

J
,aK)

OO

// M6(aI ,a0
J
,aK)

OO

//

M6(aI ,a0
J
,aK)

M6(a0
I
,a0

J
,aK)

OO

The order 6 is the partial natural order on R
n: a

0 6 a () a
0
i
6 ai, 8 i. Let us set

R
n
(aI ,a

0
I
,aJ ,a

0
J
,aK) = {a00 2 R

n | a0
I
66 a

00
I
6 aI , a

0
J
66 a

00
J
6 aJ , a

00
K

6 aK}.

Then a natural choice in order to complete the diagram is
? =

L
a002Rn(aI ,a0

I
,aJ ,a0

J
,aK)

Ma00 .

By flatness of V (n)

0 DX over V (n)

0 C[x]h@xi = C[x]hx@xi, the similar diagram for M is
obtained by tensoring by V

(n)

0 DX , and is thus also exact, leading to the compatibility
property of V (i)

• M (i 2 I).
(3) The assertion follows from Proposition 15.7.3(2) and the fact that the isomor-

phism (15.7.12) identifies M60 with M60 ⌦OX
V

(n)

0 DX , as seen in the proof of (1).
(4) Due to the isomorphism (15.7.12), it is enough to prove the result for the

multi-graded module M := gr
V

(n)

M, for which all assertions are clear.
(5) The relation in (1) reduces the proof of (5) to the case of a monodromic M ,

which has been obtained in Proposition 15.7.3(3).
(6) We argue by a double induction exactly as in Proposition 15.7.3(5), by making

use of (4) for the induction.
(7) This is now obvious from the previous description, since gr

V
(n)

a M = gr
V

(n)

a M .
(8) The proof of (8) is also straightforward and left as an exercise.

Morphisms between DX -modules of normal crossing type can also be regarded as
being of normal crossing type, as follows from the next proposition.

Let ' : M1 ! M2 be a morphism between coherent DX -modules of normal crossing
type. Then ' is compatible with the V -filtrations V (i)

• and, for every a 2 R
n, its multi-

graded components gr
V

(n)

a M1 ! gr
V

(n)

a M2 do not depend on the order of grading
(according to the compatibility of the V -filtrations and Remark 15.2.12). We denote
this morphism by gr

V
(n)

a '. On the other hand, regarding Ma as a C-submodule of M,
we note that ' sends M1,a to M2,a, due to D-linearity, and has no component from
M1,a to M2,b if b 6= a. We denote by 'a the induced morphism M1,a ! M2,a. The
following is now obvious.

15.7.16. Proposition. The morphism ' is the morphism induced by
L

a 'a by means
of the isomorphism (15.7.12) and, with respect to the isomorphism Ma

⇠�! gr
V

(n)

a M

of Proposition 15.7.13(7), 'a coincides with gr
V

(n)

a '. In particular, ' is uniquely
determined from '60.



604 CHAPTER 15. D-MODULES OF NC TYPE. PART 2: FUNDAMENTAL PROPERTIES

15.7.17. Corollary. The category of DX-modules of normal crossing type along D is
abelian and each morphism is n-strict with respect to V

(1)

• M, . . . , V
(n)

• M.

(See Definition 15.3.1 for the notion of n-strictness.)

Proof. It is quite obvious that the morphism
L

a 'a : M ! N is n-strict with respect
to the V -filtrations of M and N . Due to formula (15.7.15) for the V -filtrations
of M and N, and to flatness of V (i)

0
DX over V

(i)

0
C[x]h@xi, we deduce the n-strictness

of '.

15.7.18. Remarks.
(1) Let us fix i 2 I and set a = (a

0
, ai). By R-specializability along Di we have

isomorphisms

xi : V
(i)

ai
M

⇠�! V
(i)

ai�1
M, (ai < 0) and @xi

: gr
V

(i)

ai
M

⇠�! gr
V

(i)

ai+1
M, (ai > �1).

One checks on M , and then on M due to (15.7.12) and 15.7.13(8), that they induce
isomorphisms

xi : V
(n)

a M
⇠�! V

(n)

a�1i
M, (ai < 0)

@xi
: V

(n00
)

a00 gr
V

(i)

ai
M

⇠�! V
(n00

)

a00 gr
V

(i)

ai+1
M, (ai > �1),

(15.7.18 ⇤)

where we have set a
00
= (aj)j 6=i.

(2) For any a 2 (R<0)
n, we can thus regard (V

(n)

a M)
left as an OX -locally free

module of finite rank equipped with a flat D-logarithmic connection. Moreover, for
any a 2 R

n, V
(n)

a MXrD is OXrD locally free, and more precisely V
(n)

a M(⇤D) is
OX(⇤D)-locally free.

15.7.c. Behaviour with respect to localization, dual localization and middle
extension along one component of D

15.7.19. Proposition. Let M be a DX-module of normal crossing type and let io 2 I.
Then

• M(⇤Dio
) and M(!Dio

) are of normal crossing type;
• M = M(⇤Dio

) (resp. M = M(!Dio
)) if and only if vario is bijective (resp. canio

is bijective);
• M(!⇤Dio

) := image[M(⇤Dio
) ! M(!Dio

)] is of normal crossing type.
• M = M(!⇤Dio

) if and only if canio is onto and vario is injective.

Proof. This is obtained from Proposition 15.7.7 by flat tensorization with OX .

15.7.20. Definition. We say that M is a middle extension along Di2I if for each i 2 I,
every cani is onto and every vari is injective.

15.7.21. Remark (Suppressing the simplifying assumptions 15.6.2)
If ` < n, we apply the same changes as in Remark 15.7.10. All the previous results

extend in a straightforward way to this setting.
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15.8. Sesquilinear pairings of normal crossing type

In this section, we take up the setting of Section 15.7.b. In the setting of this
chapter (see Section 15.6), we consider the category D-Triples(X).

15.8.1. Definition (Triples of eDX -modules of normal crossing type)
We say that an object eT = ( eM0

, eM00
, s) of eD-Triples(X) is of normal crossing type

along D if its components eM0
, eM00 are strict and the corresponding filtered DX -mod-

ules (M0
, F•M

0
), (M00

, F•M
00
) are of normal crossing type along D.

We will perform, in higher dimension, an analysis similar to that of Section 7.3.

15.8.a. Basic distributions. The results of §7.3.a in dimension 1 extend in a
straightforward way to X = �

n. We will present them in the same context of left
D-modules. We continue using the simplifying assumptions 15.6.2.

15.8.2. Proposition. Fix b
0
, b

00 2 [�1,1)
n and k 2 N, and suppose a distribution

u 2 Db(�
n
) solves the system of equations

(15.8.2 ⇤) (xi@xi
� b

0
i
)
k
u = (xi@xi

� b
00
i
)
k
u = @xj

u = @xj
u = 0 (i 2 I, j /2 I).

for an integer k > 0.
(a) If b0, b00 2 (�1,1)

n, we have u = 0 unless b
0 � b

00 2 Z
n.

(b) If b0 = b
00
= b, then, up to shrinking �

n, u is a C-linear combination of the
basic distributions

(15.8.2 ⇤⇤) ub,p =

Y

i2I

bi>�1

|xi|2bi
L(xi)

pi

pi!

Y

i2I

bi=�1

@xi
@xi

L(xi)
pi+1

(pi + 1)!
,

where 0 6 p1, . . . , pn 6 k � 1. These distributions are C-linearly independent.

Proof. Assume first b
0
, b

00 2 (�1,1)
n. If Suppu ⇢ D, then x

m
u = 0 for some

m 2 N
n and, arguing as in the proof of Proposition 7.3.2, we find u = 0.

Otherwise, set xi = e
⇠i and pullback u as eu on the product of half-planes Re ⇠i > 0.

Set v = e
�b0⇠

e
�b00⇠eu. Then v is annihilated by (@⇠i@⇠

i

)
k for every i = 1, . . . , n —there-

fore by a suitable power of the n-Laplacian
P

i
@⇠i@⇠

i

— and a suitable k > 1, and
by @xj

and @xj
, that we will now omit. By the regularity of the Laplacian, v is C

1

and, arguing with respect to each variable as in Proposition 7.3.2, we find that v is
a polynomial P (⇠, ⇠) and thus eu = e

b0⇠
e
b00⇠

P (⇠, ⇠). We now conclude (a), as well as
(b) for b

0
, b

00 2 (�1,1)
n, as in dimension 1.

In the general case for (b), we will argue by induction on #{i 2 I | bi = �1},
assumed to be > 1. Up to renaming the indices, we write b = (�1,bb) and we
decompose correspondingly p 2 N

n as p = (p1, bp).
By induction we find

|x1|2u =

X

p

cp1+2,p0 · u
(0,bb),p, cp 2 C,
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for pi = 0, . . . k � 1 (i = 1, . . . , n), and this is also written as

|x1|2@x1
@x1

X

q

cqu(0,bb),q,

with qi = 0, . . . k � 1 for i 6= 1 and q1 = 2, . . . , k + 1. Let us set

v = u� @x1
@x1

X

q

cqu(0,bb),q,

so that |x1|2v = 0. A computation similar to that in §7.3.a shows that the basic
distributions u

(0,bb),q satisfy the equations (15.8.2 ⇤) (with respect to the parameter b)
except when q1 = k + 1, in which case we find

(@x1
x1)

k
@x1

@x1
u
(0,bb),(k+1,bq) = (�1)

k+1
ubb,bq �(x1),

and similarly when applying (@x1
x1)

k. Here, �(x1) is the distribution � in the vari-
able x1 (see Exercise 7.19): for a distribution w depending on the variables 6= x1, and
for a test form ⌘ of maximal degree, written as ⌘ = ⌘

(1)

o ^ i

2⇡
(dx1 ^ dx1), we set

⌦
⌘, w · �(x1)

↵
:=

⌦
⌘
(1)

o|D1

, w
↵
.

On the other hand, according to Exercise 12.2 and as in Proposition 7.3.3, the
equation |x1|2v = 0 implies

v = v0�(x1) +

X

j>0

�
@
j

x1
(v

0
j
�(x1)) + (@

j

x1
(v

00
j
�(x1))

�
,

where v0, v
0
j
, v

00
j

are sections of DbD1
on a possibly smaller �

n�1. Applying (@x1
x1)

k

and its conjugate to

u = @x1
@x1

X

q

cqu(0,bb),q + v0�(x1) +

X

j>0

�
@
j

x1
(v

0
j
�(x1)) + (@

j

x1
(v

00
j
�(x1))

�

yields

0 = (�1)
k+1

ck+1,bq · ubb,bq �(x1) +

X

j>1

(�j)
k
@
j

x1
(v

0
j
�(x1)),

0 = (�1)
k+1

ck+1,bq · ubb,bq �(x1) +

X

j>1

(�j)
k
@
j

x1
(v

00
j
�(x1)),

By the uniqueness of the decomposition in DbD1
[@x1

, @x1
], we conclude that

ck+1,bq = 0, v
0
j
= v

00
j
= 0 (j > 1),

and finally u =
P

q cqub,q + v0�(x1), up to changing the notation for cq in order
that qi varies in 0, . . . , k � 1 for all i. Now, v0 has to satisfy Equations (15.8.2 ⇤)
on D1, so has a decomposition on the basic distributions (15.8.2 ⇤⇤) on D1 by the
induction hypothesis, and we express v0�(x1) as a basic distribution by using the
formula proved in Exercise 7.19 with respect to the variable x1.
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15.8.b. Sesquilinear pairings between holonomic DX-modules of normal
crossing type

We make explicit the expression of a sesquilinear pairing between holonomic
DX -modules of normal crossing type, by extending to higher dimensions Proposi-
tion 7.3.6. Due to the simplifying assumptions 15.6.2, the modules M

b considered
below are finite dimensional C-vector spaces.

15.8.3. Proposition. Let s be a sesquilinear pairing between M0
,M00 of normal crossing

type.

(1) The induced pairing s : M
0b0 ⌦M 00b00 ! Db�n vanishes if b0 � b

00
/2 Z

n.
(2) If m0 2 M

0b and m
00 2 M

00b with b > �1, then the induced pairing s(b)(m
0
,m00)

is a C-linear combination of the basic distributions ub,p (p 2 N
n).

As in dimension 1 (see Section 7.3.b), we find a decomposition

s(b) =

X

p2Nn

s
(b)

gp · ub,p,

where s
(b)

gp : M
0b ⌦C M

00b ! C is a sesquilinear pairing (between finite-dimensional
C-vector spaces) and, setting s

b
= s

(b)
g0, we can write in a symbolic way (recall

(7.3.8))

s(b)(m
0
,m00) =

Y

i|bi=�1

@xi
@xi

s
(b)

g

✓ Y

i|bi>�1

|xi|2(bi Id�Ni)
Y

i|bi=�1

|xi|�2Ni � 1

Ni

m
0
,m00

◆
,

where Ni = �(xi@i � bi). As a corollary we obtain:

15.8.4. Corollary. With the assumptions of the proposition, we have

xi@xi
s(m

0
,m00) = xi@xi

s(m
0
,m00).

Notice also that the same property holds for �(xi@xi
�bi) since bi is real. Therefore,

with respect to the nilpotent operator Ni, s : M 0b ⌦M 00b ! DbX satisfies

s(Nim
0
,m00) = s(m

0
,Nim

00).

15.8.5. Remark. In the context of right D-modules, we consider currents instead of
distributions. We denote by ⌦n the (n, n)-form dx1 ^ · · ·^dxn ^dx1 ^ · · ·^dxn, that
we also abbreviate by dx^dx. In order to state similar results, we set a = �b�1 and we
consider the basic currents ⌦nub,p. Given a sesquilinear pairing s : M0⌦CM00 ! C�n ,
the induced pairing s : M

0
a0 ⌦M

00
a00 ! C�n vanishes if a0 �a

00
/2 Z

n, and for m0 2 M
0
a

and m
00 2 M

00
a with a 6 0, the induced pairing s(a)(m

0
,m00) can be written as

s(a)(m
0
,m00) = ⌦nsa

✓
m

0
Y

i|ai<0

|xi|�2(1+ai+Ni)
Y

i|ai=0

|xi|�2Ni � 1

Ni

,m00
◆
·

Y

i|ai=0

@xi
@xi

,

where Ni = (xi@i � ai). Similarly, Ni is self-adjoint with respect to s.
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15.9. Filtered normal crossing type

15.9.a. Coherent filtrations of normal crossing type. We now extend the no-
tion of “normal crossing type” to filtered coherent D-modules. Of course the under-
lying D-module should be of normal crossing type, but the isomorphism (15.7.12),
together with the decomposition (15.7.11 ⇤), is not expected to hold at the filtered
level. This would be a too strong condition.(1) On the other hand, the properties
in Proposition 15.7.13 can be naturally extended to the filtered case. We keep the
simplifying assumptions 15.6.2.

15.9.1. Definition. Let (M, F•M) be a coherently F -filtered DX -module. We say that
(M, F•M) is of normal crossing type along D if

(1) M is of normal crossing type along D (see Definition 15.7.11),
(2) (M, F•M) is R-specializable along Di for every component Di of D (see Sec-

tion 10.5),
(3) the filtrations (F•M, V

(1)

• M, . . . , V
(n)

• M) are distributive (or compatible) (see
Definition 15.1.7 or Section 15.4).

15.9.2. Remarks.
(a) Condition (3) implies that gr

F

p
gr

V
(n)

a M does not depend on the way gr
V

(n)

a M

is computed.
(b) Note that (2) implies 15.7.13(1) for M, and similarly (3) implies 15.7.13(2).

So the condition that M is of normal crossing type along D only adds the existence
of the isomorphism (15.7.12).

(c) Let us recall that V
(n)

a M is OX -coherent for every a 2 R
n (see Proposition

15.7.13(5)). Since FpM is OX -coherent, it follows that FpV
(n)

a M := FpM \ V
(n)

a M

(see §10.5) and gr
F

p
V

(n)

a M are also OX -coherent and therefore the filtration F•V
(n)

a M

is locally finite, hence is a coherent F•V
(n)

0 DX -filtration.
(d) Since each gr

V
(n)

a M is finite dimensional, the induced filtration F•gr
V

(n)

a M is
finite, and there exists a (non-canonical) splitting compatible with F•:

Fpgr
V

(n)

a M '
L
q6p

gr
F

q
gr

V
(n)

a M.

(e) There are a priori two ways for defining the filtration F•Ma, namely, either by
inducing it on Ma ⇢ M, or by inducing it on gr

V
(n)

a M and transport it by means of
the isomorphism Ma

⇠�! gr
V

(n)

a M. We always consider the latter one. The filtration
F•M is a priori not isomorphic to

L
a
F•gr

V
(n)

a M by means of the isomorphism M '
L

a
gr

V
(n)

a M induced by 15.7.13(7) and (15.7.12). Using the compatibility of the
filtrations, we have

FpMa = Ma \ (FpV
(n)

a M+ V
(n)

<a M) ⇢ M.

(1)Such a filtered decomposition holds however for monodromic mixed Hodge modules, see [Sai22]
and [CD23].
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The graded filtered module (
L

a Ma,
L

a F•Ma) is obviously of normal crossing
type if (M, F•M) is so.

As the category of coherently filtered DX -modules is not abelian, one cannot ex-
pect, in contrast with Corollary 15.7.17, that the category of filtered DX -modules of
normal crossing type is abelian. However, some morphisms have kernel and cokernel
in this category.

15.9.3. Proposition. Let ' : (M1, F•M1) ! (M2, F•M2) be a morphism between filtered
DX-modules of normal crossing type. Assume that ' is (n+ 1)-strict (see Definition
15.3.1), i.e., CokerRFV ' is C[z, z1, . . . , zn]-flat. Then Ker', Im' and Coker',
equipped with the induced F - and V -filtrations, are filtered DX-modules of normal
crossing type.

Proof. That Property 15.9.1(1) holds for Ker', Im' and Coker' follows from Corol-
lary 15.7.17, and 15.9.1(3) holds by assumption. On the other hand, (n+1)-strictness
of ' implies its 2-strictness for each i, that is, CokerRFV (i)' is C[z, zi]-flat: indeed,
CokerRFV (i)' is obtained by base change zj = 1 for all j 6= i, and flatness is pre-
served by base change. By a similar argument (restricting to zi = 0), we obtain
that for each ai, grV

(i)

ai
(RF') is strict, which means that RF' is strictly R-speciali-

zable along Di, and this implies 15.9.1(2) for Ker', Im' and Coker', according to
Proposition 9.3.31.

15.9.b. Behaviour with respect to specialization, localization, dual local-
ization and middle extension along one component of D

The properties (1) and (2) of Proposition 15.7.13 have been taken as a model for
defining the notion of a filtered DX -module of normal crossing type. We now deduce
the analogues of the stability and flatness properties (4)–(6) of Proposition 15.7.13.

15.9.4. Proposition (Stability by specialization and flatness). Let (M, F•M) be a coher-
ently F -filtered DX-module of normal crossing type along D.

(1) For any i 2 I and any ai 2 R, (gr
V

(i)

ai
M, F•gr

V
(i)

ai
M) is of normal crossing

type on (Di,
S

j 6=i
Dj), where F•gr

V
(i)

ai
M is the filtration naturally induced by F•M on

gr
V

(i)

ai
M.

(2) For a = (a1, . . . , an) 2 R
n and each p 2 Z, grF

p
V

(n)

a M is a coherent OX-module
which is OX-locally free in the neighborhood of D if ai < 0 for all i 2 I.

(3) For any decomposition X = X
0 ⇥ X

00 with projection p
0
: X ! X

0 and n =

n
0
+ n

00 as in Proposition 15.7.3(4), if a
0 belongs to (R<0)

n
0
, then for each p 2 Z,

gr
F

p
V

(n0
)

a0 M is p
0�1OX0-flat in the neighborhood of D.

Proof.
(1) We know by Proposition 15.7.13(4) that gr

V
(i)

ai
M is of normal crossing type

on (Di,
S

j 6=i
Dj), and that the filtrations V

(j)

• on gr
V

(i)

ai
M are naturally induced

by V
(j)

• M. It follows that the family (F•gr
V

(i)

ai
M, (V

(j)

• gr
V

(i)

ai
M)j 6=i) is distributive
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(see Remark 15.1.8). We know, by Proposition 10.7.3, that (gr
V

(i)

ai
M, F•gr

V
(i)

ai
M)

is coherent as a filtered DDi
-module. Note also that, setting a

0
= (aj)j 6=i and

n
0
= (nj)j 6=i, we have

gr
F

p
gr

V
(n0

)

a0 gr
V

(i)

ai
M = gr

F

p
gr

V
(n)

a M

(since, by the distributivity property, we can take graded objects in any order).
The strict R-specializability property along each Dj (j 6= i) remains to be shown,

namely,

xj : FpV
(j)

aj
gr

V
(i)

ai
M

⇠�! FpV
(j)

aj�1
gr

V
(i)

ai
M, 8 p, 8 j 6= i, 8 aj < 0,

@xj
: Fpgr

V
(j)

aj
gr

V
(i)

ai
M

⇠�! Fp+1gr
V

(j)

aj+1
gr

V
(i)

ai
M, 8 p, 8 j 6= i, 8 aj > �1.

Let us first show that, by applying gr
V

(i)

ai
, we get isomorphisms

xj : gr
V

(i)

ai
FpV

(j)

aj
M

⇠�! gr
V

(i)

ai
FpV

(j)

aj�1
M, 8 p, 8 j 6= i, 8 aj < 0,(15.9.5)

@xj
: gr

V
(i)

ai
Fpgr

V
(j)

aj
M

⇠�! gr
V

(i)

ai
Fp+1gr

V
(j)

aj+1
M, 8 p, 8 j 6= i, 8 aj > �1.(15.9.6)

By the strict R-specializability of (M, F•M) along Dj and since M is of normal crossing
type, so that (15.7.18 ⇤) holds, we have isomorphisms under the conditions of (15.9.5):

FpV
(j)

aj
M

xj���!
⇠

FpV
(j)

aj�1
M,

8
<

:
V

(i)

ai
V

(j)

aj
M

V
(i)

<ai
V

(j)

aj
M

xj���!
⇠

8
<

:
V

(i)

ai
V

(j)

aj�1
M

V
(i)

<ai
V

(j)

aj�1
M,

hence isomorphisms
8
<

:
V

(i)

ai
FpV

(j)

aj
M

V
(i)

<ai
FpV

(j)

aj
M

xj���!
⇠

8
<

:
V

(i)

ai
FpV

(j)

aj�1
M

V
(i)

<ai
FpV

(j)

aj�1
M,

and thus the isomorphisms (15.9.5). We argue similarly for the isomorphisms (15.9.6).
Now, the desired assertion follows from the compatibility property 15.9.1(3) which
enables us to switch FpV

(j)

aj
or Fpgr

V
(j)

aj
with gr

V
(i)

ai
.

By the same argument as above, the filtered analogue of (15.7.18 ⇤) holds (any
a
0 2 R

n�1, p 2 Z):

FpV
(n0

)

a0 V
(i)

ai
M

xi���!
⇠

FpV
(n0

)

a0 V
(j)

ai�1
M if ai < 0,

FpV
(n0

)

a0 gr
V

(i)

ai
M

@xi����!
⇠

Fp+1V
(n0

)

a0 gr
V

(i)

ai+1
M if ai > �1.

(15.9.7)

(2) Coherence has already been noticed (Remark 15.9.2(c)), and we will show
local freeness at the origin, the case of other points of D being similar (and needs to
avoid the simplifying assumption 15.6.2). Therefore, X will denote a small enough
neighbourhood of the origin. Let i0 : 0 ,! X denote the inclusion. From the first
line of (15.9.7) one deduces that i

⇤
0
gr

F

p
V

(n)

a M = gr
F

p
(V

(n)

a M/V
(n)

a�1M). Let us denote
by rk the generic rank on X of a coherent OX -module. By local OX -freeness of
V

(n)

a M, we have rkV
(n)

a M = dim i
⇤
0
V

(n)

a M, and on the other hand, by OX -coherence,
for each p, rk grF

p
V

(n)

a M 6 dim i
⇤
0
gr

F

p
V

(n)

a M with equality if and only if grF
p
V

(n)

a M is
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OX -locally free. It follows that both sums over p of the latter terms are equal, and
therefore these terms are equal for each p.

(3) Iterating the argument in (1) shows that, for any a
00 2 R

n
00
, the coherently

filtered DX0 -module (gr
V

(n00
)

a00 M, F•gr
V

(n00
)

a00 M) is of normal crossing type on (X
0
, D

0
),

with D
0
= {

Q
n
0

i=1
xi = 0}. Therefore, by (2), if ai < 0 for i = 1, . . . , n

0, the O0
X

-module
gr

F

p
V

(n0
)

a0 gr
V

(n00
)

a00 M is locally OX0 -free, hence OX0 -flat. Since gr
F

p
V

(n0
)

a0 V
(n00

)

a00 M is also
OX0 -flat (being OX -locally free) if moreover aj < 0 for all j = n

0
+1, . . . , n

0
+n

00
= n,

it follows by an easy induction that it is also OX0 -flat for any a
00. Passing to the limit

with respect to a
00 yields the OX0 -flatness of grF

p
V

V
(n0

)

a0 M.

The following lemma is similar to Exercise 15.14, but weaker when considering
surjectivity for canio .

15.9.8. Lemma. Assume that (M, F•M) is of normal crossing type along D. Let us fix
i 2 I and let bn be n with i omitted. Then, for every ba 2 R

n�1, each of the following
properties

cani : FpV
(bn)

ba gr
V

(i)

�1
M �! Fp+1V

(bn)

ba gr
V

(i)

0
M is bijective,

vari : FpV
(bn)

ba0 gr
V

(i)

0
M �! FpV

(bn)

ba gr
V

(i)

�1
M is

(
injective,
resp. bijective,

(15.9.8 ⇤)

holds for all p as soon as it holds when omitting V
(bn)

ba .

15.9.9. Remark. As a consequence, if vari is injective, then the first line of (15.9.7)
with j = i also holds for aj = 0. That the lemma does not a priori hold when cani is
only onto leads to the definition below.

15.9.10. Definition (Middle extension along Di2I ). Let (M, F•M) be a coherently
F -filtered DX -module of normal crossing type along D. We say that (M, F•M) is a
middle extension along Di2I if M is a middle extension independently along each Di

(i 2 I) and moreover, for each i 2 I, and every ba 2 R
n�1 (equivalently, every

ba 2 [�1, 0]
n�1),

cani : FpV
(bn)

ba gr
V

(i)

�1
M �! Fp+1V

(bn)

ba gr
V

(i)

0
M is onto, 8 p.

If n = 1 this notion is equivalent to that of Definition 9.7.3, but if n > 2 it is a priori
stronger than the condition of filtered middle extension along each Di independently
(see Definition 10.5.1).

15.9.c. Logarithmic filtered normal crossing type. It is easier to deal with
coherent O-modules instead of coherent D-modules. We will focus on the coherent
OX -modules M60 := V

(n)

0 M and M<0 := V
n
<0M =

T
i2I

V
(i)

<0
M, the latter being

locally free (Proposition 15.7.13(5)).
Our aim is to deduce properties on F•M from properties on F•M60 and, in the

case of a middle extension along Di2I , from F•M<0. Both are modules over the sheaf
V

(n)

0 DX of logarithmic differential operators. We first explain which properties should
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be expected on the latter V
(n)

0 DX -module, in order to recover the normal crossing
property of (M, F•M) from them. We will then give a criterion to check whether they
are satisfied.

15.9.11. Proposition (Properties of FpV
(n)

a M). Let (M, F•M) be a coherently F -filtered
DX-module of normal crossing type along D. Set M60 := V

(n)

0 M. For a 2 R
n, let

us set FpV
(n)

a M := FpM \ V
(n)

a M. Then

(1) for any a 2 R
n, F•V

(n)

a M is a coherent F•V
(n)

0 DX-filtration;
(2) we have FpM<0 = j⇤(FpM|XrD)\M<0 for any p, where j : XrD is the open

inclusion;
(3) the filtrations (F•M60, V

(1)

• M60, . . . , V
(n)

• M60) are distributive and

FpM =

X

q>0

(Fp�qM60) · FqDX .

Proof. The first point has been seen in Remark 15.9.2(c). For the second point, the
inclusion ⇢ is clear; on the other hand, let m be a local section of j⇤(FpM|XrD)\M<0;
it is also a local section of FqM<0 for q large enough; if q > p, then the class of m in
the locally free OX -module gr

F

q
M<0 (Proposition 15.9.4(2)) is supported on D, hence

is zero.
The distributivity property of the filtrations on M60 clearly follows from that

on M, as noted in Remark 15.1.8(2). By the same argument we have distributivity
for the family of filtrations on each V

(n)

a M (a 2 R
n).

It remains to justify the expression for FpM. We have seen in the proof of Proposi-
tion 15.9.4 that, for k > 0 and any i 2 I, setting k = (k

0
, ki), we have an isomorphism

@xi
: Fp�1V

(n0
)

k0 gr
V

(i)

ki
M

⇠�! FpV
(n0

)

k0 gr
V

(i)

ki+1
M,

and thus
FpV

(n)

k+1i
M = Fp�1V

(n)

k M · @xi
+ FpV

(n)

k M,

which proves (3) by an easy induction.

The property 15.9.11(3) can be made more precise. For ↵ 2 [�1, 0]
n and p 2 Z,

let us choose a finite C-vector space E↵,p of sections of FpV
(n)

↵ M which maps bijec-
tively to gr

F

p
gr

V
(n)

↵ M. Given any a 2 R
n, we decompose it as (a

0
,0,a00

), where each
component ai of a0 (resp. a00) satisfies ai < 0 (resp. ai > 0). When a is fixed, any
↵ 2 [�1, 0]

n decomposes correspondingly as (↵0
,↵

o
,↵

00
), of respective sizes n0, no, n00.

15.9.12. Proposition. With these assumptions and notation, for every a 2 R
n and

p 2 Z,
• if a < 0, i.e., ai < 0 for all i (i.e., n0

= n), then FpV
(n)

a M is locally OX-free and
decomposes as

FpV
(n)

a M '
L
q6p

L
↵2[�1,0)n

E↵,q ⌦C x
e(↵,a)OX ,

where e(↵,a) 2 N
n is defined by ei(↵,a) = max(0, d↵i � aie);
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• if a = (a
0
,a

o
) with a

o
= 0 (i.e., n00

= 0), then taking the sum in M, we have

FpV
(n)

a M '
X

e↵02[�1,0)n
o

FpV
(n)

(a0,e↵0
)
M+

X

q6p

X

↵02[�1,0)n
0

E(↵0,0),q ⌦ x
e(↵0

,a0
)OX ,

where each FpV
(n)

(a0,e↵0)M is described in the first point;
• In general, we have

FpV
(n)

a M =

X

↵002(�1,0]n
00

X

b002Nn
00

8 i, bi+↵i6ai

Fp�|b00|V
(n)

(a0,0,↵00)M · @b
00

x
,

where all terms are described in the previous points.

Proof. The last point is obtained by induction from the second line of (15.9.7), and
the first point comes from the first line of (15.9.7) together with the local OX -freeness
of FpV

(n)

a M if a < 0. The second point is then straightforward.

15.9.13. Remark (The case of a middle extension along Di2I )
In that case (Definition 15.9.10), Proposition 15.9.11 holds with the replacement

of M60 with M<0, and Proposition 15.9.12 reads as follows. We now decompose a

as (a
0
,a

00
), where each component ai of a0 (resp. a00) satisfies ai < 0 (resp. ai > 0),

and correspondingly n = n
0
+ n

00. Then

FpV
(n)

a M =

X

↵2[�1,0)n

X

b002Nn
00

8 i, bi+↵i6ai

E↵,p�|b00| · xe(↵,a�b00
)
@
b00

x
OX ,

where we have set a� b
00
= (a

0
,a

00 � b
00
) and e is as in Proposition 15.9.12.

As the proposition below shows, it is much easier to check R-specializability of
(M, F•M) and distributivity of the filtrations (F•M, V

(1)

• M, . . . , V
(n)

• M) on V
(n)

0 M,
since one does not need to check strictness of the derivations @xi

.

15.9.14. Proposition (From M60 to M). Let M be a coherent DX-module of normal
crossing type along D. Set M60 := V

(n)

0 M. Denote by V
(i)

• M60 the filtration natu-
rally induced by V

(i)

• M and let F•M60 be any coherent F•V
(n)

0 DX-filtration such that
(F•M60, V

(1)

• M60, . . . , V
(n)

• M60) are compatible filtrations and that (M60, F•M60)

is R-specializable along each Di, in the sense that FpV
(i)

ai
M60 · xi = FpV

(i)

ai�1
M60 for

every i and ai < 0, and @xi
sends FpV

(i)

�1
M60 to Fp+1V

(i)

0
M60. Set

FpM :=

X

q>0

(Fp�qM60) · FqDX .

Then
(1) (M, F•M) is R-specializable along each Di, and for ↵ 2 [�1, 0]

n,

FpV
(n)

↵ M60 := FpM60 \ V
(n)

↵ M60 = FpM \ V
(n)

↵ M60,

(2) and (F•M, V
(1)

• M, . . . , V
(n)

• M) are compatible filtrations.
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Before entering the proof of Proposition 15.9.14, let us emphasize a useful criterion
for R-specializability.

15.9.15. Corollary. Let (M, F•M) be a coherently F -filtered DX-module. Assume that
• M is of normal crossing type along D,
• FpM :=

P
q>0

(Fp�qM60) · FqDX ,
• (F•M, V

(1)

• M, . . . , V
(n)

• M) are compatible filtrations.
Then (M, F•M) is of normal crossing type along D if and only if xiFpV

(i)

ai
M60 =

FpV
(i)

ai�1
M60 for every i and ai < 0.

Proof. The condition is necessary by definition. Let us show it is sufficient. The
coherent F -filtration F•M induces a coherent F -filtration F•M60 and the family of
induced filtrations (F•M60, V

(1)

• M60, . . . , V
(n)

• M60) on M60 remains distributive.
The assumptions of Proposition 15.9.14 are thus satisfied and the conclusion follows.

15.9.16. Remark. We can replace the above condition with the condition that
xiFpV

(i)

ai
M = FpV

(i)

ai�1
M for every i and ai < 0. Indeed, the main point in Proposi-

tion 15.9.14 concerns the behaviour of @xi
, and the latter property is obtained as a

consequence of the condition in the corollary, which is not used otherwise, so we may
as well assume this property.

Proof of Proposition 15.9.14. For every a 2 R
n, there is a natural way to define a

filtration on V
(n)

a M from that on M60 by refining the formula for FpM and setting

(15.9.17) Gp(V
(n)

a M) :=

X

c60, j>0

c+j6a

Fp�|j|V
(n)

c M · @j
x
.

For example, this formula yields Gp(V
(n)

a M) = FpV
(n)

a M if a 6 0, i.e., ai 6 0 for all i.
Similarly, if a00

= (ai)i|ai>0 denotes the “positive part” of a and a
0 the non-positive

part, we have, with obvious notation,

(15.9.18) Gp(V
(n)

a M) =

X

c0060, j00>0

c00
+j006a00

Fp�|j00|V
(n)

(a0,c00)M · @j
00

x00 .

As a consequence, if ai 6 0, we find the relation

(15.9.19) Gp(V
(n)

a M) · xi = Gp(V
(n)

a�1i
M)

and, if ai > �1,

(15.9.20) Gp+1(V
(n)

a+1i
M) = Gp(V

(n)

a M) · @xi
+Gp(V

(n)

a M).

We also note that

lim�!
a

Gp(V
(n)

a M) =

X

c60, j>0

Fp�|j|V
(n)

c M · @j
x
=

X

j>0

Fp�|j|M60 · @j
x
=: FpM.

We set V (i)

• V
(n)

a M = V
(i)

• M\V
(n)

a M. We will prove the following properties under
the assumptions in the proposition.
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(a) Let b < a (i.e., bi 6 ai for all i and b 6= a). Then Gp(V
(n)

a M) \ V
(n)

b M =

Gp(V
(n)

b M).
(b) (G•(V

(n)

a M), V
(1)

• V
(n)

a M, . . . , V
(n)

• V
(n)

a M) are compatible filtrations,
(c) the following inclusion is (n+ 1)-strict for b 6 a:

(V
(n)

b M, G•(V
(n)

b M), (V
(i)

• V
(n)

b M)i2I) ,�! (V
(n)

a M, G•(V
(n)

a M), (V
(i)

• V
(n)

a M)i2I).

Let us indicate how to obtain the proposition from (a)–(c). R-specializability of
(M, F•M) along Di amounts to

(
(FpM \ V

(i)

bi
M) · xi = FpM \ V

(i)

bi�1
M) if bi 6 0,

Fp+1M \ V
(i)

bi+1
M ⇢ (FpM \ V

(i)

bi
M) · @xi

+ V
(i)

<bi+1
M) if bi > �1.

By taking inductive limit on a > 0 in (a), we obtain

FpM \ V
(n)

b M = Gp(V
(n)

b M)

for every b. From (15.9.19) and (15.9.20), and by taking inductive limit bk ! 1 for
any k 6= i, we obtain that the both properties are fulfilled. The other assertions in
15.9.14 are also obtained by taking the inductive limit on a. We also note that (a)
and (b) for a imply (c) for a, according to Example 15.3.3. Conversely, (c) for a

implies (a) for a.

We will prove (a) and (b) by induction on the lexicographically ordered pair
(n,m,a) with m = |a00|. Let us first exemplify the proof of (a) and (b) in the
case n = 1. Condition (b) is empty. For (a), we can assume a > 0, and it is enough,
by an easy induction on a� b, to prove Gp(V

(1)

a M) \ V
(1)

<a M = Gp(V
(1)

<a M). For that
purpose, we notice that (15.9.20) yields

Gp(V
(1)

a
M) = Gp(V

(1)

<a M) + Fp�kV
(1)

↵
M · @k

x1
,

where k 2 N is such that ↵ := a� k 2 (�1, 0]. Hence

Gp(V
(1)

a
M) \ V

(1)

<a M = Gp(V
(1)

<a M) +
�
Fp�kV

(1)

↵
M · @k

x1
\ V

(1)

<a M
�
.

Since @k
x
: gr

V

↵
M ! gr

V

a
M is injective (in fact, an isomorphism), we have the equality

(Fp�jV
(1)

↵
M) · @k

x1
\ V

(1)

<a M = (Fp�jV
(1)

<↵M) · @k
x1
,

so we obtain (a) in this case.
We now assume n > 2. Moreover, if |a00| = 0, i.e., if a 6 0, there is nothing to

prove. For induction purpose (on n), let us make precise how the filtration Gp behaves
under taking gr

V
(i)

ai
. Let us fix i 2 I and let us set

ba = (a1, . . . , ai�1, ai+1, . . . , an), bn = (1, . . . , i� 1, i+ 1, . . . , n), M(ai) = gr
V

(i)

ai
M,

the latter being a DDi
-module of normal crossing type, with the induced filtrations

(V
(j)

• )j 6=i. We set M
(ai)

0
= V

(bn)

0 M(ai), that we equip with the naturally induced
filtrations (V

(j)

• M
(ai)

0
)j 6=i.
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If ai 6 0, we also equip it with the induced filtration F•M
(ai)

0
. In such a case,

by Remark 15.1.8(1), the family (F•M
(ai)

0
, (V

(j)

• M
(ai)

0
)j 6=i) is distributive. We can

thus consider the filtration Gp(V
(bn)

ba (M(ai)).
Assume now ai > 0. We can produce an F -filtration FpM

(ai)

0
in two ways: either

by inducing Gp(V
(n)

b0,ai

M) on M
(ai)

0
= V

(n)

b0,ai

M/V
(n)

b0,<ai

M (by distributivity of the family
(V

(j)

• M)j2I) or, setting ai = ↵i + ki with ↵i 2 (�1, 0] and ki 2 N, by considering
the image of Fp�ki

M
(↵i)

0
by the isomorphism @

ki

xi
: M

(↵i)

0

⇠�! M
(ai)

0
(once more by

distributivity). We claim that both filtrations coincide: indeed, we have by definition

Gp(V
(n)

b0,ai

M) =

X

ci60, ji>0

ci+ji6ai

Fp�ji
(V

(n)

b0,ci
M) · @ji

xi
,

which implies

Gp(V
(n)

b0,ai

M) + V
(n)

b0,<ai

M = Fp�ki
(V

(n)

b0,↵i

M) · @ki

xi
+ V

(n)

b0,<ai

M,

as desired. By the second definition, the family (F•M
(ai)

0
, (V

(j)

• M
(ai)

0
)j 6=i), which is the

image by the isomorphism @
ki

xi
of the family (F•M

(↵i)

0
, (V

(j)

• M
(↵i)

0
)j 6=i), is distributive.

For any ba, we can produce the filtration Gp(V
(bn)

ba M(ai)) by a formula similar to
(15.9.18):

Gp(V
(bn)

ba (M(ai)) =

X

bc0060,bj00>0

bc00
+bj006ba00

F
p�|bj00|V

(bn)

(ba0
,bc00

)
M(ai) · @bj

00

x00 .

This filtration is the image by the isomorphism @
ki

xi
, of Gp�ki

(V
(bn)

ba M(↵i)).

15.9.21. Lemma. For any ai, the filtration Gp(V
bn)

ba (M(ai)) is the image of Gp(V
(n)

a M)

by the natural morphism V
(n)

a M ! V
(bn)

ba M(ai) = V
(n)

a M/V
(n)

ba,<ai

M.

Proof. Assume first that ai 6 0. By the distributivity assumption in the propo-
sition, the OX -module Fp�|j00|V

(n)

(a0,c00)M induces Fp�|j00|V
(n0

)

( ba0,c00)
M(ai), which implies

that Gp(V
(bn)

ba M(ai)) is the filtration induced by Gp(V
(n)

a M) on M(ai), since @xi
does

not occur in (15.9.18).
If ai > 0, both filtrations considered in the lemma are the images by the isomor-

phism @
ki

xi
of the corresponding filtrations with ai replaced by ↵i: we have noted this

property just above for the first one, and the property for the second one follows from
(15.9.20). Since the latter coincide, according to the first part of the proof, so do the
former.

We now fix (n,m,a) with m = |a00| > 1, and we assume that (a)–(c) holds for
strictly smaller triples.

In order to prove (a), we can argue by decreasing induction on b with b < a, and
we are reduced to the case where b is the predecessor in one direction, say 1, of a,
that is, bi = ai for i 6= 1 and b1 is the predecessor of a1.
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• Assume first that a1 > 0. We will set a1 = ↵1+k1, with ↵1 2 (�1, 0] and k1 2 N.
We then have

Gp(V
(n)

a M) = Gp�1(V
(n)

a�11
M) · @x1

+Gp(V
(n)

b M),

and we are reduced to proving

Gp�1(V
(n)

a�11
M) · @x1

\ V
(n)

b M ⇢ Gp(V
(n)

b M).

Since a1 > 0 and M is of normal crossing type, the morphism

@x1
: V

(bn)

ba�11

M/V
(bn)

bb�11

M
⇠�! V

(bn)

ba M/V
(bn)

bb
M

is injective, so that

Gp�1(V
(n)

a�1i
M) · @xi

\ V
(n)

b M =
⇥
Gp�1(V

(n)

a�1i
M) \ V

(n)

b�1i
M
⇤
· @xi

.

By induction on (m,a), the latter term is contained in Gp�1(V
(n)

b�1i
M) · @xi

, hence in
Gp(V

(n)

b M).
• Let us now assume that a1 6 0. Since |a00| > 1, there exists an index, say i 6= 1,

such that ai > 0. To prove Gp(V
(n)

a M) \ V
(n)

b M = Gp(V
(n)

b M) for all p, it is enough
to prove Gp(V

(n)

a M) \ Gp+1(V
(n)

b M) = Gp(V
(n)

b M) for all p, and (replacing p with
p� 1), this amounts to proving for all p the injectivity of

gr
G

p
V

(n)

b M �! gr
G

p
V

(n)

a M.

Set a = (a1, . . . , an) = (ba, ai), and b = (<a1, a2, . . . , an�1, an) = (bb, ai). We will also
consider (ba, <ai) and (bb, <ai). The induction hypothesis on n implies that(a)–(c)
hold for V

(bn)

ba M(ai). Note that V
(bn)

ba M(ai) = V
(n)

(ba,ai)
M/V

(n)

(ba,<ai)
M.

Lemma 15.9.21 provides an exact sequence

(15.9.22) 0 �! GpV
(n)

(ba,<ai)
M �! GpV

(n)

a M �! GpV
(bn)

ba M(ai) �! 0,

and a similar one with b, thus a commutative diagram with horizontal exact sequences:

0 // gr
G

p
V

(n)

(bb,<ai)
M //

✏✏

gr
G

p
V

(n)

b M //

✏✏

gr
G

p
V

(bn)

bb
M(ai) //

✏✏

0

0 // gr
G

p
V

(n)

(ba,<ai)
M // gr

G

p
V

(n)

a M // gr
G

p
V

(bn)

ba M(ai) // 0

By the induction hypothesis on n and |a00|, both extreme vertical arrows are injective
(because |ba00| < |a00| for the left one, and |bn| < n for the right one). We conclude
that the middle vertical arrow is injective, which finishes the proof of (a).

Let us now prove (b). We consider the exact sequence (15.9.22). The induction
hypothesis implies that (b) holds for V

(n)

(ba,<ai)
M and for V

(bn)

ba M(ai). We can apply

Exercise 15.3(3a) to conclude that (b) holds for V
(n)

a M.

15.9.23. Remark (The case of a middle extension along Di2I )
Assume moreover that, in Proposition 15.9.14, M is a middle extension along

each Di (i 2 I). Then we can replace everywhere M60 with M<0 :=
T

i2I
V

(i)

<0
M and
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we can moreover conclude that (M, F•M) is a middle extension along Di2I (Definition
15.9.10). In the proof, we modify the definition (15.9.17) of Gp(V

(n)

a M) as follows:
we set

Gp(V
(n)

a M) :=

X

c<0, j>0

c+j6a

Fp�|j|V
(n)

c M · @j
x
.

For example, we have Gp(V
(n)

a M) = FpV
(n)

a M if a < 0, i.e., ai < 0 for all i. As an-
other example, setting c = (c

0
,000

) if c 6 0, with c
0
< 00, and correspondingly

n = n
0
+ n

00, we have

Gp(V
(n)

0 M) =

X

c=(c0
,000

)

c0
<00

Fp�n00V
(n)

(c0,�100)M · @x00 .

A useful example. Let M be a D-module of normal crossing type which is a middle
extension along each Di (i 2 I) and let us consider the locally free O-module M<0 =

V
(n)

<0 M, equipped with the induced filtrations V
(i)

• M<0 (which are thus compatible).
For a < 0, we have

V
(n)

a M<0 :=
T
i

V
(i)

ai
M<0 = V

(n)

a M \M<0.

Let F•M|XrD be a coherent (finite) D-filtration such that each gr
F

p
M|XrD is O-locally

free and let us set
F•M<0 = j⇤F•M|XrD \M<0

and
FpM =

X

q>0

Fp�qM<0 · FqDX .

15.9.24. Proposition. With these assumptions, let us moreover assume that, for each p

and a, grF
p
V

(n)

a M<0 is O-locally free and that the natural morphism

FpV
(n)

a M<0 = V
(n)

a FpM<0 �! V
(n)

a gr
F

p
M<0

is onto. Then the filtered D-module (M, F•M) is of normal crossing type and a middle
extension along Di2I .

The morphism in the proposition reads
T
i

�
V

(i)

ai
M<0 \ FpM<0

�
�!

T
i

�
(V

(i)

ai
M<0 \ FpM<0) + Fp�1M<0

� �
Fp�1M<0

and the condition amounts to the equality
T
i

�
V

(i)

ai
M<0 \ FpM<0

�
+ Fp�1M<0 =

T
i

�
(V

(i)

ai
M<0 \ FpM<0) + Fp�1M<0

�
.

Proof. We consider the filtrations F•, V
(1)

• , . . . , V
(n)

• on M<0. Except possibly com-
patibility, they satisfy the assumptions of Proposition 15.9.14 in the setting of Remark
15.9.23. We will show that they are compatible. For that purpose, we will use the cri-
terion in term of flatness of Theorem 15.2.2, and more precisely the criterion in terms
of regular sequences of Corollary 15.2.5 together with the criteria of Exercise 15.2.
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We note (see proof of Proposition 15.2.10) that the second assumption is equivalent
to the property that, for each p,a, the natural morphism

gr
F

p
V

(n)

a M<0 �! V
(n)

a gr
F

p
M<0

is an isomorphism, and the first assertion implies that the latter is O-locally free.
We consider the multi-Rees module RFV M<0, which is a C[z0, z1, . . . , zn]-module.

Exercise 15.2(2b) shows that it is flat if any subsequence of z0, z1, . . . , zn is regular.
• If the subsequence does not contain zo, then we apply Proposition 15.2.14 with

E = FpM<0 for each p. The assumption of freeness of each gr
F

p
V

(n)

a M<0 implies that
of V (n)

a FpM<0, so 15.2.14(1) is satisfied. 15.2.14(2) is also satisfied according to the
definition of FpM<0.

• If the subsequence contains zo, we are considering flatness for RV gr
FM<0.

We apply Proposition 15.2.14 once more, now with E = gr
F

p
M<0 for each p, and

freeness of each V
(n)

a gr
F

p
M<0 implies that 15.2.14(1) is satisfied. Similarly, 15.2.14(2)

is also satisfied according to the definition of FpM<0.

15.10. Exercises

Exercise 15.7. Let M be a monodromic An-module. Show that xi : Ma ! Ma�1i
is

an isomorphism if ai < 0 and @xi
: Ma ! Ma+1i

is an isomorphism if ai > �1.

Exercise 15.8. Without the simplifying assumption 15.6.2, show that a monodromic
An-module is of finite type over C[x]h@xi. Moreover, show that V

(n)

b M :=
L

a6b Ma

is a C[x]hx@xi-module which is of finite type over C[x], and C[x]-free if bi < 0 for all
i 2 I. Extend similarly all results of Proposition 15.7.3.

Exercise 15.9. Let io 2 I and let M↵+Zn be a monodromic An-module with the single
exponent ↵ 2 [�1, 0)

n.
(1) Show that M↵+Zn is supported on Dio

if and only if ↵io
= �1 and, for k 2 Z

n,
M↵+k = 0 if kio 6 0, that is, if and only if io 2 I(↵) and, setting k = (k

0
, kio), every

vertex M↵+(k0
,0) of the quiver of M↵+Zn is zero.

(2) Show that M↵+Zn = M↵+Zn(⇤Dio
), i.e., xio

acts in a bijective way on M↵+Zn ,
if and only if io /2 I(↵) or io 2 I(↵) and vario is an isomorphism.

(3) Show that the quiver of M↵+Zn(⇤Dio
) is that of M↵+Zn if io /2 I(↵) and,

otherwise, setting k = (k
0
, kio), is isomorphic to the quiver is obtained from that of

M↵+Zn by replacing M↵+(k0
,0) with M↵+(k0

,�1), vario with Id and canio with Nio
.

Let now M be any monodromic An-module, and consider its quiver as in Remark
15.7.6.

(4) Show that M is supported on Dio
if and only if, for any exponent ↵ 2 [�1, 0)

n,
we have ↵io

= �1 and every vertex of the quiver with index k 2 {0, 1}n satisfying
kio = 0 vanishes.

(5) Show that M = M(⇤Dio
) if and only if vario is bijective.
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Exercise 15.10. Define the endofunctors (!Dio
), (!⇤Dio

) of the category of monodromic
An-modules in such a way that the quiver of M↵+Zn(!Dio

), resp. M↵+Zn(!⇤Dio
) is that

of M↵+Zn if io /2 I(↵) and, otherwise, setting k = (k
0
, kio), the quiver is obtained

from that of M↵+Zn by replacing
• M↵+(k0

,�1) with M↵+(k0
,0), vario with Nio

and canio with Id,
• resp. M↵+(k0

,0) with image[Nio
: M↵+(k0

,�1) ! M↵+(k0
,�1)], vario with the nat-

ural inclusion and canio with Nio
.

Show that there is a natural morphism M(!Dio
) ! M(⇤Dio

) whose image is M(!⇤Dio
).

Exercise 15.11. Say that M is a middle extension along Di2I with support in D if, for
each i 2 I, either the source of cani is zero, or cani is onto and vari is injective. In
other words, we accept An-modules supported on the intersection of some components
of D, which are middle extension along any of the other components.

Show that any monodromic An-module M is a successive extension of such
An-modules which are middle extensions along Di2I with support in D.

Exercise 15.12 (Proof of Proposition 15.7.13(8)). Show in detail the statement of this
proposition.

Exercise 15.13. Let M be a coherent DX -module of normal crossing type along
Di2I . Show that M is a successive extension of DX -modules of normal crossing
type along Di2I , each of which being moreover a middle extension along Di2I with
support in D. [Hint : Use Exercise 15.11.]

Exercise 15.14. Assume that M is of normal crossing type along Di2I . Let us fix i 2 I

and a = (ba, ai). Show that, for every ba 2 R
n�1, each of the following properties

cani : V
(bn)

ba gr
V

(i)

�1
M �! V

(bn)

ba gr
V

(i)

0
M is onto, resp. bijective,

vari : V
(bn)

ba gr
V

(i)

0
M �! V

(bn)

ba gr
V

(i)

�1
M is injective, resp. bijective,

holds as soon as it holds when omitting V
(bn)

ba . [Hint : Work first with the monodromic
M ; show that the morphism xi : gr

V
(i)

0
M ! gr

V
(i)

�1
M decomposes as the direct sum of

morphisms xi : M(ba,0) ! M(ba,�1), and similarly for @xi
; conclude that vari is injective

(resp. bijective) or cani is surjective (resp. bijective) if and only if each ba-component
is so; conclude for M by flat tensorization.]



CHAPTER 15

eD-MODULES OF NORMAL CROSSING TYPE
PART 3: NEARBY CYCLES ALONG A MONOMIAL FUNCTION

Summary. In this part, we compute the nearby cycles of a filtered holonomic
DX -module of normal crossing type along a monomial function. As in Part 2,
the case of a monodromic DX -module is simpler, while not straightforward, and
we will be able to give an explicit expression of the monodromic decomposition
of nearby cycles in this case, together with the behavior of a sesquilinear pairing.
The case of DX -modules of normal crossing type is obtained by analytification,
while the case of filtered DX -modules of normal crossing type needs more care,
as the behavior of the compatibility property of filtrations after taking nearby
cycles is delicate.

15.11. Introduction

Let (M, F•M) be a coherently filtered DX -module which is of normal crossing type
along a normal crossing divisor D. Our main objective in this part is to analyze the
nearby cycles of such a filtered D-module along a monomial function g = x

e (with
respect to coordinates adapted to D) in a way similar to that of Proposition 15.9.4,
where the function g is a coordinate. It is stated as follows, where the still undefined
notions will be explained with details below.

15.11.1. Theorem (Strict R-specializability and normal crossing type)
Let (M, F•M) be a coherently F -filtered DX-module of normal crossing type

along D. Assume that (M, F•M) is a middle extension along Di2I (Definition
15.9.10). Then (M, F•M) is R-specializable and a middle extension along (g).
Moreover, for every � 2 S

1, ( g,�M, F• g,�M) is of normal crossing type along D.

A special case of this theorem has already been proved in Section 9.9.c (Proposition
9.9.12) and used in the proof of Theorem 14.6.1 showing that polarizable variations
of Hodge structure are polarizable Hodge modules. In turn, Theorem 15.11.1 will be
one of the ingredients in the proof of the structure theorem 16.2.1 in Chapter 16.
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This theorem also clarifies the relation between the notion of middle extension
along Di2I and middle extension along D in the filtered setting. Indeed, by taking
for g a reduced equation of D, we obtain:

15.11.2. Corollary (Middle extension and localizability). Under the assumptions of The-
orem 15.11.1, (M, F•M) is a middle extension along D.

It can be noticed that Theorem 15.11.1 extends in an obvious way to triples of
normal crossing type along D, according to Definition 15.8.1.

15.11.3. Notation. We keep the notation 15.6.1, so that D = {x1 · · ·x` = 0}. We also
keep the simplifying assumption 15.6.2, so that ` = n. Given g(x) = x

e
:=

Q
i2I

x
ei

i

(ei 2 N), the indices for which ei = 0 do not play an important role. Let us denote by

Ie := {i | ei 6= 0} ⇢ {1, . . . , n}

the subset of relevant indices and r = #Ie. Accordingly, we decompose the set of
variables (x1, . . . , xn) as (x

0
, x

00
), with x

0
= (xi)i2Ie . We rename the indices so that

Ie = {1, . . . , r},

with 1 6 r 6 n. We decompose correspondingly X as X = X
0 ⇥X

00. We set

�j =
xj@xj

ej
� x1@x1

e1
, j = 2, . . . , r, i.e., j 2 Ie r {1}.

We denote by ◆g the graph inclusion x 7! (x, t = g(x)), and we consider the pushfor-
ward filtered D-module (Mg, F•Mg) = D◆g⇤(M, F•M) (see Example 8.7.7). We write
Mg = ◆g⇤M⌦CC[@t] with the action of DX⇥C defined as follows, according to (8.7.7 ⇤):

(m⌦ @
`

t
) · @t = m⌦ @

`+1

t

(m⌦ 1) · @xi
= m@xi

⌦ 1� (eimx
e�1i)⌦ @t

(m⌦ 1) · f(x, t) = mf(x, x
e
)⌦ 1.

(15.11.3 ⇤)

As a consequence, for i 2 {1, . . . , r} we have

(15.11.3 ⇤⇤) (m⌦ 1) · t@t = (mx
e ⌦ 1) · @t =

1

ei

⇥
(mxi@xi

⌦ 1)� (m⌦ 1)xi@xi

⇤
.

Furthermore, the F -filtration is that obtained by convolution:

FpMg =

X

q+k=p

◆g⇤(FpM)⌦ @
k

t
.

In the following, we omit the functor ◆g⇤ in the notation.
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15.12. Proof of Theorem 15.11.1 omitting the F -filtration

We forget about the F -filtration in this section. We set

D0
X

= OXh@x1
, . . . , @xr

i = DX0⇥X00/X00 ,

V
(r)
0

D0
X

=

rT
i=1

V
(i)

0
D0

X
,

V
(r)
↵e M =

rT
i=1

V
(i)

↵ei
M

(see Notation 15.6.3), the latter being a V
(r)
0

D0
X

-module.

15.12.a. R-specializability of M along (g). We show that M is R-specializable
along (g) by making explicit the V -filtration of Mg along (t). In the proposition below,
we regard V

(r)
↵e M⌦1 and

L
k
(V

(r)
↵e M⌦@k

t
) as OX -submodules of Mg =

L
k
(M⌦@k

t
).

15.12.1. Proposition (R-specializability of Mg along (t)). The DX⇥C-module Mg is
R-specializable along (t). Furthermore, the V -filtration of Mg is obtained from the
V -filtrations V

(i)

• M by the formula

(15.12.1 ⇤) V↵Mg = (V
(r)
↵e M⌦ 1) ·D0

X
[t@t] = (V

(r)
↵e M⌦ 1) ·D0

X
, if ↵ < 0,

and, for ↵ 2 [�1, 0) and j > 1, by the inductive formula

(15.12.1 ⇤⇤) V↵+jMg = V↵Mg · @jt + V<↵+jMg.

The second equality in (15.12.1 ⇤) follows from the expression of the action of t@t
deduced from Formula (15.11.3 ⇤⇤).

Proof. Let us denote by U•Mg the filtration defined in the proposition. We will show
that U•Mg satisfies the characteristic properties of the V -filtration along (t).

The inclusions U↵Mg · t ⇢ U↵�1Mg and U↵Mg · @t ⇢ U↵+1Mg are easily obtained
for any ↵. Furthermore, the stability by D0

X
is by definition, and if i > r, @xi

acts on
m⌦ 1 by m@xi

⌦ 1, according to Formula (15.11.3 ⇤). In other words, U↵Mg is stable
by DX⇥C/C. All this shows in particular that U↵Mg is a V0(DX⇥C)-module.

For ↵ < 0, we have U↵Mg · t = U↵�1Mg since

(V
(r)
↵e M⌦ 1) · t = V

(r)
↵e Mx

e ⌦ 1 = V
(r)
(↵�1)eM⌦ 1.

Furthermore, as V (r)
↵e M is locally finitely generated over V (r)

0
DX , it follows that U↵Mg

is locally finitely generated over V0(DX⇥C), hence coherent (argue e.g. as in Exercise
8.63(5)). In order to conclude that U•Mg is a coherent V -filtration along (t), it
remains to be proved that Mg =

S
↵
U↵Mg, and so it is enough to prove that any

local section of M⌦ 1, equivalently any local section of V (r)
a M for any a, belongs to

some U↵Mg.
If m 2 V

(r)
a M for some a 2 R

r, the middle extension property of M along Di2I

implies that m is a finite sum of terms mk · @k
x

with k = (k1, . . . , kr), ki > 0, and
mk 2 V

(r)
a(k)M with ai(k) < 0 for each i = 1, . . . , r. Therefore, there exist ↵ < 0 such
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that mk 2 V
(r)
↵e M for each k. We can thus use iteratively (15.11.3 ⇤) to write any

local section of V (r)
a M⌦1 as a sum of terms (µk,`⌦1) ·@k

x
@
`

t
, where each µk,` belongs

to V
(r)
↵e M for some ↵ < 0.

It remains to be shown that (t@t � ↵) is nilpotent on gr
U

↵
Mg if ↵ < 0.

15.12.2. Notation. In order to distinguish between the action of xi@xi
trivially coming

from that on M and the action xi@xi
on Mg, it will be convenient to denote by Di

the first one, defined by

(m⌦ @
`

t
) ·Di = (mxi@xi

)⌦ @
`

t
.

Then we can rewrite Di as

(m⌦ @
`

t
) ·Di = (m⌦ 1) · (xi@xi

+ eit@t)@
`

t
= (m⌦ @

`

t
) · (xi@xi

+ ei(t@t � `)),

a formula that can also be read

(15.12.3) (m⌦ @
`

t
) · xi@xi

= (m⌦ @
`

t
) · (Di � eit@t + ei`).

We first notice that there exists ↵0
< ↵ such that, for each i = 1, . . . , n, some power

of (Di�↵ei) sends (V (i)

↵eiM⌦1) to (V
(i)

↵0ei
M⌦1). Therefore, a power of

Q
i2Ie

(Di�↵ei)
sends (V

(r)
↵e M⌦ 1) to (V

(r)
↵0eM⌦ 1). It is thus enough to check that

Q
i2Ie

(Di � eit@t)

sends (V
(r)
↵e M⌦ 1) into U↵0(Mg) for some ↵0

< ↵. We have ↵e� 1Ie 6 ↵
0
e for some

↵
0
< ↵, so (V

(r)
↵e M⌦ 1) ·

Q
i2Ie

xi ⇢ (V
(r)
↵0eM⌦ 1), and thus

(V
(r)
↵e M⌦ 1) ·

Y

i2Ie

xi@xi
⇢ (V

(r)
↵0eM⌦ 1) ·

Y

i2Ie

@xi
⇢ U↵0(Mg).

Therefore, by (15.12.3),

(V
(r)
↵e M⌦ 1) ·

Y

i2Ie

(Di � eit@t) ⇢ U↵0(Mg).

15.12.4. Corollary (Middle extension property of Mg along (t))
The DX⇥C-module Mg satisfies the equality Mg = Mg[!⇤t].

Proof. We first remark that t acts injectively on Mg: if we consider the filtration
G•Mg by the degree in @t, then the action of t on gr

GMg ' M[⌧ ] is equal to the
induced action of x

e on M[⌧ ], hence is injective by the assumption that M is a
middle extension along Di2I ; a fortiori, the action of t on Mg is injective. We thus
have Mg ⇢ Mg[⇤t]. By Formula (15.12.1 ⇤⇤) and the exhaustivity of V•Mg, Mg is the
image of V<0Mg⌦V0DX⇥C DX⇥C in Mg[⇤t]. This is nothing but Mg[!⇤t] (see Definition
11.5.2 and Definition 11.4.1).

15.12.b. A resolution of V↵Mg. We continue by providing a suitable presentation
of V↵Mg for ↵ 2 R, that we will later enrich with an F -filtration. The tensor product

K0

↵
= V

(r)
↵e M⌦OX

D0
X

has the structure of a right V
(r)
0

D0
X

-module with the tensor structure and of a
right D0

X
-module with the trivial structure. This trivial structure extends as a right
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DX -module structure by setting (m ⌦ 1)@xi
= m@xi

⌦ 1 for i /2 Ie. Both structures
commute with each other (see Exercise 8.19).

Since the operators ·tens�j pairwise commute (j = 2, . . . , r) and commute with the
right DX -module structure, we can consider the Koszul complex

K
•
↵
= K

�
V

(r)
↵e M⌦OX

D0
X
, (·tens�j)j=2,...,r

�

(i.e., the simple complex associated with the (r�1)-cube with arrows in the direction j

all equal to ·tens�j).

15.12.5. Proposition (A resolution of V↵Mg). For each ↵ < 0, the Koszul complex K•
↵

is a resolution of V↵Mg via the right DX-linear surjective morphism

(15.12.5 ⇤)
K0

↵
= V

(r)
↵e M⌦OX

D0
X

�! V↵Mg

m⌦ P 7�! (m⌦ 1) · P.

Beware that the tensor products on both sides of (15.12.5 ⇤) do not have the same
meaning.

Let J be a subset of {1, . . . , r}, let Jc denote its supplementary subset, and let D�
J

be the stratum of D defined as
T

i2J
Di r

S
i2Jc Di. Let AJ denote the projection

of A (see Definition 15.7.2) on the J-components and let eJ denote the J-components
of e.

15.12.6. Corollary (Jumping indices for V•Mg and resolution of grV
↵
Mg)

For ↵ < 0, gr
V

↵
Mg vanishes (in some neighborhood of the origin) unless there

exists i 2 Ie = {1, . . . , r} such that ↵ei 2 Ai + Z. Furthermore, setting K•
<↵

= K•
↵�"

for " > 0 small enough, the Koszul complex

K
�
(V

(r)
↵e M/V

(r)
(↵�")eM)⌦OX

D0
X
, (·tens�j)j=2,...,r

�
= K

•
↵
/K

•
<↵

is a resolution of grV
↵
Mg as a right DX-module.

15.12.7. Example. Assume that ei = 1 for every i 2 Ie, that is, g = x1 · · ·xr. Then
the set of �’s such that  g,�M 6= 0 is contained in the union of the sets of �’s such
that  xi,�

M 6= 0 for some i 2 Ie.

Proof of Proposition 15.12.5. For "> 0, the surjectivity of (15.12.5 ⇤) implies that of
the morphism

�
V

(r)
↵e M/V

(r)
(↵�")eM

�
⌦OX

D0
X

! gr
V

↵
Mg. If " is small enough, the source

of this morphism reads ✓ L
a2A+Zn

9 i2Ie, ai=↵ei

Ma

◆
⌦C[x] D

0
X
,

hence the first assertion, according to Remark 15.7.10. For the second assertion,
since K•

↵
, resp. K•

<↵
, is a resolution of V↵Mg, resp. V<↵Mg, and since the morphism

V<↵Mg ! V↵Mg is injective, one deduces that K•
↵
/K•

<↵
is a resolution of grV

↵
Mg.

We will make use of the next general lemma, whose proof is left as Exercise 15.15.
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15.12.8. Lemma. Let A be a commutative ring and let (a1, . . . , ar) be a finite sequence
of elements of A. Let M be an A-module. If (a2, . . . , ar) is a regular sequence on M ,
then the sequence

�
(a2 ⌦ u2 � a1 ⌦ u1), . . . , (ar ⌦ ur � a1 ⌦ u1)

�
is a regular sequence

on M ⌦A A[u1, . . . , un]. Furthermore, let fM be the quotient module
�
M ⌦A A[u1, . . . , un]

�
/
�
(aj ⌦ uj � a1 ⌦ u1)j=2,...,r

�

considered as an A[u1, u
0
]-module (with u

0
= (u2, . . . , ur)), equipped with the filtrations

F
(2)

• , . . . , F
(r)

• induced by the filtrations by the degree in u2, . . . , ur on A[u1, u2, . . . , ur].
Then the (r � 1)-graded module gr

F
(r) · · · grF (2) fM is isomorphic to

L
k2Nr�1

�
M/(a

k2

2
, . . . , a

kr

r
)
�
⌦A u

0k
A[u1],

where the action of u
0` is via the natural (injective) morphism M/(a

k2

2
, . . . , a

kr

r
) !

M/(a
k2+`2

2
, . . . , a

kr+`r
r

).

Proof of Proposition 15.12.5. It is enough to consider the algebraic case of a mon-
odromic C[x]h@xi-module since, by assumption, M = M ⌦C[x]h@xi DX and a simi-
lar property for Mg, and since this is a flat extension. We set An = C[x]h@xi and
A

0
n
= C[x]h@x1

, . . . , @xr
i. Let M be a monodromic An-module. We set Mg = D◆g⇤M '

M [@t], which is an An+1-module, with An+1 = C[x, t]h@x, @ti. Note that Mg is natu-
rally graded: Mg =

L
a,` Ma ⌦ @

`

t
.

(1) We start with showing that the Koszul complex

K
•
↵
= K

�
V

(r)
↵e M ⌦C[x] A

0
n
, (·tens�j)j=2,...,r

�

is exact in nonzero degrees. We can simplify this complex by considering the filtration
F•A

0
n

by the degree of differential operators, so that gr
F
A

0
n
' C[x, ⇠

0
]. The differen-

tials are of F -degree one, so we can filter the complex by setting (FpK↵)
k
= Fp+k(K

k

↵
),

with Fq(V
(r)
↵e M ⌦C[x] A0

n
) = V

(r)
↵e M ⌦C[x] FqA

0
n
. The morphism induced by ·tens�j on

gr
F
K

0

↵
is Id⌦(xj⇠j/ej � x1⇠1/e1) and the corresponding Koszul complex reads

gr
F
K

•
↵
=

�
V

(r)
↵e M ⌦C[x] C[x, ⇠

0
], (xj⇠j/ej � x1⇠1/e1)j=2,...,r

�

' K
�
V

(r)
↵e M ⌦C C[⇠

0
], (xj ⌦ ⇠j/ej � x1 ⌦ ⇠1/e1)j=2,...,r

�
.

Since V
(r)
↵e M is C[x0

]-flat by Proposition 15.7.3(5), the sequence (x2, . . . , xr) is regular
on it, and the first part of Lemma 15.12.8, together with Exercise 15.2, shows that
gr

F
K

•
↵

is exact in negative degrees. The same property holds true for K
•
↵

since the
filtration F• is bounded below.

(2) It remains to identify the kernel of the morphism (15.12.5 ⇤), which is surjective
according to the identification (15.12.1 ⇤). Note first that every element of the form

m⌦ �j �m�j ⌦ 1
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belongs to the kernel of this morphism, according to Formula (15.11.3 ⇤⇤), and the
morphism

(15.12.9)
(V

(r)
↵e M ⌦C[x] A

0
n
)
r�1 �! V

(r)
↵e M ⌦C[x] A

0
n

(mj ⌦ Pj)j=2,...,r 7�!
X

j

(mj ⌦ �jPj �mj�j ⌦ Pj)

has image contained in the kernel of the morphism (15.12.5 ⇤). We can write

V
(r)
↵e M ⌦C[x] A

0
n
=

L
k2Nr

V
(r)
↵e M ⌦ @

k
x0 ,

with the (A0
+Z

r
)-grading such that Ma⌦@kx0 is of degree a0

+k with a
0
:= (a1, . . . , ar).

We also consider the (A
0
+Z

r
)-grading on Mg =

L
a,` Ma ⌦ @

`

t
such that Ma ⌦ @

`

t
is

of degree a
0
+ `e. Then (15.11.3 ⇤) shows that the morphism V

(r)
↵e M ⌦C[x] A0

n
! Mg

is (A
0
+ Z

r
)-graded, hence so is its kernel.

We first find a simple representative, modulo the image of (15.12.9), of any homoge-
neous element of V (r)

↵e M⌦C[x]A0
n
. Let µ =

P
k2Nr mk⌦@kx0 be a homogeneous element

of degree a
0o, so that 0 6= mk 2 Ma(k) with a

0
(k) 6 ↵e and a

0
(k) + k = a

0o. Let us
set ko

= max(0, da0o�↵ee) componentwise. Then mk 6= 0 ) k > k
o componentwise.

For each i, we have ao
i
�k

o

i
6 ↵ei < 0, so that ai(k)+ki�k

o

i
< 0 and multiplication

by x
ki�k

o

i

i
: Ma(k)+(ki�k

o

i
)1i

! Ma(k) is bijective. We can thus divide mk by x
ki�k

o

i

i

for each i = 1, . . . , r and write

mk ⌦ @
k
x0 = µk ⌦ (x

k�ko

@
k�ko

x0 )@
ko

x0 ,

with µk 2 Ma0o�ko since a(k) + k � k
o
= a

0o � k
o. This can be rewritten as a sum

of terms eµj ⌦ (x
0
@x0)

j
@
ko

x0 with µj 2 Ma0o�ko and each component ji varying from 0

to ki � k
o

i
. Iterating the equality

eµj ⌦ (xi@xi
)@

ko

x0 = eµj�i ⌦ @
ko

x0 +
ei

e1
eµj ⌦ (x1@x1

)@
ko

x0 mod image (15.12.9),

we see that eµj ⌦ (x
0
@x0)

j
@
ko

x0 is equivalent, modulo the image of (15.12.9), to a sum of
terms bµ`(x1@x1

)
`
@
ko

x0 with bµ` 2 Ma0o�ko for each `. In conclusion, modulo the image
of (15.12.9), µ is equivalent to an expression of the form

`
oX

`=0

⌫` ⌦ (x1@x1
)
`
@
ko

x0 ,

for some `o > 0, with ⌫` 2 Ma0o�ko for each `. If the image of the above element in N

is zero, the coefficient of @|k
o|+`

o

t
, up to a nonzero constant, which is equal to

⌫`ox
0(|ko|+`

o
)e�ko

,

is thus equal to zero. We notice that each component of |ko|e � k
o is nonnegative.

Since a
o

i
� k

o

i
< 0 for each i = 1, . . . , r, multiplication by x

0(|ko|+`
o
)e�ko

is injective
on Ma0o�ko , so that this implies that ⌫`o = 0, and thus ⌫ = 0, hence the desired
surjectivity of (15.12.9) onto the kernel of the morphism in the proposition.
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15.12.c. Normal crossing type of gr
V

↵
Mg

15.12.10. Corollary (Normal crossing type of grV
↵
Mg). For each ↵ < 0, gr

V

↵
Mg is of

normal crossing type.

Proof. We prove the analogous statement for a monodromic An-module, the case of
a DX -module of normal crossing type begin obtained by tensoring with OX . Recall
that Ni (i = 1, . . . , n) denotes the action of xi@xi

� ai on Ma for a 2 A + Z
n,

and N denotes the action of t@t � ↵ on gr
V

↵
Mg. For m 2 Ma and m ⌦ 1 2 N ,

Formula (15.11.3 ⇤⇤) implies

(m⌦ 1)xi@xi
= (Ni + ai)m⌦ 1� eim⌦ t@t.

If a0 6 ↵e, (m⌦ 1) is a section of V↵Mg and its image [m⌦ 1] in gr
V

↵
Mg satisfies

(15.12.11) [m⌦ 1]xi@xi
= [(Ni + ai)m⌦ 1]� ei(N + ↵)[m⌦ 1].

Since Ni and N are nilpotent, it follows that [m⌦ 1](xi@xi
�ai+↵ei)

k
= 0 for k � 0.

As a consequence, the image of Ma⌦1 ⇢ V
(r)
↵e M ⌦C[x]A0

n
in gr

V

↵
Mg by the morphism

(15.12.5 ⇤) is contained in (gr
V

↵
Mg)b with b = a � ↵e. More generally, the image in

gr
V

↵
Mg of Ma ⌦ @

k
x0 is contained in (gr

V

↵
Mg)b with b = a+ k� ↵e (by setting ki = 0

for i > r).
Since gr

V

↵
Mg is of finite type over An, there exists a maximal finite subset

B ⇢ [�1, 0)
n such that

L
b2B+Zn(gr

V

↵
Mg)b ! gr

V

↵
Mg is injective. Furthermore,

by the above argument, the morphism V
(r)
↵e M ⌦C[x] A0

n
! gr

V

↵
Mg factorizes throughL

b2B+Zn(gr
V

↵
Mg)b. Since this morphism is surjective by the monodromic analogue

of Proposition 15.12.1, we deduce that
L

b2B+Zn

(gr
V

↵
Mg)b = gr

V

↵
Mg.

In order to conclude that gr
V

↵
Mg is monodromic, we are left with showing that,

for each b, (grV
↵
Mg)b is finite-dimensional. By the above argument, the direct sum of

the terms Ma ⌦ @
k
x0 with a varying in A+ Z

n and k in Z
r such that a+ k = b+ ↵e

maps onto (gr
V

↵
Mg)b. In particular, the components ar+1, . . . , an of a are fixed. Let

us choose ko big enough so that all components of b0 + ↵e � ko are 6 0. Then, for
i 2 {1, . . . , r}, Formula (15.12.11) implies that an element of Ma�1i

⌦ @
ko+1i

x0 has
image contained in that of Ma ⌦ @

ko

x0 plus its image by N. In other words, (grV
↵
Mg)b

is equal to the sum of a finite number of finite-dimensional vector spaces (the images
of Ma ⌦ @

k
x0 for a+ k = b and 0 6 k 6 k0 componentwise) and their images by any

power of N. Since N is nilpotent, the finite-dimensionality of (grV
↵
Mg)b follows.

Moreover, we have an estimate for B:

B + Z
n ⇢ A� ↵e+ Z

n
,

and we recall that ↵ < 0 is such that ↵e 2 A
0
+ Z

r.

15.12.12. Corollary (R-specializability of grV
↵
Mg along Di (i 2 I))

For each i 2 I, gr
V

↵
Mg is R-specializable along Di and its V

(i)-filtration is the
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image of the filtration

V
(i)

ai

�
V

(r)
↵e M⌦OX

D0
X

�
=

X

k>0

V
(i)

ai�k
(V

(r)
↵e M)⌦OX

V
(i)

k
D0

X
,

with V
(i)

ai�k
(V

(r)
↵e M) := V

(i)

ai�k
M \ V

(r)
↵e M, which is a V

(i)

• DX-filtration with respect to
the right trivial structure, and V

(r)
0 (gr

V

↵
Mg) (resp. V (n)

0 (gr
V

↵
Mg)) is the image of

V
(r)
↵e M⌦OX

V
(r)
0 D0

X
, resp. V (n)

↵e M⌦OX
V

(r)
0 D0

X
.

Furthermore, for every i, j 2 I, the right tensor action of �j is of order 0 with respect
to V

(i)

• .

Proof. This is a direct consequence of Corollary 15.12.10 and its proof.

15.12.d. The monodromy filtration of gr
V

↵
Mg. The nilpotent operator N

on gr
V

↵
Mg defines an increasing filtration on gr

V

↵
Mg: the monodromy filtration

M(N)•(gr
V

↵
Mg) (see Lemma 3.3.1).

15.12.13. Proposition. If M is of normal crossing type, then for each ↵ < 0 and each
` 2 Z, the DX-module gr

M

`
gr

V

↵
Mg is also of normal crossing type. Furthermore,

the filtrations M(N)• and V
(i)

• (i 2 I) are compatible and for each b 6 0, denoting
Nb = gr

V
(n)

b N, we have

gr
V

(n)

b M(N)` (gr
V

↵
Mg) = M(Nb)` gr

V
(n)

b (gr
V

↵
Mg).

Proof. We first notice that the analytification of M(N)• gr
V

↵
Mg is the monodromy

filtration M(N)• gr
V

↵
Mg: this follows from the characteristic properties of the mon-

odromy filtration, which are preserved by analytification (due to C[x]-flatness of OX).
The properties of the lemma are also preserved by analytification. It follows that we
only need to consider the case of monodromic An-modules. Since N commutes with
xi@xi

for each i 2 I, it preserves each (gr
V

↵
Mg)b and the decomposition of grV

↵
Mg.

We thus obtain a corresponding decomposition for each ` 2 Z:

M(N)`

⇣L
b
(gr

V

↵
Mg)b

⌘
=

L
b
M(Nb)`(gr

V

↵
Mg)b.

15.13. An explicit expression of nearby cycles

We restrict our computation to the case of a monodromic An-module M =L
a2A+Zn Ma. The case of a DX -module of normal crossing type can be obtained by

tensoring with OX . Compared with the presentation of Section 15.12.a, we emphasize
the nilpotent operator N induced by t@t � ↵ on gr

V

↵
Mg (↵ < 0), in relation with the

nilpotent operators Ni acting by xi@xi
� ai on Ma.

Let M be a monodromic An-module which is a middle extension along Di2I , i.e.,
satisfying the assumption of Theorem 15.11.1 in the monodromic situation.
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15.13.a. Computation of nearby cycles. We revisit Corollary 15.12.10 a little
differently. From Proposition 15.12.5 we obtain a surjective A

0
n
-linear morphism:

V
(r)
↵e M ⌦C[x] A

0
n
�! gr

V

↵
Mg.

In order to obtain an An-linear morphism, we note the natural surjective morphism

V
(n)

↵e M ⌦C[x] An �! V
(r)
↵e M ⌦C[x] A

0
n
,

since V
(r)
↵e M =

P
k002Zn�r V

(n)

↵e M · @k00

x00 , where x
00
= (xr+1, . . . , xn). Let us equip

Mb+↵e[N] := Mb+↵e ⌦C C[N] with the C[N1, . . . ,Nn,N]-module structure such that
• Ni acts by Ni ⌦ Id�ei Id⌦N, and
• N acts by Id⌦N (see (15.12.3)),

and (gr
V

↵
Mg)b with its natural C[N1, . . . ,Nn,N]-module structure (see §15.7.a). The

reason for twisting the action of Ni comes from Formula (15.11.3 ⇤⇤).

15.13.1. Proposition. For b 6 0, we have a surjective C[N1, . . . ,Nn,N]-linear morphism

Mb+↵e[N] �! (gr
V

↵
Mg)b

that takes m⌦N
k to the class of m⌦ (t@t � ↵)

k 2 V↵Mg modulo V<↵Mg.

Let us start with a lemma valid for any b.

15.13.2. Lemma. For every b 2 R
n, (grV

↵
Mg)b is the image of

V↵Mg \
�L

j
Mb+(↵�j)e ⌦ @

j

t

�

in gr
V

↵
Mg.

Proof. Let us consider an arbitrary element of V↵Mg, expressed as a finite sum
X

a2Rn

X

j2N
ma,j ⌦ @

j

t
,

with ma,j 2 Ma. Assume that its image in gr
V

↵
Mg belongs to (gr

V

↵
Mg)b, i.e.,

⇣ X

a2Rn

X

j2N
ma,j ⌦ @

j

t

⌘
· (xi@xi

� bi)
k 2 V<↵Mg

for every i 2 {1, . . . , n} and some k � 0. Our aim is to prove that, modulo V<↵Mg,
only those terms with a = b+ (↵� j)e matter.

15.13.3. Lemma. In the situation considered above, one has
X

a2Rn

X

j2N
ma,j ⌦ @

j

t
=

X

j2N
mb+(↵�j)e ⌦ @

j

t
mod V<↵Mg.

Proof. Let us start with an elementary lemma of linear algebra.

15.13.4. Lemma. Let T be an endomorphism of a complex vector space V , and W ⇢ V

a linear subspace with TW ⇢ W . Suppose that v1, . . . , vk 2 V satisfy

T
µ
(v1 + · · ·+ vk) 2 W
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for some µ > 0. If there are pairwise distinct complex numbers �1, . . . ,�k with
vh 2 E�h

(T ), then one has �hvh 2 W for every h = 1, . . . , k.

Proof. Choose a sufficiently large integer µ 2 N such that (T � �h)
µ
vh = 0 for

h = 1, . . . , k, and such that T
µ
(v1 + · · · + vk) 2 W . Assume that �k 6= 0. Setting

Q(T ) = T
µ
(T � �1)

µ · · · (T � �k�1)
µ, we have by assumption

Q(T )(v1 + · · ·+ vk) 2 W

The left-hand side equals Q(T )vk. Since Q(T ) and T � �k are coprime, Bézout’s
theorem implies that vk 2 W . At this point, we are done by induction.

We now go back to the proof of Lemma 15.13.3. Let us consider an element as in
the lemma. As we have seen before,

(ma,j ⌦ @
j

t
) ·

�
(xi@xi

� bi) + ei(t@t � ↵)
�
= (ma,j ⌦ @

j

t
) ·

�
Di � bi � ei(↵� j)

�
,

and since some power of t@t � ↵ also send this element in V<↵Mg, we may conclude
that

(15.13.5)
X

a2Rn

X

j2N

⇣
ma,j ⌦ @

j

t
·
�
Di � bi � ei(↵� j)

�k⌘ 2 V<↵Mg

for every i 2 I and k � 0.
In order to apply Lemma 15.13.4 to our situation, let us set V = N and W =

V<↵Mg, and for a fixed choice of i = 1, . . . , n, let us consider the endomorphism

Ti = (xi@xi
� bi) + ei(t@t � ↵);

Evidently, TiW ⇢ W . Since we have

Ti(ma,j ⌦ @
j

t
) = (ma,j ⌦ @

j

t
) ·

�
(Di � ai) + ai � bi � ei(↵� j)

�
,

it is clear that ma,j ⌦ @
j

t
is annihilated by a large power of Ti � (ai � bi � ei(↵� j)).

Grouping terms according to the value of ai � bi � ei(↵� j), we obtain
X

a2Rn

X

j2N
ma,j ⌦ @

j

t
= v1 + · · ·+ vk

with vk 2 E�k
(Ti) and �1, . . . ,�k 2 R are pairwise distinct. According to Lemma

15.13.4, we have vh 2 W whenever �h 6= 0; what this means is that the sum of all
ma,j ⌦ @

j

t
with ai � bi � ei(↵ � j) 6= 0 belongs to V<↵Mg. After subtracting this

sum from our original element, we may therefore assume that ai = bi � ei(↵ � j)

for every term. We obtain the asserted congruence by performing this procedure
for T1, . . . , Tn. This ends the proof of Lemma 15.13.3 and at the same time that of
Lemma 15.13.2.

Proof of Proposition 15.13.1. Suppose now that b1, . . . , bn 6 0, that we shall abbreviate
as b 6 0 (recall also that we assume ↵ 2 [�1, 0)). Let j 2 N. We observe that

ei 6= 0 =) bi + (↵� j)ei = (bi + ↵ei)� jei < �jei.
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Given a vector mj 2 Mb+(↵�j)e, this means that mj is divisible by x
jei

i
. Consequently,

mj = mx
je for a unique m in Mb+↵e, and therefore

mj ⌦ @
j

t
= (m⌦ 1) · tj@j

t

is a linear combination of (m ⌦ 1)(t@t)
k for k = 1, . . . , j. Since m ⌦ 1 2 V↵Mg and

V↵Mg is stable by t@t, we conclude that
L
j

Mb+(↵�j)e ⌦ @
j

t
= Mb+↵e[t@t] ⇢ V↵Mg,

and, by Lemma 15.13.2, (grV
↵
Mg)b is the image of Mb+↵e[t@t] mod V<↵Mg.

In order to have an explicit expression of (grV
↵
Mg)b (b 6 0), it remains to find the

kernel of the morphism in Proposition 15.13.1. For b 6 0, let us set

Ie(b) = {i | ei 6= 0 and bi = 0}.

Given m 2 Mb+↵e, we have
�
m

Q
i2Ie(b)

xi

�
⌦ 1 = m⌦ t 2 V<↵Mg and therefore also

(m⌦ 1)
Q

i2Ie(b)
xi@xi

= (m⌦ 1) ·
Q

i2Ie(b)
(Ni � eiN) 2 V<↵Mg.

In this way, we obtain a large collection of elements in the kernel.

15.13.6. Corollary. If ↵ < 0 and b 6 0, (grV
↵
Mg)b is isomorphic to the cokernel of the

injective morphism

(15.13.6 ⇤) 'b :=

Y

i2Ie(b)

((Ni ⌦ 1)/ei � (1⌦N)) 2 End(Mb+↵e[N]).

15.13.7. Remark. We have assumed, as in Theorem 15.11.1, that M is a middle ex-
tension along the normal crossing divisor Di2I . However, the previous expression
shows that, for ↵ < 0 and b 6 0, (grV

↵
Mg)b only depends on the Ma’s with ai < 0 if

i 2 {1, . . . , r}. For such an ↵, we conclude that grV
↵
Mg only depends on the localized

module M(⇤g).
Moreover, by definition, the action of Ni (resp. N) on (gr

V

↵
Mg)b is that induced by

Ni ⌦ 1� eiN (resp. N). We thus find that
Q

r

i=1
Ni acts by zero on (gr

V

↵
Mg)b.

If ↵ < 0 and b 6 0, set b = |Ie(b)|. Corollary 15.13.6 implies that the natural
C-linear morphism

(15.13.8)
b�1L
k=0

Mb+↵eN
k �! (gr

V

↵
Mg)b

is an isomorphism. Note also that the action of N on (gr
V

↵
Mg)b is easily described on

the expression (15.13.8):

mN
k ·N =

(
mN

k+1 if k < b� 1,

m
⇥
N

b �
Q

i2Ie(b)
(N�Ni/ei)

⇤
if k = b� 1.
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Proof of Corollary 15.13.6. The injectivity of 'b is clear by considering the effect of
'b on the term of highest degree with respect to N. On the other hand, we already
know that every element of (grV

↵
Mg)b is the image of some m =

P
k
(mk ⌦ 1)N

k with
mk 2 Mb+↵e for every k. If we expand this using N = t@t � ↵, we find

(15.13.9) m 2
L
j2N

Mb+(↵�j)e ⌦ @
j

t
.

Now suppose that m actually lies in V<↵Mg. It can then be written as (see (15.12.1 ⇤))

(15.13.10) m =

X

a06(↵�")e
k2Nr

(ma,k ⌦ 1)@
k
x0 , ma,k 2 Ma.

If we expand the expression (ma,k ⌦ 1)@
k
x0 according to (15.11.3 ⇤), all the terms that

appear belong to Ma+k�je ⌦ @
j

t
for some j 6 |k| (we identify k with (k, 0) 2 Z

n).
Comparing with (15.13.9), we can therefore discard those summands in (15.13.10)
with a+k 6= b+↵e without changing the value of the sum. The sum in (15.13.10) is
thus simply indexed by those k 2 N

r such that ki > bi for all i 2 {1, . . . , r} and the
index a is replaced with b+ ↵e� k.

Now, if ei 6= 0 then ai = (bi + ↵ei) � ki < �ki since we assume that bi 6 0 and
↵ < 0, and so ma,k is divisible by x

ki

i
. This means that we can write

ma,k = m
0
kx

0k

for some m
0
k 2 Mb+↵e. Therefore, (15.13.10) reads

m =

X

k2Nr

ki>bi 8 i2{1,...,r}

(m
0
k ⌦ 1)x

0k
@
k
x0 , m

0
k 2 Mb+↵e.

If m0
k 6= 0, then ki > 1 for i 2 Ie(b) (since bi = 0), and consequently, x0k

@
k
x0 is forced

to be a multiple of
Y

i2Ie(b)

xi@xi
=

Y

i2Ie(b)

(Di � ei E),

which acts on Mb+↵e[N] as
Q

i2Ie(b)
((Ni ⌦ 1)� ei(1⌦N)). As a consequence,

m 2
X

`2Nr

(Mb+↵e ⌦ 1)x
0`
@
`
x0 ·

Y

i2Ie(b)

((Ni ⌦ 1)� ei(1⌦N))

=

X

`2NIe

(Mb+↵e ⌦ 1)(D
0 � et@t)

` ·
Y

i2Ie(b)

((Ni ⌦ 1)� ei(1⌦N))

⇢ Mb+↵e[E] ·
Y

i2Ie(b)

((Ni ⌦ 1)� ei(1⌦N)).

15.13.b. The quiver of gr
V

↵
Mg. We give the explicit description of the quiver

of gr
V

↵
Mg for ↵ < 0 (see Proposition 15.7.5). We thus consider the vector spaces
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(gr
V

↵
Mg)b for b 2 [�1, 0]

n, and the morphisms

(15.13.11) (gr
V

↵
Mg)b�1i

cani(b)

**

(gr
V

↵
Mg)b

vari(b)

jj

for every i such that bi = 0. We know from that Corollary 15.13.6 that (grV
↵
Mg)b 6= 0

only if bi = 0 for some i 2 Ie (i.e., such that ei 6= 0). Moreover, the description of
(gr

V

↵
Mg)b given in this corollary enables one to define a natural quiver as follows.

(1) If i /2 Ie and bi = 0, we also have (b + ↵e)i = 0, and we will see that the
diagram

Mb+↵e�1i
[N]

cani ⌦1

**

Mb+↵e[N]

vari ⌦1

jj

commutes with 'b (which only involves indices j 2 Ie), inducing therefore in a natural
way a diagram

(gr
V

↵
Mg)b�1i

ci(b)

**

(gr
V

↵
Mg)b

vi(b)

jj

We notice moreover that the middle extension property for M is preserved for this
diagram, that is, ci(b) remains surjective and vi(b) remains injective.

(2) If i 2 Ie, we set '1i
= (Ni ⌦ 1)/ei � N so that, with obvious notation, 'b =

'1i
'b�1i

= 'b�1i
'1i

, and we can regard 'b,'1i
,'b�1i

as acting (injectively) both
on Mb+↵e[N] and Mb�1i+↵e[N]. Moreover, the multiplication by xi, which is an
isomorphism Mb+↵e

⇠�! Mb�1i+↵e, is such that xi⌦1 commutes with 'b�1i
. In such

a way, we can regard (gr
V

↵
Mg)b�1i

as the cokernel of 'b�1i
acting on Mb+↵e[N].

We can then define ci and vi as naturally induced by the following commutative
diagrams:

Mb+↵e[N]
'b�1i

// Mb+↵e[N] // //

'1i

✏✏

(gr
V

↵
Mg)b�1i

ci(b)
✏✏

Mb+↵e[N]
'b

// Mb+↵e[N] // // (gr
V

↵
Mg)b

Mb+↵e[N]
'b�1i

// Mb+↵e[N] // // (gr
V

↵
Mg)b�1i

Mb+↵e[N]

'1i

OO

'b
// Mb+↵e[N] // // (gr

V

↵
Mg)b

vi(b)

OO

resp.
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In other words, ci(b) is the natural morphism

Mb+↵e[N]/ Im'b�1i

'1i����! Mb+↵e[N]/ Im'b,

and vi(b) is the natural morphism induced by the inclusion Im'b ⇢ Im'b�1i
:

Mb+↵e[N]/ Im'b �! Mb+↵e[N]/ Im'b�1i
.

We note that vi(b) is surjective. Moreover,

15.13.12. Proposition. For ↵ < 0, the quiver of gr
V

↵
Mg has vertices (gr

V

↵
Mg)b =

Coker'b for b 2 [�1, 0]
n such that

(1) b = a� ↵e for some a 2 A+ Z,
(2) bi = 0 for some i 2 Ie.

It is isomorphic to the quiver defined by the morphisms ci(b), vi(b) as described above.

15.13.c. Induced sesquilinear pairing on nearby cycles. We aim at computing
the behaviour of a sesquilinear pairing with respect to the nearby cycle functor along
a monomial function. We now consider the setting of Section 15.12 and switch back
to the right setting. Suppose we have a sesquilinear pairing s : M0 ⌦C M00 ! C�n .
We still denote by s the pushforward sesquilinear pairing Mg

0⌦Mg

00 ! C�n+1 by the
inclusion defined by the graph of g(x) = x

e.
The purpose of this section is to find a formula (see Proposition 15.13.13 below)

for the induced pairing, as defined by (12.5.10 ⇤⇤),

gr
V

↵
s : gr

V

↵
Mg

0 ⌦ grV
↵
Mg

00 �! C�n

for ↵ 2 [�1, 0) that we fix below. Since we already know that gr
V

↵
Mg

0
, gr

V

↵
Mg

00 are
of normal crossing type, grV

↵
s is uniquely determined by the pairings

(gr
V

↵
s)b : (gr

V

↵
M

0
g
)b ⌦ (grV

↵
M 00

g
)b �! C

for b 6 0. What we have to do then is to derive a formula for (gr
V

↵
s)b in terms of

the original pairing sb+↵e. Any element of (grV
↵
M

0
g
)b can be expanded as

P
j
n
0
j
N

j ,
where n

0
j

is in the image by the morphism in Proposition 15.13.1 of m0
j
2 M

0
b+↵e, and

similarly with M
00
b+↵e.

15.13.13. Proposition. We have

(gr
V

↵
s)b

✓X

j>0

n
0
j
N

j
,

X

k>0

n
00
k
Nk

◆
=

X

j,k2N
sb+↵e

⇣
m

0
j
Ress=0

⇣Q
i2Ie(b)

s
j+k

Ni � eis

⌘
,m

00
k

⌘
.

The residue simply means here the coefficient of 1/s. Explicitly:

(15.13.14) Ress=0

⇣Q
i2Ie(b)

s
j+k

Ni � eis

⌘
=

Y

i2Ie(b)

(�1/ei) ·
Y

`2NIe(b)P
i
`i=j+k+1�#Ie(b)

(Ni/ei)
`i .
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Proof. Let us fix m
0 2M

0
b+↵e ⇢M

0
b+↵e[N] and m

00 2M
00
b+↵e ⇢M

00
b+↵e[N], and let us

consider their images n
0
, n

00 by the morphism in Proposition 15.13.1. It is enough to
prove that, for any ` > 0,

(15.13.15) (gr
V

↵
s)b

�
n
0
N

`
, n00

�
= sb+↵e

⇣
m

0
Ress=0

⇣Q
i2Ie(b)

s
`

Ni � eis

⌘
,m00

⌘
.

The induced pairing is given by the formula below, for ⌘o 2 C
1
c
(�

n
) and a cut-off

function �2C
1
c
(�) (see (12.5.10 ⇤⇤)):

h(grV
↵
s)b(n

0
N

`
, n00), ⌘oi = Ress=↵hsb+↵e(m

0 ⌦ 1,m00 ⌦ 1), (t@t � ↵)
`
⌘o|t|2s�(t)i

= Ress=↵(s� ↵)
`hsb+↵e(m

0
,m00), ⌘o|g|2s�(g)i.

Using the symbolic notation of Remark 15.8.5, the current sb+↵e(m
0
,m00) is equal to

⌦nsb+↵e

✓
m

0
Y

i|bi+↵ei<0

|xi|�2(1+bi+↵ei+Ni)
Y

i|bi=ei=0

|xi|�2Ni � 1

Ni

,m00
◆
·

Y

i|bi=ei=0

@xi
@xi

.

The factor �(g) does not affect the residue, and |g|2s = |x|2es. If we now define F (s)

as the result of pairing the current (renaming s� ↵ by s)

s
` · ⌦nsb+↵e

✓ Y

i|bi+↵ei<0

|xi|2eis�2(1+bi+Ni)
Y

i|bi=ei=0

|xi|�2Ni � 1

Ni

m
0
,m00

◆

against the test function
Q

i|bi=ei=0
@xi

@xi
⌘o(x), then F (s) is holomorphic on the

half-space Re s > 0, and

h(grV
↵
s)b(n

0
N

`
, n00), ⌘oi = Ress=0 F (s).

Recall the notation Ie = {i 2 I | ei 6= 0} and Ie(b) = {i 2 Ie | bi = 0}. Looking at
Y

i2Ie(b)

|xi|2eis�2�2Ni

Y

i2IerIe(b)

|xi|2eis�2(1+bi)�2Ni

Y

i|bi=ei=0

|xi|�2Ni � 1

Ni

,

we notice that the second factor is holomorphic near s = 0; the problem is therefore
the behavior of the first factor near s = 0. To understand what is going on, we apply
integration by parts, in the form of the identity (6.8.6 ⇤⇤); the result is that F (s) is
equal to the pairing between the current

⌦nsb+↵e

✓
s
`

Y

i2Ie(b)

|xi|2eis�2Ni � 1

(Ni � eis)
2

Y

i|bi<0

|xi|2eis�2(1+bi+Ni)
Y

i|bi=ei=0

|xi|�2Ni � 1

Ni

m
0
,m00

◆

and the test function Y

i|bi=0

@xi
@xi

⌘o(x).

The new function is meromorphic on a half-space of the form Re s > �", with a
unique pole of some order at the point s = 0. We know a priori (Proposition 15.8.3)
that Ress=0 F (s) can be expanded into a linear combination of hub,p, ⌘oi for certain
p 2 N

n, and that (gr
V

↵
s)b(n

0
N

`
, n00) is the coefficient of ub,0 in this expansion; here

ub,0 =

h
⌦n

Q
i|bi<0

|x|�2(1+bi)
Q

i2Ie(b)
L(xi)

i
· @xi

@xi
.
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Throwing away all the terms that cannot contribute to hub,0, ⌘oi, we eventually arrive
at (15.13.15). In particular, we see from Formula (15.13.14) that (gr

V

↵
s)b(n

0
, n00) = 0

if #Ie(b) > 2.

15.14. End of the proof of Theorem 15.11.1

We now include the F -filtration in the picture, and we will of course make strong
use of the distributivity property of the family (F, V

(1)
, . . . , V

(n)
).

15.14.a. Strict R-specializability along (g). We first enhance the surjective mor-
phism (15.12.5 ⇤) of Proposition 15.12.5 to a filtered surjective morphism. For that
purpose, we equip K0

↵
= V

(r)
↵e M⌦OX

D0
X

with the following F•D
0
X

-filtration:

(15.14.1) FpK
0

↵
=

X

q+k=p

Fq(V
(r)
↵e M)⌦OX

FkD
0
X
,

with Fq(V
(r)
↵e M) := FqM\V

(r)
↵e M, and with respect to which the operators ·tens�j are

of order one. We then set

F
0
p
V↵Mg = image

⇥
FpK

0

↵
�! V↵Mg

⇤
.

On the other hand, we set as usual

FpV↵Mg = FpMg \ V↵Mg.

15.14.2. Proposition. For ↵ < 0 and any p 2 Z, the filtrations FpV↵Mg and F
0
p
V↵Mg

coincide.

Proof. The inclusion F
0
p
V↵Mg ⇢ FpV↵Mg is clear. For the reverse inclusion, it is

enough to prove that, for any p 2 Z, we have

FpMg \ F
0
p+1

V↵Mg ⇢ F
0
p
V↵Mg.

Indeed, by an easy induction, this implies the inclusion FpMg\F
0
p+`

V↵Mg ⇢ F
0
p
V↵Mg

for any ` > 1, and thus, letting `! 1, FpV↵Mg ⇢ F
0
p
V↵Mg.

On the other hand, the above inclusion is equivalent to the injectivity of

(15.14.3) gr
F

0
V↵Mg �! gr

FMg.

By Proposition 15.12.5, the surjective morphism K0

↵
! V↵Mg factorizes as

(15.14.4) K0

↵
�!�! H

0
(K

•
↵
)

⇠�! V↵Mg,

and by definition the morphism FpK
0

↵
! F

0
p
V↵Mg is surjective. As the differentials

of the Koszul complex are filtered up to a shift, it follows that we have a commutative
diagram

H
0
(gr

FK•
↵
) // //

&&

gr
F

0
V↵Mg

(15.14.3)
✏✏

gr
FMg

and it is thus enough to prove:
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15.14.5. Lemma. The natural morphism H
0
(gr

FK•
↵
) ! gr

FMg is injective.

Proof of Lemma 15.14.5. In order to manipulate the filtration F•K
0

↵
and its graded

objects, it is convenient to introduce the auxiliary filtration

GqK
0

↵
:= V

(r)
↵e M⌦OX

FqD
0
X
,

and correspondingly,
GqMg =

L
j6q

M⌦ @
j

t

which induces in a natural way a filtration on gr
FMg, so that, denoting as usual by

GqH
0
(gr

FK•
↵
) the image of H0

(Gqgr
FK•

↵
) in H

0
(gr

FK•
↵
), it is sufficient to prove the

injectivity of
gr

G
H

0
(gr

FK
•
↵
) �! gr

G
gr

FMg.

We will prove:

15.14.6. Lemma. The complex gr
G
gr

FK•
↵

= gr
F
gr

GK•
↵

has nonzero cohomology in
degree 0 at most and the natural morphism

(15.14.6 ⇤) H
0
(gr

F
gr

GK
•
↵
) �! gr

F
gr

GMg

is injective.

From the first part of Lemma 15.14.6 we only make use of the vanishing of
H

�1
(gr

G
gr

FK•
↵
), which implies that H

0
(Gj�1gr

FK•
↵
) ! H

0
(Gjgr

FK•
↵
) is injective

for every j. Therefore (degeneration at E1 of the spectral sequence),

gr
G
H

0
(gr

FK
•
↵
) = H

0
(gr

G
gr

FK
•
↵
) = H

0
(gr

F
gr

GK
•
↵
),

so the injectivity of (15.14.6 ⇤) concludes the proof of Lemma 15.14.5 and thus that
of Proposition 15.14.2.

Proof of Lemma 15.14.6. If we omit the F -filtration, we have proved the correspond-
ing statement in Proposition 15.12.5 by reducing the proof to the monodromic case,
a strategy which does not apply in the presence of F .

In the following, we make use of the identifications, using the notation of Proposi-
tion 15.7.13(6) and omitting the functor p0�1 in the notation for the sake of simplicity,

K0

↵
= V

(r)
↵e M⌦OX

D0
X

' V
(r)
↵e M⌦O

X0 DX0 ' V
(r)
↵e M⌦C C[@x0 ],

and correspondingly for the F - and the G-filtrations.
On the one hand, we have

Fpgr
G

q
K0

↵
= Fp�qV

(r)
↵e M⌦C C[⇠

0
]q,

where C[⇠
0
]q consists of polynomials of degree 6 q in ⇠0 = (⇠i)i2Ie (class of @xi

), and
thus(2)

gr
F
gr

GK0

↵
' (gr

F
V

(r)
↵e M)⌦O

X0 OX0 [⇠
0
] ' (gr

F
V

(r)
↵e M)⌦C C[⇠

0
].

(2)In the following, we do not make precise the bi-grading of the objects and how the isomorphisms
are bi-graded, as it is straightforward.
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The bi-graded endomorphism corresponding to ·tens�j is (xj ⌦ ⇠j/ej � x1 ⌦ ⇠1/e1).
Since gr

F
V

(r)
↵e M is OX0 -flat (see Proposition 15.9.4(3)), the sequence (x2, . . . , xr) is

regular on gr
F
V

(r)
↵e M, and Lemma 15.12.8 yields the first part of the lemma.

On the other hand, grGMg = M[⌧ ], where ⌧ is the class of @t, and gr
F
gr

GMg =

(gr
FM)[⌧ ]. The morphism gr

F
gr

GK0

↵
! gr

F
gr

GMg is the morphism

(gr
F
V

(r)
↵e M)[⇠

0
] �! (gr

FM)[⌧ ]

induced by the natural morphism gr
F
V

(r)
↵e M ! gr

FM and sending ⇠i to @g/@xi · ⌧ .
It factorizes through the inclusion (gr

F
V

(r)
↵e M)[⌧ ] ! (gr

FM)[⌧ ]. Let us also recall
that the localization morphism gr

F
V

(r)
↵e M ! (gr

F
V

(r)
↵e M)(g

�1
) is injective (as follows

from the first line of (15.9.7) for any i 2 {1, . . . , r}).

15.14.7. Assertion. The Koszul complex

K

⇣�
(gr

F
V

(r)
↵e M)(g

�1
)
�
(gr

F
V

(r)
↵e M)

�
[⇠

0
], (xj⇠j/ej � x1⇠1/e1)j=2,...,r

⌘

has zero cohomology in negative degrees.

Before proving the assertion, let us check that the assertion implies the injectivity
of (15.14.6 ⇤). We wish to prove the injectivity of

(15.14.8)
(gr

F
V

(r)
↵e M)[⇠

0
]
�
(xj⇠j/ej � x1⇠1/e1)j=2,...,r �! (gr

F
V

(r)
↵e M)[⌧ ]

⇠i 7�! @g/@xi · ⌧.

It is easy to see that its localization by g is an isomorphism. It is therefore enough to
prove that the localization morphism for the left-hand side of (15.14.8) is injective.
This is the natural morphism

H
0
(gr

F
gr

GK
•
↵
) �! H

0
(gr

F
gr

GK
•
↵
(⇤g)),

so it is enough to check that H
�1

�
(gr

F
gr

GK•
↵
(⇤g))/(grF grGK•

↵
)
�
= 0. This in turn

follows from the assertion.
In order to end the proof of Lemma 15.14.5, we are left with proving the assertion.

Let us set h = x1 · · ·xr. Since

h
k
: (gr

F
V

(r)
↵e M)h

�k
�
(gr

F
V

(r)
↵e M)h

�k+1 �! (gr
F
V

(r)
↵e M)

�
(gr

F
V

(r)
↵e M)h, k > 0

is an isomorphism, an easy induction reduces to proving that the Koszul complex
of

�
(gr

F
V

(r)
↵e M)

�
(gr

F
V

(r)
↵e M)h

�
[⇠

0
] with respect to (xj⇠j/ej � x1⇠1/e1)j=2,...,r has

zero cohomology in negative degrees. It is therefore enough to prove that the
Koszul complex of (gr

F
V

(r)
↵e M)[⇠

0
] with respect to

�
h, (xj⇠j/ej � x1⇠1/e1)j=2,...,r

�

has zero cohomology in negative degrees, and furthermore (see Exercise 15.2), it
is enough to check that

�
h, (xj⇠j/ej � x1⇠1/e1)j=2,...,r

�
is a regular sequence on

(gr
F
V

(r)
↵e M) ⌦O

X0 OX0 [⇠
0
] = (gr

F
V

(r)
↵e M)[⇠

0
]. Lastly, since gr

F
V

(r)
↵e M is OX0 -flat

(see Proposition 15.9.4(3)), it is enough to check that it is a regular sequence
on OX0 [⇠

0
], equivalently, the sequence

�
(xj⇠j/ej � x1⇠1/e1)j=2,...,r

�
is regular on

(OX0/(h))[⇠
0
].
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For that purpose, we identify OX0/(h) with
L

r

i=1
OD

0
i

with OD
0
i
= OX0/(xi) and

we consider each term independently. Let us fix io 2 {1, . . . , r}. Then, on OD
0
i
[⇠

0
],

the sequence can be replaced with
�
(xi⇠i/ei � xio

⇠io/eio)i2{1,...,bio,...r}
�
, for which the

regularity follows from Lemma 15.12.8.

We can now prove the first part of Theorem 15.11.1, namely:

15.14.9. Corollary (R-specializability and middle extension along (g))
Let (M, F•M) be a coherently F -filtered DX-module of normal crossing type

along D. Assume that (M, F•M) is a middle extension along Di2I . Then (M, F•M)

is R-specializable and a middle extension along (g).

Proof. We refer to Definition 10.5.1 for the notion of filtered R-specializability and
middle extension of (M, F•M) along (g), that is, of (Mg, F•Mg) along (t).

We first wish to prove that the multiplication by t induces an isomorphism
FpV↵Mg

⇠�! FpV↵�1Mg if ↵ < 0. Since we already know that it is injective by
definition of the Kashiwara-Malgrange filtration, it suffices to prove that it is onto.
By the formulas (15.11.3 ⇤) and (15.12.1 ⇤), the multiplication by t is induced by g⌦1

on K0

↵
. Since g : FpV

(r)
↵e M ! FpV

(r)
(↵�1)eM is an isomorphism according to (15.9.7),

it follows that g ⌦ 1 : FpK
0

↵
! FpK

0

↵
is also an isomorphism and we deduce from

Proposition 15.14.2 that t : FpV↵Mg

⇠�! FpV↵�1Mg is onto.
We next aim at proving that, for ↵ > 0 and any p 2 Z,

FpV↵Mg := FpMg \ V↵Mg = (FpMg \ V<↵Mg) + (Fp�1V↵�1Mg) · @t,

and since we already know that Mg is an intermediate extension along (t), we are
left with proving the inclusion ⇢. By definition, FpMg =

L
`>0

Fp�kM⌦ @
k

t
. On the

other hand,
Fp�kM =

X

`2Nn

Fp�k�|`|V
(n)

<0 M · @`
x
,

according to Proposition 15.9.11(3) and Remark 15.9.13. Then, if m =
P

k>0
mk⌦@kt

belongs to FpMg \ V↵Mg, and if we set m0 =
P

` m0,`@
`
x

with m0,` 2 Fp�|`|V
(n)

<0 M,
the second line of (15.11.3 ⇤) shows that we can write

m =

X

`

(m0,` ⌦ 1)@
`
x
+m

0
, with

(P
`(m0,` ⌦ 1)@

`
x
2 FpV<0Mg ⇢ FpV↵Mg,

m
0 2 FpMg \ V↵Mg \ (Mg · @t).

Now, by definition, FpMg \ (Mg · @t) = Fp�1Mg · @t. Moreover, since @t : grVa Mg !
gr

V

a+1
Mg is injective for a 6= �1, we deduce easily that, for ↵ > 0, V↵Mg \ (Mg ·@t) =

V↵�1Mg · @t. In conclusion,

FpMg \V↵Mg \ (Mg · @t) = (Fp�1Mg · @t)\ (V↵�1Mg · @t) = (Fp�1Mg \V↵�1Mg) · @t,

where the latter equality follows from the injectivity of @t on Mg, and so

FpV↵Mg ⇢ (FpMg \ V<0Mg) + (Fp�1V↵�1Mg) · @t,

as desired.
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15.14.b. Normal crossing properties of ( g,�M, F• g,�M) along D. In this
section, we fix ↵ 2 [�1, 0). As we already know that gr

V

↵
Mg is of normal crossing

type along D and R-specializable along each Di (i = 1, . . . , r) by Corollaries 15.12.10
and 15.12.12, it remains to prove the R-specializability of (grV

↵
Mg, F•gr

V

↵
Mg) along

each Di and the distributivity of the family (F•gr
V

↵
Mg, V

(1)

• gr
V

↵
Mg, . . . , V

(n)

• gr
V

↵
Mg).

Furthermore, as we already know that grV
↵
Mg is of normal crossing type, Proposition

15.9.14 prompts us to consider the logarithmic module (gr
V

↵
Mg)60 = V

(n)

0 (gr
V

↵
Mg)

and its induced filtrations

(F•(gr
V

↵
Mg)60, V

(1)

• (gr
V

↵
Mg)60, . . . , V

(n)

• (gr
V

↵
Mg)60).

This approach will prove effective to obtain an explicit expression of the filtration on
gr

V
(n)

b gr
V

↵
Mg in terms of the presentation of Corollary 15.13.6.

We recall the notation:
• g = x

e, r = #Ie = #{i 2 I | ei 6= 0},
• D0

X
= OXh@x1

, . . . , @xr
i,

• V
(r)
0 (D0

X
) = OXhx1@x1

, . . . , xr@xr
i.

We now emphasize V
(n)

↵e M (considering ↵e as an n-multi-index with entries equal
to 0 if i /2 Ie), which is a coherent V

(n)

0 (DX)-module and that we will also consider
as a V

(r)
0 (D0

X
)-module (by forgetting the action of xi@xi

for i /2 Ie).
In a way similar to that of Section 15.12.b, we set K0

↵,60 = V
(n)

↵e M⌦OX
V

(r)
0 (D0

X
)

that we regard with its two structures of a V
(n)

0 (DX)-module (the trivial one and the
tensor one). For each i 2 I and bi 6 0, we set

V
(i)

bi
K0

↵,60 = (V
(n)

↵e+bi1i
M)⌦OX

V
(r)
0 (D0

X
),

so that, for b 6 0,

V
(n)

b K0

↵,60 = (V
(n)

↵e+bM)⌦OX
V

(r)
0 (D0

X
),

and in particular, V (n)

0 K0

↵,60 = K0

↵,60.
According to Corollary 15.12.12, the composed morphism K0

↵
! V↵Mg ! gr

V

↵
Mg

sends K0

↵,60 onto (gr
V

↵
Mg)60 and, arguing similarly, we find that for each b 6 0,

V
(n)

b (gr
V

↵
Mg)60 is the image of V (n)

b K0

↵,60.
We denote by (V↵Mg)60 the image of K0

↵,60 in V↵Mg, so that its image in gr
V

↵
M

is nothing but (grV
↵
Mg)60. Arguing as in Corollary 15.12.12, we find that (grV

↵
Mg)60

is also equal to (V↵Mg)60/(V<↵Mg)60.
We consider the complex (K•

↵,60, (·tens�j)j=2,...,r), which is a complex of right
V

(n)

0 (DX)-modules with the trivial structure, and the quotient complex K•
[↵],60 :=

K•
↵,60/K

•
↵�",60 (" > 0 small enough). Let us first check the logarithmic analogue of

Proposition 15.12.5.

15.14.10. Lemma. The Koszul complex K•
[↵],60 is a resolution of (grV

↵
Mg)60.

Proof. It similar, but simpler, than that of Proposition 15.12.5. It is enough to prove
that for each ↵ < 0, the complex K•

↵,60 is a resolution of (V↵Mg)60.
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For the exactness in negative degree, we filter V (n)

0 D0
X

by the degree of differential
operators so that the graded complex reads

�
V

(n)

↵e M⌦C C[⌘1, . . . , ⌘n], Id⌦(⌘j/ej � ⌘1/e1)j=2,...,r

�
,

where ⌘i is the class of xi@xi
, and the sequence (⌘j/ej�⌘1/e1)j=2,...,r is clearly regular,

hence the exactness.
As in Proposition 15.12.5 we see that the image Im of K�1

↵,60 ! K0

↵,60 is con-
tained in the kernel of K0

↵,60 ! (V↵Mg)60. Passing to the monodromic setting, one
checks that K0

↵,60 = Im �
L

`>0

L
b60 M↵e+b ⌦ (x1@x1

)
`. Assume that an element

P
`o

`=0

P
b60 mb,` ⌦ (x1@x1

)
` of the second term with mb,`o 6= 0 for some b 6 0 is sent

to zero in (V↵Mg)60 ⇢ Mg. The term of maximal degree in @t of its image readsP
b60 mb,`og

`o ⌦ @
`o
t

, so mb,`og
`o must be zero for each b 6 0. As ↵e+ b 6 0 and M

is a middle extension of normal crossing type along each Di, this implies mb,`o = 0

for each b 6 0, a contradiction. In conclusion, Ker[K0

↵,60 ! (V↵Mg)60] is equal to
Im[K�1

↵,60 ! K0

↵,60].

We also equip K0

↵,60 with the filtration

FpK
0

↵,60 =

X

q6p

FqV
(n)

↵e M⌦OX
Fp�qV

(r)
0 (D0

X
).

The right DX -module K0

↵
(with its trivial structure) contains K0

↵,60 and is equal to
the DX -submodule generated by it. Correspondingly we have

FpK
0

↵
=

X

q6p

FqK
0

↵,60 · Fp�qDX .

Indeed, this follows from the property that V
(r)
↵e M =

P
k2NIrIe V

(n)

↵e M · @k
x
, as a

consequence of (15.9.7).
The surjective map K0

↵,60 ! (gr
V

↵
Mg)60 sends the filtration F•K

0

↵,60 to a
coherent F -filtration that we denote F

0
•(gr

V

↵
Mg)60. By the previous consider-

ations, the latter filtration generates the filtration F
0
•gr

V

↵
Mg (i.e., F

0
p
gr

V

↵
Mg =P

q6p
F

0
q
(gr

V

↵
Mg)60 · Fp�qDX), that we know, by Proposition 15.14.2, to be equal

to the filtration F•gr
V

↵
Mg. The preceding discussion justifies that, with Proposition

15.9.14, the proof of Theorem 15.11.1 will be achieved with the next proposition.

15.14.11. Proposition. The family

(F
0
•(gr

V

↵
Mg)60, V

(1)

• (gr
V

↵
Mg)60, . . . , V

(n)

• (gr
V

↵
Mg)60)

is distributive and satisfies
• F

0
p
V

(i)

bi
(gr

V

↵
Mg)60 · xi = F

0
p
V

(i)

bi�1
(gr

V

↵
Mg)60 for every i 2 I and bi < 0.

• F
0
p
V

(i)

�1
(gr

V

↵
Mg)60 · @xi

⇢ F
0
p+1

V
(i)

0
(gr

V

↵
Mg)60 for every i 2 I.

Proof of distributivity. For the sake of simplicity, we will give the proof for any family
of Z-indexed V -filtrations V

(i)

�i+Zgr
V

↵
Mg with fixed �i 2 Ai ⇢ [�1, 0) (i = 1, . . . , n),

so that we can easily interpret distributivity in terms of flatness over a polynomial
ring. The general case would need that we replace each V

(i)

�i+Zgr
V

↵
Mg by various V (i)

�ij+Z
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with �ij varying in Ai for each i = 1, . . . , n (see (9.3.5)). Distributivity amounts to
C[z0, z1, . . . , zn]-flatness of the Rees module RF 0V (gr

V

↵
Mg), which is a module over

the ring R = C[z0, z1, . . . , zn], where z0 resp. zi (i = 1, . . . , n) is the Rees variable of
the filtration F•, resp. V (i)

• .
We enhance the complexes K•

↵,60 and K•
[↵],60 by taking into account the filtra-

tions. We have already defined the filtrations (F•, (V
(i)

• )i=1,...,n) on K0

↵,60, hence
on each term of the Koszul complex K•

↵,60 and on the quotient complex K•
[↵],60 :=

K•
↵,60/K

•
↵�",60. The isomorphism

H
0
(K

•
[↵],60)

⇠�! (gr
V

↵
Mg)60

provided by Lemma 15.14.10 is strictly compatible with each of the filtrations F•,
(V

(i)

• )i=1,...,n.
With the multi-Rees construction, we focus on the complex eK•

[↵],60 = RFV (K
•
[↵],60)

of R-modules, which is a Koszul complex with respect to differentials deduced from
(·tens�j)j=2,...,r.

15.14.12. Lemma.

(1) The natural morphism RFV H
0
(K•

[↵],60) ! RF 0V (gr
V

↵
Mg)60 is an isomor-

phism.
(2) The Koszul complex eK•

[↵],60 is exact in negative degrees.
(3) The R-module H

0
(eK•

[↵],60) is flat.

We end the proof of the distributivity property by means of the flatness criterion of
Proposition 15.2.6, applied to H

0
(eK•

[↵],60). Being R-flat by (3), H0
(eK•

[↵],60) is noth-
ing but the Rees module of an (n + 1)-filtration (F•, V

(1)

• , . . . , V
(n)

• ) on H
0
(eK•

[↵],60)

(see Exercise 15.1). Furthermore, theses filtrations are those induced by the corre-
sponding ones on (eK0

[↵],60). In other words, H
0
(eK•

[↵],60) = RFV H
0
(eK•

[↵],60) and,
by the first point of the lemma, RF 0V (gr

V

↵
Mg) is thus R-flat, which is the desired

distributivity.

Proof of Lemma 15.14.12(1). According to our preliminary discussion, the natural
morphism H

0
(K•

[↵],60) ! (gr
V

↵
Mg)60 is an isomorphism, and this isomorphism is

strictly compatible with the filtrations V
(i)

• (i = 1, . . . , n) and F•, F
0
•. This yields the

first point.

Proof of Lemma 15.14.12(2). We write

K0

[↵],60 = (V
(n)

↵e M/V
(n)

(↵�")eM)⌦C C[x
0
@x0 ]

with x
0
= (x1, . . . , xr). We have RFV C[x

0
@x0 ] = R[x

0e@x0 ]. The complex of multi-Rees
modules RFV (K

•
[↵],60) has differentials given by ·tens(xj

e@xj
� x1

e@x1
) (j = 2, . . . , r).

It also comes equip with the filtration G• as in the proof of Lemma 15.14.10.
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As G is bounded below, it is enough to show the exactness in negative degrees of
the complex RFV gr

G
(K•

[↵],60), which is the Koszul complex of

RFV gr
G
(K0

[↵],60) = (RFV gr
V

(n)

↵e M)⌦R RFV (C[⌘1, . . . , ⌘r])

= (RFV gr
V

(n)

↵e M)⌦R R[e⌘1, . . . , e⌘r].

In this presentation, the induced action of ·tens�j is by 1 ⌦ e⌘j/ej � 1 ⌦ e⌘1/e1. The
complex RFV (gr

GK•
[↵],60) is thus identified with the Koszul complex

K

⇣
(RFV gr

V
(n)

↵e M)⌦R R[e⌘1, . . . , e⌘r],
�
1⌦ e⌘j/ej � 1⌦ e⌘1/e1

�
j=2,...,r

⌘
.

Since RFV gr
V

(n)

↵e M) is R-flat, due to the distributivity property of F•, (V
(i)

• )i2I on M,
this complex reads

RFV (gr
V

(n)

↵e M)⌦R K
�
R[e⌘1, . . . , e⌘r], (e⌘j/ej � e⌘1/e1)j=2,...,r

�
.

Its is straightforward to check that the Koszul complex

K
�
R[e⌘1, . . . , e⌘r], (e⌘j/ej � e⌘1/e1)j=2,...,r

�

is a resolution of R[e⌘1], hence, using flatness of RFV (gr
V

(n)

↵e M) once more, we find
that RFV (gr

GK•
[↵],60) is a resolution of RFV (gr

V
(n)

↵e M) ⌦R R[e⌘1]. In particular, its
cohomology in negative degree is zero.

Proof of Lemma 15.14.12(3). From the previous computation one deduces that

H
0
(RFV (gr

GK
•
[↵],60)) ' (RFV gr

V
(n)

↵e M)⌦C C[u1],

with the R-module structure induced from that on RFV gr
V

(n)

↵e M. By the normal
crossing type property of (M, F•M), it is thus R-flat.

The proof of (2) also shows that each complex RFV (GqK
•
[↵],60) is acyclic in neg-

ative degrees for any q, and an easy induction implies flatness of the R-module
H

0
(RFV (GqK

•
[↵],60)) for any k, hence that of H0

(RFV (K
•
[↵],60)).

We now prove the last two properties of Proposition 15.14.11.

Proof that F 0
p
V

(i)

bi
(gr

V

↵
Mg)60 ·xi = F

0
p
V

(i)

bi�1
(gr

V

↵
Mg)60 if bi < 0. Due to the resolution

of RF 0V (i)(gr
V

↵
Mg)60 by RFV (i)(K•

[↵],60), it is enough to check that

xi : FpV
(i)

bi
(K0

[↵],60) �! FpV
(i)

bi�1
(K0

[↵],60)

is an isomorphism for any p, any i 2 I and any bi < 0, and it is enough to
prove the same property for K0

↵,60 for any ↵ < 0, which amount to the inclusion
FpV

(i)

bi�1
K0

↵,60 ⇢ FpV
(i)

bi
K0

↵,60 · xi.
On the one hand, by the logarithmic analogue of Corollary 15.12.12 we have, for

bi 6 0,
V

(i)

bi
K0

↵,60 = (V
(n)

↵e+bi1i
M)⌦ C[x

0
@x0 ].

On the other hand, by definition,

FpK
0

↵,60 =
L
k>0

Fp�|k|(V
(n)

↵e M)⌦OX
(x

0
@x0)

k
,
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so that, if bi 6 0,

(15.14.13) FpV
(i)

bi
K0

↵,60 =
L
k>0

Fp�|k|(V
(n)

↵e+bi1i
M)⌦OX

(x
0
@x0)

k
.

Since (M, F•M) is of normal crossing type, (15.9.7) yields, if bi < 0,

Fp�|k|(V
(n)

↵e+(bi�1)1i

M) = Fp�|k|(V
(n)

↵e+bi1i
M) · xi,

and, on noting the inclusion

�
Fp�|k|(V

(n)

↵e+bi1i
M) · xi

�
⌦ (xi@xi

)
ki ⇢

 kiX

`i=0

Fp�|k|(V
(n)

↵e+bi1i
M)⌦ (xi@xi

)
`i

�
· xi,

we deduce FpV
(i)

bi�1
K

0

↵,60 ⇢ FpV
(i)

bi
K

0

↵,60 · xi, as desired.

Proof that F 0
p
V

(i)

�1
(gr

V

↵
Mg)60 · @xi

⇢ F
0
p+1

V
(i)

0
(gr

V

↵
Mg)60. As above, we argue with

K0

↵,60 which is contained in K0

↵
, and the action of @xi

is that on K0

↵
. We use

the expression (15.14.13) and we are led to checking that (Fp�|k|V
(n)

↵e�1i
M) · @xi

⇢
Fp+1�|k|V

(n)

↵e M, which is by definition of the filtrations.

15.14.c. Explicit expression of nearby cycles with filtration. We revisit the
isomorphism of Corollary 15.13.6 for (M, F•M) satisfying the assumptions of Theorem
15.11.1. For b 6 0, we replace (gr

V

↵
Mg)b of Corollary 15.13.6 with gr

V
(n)

b (gr
V

↵
Mg)

and M↵e+b with gr
V

(n)

↵e+bM. We still denote by 'b the morphism

V
(n)

↵e+bM⌦C C[t@t] �! V
(n)

↵e+bM⌦C C[t@t]

defined by (15.13.6 ⇤), with N = t@t � ↵ and Ni = Di � ↵ei. From the expression
(15.12.1 ⇤) it follows, since b 6 0, that V

(n)

↵e+bM ⌦C C[t@t] is sent into V↵Mg via the
isomorphism

V
(n)

↵e+bM⌦C C[t@t] =
L
q

V
(n)

↵e+bM⌦C t
q
@
q

t

⇠�!
◆

L
q

V
(n)

↵e+bMg
q ⌦C @

q

t
=

L
q

V
(n)

(↵�q)e+bM⌦C @
q

t

⇢ M⌦C C[@t] = Mg.

From Proposition 15.13.1 we deduce that the image of V (n)

↵e+bM⌦CC[t@t] in gr
V

↵
Mg is

equal to V
(n)

b (gr
V

↵
Mg) and Corollary 15.13.6 identifies more precisely gr

V
(n)

b (gr
V

↵
Mg)

with the cokernel of

'b : gr
V

(n)

↵e+bM⌦C C[t@t] �! gr
V

(n)

↵e+bM⌦C C[t@t].

We equip V
(n)

↵e+bM⌦C C[t@t] with the filtration

Fp(V
(n)

↵e+bM⌦C C[t@t]) =
L
q>0

Fp�qV
(n)

↵e+bM⌦ t
q
@
q

t

⇠�!
◆

L
q>0

Fp�qV
(n)

(↵�q)e+bM⌦ @
q

t
⇢ FpMg \ V↵Mg = FpV↵Mg.
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The image of the induced morphism

Fp(V
(n)

↵e+bM⌦C C[t@t]) �! gr
V

↵
Mg

is thus contained in Fp(gr
V

↵
Mg) \ V

(n)

b (gr
V

↵
Mg).

15.14.14. Proposition. This inclusion is an equality.

The main application of the proposition is the next corollary, which extends the
isomorphism of Corollary 15.13.6 to the filtered setting, and thus yields an explicit
expression for the F -filtration on gr

V
(n)

b (gr
V

↵
Mg).

15.14.15. Corollary. The filtration of grV
(n)

b (gr
V

↵
Mg) naturally induced from F•(gr

V

↵
Mg)

(taking into account that (gr
V

↵
Mg, F•gr

V

↵
Mg) is of normal crossing type along D) is

equal to the image of the filtration F•(gr
V

(n)

↵e+bM⌦C C[t@t]) by the morphism

gr
V

(n)

↵e+bM⌦C C[t@t] �! Coker'b.

Proof of the corollary. Recall that grV
(n)

↵e+bM = V
(n)

↵e+bM
�P

b0�b V
(n)

↵e+b0M and similarly

gr
V

(n)

b gr
V

↵
Mg = V

(n)

b gr
V

↵
Mg

�P
b0�b V

(n)

b0 gr
V

↵
Mg.

On the one hand, the filtration Fp(gr
V

(n)

↵e+bM⌦C C[t@t]) is defined as
L
q>0

Fp�qgr
V

(n)

↵e+bM⌦ t
q
@
q

t
,

and is equal to the image of Fp(V
(n)

↵e+bM⌦C C[t@t]) in gr
V

(n)

↵e+bM⌦C C[t@t].
On the other hand, Fpgr

V
(n)

b gr
V

↵
Mg is equal, since (gr

V

↵
Mg, F•gr

V

↵
Mg) is of normal

crossing type along D, to the image of FpV
(n)

b gr
V

↵
Mg by the projection V

(n)

b gr
V

↵
Mg !

gr
V

(n)

b gr
V

↵
Mg.

The assertion then follows from the commutative diagram below, where the upper
horizontal morphism is onto according to the proposition:

Fp(V
(n)

↵e+bM⌦C C[t@t])

✏✏

✏✏

// // FpV
(n)

b gr
V

↵
Mg

✏✏

✏✏

Fp(gr
V

(n)

↵e+bM⌦C C[t@t])
// Fpgr

V
(n)

b gr
V

↵
Mg

Proof of Proposition 15.14.14. We observe that the image of Fp(V
(n)

↵e+bM ⌦C C[t@t])

in gr
V

↵
Mg, for b 6 0, is contained in (gr

V

↵
Mg)60 and is equal to the image of

Fp(V
(n)

↵e+bM ⌦OX
V

(r)
0 D0

X
) = FpV

(n)

↵e+b(V
(n)

↵e M ⌦OX
V

(r)
0 D0

X
), according to the re-

lation (15.11.3 ⇤⇤) between the action of xi@xi
and that of t@t on gr

V

↵
Mg.

By Lemma 15.14.12, RFV K
0

↵,60 surjects onto RF 0V (gr
V

↵
Mg)60, which implies in

particular that FpV
(n)

b (K0

↵,60) has image F
0
p
V

(n)

b (gr
V

↵
Mg)60, where F

0
•(gr

V

↵
Mg)60 is

the filtration used in Proposition 15.14.11. In conclusion, the image in (gr
V

↵
Mg)60 of

Fp(V
(n)

↵e+bM⌦C C[t@t]) is equal to F
0
p
V

(n)

↵e+b(gr
V

↵
Mg)60.
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We recall that the filtration F•gr
V

↵
Mg is that generated by F

0
•(gr

V

↵
Mg)60. Then,

Proposition 15.9.14(1), together with Proposition 15.14.11, implies in particular that
Fpgr

V

↵
Mg \ V

(n)

0 gr
V

↵
Mg = F

0
p
V

(n)

0 gr
V

↵
Mg. Intersecting both terms with V

(n)

b gr
V

↵
Mg

for b 6 0 yields that the image in (gr
V

↵
Mg)60 of Fp(V

(n)

↵e+bM ⌦C C[t@t]) is equal to
Fpgr

V

↵
Mg \ V

(n)

b gr
V

↵
Mg.

15.14.d. A criterion for the existence of the filtered monodromy filtration

In order to settle the question, we switch to the setting of eDX -modules as in
Chapter 9, so that eM denotes the Rees module RFM. Our previous results can be
expressed by saying that, under the filtered normal crossing type assumption, eM is
strictly R-specializable along (g). We still let N denote the nilpotent endomorphism on
gr

V

↵
eMg, which admits a monodromy filtration M(N)•. In general, one cannot ensure

that each graded module grM
`
(gr

V

↵
eMg) is strict, equivalently, each primitive submodule

P`(gr
V

↵
eMg) is strict. A criterion for strictness has been given in Proposition 9.4.10:

any power of N should be a strict endomorphism of grV
↵
eMg.

15.14.16. Proposition. Let (M, F•M) be of normal crossing type along D. Assume that
for each b 6 0 and for a fixed ↵ < 0, the filtered vector space (gr

V
(n)

↵e+bM, F•gr
V

(n)

↵e+bM)

underlies a mixed Hodge structure such that each Ni is a morphism of mixed Hodge
structures gr

V
(n)

↵e+bM ! gr
V

(n)

↵e+bM(�1). Then any power of N : gr
V

↵
eMg ! gr

V

↵
eMg is

strict.

Proof. Recall the notation Nb for gr
V

(n)

b N on gr
V

(n)

b gr
V

↵
eMg. We first claim that it is

enough to prove strictness for any power of Nb for any b 6 0. Indeed, assuming this
property, we argue by induction on #I:

Let us fix i 2 I. Since (gr
V

(i)

bi
(gr

V

↵
eMg), F•gr

V
(i)

bi
(gr

V

↵
eMg)) is of normal crossing type

on (Di,
S

j 6=i
Dj) for any bi 2 [�1, 0] (see Proposition 15.9.4(1)), we deduce from the

assumption on Nb, by induction on #I, that gr
V

(i)

bi
N

` is strict for any ` > 1. This
means, by definition, that N

` (` > 1) is strictly R-specializable along Di. Corollary
10.7.6 implies then that N

` is strict in some neighborhood of Di, as desired.
For the strictness of N

`

b, it is enough to check that Coker'b underlies a mixed
Hodge structure and that Nb (hence any N

`

b) is a morphism of mixed Hodge structures
(see Proposition 2.6.8). This is precisely Example 2.6.10(4).

15.15. Exercises

Exercise 15.15 (Proof of Lemma 15.12.8).
(1) Prove that (a2u2 � a1u1) is injective on M [u1, . . . , un] := M ⌦A A[u1, . . . , un]

by using that a2 is injective on M .
(2) Show that the natural map

F
(2)

0
M [u1, . . . , un] := M [u1, u3, . . . , un] �! M [u1, . . . , un]/(a2u2 � a1u1)

is injective.
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(3) Show inductively that

gr
F

(2)

k

�
M [u1, . . . , un]/(a2u2 � a1u1)

�
= (M/(a2))u

k

2
[u1, u3, . . . , un].

(4) Conclude the proof by induction on n.

Exercise 15.16 (Comptibility of (F, V (1)
, . . . , V

(n)
) on DX ).

(1) Consider first the ring C[x]h@xi.
(a) Show that C[x] decomposes as a C-vector space as the direct sum, indexed

by subsets I ⇢ {1, . . . , n} with complement I
c, of the spaces C[xIc ], and thus

V
(n)

0
C[x]h@xi = C[x]hx@xi =

L
I

C[xIc ]hx@xi,

V
(n)

k C[x]h@xi =
L
I

L
`I6kI

C[xIc ]hx@xi@`IxI
,

FpV
(n)

k C[x]h@xi =
L
I

L
`I6kI

L
m2Nn

|`I |+|m|6p

C[xIc ](x@x)
m
@
`I
xI
.

(b) Use this decomposition to show that the ring RFV C[x]h@xi is free over
R = C[z0, . . . , zn].

(2) Show that RFV DX = OX [z0, . . . , zn] ⌦R RFV C[x]h@xi, and conclude that
RFV DX is R-flat.

15.16. Comments

This chapter is quite technical. This is mainly due to the nature of the problems
considered. Dealing with many filtrations on an object and understanding their re-
lations is intrinsically complicated. It is intended to be an expanded version of the
part of Section 3 in [Sai90] which is concerned with filtered D-modules. As already
explained, we do not refer to perverse sheaves, so the perverse sheaf version, which is
present in loc. cit., is not considered here.

The main theme for us is the notion of “transversality” between filtrations and its
behavior under the nearby cycle functor. The notion of compatibility of filtrations
has been analyzed in a very general setting in Section 1 of [Sai88]. We have chosen
here to emphasize a more explicit approach in the framework of abelian categories,
and even in the more restrictive framework of categories of sheaves of modules on a
topological space. Furthermore, we mainly focus on the notion distributive families of
filtrations, although we relate it to that of compatible families of filtrations considered
in [Sai88]. We interpret these notions in algebraic terms, that is, in terms of flatness of
the associated multi-Rees module, which is a multi-graded module over the polynomial
ring of its parameters. This approach goes back at least to [Sab87b]. When omitting
the F -filtration, the theory mainly reduces to that of monodromic modules over the
Weyl algebra in n variables and is equivalent to that of monodromic perverse sheaves
as considered by Verdier in [Ver83].


