
CHAPTER 16

THE STRUCTURE THEOREM FOR
POLARIZABLE HODGE MODULES

Summary. The structure theorem proved in this chapter allows for a more
accessible approach to polarizable Hodge modules: they can be obtained from
polarizable variations of complex Hodge structures. The correspondence in one
direction has been proved in Chapter 14 and the other direction involves the
extension to arbitrary dimensions of the results of Chapter 6 together with the
detailed analysis in the normal crossing cas made in Chapter 15. Various appli-
cations follow, the Kodaira-Saito vanishing theorem among others.

16.1. Introduction

The definition of a polarizable Hodge module allows for proving various properties
by an inductive procedure, but makes it difficult to check that a given object of
eD-Triples(X) equipped with a pre-polarization is actually a polarizable Hodge module.
For example, proving that a polarizable variation of Hodge structure is a polarizable
Hodge module is already non trivial (see Theorem 14.6.1) and there is an equivalence
between such variations and smooth Hodge modules. It is therefore desirable to
provide a similar criterion for any polarizable Hodge module. This is realized by the
structure theorem 16.2.1. This new characterization of polarizable Hodge modules
allows for various applications:

• the stability of WHM by smooth pullback which, together with Proposition 14.7.5,
implies the stability of WHM by strictly non-characteristic pullback;

• the Kodaira-Saito vanishing theorem for objects of WHM(X).

16.2. The structure theorem

This is the converse of Proposition 14.2.10. Let X be a complex manifold and
let Z be an irreducible closed analytic subset of X. Let VHSgen(Z,w) the category of
“generically defined variations of Hodge structure of weight w on Z”, as defined now.

We say that a pair (Z
o
, HH) consisting of a smooth Zariski-dense open subset Z

o

of Z and of a variation of Hodge structure HH of weight w on Z
o is equivalent to a
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similar pair (Z 0o
, HH

0
) if HH and HH

0 coincide on Z
o\Z

0o. An object of VHSgen(Z,w)
is such an equivalence class. Note that it has a maximal representative (by considering
the union of the domains of all the representatives). A morphism between objects of
VHSgen(Z,w) is defined similarly.

We also denote by pVHS
gen

(Z,w) the full subcategory of VHSgen(Z,w) consisting
of objects which are polarizable, i.e., have a polarizable representative.

By Proposition 14.2.10, there is a restriction functor

pHM
Z
(X,w) 7�! pVHS

gen
(Z,w � codimZ).

16.2.1. Theorem (Structure theorem). Under these assumptions, the restriction functor
pHM

Z
(X,w) 7! pVHS

gen
(Z,w � codimZ) is an equivalence of categories.

Since each polarizable Hodge module has a unique decomposition with respect to
the irreducible components of its pure support, the structure theorem gives a complete
description of the category pHM(X,w). The remaining part of this section is devoted
to the proof of the structure theorem.

16.2.a. Reduction to the normal crossing situation. We first notice that the
restriction functor pHM

Z
(X,w) ! pVHS

gen
(Z,w � codimZ) is faithful. Indeed, let

M1,M2 be objects of pHM
Z
(X,w) and let ','

0
: M1 ! M2 be morphisms between

them, which coincide on some Zo. Then the image of '�'
0 is an object of pHM(X,w),

according to Corollary 14.2.19, and is supported on Z r Z
o, hence is zero according

to the definition of the pure support. It follows that ' = '
0.

Due to the faithfulness, we note that the question is local: for fullness, if a mor-
phism between the restriction to some Z

o of two polarized Hodge modules locally
extends on Z, then it globally extends by uniqueness of the extension; for essential
surjectivity, we note that two local extensions as polarized Hodge modules of a po-
larized variation of Hodge structure coincide, by extending the identity morphism on
some Zo according to local fullness, and we can thus glue local extensions into a global
one.

For the essential surjectivity we start from a polarized variation of Hodge structure
on some smooth Zariski-dense open subset Zo ⇢ Z. We choose a projective morphism
⇡ : Z

0 ! X with Z
0 smooth and connected, such that ⇡ is an isomorphism Z

0o
:=

⇡
�1

(Z
o
) ! Z

o, and such that Z
0
r Z

0o is a divisor with normal crossing. Assuming
we have extended the variation on Z

0o as a polarized Hodge module on Z
0 with

pure support Z
0, we apply to the latter the direct image theorem 14.3.1 for ⇡, and

get the desired polarized Hodge module as the component of this direct image T⇡
0

⇤
having pure support Z. We argue similarly for the fullness: if any morphism defined
on some Z

o can be extended as a morphism between the extended objects on Z
0,

we push it forward by ⇡ and restrict it as a morphism between the corresponding
components. We are thus reduced to the case where Z = X and the variation exists
on X

o
:= X rD, where D is a divisor with normal crossings.
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16.2.b. The normal crossing case. We consider a normal crossing pair (X,D) and
a polarized variation of Hodge structure (HH, S) of weight w�dimX on X

o
:= XrD.

The theorem is a consequence of the next proposition.

16.2.2. Proposition. With these assumptions,
(1) the polarized variation of Hodge structure (HH, S) extends as a pre-polarized

triple (eT, S) of weight w on X, which is of normal crossing type and middle extension
on (X,D);

(2) the pre-polarized triple (eT, S) obtained in (1) satisfies the properties of Defini-
tion 14.2.2 with respect to any germ of holomorphic function g such that g�1

(0) ⇢ D;
(3) the pre-polarized triple (eT, S) obtained in (1) satisfies the properties of Defini-

tion 14.2.2 with respect to any germ of holomorphic function g.

Let us start with simple observations.

16.2.3. Fullness and locality of the extension property 16.2.2(1). We first show:
Let ( eM, F•

eM) and ( eM0
, F•

eM0
) be coherent filtered eDX-modules of normal crossing

type and middle extension along each component of D (hence along D, by Corollary
15.11.2). Any morphism '

o
: ( eM, F•

eM)|Xo

⇠�! ( eM0
, F•

eM0
)|Xo extends in a unique

way as a morphism ' : ( eM, F•
eM)

⇠�! ( eM0
, F•

eM0
). In particular, if 'o is an isomor-

phism, then so is '.
The question is local and we can argue with coordinates (x1, . . . , xn) as in Part 2

of Chapter 15. By considering Deligne’s canonical meromorphic extension, one first
checks that '

o extends in a unique way as a morphism ' : eM(⇤D) ! eM0
(⇤D) which

sends V
(n)

<0
eM to V

(n)

<0
eM0. The question is to check that it is strictly compatible with

the filtrations. Then, denoting by j : X
o
,! X the open inclusion, ' induces a

morphism
j⇤j

�1
Fp

eM \ V
(n)

<0
eM �! j⇤j

�1
Fp

eM0 \ V
(n)

<0
eM0

for each p 2 Z. Then, Proposition 15.9.11 together with Remark 15.9.13 yield the
conclusion.

We now check compatibility of ' with the sesquilinear pairings in eT, eT0. For that,
we first observe that ' is compatible with the associated moderate pre-polarizations
s
modD

, s
0modD (see Section 12.5.f). As eM is a middle extension along D (see Corollary

15.11.2), it follows from Corollary 12.5.41 that ' is compatible with s, s
0. At this point,

we have shown fullness in the structure theorem.
It remains to check that, in 16.2.2(1), the extension of S is unique. This also follows

from the middle extension property of Corollary 15.11.2.

16.2.4. Property 16.2.2(2) implies 16.2.2(3). Let g be any germ of holomorphic function
at x 2 X. If the germ is taken at a point x 2 X

o, then the properties hold, since
we already know that a polarized variation of Hodge structure is a polarized Hodge
module (Theorem 14.6.1). Therefore, we only need to consider germs g at a point
x 2 D. To reduce to the case of a monomial, we argue as in the proof when (eT, S) is a
polarized variation of Hodge structure (see Step one of the proof of Theorem 14.6.1).
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Given any g, we can find a projective modification ⇡ : X
0 ! X such that D

0
:=

⇡
�1

(D [ g
�1

(0)) is a divisor with normal crossing in the complex manifold X
0, so

that g � ⇡ can be expressed in local coordinates as a monomial, and such that ⇡ is an
isomorphism above X r g

�1
(0). By the first step, we extend the variation as a pre-

polarized triple (eT0
, S

0
) of normal crossing type and middle extension on (X

0
, D

0
) and

the properties of Definition 14.2.2 are satisfied for g�⇡. We can then apply Proposition
14.4.2 to obtain the desired properties for g with respect to T⇡

(0)

⇤ (eT0
, S

0
), which is S-

decomposable along D[ g
�1

(0). Let (eT0
0
, S

0
0
) be its pure component supported on X.

On the other hand, let (eT, S) be the object obtained from (HH, S) at the first step.
Then eT also has pure support equal to X.

16.2.c. Polarized Hodge modules in the normal crossing case. Let X be a
complex manifold and let D =

S
i2I

Di be a reduced divisor with normal crossings.
Let (M, S) be a polarized Hodge module with pure support X and singularities on D,
so that (M, S)|XrD is a polarized variation of Hodge structure.

16.2.5. Theorem. With these assumptions, the filtered DX-module (M, F
•M) under-

lying M is of normal crossing type and a middle extension along Di2I (Definitions
15.9.1 and 15.9.10).

We first check the property for M.

16.2.6. Lemma. With these assumptions, the underlying DX-module M is of normal
crossing type (Definition 15.7.11) and a middle extension along Di2I (Definition
15.7.8).

Let us recall the local setting of Chapter 15. The space X is a polydisc in C
n

with analytic coordinates x1, . . . , xn, we fix ` 6 n and we denote by D the divisor
{x1 · · ·x` = 0}. We also denote by Di (i 2 I) the smooth components of D and
by D(`) their intersection D1\ · · ·\D`. We will shorten the notation OD(`)

[x1, . . . , x`]

into OD(`)
[x] and DD(`)

[x1, . . . , x`]h@x1
, . . . , @x`

i into DD(`)
[x]h@xi.

Proof of Lemma 16.2.6. Since M is holonomic, and smooth on X r D, M(⇤D) is a
coherent OX(⇤D)-module, according to Example 11.3.14.

On the smooth open subset of D, we can apply the same argument as for Propo-
sition 7.4.12 and conclude that for each p, we have the equality

FpM \ V<0M = (j⇤j
�1

FpM) \ V<0M.

In particular, for p � 0 we obtain that V<0M = FpM \ V<0M is OX -coherent. This
means that the OX(⇤D)-module with flat connection M(⇤D) has regular singularities
along the smooth open subset of D. It follows from [Del70, Th. 4.1 p. 88] that M(⇤D)

is OX(⇤D)-locally free and has regular singularities along D, so M(⇤D) is of normal
crossing type along D. Moreover, M is its middle extension along Di2I , hence is also
of normal crossing type.
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16.2.7. Lemma. Assume there exists a coherent filtered DX-module (M0
, F•M

0
) of nor-

mal crossing type along D and a middle extension along Di2I such that the restrictions
j
�1

(M, F•M) and j
�1

(M0
, F•M

0
) are isomorphic. Then (M, F•M) ' (M0

, F•M
0
).

This lemma reduces the proof of Theorem 16.2.5 to the construction of (M0
, F•M

0
).

Proof. By Lemma 16.2.6 we have M ' M0, so we identify these modules, and we
set F•M

0
= F

0
•M. Let g be a reduced defining equation for D and let ◆g be the

corresponding graph embedding. Then (M, F
0
•M) is strictly R-specializable along (g)

and a middle extension along Di2I , according to Theorem 15.11.1. By definition, the
same property holds for (M, F•M). Applying Remark 10.5.2 to F•Mg and F

0
•Mg leads

to F•Mg = F
0
•Mg, hence F•M = F

0
•M.

According to Proposition 15.9.24, the proof of Theorem 16.2.5 will be achieved if
we prove the higher dimensional analogue of Theorem 6.7.3:

16.2.8. Theorem. If (M, S)XrD is a polarized variation of Hodge structure on X rD,
and if we set FpM<0 = j⇤FpM|XrD, then for each ↵ < 0 the sheaves gr

F

p
V

(`)
↵ M are

(coherent and) locally free OX-modules.

16.3. Applications of the structure theorem

16.3.a. Semi-simple components. Let X be a smooth projective variety and M

be a polarizable Hodge module of weight w. The underlying DX -module M is semi-
simple, according to Theorem 14.7.7.

16.3.1. Proposition (Semi-simple components). Any simple component M↵ of M un-
derlies a unique (up to equivalence) polarized Hodge module (M↵, S↵) of the same
weight w and there exists a polarized Hodge structure (H

o

↵
, S

o

↵
) of weight 0 such that

(M, S) '
L

↵
((H

o

↵
, S

o

↵
)⌦ (M↵, S↵)).

(See Section 4.3.c for the notion of equivalence.)

Proof. We can assume that M has pure support a closed irreducible analytic subset Z
of X and that the restriction of M to a Zariski dense open subset Z

o ⇢ Z is a
polarizable variation of Hodge structure.

We will apply the same argument as for Theorem 4.3.13(2). For that purpose,
we need to know that the space of global sections of a polarized variation of Hodge
structure on Z

o is a polarized Hodge structure. Since we have the choice of a com-
pactification Z

o, we can assume that Z is smooth and D = Z r Z
o is a divisor

with normal crossings. By the structure theorem, the variation extends as a polar-
izable Hodge module M with pure support Z. By the Hodge-Saito theorem 14.3.1
applied to the constant map aZ : Z ! pt, the hypercohomology H

� dimZ
HaZ⇤M

is a polarizable Hodge structure. Its underlying vector space is H
�n

(Z,
p

DRM) =

H
0
(Z,H�n

(
p

DRM)) (since all differentials dr (r > 2) in the spectral sequence start-
ing with E

i,j

2
= H

i
(Z,Hj

(
p

DRM)) vanish on E
0,�n

2
). We are thus left with proving

H
0
(Z,H�n

(
p

DRM)) = H
0
(Z

o
,H), with H = H�n

(
p

DRM)|Zo . This amounts to the
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equality of sheaves H�n
(
p

DRM) = j⇤H, where j : Z
o
,! Z denotes the inclusion,

and this is a local question in the neighbourhood of each point of D.
By Lemma 16.2.6, the DX -module M is of normal crossing type and a middle

extension along Di2I . Let us work in the local setting with the simplifying assumption
15.6.2. We will show the equality of germs H�n

(
p

DRM)0 = (j⇤H)0. The germ at 0

of the de Rham complex p

DRM is the simple complex associated to the n-complex
having vertices equal to

L
↵2[�1,0)n

M↵+k with k 2 {0, 1}n and arrows in the i-th
direction induced by e@xi

. The latter is an isomorphism on each M↵+k with ↵i 6= �1

and ki = 0. This complex is thus isomorphic to its subcomplex with vertices M�1+k,
so that e@xi

reads cani, and H0
(DRM)0 =

T
i
Ker can i ⇢ M�1. A similar analysis

shows that (j⇤H)0 =
T

i
KerNi ⇢ M�1. Recall now that M is a middle extension

along Di2I . This means that cani is onto and vari is injective, so KerNi = Ker cani,
and this concludes the proof.

16.3.b. Smooth and strictly non-characteristic pullbacks

16.3.2. Proposition. Let f : X ! Y be a smooth morphism of complex analytic man-
ifolds and let (M,W•M) be an object of WHM(Y ). Then (Tf

⇤
M, Tf

⇤
W•M) is an

object of WHM(X).

Proof. Since f is flat, we can reduce to the case where M is pure, and it is enough
to consider the case where it has pure support a closed irreducible analytic subset Z

of Y . The question is local, so that we can assume that f is the projection of a product
X = Y ⇥Z ! Y . The result amounts then to the property that the equivalence given
by the structure theorem 16.2.1 is compatible with the external product by H

eOZ

(see Example 14.6.2). This property is straightforward from the construction.

16.3.3. Corollary (of Propositions 14.7.5 and 16.3.2). Let (M,W•M) be an object of
WHM(Y ) and let f : X ! Y be a morphism of complex analytic manifolds which is
non-characteristic with respect to gr

W

`
M for each ` 2 Z. Then (Tf

⇤
M, Tf

⇤
W•M) is

an object of WHM(X).

16.3.c. Duality. For M underlying an object of WHM(X), the dual DM is well-
defined in eD-Triples(X), according to Sections 14.7.b and 14.7.c. The same property
applies to each W`M and M/W`M .

16.3.4. Proposition. Let (M,W•M) be an object of WHM(X). Then the W -filtered
triple (DM,W•DM), with W`DM := D(M/W�`�1M), is an object of WHM(X).

16.3.d. The Kodaira-Saito vanishing theorem

16.3.5. Theorem. Let X be a smooth projective variety, let L be an ample line bundle
on X and let eM be any of the eDX-module components of an object (M,W•M) of
WHM(X). Then eM satisfies the Kodaira-Saito vanishing property (Definition 11.9.1),
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that is

H
k
(X,L

�1 ⌦ gr
F p

DRM) = 0 for k < 0,

H
k
(X,L⌦ gr

F p

DRM) = 0 for k > 0.

Proof. We will check the criteria of Theorem 11.9.5 for eM and D eM. As D eM also
underlies an object of WHM(X) by Proposition 16.3.4, it is enough to argue with eM.

Firstly, by arguing by induction on the maximal weight, we can assume that M is
pure of weight w as we have an exact sequence

0 �! W`�1
eM �! W`

eM �! gr
W

`
eM �! 0

which leads to an exact sequence of complexes after applying gr
F p

DRX .
We then argue by induction on the dimension of the support Z of M . The case

where dimZ = 0 is clear due to Property 14.2.2(0). We can assume that Z is of
dimension d > 1, that M has support Z and that the theorem holds if dimSuppM 6
d� 1.

Instead of checking 11.9.5(1), we check (10) of Remark 11.9.6. Let H be any hyper-
plane section (with respect to the embedding defined by L

⌦m) which is non-character-
istic with respect to M . By Proposition 9.5.2, since by definition M is strictly R-spe-
cializable along H, it is also strictly non-characteristic along H. The cyclic covering
morphism f : X

0 ! X considered in Section 11.9.2 is thus strictly non-characteris-
tic with respect to M . By Corollary 16.3.3, Df

⇤(0)
M belongs to pHM(X

0
, w). The

Hodge-Saito theorem 14.3.1 for the constant map aX0 implies the strictness required
in 11.9.6(10).

For 11.9.5(2), by definition of the category pHM(X,w), the object T◆H⇤(T◆
⇤(0)
H

M)

also belongs to pHM(X,w) by the strictly non-characteristic condition, and has sup-
port contained in Z \ H, hence of dimension 6 d � 1. The induction assumption
ensures that 11.9.5(2) is satisfied.

16.4. Comments

Here come the references to the existing work which has been the source of inspi-
ration for this chapter.




